
MIT LJORARIES DIJPL I

3 980 0057b55b 2

Efficient Message-Based System for Concurrent Simulation

by

Moses Hsingwen Ma

S.B., Massachusetts Institute of Technology (1981)
S.M., Massachusetts Institute of Technology (1981)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1989

@ Massachusetts Institute of Technology 1989

Signature of Author ,.-...................

Department of Electrical Engineering and Computer Science
January 11, 1989

7) /J A A

Certified by-......................-...........
Robert H. Halstead Jr.

Associate Professor of Computer Science and Engineering
Thesis Supervisor

ARCHIVES

Accepted by..... INS...rOF TEa*NLOGy
Arthur C. Smith

Chairman, Departmental Committee on Graduate Studer y 10 1989

2

Efficient Message-Based System for Concurrent Simulation

by

Moses Hsingwen Ma

Submitted to the Department of Electrical Engineering and Computer Science
on January 11, 1989, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis describes and analyzes a concurrent discrete-event simulation system based
on Jefferson's Time Warp system[8]. A simulation system consists of a simulator and a
simulation. The simulation is decomposed into tasks that communicate through messages.
The messages dictate the amount of parallelism possible. Without messages, tasks could
run independently of each other. With messages, however, one task may not be able to start
until another task is complete. Each message contains a virtual receive time which indicates
the order in which the message should be processed (by the receiving task) relative to other
messages. Tasks send and receive messages asynchronously with respect to one another; it
is therefore possible for a task to receive a message with a virtual receive time lower than
that of a message it has already processed. When this occurs, the task must rolled back

and its previous state restored. Such an event is called a backup.

System performance is defined in terms of maximizing parallelism and minimizing back-
ups. We present, analyze and verify a model that describes the underlying phenomena that
govern the performance of a simulation.

We explore three aspects of system design in the quest for optimizing performance:

o How tasks are scheduled to run on physical processors.

o How to partition a simulation up into groups of tasks in order to avoid contention for
task queues.

o How to implement the backup process.

For each one of these design aspects, several strategies are described and analyzed.

Thesis Supervisor: Robert H. Halstead Jr.
Title: Associate Professor of Computer Science and Engineering

3

Acknowledgments

I would like to first thank all the people who made this thesis possible (for without their

help all of this would never have been completed).

I would like to thank Mike Athans, who allowed me to look for a second chance.

I would like to thank Dan Nussbaum who recommended me to Bert Halstead and the

Real-Time Systems (RTS) group.

I would like to thanks the people of RTS. My stay in RTS was probably the most pleasant

of my career at MIT. The people in RTS sure know how to take care of their own. Thanks

again to Sharon Thomas.

I would like to especially thank my thesis supervisor, Bert, for giving me my second

chance. He also provided great inspiration and encouragement which made this thesis pos-

sible. Without Bert's patience and sharp mind this thesis would never have been possible.

Everything Bert pushed for just made the thesis so much better in the end.

I would like to thank Margaret St. Pierre, who encouraged me to continue when I was

about to quit about three years ago.

I would like to thank Juan Loaiza, Randy Osborne, Pete Osler, Morry Katz, and Laura

Bagnall for putting up with me as an officemate.

I would like to thank Juan Loaiza and Dan Nussbaum for discussing major issues of my

thesis. Even though Juan thinks no one will ever read this and Dan is totally unreliable.

I would like to thank the two undergraduates who helped me with my thesis. They were

David Rho and Ethan Rappaport. Dave helped automate the simulation runs and made

statistic gathering easy.

I would like to thank my thesis readers. They were Chris Terman and John Tsitsiklis.

John was my officemate during my first thesis attempt.

I would like to thank all of the people in the MIT Bridge Club. No one really knows

what would have happen if I did not get involved with the MIT Bridge Club. Without the

Bridge Club, I might have finished my thesis five years earlier. Then again without the

Bridge Club, I could have gone crazy with a nervous breakdown. I think there is a tradeoff

there. All in all I think the Bridge Club taught me some very important lessons.

4

Finally I would like to thank Melisse Leib. Melisse has really made finishing this thesis

worthwhile. Without her constant encouragement and support this thesis would never have

been completed. Her love, affection and friendship provided much of the impetus that was

required to complete this thesis.

I would also like to thank Melisse for discussing major issues of my thesis. She also kept

her half of our deal to help proofread my thesis. She spent many late nights helping me

rewrite major portions of my thesis. I think I got the better part of the deal. I only had to

type her thesis, term paper and resume.

This research was supported in part by the Defense Advanced Research Projects Agency and

was monitored by the Office of Naval Research under contract numbers N00014-83-K-0125

and N00014-84-K-0099.

5

I dedicate this thesis to my love, Melisse.

Table of Contents

Chapter I INTRODUCTION 12

1.1. Problem Statement 12

1.1.1. Justification 13

1.2. Literature Survey . 13

1.2.1. Introduction 13

1.2.1.1. Taxonomy 15

1.2.1.2. Concurrent Simulation 16

1.2.2. Network Paradigm and Conservative Mechanisms . . . 17

1.2.2.1. The Link Time Algorithm 24

1.2.2.2. The Blocking Table Algorithm 26

1.2.2.3. Chandy and Misra Method 28

1.2.3. Time Warp Mechanism 29

1.3. Approach . 34

1.4. Chapter Outlines . 35

Chapter II OVERALL DESIGN OF OUR SYSTEM 37

2.1. Introduction . 37

2.2. Object Oriented Programming 37

2.3. System Structure . 38

2.4. Environment . 41

2.5. Simulation-Dependent System Functions 41

2.6. Initialization . 45

-6-

2.7. Sum m ary

Chapter III SIMULATION INDEPENDENT SYSTEM 47

3.1. Introduction . 47

3.2. Time Warp Implementation 47

3.2.1. Messages . 48

3.2.2. Tasks . 48

3.2.3. Forward Message List 49

3.2.4. Backward Message List 50

3.2.5. Time-Snapshots 50

3.2.6. Environments 50

3.3. Dynamic Repartitioning .o. 51

3.3.1. Groups . 51

3.3.2. Group List . 52

3.3.3. Monitor . 52

3.3.4. Task Queues 53

3.4. Lazy versus Aggressive Message Cancellation 54

3.5. Summary . 55

Chapter IV SCHEDULING . 56

4.1. Introduction . 56

4.2. Non-Partitioning . 56

4.3. Partitioning . 57

4.4. Dynamic Repartitioning 57

4.5. Fixed Group List . 57

4.6. Circular Group List 58

4.7. Group with Longest Task Queue 58

4.8. Group with Lowest LVRT 59

-7-

. 46

4.9. Estimation

4.9.1. Motivation

4.9.2. Estimated LVRT or EVRT

4.9.3. Changes to Forward Message List

4.10. Continuous Dynamic Repartitioning

4.11. Summary

Chapter V SIMULATION DEPENDENT SYSTEM .

5.1. Introduction

5.2. Queueing Simulation

5.3. Circuit Simulation

5.4. Butterfly Network Simulation

5.5. Partitioning

5.5.1. Horizontal Partitioning

5.5.2. Random Partitioning

5.5.3. Vertical Partitioning

5.5.4. Minimum Communications Partitioning .

5.6. Summary

Chapter VI

6.1.

6.2.

6.3.

6.4.

EXTREME EXPERIMENTS

Introduction

Performance Measurements

Best and Worst Case for Unpartitioned Scheduling

Best and Worst Case for Partitioned Scheduling .

. 60

. 60

. 61

. 61

. 62

. 62

. 64

. 64

. 64

. 67

. 70

. 73

. 73

. 76

. 76

. 76

. 81

. 83

. 83

. 83

. 86

. 88

6.5. Best and Worst Case for Dynamic Repartitioned Scheduling .

6.5.1. Group with Lowest LVRT

6.5.2. Group with Longest Task Queue

6.5.3. Fixed Group List

-8-

91

92

95

97

6.5.4. Circular Group List

6.5.5. Estimated LVRT

6.6. Continuous Dynamic Repartitioning . .

6.7. Summary

Chapter VII MODEL, RESULTS AND DISCUSSION 108

7.1.

7.2.

7.3.

7.4.

7.5.

Introduction

M odel

The Synchronization Effect

The Aggressive Backup Effect

Virtual-Time Delay

7.5.1. Theory

7.5.2. Experiments

7.5.2.1. H8-Partition Case .

7.5.2.2. Hir-Partition Case

7.5.2.3. V6-Partition Case .

7.5.3. Discussion

7.5.3.1. Horizontal Partitioning

7.5.3.2. Vertical Partitioning .

7.5.3.3. Application to Other Simulations

7.6. Lazy versus Aggressive Message Cancellation

7.6.1. Experiments

7.6.1.1. H 8-Partition Case

7.6.1.2. H 16-Partition Case

7.6.1.3. V6-Partition Case

7.6.2. Discussion

7.6.3. Application to Other Simulations . . .

7.7. Real-Time Delay

-9-

. 99

101

103

. 106

. 108

. 109

113

116

119

119

121

121

123

126

127

127

131

132

136

144

144

145

146

147

147

148

7.8.

- 10 -

7.7.1. Vertical Partitioning

7.7.1.1. .< 1.
PT

7.7.1.2. I > 2

7.7.1.3. 2 > L > 1

7.7.2. Horizontal Partitioning

7.7.2.1. I < 1

7.7.2.2. 2 > L > 1

7.7.2.3. 1 > 2PT

Message Queue Length

7.8.1. Theory

7.8.2. Experiments

7.8.2.1. Real Time Delay

7.8.2.2. Feedback Loop

7.8.2.3. Horizontal versus Vertical Partitioning

7.8.3. Discussion

7.8.3.1. Application to Other Simulations

Random Partitioning

7.9.1. 8-Partition Case

7.9.2. 16-Partition Case

7.9.3. Discussion

Minimum Communications Partitioning

7.10.1. Results

7.10.2. Partition Saturation

7.10.2.1. Theory

7.10.2.2. Experiments

7.10.3. Discussion

Continuous Dynamic Repartitioning

7.11.1. Experiments

7.9.

7.10.

7.11.

150

152

153

154

155

155

156

158

159

159

161

164

168

169

170

172

183

183

188

190

192

192

197

198

206

211

215

215

7.11.1.1. ND=0

7.11.1.2. ND=1000

7.11.1.3. ND=10 (the usual case) or ND=100

7.11.2. Discussion

Group List Order Importance

Circuit Simulator

7.13.1. Four-bit Adder

7.13.2. Discussion

Speedup

Summary

7.15.1. Lazy versus Aggressive Message Cancellation

7.15.2. Message Queue Length

7.15.3. Best Partitioning

7.15.4. Scheduling Schemes

7.15.5. Times-Virtual and Real

Chapter VIII CONCLUSIONS . .

8.1.

8.2.

8.3.

. 247

Review of Goals

What have We Learned?

Additional Questions . .

Chapter IX

References

APPENDIX 260

. 2 6 7

- 11 -

7.12.

7.13.

7.14.

7.15.

220

221

221

222

223

224

224

228

236

238

238

239

239

244

245

247

249

257

I. INTRODUCTION

1.1. Problem Statement

As we enter an age when fast sequential processors are reaching their limits, one

approach to increasing computational power is the use of multiprocessors. In the past,

simulations executed sequentially could take weeks to execute on even the fastest and

most efficient of modern computers. However, in many simulation applications, concur-

rent processing can be used to hasten this execution. This thesis addresses the issues

involved in implementing simulations using concurrent processing.

The approach followed here uses the messages passed between processes to dictate

the amount of parallelism possible. Inter-process communication is the impediment

preventing any concurrent simulation from being neatly decoupled, and hence from

being run cleanly in parallel. Our simulation system is implemented in an object

oriented programming style with message passing; the system is written in Multilisp,

a concurrent dialect of Lisp developed by Halstead[7].

We faced many important design decisions. First, how should processing elements

be mapped to the simulation's tasks? Second, how should these processing elements

"move" to other tasks within the simulation? Third, how should the simulation be

partitioned into groups of tasks? Fourth, should we allow tasks to progress forward

aggressively, thus incurring the risk of backup, or only conservatively, thus avoiding

backup? Fifth, how should a general and user friendly simulation system be built?

Sixth, how should we define a clear user interface? Seventh, what were the important

parameters affecting simulation performance?

- 12 -

1.1.1 Justification

In the future, multiprocessors may consist of thousands of individual processors.

Inter-processor communications will be much improved. Such a machine will have be-

come problem limited, rather than machine limited. That is, its limits will be defined

by how well designed its mechanism is for taking advantage of the problem's inher-

ent parallelism. Three major approaches strive to develop this mechanism: parallel

algorithms, distributed systems, and concurrent simulations. Our approach is via con-

current simulation and is essentially concerned with how well the problem simulation's

correlated tasks can be juxtaposed. The aim of this thesis is to upgrade existing simu-

lation mechanisms, taking advantage of the simulation problem's intrinsic parallelism.

Essentially, the contribution of this thesis is to implement an efficient message-

based system for concurrent simulation with well defined interfaces, and to understand

the effects of the different parameters on simulation performance.

1.2. Literature Survey

1.2.1 Introduction

Simulation systems provide means for observing the behavior of large systems over

time when direct observation of the system is inconvenient or impossible or when it is

desirable to view the system behavior at an increased or decreased rate of time passage

relative to the observer.

Two separate classes of simulation exist: discrete and continuous. In discrete

simulations, changes in the state of the system take place at discrete points in time

and are instantaneous. In continuous simulations, changes in state occur smoothly and

continuously in time. An example of a discrete system is a queue at a bank teller. An

example of a continuous system is a global weather system. Numerical analysis and

analog computing are used to solve systems of differential equations that model the

behavior of continuous systems. In contrast, event-based simulation is often used for

discrete systems.

- 13 -

Our primary motivation for attempting to perform simulation in a distributed

manner comes from the observation that some interesting classes of systems exhibit a

high degree of natural parallelism; the system can be divided into tasks that execute

in parallel.

In concurrent simulation, the simulation is decomposed into tasks that are simu-

lated in a distributed manner over a network of processors by assigning each task to

a processor. This approach is attractive for the simulation of network models because

of the inherent parallelism, and because of their widespread application to computer

systems and communication networks. Such parallelism can be exploited in the decom-

position to give a potentially more cost-effective method of simulation. The distributed

approach, however, requires the proper synchronization of the components for the sim-

ulation to be carried out correctly. One way synchronization can be achieved is by

message passing between the tasks.

An upper bound on the parallelism available is determined by the number of tasks

into which the simulated system can be decomposed. We wish to analyze various

methods for achieving either the lowest execution time for a given simulation, or the

most cost-effective simulation. Because of the overhead introduced by distributing the

simulation, the lowest execution time may not necessarily coincide with the largest

degree of parallelism. The amount of overhead introduced depends on the relative

speeds of generating and transferring messages between processes, and also on the

particular method of synchronizing the processes.

In this approach, the actions of these processors are synchronized, while each

processor is responsible for processing the events related to its set of tasks. This dis-

tributed approach can reduce the total time necessary to perform a given simulation.

This accomplishment depends upon the number of processors available. If a sufficient

number of processors exists, then a one-to-one mapping of tasks to processors is possi-

ble. However, a one-to-one mapping may not result in the fastest execution, or may be

too expensive. This is because some tasks may execute slower than others, potentially

- 14 -

causing faster tasks to wait or backup, depending on the nature of the simulation. This

problem can be alleviated by making a many-to-one mapping from tasks to processors

so that the work assigned to each processor is about equal.

1.2.1.1 Taxonomy

E

SIMULATION

One Processor NETWORK OF PROCESSORS

Event Driven Time Driven EVENT DRIVEN TIME DRIVEN

vent Scheduling Numerical Methods SYNCHRONOUS ASYNCHRONO US

SYNCHRONOUS

VIRTUAL RING

ASYNCHRONOUS

LINK TIME or BLOCKING TABLE
TIME WARP MECHANISM

Figure 1.1 Taxonomy Tree for Simulation Systems

We define a taxonomy as shown in Figure 1.1, which classifies various synchro-

nization methods. At the first level we distinguish whether there is one or a network

of processors available. In a network, the simulation is decomposed into tasks and

- 15 -

distributed over the processors. The next level deals with the nature of the simulation.

In event-driven simulation the changes in the system state are simulated only when

events occur, and the sequence of virtual times associated with a sequence of events

is monotonically increasing. In time-driven simulation a universal virtual clock is in-

cremented by a fixed amount for each step in a simulation. All of the changes in one

interval of a system state are simulated before advancing the virtual time to the next

interval. A fundamental feature of algorithms for the synchronization of time-driven

simulations is that a central controller must broadcast a signal to every simulation task

to indicate the end of a simulation interval.

In the multiprocessor case, we have a third level, dependent on the value of virtual

time at each node. Many methods have been proposed for implementing concurrent

or distributed simulation. They can be broadly classified into two groups, synchronous

and asynchronous.

In a synchronous distributed simulation, all tasks progress forward in virtual time

simultaneously. The usual event queue implementations of sequential simulation are

all synchronous methods. In contrast, an asynchronous distributed simulation permits

some tasks to run ahead of others in virtual time. Of course, an asynchronous simulation

must include some mechanism for ensuring that no events are executed in the wrong

order when a task that is behind schedules an event for execution by a task that is ahead.

Within this constraint, an asynchronous method tries to maximize the number of events

being executed in parallel. We emphasize that the difference between synchronous and

asynchronous methods is in the implementation. As there is no semantic difference, it

will be invisible to the simulation programmer.

Algorithms for event-driven simulation on a network of processors, developed

by Chandy and Misra [5,6], and Bryant [4], are the virtual ring algorithm for syn-

chronous event-driven simulation and the link-time and blocking table algorithms for

asynchronous event-driven simulation.

- 16 -

1.2.1.2 Concurrent Simulation

Discrete event-driven simulation differs semantically from other computational

paradigms primarily because of the notion of virtual time, which plays a special logical

role in the global coordination of the computation. A simulation on one processor is

normally organized as a collection of procedures, coroutines, or pseudo-parallel pro-

cesses invoked according to a special scheduling discipline, executing the task with the

lowest virtual time first.

The following sections discuss two different methods that have been employed to

perform concurrent simulation: one a conservative method and the other aggressive.

For this thesis, the latter strategy is implemented because of various problems that

were found in the conservative strategy. Since many implementation issues were nei-

ther designed nor fully specified in the original studies of the aggressive strategy [13],

a major portion of this project concerned itself with many design issues such as sys-

tem structure, scheduling, interface and user specifications. These sections provide

an overview of the Network Paradigm (conservative) and the Time Warp (aggressive)

methods for concurrent event-driven simulation, covering most of the previous work

done on concurrent simulation.

1.2.2 Network Paradigm and Conservative Mechanisms

Several groups have been active in the field of asynchronous distributed simulation.

Two of these are Chandy and Misra [5,6] at the University of Texas at Austin, and

Peacock, Wong, and Manning [16,17,18] at the University of Waterloo. Their work falls

into the Network Paradigm category; they include the Link Time and Blocking Table

algorithms of Peacock, Wong and Manning; and the Chandy and Misra method.

In the Network Paradigm, each task in the simulation is represented as a deter-

ministic sequential process acting as a node in a network. Communication channels are

represented by directed arcs between the nodes of the network. Each task has associ-

ated with it a local virtual time which is the virtual time of the last event executed by

that task. Local virtual time is a measure of how far the process has progressed in the

- 17 -

simulation. Communication between tasks in the network (called events, customers,

transactions, etc.) consists of time-stamped messages that traverse the arcs between

the nodes of the tasks. Each message has a time-stamp that specifies the virtual time

for processing the message. Also each message's time stamp must be greater than or

equal to the sender's local virtual time at the moment of sending.

A task in the Network Paradigm may have several input channels each of which

maintains separate input message queues. In the Network Paradigm it is assumed

that each of the network's arcs preserves the order of the messages, and messages sent

along any particular arc must form a non-decreasing sequence in terms of their time-

stamps. Since the queues are ordered by increasing time-stamps, determining the next

message to process requires examining only the first message in each queue. Therefore,

each node can easily merge its several input message streams by selecting the lowest

time-stamped message off one of its input message queues. The previous requirements

guarantee that no message can arrive later with an earlier time-stamp than the selected

message.

Each task continuously executes the following algorithm:

1. Waits for each input message queue to have at least one message enqueued in it.

2. Begins processing by taking the message with the lowest time stamp off one of the

input message queues.

3. Updates the local virtual time for this node to be the value of the message's time-

stamp.

4. Performs the actions dictated by the message. This could involve changing the

node's local variables and/or sending one or more time-stamped messages along

the output arcs of the node to other tasks.

5. Go to step 1.

Even if each of the n nodes in the simulation were assigned to different processors

and all could execute concurrently, optimal n-fold speedup over the usual single pro-

cessor case is not usually possible because severe problems can occur, preventing such

- 18 -

ideal behavior from happening in real simulations: the first is the limited amount of

concurrency available, and the second, is the inherent cost of concurrent or distributed

computation. The first limitation is that the simulation must take at least as long as

the most time consuming task. The second limitation is due to the extra time needed

for synchronization.

TASK NAME

MESSAGE A 15 -4--- T ASK'S
TIME STAMP 30 25 20 VIRTUAL TIME

MESSAGE

CONTENTS

MESSAGE INPUT QUEUE

TASK

Figure 1.2 Key to Diagrams

Two problems are associated with Step 1 of the algorithm. The problem arises

when a node has one or more of its input queues empty when it tries to receive the next

message. If this occurs, then the node must wait, because if it accepts a message from

any of the nonempty input queues, it has no guarantee that later it will not receive,

along one of the currently empty input arcs, a message with a time-stamp earlier than

the message it will have processed. If the node were to process a message from a non-

empty are and later received a message with an earlier time-stamp from a previously

empty arc, this would constitute a logical error in the simulation because events would

be simulated in the wrong time order. For example in Figure 1.3, task D must block

because one of its input arcs has an empty message queue.

- 19 -

Figure 1.3 Conservative Mechanism within the Network Paradigm

A task is safe at a particular moment if it has at least one message queued on

each input arc. A task with at least one empty input arc is unsafe. A conservative

mechanism for concurrent simulation is one in which at any given moment, all safe tasks

are considered eligible to execute, but unsafe tasks are suspended until they are safe.

Any conservative mechanism will be input/output equivalent to the usual sequential

event-list simulation mechanism, if we assume that both will terminate without memory

overflow, runtime error or deadlock; each task will receive the same sequence of messages

as the sequential mechanism, will progress through the same sequence of states, will

send out the same messages to other tasks, and will produce the same final output.

Any mechanism that is input/output equivalent will return the same set of outputs

given the same set of inputs.

The best possible case for the conservative strategy is shown in Figure 1.4. In the

example, the simulation is of a network with no fan-in or directed cycles, where each

node has only one input queue. In this case each node is eligible to execute whenever it

has at least one unprocessed message in that queue; therefore, deadlock is impossible

in this special case. Since no unnecessary blocking occurs, the degree of concurrency is

- 20 -

Figure 1.4 Network where the Conservative Mechanism works well

maximal.

Conservative mechanisms are unsatisfactory since for most simulations they may

encounter memory overflow or deadlock. Even in the absence of these problems, con-

servative mechanisms allow for only limited concurrency in most simulations.

A second problem is illustrated in Figure 1.3. If the rate at which B and C

together produce messages exceeds the rate at which D can accept messages, then one

or both of D's input queues will eventually overflow with messages. This is a flow

control problem that troubles all distributed systems. However, the problem with the

conservative mechanism is that if B produces messages at a much slower rate than does

C, then most of the time D's input queue of messages from B will be empty, and D

will be blocked. Meanwhile, messages from C can build up and will eventually overflow

memory, even though D may be intrinsically fast enough to process the messages at a

- 21 -

rate higher than the sum of the production rates of B and C. The problem is that D

will spend most of its time blocked. We may assume that B's virtual time is advancing

more slowly than C's, because if B's virtual time were keeping up with C's, just one

message from B would unblock a large number of messages from C to D. In many

simulations it is impossible to predict whether this blockage will occur. The likelihood

is influenced by the variations in timing, by the details of process scheduling, and by

the nondeterministic nature of the simulation.

A 50 ~45 401 351 30 25D 1

Figure 1.5 Local Deadlock

In most interesting simulations, the network contains a directed cycle, and if this

is the case, then the conservative mechanism is vulnerable to deadlock. A momentary

pause in the message stream along one or more arcs of the cycle may cause a local

deadlock by deadly embrace. We define a deadlocked process as an unterminated process

permanently ineligible to execute. Figure 1.5 provides an example where tasks B, C,

and D are permanently unsafe. In this example, using a purely conservative mechanism

leads immediately to deadlock since B can never process even the first message from

A. This is a deadlock caused by the conservative mechanism, not by the simulation;

therefore, the same simulation executed under the sequential event list method would

- 22 -

complete successfully.

These two problems, memory overflow and deadlock, taken together contribute to

the possibility of failure in large simulations. The chances are slim that a large complex

simulation will succeed in terminating since these two problems may arise at any node

and around any network cycle.

Even if there were a way to avoid these problems, the conservative mechanism

does not extract enough of the available concurrency. An example of this excessive

conservatism is shown in Figure 1.3, where we see that D must block until B sends

another message, because B is able to send a message whose time-stamp is less than

30. If B does that, then D's waiting was necessary. However, if B's message arrives

with a time-stamp of, say, 50, then D's waiting was in vain. In this case, node D could

have safely processed its messages from C, resulting in increased concurrency as well as

less risk of deadlock or memory overflow. This early processing of the messages from C

reduces the chance of memory overflow because D no longer needs to keep copies of the

messages from C after they have been processed. The early processing also reduces the

chance of deadlock if there is a directed cycle D-X- ... -X-B, by preventing the flow

of messages out of D from stopping. We believe that under a conservative mechanism,

blocking in vain would happen a large fraction of the time. One solution would be

for B to send null messages to D, just for synchronization purposes. On the other

hand, increasing the number of messages is very likely to increase the time delay for all

messages passing through the network. (This is a well known fact in routing theory, but

may not be applicable to this system because we are dealing with a virtual network, not

a physical one). Hence several arguments suggest that a purely conservative mechanism

is not the best for concurrent simulation. Therefore, the following subsubsections will

discuss how Peacock, Wong, and Manning; and Chandy and Misra try to alleviate the

problems of a purely conservative mechanism.

- 23 -

1.2.2.1 The Link Time Algorithm

Peacock, Wong, and Manning [16] describe their Link Time Algorithm as a mech-

anism in which the sending node for each arc (link) maintains a link time for that arc.

A link time is a lower bound on the time stamp of the next event message to be sent

along the arc and is periodically communicated to the receiving node, which can use the

information to determine whether it is safe to execute even if the input queue for the

arc is empty of event messages. This seems to be equivalent to the following mechanism

described by Chandy and Misra [5]. Each node of the simulation automatically sends

extra time-stamped null messages along some or all of its output arcs whenever the local

simulation time at that node changes. The null messages have no semantic content in

the simulation and can be treated as events requiring no action. Like real transactions

they play a part in the safe/unsafe decision, and processing them does cause the local

simulation time of the receiving object to advance. This algorithm makes receiving

nodes safe a greater percentage of the time. Hence, there is less waiting at each node,

resulting in greater concurrency.

Figure 1.6 The Link Time Algorithm using null messages

- 24 -

Figure 1.6 illustrates this technique. In this diagram D has received three null

messages from C with time stamps 32, 38 and 45. D can therefore process both of

its messages in the other queue with time stamp less than 45 (30 and 42). Without

this mechanism D would need to receive a message from C before it could process the

appropriate messages.

The problem with using this approach is the increased number of messages in the

system. It could therefore be possible for the system to be processing more overhead

messages than real messages. This would therefore increase the overall delay of the

system.

This portion of the Time Link algorithm solves the blockage issue. The second

portion of this algorithm addresses the deadlock issue. This part of the algorithm

requires that there be a non-zero minimum service time for all network nodes. This

implies for each node, there is some number E such that it cannot send a message with

a time stamp less than t + e in response to a message with time stamp t.

This requirement does avoid deadlock, but it constitutes a serious artificial con-

straint on the types of models that can be simulated. Many of the most frequently used

service time distributions (exponential, Erlang, lognormal, etc.) do not have a nonzero

lower bound. Queueing models using such distributions for service times either cannot

be simulated or can be simulated only with distortion.

Another problem with the algorithm is that it may result in a near deadlock situ-

ation. To illustrate this point, consider Figures 1.7 -1.9. Suppose for this simulation

that the minimum service time for a node is 0.001 and that the mean service time for

a node is 1. In Figure 1.7, node B wants to process a message from A with time

stamp 37, but is being blocked by the empty queue from C. B has, however, sent null

messages to C and D. In Figure 1.8, the null messages have been received, and C has

sent a null message to B with time stamp 35.002. However, B still cannot process the

real message from A with time stamp 37. In Figure 1.9, B again sends null messages.

Continuing like this, messages with time stamps between 35 and 37 in increments of

- 25 -

Figure 1.7 Using Minimum Service Times to avoid Deadlock I

Figure 1.8 Using Minimum Service Times to avoid Deadlock II

0.001 will flow in the cycle B-C-B until B is able to receive the real message from A.

This amounts to 2000 null messages sent and received with no concurrency. Although

increasing the minimum service time reduces the number of messages sent, it cannot

be set to too large a number or the simulation will become unrealistic.

- 26 -

Figure 1.9 Using Minimum Service Times to avoid Deadlock III

1.2.2.2 The Blocking Table Algorithm

One way to avoid deadlock and possibly increase the concurrency over that avail-

able from the Link Time algorithm (at least theoretically) is to use the Blocking Table

Algorithm (Peacock, Wong, and Manning [17]), which continually and incrementally

computes part of a communication graph formed by the empty arcs (arcs terminating

in an empty queue). With this information, a given node knows not only what nodes

are directly blocking it, but also which nodes are blocking its blockers. A given node

sends a request to each of its blockers for a lower bound on the time stamp of the next

message sent. This information is maintained at each node in a blocking table. (see

Peacock, Wong, and Manning [17] for details) This table allows a node to determine if

a message can be processed based on global as well as local information.

According to [17], computing the actual blocking table - even incrementally - can

be prohibitively expensive for large simulations. This is because a single event can both

delete and insert new empty arcs into the subgraph of empty arcs. Therefore, they use

an approximation to the graph calculation.

Our judgment of the Blocking Table algorithm is that in most cases the number

- 27 -

of messages exchanged while computing the blocking table for each blocked node could

exceed the number of messages exchanged during single processor event simulation.

The system might spend more time deciding who goes next in the simulation than it

would actually simulating. Since [17] provides neither details of the approximation nor

experimental results, no conclusion of the algorithm's efficiency can be made.

1.2.2.3 Chandy and Misra Method

Chandy and Misra [6] consider a set of optimizations of the Network Paradigm,

that addresses the problems of deadlock and memory overflow.

To address the problem of memory overflow, they require queues to have a finite

length. In this case, a node blocks not only when it has an empty input arc, but

also when the queue of the next destination is full. This mechanism clearly solves the

memory overflow problem. Furthermore, it insures that the amount of storage used by

a concurrent simulation will be within a factor of that used by a serial simulation.

However, this solution aggravates the deadlock problem because a node can block

when either sending or receiving a message. Therefore, deadly embraces also can occur

in cycles without regard to the direction of the arcs. This greatly increases the number

of possibilities for deadlock. These local instances of deadlock can cause blockage at

all nodes in the network because eventually the nodes will either have an empty input

arc, or will fill the input queue of a blocked node.

To overcome deadlock, Chandy and Misra suggest that a deadlock-detection mech-

anism such as the Dijkstra's algorithm be used in tandem with the simulation. When

deadlock is detected, the simulation stops and a sequential deadlock-breaking mecha-

nism is employed.

Chandy and Misra do not expect the detection-breaking mechanism to be a bot-

tleneck because they claim that it is fast and rarely needed. This may not be true

because deadlock is more likely with finite queues. Furthermore, it appears that the

mechanisms for breaking and detecting deadlock and restarting some of the processors

must either be slow, performing a global analysis to detect the maximum number of

- 28 -

processors that need to restart due to deadlock, or must use a faster analysis that

detects fewer processors, but leaves the system in a near-deadlocked state.

1.2.3 Time Warp Mechanism

Time Warp is an asynchronous method that speeds up simulation by exploiting

the concurrency that results from the programmer's decomposition of a model into

interacting tasks. Time Warp was introduced by Jefferson and Sowizral [8,9,10].

The Time Warp method can be applied to a larger class of simulations than the

Network Paradigm. There is no need to assume a fixed network topology connecting

the simulation tasks; rather, each task may interact with any other at any time. Each

task has only one input message queue; incoming messages are enqueued by sorting

them into time-stamp order. In the Time Warp mechanism these time-stamps are called

virtual receive times (VRT). The VRT of a message is the virtual time at which the

task should process the message. The lowest VRT of any message on the task's input

message queue is the LVRT of the task. There is no need to assume that messages are

sent in increasing order along each arc. For example, we permit task A at simulation

time 50 to send a message with VRT 100 to task B, and then later, at virtual time 70

to send a message with VRT 80 to the same task B. We maintain the assumption that

the VRT on a message must be greater than or equal to the virtual time of the sending

task at the moment of sending. This ensures that tasks cannot schedule events in the

past.

Like the Network Paradigm mechanisms, the Time Warp is

asynchronous, meaning that there is no global variable that represents the simula-

tion clock; instead, each individual task maintains its own local Virtual Time (LVT).

In any particular snapshot of a simulation some tasks will have LVT values greater

than others, because the Time Warp mechanism is asynchronous.

The Time Warp mechanism always acts upon the messages in its input queue in

VRT order until it exhausts the queue. In the Time Warp mechanism, snapshots of

the task are taken from time to time. A snapshot is simply the state of the task at

- 29 -

a particular virtual time. In contrast with the Network Paradigm, a Time Warp task

never waits until it can safely process the next message (unless its input queue has been

exhausted). A task can run any time there is at least one message on its input queue.

This aggressive approach risks the possibility that a message will arrive at a task

whose LVT is greater than the VRT of the incoming message. In other words, it is

possible for a message to arrive in the past. This message is called a straggler. The

VRT of the straggler is called the preempting virtual time. The virtual time of the task

immediately before the straggler appeared is called the previous virtual time. Straggler

messages can cause other messages to be processed out of order-a serious problem, as

each message may cause both a state change in the receiving task and the sending of

additional messages. If even one message were to be processed out of VRT order, the

results of the entire simulation might be invalid.

Since it is almost certain that there will be some stragglers in the course of a

simulation, the Time Warp system provides a mechanism to ensure the simulation's

integrity. Whenever a straggler arrives at a task's input queue, the Time Warp mech-

anism automatically restores that task to a state from a virtual time earlier than the

preempting virtual time of the straggler, cancels any side effects that it may have caused

in other tasks from the time of the preempting virtual time to the previous virtual time

(possibly by rolling them back), and starts simulating all affected tasks forward again.

In rolling back, messages that were sent between the preempting virtual time and the

previous virtual time are canceled by sending anti-messages. Anti-messages are identi-

cal to the original message except for setting an additional bit in the message to indicate

that the new message is an anti-message. While reprocessing the task, the processor

will not send new messages until it reaches the preempting virtual time since these

messages would have already been sent out correctly. Once the preempting virtual

time is reached, processing continues normally and messages are sent until the previous

virtual time. This set of actions is called a backup. A rolled back task may reprocess

some messages that it processed before, but this time the straggler will be processed

- 30 -

in its correct sequential position.

Even though the idea of rolling back to an earlier state may seem hopelessly expen-

sive and clumsy, the mechanism is in fact quite economical. It rolls back only the tasks

that must be rolled back, it rolls them back only as far as necessary, and it rolls them

back at the first moment the information mandating the rollback becomes available.

If rolling back can be done quickly enough and infrequently, then in large simulations

the increased concurrency achieved will compensate for the overhead of the rollback

mechanism.

The Time Warp mechanism is a game of chance. The object of the game is to

minimize losses: real delay involved in wasted computation and rolling back. Every

time a task processes a message M with VRT t, it takes a bet that no message with a

VRT earlier than t will later arrive. If it wins that bet, no time is lost. If it loses the

bet, some time is lost since there is a delay involved in restoring the task to an earlier

state and then running it forward to the point when message M can be processed. The

success of the Time Warp system is based on the assumption that most simulation

programs are well-behaved and that stragglers will arrive rarely enough in the long run

to make the gamble worthwhile.

A similar game is played in memory management in paging systems. Every time a

running program makes a memory reference, it takes a gamble that the page referenced

will be resident in memory. When the gamble is won, no time is lost, and the memory

reference proceeds without delay; on the other hand, if the gamble is lost, then some

time is lost, and the cost is the delay needed for disk accesses and page table manip-

ulation before the memory reference can proceed. The success of paging systems is

based on the empirical fact that programs are reasonably well-behaved. If simulations

are well-behaved in message passing, then we can win our game. In addition, if mes-

sage passing reaches a steady state, we will be able to minimize backups by analyzing

statistics.[13] (Major portions of the material in Section 1.2 were taken from Jefferson

[8]).

- 31 -

There are many issues that are not addressed in the Time Warp design by Jefferson.

How are the processors mapped to tasks (scheduling)? How do users specify tasks and

their initial input messages? How are these tasks initialized?

Although scheduling is not addressed in Jefferson's Time Warp design it can

greatly affect the performance of the simulation system. The simplest way to im-

plement scheduling is through a global task queue which is a sorted list of the tasks in

LVRT order. Then, processors always process the queued task with the lowest LVRT.

