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IV. ABSTRACT

In this study, the possibilities of using general and
algebraic topology as a metaphor and perhaps even as a model to.
probe relationships in the fields of spatial perception and
'meaning were investigated., Some interesting connections emerged
and ﬁany possible avenues of both further modeling and empirical
testing are left to be explored.

The body of the work includes a presentation of the intuitive
concepts of topology, a sort of annotated guide to topology for
environmental psychologists, and an atteﬁpt, through many
fragmentary investigations, to seek out possible applications of
-the topological concepts to the study of environmental psychology.
The last two examples developed tell of'Ways to systematize the
Gestalt rules of good configuration andVexplore how topology
might describe how people perceive space through feelings of
enclosuré; separation of objects, patterns and éystems of» '
movement, '

. No empirical study in the field of environmental psychology
has gone into the findings of this paper, tﬁough several avenues
of such study are recommended. Rather, the hypothesis here is
that the forms of topology are tools that can suggest relationships

and functions of the human mind and human perception.



V. PREFACE

Though this sfudy'should be judged on its merits as a
self-contained piece, there were problems and limitations
encountered along the way which affect the final product and
which the reader ought to understand.

First, there was a deadline which kept me from exploring a
much broader range of topics in the fields related to topology,
any of which might have turned up significant results. AAlso,
this prevented any good‘testing of some pf the forms hypothesized‘
relevant to environmental psychology. Particularly unfortunate
‘was the-imposéibility of including extensive findings of my own
ohgoing research in child care centers which employs some of the
concepts of "spatial gestalt" and graph theory.

The mathematics presehted is, of course, the work of an améteur;
some statemehts’may be so condensed as to not be quite technically
correct. This is not, howevgr; important to my‘purposes here.

A third constraint wés a lack of'commﬁnicétioh with others
who might be involved in related work.. No doubt, the section on
the history of the "topology metaphor* is already obsolete.

Finally, one serious failure altered the final status of.this
paper greatly. Initially, it was my goal to discover something
‘new about perception of the environment or to clarify possible
contradictions which may exist in our understanding of such - -~
perceptipn. The latter is the role usuaily assumed by analytic
philosophers toward a branch of science in order to reveal

meaningless statements and inconsistencies in research through
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the rigérous apﬁlication of logical, systematic models. This
kind of effort might be relevant in envirénmental psychology,
particularly in the study of perception (Piaget, after all, was
an epistemologist), yet I was not, from the start, clear on
what kind of effort and restrictions this would entail and was
never really prepared to perform such a task. The first goal,
to discover new knowledge about psychology, is quite impossible
without somé kind of experimentation or ovservation of people in
real or artificial environments., A body of mathematicai knowledge
cah only be used as a model or a metaphor for a real-world
situation; in my final effort, I have endeavored to use topology

as a metaphor,



VI. MODELING BY METAPHOR

It is fitting to begin by discussing the use of a branch
of mathematics as a metaphor. What does such a use mean? Of
what value is it? What are its limitations? In this section,
I shall address these three questions.

The metaphor is to artistry as the scientific method is fo
) sdiénce. In the ways it occurs in various art forms, the metaphor
is a juxtaposition of forces that seem to have little relafion
to one another., This process may be thought of as putting on a
strange set of glasses to look a? an object just to see it in a
new way. If artists are, as Maréhall.MCLuhan says, the "antennae -
of the race” and if one accepts that we are utterly surrounded by
a mystery of which we know very little, then perhaps such a far=-
flung i&ea as looking at the spatial environment through the
*glasses®™ of topology takes on the form of a potentially useful
probe,. v

Of course, I don't pretend to Justify this effort on pﬁrely
artistic merits. There are precedents for using such a method
to achieve new ideas that might eventually become more grounded
in scientific fact. For example, Edward C. Tolman, in adopting
a sbciological model for generai behavior, calls this type of

approach a sui generis model which invents

"a set of explanatory structures and processes (hypothetical
constructs) which draw on analogies from whatever other dis-
ciplines---mathematics; physics, mechanics, physiology, etce---
as may be deemed useful. Freud's water-reservoir concept
of the'libido' and Lewin's *'topological and vector' psychology
belong primarily in this...category."*

*Tolman, Edward, "A Psychological Model", p. 283,




One justification for choosing to-use this metaphorical
model is that the seemingly "random" choice of a modeling system
is perhaps not so random at all. After all, we are limited
creatures and perhaps there are more unconscious correlations
between seemingly disparate fields of our knowledge than would ..~
at first appear obvious. In comparing the Twentieth Century .:-
breakdown of atomistic physics to the discoveries of Freud, L. L.
Whyte states,

"We hear of unstable particles in physics and of unconscious

mind in psychology. Is this a mere chance or a sign of a

parallel between the two sciences? Is there some common

factor which leads both to name a basic idea in this
backhanded manner? I believe there is..."%
In the case of the subjects of this paper, it seems quite plausible
that the men who originated the concepté of topology were
unconsciously influenced by the forms they experienced in dealing
with their spatial environment,

Still ahother reason for such a probe is the potential value.
to the modeling system itself, gaihéd through its applicatibn to
the modeled structure. The psychology of perception, even if it
does not benefit from being modeled by évdeductive system, may
still provide a concrete example of the reality of topological
forms., This could benefit the teaching of topology as well as
possibly advancing topological horizons. Since Piaget has suggested
"~ that the primaecy of topological principles in perception indicates

that it might be taught much earlier in the mathematics program,

*Whyte, L.L., Essay on Atomism, pp. 4-5.
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I hope that thisipaper can be of some assistance to one interested
in developing such a curriculum.

In adopting a metaphorical method one also must accept some
rules of operation., Tolman states these well:

“Such a model can be defended only insofar as it proves

helpful in explaining and making understandable already « :

observed behavior and insofar as it also suggests new

behaviors to be looked for. And any such model must,

of course, be ready to undergo variations and modifications

to make it correspond better with new empirical findings.

Finally, insofar as such a model holds up and continues to

have pragmatic value, it must be assumed that eventually

more and more precise and intelligible correlations will

be discovered between it and underlying...structures and -

. processes.e ¥
These are the tests, then which will ultimately determine the
validity and usefulness of the ideas presented here.

" Now that some of the reaéons underlying ahmetaphorical
approach have been noted, I would like to mention some further
reasons for attempting such a connectioh in the particular.casés
of topology and environmental psychology, reasons which are to
be found in the specifid natures of these two fields.,

Topology, as a branch of mathematiés. is a relatively recent
addition to the study of geometry, originating in the mid-nineteenth
century. In the past éeveral decades, its relationships to other
fields of mathematics have been established, thus bringing topology
into its own in importance. What is important about it is that,
though more recent than geometry, it is also more fundamental in

its theory and axiomatic basis., General topology does not concern

itself with angles, straight lines, size or shape. The concepts

*Tolman, Edward, loc. cit.
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of topology---continuity, connectedness, separation, order,
dénseness, proximity and enclosure, té name a few---are much more
intuitive to picture and describe., In actuality, geometry in
the classical Euclidean sense is a special form of topology,
one with projective concepts (straightvlines and perspective),
affine concepts (parallelism) and metric concepts (distance)

. added. |

It is in this sense that topology, or analysis situs, as it

is sometimes called, is fundamental---a very general theory of
whaf space is, though this does pot imply that the study of
topology is simple., The ﬁature éf this study is to find ways to
classify and categorize in very Basic ways as well as in more
refined distinctions., V

| Man's experience in physical space is likewise a very basic
phenomenon. By basic, i mean to differentiate the awareness
(conscious or unconscious) of being in a room or being exposed to é
wide open field on one side from the knowledge of a conceptual
relationship or one's memory of a rémoté person., This latter type
of experience is largely detaéhed from a spatial milieu, yet it

is my belief that our ability to perform these latter, more
abstraét'functions, derives from the archetypal forms we learn
from perceiving and interacting with physical space. It is the
belief that lines, angles, metrics and similar concepts cannot
adequately represent these psychological archetypes that leads

me to the study of topology. |
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* . PROCEDURES
Notation

A for all or for every .

3

2 = logically implies

there is

& or iff = is logically equivalent to; if and only iff

5= such that or so that

E!l is the real number line, i.e. all rational and non-rational

| numbers from negative infinity to positive infinity.

[2,b] is the inclusive interval between a and b (all x3a <x <b)

(a,b) is the exclusive interval between a arid b (all x 3a<x <b)

I = 0,1 the real inclusive interval between zero and one

E2 is the set of all points on the real plane, represented as the
set of ail ordered pairs, e.g. (3.45,=2%) = the element 3.45
as the first member and -2 as the‘second member, This is’
not the same point as (-2%.3.#5). (Unfortunately, we use the
same notation for 6rdered pairs as we do for exclusive
intervais. One must judge which is meant from context.)

E3 is the real Euclidean 3-space, represented as the set of all
ordered triplets 6f real rnumbers. |

In géneral, we let EM be real Euclidean n-space, all ordered
An-tupleé ofvréal numbers, ee.go (X1sXps0ee9Xp)e |

Other procedures

Key concept names are underlined when first defined.
In the glossary one can find references to the section in which

any mathematical term is first defined,
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SET THEORY AND ORDER

1, Sets and operations

1.1 Points are a fundamental accepted notion in mathemafics. A
set is represented as a collection of points by brackets, €.g.
B =£x,y,z3. One can glxo say x€B to mean x is an element of B

or x belongs to B. Sets can also be called classes---;we say '

“ AcB (or BDA) to mean A is contained in B, i.e. ¥x, Xxe A=2xe€ B,

It is also proper to say A=B if Ac B and Bc A (Vx, xe A@x €B),
Because -of logical stickiness (the Russell antimony), not all
classes can be considered sets, while sets and points are the
ohly things that have the right %o belong to (€¢) another entity,
but we need not worry about‘this problem,

‘ There is no formal distinction between points and sets; we
just céll something a point in aAcircumstance if we want it to

be thought of as an uncuttable object;A Any set can be identified
to a point (see 1.8) and treated as one from them on. It is all
a matter of perspective, _ ‘

1.2 The null set (¢) is fhe set with no members. All null sets
are identical., The universe is the whole set of points or sets
to which we restrict our discussion at a given time. -

1.3 Union (V): AuB=all x which belong to either A or B or both.

Intersection(n)} AnB=all x which belong to both A and B.

Complement (*): A'= all x which do not belong to A.

Difference (=)t A=-B=ANB',

1.4 Cartesian product (x): AxB=the set of all ordered pairs

(a,b)>asA and beB. An example is E2 which = E1x EL, 4s
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mentioned before, order matters in the‘ formation of ordered pairs.
Another example of a Cartesian product: Let M= the set of males
in a group of people and let F = the set of females in the same
group. Then MX F= the set of all possible couples in the group.
Cartesian products can also be extended beyond two-set products
to iﬁclude any  finite number of sets (e.g. EN),

1.5 A function or map assigns to each member of one set a unigue

member of another set. We say f "takes" X into Y and write

f1 X-2Y., Note that a point in y can be the map of more than one
point.in X, just one point in X or no points at all, but every
point in X has exactly one point in Y to which it is mapped. A
‘function can also be seen as a set of ordered pairs in XXY, For .
a subset Ac X, we say f(A) =B iff B=all y which have at least

one xeA ' mapped into them, Every function has an inverse
function, f"l, not necessarily a function itself. For any set
BcY, f"ll(B).sall X in X 3f(x)e B. | Y

1.6 For an f1 XY, not every element of Y must necessarily e f(x).

If this condition does hold, the map f is called surjective or
onto. Also, a y which is the function of some xeX can also be
the function of another xi in X. If this is not the case for any

y in Y, the map f is called injective or one-to-one. If a map

is injective and surjective at the same time, it is called bijective.-
A function is bijective iff f-1 is also a function. (See Fig. 1.)

1.7 A binary relation, R, in a set X, is a subset of XXX, i.e,

a set of ordered couples, if (x,y)€ R, we can also write xRy or

"x has relation R fo y". There are several special types of
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relationst

Reflexive relations Vxe X, XRX:. E.ge "1ives with",

Symmetry relation:t xRy©yRx. E.g. "is married to".

Antisymmetry relationt xRy and yRx=2x=y. E.g. "is the father of".

Transitive relation: xRy and yRz=>xRz. E.ge. in El, "isvgreater than,

Complete relation:s Every pair is related in some way---Vx,ye X,
XRy or yRx or both. E.ge. "4£" in El, 4

1.8 An equivalence relation is a relation which is reflexive,

symmetric and transitive. Every equivalence relation breaks a

set into equivalence classes such that any two members of one

class are related while any two members of distinct classes are
not and each element belongs to exactly one eguivalence class.,
"Lives with" is an equivalencé relation; *=" in E! is a trivial
example of a relation in which each point is its own equivalence
class. An equivalence relation, R, in a set X, creates a new éet,

the quotient set or X/R, whose points are the equivalence classes

created by R. (See Fig. 2.) For a subset AcX, if we let (x,y)
‘R iff x=y or both x and ye€A, then.X/R (sometimes called the
quotient set of A, or X/A) consists of X=A plus the set A
igentifigg to a pointo. _ _ _

1.9 .A partition of a set X is a group of disjoint sets which
cover'X, i;e; each x in X belbngs to one and only one éet of the

partition. A set of equivalence classes in X- is always a partition.

2. Orderings and order

2.1 A weak ordering or preordering is a relation R on a set X =

which is transitive and reflexive. If a preordering is also



Figure 1. Types of functions., The function in 1a is neither
surjective (because d Y has no inverse) nor injective (because
f(a)=f(c). The function in 1b as shown is both injective and

surjective;

thus, it is bijective.,

:—“‘::Ehk

Figure 2. Quotient set. The points of X/R represent equivalence
classes of X with respect to Rs A, B and the point x are each

identified to a point in the quotient set X/R.

1 4

soe Figure 3, Cardinality. If a simple

N> =
F e
(oA = W]
0 >
oW
N
s

bijection can be established between

two sets such as the integérs and
the even integers, the sets must
be of the same cardinality (i.e. equipotent), in this case X. Other

bijections, such as that between E! and E2 are harder to find.
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symmetric, it is an -equivalence relation, If it is anti-symmetric,

it is called a partial order or order relation. (Example: If we

allow a person to be his own descendant, the relationship
*descendant of" is a partial order of the human racej also, in
any set X, the relation of inclusion; “e", among the set of all
subsets of X is a partial order.) I can think of few examples
of a preordering which are not also either equivalence or order
’felations. In an order re;ation, it»is not necessary that every.
two elements be related (i.e., that the relation be complete); if

this condition does hold, the set is called a totally ordered set,

e.g. the relation "g* in El, (In fact we must use this total order .

‘on El before we can talk about Euclidean spaces.)

2.2 A well-ordered set or ordinal is a totally ordered set in

which every non-empty subset A has a first element, i.e.‘ﬂaieiAar
Vae A, ajRa.. A totally ordered set need not be well-ordered,

€eLe for the relation “g® in El, there is no first element for

any exclusive interval (é,b); since a does not belong to.fhe interval
aqd every element in the interval has lesser elements. The relation®
*£" is well-ordered for the set of nonQnegafive integers, but again |
not for the set of all integers. |

2.3 Remarkably enough, every set has some’relation in it which is

an 6rdinal! This alloﬁs one to "count" the elements of any set

‘and compare them with elements in any other set, since the well-

ordering - relation dictates a first element to the whole set, a

second element, etc. . Thus one can assign a cardinal number to

each set and say that two sets have the same cardinal number (or
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are equipotent) iff 3a bijective map between them. (See Fig. 3.)

So two finite sets are equipotent if they have the same number
of elements in them. The conéept of equipotence is only interesting
when we consider non-finite sets, The first non-finite cardinal
is called X, (“Aleph-zero*). If the cardinal number associated
with a set X (written card X) is X,, we also say that X is
countable. Examples include the setr:of even irit_egers, the éet of
integers and the set of rational numbers. The next highest
cardinal (we assume) and the first uncountable one is X1 and in
general one can create higher cardinals by considering the set of
all subsets of a set X, call it P(X). Then card X< card P(X).
Card »El =card EN' =Xy, I think that ‘we need only worry about the
finite cardinals, Xo and Xj. | |

FUNDAMENTALS OF GENERAL TOPOLOGY

1., Topological spaces o ,

1.1 Open sets---We define a topolo sy Ty on a set X as a collection.
" of subsets of X3 all intersections of a finite number of members

of T belong: ﬁo T and all unions of any humber of sets in TV also

| belong: to T. Each set in the -topology is called an open set.

(See Fig. 4,) # and X both T, | A set and a topology on it form

‘a tbpological space, (X,T). Note that there is no intrinsic

meaning to the term‘'bpen set" other than that any finite intersection
or arbitrary union of ope sets is open. An example of a very

strange topological space, let X= 50,13 and let T consist of {07,

§0,13 and £, but not 513 . This space, called Sierpinski space,
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is a perfectly legitimate one,
1;2 Examples: In El, let all exclusi&e intervals and all unions
of exclusive intervals be open, This is called the Euclidean
- topology for El, (Notice that if we didn't restrict our topology
to finite intersections of open sets, then (a-1,b+1)AN (a-3,b+i)n
(a=%2,b+1)N oe. = [2,b) would also be open, therefore,‘every subset
. of E! would be open.) Similarly, in EZ let the open sets be the
interiors of any closed curve, that is all the points inside, not
ineluding the points on the curve itself, and all unions of these

sets. We can likewise define the Euclidean topology for any EN

and from now on, when I speak offa Euclidean space, I mean a set
with the Euclidean topology. Infuitively speaking, because we
allow all unions and only finite intersections of the open sets,
6pen sets in Euclidean spaces are usually "fuzzy“---that is, one
cannot pinpoint where théy end because their "borders" are not
part of them, In the discussion here, I think it is worthwhile
to understand the mathematical definition ofropenness, instead
of just the specific Euclidean applicationse.