Since many processors may wish to access the task queue at any one time, the task

queue must be locked every time a processor accesses it. As the number of proces-

sors increases, the task queue can become a major bottleneck because processors must

wait a significant amount of time to access the task queue. Therefore, we investigated

grouping tasks into partitions and distributing the task queue among the partitions.

In this manner, we were able to lower the contention for the task queue and therefore

lower the processors' waiting time.

Partitioning is another aspect, not addressed in Jefferson's design that can greatly

affect the performance of a simulation. A partitioning method can effectively set pri-

orities among the tasks to be executed. If done wisely, setting priorities can encourage

task execution patterns that avoid backup. Therefore, a good partitioning method in

conjunction with a good scheduling policy can reduce the amount of processing time

and the amount of backup.

It is not always obvious how best to partition a simulation, but we found some

good heuristics. One heuristic is to minimize the amount of inter-partition messages.

Once partitioning is used, major scheduling policy decisions must be made. The

easiest and most straightforward scheduling strategy is the static partitioning policy.

The static partitioning policy assigns a fixed number of processors to each partition.

If there are no tasks to be executed in a partition, then a processor in that partition

suspends itself until work arrives. We found that this type of policy did not do well when

partitions had a large variance in their work loads over the time span of a simulation.

- 32 -

Another scheduling strategy is dynamic repartitioning. In dynamic repartitioning,

each processor is still assigned a given partition. However, when there is no work for a

processor in its given partition, then that processor relocates to another partition. This

policy usually worked the best because processors remained in their partitions until it

was absolutely necessary to relocate. Assuming we used a good partitioning method,

it is advantageous to try to maintain the partition boundaries.

A final scheduling strategy is the continuous dynamic repartitioning strategy. In

continuous dynamic repartitioning, a processor is not dedicated to a given partition.

Instead, after processing each task, it selects its next task from a partition that is chosen

by some algorithm (not necessarily the same partition as its last task came from). At

first glance this strategy would seem to take advantage of the decentralization of task

queues induced by partitioning, while still processing the the task with the lowest LVRT

as in the unpartitioned case. When we used a good partitioning method, this strategy

was not advantageous because it did not respect partition boundaries and the implicit

priorities they induce.

In the Time Warp design, when a task backs up, all messages sent by the task

between the virtual times from which and to which it is backing up are canceled. We

call this the aggressive message cancellation policy. Many such messages may in fact

be sent again after a backup, with exactly the same contents and virtual receive times,

suggesting a new lazy message cancellation method where a message is not canceled

until it is known that it will not be sent again by the backed-up task. We found that

aggressive message cancellation worked well in simulations where each task's output

typically depended on the task's state (local variables of the task) - since a backup

would typically change the state, it was unlikely that many of the same messages

would be re-sent after a backup. Conversely, lazy message cancellation worked well

when the output was not typically state dependent. We shall refer to these message

cancellation policies as synchronization recovery methods.

Therefore, the simulation system's performance can be greatly influenced by the

- 33 -

following three design aspects that we have just discussed:

1. Scheduling

2. Partitioning

3. Synchronization Recovery Methods

These three design aspects are the most important because they are user controlled.

In this thesis we shall try to understand how the user can use these controls to enhance

the performance of the the simulation.

1.3. Approach

The first goal of this thesis is to implement an efficient message based system for

concurrent simulation. The system uses many of the concepts developed for the Time

Warp Mechanism, along with newly developed performance heuristics. Furthermore,

the thesis also evaluates the effects that different parameters of the system have on

simulation performance.

To optimize our system, we group tasks into partitions. One parameter that the

thesis evaluates is the effect of different methods of choosing these partitions on the

performance of the system.

Once partitions are chosen, we then need to choose a scheduling policy. That

is, we need to assign priorities to the different tasks awaiting execution. There are

three categories of scheduling policies: static partitioning, dynamic repartitioning, and

continuous dynamic repartitioning. Our major efforts are focused on studying dynamic

repartitioning. We develop several varieties of dynamic repartitioning and then compare

their effects on simulation performance.

Another comparison that this thesis makes is between synchronization recovery

methods. In the original Time Warp strategy, aggressive message cancellation is used.

We also explore the lazy message cancellation policy. These two methods are compared

over a wide spectrum of experiments.

Along with these comparisons, we also study the effects on the performance of

the simulation of message queue lengths and of virtual-time and real-time delays. We

- 34 -

investigate the effects of altering the average input message queue length of each task.

The lengths of message queues can be decreased by increasing real-time delays and by

introducing feedback. We also analyze the effects on the dynamics of simulations of

changing the virtual-time delays between successive messages. Virtual time delays can

be changed by modifying mean interarrival times (MITs). Real time delays can be

modified by increasing the real time between successive input messages to our system

or introducing feedback. Varying these parameters allows us to validate our theories

about Time Warp. These theories, in turn, may suggest ways such as changing the

partitioning or using a different scheduling policy to make a given simulation go faster

and reduce backups.

1.4. Chapter Outlines

Chapter 2 presents the overall design of our system, introducing the concepts of

simulation independent and simulation dependent subsystems. The general object ori-

ented model used to build the overall simulation system is described. System functions

and the system's user specifications are also described.

Chapter 3 introduces the simulation independent portion, modeled after Jefferson's

Time Warp method[12]. Also discussed are modules that vary deterministic schedul-

ing policies and interface with the simulation dependent portion. Finally, message

cancellation policies are discussed.

Chapter 4 discusses all the different scheduling policies used: non-partitioning, par-

titioning, variants of dynamic repartitioning, and continuous dynamic repartitioning.

Varying strategies processors can use to pick a new partition are discussed: fixed-list,

circular-list, longest task queue and lowest LVRT (lowest virtual receive time). A fi-

nal variation includes the estimation of virtual receive time, an idea built upon lowest

LVRT dynamic repartitioning.

Chapter 5 covers various simulation dependent systems. These systems, which

were implemented, include simulations of a queueing network, a digital circuit, and a

butterfly network. Some of the modules used in one simulation were re-used in another,

- 35 -

demonstrating their flexibility as building blocks. Several different partitioning methods

were used on the butterfly network simulation; these are described.

Chapter 6 discusses extreme experiments; that is, best and worst case experiments

for each of the scheduling policies. Each dynamic repartitioning strategy is distin-

guished with an example where it outperforms the other strategies, establishing that

no scheme outperforms all others in all cases. It is thus valuable to study the different

schemes in a practical setting to determine the circumstances under which each scheme

performs the best.

Chapter 7 first describes a model of our system. The goal of the model is to

understand how our system works and how we would expect it to behave under various

sets of circumstances. Using this model we develop theories to explain the effects

of scheduling schemes, partitioning methods, message cancellation strategies, message

queue lengths, and real and virtual time delays on the performance of the simulation.

Once the theories are presented, results of the actual simulations are given, comparing

scheduling schemes, partitioning methods, message cancellation strategies, message

queue lengths, and real and virtual time delays. The results of these experiments

are used to confirm the theories presented with the model. Finally, we explain the

applicability of these results to other simulation experiments.

Chapter 8 is the conclusion.

- 36 -

II. OVERALL DESIGN OF OUR SYSTEM

2.1. Introduction

In our system there are two different sub-systems, the simulation independent

and the simulation dependent portions. The simulation dependent system consists of

modules which are specific to a particular simulation. Three points are discussed: use of

an object oriented programming approach with message passing to implement system

design, six user system functions with which the user can compose the simulation

dependent portion, and a list of items a user would need to specify while initializing

our system.

2.2. Object Oriented Programming

The object oriented programming style used in our system is exemplified in Fig-

ure 2.1. Here the procedure make-closure is defined as a function that returns

another procedure. We call make-closure a procedure class. Inside the procedure

make-closure an environment is defined as a set of bindings of additional parameters

based on input arguments given to make-closure. Within this environment the sub-

procedures foo1 through fooN are defined. These sub-procedures would differ if they

were defined at top level because these functions when defined within make-closure

generally depend on the values of vari ... varN, as well as the arguments given to

make-closure. Furthermore, if one of the functions inside make-closure perform

side effects on one or more of the variables vari ... varN, then only the environment

inside of make-closure will be affected. However, if the functions were defined outside

of make-closure, then the side effects would alter the global environment.

The application of make-closure to its arguments is shown in Figure 2.2 . Its

result, bar, is called an instance or closure of the procedure class make-closure. The

- 37 -

(define (make-closure tt-table name outname ... arg
(let ((varl (fun 1 tt-table))

(var2 (fun2 name))
(var3 (fun3

(varM (funM

(define (fool

(define (foo2

outname))

arg))

all al2... a1O

a21 a22... a2P)

(define (fooQ aQl aQ2... aQR)

(define (dispatch op)
(cond ((eq op

((eq op

((eq op

'namel) fool)
'name2) f oo2)

'nameQ) f ooQ)))

dispatch))

Figure 2.1 Procedure Class Make-Closure

(setq bar (make-closure table self them ... param))

Figure 2.2 Bar - An Instance of the Procedure Class Make-Closure

application of bar to its arguments is shown in Figure 2.3 . This style is called message

passing and bar's argument is called a message.

- 38 -

)

)

((bar 'name 1) param 1 param2 ... paramS)

Figure 2.3 Application of Bar Exemplifies Message-Passing

2.3. System Structure

Abstract task objects have two closure objects, one in the simulation independent

and the other in the simulation dependent system. These closure objects are called

images. The image of a task in the simulation independent system is always an instance

of one of our fixed set of procedure classes. However, the image of a task in the

simulation dependent system can be an instance of a wide range of procedure classes

that depends on the simulation.

Messages are passed between and within the simulation independent and simula-

tion dependent systems; however, a Time Warp message between abstract task objects

is done in the special manner illustrated in Figure 2.4 . In this example, task A is

sending a Time Warp message to task B. The images of A and B in the simulation

dependent system are A 1 and B 1 respectively. Similarly the images in the simulation

independent system are A 2 and B 2 . The first step in this process is the sending of

messagei, whose contents is the Time Warp message, from A1 to A 2 . The next step

is the sending of message2 from A 2 to B 2 . Next B 2 sends message3 to the message

queue of task B. Subsequently, Message4 will be sent from the message queue to B 1

at the appropriate virtual time specified by the Time Warp message.

Although we have discussed the communication between task objects, we have not

discussed how the destinations of object oriented messages are obtained: that is, we

have not shown how objects A 2 , B 2 , and B 1 are obtained. A naming strategy allows

us to obtain these objects.

Every abstract task in our system is assigned a name. This permits tasks to be

identified at run time. Tasks are created dynamically at run time and hence cannot be

referenced a priori.

The task name to task object table (tt-table) is a map of task names to their images

- 39 -

Simulation Independent

Al nessagel A Task

Task
Message

2

B Task
Task 2

BI Message4 Message 3

Message Queue

Figure 2.4 Abstract Task Object A sends a Message to B

in the simulation independent system. An entry is added for a given task when the

task is created. This entry allows tasks in the simulation dependent system to access

images in the simulation independent system.

Tasks in the simulation independent system obtain the images of tasks in the sim-

ulation dependent system differently. Instead of using t-table, a task in the simulation

independent system maintains a pointer to its counterpart simulation dependent image.

This is more efficient because tasks in the simulation independent system need only

- 40 -

Simulation Dependent

access their counterpart images and no others. Tasks in the simulation dependent sys-

tem, however, may need access to several tasks in the simulation independent system

in order to send messages to them; therefore, a table more compactly represents this

information, rather than having pointers from each image in the simulation dependent

system to many different simulation independent images.

We now return to Figure 2.4 . When task A wants to send a Time Warp message

to task B, the Time Warp message is initiated by A 1 . A1 knows only the names of

the tasks A and B, and recovers A 2 and B 2 from ti-table with this knowledge of the

tasks' names. B 2 recovers B 1 via its pointer to B 1. Hence the path A1 A 2 B 2 B 1 can

be referenced.

2.4. Environment

Every task has an associated set of state variables. In order to perform backups,

previous task states must be obtainable. This set of previous task state variables is

called an environment, but this environment of a task should not be confused with the

environment of a closure.

The environment of a task can be obtained by both of the task's images. It

is pointed to by the image of the task in the simulation independent system. The

simulation dependent image first obtains the simulation independent task by a ti-table

lookup, and then references the task's environment via its counterpart's pointer.

2.5. Simulation-Dependent System Functions

A set of functions need to be defined in order to write simulation dependent pro-

cedure classes. These functions include:

1. Retrieving a task closure object (image) in the simulation independent system

corresponding to a task name in the simulation dependent system.

2. Retrieving the task name in the simulation dependent system from the task closure

object in the simulation independent system.

- 41 -

3. Retrieving a task's environment closure object in the simulation independent sys-

tem.

4. Storing values of variables in the current task's environment.

5. Retrieving values of variables from the current task's environment.

6. Sending messages from one task to another via their images in the simulation

independent system.

((tt-table 'id-name) symbol-name): [function]

This function returns the image of the task symbol-name in the simulation

independent system, which is a closure object representing the task. The

variable symbol-name is the symbol-name of the image of the task (for

example A in Figure 2.4 is the symbol-name of a task and A1 or A 2 are

the task's images.)

((Ut-table 'name-id) task-closure): [function]

This function is the inverse of the above and is used to retrieve the task's

symbol name. The variable task-closure is the closure object representing

the task's image in the simulation independent system.

((task-closure 'get-task-env)): [function]

This function returns the environment closure object for the task associ-

ated with the task closure object task-closure. The environment closure

object is used to store and retrieve variables in the environment of the

((env-closure

((env-closure

task.

'set-env-var)name value): [function]

This function saves the value of the variable having symbol name name,

in the environment represented by the closure object env-closure.

'get-env-var)name): [function]

The parameter name is the symbol name of a variable in the environment

represented by the closure object env-closure. This function returns the

value of the variable, and is used to retrieve the values of variables stored

- 42 -

in the environment of a task.

((sclosure 'send-mess)rtime stime data sclosure rclosure anti): [function]

This function sends a message from the source task (stask) to a receive

task (rtask). The image of stask in the simulation independent system

is sclosure (similarly rclosure is the image of rtask). The variable ritime

is the VRT of the message. It is the time when rtask should processes

the message. The variable stime is the current virtual time of stask. The

variable anti is used to send anti-messages during backups, and is set to

zero for user-specified messages.

The following example (Figure 3.5) illustrates how to use system functions to de-

fine a procedure class. The procedure class in our example represents the definition of

a wire in a circuit simulation. The application of the procedure make-wire creates

a wire. The procedure class initializes a wire by attaching it to appropriate circuit

components and attaching an initial value to it (line 14). Along with these initializa-

tions, the application of the procedure class returns a closure that represents a wire.

When this wire is applied to a message, the message is then propagated to all circuit

components to which the wire is attached.

The application of make-wire to its arguments occurs at initialization. However,

before this occurs, the user specifies the variables circuit and signal-value. The variable

circuit holds holds all of the tasknames of the circuit elements to which we want to

attach the wire. The variable signal-value represents the value of the wire's signal

value and is initialized to zero. These are placed in the task environment object at

initialization. This is not part of make-wire so that a single wire can be connected to

different sets of circuit components. Then the procedure class make-wire is applied to

its arguments. The arguments in this case are the tt-table and name. The name variable

is the symbol name of the task representing the wire in the simulation dependent

system. tt-table is the closure object performing the table mapping function. The

local environment will be the first thing defined in the procedural definition. Within

- 43 -

this environment all of the system functions are initially referenced and bound to local

variables as illustrated in lines 2-7. This use of local variables will allow access to the

system functions without having to look them up again.

[1] (define (make-wire tt-table name)

[2] (let* ((in (tt-table 'id-name)) ; Mapper from names to Simulation Indep. images

[3] (wclose (in name)) ; Simulation independent image of name

[4] (send-mess (wclose 'send-mess)) ; Proc that sends a message from a source to dest task

[5] (env-close ((wclose 'get-task-env))) ; Environment closure object associated with name

[6] (get-var (env-close 'get-env-var)) ; Function that retrieves a variable value in env

[7] (set-var (env-close 'set-env-var))) ; Function that binds a name, value pair in env

[8] (set-var 'circuits (mapcar in (get-var 'circuits)))

[9] (define (call-each circuits time stime value)

[10] (cond ((null circuits) nil)

[11] (t (let ((cir (car circuits)))

[12] (send-mess time stime value wclose cir 0)

[13] (call-each (cdr circuits) time stime value)))))

[14] (call-each (get-var 'circuits) 0 0 (get-var 'signal-value))

[15] (define (reg-mess mess)

[16] (let* ((time (mess-rtime mess)) ; The time component of the message

[17] (data (mess-data mess)) ; The data component of the message

[18] (signal-value (get-var 'signal-value))) ; The wire's previous signal value

[19] (cond ((<> signal-value data)

[20] (set-var 'signal-value data)

[21] (call-each (get-var 'circuits) time time data)))))

[22] (define (dispatch mess)

[23] (cond ((equal mess nil) nil)

[24] (t (reg-mess mess))))

[25] dispatch))

Figure 2.5 Example of a Procedure Class-Make-Wire

The next action to occur is that tasknames in the variable circuit are replaced

with their respective images in the simulation independent system (line 8). Then, the

sub-function call-each (lines 9-13) is defined. This procedure sends messages to each

of the circuit elements connected to the wire, telling the elements that the wire is an

input to them. This function has three other arguments; time, stime, and value. time

- 44 -

represents the desired receive time of the message, stime represents the desired send

time of the message, and value is the desired signal value of the input wire to the

circuit elements. Then, the wire being created is initialized by its connection to all

components of the circuit at time zero with a signal value of zero (line 14).

Then the sub-procedure dispatch is defined (lines 22-24). This procedure dis-

patches messages to the reg-mess procedure. That is, it propagates a given message

onto the elements attached to the wire. The procedure dispatch is the value returned

by the procedure class make-wire. Hence, a wire is a procedure that when given a

message encoding a signal propagates the signal onto the circuit elements attached to

the wire.

The sub-procedure reg-mess (lines 15-21) is then defined. The procedure propa-

gates a given signal onto the devices attached to the wire. This procedure is a function

of a message consisting of time and data components. The function first checks to see

if the message changes the signal value of the wire. That is, it checks to see if the data

component of the message differs from the value of the variable signal-value, which

contains the previous signal value on the wire (lines 18-19). Then all of the circuit

elements that are attached to the wire are notified of the change and the new signal

value of the wire is saved in the environment.

2.6. Initialization

The following is a list of parameters that must be user specified:

1. Groups. Groups, or partitions, are collections of tasks grouped together for

scheduling purposes, as discussed in Section 1.3. Associated with each simula-

tion is a group list, which is an unordered list of the groups. The user must specify

how to apportion the different tasks into these groups.

2. Initial Processor Distribution. The initial processor distribution states how

many processors will originate in each of these groups. The association of proces-

sors with groups may change depending on the scheduling mechanisms used.

3. Initial Group List Order. Initial group list order is the order in which each

- 45 -

group with its associated tasks gets initialized.

4. Procedure Object. Procedure classes must be specified for each different type of

task in the simulation. They include the different instantiations' task names and

the names of tasks with which each task communicates. Each of these procedure

classes return a procedure capable of processing any type of message that it could

receive from any task.

5. Environment. The environment of each task, that is, the set of state variables

associated with each task, must be defined.

2.7. Summary

Using object oriented programming is nice because each different type of module

in our system can be represented by a procedure class. In this manner the simulation

system is completely specified by the different procedure classes. This allows us to

represent the simulation independent system by a fixed set of procedure classes, while

allowing the user to define the simulation dependent system by a variable set of pro-

cedure classes. One of the most useful representations is an abstract task object with

an image in both the simulation independent and the simulation dependent systems.

These images are simply instances of procedure classes. Representing a task in this

manner allows differentiation between its simulation independent and simulation de-

pendent parts. This saves the user from having to rewrite the simulation independent

portions over again. Only a single set of user procedure classes need be used to rep-

resent any simulation system, thus making our system a very general form of discrete

event-based concurrent simulation.

In the second half of this chapter we presented a set of six system functions.

These system functions tell exactly what the simulation dependent system can ask the

simulation independent system to do. Section 2.5 is a user's manual for these functions.

- 46 -

III. SIMULATION INDEPENDENT SYSTEM

3.1. Introduction

Within the simulation independent subsystem there are two types of modules. One

set of modules implements Time Warp, while the second comprises the scheduling and

interface portions. Many missing Time Warp details had to be designed and specified.

This chapter begins with a brief description of our implementation of Time Warp

followed by a description of the modules that are involved in scheduling and interface.

Variants of the basic scheduling system are either built upon or are special cases of

the dynamic repartitioning strategy. Finally there is a brief discussion concerning lazy

message cancellation.

3.2. Time Warp Implementation

We have described the Time Warp system designed by Jefferson in Chapter 1.

Here we discuss our implementation of its simulation independent portion by giving a

brief description of each module that is required and how the modules interact.

Our simulation independent Time Warp system consists of the following different

data objects and procedures:

1. Messages

2. Tasks

3. Forward Message List

4. Backward Message List

5. Time-Snapshots and Time-Snapshot Lists

6. Environments

Each task has a forward message list, a backward message list, a time snapshot list,

and an environment. These message lists contain messages that the task has sent or

- 47 -

received. Messages are used as inter-task synchronization mechanisms since messages

can only be sent after the source task's LVT, and only processed at a virtual time after

the destination task's LVT. This prevents any task from progressing far ahead of the

other tasks with which it communicates.

The environment consists of variables which represent the state of the task, and

which may change due to the arrival of messages from other tasks. The snapshot list

contains a list of snapshots, that is, copies of the task's environment at particular times.

These snapshots are vital in order to restore the state of the task should a backup occur.

3.2.1 Messages

Messages are the means by which tasks communicate and are also the means

of global task synchronization, since without messages a network of tasks would be

completely decoupled. Messages prevent tasks from becoming overextended in virtual

time. In other words, tasks cannot progress too far ahead of other tasks, otherwise

messages from tasks that are behind will force them to back up.

When a message is sent from one task to another a copy of the message is placed

into the backward message list of the source task and into the forward message list of

the destination task. Each message is a data object consisting of a virtual send time, a

virtual receive time (VRT), the source task object, the destination task object, the data

and the anti-message flag. The source task object is necessary, since the destination

task may need to know where the message originated in order to process the message.

3.2.2 Tasks

A task is a closure object that is linked to a message processing closure in the

simulation dependent system. Each execution of a task may be performed by a different

processor. This execution is the processing of one message by that task. An execution

of a task begins with a task reading a message on its forward message list. If the VRT

of the message is greater than the local virtual time (LVT) of the task receiving it, then

the processor updates the LVT of the task to the VRT of the message and applies the

- 48 -

message processing closure to the contents of the message. This processing may result

in the sending of subsidiary messages to other tasks.

If the VRT of the message is less than the LVT of the task, then a backup is

executed. The VRT of the message that caused the backup (preempting message) is

referred to as the preempting virtual time. Backup involves restoring the task to the

most recently saved state (including its list of incoming messages not as yet processed)

prior to preempting virtual time; then all messages sent between preempting virtual

time and the LVT of the task prior to backup must be negated (aggressive cancellation).

After this, the task is executed forward to the VRT of the preempting message without

the sending out of additional messages. Then, once the message which caused the

backup is handled, the task can go back to its normal routine of reading the next

message on its input queue.

3.2.3 Forward Message List

The forward message list consists of message data objects received by the task

which are sorted into virtual time order. This list is separated into two parts, the

processed message queue and the unprocessed message queue. The processed message

queue consists of messages which have already been processed and are then stored into

decreasing VRT order. The unprocessed message queue consists of messages yet to be

processed, stored in increasing VRT order. In this way the VRT of the first message of

the unprocessed message queue is the LVRT of the task. When the processor executes

this task, it will remove this first message from the unprocessed message queue, execute

the task's message-processing closure on it, and then place the message into the first

slot of the processed message queue.

If a message is received that has a VRT less than the task's LVT, then the task must

back up, which is accomplished by transferring all of the messages with a VRT greater

than the backup time from the processed message queue to the unprocessed message

queue. After the backup the task proceeds as usual, reading the current message from

the unprocessed message queue. Any anti-messages that are received either delete their

- 49 -

corresponding messages from the unprocessed message queue or cause another backup

and then delete the corresponding message from the processed message queue.

3.2.4 Backward Message List

A task's backward message list is a listing of all messages that have been sent by

that task. Should a task back up, this list is then used to cancel the messages sent

since the time of backup by sending anti-messages. Of course, these anti-messages may

cause additional backups.

3.2.5 Time-Snapshots

Snapshots are a means by which the system can save the environment of a task at a

specific time. Before processing a new message, a snapshot of the task is created which

includes the current LVT of the task. For a particular virtual time, all of the current

values of the task's state variables are saved in the snapshot, and then the snapshot is

added onto a snapshot-list. Snapshots are used only in backups. If it is decided that a

task has to back up to a certain preempting virtual time, then the snapshot with the

largest virtual time less than the preempting virtual time is taken from the snapshot

list. The task's environment is then restored to that snapshot state.

3.2.6 Environments

The environment data object contains two lists; a list of the names of all of the

task's state variables and a list of their values. In this way all of the state variables of

a particular task can be shielded from all of the other tasks, so that the system works

in a modular fashion. By making a copy of the current task's environment data object

and then tying it to the appropriate virtual time, we make a snapshot state of the

task. Whenever a task has to be restored to a prior virtual time, the requisite snapshot

object is searched out from the snapshot list.

- 50 -

3.3. Dynamic Repartitioning

In certain simulations a set of tasks may be highly coupled; in other words, each

task depends upon messages sent by other tasks in the set. In this case the ability

to continue processing one task in the set may be stalled by another task. It is then

beneficial to permit only a few of these tasks to be running during any real time

interval. In order to accomplish this, sets of tasks that are highly interdependent can

be grouped together by the user. Some tasks may also be highly independent of each

other, suggesting that they should process concurrently in separate partitions. In either

case, the user should specify which tasks are dependent and which are independent by

choosing the initial partitioning.

We investigated a strategy called dynamic repartitioning. In this strategy, there is

an initial assignment of processors to partitions. A module called the monitor may sub-

sequently reassign processors. A processor can only relocate to another partition after

it finishes executing a task. The monitor attempts to determine more efficient dynamic

groupings of processors during simulation execution. This dynamic load balancing may

occur many times during a simulation.

The four basic modules that are used in the scheduling and interface between the

simulation independent and simulation dependent portions of our system are:

1. Groups

2. Group Lists

3. Monitor

4. Task Queues

They are discussed below.

3.3.1 Groups

Each group data object represents a partition, and is associated with a collection

of tasks and a task queue. Basically, groups appear as separate smaller simulations

which have artificial fire walls between them preventing the tasks of one partition from

relocating to another partition. Messages pass freely between partitions, but the tasks

- 51 -

do not. Synchronization between partitions is achieved entirely by messages; however,

inter-task synchronization within a partition is provided by both the task queue and

messages.

3.3.2 Group List

The group list data object is simply an unordered list of group data objects.

Depending on which dynamic repartitioning method is used, the group list may be

modified. In the circular-list dynamic repartitioning, the group list is circulated every

time a processor switches partitions. Circulation is accomplished by moving the first

group to the end of the list.

3.3.3 Monitor

The monitor is a function that interfaces the simulation independent and simula-

tion dependent portions of the simulation. One of the monitor's responsibilities is for

the initial startup of the simulation. First the monitor makes a group list object and

then places all of the groups in the list. It then makes a task queue object for each

group and subsequently places all of the tasks associated with that group onto the task

queue. Next the tt-table is created.

Once the creation of the objects is complete, the monitor initializes each task queue

by creating each task's message-processing closure and then placing the closure into

the task object which is the simulation independent image of the task. The closure is

user specified and should be capable of handling any message sent to that task. This

closure is an instantiation of a procedure class like the procedure class shown in Figure

3.5.

Next, the monitor creates the number of physical processors specified by the user

for each partition. Each physical processor will execute the main loop of the monitor

until the simulation is complete.

In this main loop each processor takes one group off the group list. Then the

processor gets the corresponding task queue for the group that it chose. This task

- 52 -

queue is sorted in terms of LVRT, so that the first task on the task queue is to be

executed next. (A task's LVRT is the VRT of the first message on the forward message

list of that task.) Should the task queue be empty, the processor will seek work at

some other partition. If a processor decides to switch to a particular partition, then

it changes its group and takes work from the new group's task queue. This new task

queue corresponds to a new group; in essence, we relocate the processor to the new

group. If the processor still finds no work outside its partition, then it will suspend

itself inside its original partition.

If the task queue is not empty, then the processor grabs the next task on the

queue and seeks its associated forward message list. Since the forward message list is

sorted in terms of VRTs, the processor will try to process the unprocessed message

with the lowest VRT on the forward message list. If the message's VRT is less than the

corresponding task's LVT, then backup is required. Otherwise, the task's corresponding

message-processing closure is applied to the message. Once this is complete, the task is

placed back on the queue if there are more messages in its forward message list. If this

list is empty, then the task is left off the queue pending the arrival of a new message.

The processor will then return to the top of the main loop and proceed.

3.3.4 Task Queues

A task queue is a sorted list of executable tasks. There are three types of tasks:

executable, non-executable, and executing. An executable task is one that has messages

on its forward message list. A non-executable task has no messages on its forward

message list. An executing task is one which is currently being executed by a processor.

There are three major functions that the task queue object may perform on the tasks

in its partition: adding a task to the task queue (add-task), updating the position of a

task on the task queue (update-task-queue), and removing the next task for processing

(next-task). Since many processors may wish to access the task queue at the same time

instant, the task queue must be locked before any operation is performed on it.

Add-task first checks to see if there are any suspended processors which may im-

- 53 -

mediately be given the task. Otherwise, the task is inserted into its place in the task

queue which is arranged in increasing LVRT order. Update-task-queue simply changes

the order of tasks in the task queue if their LVRT order has changed. For example, if a

new incoming message arrives with a lower VRT than any messages on a task's forward

message list, it changes the task's LVRT and thus requires the task to be moved to

a different place in the task queue. Next-task grabs the next task off the queue for

execution; if there are none, then the out-of-work processor relocates itself to another

group, which is determined by the scheduling algorithm. If, after searching all of the

other partitions, the processor still finds no work, then it will suspend itself.

In general, we wish to sort the task queue in such a way that the tasks which are

farthest behind will get executed first. If we were to use LVT instead of LVRT to sort

the task queue, then this would create a problem if a preempting message arrived at

an idle task because the early VRT of the preempting message would not be reflected

in the position of the task on the task queue. When this task finally gets backed up it

may precipitate even more backups, all of which could have been avoided had the task

been scheduled earlier. Unfortunately, this phenomenon can also occur with regular

non-preempting messages. For an example consider task1 with (LVT 1 ,LVRT1) and

task2 with (LVT 2 ,LVRT 2); if LVT 1 < LVT 2 and LVRT1 > LVRT 2 , then the processing

of task1 first is wrong and could cause additional backups. The only real reason for

keeping LVT is for knowing when to back up. If an executable task receives a new

message with a VRT < LVRT while using LVRT to sort the task queue, then the

LVRT of the task is reset and the task is resorted onto the task queue. If an LVRT

sort, rather than an LVT sort is used, a processor will always select for execution the

task with the lowest LVRT within its partition.

3.4. Lazy versus Aggressive Message Cancellation

The original Time Warp mechanism used aggressive message cancellation during

backups. When an task X was rolled back from simulation time 100 to 90, Time Warp

immediately sent anti-messages for all messages that X had sent at or after time 90.

- 54 -

With the lazy cancellation method the rollback to time 90 does not immediately cause

anti-messages to be sent. Instead, after the rollback, as task X simulates forward from

time 90 to time 100, the set of new output messages N that X requests for transmission

is compared to the set of old output messages 0, whose transmission X requested the

last time it simulated from 90 to 100. The messages in the set 0 - N are canceled

with anti-messages, because they never should have been sent; those in the set NnO

are ignored because they have been transmitted; while those in the set N - 0 are

transmitted to their destinations.

Lazy cancellation usually produces fewer anti-messages and secondary rollbacks

than aggressive cancellation does. On the other hand, lazy cancellation delays the

backup of other tasks and thus potentially increases the total amount of backup. The

two cancellation strategies are compared in Chapter 7.

3.5. Summary

In this chapter all of the modules that make up the simulation independent system

were presented. The crux of the chapter concerns the design of the new modules

used to implement a wide variety of scheduling policies. Together with the t-table

module discussed in Chapter 2, these modules form the interface between the simulation

independent and simulation dependent subsystems. They are necessary, but were not

specified by any previous description of Time Warp. Finally, lazy message cancellation

was introduced, in which messages are canceled only when they absolutely need to be.

- 55 -

IV. SCHEDULING

4.1. Introduction

Each of the different scheduling policies studied were either developed to increase

the performance of our simulation system or to be used in baseline experiments. This

chapter discusses the changes to existing modules that were required in order to imple-

ment those different scheduling policies and explains why those policies are interesting.

In addition to deterministic scheduling schemes, this thesis also investigated an adap-

tive method. The question is whether the amount of effort to perform the adaptive

method is too much of a price to pay for the added performance. The last schedul-

ing scheme involves continuous dynamic repartitioning, in which processors are able to

move to a new partition after the execution of a single task.

4.2. Non-Partitioning

In the non-partitioning case the simulation system acts as one large partition which

continuously executes tasks with the lowest LVRT off the partition's task queue using

physical processors. All other scheduling schemes are derived from this one. This

policy can be implemented on our system by simply running the simulation with only

one partition and suspending processor reallocation. Since there is only one partition,

processor relocation does not make sense; therefore, processors that find no work in the

partition simply suspend themselves until more work arrives. Non-partitioning will act

as a base line on which to judge the merits of partitioning. A potential problem with

this policy is task queue contention since many processors may need to access the lone

task queue at any one time.

- 56 -

4.3. Partitioning

The partitioning case is very similar to the dynamic repartitioning strategy dis-

cussed in Section 3.3 except that processors do not relocate when there is an absence

of work in their own partition. Rather than relocating, they are suspended. This pol-

icy can be implemented on our system by suspending processor reallocation. Static

partitioning will become our base line on which to judge the merits of dynamic repar-

titioning. A potential problem with static partitioning is that if one partition had no

work, then all of its processors would suspend, which would be wasteful if there is work

in other partitions that needs to be done.

4.4. Dynamic Repartitioning

The following sections discuss the different algorithms performed on the group

list to determine the partition to which a processor from an idle partition chooses to

relocate. These different types of dynamic repartitioning strategies are:

1. Fixed Group List

2. Circular Group List

3. Group with Longest Task Queue

4. Group with Lowest LVRT

5. Estimated LVRT or EVRT

4.5. Fixed Group List

Fixed group list is the basic dynamic repartitioning strategy that was discussed

in Chapter 3. When a partition's task queue becomes empty, all processors within

that partition not executing a task seek work elsewhere. In seeking work, a processor

scans the other partitions (i.e. groups) in the order in which they appear on the group

list starting at the beginning of the group list. In scanning a partition, the processor

retrieves the task queue for that partition. If this task queue is non-empty, then the

processor relocates itself to that partition by moving its task scan to this new task

queue. If the task queue is empty, then the processor scans the next group on the

- 57 -

group list for work. If none of the other partitions have any work, then the processor

suspends itself in its original partition. Because of the order in which the group list is

scanned, partitions that are at the front of the list tend to receive idle processors first.

A potential problem with this method is that the order in which the processor

scans partitions to find work is the same as the order of the groups on the group list.

This tends to favor idle processors relocating to the first group on the group list, which

is bad if groups at the end of the group list have the lower LVRT's. If processors are

not assigned to the tasks that have the lowest LVRT's, then backup may occur. The

advantage of the strategy is its simplicity. Very little overhead is required in order to

determine where to relocate idle processors.

4.6. Circular Group List

Discussed briefly in Chapter 3 as an example of alternative dynamic scheduling

policies, this scheme works exactly like the fixed group list scheme, except that after

a processor relocates, the group list is circulated by moving the first group to the end

of the list. Processors subsequently seeking work scan the revised group list. In this

manner the scan is not biased toward any particular portion of the group list.

A partition has work to do if its task queue is non-empty, i.e. the partition has

non-executing executable tasks. A potential problem is that this selection process does

not distinguish between partitions that have much work to do from those that have

little. Therefore a partition that had just one task to execute, but was at the front of

the group list, could preempt a processor from relocating to a partition that had many

tasks to be executed.

4.7. Group with Longest Task Queue

The longest task queue strategy is more complex. This policy tries to provide a

fair relocation policy by relocating processors to the partition with the most tasks to

be executed.

When a partition has no executable tasks, it is called an idle partition. Any

- 58 -

processor within that partition which is not executing a task should relocate to a

partition where work exists. The way this mechanism works is that a processor from

an idle partition first retrieves the task queue of each group in the group list. Then

the processor relocates itself to the partition with the longest task queue in essence,

the partition with the most work. If all of the task queues have zero length, then the

processor suspends itself in its original partition.

A potential problem with this method is that the partition chosen may not be the

partition that is farthest behind in the LVRT sense. Hence, by executing the chosen

partition, a backup may soon result. A partition with the greatest amount of work

may still be far ahead (in terms of virtual time) of a partition with less tasks in its task

queue.

4.8. Group with Lowest LVRT

The lowest LVRT strategy chooses the partition that is farthest behind in LVRT.