1.3 We use the word "space' to fefer to any topological space. The
word"set" is usually used to referrto a set which is not topologized.
Thus, the same set X can form many topologies, e.g. (X,T1) and
" (X4T2). For example, consider El with the topology described
above (called the Euclidean topology). Another topology could
be defined as all intervals which are exclusive at their upper
ehd and all unions of these intervals. Thus both (a,b) and
Ea,b)'are open. 301early; this topology is largef than the .
;gngligggn_jgpglggy~in the sense that it includes all of the
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. ;?%3 ' Figure 4, Open sets in E2, The three
L% ' ‘ sets shown are represented by dotted
e lines to show that they do not include

their borders. This representatlon,

the Euclidean topology is only one
possible topology on the set EZ,

- Figure 5. Two ways to form closed sets. The sha érea in 5a3
- is the complement of the open set A. The shaded area in 5b
is the closure of the open set A,

6a y ' 6b Y

' ' o . dy
)/ | x

p
r

| Figure 6. Metrics on E2, The'naturgl Euclidean metric is shown
in 6a., d(x,y)=do. The metric d(x,y)= dp+ dy, is shown. in 6b,

7a : , 7b
J i./’z

h”/;‘f

U

Figure 7. Formation of metric spaces. 7a and 7b show exémples of
| open balls for the metrics of 6a and 6b, respectively. _ Though
each of these different metrics forms a different basis, the

two bases generate the same topology.



22
open sets of the Euclidean topology and more.

1.4 A neighborhood of a point x, U(x) is an open set3xeU, i.e.

any open set which contains that point. One can also talk about

neighborhoods of a set. In Sierpinski space, the only neighborhood

- of 513 is the whole space, while {o} has itself as well as the

whole space as neighborhoods. |

1.5 Closed sets can be defined in two ways, either one neceésarily
implying the other., First, a set C<X with a topology T is
closed iff C*®* is open. In other words, the closed sets in a T
topological space are the complements of the open sets. The

second definition requires the definition of boundary or fringe,

For any Ac X, Fr(A) =all x € X> any neighborhood of x intersects
both A and A', i.e. YU(x), UNA#Z and UNA'# 4, For example, in
the Euclidean space El the fringe of the set (a,b) is the points
a and b, This is also the fringe of the set [a,b/. The second

definition for a closed set is thus: A set A is closed iff it

contains its own boundary, i.e. Fr(A)Cc A, In El, [a,b] is closed.

It is possible though, in some topologies, for a set to be both

open and closed., (See Fige. 5.) Other concepts are:

Interiort Int(A)=A-Fr(A)=all points in A that are not on the

fringe. Int(A) is the largest open set contained in As

Closure: Closure of A =X=AVFr(A) =4he smallest closed set which

contains A. Thus, for any space and any set A, Int(A) and Fr(A)
form a partition of I and Int(A), Fr(A) and Int(A') form a partition
of the whole space. A subset of a space X is dense if D=X., For

éxample. with the Euclidean topology, the vse.*b of rational numbers
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is dense in El,
%?5 A metric, 4, on a set X is a map d: Xx Xx—>EL assigning a non-
negative real number (called the distance) to each pair of points
in X, under the following conditions:
1) d(x,y) =0 iff x=y, i.e. two distinct points are a positive
 distance apart.

‘2)'d(x.y)==d(y.x) i.e. distance is symmetrical.
3) d(x,y) + d(y}z&:ﬁd(x,z) i.e. the "direct" distance between two

.points cannot be greater than any indirect distance.
A metric set is said to be bounded iff 4 has a finite maximum, M,
i.es for any x and y, 4(x,y)< M.§ (See Fig. 6.)

An open ball, written B(xjr) where X is a point in a set X
and r is a positive real number, is a sﬁbsét of X with a metric d,
éuch that all points in B are "closer" than r to x. Formally,
B(x;r)=all ye X 3>d(x,y) <rs In El with the metric d(x,y) = k-y|,
the open ball B(x;r) is just the set of all points in the interval
(X=r,x+r) . For E3 with the metric corresponding to our traditional
notion of distance, any open ball,'B(x:r); is just the set of all-:
points in the interior of a sphere centered around x with radius
Te Another example would be a four-dimensional space with three
physical coordinates and one temporal coordinate. To determine
the distance befﬁeen two events or points of this space, one must
find some way to combine temporal duration with physical length
to form a single metric. Special relativity goes beyond our
definition of a metric in this space since it states that the

distanée between two points is not uniquely determined by'the
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ggsition of those two pointsjy in addition, there are "subjective"
factors referring to the measurer., A metfic must be an objective
phenomenon., However there are many other metrics in Euclidean
spaces besides the traditional one (the straight line distance);
some of these may even be based upon objective‘psychological
statés, such as common ways in which humans distort duration and -

distance because of environmental cues. The traditional distance

is called the natural Euclidean metric.

1.7 A basis for a topology is a collection of open sets any

open set can be expressed as the union of sets from the basis.
Thus, the Euclideén topology for El has as a basis the set of all
‘exclusive intervals, (x,y). In general, we can create a topology
on a set by establishing a basis, rather than dealing with the
wholé topology. For example, for any set, X, with a metric
defined on it, we can create a space byrletting the set of all
open balls in X be the basis for a topology. The last example

of a basis for E! is such a basis. A space created in such a way.

is called a metric space. Any metric on a set thus defines a

unique space, but a topological space may not be metric or may
have several different metrics. (See Fig. 7.)

1.8 A subspace is.a subset YCa sbace (X,TX) with its ownAtopology,
Tya> Ve Ty iff V=YNU for some U€ Tx. This topology is called

the relative topology, denoted T(Y). It is important if, for

-example, we want to discuss topologies of a curve on a surface,
the iattér of which has already been topologized. (See Fig. 8.)
Obviously, if Y is open in (X,Tyx), T(Y) =all open U in X 2U&Y,
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. 8b

Figure 8., Subspaces, Consider a curve, L, 3n EZ2 as shown in 8a,
Although L and any subsets of L are closed in EZ with the
Euclidean topology, as a subspace, L contains many open and
closed sets, The subset of L within the dotted lines is open
because it can be represented as LnU, where U is open in E2,
By the same reasoning, ANL is a closed set in the subspaces
Let P= (0,a) ¥/ (a,b] be a subspace of El as in 8bs The subset
(0,2) is both open and closed in P: (0,a)= (e,d) nP= [e,d]"P.
Also, (d,b) is open and (0,c] is closed.

T

Figure 9. Continuity. For the f: X->Y illustrated, f is not continuous
since f~1(B) (with B open in Y) equals xt x1v UvL, which is
not open in X, '

Figure 10, Metric continuity. For f: X—=Y, where X and Y are bothf
metric spaces, f is continuous iff Ve >0, however small, there is
some & > 0 >f(Bx(x,8)) lies entirely within By(f(x),e)..
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1.9 A continuous function fi (X.Tx)—?(Y.Ty) maps a tdpological

s;}ace (not just a set but a spé.ce) into another >VV open in Y
(VeTy), £~1(V) is open in X (i.e. £71(V)€ T4). (See Fig. 9.)
The conventional idea of continuity in Euclidean space in delta-
" “epsilon terms (I use "e" instead of "e¢" to avoid confusion) is
just a specific application of topological continuity to metric
. spaces, that is, for any x and f(x), Ve> 0, no matter how small,

F5>0 3 f(By(x,8)) cBy(f(x),e). (See Fig. 10.)

1.10 A homeomorphism between two topological spaces, X and Y is

a bijective, continuous map, f, :?f'l(which is also a map, due to
bijectivity) is con’cinuoué. Thuéj.s. a homeomorphism is a bijective.
bicontinuous map, written fi X";‘:Y. This also means that f~1: X£vY,
If any such map exists between two spaces, we can also say that
the two spaces are homeomorphic to one another. A homeomorphic
relation sets up a one-tb-one correspondence both,betweén the

points of each space and between the open sets of each topologys.

We say two homeomorphic spaces are topologically equivalent (that
homeomorphism is indeed an equivalence relation is easily |
verifiable) and the qualities in which the study of topology is

most interested are topological invariants, that is, qualities for

which, if the quality applies to a space X, it applies to any
space homeomorphic to X. Examples: 1) El is not homeomorphic
to EN, nor, in general, is EMZEN uhless m=n. 2) A si)here?-'—’a
cube = any polyhedron or ellipsoid or any enclosing surface in E3
as long as all these figures are given the relative topology as

subspaces of E3 with the Euclidean topology. Such a surface may
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Ve e
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Figure 11, Homeomorphism. A sphere = a cube = any
closed, bounded subset of Ez; call it X, for which the quotient
set, X/Fr(X), has beentaken.

L~e
4
Figure 12, Simple nonhomeomorphic curves. These curves must ‘be

no?~homeor§hlc since any continuous fi K<L would have to have
“H(a)= 7 (b))

Figure 13. Homeomorphic classes among surfacé

[AINELR

in E3, The sphere, the 1-fold torus (just called torus); and
the two-fold torus are examples of three different homeomorpic
classes among the surfaces possible in E3; In fact, all other
physically real homeomorphic classes of this type surface are
exemplified by all the n-fold toruses, where n is any positive
integer.
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be pictﬁred as a.closed, bounded sheet in a plane with all the
boundary points identified to form one point. (See Fig. 11 and
12.) Yet none of these surfaces is homeomorphic to the surface
of a l:ﬁﬁld_jg;gg&or simply called a torus) or donut-shaped
figure. (See Fig. 13,) Because of the equivalence classes created
by homeomorphisms, topology is said to be geometry without size

or shape.,

2. Separation

2.1 There are several axioms of separabilify referred to as Ty,
Tl,Té. etc. (I only know of those up to Tg through my reading),
Each s;cdessive one is more restrictive than its predecessors.,

We will only look at T2 and Ty, the most important dnes. although
for my purposes, many possible psychological spaces are less
clearly separated than the ones that topologists study, so the
lower -axioms become more relevant. ; |

2.2 We call a space Ty 1ff for any two p01nts. at least one of

- them has a neighborhood which does not contain the other point,
One might say that at least one‘point can be separated from the
'other. A space is Tq iff for any two points, each has a neighborhood
not contalnlng the other, i.e. each point can be separated from
the other. A space is _2, also called Hausdorff, iff, for any
two points, x and y, there are neighborhoods U(x) and V(y)B-

UnV =g, in other words, if any two points possess disjoint
neighborhoods.

2.3 Examples: All metric spaces (including the Euclidean spaces)

are Hausdorff. Since most spaces we can intuitively grasp are
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Hausdorff, I will provide some mathematical examples that are
not‘Hausdorff. (See Fig. 14,) Sierpinski space is T, but not
T1 or To. The only points to consider are 0 and %t; 0 can be
separated from 1, but 1 has no neighborhood which does not contain
0. Ahéther example of a Ty but not T{ (or higher) space is the
space X==[O,1)c:E1 (the interval which includes 0 but not 1)
_with Txy=all BcX3B= [0,k), for any k greater than 0 and 41.
Any neighborhood of xe€X contains all y <x .so the lesser of two
points can be separated from the greater one, but not vice-versa.
A final example is provided by any infinite set with the topology
consisting of all sets of the fofm X'minus a finite number of
points. This space is T1 but nof Hausdorff: for two points
x and ye€ X the open set X-y is a neighborhood of x which does
not contain y and likewise the set X-x separates y from x, but
these two sets (and any other two sets)'cannot satisfy the Hausdorff
condition since they interséct. r
2.4 All points and all finite sets are closed in a Hausdorff
space (though they may also conceivably be open). A subSpace of
a Hausdorff space is also Hausdorff.if it has the relative topology.
And the Hausdorff quality is a topological invariant (i.e. any
space which is homeomorphic to a Hausdorff space is Hausdorff).
2.5 A space X is Ty or normal iff V disjoint closed sets A and B
in X, jopen UDJA and an open VoB2UnV=g4, The requirement for
hormality jusf replaces both points in the Hausdorff condition
with closed sets. Another, intermediate condition, called T3 or

regular requires that there be nonintersecting neighborhoods fdr
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14a;- ... : - 1bb
ey e—fr-1r+p
(I a £

Figure 14, Spaces of little separation (Ty)s Sierpinski space,
whose open sets are shown in 1ba, is Tot O can be separated
from 1, but not vice-versa. The interval (0,1) with open sets
aTl of theiform-(0,x), 0< x<1, is also T, since any neighborhood
of b also contains a, though a can be separated from b,

-
-

. £ e
15a, - 15b ¢ oa 15¢ o, ‘@
XY 3B e 8

L’,' N, \‘ -

Figure 15. Separation axioms. Separation asks if nonintersecting ‘
neighborhoods canbe found for: 15a) distinc¢t points, Hausdorff;
15b) a closed set and a distinet point, regularity; 15c¢) non-

intersecting closed sets, normalitye.

Figure 16. An alternate characterization for normality. For any

closed set A and any neighborhood U(A), is there an open V such
that Ac Ve ¥ U?
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any point and any closed set which does not contain that point.

For»any'SPace; nbrmal implies regular which implies Hausdorff
and normality is the strongest criterion i will cbver; (See
Fig. 15.) | ' .
2.6 There is another easy way to define normal: A-space X-isz ,
normal iff ¥ closed A and any open neighborhood U2 A, Jan open
VBAcVcVcU, (SeeFig. 16J) Nofma.lity is a topological
invariant, but a subspace of a normal space need not be nbrmal,

unless it is a closed subspace.

3. Connectedness

3.1 A space is gonnected iff there exists no partition of it

into t&o or more open sets. An equivalent way to state this is
that there can be no subset which is both closed and open (other
than £ and the space itself). Any EN with Euclidean topology is
connected; in fact farru)l, ER minus any countable subset is
connected. Connectedness is invariant under anyfcontinuoué mapping.
3.2 A subset of a space is connected iff it is connected as a -

- subspace, (This is a definition, not a.derived fact.) Thus, for
example, though El is connected, the set D=E! minus any point x,
"is not, since fall:y< x3 nD= fglt y<x§ nD is both open and closed
by the relative topology. (Fig., 8b pfovides another similar
-example of a disconnected subspace of Ei.) In general, the ohly
connected subsets of El are individual points, intervals and El
itself, .

3.3 A component, C(x), of a point in a space is the largest
connected subset of the space which contains x. Examples: In

the example given above .in 3.2, there are just two components:
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gall_ Yy <x3 and %ll y> x}. In the set of all rational numbers
considered as a subspace of El, each ﬁoint is its own component
because no two points belong to a connected subset, In a
connected space there is only one component. The relation
"belongs to the same component as" is an equivalence relation,

so the components of any space form a partition of that spaces

. Every component is a closed set.

3e4 Intuitively, the presence of disconnection in a space means
that there is at least one subset, A, Int A=A=1X, Thus, A

has ho border outside itself though it is open or "fuzzy".
Usually, I picture,disconﬁection %s b:eaking a Space into two
(or more) totally disjoint subsp;ces with no "interesting®
relationships between individual members or subsets across the
break(s).

3¢5 A path is intuitively a curve in a space which connects two
points, formally p: I->X, is a continuous map, with p(0) called
the initial point of the path and p(1) called the terminal point.

(Fig. 19 incidentally shows some paths.) The concept of path is
important in many fields of topology.

3.6 A path-connected space is a space in which every two points

are connected by a paths This is a more intuitive notion of
connectedness than the first one and it is also stronger, though
in most cases comes out to the same thing. The path-connectedness

idea also leads to path-components in an anlogous way.

L, Cdmpactneés

b4.1 A—Acovering of a set is a collection of sets 2 every x € X belongs
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to at least one member of the covering. An open covering of a

space is (obviously) a covering in which all the sets are open,

€+.ges any basis. There are both finite coverings and infinite

coverings depending on the size (i.e. cardinality) of the covering.

A subcovering is a covering which is a subset of the origninal
covefing, i.e., is a refinement of the covering in that it elimi-
 nates éome redundant sets,.

'4.2 A space is compact iff every open covéring contains a finite
subcovering. (See Fig. 17.) éompactness is invariant under all
continuous mappings. Also, any closed subspace of a compact

space is‘compact; |

4,3 Examples: Consider the interval (0,1) as a subspace of El

and the infinite opeﬁ covering including all sets of the form
(Q,l-%)kfor each n» 1, This is indeed a covering=---every point
belongs to some interval, no matter how’close to 1 it is-==yet
there is no finite refinement of this covering which still covers
the whole interval; hence (0,1) is not compact. The unit interval
I= LO,l] » on the other hand, is compact. For instance the infinite
open covering which includes every [O,i-%) ﬁlus (1-é.£] for ‘some
fixed m) 1 can reduced by eliminating ali but a necessary number
of sets, e.Le [9,1-5%1? and (1-%].

L4 Metric spaces provide a more understandable meaning for
compactness., A compact subspace of a metric space is necessarily
closed and bounded and, in particular, for any subspace of a

| Euclidean space ET, compactness closed and boundeds

4,5 A Hausdorff space is 2° countable (read: "second-degree

countable") iff it has a countable basis. For a space to be 20
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Figure 17, Compactness. The illustration
symbolically shows a possible infinite open
covering of a space, X. Can a finite sub-
collection of these sets be chosen which
will still cover X? If'so, X is compact.
Closed and bounded subspaces of Euclidean

spaces are always compact.