In each group's task queue, the task at the front of the task queue has the lowest

LVRT in the partition, which is also the LVRT of the partition. In the lowest LVRT

strategy, a processor seeking work first retrieves the task queue of each group in the

group list. Then the processor relocates itself to the partition with the lowest LVRT

- in essence, the partition whose next message to be processed is farthest behind. If

all of the partitions have no messages to be processed, then the processor suspends

itself in its original partition. LVRT scheduling tries to give more processing power to

partitions that are farther behind in virtual time.

A potential problem with this method is that it is susceptible should there be wide

deviations in message arrival times. Examples of this are shown in Sections 6.4.2-6.4.4.

If a simulation has messages that arrive randomly based on a known probability

distribution, then it may be possible to estimate the VRT of the next message for any

particular task based upon VRT's of the task's previous messages. By determining

the likelihood of backup if the first task on a partition's task queue is processed, one

can decide whether to process the task. This may not be possible at the start of the

- 59 -

simulation, but after the simulation has progressed for some time it may be possible.

It is at this time that we say the simulation is in steady state.

4.9. Estimation

4.9.1 Motivation

After an initial startup period, a simulation may reach a steady state. From this

state one may be able to approximately calculate a probability distribution on the

virtual times of message arrivals using the statistics that have been gathered about

message interarrival times. These probabilities can be used to estimate the task's next

message virtual receive time (EVRT). If a task's EVRT is a good estimate, then it can

be used to better sort the task into the task queue, thus increasing performance. The

task queue should now be sorted in increasing order by the value of LEVRT=LVRT

- EVRT, in order to discourage the processing of messages with LVRT >> EVRT.

Assuming our model is correct, our estimate predicts that the next message that this

task should process will have an VRT of approximately EVRT. If LVRT >> EVRT,

our estimate indicates that we should hold up processing of the message until a new

message arrives with a lower VRT. Since this is a probabilistic model, the fact that

LVRT >> EVRT does not guarantee a message will arrive with a VRT < LVRT, but

the possibility is likely.

Every time a task processes a message with a new virtual receive time, NVRT,

EVRT must be recalculated and the task is sorted back onto the task queue. Our

estimate only uses first order statistics; for example, we might use a running average or

a weighted running average on message arrival times. Let our current EVRT be evrti.

If a new message is processed with an NVRT > evrti, it tends to cause the estimated

average message interarrival time, AT, to increase. The recalculated evrt2 (= NVRT

+ AT) will be higher than if NVRT=evrti. This allows the task to be resorted earlier

on the task queue, since its LEVRT will be less, thus allowing an earlier execution of

its messages. Thus NVRT drives AT (average time between messages), which in turn

- 60 -

drives EVRT (= LVT + AT), which then drives the task queue sorting variable LEVRT

(= LVRT - EVRT).

4.9.2 Estimated LVRT or EVRT

This method is an attempt to correct for wide deviations in message arrival times.

The EVRT strategy chooses the partition which has the lowest LEVRT; an idle proces-

sor relocating to this partition will be least likely to cause a backup. In each group's

task queue, the task at the front of the queue has the smallest LEVRT, which is also

the LEVRT of the partition. EVRT scheduling gives more processing power to the

partitions that are least likely to back up.

First a processor from an idle partition that is seeking work retrieves the task queue

of each group on the group list. Then the processor relocates itself to the partition with

the lowest LEVRT. If none of the partitions have any messages to be processed, then

the processor suspends itself in its original partition.

A potential problem is that the EVRT strategy takes additional time in calculating

the EVRT of the next message by using a running average. Another is that the EVRT

scheme may not perform well in short simulations that have not reached steady state.

One fundamental difference between LVRT and EVRT scheduling is that the task queue

is now sorted in terms of LEVRT, which is designed for smooth, steady state simulation

behavior.

4.9.3 Changes to Forward Message List

In our implementation of the EVRT scheme, a very simple estimate is used. The

statistic that is kept is the average time (AT) between successive processed messages

calculated as a running average. EVRT is simply the average time (AT) added onto

the virtual time (LVT) of the task. The unprocessed message queue remains the same

as before, but the processed message queue is changed. Normally the processed message

queue contains a list of the processor's messages which have been processed, but in this

method, each message is replaced by a pair of the message and the current running

- 61 -

average (AT) of the messages that were processed up to that point.

Every time a message is processed, a new running average is calculated, with the

message and the average being added onto the processed message queue. In this manner

backups will work properly since AT is correctly saved in the message list and will be

properly restored after backup. AT is used to re-calculate EVRT every time add-task

or update-task-queue are called.

4.10. Continuous Dynamic Repartitioning

A potential problem with all of the dynamic repartitioning strategies is that they do

not continuously relocate processors. If a processor is sent to a partition, the processor

does not leave the partition until there is no work left. This allows some partitions

to get far ahead of others, and the other partitions that are behind could likely cause

the partitions that are ahead to back up. Worse yet, a processor that suspends in a

given partition because it could find no work anywhere will not be activated until work

appears again in that partition, making it unavailable before that time to pick up work

elsewhere in the system.

A possible solution to the first problem is to use continuous dynamic repartitioning.

Here processors look for work after processing only one task. Now each processor will

look for a new partition regardless of the work load in the original partition. As before,

if there is no work in any partition, the processor suspends itself in its original partition.

This strategy was examined using the lowest LVRT algorithm to determine the new

partition; the processor relocates to the partition that is the farthest behind in LVRT.

4.11. Summary

This chapter introduced all of the different scheduling schemes: non-partitioning,

partitioning, and dynamic repartitioning. Non-partitioning was used only for base

line experiments to determine the advantages of partitioning, while partitioning was

likewise used only as a base line to more easily see the advantages of load balancing

in dynamic repartitioning. The dynamic repartitioning strategies that were introduced

- 62 -

included fixed group list, circular group list, longest task queue, lowest LVRT, EVRT

and continuous dynamic repartitioning. The first five methods differed only in the way

a relocating processor chose a new partition. The EVRT scheme used statistical means

to schedule processor task assignment. Continuous dynamic repartitioning involved

possible processor movement after each execution of a task, and used the lowest LVRT

to decide which partition to relocate to. In Chapter 6's extreme experiments, each

scheduling policy will show off its best simulation operating domain.

- 63 -

V. SIMULATION DEPENDENT SYSTEM

5.1. Introduction

The simulation dependent portion specifies the details of the specific simulation

that is to be performed. For each simulation a set of procedure classes must be defined

for each different type of task within that simulation. These tasks are then instances of

the different procedure classes. Several test simulations were implemented to demon-

strate the robustness of the simulation independent system and to test the different

scheduling policies. These simulations provide many procedure classes that may be

interchanged and reused in other simulations. In this way these simulations provide

utilities for building additional larger simulation applications.

5.2. Queueing Simulation

A simple queueing simulation consisting of five different classes of tasks is imple-

mented. These tasks are:

1. Sources

2. Servers

3. Queues

4. Customer Statistics

5. Queue Statistics

The sources create the customers, the servers serve them, queues hold the cus-

tomers waiting for service, customer statistics gathers data, and queue statistics moni-

tors the number of customers in the queue. Each of these tasks has a message processing

procedure which processes any possible input message. The connection of processes in

a queuing simulation is illustrated in Figure 5.1.

The source task creates customers at user specified interarrival times (IAT) or at

- 64 -

Source

Queue

Server

Stats

Queue Stats

Queueing Simulation

Figure 5.1 Queueing Simulation

random IATs determined by a user specified probability density function. The source

creates a customer by sending a message to the queue task with this message's VRT

equal to the source's LVT. Next, the source sends a message back to itself requesting

that a new customer be created at VRT= LVT+IAT. The source continues to cre-

- 65 -

ate customers at specified IATs until either the maximum number of creations or the

maximum time has been exceeded.

The server task processes customers at user specified service times or at random

service times determined by a user specified probability density function. The server

task receives customers in the form of messages from the queue task. When a server

receives a customer it adds the service time to the VRT of the message to determine

when the customer is finished being served. This is now the VRT of two messages that

the server task sends: one to the queue task and one to the customer statistics task.

The message to the queue task tells the queue when the customer that it had sent has

finished being served. The message to the customer statistics task includes the total

amount of time that the customer was in the system. The total time consists of the

wait time in the queue and the service time.

The queue task receives messages from the source task or the server task. Messages

from the source task indicate that a new customer has arrived into the queue waiting

to be serviced. Messages from the server task indicate that the server has completed

serving a customer and is now free. The queue task keeps a list of free servers in its

environment.

When a customer arrives, the queue task first checks to see if there are any free

servers. If there are free servers then the customer is immediately processed by sending

a message to the server that a customer is ready. The VRT of this queue message is the

same as the VRT of the source message, since no time should have elapsed if a server

is free.

Alternatively, if a server is not free, then the arrival time (AT) of the customer is

placed on the queue. Later, when a server becomes free, this initial arrival time is sent

to the server so that the total time the customer spent waiting and being served can

be determined.

When a message arrives from the server, the queue task checks to see if there are

any customers on the queue. If there are, then the queue task removes a customer from

- 66 -

the queue along with its associated arrival time (AT). The wait time of the customer

is then VRT - AT, where this VRT is from the server's message. Finally, if the queue

is empty then the server is added onto the end of the free-server list.

The customer statistics task receives messages from the server stating the time

that a customer waited to be serviced and the time that a customer required to be

serviced. This module collects statistics on the wait-service time, this variable being

defined to be the sum of the waiting time and the service time. When the simulation

is complete, the customer statistics task prints, among other things, and the mean and

variance of the wait-service time.

The queue statistics task receives messages from the queue task stating the length

of the queue at a particular instant. When the simulation is complete, the queue

statistics task calculates the mean length of the queue and the maximum length of the

queue, among other things, and then prints these results.

5.3. Circuit Simulation

Here we implement a circuit simulation in which wires and circuit elements are

represented by tasks. The simulation consists of the following six tasks:

1. Wires

2. Inverters

3. And-Gates

4. Or-Gates

5. Drivers

6. Probes

Wires are used to connect the circuit elements. Each circuit element has either one

or two inputs and one output. The driver and probe tasks are special in that the driver

has only outputs and the probe has only inputs. This is illustrated in Figure 5.2.

Each wire can be in one of two states and is considered to have an input end and

an output end. The wire's signal value is determined by the element connected to the

its input end. The wire also keeps a list of all circuits connected to its output.

- 67 -

DOAO

BO

Al

B1

A2

B2

A3

B3

D1

4 - BIT ADDER

D2

irry2

D3

Figure 5.2 Circuit Simulation

When the wire task is first initialized, each circuit element connected to its output

is sent a message at time zero containing the initial signal value of that wire. In this

way initialization is propagated throughout the circuit. After initialization, changes

only occur when a new message arrives at the wire.

- 68 -

When a new message arrives at the wire, the wire first checks to see if its signal

value has changed. If it has, then the wire sends this change on to all the circuit

elements connected to its output. This message is sent without a delay; in other words,

the VRT of the outgoing message is the same as the VRT of the incoming.

The inverter task takes the signal value of its input wire and then sends its com-

plemented value over its output wire after an inverter delay (ID). The signal value of

the output wire (outval) is a variable saved in the inverter's environment.

Whenever the inverter receives a message (with a VRT=vrti), which requires a

change in the signal value of its output wire, then a new message is sent to this output

wire with a VRT=vrt1 +ID. The value of the output wire is updated in the outval

variable.

The and-gate task takes the signal value of its input wires (al and a2) and then

sends their logical AND to its output wire after applying an and-gate delay (AD). The

signal values of the output wire (outval) and the two input wires (alval and a2val) are

variables saved in the and-gate's environment.

Whenever the and-gate receives a message (with VRT=vrt 2), it stores the new

input value in either alval or a2val depending upon which input wire sends the message.

If the input comes from al, for example, then the new value for the output is the logical

AND of a2val and the new al signal value. If the gate's outval is thus changed, the

change is sent from this gate to its output wire with a VRT=vrt 2 +AD. The value of

the output wire is updated in the outval variable.

OR gates are just like AND gates except that they perform the logical OR function

rather than the logical AND.

The driver task changes the signal value of its output wire at a pre-specified time

determined by the user. It uses two lists, one containing the set of inputs to its output

wire, and its counterpart containing the virtual times at which those inputs were to

take place. Drivers are used to start and drive the simulation.

Probe tasks display changes in the signal values of wires to the user. When a probe

- 69 -

receives a message from a wire task, it prints the name of the source task, the VRT of

the message, and the new value which was sent. Probes display intermediate results

and print out the final values of the simulated circuit's output wires.

5.4. Butterfly Network Simulation

Butterfly networks of 4, 8, and 16 input nodes are implemented. The network

topology is exactly like the butterfly network used to implement FFT (Fast Fourier

Transforms). With 2' input nodes, there are n stages, each node having two inputs

and two outputs. From any input, one can reach any destination in n transitions.

Again, this is a very simple topology, and one can easily build large butterfly networks

using only three basic tasks as building blocks:

1. Nodes

2. Drivers

3. Probes

This topology, illustrated in Figures 5.3 and 5.4, is interesting because it allows

the study of several different partitioning strategies.

The node tasks control the routing of the customers through the system. Upon

receiving a new customer, the node task sends that customer along a predetermined

route to the destination probe. All customers enter through one of the 2" input nodes

and propagate through n transitions towards the destination probe. Each destination

probe represents a number from 1 to 2".

Let ND be the nodal-delay for any customer traversing a node, and let CD be

the conflict-delay for consecutive customers with the same original VRT. Let r; be the

VRT of the iih incoming customer, and t, be the virtual time at which the ith customer

leaves the node. Then ti should be given by t2 = max(ti_1, ri) + CD. The VRT for the

customer's arrival at the next node should be ti + ND.

Routing is determined by the data field of the message representing the customer.

The message's data field is a list of binary digits representing the predetermined routing.

If the first element of that field is 0, then the message is sent to the first output node

- 70 -

8 - NODE BUTTERFLY NETWORK

Figure 5.3 8-Node Butterfly Network Simulation

(or probe) with a new data field without the first element. If the first element is 1,

then a message is sent to the second node having the revised data field. Since we

use a butterfly network configuration, this routing method guarantees the customer's

arrival at the correct destination probe by traversing only n network nodes. When

the message's data field becomes empty it indicates that the customer has reached the

destination probe, and subsequently that probe prints both its own name and the VRT

- 71 -

1 6-NODE-BUTTERFLY-NETWORK
Figure 5.4 16-Node Butterfly Network Simulation

- 72 -

of the message. In this way the customer is said to have exited the system.

Driver tasks send customers across the network toward specific locations at pre-

specified user determined times. Each driver has a start node, where all the customers

it creates are initially sent. A customer departs this start node and then travels along

a predetermined route specified by the data within its message. As before, the driver

task uses two lists, one part containing data specifying the route and the destination

probe, and the second part containing the VRT at which the message is to be launched

from the driver.

5.5. Partitioning

In this section we describe the partitioning methods for a 16-input-node butterfly

network. Since the user determines how tasks should be partitioned, it is important

to know what type of partitioning method performs best. We will show later that the

method of partitioning can make a big difference in the performance of our simulation.

We ran experiments involving different partitioning methods on 16-input-node butterfly

networks. The different partitioning methods used in the experiments were:

1. Horizontal Partitioning (with eight (H8) and 16 (H1 6) partitions)

2. Random Partitioning (with eight (Rs) and 16 (Ri6) partitions)

3. Minimum Communication Partitioning (with eight (MCs), twelve (MC 1 2), and 24

(MC 2 4) partitions)

4. Vertical Partitioning (with six (V 6) partitions)

5.5.1 Horizontal Partitioning

We partition simulations performed on a 16 input-node butterfly network into

either eight or 16 equal groups (partitioning methods H8 and H1 6 respectively). These

partitioning methods are shown in Figures 5.5 and 5.6.

In the 16-partition case, each partition comprised a horizontal line of tasks, so that

a message could be sent from one task to the next within the partition and then exit

the system after four stages. Each partition consisted of one driver task d, four node

- 73 -

Horizontal Partitioning (H)

Figure 5.5 Horizontal Partitioning with Eight Partitions H8

- 74 -

Horizontal Partitioning (H16)

Figure 5.6 Horizontal Partitioning with 16 Partitions H 16

- 75 -

tasks (ni, n2, n 3 and n 4) and one probe task p. The flow of messages through the

partition started at d and then went to ni, n 2 , n 3 , n 4 , and finally on to p. The probe

task p acted like a node task with no subsequent node task.

In the eight-partition case, each partition consisted of two horizontal lines of tasks.

In other words, each H8 partition contained of two neighboring H1 6 partitions.

5.5.2 Random Partitioning

Six different random partitions were used on a 16-input-node butterfly network.

They were:

1. R 8, with 8 partitions

2. R8b with 8 partitions

3. Rsc with 8 partitions

4. Ri 6 a with 16 partitions

5. Rie with 16 partitions.

6. Ric with 16 partitions.

These partitioning methods will be shown in the Appendix. Partitions belonging

to R8a, R8b and R 8 c were made to contain 12 tasks each, whereas partitions belonging

to Ri6a, Ri6b and R 1 6 c had 6 tasks each chosen randomly using a uniform random

variable. These tasks were either nodes, drivers or probes.

5.5.3 Vertical Partitioning

Vertical partitioning on a 16-input-node butterfly network consisted of 6 groups

partitioned vertically (V6) with respect to the flow of messages. Each partition consisted

of 16 tasks. The first group consisted solely of drivers. The second, third, fourth, and

fifth partitions consisted solely of nodes in a vertical grouping. Finally the last partition

consisted solely of probes. This partitioning method is shown in Figure 5.7.

5.5.4 Minimum Communications Partitioning

Minimum communications partitioning grouped our 16-input-node butterfly net-

work into groups of two-input-node and-four input-node butterfly networks. In this

- 76 -

Vertical Partitioning (V 6)

Figure 5.7 Vertical Partitioning with 16 Partitions V6 (laura)

- 77 -

Minimum Communications
Partitioning (MC)

Figure 5.8 Minimum Communication Partitioning with 8 Partitions MC8

- 78 -

Minimum Communications
Partitioning (MC12)

Figure 5.9 Minimum Communication Partitioning with 12 Partitions MC 12

- 79 -

Minimum Communications
Partitioning (MC 2 4)

Figure 5.10 Minimum Communication Partitioning with 24 Partitions MC 2 4

- 80 -

manner minimum communications partitioning involved forming groups that minimized

the number of inter-group links.

Three different minimum communication partitioning methods were tried on a

16-input-node butterfly network. They were:

1. MC with 8 partitions,

2. MC 12 with 12 partitions,

3. MC 2 4 with 24 partitions.

Each was partitioned on a 16-input node butterfly network, as illustrated in Figures

5.8, 5.9, and 5.10.

In MC 8 , four of the partitions consist of two two-input-node butterfly networks

with drivers connected to the 4 input nodes. These four partitions each consisted of

12 tasks combining two of the two-input-node butterfly networks with drivers. The

last four partitions consisted of four-input-node butterfly networks, again resulting in

a total of 12 tasks.

In MC 12 , eight of the partitions consisted of two-input-node butterfly networks

with drivers connected to their two input nodes. These partitions consisted of 6 tasks

each. The other four partitions consisted of four-input-node butterfly networks con-

taining 12 tasks each.

Each of the MC24 partitions consisted of four tasks. Eight of the partitions were

simple driver-to-input-node networks, whereas the other 16 were two-input-node but-

terfly networks.

5.6. Summary

The variety of simulations discussed in this chapter demonstrates the wide ap-

plicability of our system. The idea of defining procedure classes for each task in the

simulation proved to be essential. Within these simulations two procedure classes,

Probes and Drivers, were reused. Probes, for example, were used in three of the sim-

ulations: circuits, butterfly network, and grid network. It was this idea of the user

being able to write tasks as modular, interchangeable procedure classes which gave our

- 81 -

simulation dependent structure its flexibility.

Another simulation that could be modeled by using some of the procedure classes

just discussed would be a computer network. Its network nodes could be modeled by

using a modified network node procedure class, and the queues which hold the packets

entering these nodes could be modeled by a modified queue procedure class from the

queueing simulation. Even though our system is robust, one cannot say that we have

covered all types of discrete time event-based simulation. For example, traffic flow

cannot be modeled with the procedure class building blocks in this chapter (but can

be modeled within the structure of our system if suitable building blocks are defined).

- 82 -

VI. EXTREME EXPERIMENTS

6.1. Introduction

This chapter presents a set of extreme case experiments, each of which highlights

a specific scheduling strategy. The chapter also supports some of the claims made in

Chapter 4 about potential problems with each of the different scheduling strategies.

We proceed through a series of experiments, named Example 1, Example 2, etc., that

highlight performance differences among five distinct dynamic repartitioning strate-

gies. These experiments provide measurements of the strengths and weaknesses of each

strategy and also show by example that no strategy is always the best. We focus on

how each strategy attempts to avoid the processing of backup-inducing messages with

high VRT.

6.2. Performance Measurements

We analyze performance in two ways:

1. Processing time

2. Number of backups.

Measuring the number of backups is important because in our simulations, the

task's environment is relatively small, consisting of one variable; thus individual back-

ups are relatively cheap. If one were to increase the number of variables in the environ-

ment, then backups would become expensive and could influence processing time. We

also measure performance in terms of backups because there is a large and ever-present

variation in Concert's processing time due to random occurrences of garbage collection.

Processing time consists of several components. Figure 6.1 is a time line repre-

senting one simulation. The times to, ti, t2 , and t3 are the times of particular events. to

is the start time of the simulation; ti is the time when all initializations are complete;

- 83 -

Start Initializations Last Processor End
Complete Processes Last

Message

t t t t
0 1 2 3

Real-Time Line of a Simulation

Figure 6.1 Real-Time Line of a Simulation

t2 is the time when the last processor processes the last message; and t 3 is the time

when the simulation is complete.

The types of processing times can be split into different categories:

1 . Startup Time: The time for all initializations, (as described in Section 3.8)

to occur. This is the duration between to and ti on the time line.

2 . End Time : The time, after the simulation is complete, needed to calculate

statistics and print results. This is the duration between t2 and t 3 on the time line.

3 . Wait Time : Total wait time is the aggregate time that processors spend

waiting in one simulation run. This time is entirely between t1 and t2 . This is computed

by recording the times when a processor requests a lock and when a processor receives

a lock. The difference between these two quantities represents the time for a single

wait of a processor. The total wait time is the sum of these single wait times. Wait

time per processor is the total wait time divided by the number of processors. Wait

time can be broken into three sub-components:

a. Wait-add-task: The total waiting time for processors trying to add a task

to the task queue.

- 84 -

b. Wait-next-task: The total waiting time for processors trying to execute the

function (next-task), which is described in section 3.3.4.

c. Wait-update: The total waiting time for processors trying to re-sort a task

onto the task queue after the task's LVRT changes.

4 . Suspend Time: The time per processor that elapses when there is no work

for the processor. This is computed by marking the times when a processor becomes

deactivated and when a processor becomes activated. The difference between these

quantities is the time of a single suspend. The suspend time is computed by summing

the single suspend times and dividing by the number of processors.

5 . Overhead Time: Wait Time per Processor + Startup Time + End Time

6 . Processing Time: The time, less wait time, spent in simulation; this quantity

equals Total Run Time - Startup Time - End Time - Wait Time per Processor.

We include suspend time as part of the processing time. This approach can be

both descriptive and misleading.

Including the suspend time with processing time could be misleading because, if

we include suspend time, a simulation that has processing time PT using n processors

would not necessarily have processing time nPT with one processor. This is because

not all of the n processors are busy for PT seconds; some of them are suspended due

to lack of work. Thus processing time includes some time not spent "processing."

However, if we do not include suspend time, a simulation with processing time PT

with n processors would have processing time nPT with one processor (if no backups

occur).

However, including suspend time in processing time makes sense because in any

scheduling algorithm, some of the processors will have no work to do some of the time.

We wish to measure this lack of parallelism.

For example, suppose a simulation takes PT1 seconds on a single processor. Sup-

pose we run this simulation on our system with n processors and that no parallelism

can be exploited. This would be the case if the simulation were a set of sequential

- 85 -

operations that depended on each other. This means that one processor does all of the

work while the others are idle. If we subtract suspend time from processing time, then

the total processing time would be

n - 11
PT1 - PT1 = - PT1 seconds.

n n

This would appear that the simulation with n processors ran n times as fast as

the simulation with one processor! This makes no sense; therefore, we include suspend

time in processing time.

We do not include wait time in processing time because wait time is a measure of

task queue contention. Wait time may be reduced by increasing the speed of the system

software that implements semaphores and queues which are used in the task-queue

locks. This system software is independent of the scheduling algorithm. Therefore,

since wait time might be reduced without changing the scheduling algorithm, we do

not include it in processing time.

6.3. Best and Worst Case for Unpartitioned Scheduling

An unpartitioned scheme has less overhead than does a partitioned strategy (parti-

tions need to be initialized, synchronized, and executed). An unpartitioned simulation

will outperform a partitioned one in the case where the simulation is executed trivially

on a single physical processor. This advantage disappears as the number of physical

processors is increased. The fundamental reason for this is task queue contention; that

is, many physical processors simultaneously contend for a task queue. Because this

task queue must be locked by a single processor while the processor is accessing a task,

the other processors must then wait.

Example 1 dramatizes this task queue bottle-neck which is present in

non-partitioning. Our experiment was run on a 16-node butterfly network. The first

half of the experiment combined all of the tasks into one large partition simulating the

non-partitioning strategy with a single task queue. All 32 processors were allocated

- 86 -

(Nj

c
0o

co
a'

5000
U)
~0

0
U 4000

W total wait
(I) wait-add-task
C o wait-next-task

0 wait-update
S3000 -E [wait/proc

2000

4--), 1000 O
0 0

0
Non-Partition Partitioned

Scheduling Policy

Figure 6.2 Wait time of Non-Partitioning and Partitioning

to the single partition. The second half used partitioning, which partitioned the sim-

ulation into groups of tasks, each having its own smaller task queue. Each partition

was allocated 4 processors. The partitioning method used was minimum communica-

tion with 8 partitions (discussed in Chapter 5); Figure 5.8 illustrates this partitioning

method applied to a 16-node butterfly network.

Figure 6.2 shows the different amounts of waiting time, in seconds, for both the

non-partitioning and static partitioning strategies. The wait time experienced in the

partitioned case is 4th that of the unpartitioned, as shown in Figure 6.2 . The strong

- 87 -

indication is that partitioning reduced the total simulation time by reducing the wait

time per processor by a large factor.

Our implementation of message and task queues used a sorted list. This method

may not be optimum to specific simulations. For example if one can characterize the

frequency of different messages' VRTs, then it may be possible to implement the queues

more efficiently. On the other hand, our implementation was designed to be general;

therefore, we used a non-simulation-specific implementation of queues.

6.4. Best and Worst Case for Partitioned Scheduling

The static partitioning strategy will outperform dynamic repartitioning in cases

where there is very little need for processor movement (if the programmer knows his

problem well and has initially assigned his processors well). In static partitioning when

a processor finds no work within its partition, it suspends itself, while in dynamic

repartitioning there is the additional "overhead" of the processor's having to search for

work in the other partitions.

Dynamic repartitioning can outperform static partitioning even if there is a good

initial assignment of processors, provided the optimal number of processors assigned

per partition is a non-integral value. In this case there will be points in simulation time

where processor movement will speed simulation execution.

Example 2 contrasts static partitioning against dynamic repartitioning. Our ex-

periment was run on a 16-node butterfly network. The partitioning method used was

random with 8 partitions (discussed in Chapter 5); Figure 6.3 shows an example of a

random partitioning method with 8 partitions for a 16-node butterfly network. Of the 8

partitions, one was allocated 25 processors while the others received only one processor.

In this manner we could demonstrate the usefulness of processor relocation. The first

half of the experiment demonstrated the essential trouble with static partitioning: an

out-of-work processor would simply suspend itself and waste its valuable cycles. The

second half of the experiment showed dynamic repartitioning of processors in parti-

tions with no work to ones with work, depending upon a relocation algorithm (in the

- 88 -

Figure 6.3 Random partitioning with 8 Partitions R8a

next section we will talk about five of these specific algorithms). Thus at the cost of

additional overhead, dynamic repartitioning solved (by relocation) static partitioning's

central problem of wasted processor cycles.

Figure 6.4 shows the difference in processing time in our experiment between static

- 89 -

Partitioned Dynamic

Schedulina Policv

Figure 6.4 Processing time of Static Partitioning and Dynamic Repartitioning

partitioning and dynamic repartitioning. Figure 6.4 shows the different amounts of

processing time, in seconds, for both the static partitioning and dynamic repartitioning

strategies. Dynamic repartitioning required less processing time than static partitioning

in this experiment.

- 90 -

U)
-o

C

0
E

L-
CL

500

400

300

200

100

0

Figure 6.5 Horizontal partitioning with 8 Partitions on a 8-input node butterfly

6.5. Best and Worst Case for Dynamic Repartitioned Scheduling

In the following subsections five different experiments were done, each demonstrat-

ing how one dynamic repartitioning algorithm was able to defeat the other strategies.

All of the experiments were performed on an 8-input-node, 3-stage butterfly network.

Each partition consisted of five horizontally linked tasks: the first a driver, the middle

three nodes, and the final task a probe. Although this is not an optimal partition-

ing strategy for this network, this horizontally partitioned network was the easiest to

analyze and besides, optimality of partitioning is not the issue; comparing scheduling

policies is the issue. Figure 6.5 shows the topology of the network that was used with

- 91 -

7*AIh\

Ir _Yr .0%,

its corresponding partitions. The results of other experiments on this 8-input butterfly

network using other partitioning methods will be discussed in Section 7.8.

6.5.1 Group with Lowest LVRT

Figure 6.6 shows the interactions between partitions in Example 3, where the low-

est LVRT dynamic strategy outperforms fixed-list, circular-list, and longest task queue

dynamic repartitioning. In the figure each labeled node represents a partition. The

leftmost column represents sending partitions, while the rightmost enumerates receiv-

ing partitions. A link between a pair of nodes represents a message communication

path. Each experiment has a sequence of events that triggers a backup. The point of

each experiment is to highlight a dynamic strategy which avoids this trigger, and hence

performs the best (no backups).

In order to discuss messages from a source to a destination with an associated

VRT, we introduce a new notation . For example, Mj3 refers to a message

which originates at partition 4, is destined for partition 3, and has an associated VRT

of 710.

In Figure 6.6 backup will be prevented by processing all of the messages originating

from partitions 2, 3, and 5 before executing any messages from 1 (processing M J 1 is

the backup trigger).

In this experiment partitions 4, 6, 7 and 8 were decoupled, in the sense that they

sent messages only to themselves and received no messages from other partitions. If

not enough messages were sent through these decoupled partitions, then the processors

servicing them would migrate to the other partitions, thus disrupting the experiment.

Hence, we keep them busy. Partitions 2, 3, and 5 all send messages to 1 as well as to

themselves, as shown in the diagram.

Partitions 2, 4, 6, 7, and 8 begin the experiment with four physical processors each.

The group list is ordered (1 4 6 7 8 5 3 2). We say that a partition saturates when

there is no work for a free processor at a particular time, and hence that processor will

seek to relocate to another partition. Generally, a partition can have 2 or 3 processors

- 92 -

RECEIVING PARTITION

430

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 1

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 1 7

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 1

Figure 6.6 LVRT Superior over Other Schemes

running within it before it saturates. This experiment is designed so that partitions 2,

4, 6, 7, and 8 start the experiment saturated and then each of them will soon free a

- 93 -

110 100 90 80

SENDING PARTITION

migrating processor. When the simulation begins, each partition has one task on its

task queue corresponding to the driver task. The driver task was placed on the task

queue during the simulation initialization.

In the lowest LVRT strategy, this migrating processor will first relocate to partition

3. When partition 3 is out of work, then migration will begin to partition 5. The last

partition to be activated will be 1 (a partition is activated when a processor begins

executing its messages). In this way all of the messages from 2, 3 and 5 destined for

partition 1 will arrive and complete execution before partition 1 finishes executing any

messages originating from itself! The backup trigger is thus avoided, and the LVRT

strategy incurs no backups.

In fixed-list strategy, the migrating processor checks the fixed group list (1 4 6

7 8 5 3 2) in order to determine which partition to relocate. Early out-of-work and

migrating processors will thus head for partition 1. Partition one's MJ 1 will be sent

and executed before at least one of the following messages are sent: M - 1 , M3-, or

M'5-1. Later when they arrive at 1 a backup will result.

In longest task queue strategy the first migrating processor will head for partition 1

because partitions 1, 3, and 5 will all have only a single task (driver) on their respective

task queues, and 1 will win out by virtue of its high position on the group list. Once

this occurs, the driver of partition 1 will send the first message M1- 1 to the first node

task in the partition. Thus partition 1 will have two tasks on its task queue which will

make partition 1 be the partition of choice for the next migrating processor. In this

case longest task queue is seen to work exactly like fixed-list, and fail to a backup for

the same reason: MJ 1 will be processed too early.

In circular-list strategy, migrating processors will first go to partition 1, and then

the group list will circulate to become (4 6 7 8 5 3 2 1). In this way at least one of

partition l's messages to itself will get executed before all of 5 and 3's messages to 1

are finished executing. This is enough to ensure backup.

By changing the group list to (2 5 3 1 4 6 7 8) the importance of its order can

- 94 -

be shown. Using this new group list in a fixed-list strategy will avoid backups because

partitions 2, 3, and 5 will all go active before 1 and all will be allowed to send their low

VRT messages to partition 1 before 1 is allowed to send its high VRT message, M1-,

to itself.

6.5.2 Group with Longest Task Queue

Figure 6.7 illustrates interactions between partitions in Example 4, where the

longest task queue strategy will outperform the fixed-list, circular-list and lowest LVRT

repartitioning strategies. Here the experiment's designed-in backup trigger is the pro-

cessing of M1- before M3 - by partition 1.

In this experiment partitions 4, 6, and 8 are decoupled. Partition 7 is decoupled

except for an initial message which it sends to partition 3 at time 1. Partition 1 sends

its first message to partition 5. Partitions 4, 6, 7 and 8 each start with three processors.

The order of the group list is (7 2 5 1 4 6 8 3).

In the lowest LVRT strategy, partition 5 will be the first partition to be activated

by a processor migrating from either 4, 6, 7 or 8 because its LVRT=O. Partition 1 will

be the next to be activated because either partition 1 will have a lowest LVRT, or the

LVRTs of 1 and 3 will be equal in which case partition 1 will be selected due to its

higher position on the group list. Since partition 1 activates before 3 does, backup will

soon result.

In the fixed-list strategy, processors migrating from either 4, 6, 7 or 8 will first seek

partition 2 because it resides so high on the group list (7 2 5 1 4 6 8 3). In any case

the crux is that partition 1 lies higher on the group list than does 3, and its activation

prior to 3 will result in a backup.

The circular-list method will also back up. Even though partition 3 will be acti-

vated soon after partition 1, the fact that partition 3 has a large number of messages

to process will guarantee that partition 1 will have executed its backup-inducing M 1

before partition 1 receives its M3-.

The longest task queue strategy wins out in this experiment because partition 7,

- 95 -

RECEIVING PARTITION

280

3 270 260 250 240 230 220 210 200 190 180 170

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 1

Figure 6.7 Longest TQ Superior over Other Schemes

first on the group list, will receive its processor allocation first. Thus, it will speedily

send a message to partition 3, so that 3 will be seen to have two tasks on its task

- 96 -

SENDING PARTITION

queue, and will therefore get the first migrating processor. Once partition 3 goes active

with a single processor, it will then attract additional processors because it has started

sending messages to itself, thus lengthening its own task queue. In this way partition

1 processes M ' before MJ-' and backup is avoided.

Change the group list order to (2 5 1 4 6 7 8 3) and partition 3 would not receive a

message soon enough to prevent partition 2 from receiving the first migrating processor

under the longest task queue strategy. Once 2 received this first relocated processor it

would then use him to send himself his own messages and thus to lengthen his own task

queue. Partition 3 would thus be shut out, and partition 1 would process the backup

inducing M-J before 3 got out his M3 -1, and a backup would result.

6.5.3 Fixed Group List

Figure 6.8 shows the interactions between partitions in Example 5 where the fixed-

list strategy will win out over the circular-list, longest task queue, and lowest LVRT

strategies. In this experiment there are two backup triggers. First is partition l's

processing of a M-j before M3-1 . The second backup inducer is M8- 8 processing

prior to M -8 .

Here partition 2 is decoupled, 4, 6, and 7 are almost decoupled, 5 sends no mes-

sages, but receives a message from partition 1 at time 1. Partition 4 begins with five

physical processors, partition 5 with one, and partition 7 starts with seven processors.

The order of the group list is (3 2 5 6 7 8 4 1). The experiment is split effectively into

two parts. In the top half, consisting of partitions 1, 2, 3, and 5, the fixed-list strategy

will beat the circular-list and lowest LVRT strategies. In the bottom half (partitions

4, 6, 7 and 8) fixed-list will win against longest task queue.

In lowest LVRT strategy, partition 1 will be activated first by a processor migrating

from partition 4, 5, or 7 because it has an LVRT=1. Partitions 2 and 6 will go active

before 3 does because they both have an LVRT=10 while 3's LVRT=20. In this case

partition 1 will process its M1-1 before M 3 1 , and backup will result.Lie e 500 ba

Likewise, circular-list will back up. Partition 3 has twelve messages to process

- 97 -

RECEIVING PARTITION

Figure 6.8 Fixed-List Superior over Other Schemes

before it gets out MiJ-1 . Because the group list is circulated, partition 1 will obtain a

processor and process two messages, including MJ-1 before 3 sends M3- 1 . Backup is

- 98 -

SENDING PARTITION

the result.