-\ Figure 18, Convergence. An infinite sequence

of points, x, (n ranging from 0 to infinity)
-_UCFTﬂ' in a space, X, is said to converge to a point,
el %, ifF every neighborhood of x contains all

but at most a finite subset of the xp. The
point x is called a limit point of the sequence.,
In fact. this concept is akin to the idea of a fringe.

- #i _ 1)
Figure 19, Homotopy of paths. Functions f ind g are mappings of
I 0,1 El into a épace. X. We say f is homotopic to g iff
there is a continuous deformation of f into g, i.e. a continuous
set of paths with f as the first path and g-as the last. Unlike
homeomorphism, with homotopy, the deformation must take place
within a space (in this case X) that both functions relate to.
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countablé every open covering has a countable subcovering. So
20 countable is a weaker property thaﬁ coﬁpactness. For example,
El is 20 countable. Consider all open balls, B(x,r) both x and
r are rational numbers. This set is countable and is a basis.

Yet El is not compact.

5e Convergence and completeness

(5.1 A.sequence is an infinite set of points, X1 9X29e00 called
"the sequence xpn." A sequence xp is said fo converge to a point
x a. space X iff for any neighborhood U(x), an integer N n N
Xn U. (See Fig. 18.) |

5.2 In a Hausdorff space, a sequénce can converge to, at most,
one point. |

- 5.3 The €auchy criterion for convergence in a metric space is

this: For any positive number e (no matter how small), Han integer
Ny> Vn and m both greater than N, d(xn;xm)<’e. ire. the members
of the sequence grow closer and closer to each other as the
sequence progreéses. (This is not quite the same as saying that
the members grow closer and closer to a limit point, which is the
criterion for convergence in a metric space.) If a sequence in

a metric space converges, it meets the Cauchycriterion; the
conﬁerse is not necessarily true, but if it is, the metric space
is called complete., Note that a space may be complete with one
metric, but not with another. In general we call a space complete
if it has at least one complete metric,

5.4 Examples: All Euclidean spaces are complete. The interval

(0,1) as a subspace of E! is not complete, for the Cauchy sequence
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xn=§% converges to a point outside of_tﬁe space, nameiy O+ The
rational numbers are similarly incomplete since a sequence of
rational numbers may converge to an irrational, Though the !
irrationals.aré alsolincomplete with the natural Euclidean metric,
there are other metrics for which the irrational numbers are
éompiete#~.

5,5 0ddly enough, completeness is not a topological invariant.

6+ Homotopy

6.1 Homotopy (%) is a relation between_two continuous functions
that take a given topological space into another. We say that
‘given fr XY and g1 XY (or simply f,gt X-2Y), f=g iff Ja
cbnfi.nuous F: X XIY »F(X,0)=f(X) and F(X,1)= g(X). Intuitively,
if we let Fy=F(X,t) for 0 {t<1, then the set of all the Fy |
represents a continuous deformation between f and g, So that I“oy= f
and F1 =g, (See Fige 19.)

T

6.2 A constant map, f1 XY is a map for which ¥xeX, £(x) =Yoo

In other words, f takes the whole space X into'oneApoint.of Y.
Such a map is always continuous. Any function homotopic to a

constant function is called nullhomotopicC.

6.3 YX is the set of all continuous functions from X into Y,

called the function sets Homotopy is an equivalence relation

on this set and divides it into homotopy classes. For example

in a connected space there is one and only one nullhomotopic
class, i.e. set of functions which can be deformed into a
constant map. If a space is disconnected, there are as many

nullhomotopic classes as there are components,
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Figure 20. Basic homotopy classes.of loops:on a torus. cg is a

nullhomotopic loop and thus belongs to the null class. ¢q is
called a meridian and €2 jg called & parallel.s

-~
n "

H
= O

3 q

Figure 21, Homotopy classes of loops on a torus, All classes of
loops on a torus can be described as a combination of two
integers---the number of times thehloop crosses the meridian
(or goes around a parallek), called r, and the number of times
it crosses a parﬁ;lig ggoes around in the direction of a meridian)

2 /{,’ 4 ' Called S. .

r=10
=2
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6.4 Paths are a particular type of function, pt I-Y and among:

these there is a subset of closed péths; called loops or Jordan

. eurves, consisting of those paths for which the initial point and
terminal point are the same, i.es p(0)=p(1)= yg+.“This set of

loops is called the fundamental group at yo when its homotopy

classes are identified,If the space, Y is cbnnected; then all

_ fundamental groups have the same form, regardless of their

base point yge

6.5 Examples: On the surface of a sphere, any closed path is
continuously deformable into a point, i.e. all loops are null=-
homotopic, so thevfundamehtal gréup has only one member, Whenever
the fundamental has only one mebér; the space is called simply-
connected; thus, all closed surfaces homeomorphic to a sphere
are simply-connected., All Euclidean spaces are also simply=-
connected. For the 1-fold torus, the Situation is more complex.
(Seé-Figs.'ZO and 21.) And for toruses with moré "donut-holes"
fhe complexity multiplies considerably.

6.6 The unit square is I%= Ix I, Generally, the unit n-cube =

In = the set of all n-tuples (til,'ug,...,un) with 0g2u;£1 for any
i from 1 to n. J2 is the boundary of IN defined .to be all points
with at least one co-ordinate equal toAO or 15' (See Fig. 22.)
If we have a space Y and consider all continuous maps pt IN=>Y
:9§éﬁn)==y5 and thence the homotopy classes thus formed, we find

we have an n-dimensional homotopy grouv. This whole concept is

nearly impossible to visualize, but it becomes easier if you -

realize that the fundamental group is just the one-dimensional



39
homotopy group and try to extend it f:bm-there;

6.7 Homotopy bears a peculiar relationship to homeomorphism,
Homeomorphism compares the forms of spaces in a very fundamental
way, while homotopy compares various maps between two spaces,
and thus is usually a way to measure the relative complexity of
spacés. In many cases, comparing maps to see if they are
deformable into one another is the same as comparing those maps
considered as spaces, Yet‘in_other cases, there is a difference
€egZe loops which are all homeomorphic to one another as spaces
but not always homotopic as maps. Beplaéinglnne of the two
Spaceé in a function set by a Spacé homeomorphic to it will not
‘change the structure of the hohotopy classes; we have already
used this fact to assert that all spaces homeomorphic with the

sphere are simply-connected.'.

GLIMPSES OF ALGEBRAIC TOPOLOGY

v

This section may seem contrived and quite distant from the
last two. This is partly because its paracticél applications are
aiready so well de?eloped that I have directed my choice of what
to cover towards those known uses and also partly because, in
ignoring some of the difficult theoretical material, particularly
the concept of homology, I have cut out many of the means by
‘which one could have seen how it all fits together., Nevertheless,

this section will stand up on its own and suit our purposes well,

1, Simplicial complexes

1.1 In EM, a set, P, of m points (m¢gn) is linearly indevendent,

PR RS - . . .
: e ot t L e T et
. ') R . el e T ? R P I PO

-
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Figﬁre 22+ The unit n-cube, 22a=-c¢c show the unit n-cubes for n =
1, 2 and 3. In each case, J represents the set of all points
on the boundary of I (where J is just two points), I2 (J is all
points on the four edges) and I3 (J is all the points on faces,
edges or vertices, If we form the homotopy classes of the
mappings of I™/J onto any selected space, X, we obtain the
n-dimensional homotopy group. For n=1, I/J is a loop and the
group obtained is the fundamental group.

Figure 23, Linear subspaces of Euclidean spaces,
Because points b, ¢ and d are not linearly
independent, the dimension of P==§é,b,c,q3 is only
2. The subspace spanned by éé,b;c,qj is E2, the
plane of this sheet of paper. The convex hull
formed is shown by the shaded area.

Figure 24, Convexity. A figure is convex (in a
Euclidean space) iff any line segment connecting

two points 'of the figure is totally contained
within the figure. 24a is convex in E2, 24b
is not. '

24b
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iff, intuitively speaking, no subset cqnsisting of 3 points |
lie on a line, no 4 points lie in the same plane andy in genéral,
no i+é points lie in the same i-space, The dimension of P is m |
if P is linearly independent; otherwise the dimension is the .1
dimension of the largest linearly independent subset contained
in P For any PcER, the dimension of P<n. (See Fig. 23.)
~1s2 A set of points, P, forms a linear subspace of En iff: all
the points on any line determined by two points in P also
belong tp P. If the word "line" in this definition is restricted
to the "line segment® between two points in P, we have a convex

linear subspace, - In general,“any flgure foriwhHich any line segment

between two p01nts is contained in the figure is called convex,
(See Fig. 24.,) For example, three linearly independent points
will determine a traiangle as its convex subspace. A set.of mkl
independent points (or any . m-dimensional set) will determine
the interior of an m-dimensional polyhedron, with the points of
the set as vertices. The points of the set are said to span the
subspace. |

1.3 An open m-simplex (rM) is a convex linear subspace spanned by

m+l linearly independent points. The union of an open m-simplex
and.its'boundary, the surface of its m-~polyhedron, is called a:

closed m-simplex (v@), A g-face of an m-simplex (q< m) is a

g-simplex whose spanning set of g+l points is a subset of the
spanning set of the m-simplex., Thus, a O-face is called a vertex,
a 1-face is}called an edge énd a 2-face is usually just called

o face. : T _

a
Lo
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'1 b A SIMDllClal complex or just comglex is a set of simplexes

of (p0531bly)var10us dlmen31ons with the only stipulation belng
that all the g-faces (0£q4m) of any m-simplex,are also members
of:-the:complex. (See Eig. 25.) The dimension of a complex K

is the dimension>of the largest simplex in K, i.e. the maximum
m for which Jan m-simplex in K. A g=-section of a complex K is
the subcomplex consisting of all m-simplexes Fm 4q.