In the longest task queue strategy, partition 8 will back up by processing M9 0J-

before partition 6 sends M6-8. The reason 8 gets off to such a fast start is because

active partitions 4 and 7 immediately send messages at the simulation's start to 8. The

longest task queue strategy then sees three tasks on the 8's task queue and hence sends

the first migrating processor to 8.

The fixed-list strategy is an easy winner in the experiment's bottom half (versus

longest task queue) since partition 6 is always activated before partition 8 because of

its being higher on the group list (3 2 5 6 7 8 4 1). Fixed-list also wins in the top half

(versus circular-list and lowest LVRT) because partition 3 executes all of its messages

well before 1 executes any.

6.5.4 Circular Group List

Figure 6.9 illustrates the interactions between partitions in Example 6, where the

circular-list strategy will outperform fixed-list, longest task queue, and lowest LVRT

dynamic repartitioning. Here the experiment again has two backup triggers: partition

1 processes M - 1 before M -1 and partition 8 processes M 1-8 before Mo 8 .

In this experiment only partition 7 is decoupled. Partition 6 is almost decoupled.

4 and 5 send no messages, and partition 4 receives a single message from partition 8 at

VRT=O. Partitions 4 and 7 begin with six processors apiece. Group list order is (1 5

7 6 3 4 8 2). In the top half of the network (partitions 1, 2, 3 and 5) the circular-list

strategy will be superior to both the longest task queue and fixed-list strategies. In the

bottom half (partitions 4, 6, 7, and 8) circular-list will win against the lowest LVRT

strategy.

The lowest LVRT strategy will activate partition 8 first since its first message has

a VRT=O. Thus, M8- 8 will cause a backup by being processed by partition 8 before

M6- 8
400*

In both the fixed-list and longest task queue strategies, partition 1 will always be

activated before partitions 2 and 3 because it occurs earlier in the group list. 3 activates

- 99 -

RECEIVING PARTITION

120

100

80

Q

0

G0

Figure 6.9 Circular-List Superior over Other Schemes

before 2 for the same reason. Because 1 started so early it will be finished processing

all of its own messages when it receives its first message from 3, and hence will process

- 100 -

SENDING PARTITION

M00 2 prior to M -1 . Backup will shortly result.

The circular-list strategy will incur no backups, because partitions 4 and 7, being

saturated with processors, will fast be freeing processors to the circulating group list

(1 5 7 6 3 4 8 2). Partition l's processing of its own long list of messages to itself will

grant partitions 2 and 3 the time they need in order to send their respective M 2 - and

m3 -1messages to 1 before it completes the processing of its own intrinsic messages.

This is somewhat tricky. The circular-list strategy has temporarily allotted partition

1 only a single processor. This single processor will choose to process the task sending

out low VRT message traffic to partition 5, rather than to process the task in its own

partition which accepted the high VRT inbound traffic MJ- 1 and M3- 1 . In this way

Mj and MI 1 will both have arrived on their task's respective message queues before

either message is processed. Then when the processor becomes free it will choose to

execute the task involving the lower VRT M2- versus M3-1 . The messages will thus

have been processed in proper order, and backup avoided. In the bottom half of the

network, circular-list also works well as partition 6 gets activated before 8 because it

occurs earlier in the group list. Partition 6 is easily able to send its first message to 8

before 8 activates, and backup is thus averted.

In Figure 6.10 we summarize the results of the previous four subsections, show-

ing the number of backups for each experiment. These experiments were based on 10

experimental runs each. These results show that each scheduling scheme, under con-

ditions favorable to the scheme in question, was able to execute an example without

backups while the other schemes incurred backups.

6.5.5 Estimated LVRT

There are two problems with the EVRT strategy. First, it requires the additional

overhead of maintaining a running average of processed messages' LVRTs. Second, the

EVRT strategy should not work well in a short simulation, or one that has not yet

reached the steady state. The EVRT strategy should be at its best in large simulations

well into their steady state, and where message interarrival times can be modeled

- 101 -

Example Example Example Example
3 4 5 6

Fixed List 3 -4 3-4 0 3-4

Circular List 3 -4 3 - 4 3 - 4 0

Longest TQ 3 -4 0 3 - 4 3 -4

Lowest LVRT 0 3-4 3-4 3-4

Number of Backups Based on 10 Runs Each

Figure 6.10 Summary of Extreme Experiments

accurately as independent random variables drawn from the same distribution.

Example 7 contrasts all the deterministic dynamic repartitioning strategies versus

the EVRT strategy. Our experiment was run on a 16-node butterfly network. The

partitioning method used was horizontal with 16 partitions (discussed in Chapter 5);

Figure 5.6 shows an example of the horizontal partitioning method with 16 partitions

on a 16-node butterfly network. Of the 16 partitions, each was allocated 2 processors.

In this experiment, destinations of each message were random, based upon a uniformly

distributed random variable, and average interarrival times of input messages were

random, based upon an exponentially distributed random variable. Forty inputs were

sent into each of the 16 input nodes with average message interarrival times ranging

from 5-180 time units. In this example, the EVRT strategy outperforms the fixed-list,

circular-list, longest task queue and lowest LVRT strategies. Figure 6.11 shows the

number of backups each scheme had versus the mean interarrival times of messages

(MIT). The different schemes that are plotted include: static partitioning (part), the

fixed-list dynamic repartitioning (fixed), the circular-list dynamic repartitioning (circ),

the longest task queue dynamic repartitioning (tq), the lowest LVRT dynamic repar-

- 102 -

1200

1000-

800

0 600-

,400-
- - part

-- fixed

-9- circ
200 -0+ tq

-U- Ivrt
-o- evrt

0~
0 20 40 60 80 100 120 140 160 180 200

Mean Interarrival Times

Figure 6.11 Example 7 (Number of Backups versus MIT)

titioning (lvrt) and the EVRT dynamic repartitioning (evrt). Figure 6.12 shows the

processing time versus MIT. The schemes plotted are exactly the same as the previous

diagram. The EVRT strategy in some cases experienced less than a third as many

backups as did any of the other strategies. By a small margin, the EVRT scheme

outperformed all other strategies in terms of processing time for average arrival rates

between 30 and 180. These results show that for the EVRT scheme can outperform all

other schemes in some cases.

6.6. Continuous Dynamic Repartitioning

Dynamic repartitioning strategies do not continuously relocate processors. If a

processor is sent to a partition, then the processor does not leave until there is no work

- 103 -

1400

U 1200-

C

1000-

E 800 -

600-
) + part

+ fixed
L)+ circ
L 400- -0- tq

CL4 -+- Ivrt
-a- evrt

200-
0 20 40 60 80 100 120 140 160 180 200

Mean Interarrival Times

Figure 6.12 Example 7 (Processing Time in seconds versus MIT)

left within that partition. This can create a problem since some partitions can leap far

ahead of others in virtual time. Then the partitions that are behind almost inevitably

cause the partitions that are ahead to back up. Example 8 contrasts lowest LVRT

dynamic repartitioning against lowest LVRT continuous dynamic repartitioning.

In Example 8, we ran continuous dynamic repartitioning on Examples 4, 5, and

6 of the previous section. In two of the three cases no backups arose with the final

case having two backups. The results of this experiment are shown in Figure 6.13

along with the processing times for each experiment for both LVRT and the continuous

dynamic repartitioning case. Figure 6.13 plots the same categories as Figure 6.4

with the addition of the backups measurement which indicates the number of backups

the simulation run encountered. The different scheduling policies are either LVRT

- 104 -

120-
-~ co4

S 100- - "C

co)

U)

c80-
Proc+Overhead
Proc + Wait

E n. Proc time
60O- Overhead

o startup
ending

40 backups

C 20

CONT-exp4 CONT-exp5COTep
LVRT-exp4 LVRT-exp5 LVRT-exp6 p

Scheduling Policy

Figure 6.13 Processing times of LVRT versus Continuous Dynamic Repartitioning

or continuous dynamic repartitioning CONT performed on the different experiments

(examples 4-6) of the previous Section. The example showed a 15 per cent overhead

in processing time for continuous dynamic repartitioning.

The reason backups occur in LVRT and not in continuous dynamic repartitioning

is that the LVRT algorithm decides upon a processor relocation which may be good

for only the short term; on the other hand, in the continuous dynamic algorithm, a

processor may relocate after performing only a single task within its present partition.

After the processing of each task, a processor will check to see which partition is farthest

behind in LVRT and will then relocate there.

One central problem with this lowest LVRT dynamic repartitioning is a 15 per cent

additional processing time overhead required in order to invoke the continuous dynamic

- 105 -

algorithm. A second problem is that within the continuous dynamic strategy, it is not

desirable to lock the group list because that would likely result in a group list bottleneck

similar to the non-partitioning scheduling scheme. The whole idea behind partitioning

was to avoid the task queue bottleneck by distributing the task queue over the different

partitions. By locking the group list, we would just recreate the problem of task

queue queue contention in the group list. The following example illustrates a potential

problem due to the unlocked group lists: two processors simultaneously looking for

work may both relocate to a partition with LVRT=10 and while the partition's next

message has a VRT=200. Meanwhile another partition might have an LVRT=30, and

should rightfully have gotten the second free processor. However, it did not, and backup

will probably soon be the result.

Example Example Example Example
3 4 5 6

Fixed List 3 -4 3-4 0 3-4

Circular List 3 -4 3 - 4 3 - 4 0

Longest TQ 3 - 4 0 3 - 4 3 -4

Lowest LVRT 0 3-4 3-4 3 -4

Continuous Dynamic 0 0 0 2 - 3

Number of Backups Based on 10 Runs Each

Figure 6.14 Summary with Continuous Dynamic Repartitioning

In Figure 6.14 we summarize the results of the four experiments discussed in Sec-

tion 6.4 through this section, including continuous dynamic repartitioning. EVRT was

not included because it had many more backups due to the shortness of the simulation.

- 106 -

6.7. Summary

This chapter included experiments which showed that any given scheduling strat-

egy can be given simulation conditions where it will win out over all of the other

schemes. Prime focus was on the five distinct dynamic repartitioning algorithms, and

how they each tried to avoid the processing of a high VRT, backup-inducing message.

Given that there is no universally best scheme, each of these schemes is interesting to

study because each can potentially perform the best. This observation leaves open the

question of which scheme or schemes will excel most frequently in practical situations.

In the next chapter, we apply these schemes to more realistic simulations to try to

answer this question.

- 107-

VII. MODEL, RESULTS AND DISCUSSION

7.1. Introduction

This chapter describes a model that characterizes the behavior of our simulation

results and illustrates what factors influence the performance. The model is used to

study various effects on the simulation system. The different effects that were studied

are:

1. The Synchronization Effect

2. The Aggressive Backup Effect

3. The Virtual-Time Delay Effect

4. The Lazy versus Aggressive Message Cancellation Effect

5. The Real-Time Delay Effect

6. The Message Queue Length Effect

For each of these different effects, we develop a theory that uses this model. Once

this theory is established we will present the results of our experiments along with a

discussion. Finally, we will show the relevance of the effect on other simulation experi-

ments. This model and its experiments will mainly be based on vertical and horizontal

partitioning methods because these partitioning methods were easier to analyze.

As a case study we study how these effects affected other partitioning methods

and other simulations such as:

1. Random Partitioning on the Network Simulation,

2. Minimum Communications Partitioning on the Network Simulation, and

3. Circuit Simulation.

Along with these case studies we study two minor effects, which are:

1. Partition Saturation, and

2. Importance of Group List Order.

- 108 -

Finally we examine the presence of these effects in the Continuous Dynamic

Scheduling scheme.

7.2. Model

We model events (messages) in our system as snowflakes. Each snowflake has a

VRT and a Real Receive Time (RRT). The VRT reflects when the snowflake should be

processed in relation to other snowflakes. The RRT reflects when the snowflake hits the

ground, which corresponds to when the processing task receives the snowflake in real

time. Let the ground be a virtual time line where the farther to the right the snowflake

lands the larger its VRT. Analogously the processing task is a snowplow which plows

up the snowflakes as they land on the ground. The snowplow plows snowflakes from

lowest VRT to highest VRTs. The one caveat is that when the snowplow plows over

a snowflake there should not be another snowflake that lands behind the snowplow; if

this happens, backup will occur. A backup occurs by moving the snowplow backwards

on the virtual time line to pick up the stray snowflake, while at the same time dropping

snowflakes that were already picked up by the snowplow having VRT greater than the

stray snowflake's VRT. Using this model, each snowflake and snowplow have a state

consisting of (VRT, RRT).

It is instructive to model a 2-input-node butterfly network, which is much smaller

than the 8-input-node or 16-input-node butterfly networks used in actual simulations

on Concert. In a 2-input-node butterfly network there are four tasks. Two tasks

correspond to the two input nodes while the other two correspond to the two output

nodes. We make certain basic assumptions about our model (some of these will change

as our discussion builds):

1. Input messages arrive at the two input nodes in increasing VRT order.

2. The destinations of each input-node message is equally likely to go to either of the

output nodes.

3. The VRT of each message is random based on an exponential probability distribu-

tion (pdf) based on a mean interarrival time (MIT). Each trial of the exponential

- 109 -

pdf is rounded to the nearest whole number. The VRT of the n + 1" message is

the VRT of the nth message plus the value returned by a trial of the exponential

pdf.

4. Each partition contains exactly one processor.

5. Within each partition the static partitioning scheme is used.

6. Each task has no state. Therefore, there are no conflict delays (see Section 5.4)

since conflict delays are implemented using state. In other words, we could make

the CD=O.

7. A message's data contains the destination node address.

T1 I T2 Partition T

U2 Partition U

Horizontal Partitioning on Our Model

- 110 -

Figure 7.1 Horizontal Partitioning of our Model

Partition V Partition W

Vertical Partitioning on Our Model

Figure 7.2 Vertical Partitioning of our Model

The way in which we partition the network is called the partitioning method. For

this model we study two different partitioning methods: vertical and horizontal. In

horizontal partitioning, each partition contains one input task and its horizontally-

connected output task, as shown in Figure 7.1. With vertical partitioning, the first

partition contains the two input tasks, while the second partition has the two output

tasks, as shown in Figure 7.2.

We will now describe the various parameters that we can vary in our model as we

study the effects these changes make.

1. The mean interarrival times (MIT) between successive messages in virtual time.

- 111 -

2. The nodal delay (ND) for processing a message at any node in virtual time.

3. The inter message delay (IM) between successive messages in real time.

4. The processing time delay (PT) for processing a message at any node in real time.

We shall first study variations in the virtual time parameters while fixing the IM

to zero and the PT to one. In our model, the virtual times of successive messages are

governed by an exponential probability density function with a mean interarrival time

(MIT) of 10 time units.

An input message stream of a task or partition is the set of messages sent to that

task or partition preserved in the real-time order in which they were sent. Likewise

the output message stream of a task or partition is the set of messages sent from that

task or partition with the real-time order preserved. Using our assumptions, the input

message stream to an input node is always monotonically increasing in virtual time.

Therefore the input stream cannot possibly force a backup in the input nodes.

On the other hand, the input stream to any output node is not always monotoni-

cally increasing in virtual time. It is this case that may cause backups. The portion of

the input message stream that is not in monotonically increasing order must be sorted

into the input message queue before the messages are processed or else backup will

occur. For example if the input message stream to a task has VRT of (1, 5, 3, 7), then

the task will receive messages with VRTs 1, 5, 3, and 7 in that particular order. Then

processing the message with a VRT of 5 (let us call this M5) before processing M 3 will

cause backup. This can occur if the task has not yet received M 3 when it starts to

process M5 . However, if M 3 is received before we start processing Ms, it will be sorted

onto the input message queue and the messages will be processed in the right order.

Output message streams of partitions generally supply messages to many tasks'

input message streams. Even if the output message stream of a partition is not mono-

tonically increasing, an input message stream that is fed by this output message stream

could still be monotonically increasing. This can occur whenever the messages in the

output stream that are out of virtual time order go to separate destinations; however,

- 112 -

this is unlikely. Thus output message streams that are not monotonically increasing

tend to cause backups.

In our network simulation, each message is associated with a destination output

node. The destination output node is an element in the data field of the message.

When a task receives a message, it forwards a new message with the same destination

to the next node on the path to the destination. Each of these messages is distinct;

however, in the model and in this thesis we will often refer to these messages as the

same message. Although the ND changes the messages' VRTs from node to node, the

messages' contents remain the same.

7.3. The Synchronization Effect

The synchronization effect means that the tasks within a partition tend to maintain

LVTs that are close to one another. This will occur in any scheduling scheme that uses

LVRT to sort the task queues in a partition, as long as none of the tasks' message

queues are empty. This has the desirable property that messages sent out on a task's

output message stream will be close in virtual time to those of the other tasks within its

partition. This is extremely good in vertical partitioning (Figure 7.2) since both input

nodes are in one partition with only one processor. Since there is only one processor

and the processor will always process the task with the lowest virtual receive time, the

output message stream of this input partition will always be monotonically increasing.

Since we assumed the input streams to the input nodes are monotonically increasing in

virtual time, no backups will occur in the first partition; likewise, if the second partition

receives input streams that are monotonically increasing in virtual time, they too will

have no backup.

On the other hand if one uses LVRT - EVRT to sort the task queues in a partition,

(as is done in the EVRT scheme) then the tasks will not be synchronized in terms of

LVRT but rather in terms of LVRT - EVRT. Hence, it is very likely that the tasks

will not have similar LVRTs; therefore, the input partition's output message stream

will not be monotonically increasing which will increase the likelihood of backup in the

- 113 -

output partition. The problem lies in the fact that our system is based on the quantity

LVRT and backups occur whenever the LVRT < LVT, which is independent of the

quantity, EVRT. Thus the EVRT scheme does not benefit from the synchronization

effect.

Messages

((1, w1) (8, wi) (15, w1) (30, wi))

((1, w2) (9, wi))

Partition v Partition w

v1 W1

w2v2

(20, t2) - A message with VRT=20 and destination task t2

((20, t2) (30, t2)) - An input message queue with two messages

Ouput stream from v using static-LVRT: ((1, w1) (1, w2) (8, w1) (9, w1) (15, wi) (30, wi))

Input stream to w1 using static-LVRT: ((1, w1) (8, wi) (9, w1) (15,w1) (30, wi))

Output stream from v using static-EVRT: ((1, wi) (1, w2) (8, w1) (15, w1) (9, w1) (30, w1))

Input stream to wi using static-EVRT: ((1, wi) (8, wi) (15, w1) (9, wi) (30, w1))

Synchronization Effect Example

Figure 7.3 Example of the Synchronization Effect

The following example illustrates this problem and is shown in Figure 7.3. In this

example we use the following scheduling schemes:

1. static-LVRT which is based on the LVRT to sort the task queues.

- 114 -

2. static-EVRT which is based on the LVRT - EVRT difference to sort the task

queues.

In the static-LVRT scheme partition v's processor will process the messages to tasks

vi and v2 in LVRT order. Since there is only one processor in partition v the output

stream of partition v using the static-LVRT scheme will be monotonically increasing.

This is illustrated in Figure 7.3. On the other hand in the static-EVRT scheme,

partition v's processor will process the messages to tasks vi and v2 in LVRT - EVRT

order.

When the simulation begins, the LVT and the AT of each task is zero using the

EVRT scheme. After processing the (1, wi) message at vi, vi's LVT and AT (see

Section 4.9) are equal to one. Similarly after processing the (1, w 2) message at v2, v2 's

LVT and AT are equal to one. At this time the EVRT (LVT + AT) of both v1 and

v 2 is 2; therefore, the LEVRT = LVRT - EVRT is 6 for vi and 7 for v 2 . Thus, the

message (8, wi) is processed next at vi. After processing this message, vi's AT = 4

and LVT = 8; therefore, vi's EVRT = 12 and v2 's EVRT = 2. Since vi's LEVRT = 15

- 12 = 3 and v2 's LEVRT = 7, v's processor will process the message (15, wi) at v1 .

Proceeding in this same fashion the output stream from partition v is shown in Figure

7.3.

In this example, the output stream of messages from partition v using the static-

LVRT scheme is monotonically increasing; on the other hand, using the static-EVRT

scheme the output message stream is not. Therefore the static-LVRT scheme creates

a synchronization effect whereas the static-EVRT scheme does not. If v's output mes-

sage stream is not monotonically increasing, the input stream to w1 will also not be

monotonically increasing. Therefore, if the messages arriving at wi are processed as

quickly as they are received, backup will occur.

The synchronization effect is relevant when we compare vertical and horizontal

partitioning. In vertical partitioning using a non-EVRT scheme, each task in a partition

will have its LVRT close to that of the other tasks in the partition. If we examine the

- 115 -

input partition we can observe that the output is a message stream that is monotonically

increasing because its tasks are synchronized and the input stream is monotonically

increasing. Thus no backups will occur in the output partition as well as in the input

partition. In general, the EVRT scheme does very badly in vertical partitioning because

it does not create this effect, whereas the LVRT scheme does.

The synchronization effect can hinder the performance of horizontal partitioning

when using the static-LVRT scheme. This is true in our two-partition model of Figure

7.1 as well as in our multiple partition networks H8 or H 16 . In horizontal partitioning,

the synchronization effect helps to keep the tasks within partitions synchronized with

respect to each other in virtual time. Given two partitions, A and B, that communicate

with each other, then one partition will typically have a lower LVRT (a partition's LVRT

is the LVRT of the task with the lowest LVRT within its partition). Each partition's

output message stream is monotonically increasing due to the static-LVRT scheme. If

partition A's LVRT is greater than B's and a task with the lowest LVRT in B sends a

message to a task in A, then that task in A must back up.

However, these backups cause synchronization between partitions. Every time a

message sent between partitions A and B causes a backup, the LVRT's of A and B

will get closer. However, each partition is still susceptible to further backups if C, the

partition with the lowest LVRT, sends a message to either A or B. Furthermore, the

messages that are reprocessed by the backup caused by a message between A and B

may again need to be reprocessed after C sends a message. Therefore, the benefit of

synchronization from backups comes at the great expense of repeated computations

due to backups.

7.4. The Aggressive Backup Effect

When a backup occurs at a task, some messages from the processed message queue

are removed and placed on the unprocessed message queue. Reprocessing these messages

quickly can cause additional backups. This is called the aggressive backup effect. These

messages are reprocessed quickly because an inappropriately high priority is given to

- 116 -

Partition T

Partition U

T 1 - task named T1

U1 T2 - task U1 sends a message
to task T2

Figure 7.4 Example of the Aggressive Backup Effect

the backed-up task due to its low LVRT. In our simple four-node example, this effect

is only present in horizontal partitioning.

The following example illustrates the aggressive backup effect. Consider the four-

node network of Figure 7.4. T1 and T2 are tasks in the partition T, while U1 and U2

are tasks in the partition U. Assume that T1 and T2 , as well as U1 and U2, will have

similar LVRTs at the start of the example. Suppose that U1 sends a message to T2

- 117 -

with VRT less than T2 's LVT. This causes T2 to back up. We will go on to explain how

this backup could cause even more backups.

When T2 is backed up, it will be given processing priority in its partition due

to its lower LVRT, and will be processed exclusively by T's processor until its LVRT

reaches that of T 1 . However, partition U will not adjust its processing behavior. U's

processor will continue to process the node with the lowest LVRT. Since U1 and U2 will

have similar LVTs because they are in the same partition, we can expect the processor

assigned to this partition to split its processing time between tasks U1 and U2 . Since

over a period of time task T2 will receive twice as much processing time as U1 , the

LVRT of U1 will eventually fall behind that of T2 . If U1 then sends another message to

T2, an additional backup will occur. This can happen repeatedly.

We establish a few definitions for this example. Partition T, which is the partition

with the backed-up task, is said to be a backed-up partition. Partition U, which contains

the task that caused the backup, is called the preempting partition. Task U1, the task

that caused the backup, is called a preempting task.

The problem arises because the preempting task U1 is given lower priority than

the backed-up task T2 even though they have similar LVTs immediately after backup.

This problem can potentially be alleviated by not giving full priority in the backed-up

partition to the backed-up task. Specifically, this means having partition T's processor

sometimes process T1 . This is safe because messages processed at T destined for T2

will only be placed at the end of the queue because T2 's input message queue is long

and because T 1 's LVT is greater than T 2 's. Also, messages from T1 destined for U2 will

be placed at the end of U2 's input message queue because T has a higher LVT than

U1 and U2 . T 1 's LVT is the highest because before backup, T's LVRT must be higher

than U's or else the backup would not occur. Once T2 backs up it will have a higher

LVT than T1 also. Since the messages are placed at the end of the queues, the chance

of backup is slim.

Therefore, the LVRT strategy is not the best strategy to use for horizontal parti-

- 118 -

tioning because it gives priority to the task that was backed up. In order to balance

the processing power between both tasks in the backed-up partition, one may try the

EVRT scheme. In fact the EVRT scheme, which does not give extra priority to the

backed-up task, is less susceptible to this aggressive backup effect.

7.5. Virtual-Time Delay

7.5.1 Theory

((20, t2) (30, t2))

((11, u2) (12, t2))

11 t2 Partition t

u2 Partition uu1

(20, t2) - A message with VRT=20 and destination task t2

((20, t2) (30, t2)) - An input message queue with two messages

Virtual Time Delay Example

Figure 7.5 Example of the Virtual-Time Delay Effect

Here we shall describe how mean interarrival times (MIT) and nodal delay (ND)

(defined in Chapter 5), can affect the performance of our simulation. The performance

of the simulation is dependent on ratio of MIT:ND. We continue with our model simu-

- 119 -

lation of a four-node butterfly network. As we vary the ratio MIT:ND the performance

of the simulation changes. The virtual time delay between successive messages affects

horizontal partitioning much more than vertical partitioning. Let us look at an exam-

ple of horizontal partitioning with non-zero MIT and ND=0. Consider our model with

four tasks labeled ti, t 2 , ui, and u 2 as shown in Figure 7.5. In this example, the

notation (20, t 2) represents a message with VRT = 20 and destination task t 2 . The

notation ((20,t 2) (30,t 2)) represents an input message queue with two messages.

If the input messages to ti have virtual receive times and destinations as ((20,t 2)

(30,t 2)) and messages to u1 have times and destinations as ((11,U 2) (12,t 2)), then

backup will occur. The processor in partition t will first process the message (20,t 2)

at ti while the processor in partition u will process the message (11,u 2) at u1 . Then

since the the nodal delay is 0, t's processor will process the message (20,t 2) at t2 while

u's processor will process the message (11,U 2) at u2 . Next t's processor will process

message (30,t 2) at t1 and u's processor will process message (12, 2) at ui. Processing

message (12,t 2) will cause t 2 to back up because the message has a VRT of 12 and task

t2 will have a LVT of 20.

Now consider the case when ND=11. After processing the messages (20,t 2) at i1

and (11,u 2) at ui, both processors will choose to process the second messages at ti and

ui respectively. This is because t's processor has to choose between processing message

(30, 2) at t1 or (31, 2) at t 2 , while u's processor has to choose between processing

message (12, 2) at ui and (22,U 2) at u 2. Since the messages at t1 and ui have lower

VRT they are processed first, thus preventing backup. Therefore changing the nodal

delay can affect the simulation.

Changing the MIT will have a similar affect for this example: it is only the ratio

of MIT to ND that affects the performance because the results of the example will not

change if both MIT and ND are changed by the same factor.

In vertical partitioning, varying the MIT or the nodal delay has no effect because

all of the messages to all the tasks within a partition are affected equally. For example

- 120 -

if we increase the ND while using vertical partitioning, then the input partition (the

partition with all the input nodes) is unaffected because none of its input messages'

VRTs have changed. In the output partition all of the input messages have their VRTs

increased by ND. Since this ND is added to each message, the simulation runs exactly

as before, processing the same messages at the same time. The only difference is each

output message has an additional (2 -ND) added to its VRT. Likewise, increasing the

MIT will simply change the virtual time delays between successive messages by the

same amount. Since all messages to the input partition are affected equally, this will

not change the simulation run except to add virtual time delays between successive

output messages' VRTs; likewise, varying the MITs will not affect the simulation run

at the output partitions.

If horizontal partitioning is used, varying the ND or MIT does affect the perfor-

mance. For example if we increased the ND, then messages to t2 and u 2 have their

virtual times increased by the ND. This effect was shown in the example of Figure 7.5,

and decreased the number of backups. Thus by increasing the ND in horizontal parti-

tioning we affect the tasks in a partition differently. Increasing the ND gives priority

to the input-node tasks, which is good in our model because it makes our partitioning

method seem more like vertical partitioning. In fact, if the ND is very large, such that

the processors process all of the messages in the input-nodes first before processing

any messages for the output nodes, then no backups will occur. Likewise, decreasing

the MIT will also decrease backups due to the uneven way it affects the tasks in a

horizontal partition. Therefore the number of backups in horizontal partitioning can

vary due to changes in MIT and ND.

7.5.2 Experiments

This section describes the results of large-scale experiments run on Concert that

confirm our theories about the following:

1. Synchronization Effect

2. Aggressive Backup Effect

- 121 -

3. Virtual-Time Delays

7.5.2.1 H8-Partition Case

In this section we discuss the results of running the 16-input-node butterfly network

with the H8 partitioning while we varied the MIT between 5 and 180 with ND equal

to 10. This partitioning method is shown in Figure 5.5. Each partition was assigned

four processors, since each partition had equal amounts of work.

Horizontal Partitioning with 8 Partitions

Initial Processor Allocation

Effects of Increasing MIT
on # of Backups

Scheme Ordering Based on
of Backups
(ordering from worst to best)

(4 4 4444 4 4)

of Backups increases for all schemes except
for EVRT where it remains constant

1) Fixed-list
2) Partitioning, Circular-list, TO and LVRT
3) EVRT (except static partitioning for low MIT)

Effects of Increasing MIT
on Processing Time

Scheme Ordering Based on
Processing Time
(orderina from worst to best)

Processing time increases for all schemes except
for EVRT where it remains constant

1) EVRT, Fixed-list, and Partitioning
2) Circular-list
3) TO
4) LVRT

Figure 7.6 Summary of Horizontal Partitioning with Eight Partitions

A summary of the description and results of this experiment can be found in

Figure 7.6. The results of this experiment are shown in Figures 7.7 and 7.8. Figure

7.7 shows the number of backups for each of the scheduling policies as the MIT for

messages increases. The policies are static partitioning (part), fixed list (fixed), circular

list (circ), longest task queue (tq), lowest LVRT (lvrt), and lowest EVRT (evrt). As the

MIT increases, backups increase in all the different scheduling policies, except for the

EVRT strategy, where backups remain constant. The EVRT strategy has the fewest

- 122 -

800

m 600

400 -

-- part

200---
fixed

2 circ
-- tq
- Ivrt

-O- evrt

0
0 100 200

Mean Interarrival Times

Figure 7.7 Number of Backups versus MIT for H8

number of backups for MIT between 15 and 180, whereas the fixed-list strategy had

the most backups.

Figure 7.8 shows the processing times (in seconds) for each of the scheduling

policies as the MIT increases. As the MIT increases, processing times increase in

all the different scheduling policies, except for the EVRT strategy, where it remains

constant. The LVRT had the fastest processing times. Note that the EVRT scheme

did not have the lowest processing time even though it had the fewest backups. We

attribute this to additional processing overhead to compute the ATs and the EVRTs

in the EVRT scheme.

- 123 -

800

-o 700-

600-

G)

E 500-

400-
-0- part
-9- fixed
'9- circ

300- - tq
-- Ivrt
-O- evrt

200
0 100 200

Mean Interarrival Times

Figure 7.8 Processing Time versus MIT for H8

7.5.2.2 H 16 -Partition Case

In this section we discuss the results of running the 16-input-node butterfly network

with the H16 partitioning while we varied the MIT between 5 and 180 with ND equal

to 10. This partitioning method is shown in Figure 5.6. Each partition was assigned

two processors, since each partition had equal amounts of work.

This experiment is summarized in Figure 7.11 in the same manner as the previous

experiment. The results of this experiment are shown in Figures 7.9 and 7.10. Figure

7.9 shows the number of backups as the MIT increases. As the MIT increases, backups

increase in all of the different scheduling policies, except for the EVRT strategy, which

remains constant. The EVRT strategy has the fewest number of backups for MIT

between 15 and 180, whereas the fixed-list scheme had the most backups. Note that

- 124 -

1200

1000-

- 800-

0 600-

-y400
-- part
+ fixed

-+F circ
200 -- + to

-I lvrt
evrt

0 .

0 20 40 60 80 100 120 140 160 180 2(0

Mean Interarrival Times

Figure 7.9 Number of Backups versus MIT for H16

the trend of each scheduling scheme is clearer in the H1 6 case than the H8 case.

Figure 7.10 shows the processing times of the different scheduling schemes as the

MIT increases. As the MIT increases, processing times increase for all the scheduling

policies, except for the EVRT scheme, which remains constant. The EVRT strategy

has the lowest processing times when MIT is greater than 40. The fixed-list scheme

had the worst times. Note that the EVRT scheme continues to improve in relation to

the other schemes as the MIT increases; for low MIT it was one of the worst schemes,

but for higher values of MIT it was the best scheme.

- 125 -

1400

U) 1200-

0

U 1000

E 800 -

600-
+ part
+ fixed
+ circ

400 . tq
C-+ ivrt
-o- evrt

200
0 20 40 60 80 100 120 140 160 180 200

Mean Interarrival Times

Figure 7.10 Processing Time versus MIT for H 1 6

7.5.2.3 V6 -Partition Case

In this section we discuss the results of running the 16-input-node butterfly network

with the V6 partitioning while we varied the MIT between 5 and 180 with ND equal to

10. This partitioning method is shown in Figure 5.7. Except for the static partitioning

policy, the first partition started with all 32 processors since it was the one with all of

the work at the beginning of the simulation; this was optimal. For static partitioning

the first two partitions started with six processors and the last four partitions started

with five processors; this was not optimal, but since each partition had about the same

amount of work it was close to optimal given that processors do not move. The results

of this experiment are shown in Figures 7.12 and 7.13. Figure 7.12 shows the number

of backups as the MIT increases. Varying the MIT does not affect the results. The

- 126 -

Horizontal Partitioning with 16 Partitions

Initial Processor Allocation

Effects of Increasing MIT
on # of Backups

Scheme Ordering Based on
of Backups
(ordering from worst to best)

(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)

of Backups increases for all schemes except
for EVRT where it remains constant

1) Fixed-list
2) Partitioning, Circular-list, TQ and LVRT
3) EVRT (except static partitioning for low MIT)

Effects of Increasing MIT
on Processina Time

Scheme Ordering Based on
Processina Time
(orderina from worst to best)

Processing time increases for all schemes except
for EVRT where it remains constant

1) Fixed-list
2) Partitioning
3) Circular-list
4) TQ and LVRT
5) EVRT

Figure 7.11 Summary of Horizontal Partitioning with 16 Partitions

LVRT scheme was the best while the EVRT was the worst in terms of backups.

Figure 7.13 shows the processing times of the different scheduling schemes as

the MIT increases. The MIT has no systematic effect on processing times for this

partitioning method. The LVRT scheme was the best for the majority of MITs. The

EVRT scheme was the worst for the majority of MITs. The results are summarized in

Figure 7.14.

7.5.3 Discussion

7.5.3.1 Horizontal Partitioning

These experimental results showed the the following effects on the horizontal par-

titioning method:

1. The Synchronization Effect

2. The Aggressive Backup Effect

3. The Virtual-Time Delay Effect

- 127 -

200

100-

E -O part
-' fixed
+ circ

-- tq
-U+ lvrt
-o- evrt

0 100 200

Mean Interarrival Times

Figure 7.12 Number of Backups versus MIT for V6

Summarizing the results:

1. The fixed-list scheme performed the worst

2. The EVRT scheme performed the best

3. Horizontal partitioning performed poorly compared to vertical partitioning

The fixed-list scheme is generally bad for horizontal partitioning because it will

concentrate processors in only one partition (the first partition on the list that has work

available). This allows one partition to get far ahead of other partitions which should

have equal priority, making the network even less synchronized in terms of LVT. Thus

when other partitions send messages to this far-ahead partition, they will inevitably

cause backups. By comparing Figures 7.7 (eight partitions) and 7.9 (16 partitions),

it can be seen that the number of backups produced by the fixed-list scheme increases

- 128 -

600

500-

400 -

-+ part

300. -,- f ixed
-+- circ
-0- tq
+I lvrt

C-- evrt

200
0 100 200

Mean Interarrival Times

Figure 7.13 Processing Time versus MIT for V6

when more partitions are used. By comparing Figures 7.8 (eight partitions) and 7.10

(16 partitions), it can be seen that the fixed-list scheme had longer processing time

when more partitions are used. Our data show that the fixed-list scheme is better in

H8 than in H16. We attribute this to the synchronization within partitions in H8 . We

have stated that in horizontal partitioning, it is very likely for a message sent between

two tasks in different partitions to cause backups. If these two tasks were in the same

partition, then it would be less likely for backups to occur because the tasks would be

synchronized. Therefore, decreasing the number of partitions from 16 to 8 decreases the

number of inter-partition links, which reduces the number of backups. This is generally

true for the other scheduling schemes but not to such a large extent.