1.5 Triangulation is a process of finding for a given subspace

of an EN, a complex K, so that for any point in the sﬁbspace,’
there is a simplex K that contains the point. To extend
trianéuation beyond just polyhedra, we must define a new
simplex = any set which is homéomorphic to our previous definition
.of simplex. (Some triangulations of two-dimensional spaces are
il;l.uétrated in Figures 26 and 27.)

1.6 The Euler characteristic of a triangulation is a function of

the number of simplexes of each dimension that belong to the
triangulating complex K. Each subspace of EN has an Eulef T
ch?racteristic which does not changé for different trianghlations:'}
moreover, the Euler characteristic (I will call it P) is a
topological invariant. The formula for é.ny two~dimensional
figure is P = the number of z-faceé minus the number of 1-faces
(edges) plus the number~of O-faces (vertices)=F-E+V, P for
- any simply-connected, bounded space"s"*’a; sphere =2, P for any

space¥a 1-fold torus =0, P for any space¥ a disk=1,..

2e Gra.EhS
2.1 A graph is a set of points, A, with a relation PCAX A, In
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Figure 25, Simplicial complexes. - Illustrated is a simplicial
complex with one 3=face (EFGH)T five 2-faces (ABC, EFG,EFH,
EGH and FGH), ten 1-faces (or edges) and eight O-faces (or
vertices). This complex is not connected.

Figure 26, Triangulation of a sphere. One
possible triangulation of a sphere into eight
curvilinear faces, 12 edges, and six vertices.
€he Euler characteristic, P =2,

> P
D
E. E
»:; € A

Figure 27. Triangulation of a torus. The illustration represents
a triangulation of a torus into 14 curvilinear faces, 21 edges
and seven vertices.: P=0s; (The representation is formed into
‘a-torus by joining the upper and lower edges of the rectangle
together (ABCA) to form a cylinder and then joining the two
bases of the cylinder (ADEA) together to obtain a torus.’)



simpler terms, a graph is a set of points with some pairs of them
connected by arrows, called gggga; We write (x,y)e€ P iff there is
an arc from x to Yo The basic things we seek to ask about a
graph deal with the form or pattern of the existing arcs. (See
Pig. 28a;) |

2.2 A graph is reflexive®all possible loops are included, i.e.
| - iff Vx, (x,x) P, |

A graph is transitivee® if {a,b) and(b,c) are arcs, then so is (a,c)

A graph is symmetric & if (a,b) is an arc, so is tb,a). A symmetric
graph usually uses a non-dlrected line, called an edge, to represent
any arc-pair or loop. (See Fig,: 28b.)

- A graph is anti-symmetric & if (a,b) is an arc and a# b, then

(bya) is not an arc.

- A graph is complete & every pair of points is connected by at
least one aréy

An egulvalence graoph is a symmetrlc, reflexive and transitive
graph.

A preordered gravh is transitive and reflexive,

An ordered graph is anti-symmetric, transitive and reflexive.

A totally-ordered zraph is complete and ordered.

2.3 A path (or chain, in a symmetric graph) is an ordered set

of arcs (or edges) Feach arc (or edge) except the last leads into
the same point that its successor leads out of; (In Fig. 29a,
abcdefg is a path.) A circuit (or cycle, in a symmetric graph)
is a specific kind of fath (or chain) which ends at the same

point it begins.

s
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28a

Figure 28, Graphs. 28a shows a graph and 28b shows the same graph
represented as a symmetrical graphs In either case, the point

X is an articulation point.
| - ///,//r |
/

Figure 29. Arborescences and trees. 29a illustrates an arbdrescence
and 29b shows the same figure represented as a tree. Note that,

while every arborescence has a unique root (in this case at a),
a tree need not have a unique root. |

Figure 30. Simply-representable graphs. Both of the figures
shown above are not simply-representable in two dimensions.

Figure 31. A simply-representable configuration
in three dimensions for 30b. Note that the
cyclomatic here is 10. '
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2.4_One'often waﬁts to know the Qualities and “"density" of the
overall connectioh in a graphe. A graph is connected iff: there
is no way to divide tﬁe graph into two‘parts without;at least

one aré joining them. A graph is strongly connected if there

is a path leading from any point to any other point. A connected,
gYmmetric graph is automatically strongly connected, A point in
a connected graph, the loss of which point would mean a disconnec-

tion is called an arficulationApoint. (See Fig. 28,)

2.5 In a symmetric graph, there are several indexes used to
relate the numbef of edges, E,and the number of points, V, to

tell us something about the "density" of the graph. ;3 =-%-is

the simplest, but there are many others,

2.6 Another key concept in gréph theory is disfance, though it
rarely meets the requirements of a metric in the sense we used

it previously. The length of a path or chain is equal to the |
number of arcs 6r edges in it. The‘distance from x to y, d(x,y)
is the length of the shortest path (or.chain) from x to ¥

| Example: In Fig. 28a, d(x,y)=3 andjd(y;x)==2. Only in a symmetric

graph does d(x,y)= d(y,x) always.

2.7 In.a strongly connécted graph, the diameter is the maximum

disfance found between any two points in the graph. In Fig. 28b,

the diameter =3, For a given point in a strongly connécted graph,

its accessibility = the sum of the distances from it to all other

points. In Fig. 28b, the accessibility of x is 14. The Konig
number for a point is the maximum dlstance to any point. In the

whole graph, the mean dispersion is the average access1b111ty for
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ali the ?oints in the graph.

2.8 An arborescence with a:root r (oné of the points in the graph)
is a graph with every point having only'oﬁe arc leadingt into it,
~except r which has none. A tree is a symmetric representation of

an arborescence, with arcs replacéd by edges. (See Fig. 29,)
Arborescences and trees have no circuits (or cycles). Another

- way to think of a tree is as a mimimally-connectéd symmetric

graph, E=V-1, A tree is one of very few graphs for which distance
is a true metric.

2.9 1 will call a symmetrical graph simply-representable iff it

can be represented on a piane wiﬁhout any afcs or edges interéecting
one another., More generally, I Qill éssign a gimension n to a
graph (not to be confused with previous‘definitions of dimension)

' iff EM is the smallest dimension Euclidean space in which the
graph can be represented'withoutintersaﬁim% A graph of dimension
1 is no more than a chain. The largest complete’ graph which is
simply-representable (dimension 2) has only four pdints. (See
Fig. 30 and Fig. 31.) -

2.10 Any graph in simply-représented form on a plane can be seen
as a degeneralte form of a triangulation if we expand the concept
of 2-face (or just face) to include any cycle, no matter how

many members, that is not subdivided into other cycles. If we
allow this system, we find that any'such graph has an Euler

Characteristic of 1, i.eo F7E+V==1; Another way to express it is

in terms of the cyclomatic or number of cycles in a graph. Since

this is the 'same as F, we say‘C==E-V+1 for any gfaph of dimension 2.
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'SUMMARY

The point'of this summary is to pull some of the‘majbr
points of this mathematical outline together in a concise fashion
and to emphasize to the reader those concepts of topology which
I feel are most applicable to environmental science and psychblogy.
These are the concepts which will be explored in a rather -
disconnected fashion in the next sections,

Set theory and order---Set and operation ideas are very

general ones which form the foundation of any mathematical study. -
They are all that we have, so it is difficult to say anything
goodrdr bad about them, Order is a similarly fundamental concept,
‘but in it we find the beginning of the tOpologist's desire to
~categorize sets. I am led to believe that in the mathematician's - . -
few methods for ordering a space---whether it be into a partition
of equivalence classes or a comparative relation which impbses‘a
linear order of some sort and whether the points.are perceived

as a continuum (X1), as discretely countable, but still infinite
(¢,) or as finite---there may be a clue to that fiels of psychoogy

that deals with"pattern recognition®.

Genefal topology~~-=-Topology, it seems to me, has grown through
several negations of restrictive ?réviéus notions of mathematics,
thﬁs leading it to seek.broader formulations: and categories. A
. couple of mathematicians may state that the known Euclideap spaces
all exhibit the traif that any covering hés a finite subeovering,
which leads someone to ask what spaces could be like which do not

have this quality. Hénce, the study of compactness begins its
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de#glopment.