In comparing the number of backups and processing times of the horizontal par-

- 129 -

Vertical Partitioning with 6 Partitions

Initial Processor Allocation (32 0 0 0 0 0) (except static)
(6 6 5 5 5 5) (static)

Effects of Increasing MIT None
on # of Backups

Scheme Ordering Based on 1) EVRT
of Backups 2) Partitioning
(ordering from worst to best) 3) Fixed-list, Circular-list, and TO

4) LVRT

Effects of Increasing MIT None
on Processing Time

Scheme Ordering Based on 1) EVRT
Processing Time 2) Partitioning and Circular-list
(ordering from worst to best) 3) Fixed-list, TQ and LVRT

Figure 7.14 Summary of Vertical Partitioning with 6 Partitions

titioning method to those of vertical partitioning, the horizontal partitioning method

suffers from more backups and longer processing times. We attribute this to the ag-

gressive backup effect which, as discussed in Section 7.4, can affect simulations using

horizontal partitioning.

The EVRT scheme performs best in terms of backups and processing times as

shown in Figures 7.7, 7.9 and 7.10. The EVRT scheme is the best because it does

not sort the tasks in terms of LVRT but rather (LVRT - EVRT), which does not

exclusively process the task with the lowest LVRT, but instead allows processing of

other tasks with higher LVRT. Thus the EVRT scheme does not give priority to the

backed-up task, and does not suffer from the aggressive backup effect.

The horizontal partitioning method also fared poorly due to increasing virtual time

delays (increasing MITs) where as the MITs increased each scheduling scheme except

EVRT performed worse. Each deterministic scheduling scheme had increasing numbers

- 130 -

of backups and longer processing times as the MITs were increased from 5 to 180 time

units. This is illustrated in Figures 7.7, 7.8, 7.9, and 7.10.

The results also show that the EVRT scheme either performed the best or close to

it in terms of fewest number of backups and least amount of processing time. This is

because the EVRT is not affected by virtual time delays. The EVRT scheme is immune

to this because its scheduling is based on an estimate of the next VRT. Recall that this

estimate is based on a running average (AT as defined in Section 4.9.2) of virtual time

differences of successive messages. On the average, AT should equal MIT. The estimate

of the next message's VRT is EVRT (= LVT + AT). When using the EVRT strategy a

processor chooses the task with the lowest difference (LVRT - EVRT). By increasing

the MIT by some quantity x we will increase both the LVRT and the AT by the same

quantity x on the average. Since the EVRT scheme only depends on the difference

(LVRT - EVRT) the execution sequence of the simulation will remain the same. Thus

the EVRT scheme was not affected by a change of MIT. In fact the performance of

the EVRT scheme remained constant as the MIT increased while the other scheme's

performance became worse.

7.5.3.2 Vertical Partitioning

These experimental results showed the synchronization effect on the vertical par-

titioning method. Summarizing the results:

1. EVRT dramatically performed the worst

2. LVRT performed the best

3. Static partitioning was slightly worse than other schemes

4. Vertical Partitioning outperformed horizontal partitioning in the number of back-

ups (illustrated in Figures 7.12, 7.7, and 7.9) and in processing times (illustrated

in Figures 7.13, 7.8, and 7.10)

These results lead one to believe that vertical partitioning takes best advantage

of the simulation structure. When using vertical partitioning, nodes can only send

messages to nodes in the next partition. Since tasks are sorted into LVRT order (except

- 131 -

when EVRT is used), messages are synchronized in each partition. As messages pass

from partition to partition, they can only be processed if all messages within that

column of nodes (partition) have a higher VRT. Processing the messages in this order

reduces the number of backups.

The EVRT scheme does not produce the synchronization effect, and hence does

not perform as well as the other schemes.

Static partitioning performed slightly worse than the other schemes. We attribute

this to static partitioning's initial assignment of processors in all partitions. In this

policy, a processor in an idle partition will immediately grab the task in its partition as

soon as a message arrives. This can cause backups because messages may be processed

too soon. However, dynamic repartitioning strategies assign all processors to the parti-

tion containing the input nodes. When there is no more work in a partition, a processor

will move to the next partition. Therefore a processor will prefer to finish processing

in its current partition before proceeding to the next partition, causing fewer backups.

We can also attribute the good results of vertical partitioning to the fact that

the aggressive backup effect is not present. Since all the scheduling schemes had much

higher processing times and number of backups with the horizontal partitioning method

than with vertical partitioning, one is led to believe that the horizontal partitioning

method was not optimal.

7.5.3.3 Application to Other Simulations

In any simulation without cycles there are precedence classes among the tasks. A

precedence class is a set of tasks that are a distance of N links away from the input

nodes. If a task is N links away from an input node via one path and M links via

another, by convention we place the task in the precedence class that is Min (M, N)

links away from an input node. Precedence class pi is said to be of higher precedence

than p2 if Pi is fewer links away from the input nodes, while P2 is said to be of lower

precedence than p1. In our 16-input-node butterfly network the group of input-nodes

form the highest precedence class, p1. All nodes that are one link from the input-nodes

- 132 -

form the next precedence class, P2. Continuing in this fashion all the output nodes

are in the lowest precedence class, P6. Note that these precedence classes correspond

exactly to the partitions in vertical partitioning. All the tasks in partition p; have

higher precedence than all the tasks in Pi+1-

There is said to be a precedence relationship between two partitions if all tasks in

one partition are of higher precedence than all tasks in the other. In vertical partitioning

there is a precedence relationship between all partitions. This is not true in horizontal

partitioning, since each partition contains a task from each precedence class.

Let us start with an observation about the butterfly network simulation. The way

to produce the minimum number of backups is for all the processors to start working on

the tasks in the highest precedence class p1. Once this first precedence class of tasks has

no more work, then the processors proceed to the next precedence class of tasks p2 and

process all of their messages until all work has been exhausted. If we continue in this

fashion then there will be no backups throughout the simulation. This is true because

none of the tasks within a precedence class communicate with each other so they cannot

cause each other to back up (since we are assuming that the input message streams

entering pi are monotonically increasing in virtual time), and as long as we process all

the messages of one precedence class, say pi, before going to the next precedence class

Pi+1, then all of the messages for tasks in Pi+1 will be sorted on the tasks' respective

message queues. If all the messages ever destined for the tasks in Pi+1 are already on

the tasks' message queues before we start processing Pi+1, then no backup will occur

in Pi+1 (simply because if a task's input message stream is monotonically increasing in

virtual time then no backups will occur).

We now generalize these effects (synchronization, aggressive backup and nodal

delays) to better understand their applicability to simulations other than the butterfly

network.

The source of all these effects is the partitioning. Partitioning reduces the wait

time for individual processors to locate the next task to process by distributing the

- 133 -

task queues over partitions, but at the cost of reducing the synchronization. When we

introduce partitioning, each partition acts like its own small simulation. All the tasks

within a partition are synchronized by the synchronization effect if we use LVRT to sort

the task queues. This is true for any type of partitioning method. The problem arises

when one tries to synchronize these partitions. Synchronizing partitions is done solely

by the messages that pass between partitions. However, synchronizing these partitions

is not an easy thing to do if there is no precedence relationship between the partitions.

In the vertical partitioning case each message proceeds through each partition in

a pipeline fashion. In this case it is very clear what the precedence relationship is

between partitions. Messages must first go through the input-node tasks of the input

partition and traverse all the partitions in between until the messages emerge from the

output partition.

The problem with horizontal partitioning is that there is no precedence relationship

between the partitions. Although tasks within the horizontal partitions are synchro-

nized, when different partitions try to synchronize with each other, additional backups

occur. Another problem is that the synchronization effect within a horizontal partition

goes against the precedence relationship of the tasks within the partition. In other

words the tasks within a horizontal partition are forced to have their LVRTs coerced

to be about the same; on the other hand, there is a specific order in which messages

proceed through the tasks in the partition which is violated by this improperly induced

synchronization. Furthermore, additional backups are caused by the aggressive backup

effect.

Therefore the synchronization effect can be good if a simulation is partitioned such

that the synchronization effect does not contradict the precedence relationship existent

in the simulation. This generalization can be extended to any type of simulation that

does not have feedback.

What do virtual time delays do? The important parameter is the ratio MIT:ND.

(This is true for both stochastic and deterministic sources of messages because if the

- 134 -

virtual time between successive messages is some deterministic quantity, then that

deterministic quantity can be used for MIT.) Let us examine an extreme case where

ND > VRTmax - VRTmin

The quantity VRTmax is the maximum VRT of any message sent to any of the

input nodes, and VRTmin is the minimum VRT of any message sent to any of the input

nodes. Let us make two assumptions

1. The number of processors does not exceed the number of input nodes.

2. There is no explicit partitioning.

If this is true, no backups will occur. All of the processors will start in class p1

and finish all the work before proceeding to the next group of tasks. Eventually all

the processors will process the tasks in class p6 and no backups will occur. The MIT

probabilistically determines the values of VRTmax and VRTmin. Therefore, both the

MIT and ND play an important role in this behavior.

When the ND is large in comparison to the MIT, then there will be fewer backups.

This is because tasks in the higher precedence classes are more attractive, since their

LVRTs are less affected by increases in the ND. Therefore, in actuality the larger the ND

in comparison to the MIT the more the simulation appears to be partitioned vertically

even though it may not be. As the ND increases toward the value VRTmax - VRTm in,

fewer and fewer backups occur.

In conclusion, if there exists a precedence relationship between tasks in a simula-

tion, then one can force the simulation system to follow this precedence relationship

better by increasing the ND. For example even with the horizontal partitioning method

we can improve performance by raising the ND or lowering MIT enough so that the

system has implicit vertical partitions. This will not completely solve the problem in

the static partitioning scheme because the partition boundaries cannot be crossed by

processors.

So how do we generalize the aggressive backup effect? The aggressive backup effect

- 135 -

occurs at partition A whenever:

1. Partition A contains tasks belonging to more than one precedence class, and

2. A task T that is not in the highest precedence class of partition A receives input

messages from multiple sources, at least one of which is not within partition A,

and

3. T receives a preempting message from a input message source that is not within

partition A.

If these occur, all tasks in partition A that have lower precedence class than T will

likely back up due to the preempting message at T. This backup can trigger additional

backups. Define:

C: T and all tasks in A with lower precedence than T,

U: The preempting task, and

B: U's partition.

Following the initial backup, the tasks in C are given high priority in A due to

their lower LVRT. Suppose none of the tasks in B have backed up recently; then all

tasks in B have the same priority. Therefore, the tasks of C will receive a larger share

of the processing power in A than U will receive in B; thus, C will eventually get ahead

of U in virtual time. When this occurs, a message from U to T will cause another

backup. This will not occur if all of the sources of messages to T are within A, since all

the tasks within A are synchronized due to the synchronization effect (although normal

backup may still occur).

We conclude that one should be careful when partitioning a simulation. If tasks in

multiple precedence classes are grouped together in a partition, then tasks other than

those in the partition's highest precedence class should not have any input messages

from other partitions.

7.6. Lazy versus Aggressive Message Cancellation

Let us return to our model with its assumptions of section 7.2. However, we

will now expand our model to a 4-input-node butterfly network. We use the following

- 136 -

modified assumptions of our model:

1. Input messages arrive at the four input nodes in increasing VRT order.

2. The destination of each input-node message is equally likely to be any of the four

output nodes.

3. The VRT of each message is random based on an exponential probability distribu-

tion (pdf) based on a mean interarrival time (MIT). Each trial of the exponential

pdf is rounded to the nearest whole number. The VRT of the n + 1 " message is

the VRT of the n'h message plus the value returned by a trial of the exponential

pdf.

4. Each partition contains exactly one processor.

5. Within each partition the static partitioning scheme is used.

6. Each task has no state. Therefore, there are no conflict delays (CD) since conflict

delays are implemented using state. In other words, we could make the CD=0.

7. A message's data contains the destination node address.

In this expanded model, there are four partitions T, U, V, and W as shown in

Figure 7.15. Each partition contains three tasks each, one input node, one intermediate

node and one output node.

In aggressive message cancellation, when a backup occurs at a task, a set M of

messages from the backward message list are removed. The messages on the backward

message list were sent by this task, see Section 3.2.4. Let us call the messages in

M the preempted messages. Then a set of anti-messages AA are sent to cancel the

messages in M, which had previously been sent. There is one anti-message in the set

AA for each message in M. In lazy message cancellation, a message m in M is canceled

only when the sending task's LVT exceeds the virtual send time of m. Let LA be

the set of anti-messages that are sent for the original set of messages M in the lazy

message cancellation mechanism. Therefore the set of unnecessary anti-messages is

UA = AA - LA. The influx of the messages in UA could cause additional backups or

increase processing times. This is bad.

- 137 -

Partition T

U1 U2 Partition U

V1 r V2 V3 Partition V

W3 Partition W

4-InDut Node Butterfly Network

Figure 7.15 4-Input-Node Butterfly Network with four Horizontal Partitions

The system benefits from lazy message cancellation if the set UA is a large subset

of the set AA. An unnecessary anti-message occurs at a task I when:

1. A preempted message sent by I is canceled and then sent again unchanged, which

will always happen in our model since tasks have no state.

2. A preempted message sent by I and the messages sent by I in response to its

preempting message go to different destinations.

We expect lazy message cancellation to greatly outperform aggressive message

cancellation whenever a task is repeatedly backed up. Such a situation occurs when

the aggressive backup effect occurs.

The following example is contrived to illustrate the two sources of unnecessary anti-

messages on the network in Figure 7.15. The example is a snapshot of a simulation in

- 138 -

VRTs of Processed VRTs of Messages on the
Messages at T2 Input Message Queue at T2

5 (10, 15,20,25)

5, 10 (15,20,25)

4* (5, 10, 15, 20, 25)

4,5 (10, 15,20,25)

4,5, 10 (15, 20, 25)

4,5, 10, 15 (20,25)

4,5,8* (10, 15, 20, 25)

4,5,8, 10 (15, 20,25)

4,5,8, 10, 15 (20, 25)

4,5,8, 10, 15,20 (25)

4,5,8, 10, 12* (15, 20, 25)

4,5,8, 10, 12, 15 (20, 25)

4,5,8, 10, 12, 15,20 (25)

4,5,8, 10, 12, 15,20,25 ()

4,5,8, 10, 12, 15, 17* (20,25)

4,5,8, 10, 12, 15, 17,20 (25)

4,5,8, 10, 12, 15, 17,20,25 0

* - Processing the message with this VRT caused a backup at T2

Figure 7.16 The Aggressive Backup Effect Showing Messages Processed

and Message Queues for each Task

progress. The details of how the snapshot arises are omitted. Suppose that partition

T gets ahead of partition V in virtual time. In other words, the LVTs of the tasks in

partition T are larger than those of partition V. Suppose the following messages are on

1. t 2 's input queue: ((5, t3) (10, t3) (15, t 3) (20, t3)) (25, t3)), and

2. vi's input queue: ((3, V3) (4, u3) (6, v3) (7, v3) (8, u3) (9, v3) (11, v3) (12, u3)

- 139 -

The VRT of the messages causing Anti-messages to be sent
backup in task t2 and requiring with the following VRTs

4 5, 10

8 10, 15

12 15,20

17 20,25

Figure showing the anti-messages
sent caused by preempting messages

Figure 7.17 The VRT of Preempting Messages and the VRTs of their Anti-Messages

(13, v3) (14, v3) (17, u3)).

Figure 7.16 shows a possible execution sequence of messages at task t2 . Each

entry shows the messages processed and the input message queue for t 2 immediately

after t 2 has been processed by T's processor. Note that there is time between each

entry where T's processor may be processing messages at t3 that were just sent by t 2 -

We assume there are no messages in t's message queue so no processing time is spent

on t1. The messages at t 2 are processed faster than at vi because V's processor spends

some of the example processing messages with VRT=3, 6, 7, 9, 11, 13 and 14 at tasks

V2 and v3 whereas T's processor only spends additional time processing messages at t 3 .

Here the task t 2 backed up at virtual times 4, 8, 12, and 17. In this diagram we see

that there are four preempting messages to t2 , at times 4, 8, 12, and 17. In this case

all messages that cause t 2 to back up are sent onward to u 3 .

In the aggressive message cancellation case, after each backup, t2 sends anti-

messages for each of the preempted messages shown in Figure 7.17. Now when t 2

repeatedly backs up due to the aggressive backup effect it will also repeatedly send out

additional sets of anti-messages, many of which may be unnecessary. In our example

- 140 -

700

600-

U) 500

M3 400-
0

L.300-

E
A 200 - - -m- lazy-part

-4- lazy-fixed
AS- lazy-circ

100 4- lazy-tq
+ lazy-lvrt

-0- lazy-evrt

0
0 100 200

Mean Interarrival Times

Figure 7.18 Number of Backups versus MIT for Lazy Cancellation for H 8

the preempted messages with VRTs of 10, 15 and 20 were canceled unnecessarily, since

the same messages are later resent. The preempted message with VRT of 10, 15 and

20 are processed and canceled twice. These additional anti-messages could cause more

backups than those caused by the original preempting messages at times 4, 8, 12, and

17. This is an example of the first kind of unnecessary anti-message and is called the

repeated backup effect.

However in the lazy message cancellation case none of these additional

anti-messages are sent. Therefore, only the backups caused directly by the preempting

messages 4, 8, 12, and 17 would cause any additional backups at t 3 or u3 . This is

very important since after passing through the backed-up task, the set of preempting

messages, traveling from vi, go to u3, while the set of preempted messages, traveling

- 141 -

600

700-

600-

500-

400

300- -m- fixed
-0- lazy-fixed

200-
0 100 200

Mean Interarrival Times

Figure 7.19 Number of Backups versus MIT for H8 using

Aggressive or Lazy Cancellation with Fixed-list scheduling

from ti, go to t3 . Since the preempted messages and the preempting messages travel

to different destinations, the anti-messages for the preempted messages never need to

be sent. The sending of these anti-messages in the aggressive case is an example of the

second kind of unnecessary anti-messages.

Let us explain what is happening with aggressive message cancellation. If we

assume:

1. A preempting message m, from vi forces t 2 to back up. This causes t 2 's LVT to

be synchronized with the tasks in partition V.

2. mi and all subsequent messages from vi to t 2 are destined for u3 .

Note that even though mi is destined for u3 , t3 is likely to back up if t2 sends

antimessages to t 3 due to t 2 's backup.

One thing that occurs is the aggressive backup effect. This happens when T's

processor gives priority to the backed-up task (t 2) or tasks (t 2 and t 3). This will allow

- 142 -

700

600 -

))

:3 500-

4.- 400-
0

..Q
E300 -

D 0 -+- lazy-part
Z - + lazy-fixed

-+- lazy-circ
200- -a- lazy-tq

-+ lazy-lvrt
-o- lazy-evrt

100-
0 100 200

Mean Interarrival Times

Figure 7.20 Number of Backups versus MIT for Lazy Cancellation for H 16

the backed-up task or tasks to get ahead (in virtual time) of the tasks in partition V.

Once this occurs any new message from vi to t 2 will again cause backup at t 2 -

Now the repeated backup effect occurs. Once again, t 2 may send anti-messages to

t 3 causing backup even though none of the preempting messages are destined for t 3 .

Furthermore, the same preempted messages are likely to be canceled and later resent

to t 3 when repeated backups occur at t 2 . The preempted messages remain the same

because preempting messages do not change tasks' states and because there are no

conflict delays. Therefore, the additional anti-messages to t 3, the resent preempted

messages to t 3 and the resulting backups at t 3 are all unnecessary.

In lazy message cancellation, these preempted messages are never canceled because

messages are never canceled until the task is sure that the message will not be re-sent.

- 143 -

1200

1000

800

600-

-4- fixed
-& lazy-fixed

400
0 100 280

Mean Interarrival Times

Figure 7.21 Number of Backups versus MIT for H 16 using

Aggressive or Lazy Cancellation with Fixed-list scheduling

In this way, none of the preempted messages from t2 to t 3 would be repeatedly sent

and canceled by t 2 . The problem that occurs here is that, in the aggressive case, t 3

was forced to repeatedly back up unnecessarily. Thus, in this example lazy message

cancellation would prevent these additional backups.

7.6.1 Experiments

In these experiments we studied the differences between lazy and aggressive mes-

sage cancellation. Each of these experiments was executed multiple times with different

MITs. In all the experiments each of six different scheduling policies was executed at

least twice. These scheduling policies were static partitioning, fixed-list, circular-list,

longest task queue, lowest LVRT and EVRT dynamic repartitioning. Each scheduling

policy was used with lazy as well as aggressive message cancellation.

- 144 -

1400

1200-

1000-

E
800-

600- -n- fixed
- lazy-fixed

400'
100 200

Mean Interarrival Times

Figure 7.22 Processing Time versus MIT for H 16 using

Aggressive or Lazy Cancellation with Fixed-list scheduling

7.6.1.1 H 8-Partition Case

Figure 7.18 shows the number of backups for each of the scheduling policies while

using lazy message cancellation as the MIT increases. The policies are static parti-

tioning (lazy-part), fixed-list (lazy-fixed), circular-list (lazy-circ), longest task-queue

(lazy-tq), lowest LVRT (lazy-lvrt), and lowest EVRT (lazy-evrt). The EVRT scheme

had the fewest backups, whereas the fixed-list scheme had the most. Lazy message

cancellation reduces the number of backups in this partitioning method for all of the

scheduling schemes. Figure 7.19 illustrates this effect by showing the number of back-

ups for the fixed-list policy using aggressive (fixed) and lazy (lazy-fixed) message can-

cellation. In comparing Figure 7.7 and 7.18, it is clear that lazy message cancellation

decreases the backups in all of the scheduling schemes. The figures also show that lazy

message cancellation preserves the performance order of the scheduling schemes. That

is, if a scheduling scheme has fewer backups with aggressive message cancellation than

- 145 -

100

80 - d

60-

40-

-m- lazy-part

20- .-
lazy-fixed

- lazy-circ
--- lazy-tq
-+- lazy-lvrt
-0- lazy-evrt

0-
0 100 200

Mean Interarrival Times

Figure 7.23 Backups versus MIT for Lazy Cancellation

another, then it also has fewer backups with lazy message cancellation.

7.6.1.2 H 16-Partition Case

Figure 7.20 shows the number of backups for each of the scheduling policies while

using lazy message cancellation as the MIT increases. Lazy message cancellation again

reduces the number of backups. The effect for the fixed-list strategy is shown in Figure

7.21. In comparing Figure 7.9 and 7.20, lazy message cancellation again decreases

the backups in all of the scheduling schemes, while preserving the performance order.

Lazy message cancellation reduced the processing time of the fixed-list strategy only;

this is shown in Figure 7.22.

- 146 -

7.6.1.3 V6-Partition Case

Lazy message cancellation had essentially no effect on either processing times or

backups for vertical partitioning. Figure 7.23 shows the number of backups when lazy

message cancellation is used. These results are comparable to those results shown in

Figure 7.12 where aggressive message cancellation is used.

7.6.2 Discussion

These results showed that for horizontal partitioning, lazy message cancellation

improved the performance by either decreasing processing time or decreasing backups.

In the best case, lazy message cancellation can reduce the number of backups by nearly

50%. This additional performance costs essentially nothing since the processing time

for a simulation using aggressive message cancellation was about the same as for lazy

message cancellation. In vertical partitioning, however, lazy message cancellation had

no effect because the aggressive backup effect is not present.

Our data confirm the hypothesis that lazy message cancellation has a greater ef-

fect when a task continually backs up: specifically, when the aggressive backup effect

is present. The aggressive backup effect is present in horizontal partitioning; con-

sequently, lazy message cancellation reduced the number of backups and processing

times. However, the aggressive backup effect is not present in vertical partitioning, and

so lazy message cancellation had little effect.

7.6.3 Application to Other Simulations

Lazy message cancellation:

1. Does not unnecessarily cancel messages.

2. Does not repeatedly cancel messages.

These properties of lazy message cancellation are good because they help to prevent

the repeated backup effect. This occurs whenever a task repeatedly backs up such

that messages are repeatedly canceled, as in the aggressive backup effect. When the

- 147-

aggressive backup effect occurs, repeated backups in the original task allow messages

to be canceled repeatedly, causing other tasks to back up repeatedly.

We conclude that lazy message cancellation is good when the partitioning method

forces tasks to repeatedly back up. Otherwise lazy message cancellation has no effect

on either processing times or backups. However, since lazy message cancellation does

not cost much in terms of processing time, it appears that one should always use it in

the network simulation.

Our original discussion of lazy message cancellation did not consider state changes

at the backed-up task, as are needed, for example, to implement conflict delays. When-

ever the preempting message causes a change in the data field of the output message

or a state change in the backed-up task, it may cause a different sequence of output

messages to be sent by the backed-up task. If this occurs, then it is possible for the

preempting messages to a task to affect the preempted messages sent by the task even

if they are destined for different nodes. If a state change occurs at the backed-up task,

then anti-messages are unnecessary only if the preempted messages are canceled and

resent without any change in contents.

Under some circumstances, lazy message cancellation can cause more messages

and backups than aggressive message cancellation. This is possible if lazy message can-

cellation delays needed backups, which could increase the number of backups. Section

7.13.2 explains why lazy message cancellation can delay backups which in turn causes

more backups.

7.7. Real-Time Delay

The performance of the simulation is dependent not only on the inter-message

delays (IM) but also on the processing time delays (PT). The inter-message delay

is the real-time delay between messages, while the processing time delay is the real

time needed to process a message at a node. We show that the ratio IM governs the

performance of the simulation.

We return to our two-input-node network model with four tasks and its accom-

- 148 -

panying basic assumptions from Section 7.2. The model was partitioned vertically as

shown in Figure 7.2 and horizontally as shown in Figure 7.1. In this section we vary

IM and PT to study their effect on performance. In our model we assume that 30

input messages arrive at each of the two input nodes in increasing VRT order. Since

we assume the input streams of messages are increasing monotonically in virtual time,

they cannot possibly force a backup at the input nodes. This is not true at the output

nodes. We wish to study how the real-time delays affect backups at the output nodes.

50

40

Cl)

0

DQ

E
D

30

20

10

0
0 10 20 30

Real-Time Delays
40

Figure 7.24 Real-Time Delay Effects with PT=10 with varying IM

In our experiment we fixed PT = 10, while we varied the values of IM between 1

and 31. The results are illustrated in Figure 7.24. The performance of the simulation

is measured in the number of backups. In this figure, Vertical indicates the number of

- 149 -

backups for vertical partitioning and Horizontal indicates the number of backups for

horizontal partitioning.

The results show that real-time delays of messages can have a dramatic effect on

backup performance of our simulations. Figure 7.24 shows that horizontal partitioning

always has backups whereas vertical partitioning has no backups until the .m ratio

exceeds 1.5. The data show that the vertical partitioning case is more susceptible to a

changing p ratio than the horizontal partitioning. For example, by varying the IM

between 15 and 20, vertical partitioning went from 0 to 45 backups while horizontal

partitioning only went from 24 to 30 backups. Although both methods of partitioning

have about 45 backups when the ratio of M is extremely high, horizontal partitioning

is less susceptible to small variations.

In our experiments on Concert, horizontal partitioning always had many times

more backups than vertical partitioning. This suggests that the range of I in the

Concert experiments is between 0 and 1.6. To determine how varying the L ratio

affects our simulation we will study their effects on vertical and horizontal partitioning

separately.

7.7.1 Vertical Partitioning

In this section we study the effects of varying the ratio of m. We show that the

number of backups is highly influenced by the order of messages in the input partition's

output message stream.

Recall our notion of streams from Section 7.2. The input and output messages

streams for vertical partitioning are illustrated in Figure 7.25. Each input task has

an output stream that is merged in real time into the input partition's output stream.

The input partition's output stream is the same as the output partition's input stream.

Each message of this input stream goes to one of two output tasks' input streams

depending on its destination.

We only determine the number of backups at the output nodes of our model, since

we know that the input nodes will not have any backups. Backups will not occur

- 150 -

Output Message
Stream of task V I

Output Message
Stream of task V2

Output Message Stream of Partition V

Input Message Stream of Partition W

Input Message
Stream of task W1

Input Message
Stream of task W2

Inout and Output Streams of Vertical Partitioning

Figure 7.25 Input and Output Message Streams for Vertical Partitioning

at the output partition when the input stream to each output node is monotonically

increasing in virtual time. This is guaranteed whenever the output message stream

from the input partition is monotonically increasing. This is not equivalent to the

output message streams' from the input nodes being monotonically increasing. The

output message stream of the input partition is monotonically increasing if and only if:

1. The output message streams of the input nodes are monotonically increasing, and

2. The input tasks are synchronized. In other words, only the task with the lowest

LVRT can output a message at any given time.

The first item is always true since the input nodes never back up. The second item

will hold under certain Pg- ratios for vertical partitioning.

If the output stream from the input partition is not monotonically increasing,

backups are likely to occur. The only case where backups do not occur is when the

input streams of the output nodes are still monotonically increasing. This occurs in

- 151 -

the somewhat unlikely event that all the messages that are out of virtual time order in

the input partition's output stream go to separate destinations. Therefore, an output

stream that is not monotonically increasing will not necessarily cause backups, but

makes backups more likely.

Figure 7.2 shows a diagram of vertical partitioning on the four-node model. When

examining the real-time delays for vertical partitioning, three categories of operation

exist. They are:

1. L < 1, and

2. I > 2, and

3. 2 > >1.

PT

7.7.1.1 IM < 1

Whenever 44 < 1, messages arrive at the input nodes faster than the processor

can process them; therefore, a backlog of messages forms on the input message queues.

Let lvrti be input node vi's LVRT and lvrt 2 be input node v2 's LVRT. Since both

input nodes' message queues contain messages and there is only one processor in this

partition, the processor can safely processes the input node with the lowest LVRT.

Without loss of generality let us say that the input node with the lowest LVRT is vi

and its first message is mi. After processing v1, it will output the message to an output

node after a virtual time delay ND. We claim that any future messages processed at

either input node will have a higher LVRT because:

1. At the time mi is processed, none of the messages on v1 's message queues has a

lower VRT than m 1 .

2. At the time mi is processed, none of the messages on v2 's message queues has a

lower VRT than m 1 .

3. Any future message to arrive at the input nodes have a higher VRT than m 1.

Statement 1 is true because the message queues are sorted in virtual time order,

and vi always processes the message with the lowest VRT off its message queue first.

Statement 2 is true because there is only one processor in this partition and it always

- 152 -

chooses to process the task with the lowest LVRT. Finally, since the input message

streams to the input nodes are monotonically increasing, any new messages that arrive

to a task vi must have a higher VRT than any of the messages on vi's message queue.

Thus, statement 3 is true.

Since the message processed by the lone processor is always the one with the lowest

VRT from that point in real time onward, the output message stream from the input

partition is always monotonically increasing. Therefore, the output message stream of

v as well as the input message streams of wi and w 2 will be monotonically increasing.

This is the safe case, since processing the task with the lowest LVRT can never cause

backup at the output partitions.

7.7.1.2 4# > 2

In this category the processor in partition v waits for two messages to simultane-

ously arrive at the empty messages queues of both the input nodes at the start of the

simulation. This is true in our model, but this synchronization is unlikely to occur in

real simulations because the IM between successive messages will never be exactly the

same. In real simulations, these fluctuations in IM will only affect the results of this

analysis when I = 1 or 2. In these cases, the loss of synchronization may cause a few

additional backups.

When the messages arrive, the processor:

1. Processes the message with the lowest VRT at one of the input nodes, say vi, and

sends the message on toward its destination. When this is complete, vi's input

message queue will be empty.

2. Processes the message with the next lowest VRT at v. When this is complete,

both input message queues will be empty.

3. Waits for the next set of messages, one for each input node.

4. Returns to step 1 (when the new messages arrive).

Thus the processor in the input partition will process messages off each of the input

message streams half the time. This is the unsafe case, since processing vj's message

- 153 -

in step 3 may cause backup if the next message to vi has a lower VRT and they both

have the same destination output node, say wi. In this case the input stream to wi will

not be monotonically increasing and backup will occur at wi.

On the other hand if the destinations of the two messages are different and the

input streams to wi and w 2 have been monotonically increasing, the streams will still

be monotonically increasing after the messages are sent. Eventually, it is likely that

after some iteration of step 3, the processing of vj's message will cause a backup because

the next message to vi will have a lower VRT and the same destination.

7.7.1.3 2 > Im > 1

This case consists of behavior from both of the previous categories. Whenever a

processor finishes processing a task, the input queues of the input tasks will either be:

1. Both non-empty, or

2. One or both empty.

The first case corresponds to the safe case as in category 1 and no backups will be

caused by processing the message with the lowest LVRT. The second case corresponds

to the unsafe case as in category 2 and backups will occur under the conditions stated

in category 2. When we start a simulation, the unsafe case will occur because the

task processing the first message will have an empty queue after the first message is

processed. As the simulation proceeds, both input queues will eventually become non-

empty because messages arrive in the system faster than they are serviced (2 messages

arrive every IM, 1 message is serviced every PT). Therefore the safe case will become

more common.

Once the simulation has entered the safe case, it is possible that one of the input

queues will become empty. Suppose that most of the messages queued at one task vi

have lower LVTs than the messages queued at the partition's other task v2 . Here, the

processor will mostly work at v1 . Therefore, messages arrive at vi slower than they are

processed at v1 . Therefore, vi's queue will eventually be empty, and hence the unsafe

case will arise again. Eventually the safe case must arise again and this safe-unsafe

- 154 -

alternation continues. As the simulation proceeds it seems likely that the input queues

will slowly build up, so that the unsafe case becomes progressively rarer.

7.7.2 Horizontal Partitioning

Here we study the effects of varying the ratio I with horizontal partitioning.

Again, we study the number of backups at only the output nodes, because the input

nodes do not back up. Backups will only occur when the input stream to an output

node is not monotonically increasing.

Note that in the horizontal case, the two input nodes are in different partitions;

therefore, each has a different processor. Figure 7.1 shows a diagram of horizontal par-

titioning on the four-node model. When examining the real-time delays for horizontal

partitioning, three categories of operation exist. They are:

1.M < 1PT

2. 2 > % >1

3. I- > 2PT

7.7.2.1 I < 1

Whenever L < 1 messages arrive at the input nodes faster than the processors

can process them; therefore, a backlog of messages forms on the input message queues.

This prevents any backups due to real-time delays, but backups are still caused by

inter-partition messages (the aggressive backup effect), and are aggravated by virtual-

time delays. These backups are always present no matter what the ratio IM happens

to be. Figure 7.26 illustrates an example where backup occurs and I < 1. In all of

the examples in this section we use virtual-time delays that are large with respect to

the nodal delay (ND) by setting ND=O. In this example backup occurs because task

t2 gets ahead in virtual time, so that backup results when task ui sends a message to

t2 with a low VRT.

- 155 -

PT > IM and ND=O

Backup caused by message (2, t2) at t2

Example I for Real-Time Delays

Figure 7.26 Horizontal Partitioning Example I

7.7.2.2 2 > I> 1

Whenever 2 > > 1, then it is possible that either t1 or ui's message queues

could be empty after each processor processes one task because processors process

messages faster than they arrive. However, after a processor processes two tasks, the

input node's message queue for the processor's partition must be non-empty. Backup

is even more likely than in the first case. Figure 7.27 illustrates an example where

backups occur and 2 > ' > 1. The problem in this example is that task t 2 getsPT

ahead in virtual time. This is because the processor for partition t must process task

t2's message with VRT=5 since t1 has an empty message queue. Now when the next

- 156 -

((5, Kt2)
((5, t2)) T I T2 ((8, t2)) T ((5, t2)) T2

((1, u2)) U1 U2 ((2, t2)) UI(1, u2:K ~((1, u2))YV/

State before processing first set of messages State before processing second set of messages

((8, t2) (10, u2)) Ti T2 ((5, t2)) ((10, u2) (12, u2)) Ti T2 ((5, t2))
((2, t2))

((2, t2) (7, u2)) U1 ((1, u2)) ((7, u2) (9, t2)) U 1((1, u2))

State before processing third set of messages State before processing fourth set of messages

2PT > IM > PT and ND=O

Backup caused by message (2, t2) at t2

Example il for Real-Time Delays

Figure 7.27 Horizontal Partitioning Example II

message arrives at t1 with a lower VRT than the message just processed at t 2 , backup

will occur. Since one partition is generally ahead of the other in virtual time, this

phenomenon can always occur whenever ND is small. Note that this example will not

back up when I < 1, but example I will back up when 2 > PT >
PT PT>1

- 157 -

IM > 2PT and ND=O

caused by message (2, t2) at t2

Example III for
Real-Time Delavs

Figure 7.28 Horizontal Partitioning Example III

7.7.2.3 I > 2

Whenever -L > 2, then it is possible that either ti or ui's message queues could
PT '

be empty after each processor processes two tasks because processors process messages

faster than twice the rate that they arrive. Backup is even more likely than in the

second case. Figure 7.28 illustrates an example where backup occurs and I > 2.

- 158 -

Since task t 2 gets ahead in virtual time, backup will occur in this example. This is

because the processor for partition t must process task t2 's second message at VRT=5

since ti will still have an empty message queue even after the processor processes the

first message at t 2 with VRT=1. Since one partition is generally ahead of the other in

virtual time, this phenomenon can always occur whenever ND is small. It is interesting

to note that this example will not back up when 1 < 2, but examples I and II will

back up when I > 2!

Without loss of generality, assume that partition t has a lower LVRT than partition

u. Then as IM increases with respect to a fixed PT, t2 is more likely to get ahead in

virtual time (due to messages from ui), because ti's input queue is more likely to

be empty after the processor at t finishes processing a message. As the IM increases

the chance that t's processor will process more than one successive message at t 2 will

grow. This is bad, because the more successive messages that are processed at t 2 before

another is processed at t1 , the more likely it will be for a new message at t1 to have

a lower VRT than a message just processed at t 2 thus resulting in backup. This is

due to the fact that if messages are processed faster than they arrive, t1 will not be

synchronized in virtual time with t2 -

The effect of I makes the system act very much like the Network Paradigm

simulation system. In our system, if 1 is low, it is unlikely that queues will be empty.

This is the safe condition of the Network Paradigm. When the ratio is high, a queue

is likely to be empty, corresponding to the unsafe condition of the Network Paradigm.

7.8. Message Queue Length

7.8.1 Theory

There is an interesting relationship between the number of backups and the input

message queue length at a task. Longer message queues were found to be associated

with fewer backups, since a large message backlog allows messages in the input message

queue to be sorted in virtual time order. Backups, on the other hand, cause longer mes-

- 159 -

sage queues. When backup occurs, the backed-up task reprocesses messages that were

previously processed by placing processed messages back on the task's input message

queue.

Let us try to model this effect of message queue length. Given a task with message

queue length n, what is the probability that an incoming message will cause a backup?

Assuming the message queue is sorted in virtual time order, an incoming message will

cause backup only if its virtual time is less than that of all n messages on the queue

and if the first message on the queue is being processed. In other words the probability

of an incoming message causing backup is bounded above by the probability that the

incoming message has a virtual time less than that of all n messages on the queue.

We now estimate this probability. First we know that the virtual times of messages

on a task's message queue are derived from independent identically distributed Poisson

probability density function (pdf) with the same mean interarrival times (MITs). Then

if all of the n + 1 messages arrive at approximately the same real time, then the

probability that any particular one of those messages has the lowest LVRT is .

However, all the messages do not arrive at the same real time; in fact the messages

already on the message queue have already arrived. We know that messages with larger

RRTs (real receive times) probably have larger VRT. Therefore the probability that

an incoming message will have a VRT less than those on the input message queue is

bounded above by 1. Similarly the probability of backup caused by an incoming

message is bounded above by the same probability g. Therefore as n, the message

queue length, increases, the probability of backup is likely to decrease.

We have quantitatively and qualitatively discussed relationships between backups

and message queue lengths. At this point we would like to point out how our system

is analogous to the Network Paradigm method. Unlike the Network Paradigm, it is

possible for the system to be unsafe with non-empty queues. However, when message

queues are long, our system approaches the safe category of the Network Paradigm

system. As the size of the message queue decreases, the system becomes more unsafe.

- 160 -

In fact, the most unsafe message queue length for our system is zero which corresponds

to the Network Paradigm's unsafe case of empty input message queues.

7.8.2 Experiments

Random Partitioning with 8 Partitions

Initial Processor Allocation

Effects of Increasing Time,
Delay

Scheme Orderinq Based on
of Backups
(orderinq from worst to tbest)

Lazy Message Cancellation's
Effects on # of Backups

(4444444 4)

Message queue length decreases and
number of backups increases

1) Partitioning
2) Fixed-list
3) Circular-list and TQ
4) LVRT
5) EVRT

Reduced the number of backups dramatically.
Most profound as real-time delay increased

Figure 7.29 Real-Time Delay for Longer Message Queue Lengths

As in previous experiments, all scheduling policies as well as lazy and aggressive

message cancellation are tested. The effects of lengthening of the message queue were

studied on a eight-input-node butterfly network, as opposed to the 16-input-node net-

work studied in Section 7.5-7.7. We used the smaller network because the simulation

run times were more manageable with a smaller network (given the fact that we were

already adding real-time delays) and Concert was more prone to failure as the simula-

tion run time grew. The experiments confirm our theories of an interesting relationship

between the message queue length and the number of backups.

We developed two methods that artificially decrease queue lengths. They are:

- 161 -

1200-

1000-

800-

600-

E
D 400-

-Z- part
-w- fixed
AN- circ

200. -o- tq
- lvrt
-4- evrt

0 2 4 6 8 10

Real-Time Delays in Seconds

Figure 7.30 Number of Backups versus Real-Time Delay for r8

1. Adding real-time delays between successive input messages.

2. Reducing the number of original input messages and adding a feedback loop in our

network to maintain the same total number of messages into the input nodes.

The first experiment was used to confirm the hypothesis that real-time delays de-

crease the message queue length and increase the number of backups. In these experi-

ments an eight-input-node butterfly network was used along with a random partition-

ing r 8 using eight partitions (note this experiment was done with an eight-input-node

butterfly network instead of a 16-input-node butterfly network). Each of the eight

partitions starts with four processors. The MIT of messages was fixed at 60 time units

with the destinations of the messages random. The first of these experiments sent 50

messages into each of the eight input nodes at various VRTs, but with real time delays

- 162 -

1000

800-

600-

.0 a400 -

E
lazy-part

+ lazy-fixed
200-- -a- lazy-circ

-+- lazy-tq
-E- lazy-lvrt
-0- lazy-evrt

0
0 2 4 6 8 10

Real-Time Delays in Seconds

Figure 7.31 Number of Backups versus Real-Time Delay for Lazy Cancellation for r8

between the messages ranging from 0 to 9 seconds.

The second experiment was used to show that reducing the number of original

input messages and adding a feedback loop to maintain the same total number of

messages into the input nodes also decreases the message queue length and increases

the number of backups. In this experiment, only eight messages are sent into each of the

eight input nodes at various VRTs. If a message arrives at its destination at a virtual

time within 940 time units of the start of the simulation, then it is sent, after a virtual

time delay, back to its originating input node to be resent through the network. This

feedback effect also causes the message queue length to decrease because the average

real-time delay between messages is increased.

The strategies that the experiments used were: static partitioning, fixed-list,

- 163 -

1200

1000-

800-

600-

400-

200--
fixed

-9- lazy-fixed

0 2 4681

Real-Time Delays in Seconds

Figure 7.32 Number of Backups versus Real-Time Delay using

Aggressive or Lazy Cancellation with Fixed-list scheduling for rs

circular-list, longest task queue, lowest LVRT, and lowest EVRT dynamic repartition-

ing. Each experiment compared lazy and aggressive message cancellation, with at least

two trials for each message cancellation policy.

7.8.2.1 Real Time Delay

The experiment is summarized in Figure 7.29, while results of this experiment are

shown in Figure 7.30 with the real time delays in units of seconds. The results for zero

real time delay will correspond to those experiments (no real-time delay) performed in

the previous sections except they do not use the same topology. Figure 7.30 shows the

number of backups for each of the scheduling policies as the real time delay increases. As

the real time delay increases, the number of backups increases. The static partitioning

scheme performed the worst (most backups) followed by the fixed-list, whereas the

EVRT scheme performed the best.

Lazy message cancellation reduced the number of backups dramatically for all the

- 164 -

8

I_-

7

C

p 6 -

+ mien-part
5- 5-- mien-fixed

-- mlen-circ
-'- mlen-tq
-U+ mien-1vrt
-a- mlen-evrt

4 I * I I
0 2 4 6 8 10

Real-Time Delays in Seconds

Figure 7.33 Message Queue Length vs Real-Time Delay for r3

scheduling schemes. In particular lazy message cancellation proved to be more effective

as the real-time delay between messages increased. This effect is shown for the fixed-list

policy in Figure 7.32.

Processing times of the different schemes were recorded. However, the results

are not shown because added real-time delays increased the processing times of the

simulations accordingly.

Figures 7.33 and 7.34 plot the average message queue length M versus real time

delays for the aggressive and lazy message cancellation cases. M in Figures 7.33 -7.36

is defined to be the average over all tasks T of MT, the average message queue length

at T. MT is computed by recording the real time and the input message queue length

every time a new message is added to or removed from the queue. From these data, we

- 165 -

8

6-

-1-mlen1-part
0)5 ---- mlenl-fixed

C- -0-mien]-circ
-- mlenl-tq

-W- mienl-lvrt
-o- mienl-evrt

0 2 4 6 8 10

Real-Time Delays in Seconds

Figure 7.34 Message Queue Length vs Real-Time Delay for Lazy Cancellation r8

can derive the duration of each interval when the input message queue length of any

task is L. Therefore,

L . (Duration of L)

I: Duration of L

The policies are static partitioning (mlen-part, mlenl-part), fixed list (mlen-fixed,

mlenl-fixed), circular list (mlen-circ, mlenl-circ), lowest task queue (mlen-tq, mlenl-tq),

lowest LVRT (mlen-lvrt, mlenl-lvrt), and lowest EVRT (mlen-evrt, mlenl-evrt). As the

time delays increase, the message queue length decreases for each scheduling policy.

The sharpest dropoff in message queue length is between 0 and 1 second of real time

delay.

- 166 -

1200

1000-

U)

D 800-

,* 600
0

E 400-

- part
-- fixed
U circ

200- -- tq
-W lvrt
-a- evrt

0 I * I * I
4 5 6 7

Average Message Queue Length

Figure 7.35 Number of Backups vs Average Message Queue Length for

Aggressive Message Cancellation for r8

Figure 7.35 shows the number of backups for different message queue lengths for

each of the different scheduling policies with their lazy counterparts shown in Figure

7.36. This is another view of the data, plotting backups versus the average message

queue length M, instead of against real-time delays. Figures 7.35 and 7.36 show that

the number of backups increase dramatically as the message queue length approaches

5. For message queue lengths between 6 and 7 the slope of the curve for backups is not

as steep.

One may ask why the message queue lengths are always greater than four, even

when there are real-time delays of up to 9 seconds. If IM is very long, each new message

will cause a flurry of backups and recomputation, which should all die down before the

- 167 -

1000

800-

U)

U
(3 600-
CO

0

_0 400-

E
-B- lazy-part
-- lazy-fixed

200 -- lazy-circ
-9- lazy-tq
+ lazy-1vrt
c-;- lazy-evrt

0 I * I * '

4 5 6 7 8

Average Message Queue Length

Figure 7.36 Number of Backups vs Average Message Queue Length for

Lazy Message cancellation for r8

next input message arrives, leaving all input message queues empty. Thus, if we average

over time, average message queue length should approach 0 as IM approaches infinity,

without any further increase in backups after IM exceeds a critical value. However,

in this example shown in Figure 7.30 it is clear that the number of backups is still

increasing when IM=9; therefore, the critical value of IM has not been reached. Now,

whenever a backup occurs at a task, all of the messages that need to be reprocessed are

replaced on the task's input message queue. Therefore, since the number of backups

is extremely high it is understandable that the average message queue lengths at any

node could be higher than four.

- 168 -

7.8.2.2 Feedback Loop

This experiment used the same eight-input-node network with random partition-

ing, and the same input messages as the previous experiment; however, only eight of

the 50 messages were sent into each of the eight input nodes. If a message arrived at

its destination probe before 940 virtual time units, it was sent, after a virtual loop time

delay, back to the originating input node to be resent through the network.

The feedback effect caused the message queue lengths to decrease because fewer

messages were initially sent to the input nodes. The messages did not return to the

input nodes until the messages traversed the system (via the feedback loop). This

increased the average real-time delay between successive messages. The real-time delay

decreased the message queue lengths in the same manner as discussed in the previous

section.

Figure 7.37 shows the results of this experiment. It plots the number of backups

for each scheduling scheme while using the feedback network. Since each scheduling

scheme was executed twice for each message cancellation policy, two points are plotted

for each scheduling scheme under the aggressive message cancellation policy and two

points for each scheduling scheme under the lazy message cancellation policy. The

number of backups for the aggressive message cancellation ranged from 390-540 which

was many times larger than that of the 50-110 backups of the zero time-delay shown

in 7.30 (in the previous experiment). Lazy message cancellation reduced the number

of backups substantially in all of the scheduling schemes. The average message queue

lengths for each of the scheduling policies varied from 1.05 to 1.2, which is much lower

than the message queue lengths for any other experiment.

7.8.2.3 Horizontal versus Vertical Partitioning

We also compared the message-queue lengths for horizontal partitioning H8 to

those for vertical partitioning V6 in the 16-input-node butterfly network (no feedback).

These results are illustrated in Figures 7.38, and 7.39. The policies are static par-

titioning (mq-part), fixed list (mq-fixed), circular list (mq-circ), longest task queue

- 169 -

C4

part part fixed fixed circ circ tq

M)
U~)

* mien2
mien2-lazy

tq Ivrt lvrt evrt evrt

Scheduling Policy

Figure 7.37 Number of Backups versus Scheduling Schemes for

Feedback-Loop for rs

(mq-tq), lowest LVRT (mq-lvrt), and lowest EVRT (mq-evrt). Note that there is es-

sentially no trend in the message queue lengths as MIT increases. The message queue

lengths in horizontal partitioning tended to be lower than those of vertical partitioning.

Our results showed that horizontal partitioning had less than half the message queue

lengths of vertical partitioning.

7.8.3 Discussion

The goal of this section is to establish that decreasing the message queue length at

each task will also increase the number of backups. Our results confirm this hypothesis.

Our results also show that we can control the average message queue length by altering

- 170 -

1600

500

400

300

200

U)
C

AC
U
(U
m
f 4 -

C
L

-o
E
D
z

100

0

04

-X

-
FP

-X

-K

A /-

rn

8

(D3

-0 75-

U)

a>

: 4-

-a- mq-part
(+ mq-fixed

-.- mq-circ
-9- mq-tq

+ mq-lvrt
-o- mq-evrt

2-
0 100 200

Mean Interarrival Times

Figure 7.38 Average Message Queue Lengths for H8

time delays and by adding a feedback loop.

The message queue lengths in horizontal partitioning tended to be much lower

than those in vertical partitioning. In an earlier section we showed that the horizontal

partitioning method had more backups than that of vertical partitioning. This increase

in backups was caused by the aggressive backup effect and the synchronization effect

in horizontal partitioning. In addition to more backups, we showed that horizontal

partitioning had less than half the message queue lengths of vertical partitioning. This

shows that decreasing the average message queue lengths at each task increases backups.

Our results showed that there is almost no trend in the message queue lengths as

MIT increases. However, the number of backups increases greatly as MIT increases

for horizontal partitioning (see Figure 7.7). We attribute this to the fact that a small

- 171 -

10

9-

0

7

C9

U)

8) -

-E0- mq-part

+- mq-fixed
-a- mq-circ
+> mq-tq

+ mq-lvrt
-a- mq-evrt

5-
0 100 200

Mean Interarrival Times

Figure 7.39 Average Message Queue Lengths for V

decrease in queue length may greatly increase the number of backups. For example, in

Figures 7.38 and 7.39, there is a small initial decrease in the message queue lengths.

This corresponds to a large initial increase in the number of backups in Figure 7.7.

This coincides with Figure 7.35 which shows that a very small message queue length

differential potentially causes a very large change in the number of backups.

Since the experiments r 8 and H 8 are very similar, it is plausible that results shown

for r8 in Figure 7.35 would be very similar if H 8 were used.

It is interesting to note that lazy message cancellation increased the message queue

length for all of the scheduling schemes. By increasing the message queue length, lazy

message cancellation in turn reduced the number of backups.

- 172 -

7.8.3.1 Application to Other Simulations

Message queue lengths and backups have an interesting relationship. We have

shown quantitatively and qualitatively that shorter message queue lengths can cause

more backups. On the other hand more backups tend to increase the message queue

lengths; because when tasks back up, those messages that have already been processed

and have greater virtual time than the preempting message are placed back on the

input message queue of the task. Therefore, if the average message queue length is

small, then the simulation will have many backups. This large number of backups will

increase the message queue length, which in turns decreases the backups later in the

simulation. Therefore, for each simulation there is an equilibrium point that is reached

where the average message queue length remains constant. This equilibrium effect

explains why the message queue lengths of Figure 7.38 is relatively flat for different

MITs.

If this generalization is true, one may ask why horizontal partitioning has much

lower message queue lengths than vertical partitioning shown in Figures 7.38, and 7.39.

Let us try to determine why this is true. In horizontal partitioning with dynamic

scheduling, processors traverse the network from higher precedence classes to lower

precedence classes along with the messages they process. Therefore, messages are more

likely to queue up at the input nodes (where backups do not occur) than at other nodes.

However, in vertical partitioning (using dynamic scheduling), processors prefer to

process input nodes before processing other nodes because all the processors are initially

assigned to the input partition and there is an abundance of work in the input partition.

Even if messages become available in other stages, the processors will prefer to continue

processing nodes in the input partition because a processor moves only if there is no

work in its partition. Therefore, messages will queue up at nodes other than input

nodes. This explains why only non-input nodes should have smaller message queues

in horizontal partitioning. However, the message queue length at non-input nodes is

the important parameter because backups only occur at non-input nodes and we are

- 173 -

7

5

41

3

2

0G- V6-lvrt

1 -- H8-lvrt

0~
0 100 200

Mean Interarrival Times

Figure 7.40 Average Message Queue Lengths for H8 and V6

for Non-Input Nodes only

interested in the relationship between backups and message queue lengths. Figure 7.40

shows the average message queue length for H 8 (Hs-lvrt) and V6 (V 6-lvrt) at the non-

input nodes for the LVRT scheme. This confirms that horizontal partitioning has lower

message queue lengths than vertical partitioning at the non-input nodes.

The effects of varying real-time delays and virtual-time delays are analogous. Re-

call the generalizations made under virtual-time delays in Section 7.5.3.3:

1. When ND is high compared to MIT, there is implicit vertical partitioning because

the processors tend to process the messages in the input partition first.

2. When ND is low compared to MIT, more backups occur than when ND is high

because processors find input nodes less attractive to process.

Compare this to what happens under real-time delays:

1. When PT is high compared to IM and ND > 0, there is implicit vertical partitioning

due to ND, and high PT will ensure non-empty message queues at the input nodes.

- 174 -

This will allow for processing of messages at the input nodes first which is good.

2. When PT is low compared to IM, more backups occur than when PT is high

because processors are forced to process nodes other than the input nodes due to

their empty message queues.

The three sources of backups are:

1. Real or Virtual Time delays (discussed immediately above),

2. Race Conditions, and

3. Partition Saturation (to be discussed in Section 7.10.4).

We give an example of where race conditions cause backup when real-time delays

and virtual time delays are not significant (i.e., ND=10,000 and T > 1). For example

in V6 , suppose that two tasks a1 and a2 in the input partition pi have messages mi

and m 2 respectively, (somewhere on their input queues) destined to some task T in the

partition P2 as shown in Figure 7.41. Let's say due to the abundance of processors,

tasks a 1 , a2 , and T all have processors processing them. Suppose that:

1. m 2 's VRT < m 1 's VRT,

2. mi gets processed at a1 and is sent to T,

3. mi is finished processing at T before m 2 is finished processing at a2.

Then backup will occur at T, due to race conditions.

In this section we are only concerned about the first cause of backups. In order to

simplify our analysis, for the rest of this section we look at network simulations with

static partitioning and only one processor per partition. By restricting one processor

per partition while using static partitioning, we can assure that each partition will only

have one processor for the duration of the experiment. Partition saturation does not

occur when there is only one processor per partition. Some race conditions, such as the

one shown above, can be avoided by restricting one processor per partition. On the

other hand, some race conditions, such as the aggressive backup effect, will still occur.

We examine the effect of varying real-time delays when virtual-time delays are not

significant (i.e., ND=10,000). Similarly, we examine the effect of varying virtual-time

- 175 -

Partition p 1 Partition p2

- task named tI

UI t2 - task ul sends a message
e to task t2

Figure 7.41 Example of a Race condition with no real or virtual-time delays

delays when real-time delays are not significant (i.e., I < 1). A summary of these

effects are shown is Figure 7.42. In this figure real-time delays are abbreviated "RTD"

whereas virtual-time delays are abbreviated "VTD". The column under the low virtual-

time delays is supported by the results performed on our four-node network model of

Section 7.2. Since it is very difficult to vary real-time delays on Concert (due to its

inherent delays), we performed these experiments on our four-node network model on

- 176 -

Static Partitioning with 1 processor per Partitioni

Low VTD, High ND vs MIT Low RTD, High PT vs IM
ND=10,000, MIT=5 PT=1, IM=O
Justified by Expt. Justified by Expt. run

Partitioning run on Our 4-node Model on Concert

Method
Low RTD High RTD Low VTD High VTD
High PT vs IM Low PT vs IM High ND vs MIT Low ND vs MIT

Vertical Prevents Many Backups Prevents Prevents
Partitioning Backups Regardless Backups Backups

of VTD Vertical Part
is Immune
to VTD

Horizontal Forces Many Backups Forces Many Backups
Partitioning Vertical Part Vertical Part

Prevents H 8 had
Backups no Backups

H 6had 0 or 1
Backup

Figure 7.42 Real and Virtual Time Delay effects for different Partitioning Methods

a Symbolics Lisp Machine keeping track of real time in software. These results (for

ND=10000) are displayed in Figure 7.43. The right hand column under the low real-

time delays is supported by additional experiments run on Concert with varying ND

and MIT which are shown in Figure 7.44. Note that the experiment for low VTD

and low RTD (for both vertical and horizontal partitioning) appears to be the same

experiment. However, one experiment is done on Concert whereas the other experiment

is done on a Lisp Machine.

Using our model, the graph showing the number of backups for vertical partitioning

as the real-time delays increased remained the same for different levels of virtual-time

delays (ND=O, 10, 100, 1000, 10000). This is shown in Figure 7.45. This is consistent

with our theory that virtual-time delays do not affect vertical partitioning. On the

other hand, the graph for horizontal partitioning remained the same only for small

- 177 -

30

(D

20-

10
E
ZI

-E- horz, ND= 10000
+ vert, ND= 10000

0 -
0 10 20 30 40 50 60

Real-time Delays

Figure 7.43 Real-Time Delay Effects with PT=10 with varying IM,

with insignificant Virtual-Time Delays (ND=10000)

virtual-time delays (ND > 100). This is shown in Figure 7.46. We also examine the

real-time delays effects when virtual-time delays are high (ND=0). This is shown in

Figure 7.47.

The analogy between real-time delays and virtual-time delays is not completely

symmetrical. One difference is that virtual-time delays do not affect vertical partition-

ing. On the other hand, real-time delays always affect horizontal or vertical partitioning

and virtual-time delays always affect horizontal partitioning. For example, when PT is

low enough, real-time delays can cause backups in vertical partitioning no matter what

the virtual-time delays.

Another difference is that the result of reducing real-time delay is not analogous to

- 178 -

800

600-

400

0--- V6, ND=0
H8, ND=0

E -- H16, ND=0
3 200- V6,ND=10000

-U- H8,ND=10000
---- H16,ND=10000

0-
0 50 100 150 200

Mean Interarrival Times

Figure 7.44 Backups for V, H, and H1 6 for

ND=0 and 10000, with low Real Time Delays,

Note that the plots for H8 with ND=10000 and V6 are level at zero

that of reducing virtual-time delay. With high real-time delays, reducing virtual-time

delays does nothing to reduce backups. On the other hand, when virtual-time delays

are high (ND=0 and 10), reducing real-time delays can eliminate backups from vertical

partitioning but not from horizontal partitioning. This is shown in Figures 7.47 and

7.46.

Eliminating real-time delays is not sufficient to eliminate backups in horizontal

partitioning. This is because backups caused by inter-partition messages will still occur

in horizontal partitioning when there are virtual-time delays (ND < 10). Although

- 179 -

30

D 20

.Q
E 10 - - vert, ND=0

+ vert, ND= 10
- vert, ND= 100

+ vert, ND= 1000
-+ vert, ND= 10000

0I
0 10 20 30 40 50 60

Real-time Delays

Figure 7.45 Real-Time Delay Effects, Comparing Vertical Partitioning

with various Virtual-Time Delays (ND=0, 10, 100, 1000, 10000)

Note that all of the plots for V6 are the same regardless of ND

by raising PT, one can assure there will be messages in all the input nodes when a

processor is deciding which message to process, one cannot guarantee, just by raising

PT or lowering IM, that the input node(s) will be processed before all output nodes.

On the other hand, by reducing virtual-time delays (ND > 100), one can force the

simulation to process all messages in the lower precedence classes before processing

these inter-partition messages, thus preventing most backups (in the absence of real-

time delays). This is because in horizontal partitioning the virtual-time delays govern

how attractive messages at input nodes are to processors.

In general real-time delays can be present in any simulation system. Real-time

- 180 -

30

20-

..Q-0

E 10 - + horz, ND=0
+ horz, ND= 10
Z- horz, ND= 100
-- horz, ND= 1000

-+ horz, ND= 10000

0 10 20 30 40 50 60

Real-time Delays

Figure 7.46 Real-Time Delay Effects, Comparing Horizontal Partitioning

with various Virtual-Time Delays (ND=O, 10, 100, 1000, 10000)

Note that all the plots for ND=100, 1000 and 10000 are the same

delays between messages can be caused by three different phenomena:

1. Initial real-time delay between successive input messages. This occurs when the

simulation depends on input messages that are results of other computations and

these results slowly trickle out.

2. The hardware of the multi-processor used for the simulation. The actual real time

a processor spends to processes a message for a particular task causes an implicit

real-time delay between successive messages.

3. Feedback.

- 181 -

30

20-

0

E 1 0.

0- horz, ND=0
+ vert, ND=0

0 -
0 10 20 30 40 50 60

Real-time Delays

Figure 7.47 Real-Time Delay Effects with PT=10 with varying IM,

with significant Virtual-Time Delays (ND=O)

The results suggest that as many of the input messages as are known should be

placed into the system at initialization. This will reduce the real-time delays between

successive messages at the beginning of the simulation. This can be done in the first

problem area if we do the other computations first before starting our simulation;

therefore, all of the input messages will be available when the simulation begins, thus

eliminating initial real-time delays.

- 182 -

1000

800-

600-

400-

+ part
-A+ fixed

200- +- circ
+ tq
+ ivrt
-a- evrt

0-
0 100 200

Mean Interarrival Times

Figure 7.48 Number of Backups versus MIT for R8 c

- 183 -

700

600

500

400

300

200
0 100

Mean Interarrival Times

Figure 7.49 Processing Time versus MIT for R8c

- 184 -

U)

0

m

(D

U

C-

-a-

-0-

part
f xed
circ
tq
lvrt
evrt

200

Random Partitioning with 8 Partitions

Initial Processor Allocation

Effects of Increasing MIT
on # of Backups

Scheme Ordering Based on
of Backups
(ordering from worst to best)

Lazy Message Cancellation's
Effects on # of Backups

(444 4 44 4 4)

of Backups increases for all schemes except
for EVRT where it decreases

1)Fixed-list
2) TQ
3) Partitioning, Circular-list, and LVRT
4) EVRT

Reduced dramatically for all schemes

Effect of Increasing MIT
on Processing Time

Scheme Ordering Based on
Processing Time
(ordering from worst to best)

Lazy Message Cancellation's
Effects on Processina Times

Figure 7.50

Processing time increases for all schemes except
for EVRT where it decreases

1) Fixed-list
2) EVRT
3) Partitioning, Circular-list and TQ
4) LVRT

No improvement

Summary of Random Partitioning III with 8 Partitions

- 185 -

0 100

Mean Interarrival Times

-5- fixed
-0- lazy-fixed

200

Figure 7.51 Number of Backups versus MIT for Rsc using

Aggressive or Lazy Cancellation with Fixed-list scheduling

- 186 -

1000-

900

800

700

600

C-

E
Z

500

400

700

600-

1& 500-

o 400-

E 300

- part
+ fixed

200
-- circ
+ t

-U- ivrt
-n- evrt

100-
0 100 200

Mean Interarrival Times

Figure 7.52 Number of Backups versus MIT for Ri6b

7.9. Random Partitioning

7.9.1 8-Partition Case

The experiment was done with three different ways of randomly partitioning the

16-input-node butterfly network into eight partitions. The partition schemes are shown

in the Appendix. Each partition was initially allocated four processors each since it was

unclear what allocation would be optimal. The results of one experiment (using the

R 8 c partitioning - see Section 5.5.2) is shown in Figures 7.48, and 7.49; the results

of the others are similar. Figure 7.48 shows the number of backups for each of the

scheduling policies as the MIT increases. Figure 7.49 displays the processing times for

each of the schemes as the MIT increases.

- 187-

900

D 800

700-

E 600

500-

-E- part
+- fixed

400 . - circ
-+ tq
-+ lvrt
-a- evrt

300
0V100 200

Mean Interarrival Times

Figure 7.53 Processing Time versus MIT for Rieb

The EVRT scheme caused the fewest backups while the fixed-list scheme had

the most. The LVRT scheme caused the lowest processing times whereas the fixed-

list scheme had the longest processing times. Also, except for the EVRT scheme,

all schemes performed worse in terms of backups and processing time as the MITs

increased. However, the EVRT scheme maintained its performance even through in-

creases in MITs. This is very similar to the horizontal partitioning case. The results

of the R8 c experiment are summarized in Figure 7.50.

Lazy message cancellation was almost always better than aggressive message can-

cellation in reducing the number of backups in random partitioning for all of the

scheduling schemes. This effect is shown for the fixed-list strategy in Figure 7.51.

- 188 -

Random Partitioning with 16 Partitions

Initial Processor Allocation

Effects of Increasing MIT
on # of Backups

Scheme Ordering Based on
of Backups
(ordering from worst to best)

Lazy Message Cancellation's
Effects on # of Backups

(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)

of Backups increases for all schemes except
for EVRT where it decreases

1) Partitioning and Fixed-list
2) Circular-list, TO, and LVRT
3) EVRT

Reduced dramatically for all schemes

Effects of Increasing MIT
on Processing Time

Scheme Ordering Based on
Processing Time
(ordering from worst to best)

Lazy Message Cancellation's
Effects on Processina Time

Processing time increases for all schemes except
for EVRT where it decreases

1) Fixed-list
2) Circular-list and TO
3) Partitioning and EVRT
4) LVRT

No effect

Figure 7.54 Summary of Random Partitioning II with 16 Partitions

7.9.2 16-Partition Case

This experiment was done with three different ways of randomly partitioning the

16-input-node butterfly network into 16 partitions. The partition schemes are shown

in the Appendix. Each partition was allocated two processors. The result of one

experiment (using the Ri6b partitioning - see Section 5.5.2) is shown in Figures 7.52,

and 7.53; the results of the others are similar. Figure 7.52 shows the number of

backups for each of the scheduling schemes as the MIT increases. Figure 7.53 displays

the processing times for each of the schemes as the MIT increases.

Once again we have facts that are similar to the horizontal partitioning experi-

- 189 -

700-

600

500

400-

300-
-- fixed
-4- lazy-fixed

200
100 200

Mean Interarrival Times

Figure 7.55 Number of Backups versus MIT for Rieb using

Aggressive or Lazy Cancellation with Fixed-list scheduling

ments. The EVRT scheme performed the best in terms of backups while the LVRT

scheme performed the best in terms of processing time. Again, as the MITs increased,

the EVRT scheme maintained its performance, while the other schemes that performed

worse in terms of backups and processing time. The results of the Ri6b experiment are

summarized in Figure 7.54.

As in the eight-partition case, lazy message cancellation was almost always better

than aggressive message cancellation in reducing the number of backups in random

partitioning for all of the scheduling schemes. This effect is shown in Figure 7.55.

7.9.3 Discussion

The random partitioning method suffers from approximately the same effects as

horizontal partitioning. Summarizing the results:

1. The fixed-list scheme performed poorly

2. The EVRT scheme had the fewest backups

- 190 -

8

7-

6-

a>

(D -M- part
oo -&- f ixed

-4- circ

+ Ivrt
--- evrt

0 100 200

Mean Interarrival Times

Figure 7.56 Average Message Queue Lengths for R 8 c

3. The LVRT scheme had the lowest processing times

4. Random partitioning performed poorly

5. Lazy message cancellation improved performance.

In comparing the number of backups and processing times of the random parti-

tioning method to the vertical partitioning, the random partitioning method suffers

from more backups and longer processing times. This is due to the aggressive backup

effect. EVRT is the best at alleviating this effect as was mentioned in Section 7.5.3

and as confirmed by our results.

Like horizontal partitioning, the random partitioning method also fared poorly

with increasing MITs. Again, the EVRT scheme performed the best in terms of fewest

backups and maintained or lowered the amount of processing time as the MIT increased.

- 191 -

As in horizontal partitioning, the message queue lengths tended to be much lower

than those in experiments from vertical partitioning. This is shown in Figures 7.38,

7.39, and 7.56. Thus the number of backups for the random partitioning method

should be greater than for vertical partitioning, where the message queues are longer.

Again, lazy message cancellation also improved performance in all of the scheduling

policies because it helped to reduce the aggressive backup effect. This improvement

was also shown in Section 7.8 where random partitioning was used on an 8-input-node

butterfly network.

Minimum Communication Partitioning with 8 Partitions

Initial Processor Allocation

Effects of Increasing MIT
on # of Backups

Scheme Ordering Based on
of Backups
(ordering from worst to best)

Lazy Message Cancellation's
Effects on # of Backups

(8 8 8 8 0 0 0 0) (except static)
(4 4 4 4 4 4 4 4) (static)

of Backups increases in all schemes except
for EVRT where it remains constant

1) EVRT
2) Fixed-list, Circular-list, TO and LVRT
3) Partitioning

None

Effects of Increasing MIT
on Processing Time

Scheme Ordering Based on
Processing Time
(ordering from worst to best)

Processing Time remained constant

1) EVRT
2) Circular-list
3) Partitioning, Fixed-list, TO and LVRT

Lazy Message Cancellation's None
Effects on Processing Time

Figure 7.57 Summary of Minimum Communication Partitioning with 8 Partitions

- 192 -

Minumum Communication Partitioning with 12 Partitions

Initial Processor Allocation

Effects of Increasing MIT
on # of Backups

Scheme Ordering Based on
#of Backups
(ordering from worst to best)

Lazy Message Cancellation's
Effects on # of Backups

(4 4 4 4 4 4 4 4 0 0 0 0) (except static)
(333333332222) (static)

of Backups increases in all schemes except
for EVRT where it remains constant

1) EVRT
2) Fixed-list, Circular-list, TQ and LVRT
3) Partitioning

None

Effects of Increasing MIT
on Processing Time

Scheme Ordering Based on
Processing Time
(ordering from worst to best)

None

1) Circular-list and EVRT
2) Partitioning
3) Fixed-list, TQ and LVRT

Lazy Message Cancellation's None
Effects on Processing Time

Figure 7.58 Summary of Minimum Communication Partitioning with 12 Partitions

- 193 -

Minumum Communication Partitioning with 24 Partitions

Initial Processor Allocation

Effects of Increasing MIT
on # of Backups

Scheme Ordering Based on
of Backups
(ordering from worst to best)

Lazy Message Cancellation's
Effects on # of Backups

(4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)(except static)
(2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)(static)

of Backups increases in all schemes except
for EVRT and static partitioning where it remains constant

1) EVRT
2) LVRT
3) Circular-list
4) Fixed-list and TQ
5) Partitioning

None

Effects of Increasing MIT
on Processing Time

Scheme Ordering Based on
Processing Time
(ordering from worst to best)

Processing time of Circular-list, TO, and EVRT
decreases

1) Circular-list
2) EVRT
3) TO
4) Fixed-list and LVRT
5) Partitioning

Lazy Message Cancellation's None
Effects on Processing Time

Figure 7.59 Summary of Minimum Communication Partitioning with 24 Partitions

- 194 -

7.10. Minimum Communications Partitioning

7.10.1 Results

Here we discuss the results of the 16-input-node butterfly network with minimum

communications partitioning with MIT between 5 and 180 and with ND equal to 10.

The partitioning methods for MC8 , MC12 , and MC24 are shown in Figures 5.8, 5.9,

and 5.10, respectively. The initial processor assignments for the dynamic scheduling

policies divided the processors equally between the input partitions. This assignment

was chosen because the input partitions had all the work at the start of the simulation;

this was an optimal processor assignment.

150

(n,

U
M'

z

100

50

0
0 100

Mean Interarrival Times

Figure 7.60 Number of Backups versus MIT for MC8

-0D- part
4- fixed
U- circ
- tq
u lvrt
a- evrt

200

- 195 -

120

100-

80-

60

-G- part
-e- fixed

40- circ
-.- tq

+ lvrt
- evrt

20
0 100 200

Mean Interarrival Times

Figure 7.61 Number of Backups versus MIT for MC 12

In the static partitioning case for MC 8 , each partition started with four processors;

this was not optimal, but since each partition had about the same amount of work it

was close to optimal given that processors do not move. In the static partitioning

case for MC 12 , the first eight partitions started with three processors and the last four

started with two processors; this was not optimal, but since the first eight partitions

had to start up and send messages first they were given the extra processors. In the

static partitioning case for MC24 , the first eight partitions started with two processors

and the last sixteen partitions started with one processor; this was not optimal, but

since each partition had about the same amount of work it was close to optimal given

that processors do not move.

These experiments on MC8 , MC 12 , and MC24 are summarized in Figures 7.57,

- 196 -

200

100-

G-

E
-i part
+ fixed

-o- circ
+ tq

-- lvrt
-- evrt

0
0 100 200

Mean Interarrival Times

Figure 7.62 Number of Backups versus MIT for MC 24

7.58 and 7.59, respectively. The number of backups for each minimum-communication

partitioning method is plotted in Figures 7.60, 7.61 and 7.62, respectively. These

graphs show the number of backups for each scheduling scheme as the MIT increases.