The concepts of contiﬁuity. convergence, homeomorphiém,
.8eparation, connectedﬁess, compactness, completeness and homotppy
are qualities of spaces and mappings of spaces which have’had
limited application so far and all of these in the realm of
psychology. I feel that exploration of the basic structures of
the mind is the best area in which these properties will find
further application. Perhaps the computer programs written for
the study of artificial intelligence can also utilize thé structures
involved int these properties, though this is a field of which I |
know next to nothing, ‘

Separation and connectedness offer formai means of dissecting
a space., Separation gives us é means of seeing>a part of a space
as an object uﬁto itself while connectedness allows us to relate
any part to any other part. They are not opposites though. A
space can have both, or neither.or just one of these characteristics.,

Convergence is a formal way to characterize proximity. By
‘isolating a Bequence of points and an-“idéal" to which these
points grow closer and closer we have discovered a convergent
'seQuence. If the space.is not Hausdorff separable, then thié
ideal is not unique; if the space is metric in some fashion,
then we can have sequences which "ought" to converge (i;e. Cauchy
sequences), - but may not coverge if the metric -space is incomplete.

Compactness and 2°.countab1e are topological concepts which
measure the complexity and depth of a’topology in much the same

way that cardinality measures any set. In a psychological space
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the absehce‘of compactness means that the ﬁind has no method of
ahalysing the space into é finite set.of complexly related}(i.e.
open) overlapping components. To say a subset of a space is
compact is a much more detailed characterization of®fuzziness"
than openness, for compactness measures this fuzziness or unfathom-
ableness throughout a set while openness is only at the borders.

' Homeomorphism and homotopy are equivalence relations which
compare structures of spaces and functions between spaces,
respectively. I will discuss possible applications of these tools
sooﬁ, but. I should note here that examples of their use golfér |
are almost ehtirely as exﬁlanatofy and clarifying metaphors, not
as models which can generate poséible new data.,

Algebraic topology---With the application of purely topolo=-

gical concepts to structures of graphs and simplicial comﬁlexes;.

much of the broadness and complexity ofwthese general categorizations’
is lost, or at least reduced to an algebraic situation with highly
precise numerical indexes substituted for depth. The notions -

about algebraic topology presented in tﬁis paper are just a small
sample of what is possible---fhis is because my emphasis is on

thé possibilities of application to psychological problems, for

which the broad concepts of general topology, including non-Eucli-

dean spaces, may be found to be most useful.



VIII. APPLICATIONS OF TOPOLOGY TO
ENVIRONMENTAL PSYCHOLOGY

51



52
| PAST EFFORTS*

Topology, despite its youth, has already earned quite an
illustrious history of use as a modeling system, Basically, most
of these applications have occurred ourside the field of general
topology, using principles of graph or network theory, a branch
of algebraic topology, the development of which has consisted -
greatly in the work of applied mathematicians and specific
practitioners.,

Network theory has had.broad applications to many purely
physical systems, such as transportation systems, other urban
service delivery systems, electronic circuitry and certain aspects’
of economics (e.g. imports and exports among é set of nations).
Part of the appeal of graphs to these studies is that they are
easily adapted to a simple levél of computer programs, including
the use of numerical weighting of the connections between |
points. Such systems will not be discuséed here, since they are
in no way psychological; however they are useful since they
demonstrate the complex development of which network theory is

capable. - |
| ‘ Another major use of network theory, more directly related
to human psychology. is the 3001ogram, a tool of analytic
sociology in whlch points represent people in a group and arcs
or edges represent relations between them such as communications
relayed (letters, phone calls, conversationé, eté.) or relations

of authority, kinship or friendship. This analysis, with much

*Any reference to authors of books or papers is listed in the
bibliography."
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clearer aefinitions of certain concepts than a purely intuitive
approach is an excellent tool for obsérving leadership qualities,
bureaucracies and hon-hierarchical social structures, cliques
and strengths of connection in a group, to name just a few, OFf
course, there is a limitation of such a reduction of individuals
to total equals, or, possibly with the aid of some weighting
. system, equals who differ only in one linear value in addition
to the differences in the position of each individual in the graph
relative to the graphed relation ship. This reduction hampers
the édaptation of this sociometr;c model to individual or inter-.
personal psybhology as weil as té man-environment relationships,
as we shall observe. |

An interesting application of a nefwork model to city
SyStems'is noted by Christopher Alexander in "A City Is Not a
Tree." Actually, this "free” is an arborescence., In his model
of the city, the root point is the entire city, possibly repre-
sented by its government, and the other points signify systems
or elements of various syétems of serviées throughout the city.
The idea is that an individuai or group may be served by mofe
thén'one element of a system (e.g. he may visit and use several
libraries outside of his neighborhood branch) and also served by
several different systems which overlap to meet his (or their)
integrated needs. Alexander takes municipal planners to tasszor
ignoring this overlap of elements and overlapping needs of
individuals. They rely on a bureaucratic (tree) model of
districts and-sub-districts and neighborhoods and segmentation

. bf individual needs which not only ignores the human psychological
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situation in cities, but also the factAthat cities are primarily
formed so as to provide increased mobility for residents to . -
~enlarge choice and possible configurations. The planning connec-
tions ought to be multiplied to conform to the realities of city
living.

;Alexandér has generally been interested in applying mathema-
tical models to the architectural and planning processes, yet most
df them have been only tangential to perception of environments.,
An application of the network approach which is much closer to
the mark is a paper by Ranko Ban, which looked at the micro-
envirénment of single-family dwellings ét a scale with considerable.
‘direct relevance to humans, By using points to represent rooms
and edges to symboliie doorways and other connections, he was
ableAtb classify various possible configurations of a house, and
particularly to investigate forms of cyéles such as the living
room=-dining foom—kitchen-hall cycle which was most common in
frequency. Ban has done little to iﬁvestigate,theveffecté'of
such configurations on the people who live in them; thus the
psychological import of such a model ié; as’yet, unknown.,

We shall find; in turning away froﬁ networks for the moment,
that applicatiéns to sociology and psychology in the field of
general topology are mﬁch rarer, much less versatile, and thus
‘much more difficult to draw broad conclusions from,

Kurt.Lewin, the well-known psychologist, looked atvarious

formé of mathematically modeling psychology, topology among them.

In his book, Principles of Tovological Psychology, he endeavored

to ‘construct an entire framework, however rudimentary, in which
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psycholdgical behavior can be pléced and observed. Though he
did not specifically discuss perception, and dealt very little
with spatial experienée, Lewin's effort is not just the!simple
network theory of most sociologists, and thus is of great interest
to this study.

Lewin®s basic notion is that of the region, physical, social
or conceptual in which an individual may exist and possibly move
via paths to and from other regions. Barriers and boundaries
of varying difficulties are covered (though varying strehgth of
boundary is not a strictly topological qoncept) and examples are
given of structures in which an individual may exist for a time,
illustrating certain configurational qualities such as possible
paths, regions of free access énd structures built around a goal
(also represented as a region). Lewin concentrates a great deal
of his attention on topologizing conceptual processes, The.
development of any of these concepts.into theories with meaningful
implications is avoided; his purpose here is just to provide a
'system for psychologists to use in representing behavior. Of
course, in encouraging such a system, one is also encouraging a
sort of world-view that‘accompanies this system, a world-view.
which; in this case, asserts the psychological reality of the
configuration of these regions, boundaries and contiguities in
determining possibilities for an individual in a situation. As
such, I find this model useful for integrating the dynamié concepts
of spatial perception and meaning.

Undoubtedly, the author of the most significant studies done

using general t0poiogicai concepts to model experience with space



56

is the Swiss philosopher and psychologist, Jean Piaget. Combining
a habit éf rigorous analytic thinking in philosophy and skill in
péychological experimentation, he resfricted his efforts to
studying the growth of intelligent behavior in children. Child
study, more and more, seems to be a necessary prerequisite for
the study of any fundamental psychological issues, since questions
about the nature of.a phenomenon almost inevitably raise questions
. about its evolution. (Kurt Lewin was also primarily based in
child psychology.)