As the MIT increases, the number of backups increases in all of the scheduling schemes

except in the static partitioning scheme in MC24 and the EVRT scheme (in all the par-

titioning methods) where the numbers remain constant. The static partitioning scheme

has the fewest backups while the EVRT has the most. Lazy message cancellation had

no effect on the number of backups, as shown in Figures 7.63, 7.64 and 7.65.

Figures 7.66, 7.67 and 7.68 show the processing times of the different scheduling

schemes as the MIT increases. Increasing the MITs does not affect the processing times.

In MC8 , the LVRT and the static partitioning schemes had the lowest processing times

- 197 -

140-

120-

100-

80

00

.Q

E
40 - -U- lazy-part

+ lazy-fixed
l lazy-circ

20 --- lazy-tq
-E- lazy-lvrt
-o- lazy-evrt

0
0 100 200

Mean Interarrival Times

Figure 7.63 Number of Backups versus MIT for Lazy Cancellation for MC 8

- 198 -

120

80-

60-

--. 0- lazy-part
E + lazy-fixed

S40 - + lazy-circ
-.- lazy-tq

+lazy-Ivrt
-a- lazy-evrt

20 -

0 100 200

Mean Interarrival Times

Figure 7.64 Number of Backups versus MIT for Lazy Cancellation for MC 12

- 199 -

140-

120-

10-

60

E
60-

40
-m- lazy-part
-- lazy-fixed
-U- lazy-circ

20- ---- lazy-tq
--- lazy-lvrt
-0- lazy-evrt

0
0 100 200

Mean Interarrival Times

Figure 7.65 Number of Backups versus MIT for Lazy Cancellation for MC 24

- 200 -

500

400-

E

- 300-

- - -E- part
CD+ fixed

+A- circ
-a- tq
-+ lvrt
-0- evrt

200
0 100 200

Mean Interarrival Times

Figure 7.66 Processing Time versus MIT for MC8

- 201 -

500-

_0C

400

300-

CL) -+ part
(.~) + fixed
0 -a+ circ

+U lvrt
-e evrt

200-

0 100 200

Mean Interarrival Times

Figure 7.67 Processing Time versus MIT for MC1 2

- 202 -

0 100

Mean Interarrival Times

Figure 7.68 Processing Time versus MIT for MC 24

- 203 -

900

800

700

600

500

400

300

200

U)

U)

E

-

0

U)
en

U
0

C0

0- part
+ fixed

circ
tq

Ivrt
-.- evrt

200

while the EVRT scheme had the highest. In MC 12 , the LVRT and fixed-list schemes

had the lowest processing times while the EVRT and circular-list schemes had the

highest. In MC2 4 , the static partitioning scheme had the lowest processing times while

the circular-list scheme had the highest. In all cases, lazy message cancellation did not

change the performance of any scheme.

7.10.2 Partition Saturation

Figures 7.60, 7.61 and 7.62 show that static partitioning has fewer backups than

all of the dynamic scheduling schemes. In this section we provide an explanation

for this phenomenon. It is caused by an overabundance of processors in a partition

called partition saturation which in turn causes additional backups. This does not

usually occur in static partitioning since partitions are given a small constant number

of processors. On the other hand, in dynamic scheduling schemes, clustering of many

processors in a single partition is common.

7.10.2.1 Theory

When a partition has too many processors, backup will occur due to partition

saturation. This phenomenon happens regularly when we use dynamic repartitioning

strategies, i.e. the fixed-list, circular-list, longest task-queue, lowest LVRT, or lowest

EVRT strategies. Let us return to the model of Section 7.2 along with its assumptions,

except let us assume that the four tasks t1, t2, u1 , and u 2 in our model are in one

partition. If we assign only one processor to the partition, then no backup will occur;

however, as we increase processors in the partition, more backups will occur.

Let us take a look at the model when three processors, A, B, and C, are assigned

to the partition and ND=O. Let the input messages to t1 be ((5,u 2)(10,u 2)) and the

messages into ui be ((1,u 2)(2,u 2)), as shown in Figure 7.69. At first one processor is

assigned to each of ti and u1 (let us say that processor A is assigned to ti and processor

B is assigned to ui), while the third processor remains suspended because there is no

work to do. Once one of processors A or B finishes executing a task, there will be

- 204 -

Messages

((5, u2) (10, u2)) 12

((1, u2) (2, u2)) U1 u2

(20, t2) - A message with VRT=20 and destination task t2

((20, t2) (30, t2)) - An input message queue with two messages

Partition Saturation Example

Figure 7.69 Example of the Partition Saturation Effect

a message at task u 2 and the third processor, C, will become active. If processor B

finishes first, then there will be no problem since processor C will process (1,u 2) at u2

while processor B processes (2,u 2) at u1 . On the other hand, if processor A finishes

first, then a backup will occur because processor A will process (10,u 2) at t1 while

processor C will process (5,U 2) at u 2. Once processor B finishes processing the message

(1,U2) at u1, task u2 will be forced to back up.

This problem only becomes worse as we increase the number of processors to four.

In this case, there is one processor for each task. Hence, there is no attention paid to

the VRTs of messages when scheduling tasks. Additional backups can occur even with

only two processors in the partition if the nodal delay is small in relation to the MIT. In

our example with ND=O, assigning two processors to the partition can cause backups,

- 205 -

while if the ND=6, then no backup will ever occur with two processors. This is another

example of virtual-time delay effects (discussed in Section 7.5); however, in this case

the virtual-time delays aggravate the partition saturation effect. Therefore partition

saturation - assigning too many processors to one partition - can lead to additional

backups.

7.10.2.2 Experiments

The partition saturation effect was studied on the minimum communications par-

titioning method by varying the number of processors in one partition. Since partition

saturation only occurred when there was an abundance of processors in a partition,

it was necessary to determine if many processors did cluster at a single partition. A

series of experiments tested whether many processors did cluster at a single partition

by tracing the number of processors per partition at different points in time.

This section describes experiments that confirm our theories of partition satura-

tion. When a partition has a large ratio of processors to tasks, the rate of backups will

increase due to partition saturation. The number of backups grows rapidly as the num-

ber of processors approaches the number of tasks in the partition. We are interested in

studying this phenomenon because in experiments involving minimum communications

partitioning, the number of backups for dynamic scheduling schemes was at least 10%

more than that of the static scheduling schemes. We attribute this phenomenon to

partition saturation.

In order to show that this is true we need to show:

1. As the number of processors approaches the number of tasks in a partition, the

number of backups grows quickly.

2. In the dynamic scheduling schemes, processors are not evenly distributed amongst

partitions. This is due to processor movement between partitions.

We performed two experiments to test our theories. We used the MCs partitioning

method illustrated in Figure 5.8. Each partition had twelve tasks. We wanted to test

the effects on one partition as we increased the number of processors from one to twelve.

- 206 -

Since we did not want the number of processors in the test partition to change, we used

the static partitioning scheme. We allocated four processors to each of the four input

partitions and one processor to three of the output partitions. In this manner the four

input partitions ran exactly as they would in the static partitioning scheme with four

processors in each partition.

100

U)

0

-
E

zE

80

60-

40-

20-

-20
0 2 4 6 8 10 12 14

Number of Processors in Partition 8

part 1 -5
part2-5
part3-5
part4-5
part5-5
part6-5
part7-5
part8-5

Figure 7.70 Number of Backups in each Partition while

varying processors from 1 to 12 and MIT=5

In one of the output partitions we varied the number of processors from one to

twelve. The number of backups for each partition as we vary the processors in par-

tition eight are displayed in Figure 7.70. This experiment was done with MIT=5; in

the diagram, the caption "partN-5" represents partition N's backups with MIT=5 as

- 207 -

1 00

m 80-

U 60-

o 40. -E--- part 1 -180
* part2-180

-U--- part3-180

S20 --- part4-180
--- part5-180

part6-180
-A- part7-180

0- a part8-180

-20
0 2 4 6 8 10 12 14

Number of Processors in Partition 8

Figure 7.71 Number of Backups in each Partition while

varying processors from 1 to 12 and MIT=180

we increase processors from 1 to 12. The figure shows that the number of backups

increases rapidly when the number of processors in the partition is between 5 and 10.

For the range of 11-12 processors the number of backups levels off. Illustrating that

this attribute is not MIT-dependent, Figure 7.71 shows the same experiment with

MIT=180. Notice there is little change in the results.

The second experiment was used to determine the clustering of processors in par-

titions for the dynamic scheduling schemes. In other words we wanted to show that it

was uncommon for processors to be approximately evenly distributed among partitions.

To show clustering of processors, we performed a trace of the number of processors in

- 208 -

20

-El--- part 1
* part2

10 -- part3
-0 part4

- part5
U) part6

A- part7
A- part8

0 100 200 300

Real Time in Seconds

Figure 7.72 Number of Processors in each Partition in MC8

using the Fixed-list scheme, with ND=10 and MIT=5

each partition at each instant of time, which is shown in Figure 7.72 for dynamic

scheduling schemes only. This processor trace showed that the number of processors

in each partition is usually nowhere near the average of four. This clustering would

clearly trigger the partition saturation effect shown in Figures 7.70 and 7.71, leading

to an increase in backups for dynamic scheduling schemes.

We now explain how partition saturation occurs in the dynamic schemes. Let us

examine how partition saturation affects the MC8 case. Partition saturation occurs

whenever there is an overabundance of processors in a partition. When using dynamic

scheduling schemes, partition saturation occurs at the start of the simulation in the four

input partitions (those containing the input nodes) and at the end of the simulation in

- 209 -

the four output partitions (those containing the output nodes).

When the simulation starts up in the MCs case, there are eight processors assigned

to the four input partitions. On the other hand, each partition contains only eight active

tasks (four are drivers); therefore, the eight processors would be an overabundance of

processors. This is a clear case of partition saturation. Even if all eight processors were

not initially assigned to the four input partitions, they would immediately migrate

there because those are the only partitions that have work.

When the simulation is in its later stages, all 32 processors will reside in the four

output partitions, because the input partitions have finished all their work by then.

This is an average of eight processors in each partition. However, each output partition

contains only 12 tasks which means once again there is an overabundance of processors.

Excluding the early and later stages of the simulation, there are many times when

partitions contain eight or more processors. This actually occurs in all dynamic schedul-

ing schemes and is shown in 7.72. This bunching up of the processors causes more

backups due to the partition saturation effect. Given the initial processor assignments

that were used for the different partitioning methods, dynamic scheduling schemes will

have more backups than static scheduling schemes due to their higher susceptibility to

partition saturation.

Partition saturation affects MC12 and MC24 in the same way as MC8 , since both

partitioning methods have input and output partitions that have tasks in multiple

precedence classes. One difference is that in MC 12 and MC24 the partitions generally

contain fewer tasks; therefore, partition saturation will occur at a partition with fewer

processors.

The static scheduling scheme was executed with an initial processor allocation

of 4 or fewer processors per partition. Since processors do not relocate in the static

partitioning scheme, static partitioning always operated with 4 or fewer processors in

Figures 7.70 and 7.71. This meant that very few backups would occur. This explains

why static partitioning generally performed 10% better than the dynamic scheduling

- 210 -

schemes.

7.10.3 Discussion

The experimental results showed the following effects on the minimum communi-

cations partitioning method:

1. The Synchronization Effect

2. The Partition Saturation Effect

3. The Virtual-Time Delay Effect

4. The Message Queue Length Effect

Summarizing the results:

9-

3 7-

6-

-0- mq-part
-- mq-fixed
-0- mg-cIrc
-0- mg-tg

5 - -W m -lvrt
--2- mq-evrt

4
0 100 200

Mean Interarrival Times

Figure 7.73 Average Message Queue Lengths for MC 8

- 211 -

1. The EVRT scheme had the most backups while the static partitioning scheme had

the fewest

2. The EVRT scheme had high, if not the highest processing times, while static

partitioning had low, if not the lowest processing times

3. Minimum communication partitioning clearly outperformed horizontal and ran-

dom partitioning in the number of backups (illustrated in Figures 7.60, 7.61,

7.62, 7.7, 7.9, 7.48, and 7.52) and in processing times (illustrated in Figures

7.66, 7.67, 7.68, 7.8, 7.10, 7.49, and 7.53). It performed about the same as

vertical partitioning in the number of backups (illustrated in Figure 7.12) and in

processing times (illustrated in Figure 7.13).

4. Increasing virtual-time delays degraded performance, except for the EVRT scheme

and the static partitioning scheme for MC24 .

5. Message queue lengths were much higher than those of horizontal or random parti-

tioning experiments (illustrated in Figures 7.38, 7.56, 7.73), but were about the

same as those of vertical partitioning experiments (illustrated in Figures 7.39).

6. Lazy message cancellation had no effect.

The six previous statements proved to be true of all of the Minimum Communica-

tions partitioning methods. Each partitioning method suffered from partition satura-

tion which was aggravated by increases in virtual-time delays (excluding the exceptions

indicated in item 4). One exception was that the static partitioning scheme for MC24

did not seem susceptible to virtual-time delays. This was probably because most of

the partitions had only one processor. Partition saturation does not occur when there

is only one processor in a partition; therefore, the number of backups was not affected

by virtual-time delays.

Note that the trend of each scheduling scheme is clearer as the number of partitions

increases. In other words, the trend is clearer in MC12 than in MC8 , while the trend is

much clearer in MC24 than either MC12 or MC8 . This also was the case in horizontal

partitioning as seen in Section 7.5.2.

- 212 -

Minimum communication partitioning's good performance, as well as static parti-

tioning's outperformance of the optimized dynamic strategies, lead us to believe that

minimum communication partitioning is one of the better forms of partitioning for the

network simulation.

The EVRT scheme did not perform well because it does not benefit from the

synchronization effect. Since the EVRT scheme does not synchronize the tasks within

the partition in terms of LVRT, more backups result.

As in vertical partitioning, we also attribute the good performance of minimum

communication partitioning to the lack of an aggressive backup effect. Lazy message

cancellation had no effect since the aggressive backup effect was not present.

The message queue lengths in the minimum communications partitioning exper-

iments were much higher than those of the horizontal or random partitioning experi-

ments, but were about the same as vertical partitioning experiments. This is shown in

Figure 7.73. This correlated to fewer backups, illustrating the relationship of backups

to message queue length.

As shown in the example of Figure 7.69, the partition saturation effect is com-

pounded by virtual-time delays (low ND in comparison to MIT). In this example back-

ups due to partition saturation occurred when ND=O, but were absent when ND=6.

Therefore minimum-communications partitioning is susceptible to virtual-time delays.

This last fact is confirmed by examining Figure 7.71 where the input partitions (1-4)

had slightly more backups in the MIT=180 case than in the MIT=5 case.

Susceptibility to virtual-time delays explains why all the scheduling schemes

showed a slight increase in backups due to increasing MIT. The minimum communica-

tions partitioning method fared poorly due to virtual time delays (increasing MITs).

As the MITs increased from 5 to 180 virtual-time units, each scheduling scheme except

EVRT had more backups. This is illustrated in Figures 7.60, 7.61, and 7.62. Once

again the EVRT scheme was not affected by increasing MITs.

In our experiments involving minimum-communication partitioning, the dynamic

- 213 -

scheduling schemes had at least 10% more backups than the static scheduling schemes.

We attribute this phenomenon to partition saturation which rarely occurs in static

partitioning, but does occur in dynamic scheduling.

In our experiments, partition saturation rarely occurs in static partitioning because

each partition always has less than one third as many processors as tasks. This is

confirmed by Figure 7.70 which shows that in MC with any scheduling scheme, when

the number of processors is less than five, partition saturation is rare. When the number

of processors is less than five, partition saturation only occurs when ND is small relative

to MIT (compare 7.70 and 7.71). We expect similar results for MC 12 and MC24 when

the number of processors is less than one third the number of tasks.

However, partition saturation occurs in dynamic scheduling when there are many

processors in each partition. This is confirmed by Figure 7.70 which shows that backups

become more likely in MC8 when the number of processors exceeds five. Partitions can

often have more than five processors when dynamic scheduling is used. This is shown

in Figure 7.72.

In minimum communications partitioning the synchronization effect in conjunction

with non-zero nodal delay helps the simulation performance. Recall that the synchro-

nization effect maintains similar task LVTs within a partition. Therefore, when nodal

delay is non-zero, processors prefer to process nodes in the lower precedence classes

first. This results in fewer backups.

Additionally the aggressive backup effect, where a backup causes additional back-

ups, does not occur in minimum communications partitioning. The aggressive backup

effect cannot occur in minimum communications partitioning because no task receives

messages from both inside and outside its partition.

7.11. Continuous Dynamic Repartitioning

In this section we analyze the continuous dynamic repartitioning scheme. The

continuous scheme appears to be very similar to the non-partitioning case, since pro-

cessors are free to move to different partitions after each task execution. We present

- 214 -

the following three experiments for the continuous scheme that determine:

1. The relationship of backups to different partitioning methods.

2. The relationship of backups to the virtual time delays.

3. The relationship of backups to the number of processors.

7.11.1 Experiments

The continuous dynamic repartitioning effects were studied on each of the parti-

tioning methods. A series of experiments were run on the vertical partitioning method

to help determine why the continuous dynamic repartitioning scheme fared so poorly

compared to other scheduling schemes in vertical partitioning. We are interested in

studying this scheduling scheme because it is similar to the non-partitioning case and

because its performance degenerates rapidly as the MITs increase. We want to deter-

mine:

1. Whether the continuous scheme essentially ignores partition boundaries since the

processors in the scheduling scheme search for the partition with the lowest LVRT

and relocate there after each task execution. To determine this, we ran continuous

dynamic repartitioning on each of the partitioning methods while increasing the

MIT with ND=10.

2. The effect of the MIT:ND ratio on the performance of the continuous dynamic

scheduling scheme. To determine this, we varied the ND in vertical partitioning

using continuous dynamic scheduling. Normally the ND is 10; we also tried 1000,

100 and 0 while varying the MIT. This differs from the experiment referred to in

(1) because (1) examined the effect of varying MIT while fixing ND=10 for all the

different partitioning methods.

3. How the number of backups changes as the number of processors increases. To

determine this, we ran continuous dynamic repartitioning on the vertical parti-

tioning and varied the number of processors in the system between 8, 16, and 32

with ND=10.

The results of the first experiment for the aggressive and lazy message cancellation

- 215 -

C 20-0

C

E - part I
c--- part2

10 . part3
+) part4

---- part5
E3 part6

CL

.o
E

0 100
Real Time in Seconds

Figure 7.74 Number of Processors in each Partition in V6

using the Continuous scheme, with ND=O and MIT=15000

cases are shown in Figures 7.75 and 7.76 respectively. We notice that the performance

of the continuous dynamic repartitioning scheme is affected by the partitioning method

used.

An additional question that the first experiment raises is why the continuous

scheme performs better in vertical partitioning than any other partitioning method.

This is caused by the problem in the continuous scheme presented in Section 6.5. Re-

call that a "race condition" could arise in the continuous scheme when two processors

simultaneously look for the partition with the lowest LVRT in order to relocate there.

Since the group list is not locked, both processors could decide to relocate to the same

partition, leading to an uneven clustering of processors in partitions. This clustering

- 216 -

1000

800

600

400

200

0
0 50 100 150

Mean Interarrival Times

Figure 7.75 Number of Backups for Continuous Dynamic Repartitioning

for all Partitioning Methods

- 217 -

Lr

0

E

effect is shown for the continuous scheme (using vertical partitioning) in Figure 7.74.

This uneven clustering can increase backups, as discussed in Section 7.10.4. This

effect is especially pronounced when a partition includes more than one precedence

class. Let us consider an example where two processors A and B are relocated to the

same partition. This partition has two tasks T and T2 , where T1 is in the higher

precedence class and has a link to T 2. There are two cases:

1. Ti's LVRT < T2 's LVRT or

2. Ti's LVRT > T2 's LVRT.

In the first case processor A will be assigned to T1 and processor B will be assigned

to T2 . Let us assume that the ND is smaller than the difference in the two tasks' LVRTs.

If processor B completes processing task T2 before processor A completes processing

T1 and as a result of processing T1 , T1 sends a message to T2 , then backup will occur.

The second case is safe. On the other hand in vertical partitioning all of the tasks are

in the same precedence class and no links connect them; therefore, this problem will

never occur. Thus the number of backups in the vertical partitioning case will be less

than any of the other partitioning strategies.

Another relevant factor appears to be the partitioning size. For instance MC8 and

even the R 8 's look much better than MC 24 . Therefore, one could speculate that larger

partitions can absorb a few extra processors with less of a partition saturation effect

than smaller partitions.

Since continuous dynamic repartitioning performed the best with vertical parti-

tioning, all subsequent experiments were run only on vertical partitioning.

Figures 7.75 and 7.76 show the effects of virtual-time delay (through variations

on MIT) on the continuous dynamic repartitioning scheme using all the different par-

titioning methods with ND=10. Figure 7.77 shows the number of backups for the

continuous scheme with ND=O, 10, 100, and 1000 on V6 . These experiments were used

to show the effects of virtual-time delays on the continuous scheme through variations

of ND. There are two extreme cases ND=0 and ND=1000. In these cases the ratio of

- 218 -

1000

800

600

400

200

0
0 50 100 150

Mean Interarrival Times

Figure 7.76 Number of Backups for Continuous Dynamic Repartitioning

for all Partitioning Methods using Lazy Cancellation

- 219 -

()

(V

z

Mean Interarrival

300

200-

100-

E
-- ND=0
+ ND= 10

-- ND=100
+ ND=1000

0 ---- 00---

0 100 200

Mean Interarrival Times

Figure 7.77 Number of Backups for Continuous Dynamic Repartitioning

while varying ND=0, 10, 100, and 1000

MIT:ND is either 0 or very large. In the extreme cases the MIT has little effect.

7.11.1.1 ND=O

In this case the continuous scheme ignores the precedence classes of each task

since there is no virtual time delay for processing a node. In other words, all tasks

look equally attractive to a relocating processor. In this case processors tend to follow

messages through the system. Therefore, many backups occur because the precedence

classes are ignored.

- 220 -

7.11.1.2 ND=1000

In this case the continuous scheme obeys an implicit vertical partitioning that is

imposed on the network by the high ND. In this case the tasks in the higher precedence

classes have much lower LVRTs than the tasks in the lower precedence classes due to

the high ND; therefore, processors tend to process all the tasks in the higher precedence

classes before going onto the lower precedence classes. This will prevent most backups.

This behavior corresponds to the optimal case described in Section 7.5.3.3. Therefore,

no backups occur because the precedence classes are obeyed.

7.11.1.3 ND=10 (the usual case) or ND=100

In these cases the MIT:ND ratio is between extremes and the variations in MIT

can have a dominant effect. For low values of MIT the continuous scheme behaves more

like the ND=1000 case and very few backups occur. As the MIT increases the system

behaves more like the ND=0 case and many backups occur. In this case precedence

classes control scheduling when the MIT is small. This clearly shows that the ratio of

the MIT:ND is the important factor in determining the effect of virtual-time delays on

performance.

Figure 7.78 shows the number of backups for the continuous dynamic scheme for

8, 16 and 32 processors with ND=10. Examine the graph for MIT=180 (the rightmost

point). For the 8-processor case the two trials that were averaged had 19 and 21

backups, for the 16-processor case they had 48 and 58 backups, and for the 32-processors

case they had 190 and 221 backups. This approximately follows a square law: if the

number of processors increases by a factor of C, then the number of backups increases

by a factor of C2 . Other points on Figure 7.78 also are generally consistent with the

square law. The reason for this square-law effect is unclear.

7.11.2 Discussion

Our data confirm that continuous dynamic repartitioning is very sensitive to the

ratio MIT:ND regardless of the partitioning method. Therefore, for sufficiently large

- 221 -

300

CU

1 00

E 100 -

-0- 8-processors
-I- 16-processors
-U- 32-processors

0 - 0 L

0 100 200

Mean Interarrival Times

Figure 7.78 Number of Backups for Continuous Dynamic Repartitioning

while varying the number of Processors = 8, 16, and 32

MIT the continuous scheme is worse than any of the other scheduling schemes when

using a good partitioning method (V6, MC 8, MC 12 , or MC 24). However, in the hor-

izontal partitioning case, continuous dynamic repartitioning looks good since all the

other schemes fare so poorly.

Recall that the synchronization effect went against the precedence classes in hor-

izontal partitioning, thus many backups occurred. On the other hand, the continuous

scheme tends to synchronize the entire network to one LVT; therefore, it does not

allow the adverse synchronization effect to occur in horizontal partitioning. Thus, it

outperforms most of the other scheduling schemes in the horizontal partitioning case.

When the nodal delay is large, continuous dynamic repartitioning behaves well

- 222 -

since processors will stay in the input partition as long as possible. On the other hand

when ND is small, then the processors tend to follow the messages through the system

until they exit the system. The second experiment (shown in Figure 7.77) was used to

confirm these beliefs.

A different experiment (shown in Figure 7.78) shows a square-law effect in which

the number of backups rises as the square of the number of processors. The reason for

this square-law effect is unclear.

7.12. Group List Order Importance

This section discusses how the group-list order can affect the number of backups

during both initialization and actual simulation runs. The group-list order effects are

demonstrated by experiments run in the extreme experiments chapter.

The importance of the group list was discussed in Section 6.5. For the fixed-list

and circular-list dynamic repartitioning, the order of the group list played a vital role

in determining the performance of the simulation. In the fixed-list strategy, the group

list determined the exact order in which partitions were searched in order to find work.

By placing partitions primarily consisting of tasks that should execute at the end of the

simulation at the the front of the group list, we will force many extra backups. This

is because these partitions will be the first to receive any relocating processors. The

group list also plays a timing role in the circular-list scheme. Since this list is circular,

bias toward any one partition is minimized. However, the circular-list strategy will still

impose an order on choosing partitions.

In the longest task queue scheme, the order of the group list plays a large role

only if there are two partitions with the same number of tasks on their task queues.

In this case, the longest task queue scheme performs like the fixed-list scheme since

it relocates processors to the partitions higher up on the group list. The group list

comes into play whenever there is a tie in the relocation criteria used in a particular

scheduling scheme. This is also true in the LVRT or EVRT schemes when there is a

tie for the lowest LVRT or lowest LEVRT among the partitions.

- 223 -

At initialization, the group list plays another role. A partition is activated when

processors start executing tasks within that partition. The order of the group list

determines the order in which the partitions are initially activated. This normally does

not have a large impact on simulation runs; however, for very short simulation runs

where most of the work is done at the beginning of the simulation, the effect is much

the same as that of the fixed-list scheme. This is because the partitions at the front of

the group list are assigned processors first, so they have some priority over the other

partitions, as in the fixed-list scheme. If the simulation is very short, then the partitions

at the front of the list could finish all their work before some of the other partitions

start. Some examples of how the order of the group list plays an important role in

short simulations are shown in experiments of Figures 6.6-6.10 and are discussed in

Section 6.5.

7.13. Circuit Simulator

Finally, we discuss a four-bit adder circuit simulation. The simulation was divided

into four partitions, one for each adder. We examine the effects of increasing the MIT

on backups and processing time. These experiments show that the effects that appeared

in the network experiments also apply for a different type of simulation.

7.13.1 Four-bit Adder

In this set of experiments a circuit simulation was run. The circuit was a four-bit

adder. This circuit is described in Section 5.3 and is illustrated in Figure 5.2. Each

one-bit adder was a separate partition.

This experiment (Cir3 2) is summarized in Figure 7.79. In this experiment each

of the four partitions started with eight processors for a total of 32. The input mes-

sages consisted of a zero or one (representing the new state of the corresponding input

wire) chosen at random with equal likelihood. Each adder had two driver tasks where

messages originated. The differences in VRT of successive messages was based on an

exponential pdf which depended on the MIT (this does not correspond to the normal

- 224 -

Four Bit Adder Circuit Simulation with 32 Processors

Initial Processor Allocation

Effects of Increasing MIT

Scheme Ordering Based on
of Backups _
(ordering from worst to best)

Lazy Message Cancellation's
Effects on # of Backups

(88 88)

of Backups increases in all strategies except
for EVRT where it decreases

1) Partitioning
2) Circular-list
3) Fixed-list, TO and LVRT
4) EVRT

Increases the number of backups in all schemes
except EVRT

Effects of Increasing MIT
on Processing Time

Scheme Ordering Based on
Processing Time
(ordering from worst to best)

Lazy Message Cancellation's
Effect on Processing Time

Processing times increase for all schemes

1) Partitioning and EVRT
2) Circular-list, Fixed-list, TO and LVRT

Increases processing time in all schemes

Figure 7.79 Summary of Four-bit Adder with 32 Processors

operation of a 4-bit adder, since normally the adder would receive new inputs in par-

allel waves with many of the inputs changing at about the same time). The results of

this experiment are shown in Figures 7.80 and 7.81. Figure 7.80 shows the number

of backups for each of the scheduling policies as the MIT increases from 5 to 60. The

different nodal delays were arbitrarily chosen as:

1. 2 virtual-time units for inverters

2. 3 virtual-time units for and-gates

- 225 -

I

300

200-

100

-i part
+ fixed

-- circ
+ tq

- lvrt
-a- evrt

0 - - - I - I - * -

0 10 20 30 40 50 60 70

Mean Interarrival Times

Figure 7.80 Number of Backups versus MIT for Cir32

- 226 -

240

220-

0

Q 200-

E 180-

5 160-

U) part
+ fixed
+ circ

140- ta

--- lvrt
-a- evrt

120 - - , - , - r- - - -

0 10 20 30 40 50 60 70

Mean Interarrival Times

Figure 7.81 Processing Time versus MIT for Cir3 2

3. 5 virtual-time units for or-gates.

As the MIT increases, backups increase for all the different scheduling policies,

except for the EVRT strategy. The EVRT strategy has the fewest backups, whereas

static partitioning has the most backups.

Lazy message cancellation increases the number of backups in all schemes except

for the EVRT scheme. This effect is shown in Figure 7.83 for the fixed-list strategy

and 7.84 for EVRT. This is the opposite effect that lazy message cancellation had in

the butterfly network example. Figure 7.84 shows that the lazy message cancellation

had no systematic effect on the EVRT scheme.

Figure 7.81 shows the processing times for each of the scheduling policies as the

MIT increases. As the MIT increases, processing times increase for all the schemes. The

- 227 -

300

200-

4--

100-
- lazy-part
-+ lazy-fixed
-CF lazy-circ

lazy-tq
-- lazy-lvrt
-D_ lazy-evrt

0 - - - -
0 10 20 30 40 50 60 70

Mean Interarrival Times

Figure 7.82 Number of Backups versus MIT for Lazy Cancellation for Cir3 2

EVRT and static partitioning schemes perform the worst, whereas the other schemes

perform about the same.

Lazy message cancellation increases the processing times for all schemes and is

illustrated in Figure 7.85. This effect is shown for the fixed-list strategy in Figure

7.86.

7.13.2 Discussion

This example clearly shows that some of the prominent effects in the network

simulation also apply to the circuit simulation. The virtual-time delays (increasing

MITs) increased the number of backups and the processing times. For this simulation

the nodal delay varies for different circuit elements. The ratio MIT:ND still plays

- 228 -

250

200-

150-

100-

-1- f ix e d
-- lazy-fixed

50 -
0 10 20 30 40 50 60 70

Mean Interarrival Times

Figure 7.83 Number of Backups versus MIT for Cir32 using

Aggressive or Lazy Cancellation with Fixed-list scheduling

an important role in simulation performance, but in this case it is more complicated

because there are three different nodal delays.

Unlike the network simulation, each task in the circuit simulation has state. For

example, each wire element maintains the signal value of the wire and each circuit

element maintains the signal value or signal values of its inputs. In the network simu-

lation, each node's output message is dependent only on its input message (when there

are no conflict delays). On the other hand in the circuit simulation, each task's output

message is dependent on its input message and the state of its circuit element. Let us

call this the state attribute of the circuit simulation.

A peculiarity of the circuit simulation is that lazy message cancellation seems to

worsen the performance. We hypothesize that lazy message cancellation delays backups

(and allows further progress) of tasks that should have been backed up, thus causing

additional backups when those tasks finally are backed up.

- 229 -

130

120-

110-

100-

90

80 - -W- evrt
-9- lazy-evrt

70
0 10 20 30 40 50 60 70

Mean Interarrival Times

Figure 7.84 Number of Backups versus MIT for Cir3 2 using

Aggressive or Lazy Cancellation with EVRT scheduling

One might think that lazy message cancellation has the following advantages over

the aggressive message cancellation policy:

1. fewer anti-messages, and

2. fewer secondary rollbacks, which are additional backups caused by anti-messages

and reprocessed preempted messages (preempted messages are those messages that

have already been processed with greater virtual time than the preempting mes-

sage's VRT).

On the other hand lazy message cancellation delays needed backups, which could

increase the total amount of backup and increase anti-messages and secondary roll-

backs.

Generally, lazy message cancellation requires more processing time at the backed-

up node than aggressive message cancellation, since every reprocessed preempted mes-

sage must be checked to see if the same message was already sent. Therefore, if lazy

- 230 -

300

250-

0)

E 200-

-- lazy-part
a 150 - + lazy-fixed

+ lazy-circ
-.- lazy-tq
C+ lazy-lvrt
-a- lazy-evrt

100-
0 10 20 30 40 50 60 70

Mean Interarrival Times

Figure 7.85 Processing Time versus MIT for Lazy Cancellation for Cir3 2

message cancellation must send out the same number of anti-messages and reprocessed

preempted messages as the aggressive case, then the lazy case will take more processing

time.

One potential reason why the lazy message cancellation mechanism performed

worse than the aggressive case is due to the state attribute of the circuit simulation.

When a backup occurred in the network simulation, the preempted messages usually re-

mained the same when they were reprocessed (except when VRTs change due to conflict

delays). Therefore, when using lazy message cancellation in the network simulation,

the backed-up node would send almost no anti-messages and reprocessed preempted

messages. Thus, the processing time for lazy message cancellation would be much less

than for the aggressive case if there were many backups. Furthermore, these few anti-

- 231 -

240

220-

200-

180-

160-

1400 - fixed
c-4- lazy-fixed

120-
0 10 20 30 40 50 60 70

Mean Interarrival Times

Figure 7.86 Processing Time versus MIT for Cir3 2 using

Aggressive or Lazy Cancellation with Fixed-list scheduling

messages and reprocessed preempted messages caused very few secondary rollbacks.

The key point here is that since there were very few anti-messages and reprocessed

preempted messages, lazy message cancellation did not delay needed backups.

On the other hand, in the circuit simulation, many of these preempted messages

will change after they are reprocessed (because of backup), due to the state attribute of

the circuit simulation. All of these messages that have changed must be canceled (via

anti-messages) and the new reprocessed messages must be sent. The problem with lazy

message cancellation is that these anti-messages and reprocessed preempted messages

are only sent when absolutely necessary. Therefore, there could be a large real-time

delay before these anti-messages and reprocessed preempted messages are sent. Real-

time delays have already been shown to cause additional backups, but the key point

here is that lazy message cancellation may hold up needed backups, thus causing an

increase in the total number of backups in the system. These additional backups and

- 232 -

the additional inherent processing time cost of the lazy message cancellation could

easily cause the lazy case to take more processing time than the aggressive case.

In this simulation we conclude that lazy message cancellation delays backups of

tasks that should have been backed up, thus causing additional backups. That lazy

message cancellation causes more backups means that we cannot blindly choose lazy

message cancellation for all simulations. Instead, we should carefully study the total

number of messages processed in either the aggressive or lazy message cancellation

techniques.

0

U)

U)
a)

4-)
0

0

1.0

0.9 -

0.8 -

0.7-

0.6
0 100

Mean Interarrival Times

-0- lazy/agg-part
+ lazy/agg-fixed

-a- lazy/agg-circ
+ lazy/agg-tq

-- lazy/agg-lvrt

200

Figure 7.87 The Ratio of Total Messages for Lazy/Aggressive

Cancellation on a network simulation His versus MIT

One might conjecture that since the lazy message cancellation mechanism only

sends anti-messages when absolutely necessary, the total number of messages for the

- 233 -

s
i

1.04-
0 -

N 1.02-

-- I

0.98-

--lazy/agg-part
0~ lazy/agg-f ixed

0.96 -- lazy/agg-circ
4-+ lazy/agg-to

-0 lazy/agg-lvrt

0 0 20

Mean Interarrival Times

Figure 7.88 The Ratio of Total Messages for Lazy/Aggressive

Cancellation on a circuit simulation Cir32 versus MIT

lazy mechanism is the minimum number of messages required to execute the simulation.

This is not correct (as is seen in Figure 7.88)! Since lazy message cancellation can delay

needed backups, the end result could be more backups and even more messages and

anti-messages.

In any case, the total number of messages processed is a good performance mea-

sure of message cancellation techniques because a smaller number of total messages

processed usually translates to fewer backups and anti-messages. Therefore, the ratio

of total number of messages in the lazy mechanism versus the total number of messages

in the aggressive mechanism will give a good measure of which message cancellation

mechanism is better. Figure 7.87 shows this ratio of

- 234 -

Total number of messages for Lazy cancellation

Total number of messages for Aggressive cancellation

for the network simulation as the MIT is increased. In the network simulation the ratio

varies between 0.68 and 0.95 meaning that many of the anti-messages in the network

simulation are probably not needed. On the other hand Figure 7.88 shows this ratio

of

Total number of messages for Lazy cancellation

Total number of messages for Aggressive cancellation

for the circuit simulation. In the circuit simulation the ratio varies between 0.95 and

1.04 which means that the number of messages for the lazy mechanism is about the

same as for the aggressive mechanism.

As we have seen in this section, lazy message cancellation is not a panacea. In

fact, in some cases of the circuit simulation, the lazy mechanism required more backups

than the aggressive mechanism to complete a simulation.

The key difference between the circuit and the network simulations is state. In

the network simulation, a task's output messages depended only on the previous input

messages (except for conflict delays), whereas in the circuit simulation the output

messages depended on the state of the task. Therefore, when backup occurred in the

network simulation while using the lazy cancellation mechanism, many of the preempted

messages never needed to be canceled and resent. On the other hand, in the circuit

simulation a preempting message would usually change the state of the preempted task,

thus requiring cancellation of the preempted message.

Lazy message cancellation is good when the simulation depends only weakly on

state because the preempted messages will usually not be canceled and therefore we

do not delay needed backups. On the other hand if the simulation depends strongly

on state, delaying the cancellation of preempted messages could easily delay needed

- 235 -

backups which could in turn cause more backups. Therefore, the lazy mechanism is

more likely to delay needed backups in a simulation that depends strongly on state.

In the network simulation, the lazy message cancellation mechanism usually had

fewer total messages than the aggressive mechanism. This explains why the lazy mech-

anism greatly improved the performance of the network simulation under horizontal

partitioning, whose many backups accentuated the difference between lazy and ag-

gressive message cancellation. On the other hand, in the circuit simulation the total

number of messages is almost the same. This explains why the lazy mechanism did not

improve the processing time performance in the circuit simulation. Furthermore, since

the lazy mechanism requires more processing per message, it will usually take more

processing time than the aggressive mechanism if both require the same total number

of messages.

7.14. Speedup

1700
1600
1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0
12 16 20

Number of Processors

-0- proc time

Figure 7.89 Processing Time versus Number of Processors

- 236 -

Cf)

E

I-

C

LC

-L

21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

0
0 4 8 12 16 20 24 28 32

Number of Processors

Figure 7.90 Speedup versus Number of Processors

-- efficiency

0 4 8 12 16 20 24 28 32

Number of Processors

Figure 7.91 Percentage of Linear Speedup Efficiency versus Number of Processors

- 237 -

0
(n
(n

C

L

C

-c

0

c

CL

C

-C

,
C

-U- speedup

0.9

0.8

0.7

0.

As a last experiment, we show the speedup of our simulation system as the number

of processors increases. In this experiment we used vertical partitioning, the LVRT

scheduling scheme and only 10 messages per input node (this was to reduce the amount

of processing time for the 1 processor case). In Figure 7.89 we show the amount of

processing time for a simulation run as the number of processors varied. In Figure

7.90 we show the amount of speedup for a simulation run as the number of processors

varied. Here we define speedup for a simulation with n processors to be the processing

time with 1 processor divided by the processing time with n processors. Figure 7.91

shows the efficiency - the speedup divided by the number of processors. Figure 7.91

shows that the speedup starts up almost linear (efficiency .95 for 4 processors) and

then decreases (efficiency .63 for 32 processors). Increasing the number of processors

after a certain point will not speed up the simulation. Let us call this point processor

saturation.

We hypothesize that the efficiency decreases as the number of processors increases

because there may never be as many tasks to process as processors at any time during

the simulation. Also, the amount of parallelism in a simulation may vary greatly from

the start to the end of the simulation. Assuming we are using n processors, at a time

when the simulation has less than n tasks to process, the extra processors will be

suspended. This suspended or idle time is included in the processing time as discussed

in Section 6.2..

7.15. Summary

In this chapter, we discuss various results which help one to predict the perfor-

mance of a simulation based on the properties of the simulation. These results were

used to confirm our theories. Experimental results were based on varying the order of

the group list, partitioning methods, scheduling policy, lazy versus aggressive message

cancellation, message queue lengths, and virtual and real time delays.

- 238 -

7.15.1 Lazy versus Aggressive Message Cancellation

Lazy message cancellation only benefited the system when a poor partitioning

method was used, such as horizontal or random partitioning in the network simulation.

This was because aggressive message cancellation compounded the backups in what we

term the "aggressive backup effect." The aggressive backup effect was prominent in

the horizontal and random partitioning methods in the network simulation; therefore,

lazy message cancellation performed up to 50% better in these cases. On the other

hand, in the V6 , MCs, MC 12 and MC24 cases, the difference between the performance

of lazy and aggressive message cancellation was negligible because of the absence of

the aggressive backup effect. In the 4-bit adder case, the performance of lazy message

cancellation was worse than that of aggressive message cancellation.

7.15.2 Message Queue Length

There is an interesting relationship between task backups and the input message

queue length at the task. Longer message queue lengths were found to be associated

with fewer backups, because a large message backlog allows messages to be sorted in

virtual time order. As the message queue lengths increased, the Time Warp method

looked more like the safe case of the Network Paradigm method.

7.15.3 Best Partitioning

Figure 7.92 shows a comparison of the best scheduling schemes, judged by their

number of backups, for each partitioning method when used with the 16-input-node

butterfly network. The LVRT scheme on V6 and static partitioning on MC24 performed

the best. The second tier consists of static partitioning on MC12 and MCs. These same

two tiers exist in the lazy message cancellation case, shown in Figure 7.93. Figure 7.94

shows a comparison of the best scheduling schemes, in terms of processing time, for

each partitioning method. The LVRT scheme on MC8 , the static partitioning scheme

on MC24 , and the fixed-list scheme on MC12 performed the best. The same ordering

appears in the lazy message cancellation case, shown in Figure 7.95.

- 239 -

400 - V6-lvrt
-4- MC12-pa
-A- MC24-pa
-9- MC8-par
-4- H8-evrt
-V- H16-evr
-&- R16a-ev
,R- R16b-ev
-- R8a-evri

300 --- R8b-evri
-- R8c-evri

R- R16c-ev
U)

4- 200 -
0

E
z

100 -

0 4

0 50 100 150
Mean Interarrival Times

Figure 7.92 Best-Case Number of Backups vs MIT in Aggressive Message Cancellation

- 240 -

300- -U- H8-lazy-evrt
-1- H16-lazy-evrt
-'- R16a-lazy-evrt
-fr R16b-lay-evrt
-U- R8a-lazy-evrt
+- R8b-lazy-evrt

-ta- R8c-lazy-evrt
CO -- R16c-lazy-evrt

200-

0

E

100-

0 50 100 150

Mean Interarrival Times

Figure 7.93 Best-Case Number of Backups vs MIT in Lazy Message Cancellation

- 241 -

600- -0- H i b-evrt
-a- R8a-lvrt

+R8b-1vrt

-U- R8c-lvrt
U) R -1 R6a-1Ivrt

_0C: -mi- R1I6b-1vrt
0 ~-X- R1I6c-1vrt

U
W 500-

L..
CL

U)

H-

300-

200 '
0 50 100 150

Mean Interarrival Times

Figure 7.94 Best-Case Processing Time vs MIT in Aggressive Message Cancellation

- 242 -

800 -o- V6-lazy-lvrt
-- MC12-lazy-lvrt
-- MC24-lazy-part
-0- MC8-lazy-tq
-w- H8-lazy-lvrt

700- -o- H16-lazy-evrt
-+- R8a-lazy-lvrt
-tr R8b-lazy-lvrt
-1- R8c-lazy-1vrt
-i- R16a-lazy-lvrt

() -w- R16b-lazy-lvrt

C 600 -w- R16c-lazy-lvrt
C 0 0
0

CO)

) 500 -
E

400-U)

01

300-

200-
0 50 100 150

Mean Interarrival Times

Figure 7.95 Best-Case Number of Processing Time vs MIT in Lazy Message Cancellation

- 243 -

It is not always easy to identify the type of special purpose partitioning and

scheduling scheme that will run best for a particular application. As far as choosing

a method to partition the network simulation, minimum communication partitioning

and vertical partitioning were always found to be clearly better than either horizontal

or random partitioning.

7.15.4 Scheduling Schemes

In the H8 case the EVRT scheme had fewer backups than the other schemes,

while in the H1 6 case the EVRT scheme had both fewer backups and lower processing

time than the other schemes. In general the performance of the scheduling schemes

under the H8 and H16 partitioning methods tended to be much worse than that under

minimum communications or vertical partitioning. In R8a, Rsb, R 8 c, Ri6a, Ri6b or

R 16 partitioning, the EVRT method had significantly fewer backups than did the

other scheduling schemes.

Optimizations of scheduling schemes are very useful when the partitioning method

is flawed. However, when the partitioning method is good, the additional processing

time needed for optimizations can worsen a simulation's performance. Given a good

partitioning method, such as minimum communications, there is no benefit of using a

complicated scheduling scheme such as the EVRT scheme. In fact, the EVRT scheme

actually increased backups in many cases, such as minimum communications or vertical

partitioning (see Figures 7.60, 7.61, 7.62, and 7.12). When the partitioning is bad,

as in random or horizontal partitioning, then the distinctions between the different

scheduling schemes and message cancellation policies become greater. For instance,

even though the EVRT scheme averages 80 more backups than any other scheme for

V6 , it is not nearly as bad as choosing the fixed-list scheme for H16 which averages 900

more backups than the EVRT scheme.

We found that the simple static partitioning scheme was best for partitioning

methods that were susceptible to partition saturation, such as MC8 , MC12 , and MC24.

The EVRT scheme was best for partitioning methods that suffered from the aggressive

- 244 -

backup effect, such as H8 , H 16 , Rsa, Rsb, R 8 e, Ri6a, Ri6b, and R16i, whereas the LVRT

scheme was best for partitioning methods that did not suffer from either partition

saturation or the aggressive backup effect, such as V6 .

By examining Figures 7.92, 7.93, 7.94, and 7.95, it appeared that without prior

special knowledge of the simulation, one should choose the EVRT scheme in order

to minimize backups, or the LVRT scheme in order to minimize processing time for

reasonable partitionings and message sequences with large MITs. The EVRT scheme

minimizes backups because the EVRT scheme had the best worst-case potential. In

other words the EVRT scheme had the fewest number of backups in its worst case

scenarios compared to the worst case scenarios of the other schemes. Similarly, the

LVRT scheme should be used to minimize processing times because it has the best

worst-case potential.

Continuous dynamic repartitioning performance was found to be very dependent

on the MIT:ND ratio. As the MITs increased or ND decreased, the performance of the

simulation system degenerated rapidly, having many more backups and much longer

processing times than any other scheduling scheme. Therefore it appears that the

continuous dynamic strategy should be bypassed except for investigative purposes.

7.15.5 Times-Virtual and Real

The ratios of MIT:ND and IM:PT have dramatic effect on the performance of a

simulation. In our experiments we varied the mean interarrival time MIT and we varied

the inter-message real-time delay IM via artificially introduced real-time delays.

The results depicted in Figures 7.7, 7.18, 7.9, 7.20, 7.48, 7.52, 7.60, 7.61,

and 7.62 show all of the scheduling methods using both aggressive and lazy message

cancellation on the various partitioning methods. All of these graphs show that an

increase in the MIT in virtual time causes more backups. Figures 7.8, 7.10, 7.49, and

7.53 show that an increase in the MIT causes increasing processing times.

Simulation performance was also affected by the MIT:ND ratio. In our simula-

tions we varied this ratio by varying the MIT and by varying the nodal delay ND.

- 245 -

In both cases, increasing the MIT or decreasing the ND, caused more backups and

increased processing times. On the other hand, the EVRT scheme was unaffected by

the increasing MITs because the differential, LVRT - EVRT, would remain constant

while the interarrival times grew. Thus the number of backups for the EVRT scheme

would not increase, even for large interarrival times. The EVRT scheme may have had

poor performance for low interarrival times, but for high interarrival times it always

compared more favorably to the other scheduling schemes.

Driver delays or real time delays also cause more backups. Figures 7.30 - 7.32

show that the longer the driver delay in real time, the more backups. Longer delays

between input messages to the system cause fewer messages in each task's message

queue, which in turn cause more backups.

Real-time delays led to more backups than in simulations with no real-time delays.

Longer real-time delays led to shorter average message queue lengths. The most impor-

tant factor was the IM ratio. As the I ratio grew, the number of backups increased.
PT PT

There was usually a threshold after which the number of backups increased quickly to

a maximum.

In our experiments, we varied the ratio L using two methods. The first method

varied the IM by artificially introducing real-time delays between successive messages.

The second method started with fewer initial messages and introduced a feedback loop.

The feedback loop maintains the same number of messages into the input nodes as the

corresponding non-feedback experiment (without real-time delays) while increasing the

IM. We could not vary PT because we could not directly affect the processing times

on Concert.

- 246 -

VIII. CONCLUSIONS

8.1. Review of Goals

Our first goal was to construct in detail a discrete event-based concurrent simula-

tion system. Therefore, writing in Multilisp on the 32 processor Concert multiprocessor,

we wrote one of the first implementations of Jefferson's Time Warp system. The es-

sential Time Warp mechanism was combined with different scheduling strategies, to

form a simulation-independent system. Our entire system consists of the simulation-

independent system, various simulation-dependent modules, and modules to interface

the simulation-independent and simulation-dependent systems.

Our second goal was to understand the relationship between parameters and per-

formance. Major parameters investigated were:

1. Scheduling Policies

2. Partitioning Methods

3. Synchronization Recovery Methods (lazy vs. aggressive message cancellation)

4. Message Queue Lengths

5. Time Delays (real and virtual)

We analyzed performance in two ways:

1. Processing time

2. Number of backups.

Backups were used as a measure of performance because Concert's processing times

were highly variable. They varied because garbage collection occurred at unpredictable

moments.

We felt that the number of backups was a valid performance measure because

backups were relatively cheap in our simulations. They were cheap because each task's

environment consisted of only one variable. If one were to increase the number of

- 247 -

variables in the environment, backups would become expensive and could influence

processing times.

In this thesis we mainly worked with two types of simulations. Our goal was to

try to study the most representative set of simulations in terms of:

1. State (stateless versus state)

2. Cycles (cyclic versus acyclic)

We decided to study the following two simulations:

1. The butterfly network simulation with 8 input nodes and 16 input nodes which

was introduced in Section 5.4 and

2. The 4-bit adder simulation which was introduced in Section 5.3.

Both simulations were acyclic; however, the first simulation was easily modified to

contain cycles by feeding the output of the simulation back to the input nodes. Our

original goal was to look at two simulations, one with and one without state. Both

simulations have state; however, the state of the network simulation is only used in the

case of conflicts.

Conflicts occur when two messages arriving at the same node have nearly equal

virtual receive times (VRTs). Specifically, a conflict occurs if the difference between

the VRTs of two messages arriving at a node is less than a given conflict delay. Conflict

delay represents the amount of virtual time for a task to process a message. Therefore,

a conflict occurs when (in virtual time) a task receives a message, m 1 , while the task

is processing another message, m 2 .

When a conflict occurs, the task cannot process mi in virtual time until the task

completes processing M2 . Therefore, the VRT of m 1 's corresponding output message

will include the time for all conflict messages to complete processing as well as one

conflict delay.

Therefore, network simulations that have a small chance of conflicts may perform

like a stateless simulation. This will occur when the virtual-time delay between input

messages (MIT) is high relative to the conflict delay. Conflict delays are discussed in

- 248 -

Section 5.4.

These two simulations represent acyclic simulations well. The 4-bit adder simula-

tion shows an example of simulations that are very dependent on state and have tasks

with many different functions. On the other hand the network simulation shows an

example of simulations that are not very dependent on state and have only two different

functions for tasks. The 4-bit adder is representative of digital circuits (without cycles).

The butterfly network is representative of Fast Fourier Transforms, processor-memory

access paths for certain computer architectures, and computer networks.

8.2. What have We Learned?

Time Warp simulation systems consist of tasks, which are assigned to processors

by a scheduler. Each task has an LVRT, which is the the virtual receive time (VRT)

of the first message on its input message queue. The scheduler schedules the tasks via

a task queue, which is ordered in terms of task LVRTs (the lower the LVRT the higher

the priority). The scheduler assigns a task to a processor depending on the priority of

the task on the task queue. This is called the non-partitioning case in our system.

When backup occurs at a task in the Time Warp system, all messages that were

processed by the task after the VRT of the preempting message are canceled immedi-

ately by the sending of anti-messages. This is called the aggressive message cancellation

policy. In our system we used both this policy and a lazy message cancellation policy

which canceled messages only when absolutely necessary.

In our system, we implemented partitioning, which grouped tasks together as well

as distributed the task queue where processors chose tasks. The way in which we

partitioned a set of tasks was called the partitioning method. At any given time, each

processor is assigned to a partition and may only process tasks in that partition.

As one might expect, distributing the task queue decreased the waiting time of

processors accessing the task queue. However, partitioning can increase the number of

backups in a simulation. When there is no partitioning, all tasks have similar LVT's

due to synchronization; however, when partitioning is used only tasks within partitions

- 249 -

have their LVT's synchronized. Therefore, inter-partition messages can cause backups

because each partition is synchronized to a different LVRT (a partition's LVRT is the

lowest LVRT of all its tasks).

The scheduling scheme determines if and when processors relocate to other parti-

tions. In the static partitioning scheme, processors remain in their originally assigned

partition. In dynamic scheduling schemes, however, a processor relocates to another

partition if there is no work in its current partition.

We contrasted the static partitioning scheme to many varieties of dynamic schedul-

ing schemes. We expected the dynamic scheduling schemes to outperform the static

scheduling scheme because dynamic scheduling does not waste processors on partitions

where there is little or no work. Furthermore, dynamic scheduling schemes can be very

useful to alleviate problems of the dynamic workload variations among partitions or

a poor partitioning method selection. These problems usually cannot be overcome by

static scheduling schemes. Our results confirm our hypothesis.

In general, it is not always easy to determine when it is best to relocate processors in

dynamic scheduling schemes. In our simulations, processors only relocate when there is

no more work in their partitions. This can create problems, since a partition with a few

tasks with low LVRTs is attractive to a relocating processor. Now, if many processors

try to relocate at the same time they all move to the same attractive partition. This

is called partition saturation and is discussed in Section 7.10.4. Once this occurs,

the large number of processors in the partition may cause scheduling irregularities.

Once processors migrate to a partition they cannot leave if there is still work in the

partition. This could be bad if the partition originally had a few messages with very

low VRTs, but all future messages it received had very high VRTs. This would force

the processors to process many of these messages with high VRTs prematurely, thus

causing more backups.

Time delays between successive input messages to a task may cause many addi-

tional backups. These time delays can either be in the virtual time domain or in the real

- 250 -

time domain. Virtual-time-delay effects are sensitive to inter-message delays between

input messages in virtual time (MIT) relative to the difference in virtual time between

a task's input messages and their corresponding output messages (ND). In fact, the

ratio of MIT:ND is the key parameter. On the other hand, real-time-delay effects are

concerned with the inter-message delays between input messages in real time (IM) in

comparison to the processing time delays in real time at each task (PT). Again the

ratio of is the key parameter here. Increasing the inter-message delays in real time

(increasing IM while keeping PT fixed) or virtual time (increasing MIT while keeping

ND fixed) will increase backups. Our results show that only the ratios are important,

since scaling both the numerator and the denominator by the same amount does not

change the timing relationship of any events in either virtual or real time. Even though

these ratios are usually fixed in a given simulation, one can use the knowledge of their

effects to help determine what partitioning method or scheduling scheme is likely to

perform the best.

Let us consider simulations that do not have directed cycles in the flow of messages

between tasks. In such simulations, a precedence relationship can be defined between

any two tasks. Input nodes have the highest precedence. A task T is said to have

higher precedence than task U if T is fewer links away from an input node than U

on the shortest path from an input node. Tasks T and U are said to be of the same

precedence if they are the same number of links from an input node on their respective

shortest paths. A precedence class is a group of tasks all with the same precedence.

In the network simulation there are clearly defined precedence classes that correspond

to the partitions in vertical partitioning. Partitions also have precedence relations.

There is said to be a precedence relationship between two partitions if each task in one

partition has higher precedence than each task in the other.

We quickly learned that the most promising-looking partitioning methods did not

always perform the best, and that one of the least promising-looking partitioning meth-

ods performed quite well. For example, if one were to partition a 16-input-node butter-

- 251 -

fly network (as shown in Figure 5.4) with the same number of messages into each input

node, such that the messages were equally likely to have any of the output nodes as a

destination, one might choose to partition the network horizontally, as in Figures 5.5

or 5.6. In this manner, one would reason that each partition would have approximately

the same amount of work and that all partitions could process concurrently, since each

partition has nodes in every stage through which a message has to pass to reach its

destination. Also, since the different nodes in each horizontal partition depend upon

each other, it is logical to group them together so as to minimize the chance that one

node would get far ahead of another in virtual time.

On the other hand, one would not intuitively choose to partition the network

vertically as shown in Figure 5.7. In vertical partitioning, one would reason that the

input partition would be very busy at the beginning of the simulation whereas the

other partitions would not be. On the other hand, at the end of the simulation the

output partition would be very busy whereas the others would not be. This method also

appears to be bad since none of the nodes within a partition depend upon each other.

Since nodes within partitions do not communicate with or depend on each other, it

does not seem necessary or valuable to prevent different nodes within the same vertical

partition from getting ahead of each other in virtual time.

This analysis turns out to be a fallacy, since vertical partitioning performs many

times better than horizontal, yielding fewer backups and faster processing times.

Why is the intuitive reasoning wrong? There are three reasons:

1. The synchronization effect,

2. The aggressive backup effect, and

3. The virtual-time delay effect.

The synchronization effect means that tasks within a partition tend to maintain

local virtual times (LVTs) that are close to each other. This effect could either act

favorably, as in vertical partitioning, or unfavorably, as in horizontal partitioning. In

vertical partitioning, the partitions correspond exactly to the precedence classes of

- 252 -

the butterfly network simulation; therefore, the synchronization effect reinforces the

precedence relationships between partitions, which is good. In horizontal partitioning,

the partitions contain more than one precedence class; therefore, the synchronization

effect tries to force tasks of different precedence classes to have similar LVTs, which is

bad, as discussed in Section 7.3.

When a backup occurs at a task R, the set of messages Q, that were already

processed are placed back on the input message queue of R. Reprocessing the messages

in Q too quickly can cause additional backups. This is called the aggressive backup

effect. It occurs whenever R has two sources of input messages, one from inside its own

partition and another from a different partition, 0. The messages in Q are reprocessed

too quickly because an inappropriately high priority is given to R (within its partition)

due to its low LVRT. Once this occurs, another message from 0 will once again cause a

backup. This effect was only present in horizontal partitioning. The aggressive backup

effect is discussed in more detail in Section 7.4. This effect proved to be the major

factor in determining whether lazy message cancellation improved performance in the

network simulation. Lazy message cancellation improved performance only when the

aggressive backup effect was present.

Virtual-time delay effects are present in horizontal partitioning, but not in vertical

partitioning. Virtual-time delay effects are governed by the ratio MIT:ND. Virtual-

time delays are lowered by decreasing MIT while keeping ND fixed. If there exists a

precedence relationship between tasks in a simulation, then one can force the simulation

system to follow this precedence relationship better by decreasing the virtual-time

delays. This will make the nodes with higher precedence classes more attractive and

the system will behave as if it had vertical partitions. The results show that this will

reduce the number of backups in the system. Likewise, increasing the virtual-time

delay will increase the number of backups. Virtual time delay effects are discussed in

more detail in Section 7.5.

Our experience suggests that it is good to form partitions such that each node is

- 253 -

either an input node or a process node. Input nodes receive messages only from outside

the partition, whereas the process nodes receive messages only from inside the partition.

In other words, we discovered that it was not wise to have nodes that received input

messages from both outside the partition and within the partition. This holds true for

a third way to partition the network, called minimum-communications partitioning,

which is shown in Figures 5.8 - 5.10.

In vertical partitioning, all partitions that contain tasks that are N links from the

input nodes have higher precedence than partitions that are N+1 links away. Like

vertical partitioning, minimum-communications partitioning has precedence relation-

ships among its partitions. In minimum-communications partitioning, the precedence

relationships among partitions only exist between partitions that communicate.

In minimum-communications partitioning, each process node receives input from

more than one task within the partition. This makes minimum-communications par-

titioning susceptible to partition saturation, which is when an overabundance of pro-

cessors in a partition leads to an increase in the rate of backups. Since process nodes

have two sources of input messages, a race condition may occur if both of the source

nodes currently have processors that are sending messages to the same destination. If

the message with the higher VRT arrives at the destination first and the destination

has an empty message queue, then backup will occur if a processor starts executing

the destination task before the message from the other source arrives. Thus, whenever

a partition has process nodes with more than one input source within a partition, the

partition is susceptible to partition saturation. As mentioned before, overabundance of

processors can easily occur in any dynamic scheduling scheme and can cause partition

saturation.

High virtual-time delays (ND=O) can sometimes increase the effects of partition

saturation by making all the nodes equally attractive. Therefore, the extra processors

may choose to execute nodes with lower precedence than other available nodes causing

more backups to occur. In this case the virtual-time delay and partition saturation

- 254 -

effects are compounded and the results are worse than if only one effect were present.

This was discussed in Section 7.10.4.

As was the case in partitioning methods, scheduling schemes also were not always

as good as expected. One of the scheduling schemes that was used in our experiments

was the continuous dynamic repartitioning scheme. In this scheme, every time a pro-

cessor finished processing a task, the processor relocated itself to the partition with

the lowest LVRT and processed the task with the lowest LVRT currently on the parti-

tion's task queue. In the other dynamic schemes, a processor would only relocate after

processing a task if there was no more work in its current partition. We thought the

continuous scheme would perform well because:

1. It appeared to exploit partitioning, thus alleviating the problem of task-queue

contention in the non-partitioning case.

2. It appeared to assure that the next task processed had the lowest LVRT, unlike

the other dynamic schemes.

However, the continuous scheme did not outperform the other schemes. In fact

the continuous scheme had many more backups than other dynamic scheduling schemes

when a good partitioning method was employed.

Where did we go wrong again? The continuous scheme did not respect partition

boundaries very well. Therefore, for the butterfly network simulations, the performance

of the continuous scheme is mainly characterized by the ratio of MIT:ND, making the

continuous scheme very susceptible to virtual-time delays. As the MIT increased for

fixed ND, the number of backups and processing times for the continuous scheme

skyrocketed, regardless of the partitioning method used.

Meanwhile, the dynamic schemes that obeyed partition boundaries were largely

unaffected by large virtual-time delays in vertical partitioning, and were only slightly

affected in minimum-communications partitioning. Good partitioning tends to shield

the scheduling schemes from virtual-time-delay effects by forcing explicit scheduling

priorities. For example, in vertical partitioning, processors tend to relocate to the

- 255 -

input partitions at the beginning of the simulation because only the input partitions

have work at that moment. Once the processors migrate there, they tend to stay there

until all of the input messages are processed. This tends to be optimal in preventing

backups.

One important factor is the average message queue length of tasks in the system.

Longer real-time delays for input messages entering the simulation shorten the message

queue lengths, because they delay messages from entering the system. Shorter message

queue lengths increase the chance of backups as shown in Section 7.7. On the other

hand, when backup occurs, many messages must be reprocessed. This adds already

processed messages onto a task's input queue, while it adds additional anti-messages

into the system to cancel processed messages. Overall, this will add more messages

into the system, and thus increase the average message queue length. Therefore, there

is a relationship between average message queue length and backups which eventually

causes a message queue equilibrium that differs for each partitioning method. For

vertical partitioning, the average message queue length at equilibrium is much higher

than for horizontal partitioning. This coincides with fewer backups in the vertical case.

The Time Warp system has many attributes that are similar to those found in the

Network Paradigm system. In the Network Paradigm system there were two important

points that have counterparts in the Time Warp system. These two important points

are safety and feedback.

For the Network Paradigm system, safety can be split into two cases:

1. The safe case - a task is in this case when all of its input queues have at least one

message. As long as the safe case exists, it is safe for the task to execute at least

one message off its input queues.

2. The unsafe case - a task is in this case when at least one of its input queues is

empty. As long as the unsafe case exists, it is unsafe for the task to execute any

of its messages, since a message could later arrive on an empty input queue with

a VRT less than the message just processed. In this case the task must wait until

- 256 -

the safe case occurs.

Feedback is also an important point in the Network Paradigm. Feedback occurs

when the network topology has directed cycles. This can cause deadlock, and may

require deadlock detection and resolution schemes.

In the Time Warp case each task has only one input message queue. For the Time

Warp system, safety and feedback have analogies. Safety can be divided into two cases:

1. The semi-safe case - a task that has a very long input message queue is in the semi-

safe case. In this case, if the message with the lowest VRT is processed at this task,

then backup is very unlikely, because the probability that a new message could

arrive with a lower LVRT than the message just processed is small. Nevertheless,

backups can only be avoided entirely if we process messages only at the task with

the lowest LVRT in the entire system (globally).

2. The unsafe case - a task that has a very short input message queue is in the

unsafe case. In the extreme case, the input message queue is empty, which cor-

responds exactly to case 2 of the Network Paradigm system. In the Time Warp

case, processing messages of a task in the unsafe case will likely cause backup.

Feedback is also important in the Time Warp case. Here, feedback increases the

real-time delay between successive messages which in turn decreases the message queue

length. The feedback case causes many backups in the Time Warp system.

In the Time Warp system, simulations with feedback generally have a smaller

number of input messages into the system. The fewer messages in the system cause

shorter message queue lengths, which in turn cause more backups.

8.3. Additional Questions

There are two major issues that were not investigated in depth in this thesis. They

are:

1. Task Granularity and

2. Feedback

Although granularity was not investigated in this thesis, it is a very important

-257-

issue. Granularity is the size of a task. We handle granularity by making each task

a logical element of the simulation. A related thesis by Arnold[1] discusses a different

approach. The logical elements of his simulation are called atomic units. Each of his

tasks (he calls these partitions) contain any number of atomic units. When backup

occurs, the state of all the atomic units in a task must be restored. The number of

tasks in a simulation equals the number of physical processors. The research attempted

to give each task approximately the same number of atomic units. The research does

not discuss how to assign atomic units to tasks.

The major drawback with his approach is that even if only a few atomic units

of a task need to back up, all of them are backed up. This does not occur in our

system because our tasks are equivalent to his atomic units. Therefore our backups are

localized. Although we have chosen our tasks to be small atomic units, there are no

restrictions in our system requiring tasks to be chosen in this manner.

Even though Arnold's thesis experimented with varying task sizes, his experiments

were limited to six processors and static scheduling. Therefore, task granularity is still

a major area where additional work could be done.

The other major area where additional work could be done is simulations with

feedback. What is the best partitioning method to use in feedback systems? How

much do virtual-time delays affect feedback? Can additional null messages reduce

backups in feedback systems?

In the Network Paradigm system, a partial solution to the unsafe case is to send

null messages between linked tasks that have not communicated for a specified period

of real time. Similarly, to increase the message queue length in the Time Warp system,

one might envision a plan to introduce many null messages into the system to help keep

the tasks synchronized. This might be especially useful in feedback systems where the

message queue lengths tend to be much shorter than in the non-feedback systems. The

question is how much extra processing time is required to process all of the additional

null messages? Is the amount of processing time devoted to processing these null

- 258 -

messages a small enough percentage of the total processing time to make it worth

doing?

During this thesis research, it became clear that running larger examples was more

informative and gave more consistent data (average message arrival time plotted against

either processing time or number of backups). In 16-input-node network simulations,

versus 8-input-node network simulations, the effects of varying parameters became more

pronounced. Unfortunately, Concert, the multiprocessor used for our work, proved to

be very prone to crashes in the larger simulation regime. Future research needs to be di-

rected towards these larger simulations, those having more nodes, more partitions, and

on reliable machines having more than 32 processors. It will become most important

to determine how our system performs on these larger scales.

- 259 -

IX. APPENDIX

This appendix illustrates the six different random partitions used on a 16-input-

node butterfly network. These were originally introduced in Section 5.5.2. They were:

1. R 8 a with 8 partitions is shown in Figure 9.1.

2. R8b with 8 partitions is shown in Figure 9.2.

3. R 8 c with 8 partitions is shown in Figure 9.3.

4. Ri 6 a with 16 partitions is shown in Figure 9.4.

5. R 1 with 16 partitions is shown in Figure 9.5.

6. R16 with 16 partitions is shown in Figure 9.6.

Partitions belonging to R8a, R8b and R8 c were made to contain 12 tasks each,

whereas partitions belonging to Ri6a, Ri6b and R16 c had 6 tasks each chosen randomly

using a uniform random variable. These tasks were either nodes, drivers or probes.

- 260 -

RAND8-1 -NETWORK
Figure 9.1 Random Partitioning I with 8 Partitions R3a

- 261 -

RAND8-2-NETWORK

Figure 9.2 Random Partitioning II with 8 Partitions Rsb

- 262 -

RAND8-3-NETWORK
Figure 9.3 Random Partitioning III with 8 Partitions R 8 c

- 263 -

RAND 16-1 -NETWORK

Figure 9.4 Random Partitioning I with 16 Partitions Ri 6 a

- 264 -

RAND 1 6-2-NETWORK

Figure 9.5 Random Partitioning II with 16 Partitions Rlsb

- 265 -

~4~4

RAND 1 6-3-NETWORK

Figure 9.6 Random Partitioning III with 16 Partitions R 1 6

- 266 -

References

[1] Arnold, J., "Parallel Simulation of Digital LSI Circuits", Tech. Rep. TR-333, Mas-

sachusetts Institute of Technology, Laboratory for Computer Science, Cambridge,

Mass., Feb. 1985.

[2] Anderson, T., "The Design of a Multiprocessor Development System", Tech. Rep.

TR-279, Massachusetts Institute of Technology, Laboratory for Computer Science,

Cambridge, Mass., Sept. 1982.

[3] Berry, 0., and Jefferson, D. R., "Critical path analysis of distributed simulation",

1985 Society for Computer Simulation Multiconference (San Diego, Calif., Jan.

1985).

[4] Bryant, R. E., "Simulation of packet communication architecture computer sys-

tems", M.S. dissertation, M.I.T., Nov. 1977.

[5] Chandy, K. M., and Misra, J., "Asynchronous distributed simulation via a se-

quence of parallel computations", Communication ACM 24, 4 (Apr. 1981), 198-

206.

[6] Chandy, K. M., and Misra, J., "Distributed simulation: A case study in design and

verification of distributed programs", IEEE Transaction on Software Engineering,

SE-5, 5 (Sept. 1979), 440-452.

[7] Halstead, R. H., Jr., "Multilisp: A Language for Concurrent Symbolic Computa-

tion", ACM Transactions on Programming Languages and Systems 7, 4 (October

1985), 501-538.

[8] Jefferson, D. R., and Sowizral, H. A., "Fast concurrect simulation using the Time

-267-

Warp mechanism, partI: Local control", Rand Note N-1906AF, The Rand corp.,

Santa Monica, Calif., Dec. 1982.

[9] Jefferson, D. R., and Sowizral, H. A., "Fast concurrent simulation using the Time

Warp mechanism", Proceedings of the SCS Distributed Simulation Conference

(San Diego, Calif., Jan. 1985).

[10] Jefferson, D. R., ET AL, "Implementation of Time Warp on the Caltech Hyper-

cube", 1985 Society for Computer Simulation Multiconference (San Diego, Calif.,

Jan. 1985).

[11] Jefferson, D. R., and Witowski, A., "An approach to Performance analysis of

timestamp-driven synchronization mechanisms", Proceedings of the 3rd ACM An-

nual Symposium on Principles of Distributed Computing, (Vancouver, B.C.,

Canada, Aug. 1984), ACM, New York.

[12] Jefferson, D. R., and Motro, A., "The Time Warp mechanism for database concur-

rency control", U.S.C. Tech. Rep., Dept. of Computer Science, Univ. of Southern

California, Los Asngeles, June 1983.

[13] D.R. Jefferson, "Virtual Time", ACM Transaction on Programming Languages

and Systems 7, 3 (July 1985), 404-425.

[14] Lamport, L., "Time, clocks, and the ordering of events in a distibuted system",

Communication ACM 21, 7 (July 1978), 558-565.

[15] Lavenberg, S., Muntz, R., and Samadi, B., "performance analysis of a rollback

method for distributed simulation", Dept. of Computer Science, U.C.L.A., 1982.

[16] Peacock, J. K., Wong, J. W., and Manning, E. G., "A distributed approach to

queueing network simulation", 1979 Winter Simulation Conference, IEEE, New

York, 1979, 399-406.

- 268 -

[17] Peacock, J. K., Manning, E. G., and Wong, J. W., "Synchronization of distributed

simulation using broadcast algorithms", Computer Networks 4, 1 (Feb. 1980),

3-10.

[18] Peacock, J. K., Wong, J. W., and Manning, E. G., "Distributed simulation using

a network of processors", Computer Networks 3, 1 (Feb 1979), 44-56.

[19] Samadi, B., "Distributed simulation: Performance and analysis. Ph. D. disserta-

tion, Dept. of Computer Science, UCLA, Los Angeles, 1985.

[20] Schneider, F. B., "Synchronization in distributed programs", ACM Transactions

on Programming Language Systems 4, 2 (Apr. 1982), 179-195.

[21] Sowizral, H. A., "The Time Warp simulation system and its performance", 1985

Society for computer Simulation Multiconferece (San Diego, Calif., Jan. 1985).

[22] Wyatt, D., Sheppard, S., and Young, R., "An experiment in microprocessor-based

distributed digital simulation", Proceedings of the 1983 Winter Simulation Con-

ference (Arlington, Va., Dec. 1983), S. Roberts, J. Banks, and B. Schmeiser, Eds.

- 269 -