In .a book co=-authored by Barbel Inhelder, The Child's

Conception of Svace, Piaget documents his findings in the

development of conception (as stédied_through representation)

of space inichildren. His thesié is that before a child is

able to conceive of Euclidean space with definite sizes, shapes,
éngles; straight lines and parallelism, he concdeives of space
topologically and evolveé through intérmediate stages, most
notably a projective stage. There are but two related limitations
to Piaget's work which I hope can be overcome in the future:

One is that, in the author's words, "Thé subject of the present
work is not the development of space in general, but only that

of representational space, and, therefore the analysis of perceptual
space goes beyond our set limits." (pe. 5.) The second limitation
is the application of topological constructs only to objects as
more~or-less sparate from a spatial surrounding., Perhaps this

is a result of the emphasis on cognition and conception as opposed
to perception and spatial feelings such as sense of place, The

authors assert that, "This primitive; topological space is purely

s
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internal‘to the particular figure whose intrinsie propérties it
expresses, as opposed to spatial relationships of the kind which
enable it to be related to other figures. Thus it has none of
the features possessed by a space capable of embracing ail
possible figures, and the only relation between two or more
| figufés comprehended by topological operations is that of simple
one~ocne and bi-continuous correspondence, the basis of 'homeo-
mbrphism' or structural equivalence between figures," I would
argue that this is a limitation of the authors®' perspective, not
of pSyphoibgical reality, and that topological notions can
. address problems of total relationships. Aside from these limi-
tations (which are, after all;.limitations and not errors), the
effort is a significant contribution to the psychologzy of space;
particularly in the creative and extensive set of detailed
experiments conducted. |

A study by Kevin Lynch also applied a concept of general
topology, in this case, homotopy, to people‘s representations of
spatial form in a city-scale environment; Experiments showed
thatvpersons having a reasonable familiarity with an area mapped
that area by a map which was always a continuous deformation of
the real map, Though often guite distérted; these maps would
contain all the correct topological relationships of paths to
" regions and of regions to other regions, Furthermore, tthe
whose maps were "torn" renditions, i.e. non-continuous deformations,
' were.foundvto have a basic misunderstanding of the area. As in
Piagetfs studies, this topoiogical construct was applied only

PR I

i
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to representation.
| The last field of research to be included in a certainly
incomplete list is the topological study of regular figures. In
a sense, the various developments in the field of patterns,
symmetrical repetitions and modules are no more significant as
integrative modeling than any other purely mathematical research.
However, the study of regular figures as a mathematical phenomenon
"is so closely tied to the realities of the empirical world of
architecture and design, that it seems to afford a ready-made
’8pringboard for psychological research and testing. Sadly, this
is the last mention of the subject of regular figures that I will
make. except for one reference to be found in the bibliography.
To summarize thls section, it is obvious that I am not first
in calling for the application of topological concepts in the
social sciences (though spatial perception and meaning have only
been investigated tangentially so far), and indééd; it seems that
~often the convenience of mathematical models guides the research
more perhaps than it ought to, partiéulafly in the field of
. sociology. So the main difficulty is, in Kurt Lewin's words,
"the dealing with problems whlch 11e, so to say, between

sociology and mathematics."

POSSIBLE FUTURE APPLICATIONS

General Notions about Set Theory and Order

The following is a random compendium of possible "meanings"
and philosophical points to consider about set theory and order.

The idea of sets and points with a general undifferentiated
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belonging-to relationship is basic to set theory, to any human
language and, apparently, to human thinking. One may talk about
a set of many elements, perhaps the city of Boston, and by
changing the perspective or scale of the discussion, create a
quotient set, with "the city of Boston“ and other sets identified
to points. Conceptually, we make these changes quite eésily.
~and as our civilization has progressed, we have increased our
ability to perfbrm these changes of scale aﬁd broadened the

range of scales in which we can operate.

‘Similar archetypal forms are‘partitioning and ordering.,
TheAérborescence, an order relatibnship, is the form of all
bureaucracies and hierarchies. Wé alSo frequently use real-
valued functions, i.e. maps of a space into El, as indexes to -

- totally order a set, Moré common and closely related to the
shape of things in physical space is partitioning. Socially, we
consfruct groupings and "types" often to make our treatment of
others easier,

In architecture, we cfeate rooms to serve the partition
function., In a sense, one is put into an equivalence class
according to What room he or she is in. The implication of such
an architectural ordering is that one's relations to others are
symmetric, i.e. one is related to those people and objects that
are in the room and not related to anything outside the room,

Of course the whole situation in any architectural system is much
more flexiblé, and rooms conéfitute one factor out of many which

affect us, spatially and temporally---so partitioning should be
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evaluated as part of a complex.

In some cases, symmetry is taken for granted. We generally
assume that most relations between two people or two places.are .
symmetric, especially for places, yet the possibilities for
accomodating asymmetrical relationships have not been investigated
enough perhaps. Certainly there are ways in which authority is
jdentified with certain places, making the connections between
those places and other places antisymmetric. The transportation
between places by automobile, on the other hand, may be too |
asymmetric, so that some trips and some ﬁarticular roads are not
recognized when reversed. Perhaps in many cases there ought to
be some landmarks or other key elements that are perceived in
about the same way from either side, sobthat paths can be easily
identifiéble, even if most of the elements are asymmetric.

An analogous situation exists for transitivity. The
assumption that friendship and kinship webs are transitive may
be inconsistent, and destructive of some social groupings, Such
as. communes.

" In thinking about order; I feel that there must be an
assignment of cardinalities to places and objects so thaf the
various cardinal numbers---finite, countably infinite, uncountable-=-=
have different psychological meanings. (Probably density would

" have a similar role.) Many people believe that the quality of
beiﬁg planned.deStroys the infinite complexity of the "organic

city", It seems to me particularly that the difference between

xlv the cardinal of the continuun, an‘dxo. the countable infinify,

E
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is Significant: for example, in the case of packaged do-it-yourself
handiwork kits of many types which are fashionable now, I would
set as a criterion for a kit's value as a creative medium whether
or not it allows a continuum, X1, of choices for the user to . :
determine the final product. A finite, or evenlfo number of
choices, even though the latter would almost insure that every
individual's product would be unique, would still leave the entire
creative pr&cess in the hands of the kit manufacturer, Similarly, "
politics, with its polls and images, and other sociological and _
psychological institutions draw distinctions by reducing continuums
to a countable or finite number of possibilities. Obviously, all

such evaluations are not purely mathematical ones.,

Topological Smpaces

In this section, I will attempt to formulate the basic rules
for at least two topologiesvin physical space, or more preéisely

in the space in which people perceive physical 'space; this is

.physical space as we know it, or perceive it,

The simplest way to look at physical space is as a pure
“Euclidean three-space where an open set may be thought of as the
interior of any closed, two—diﬁensionél surface homeomorphic to
a sphere or any union of these sets,.

This space 1s pure in the sense that it is unaware of any
form that exists within it, whether it be @eoﬁle or objects or
atoms. It is a homogeneous, dense collecfion of locations (though
the positioning of thg origin is unimportant), much in the sense |

in which Newtonian physica liked to picture space. (Perhaps the
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relativiétic model could bé expressed as Euclidean four-space
with a strangely curved metric:) It is not useful for our purposes
except as other spaces are mapped into or from it. We also may
want to use the natural Euclidean metric as a foundation for other
more rélativé and personal metrics.

There are other ways of portraying topologies: and open arnd
. closed sets. In Marshall McLuhan's hot and cool media we find
an analogy for closed and open sets. (This idea was brought to
my mind by Ken Kesey, who used the names "closed circle" and
®"open circle* or "trip" to descr;be much the same thing.) Cool
media, or open sets, lack'something which makes them incomplete
(in a topolozical sense), thus eﬁcouraging participations We can
consider that any open set can be closed by filling in the missing
fringe; and that any closed set has an open set as its interior
or "content". (This differs'from McLﬁhén's system, for which
every medium, hot or cool, has an interior.) Similarly, we can
use neighborhoods of sets as cool media which use those sets as
parts of their content. It may then be.possible to place the
study of media in a framework.which'includes separation, continuity
of Maps between media. or )specific objects in a medium, connec=-
tedness of spaces, denseness (one might assert that television
is dense within the space of social affairs, which may in turn be
a subspace of one's total life-space), compactness, etc,

In general, topologizing by use of open and closed sets may

be possible in many situations where a dialectic tension occurs,

Topologizing the good configuration--~One of the most

e
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important theories developed by the Qeétalt school of psychology
was the rules of organization for the visual perception field.
The principal precept of this theory is the figure-ground
relationships Simply stated, it says that at various times,
particularly at the first moment we see a visual (mostly two-
dimensional) field, we perceive an undifferentiated mass of data
~without definition, as in a mist. We then proceed to create
order and configuration in the field, to distinguish objects,
or figures into a "good" pattern, one with usually just enough
order. to suit our needs, Of course the Qays in which this field
is organized will depend on specific unique qualities it posseses,
-oh cultural and psychological forces opgrating on the individual,
on particular needs the observer may have at that instant, and
on a host of other factors, yet through a great deal of expéri-'
mental research (most of it, admittedly, utilizing quite abstract
material), the Gestalt psychologists have produced a pretty‘
convincing set of rules for how a "good" coenfiguration is
perceived., Although some of these rules were based indifectly
on ideas of form selected from different fields of mathemafics;
and also in spite of work done by Piaget which, in some sense;
extended those concepts in a topolégical direction, I feel some
value is to be had in exploring topological meanings of these
concepts, whether original to me or éuggested by others. -At
least one reason for doing this is to introduce the succeding
discussion of place or shell-perception,

The figﬁreéground relation itself seems quite analogous to
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a closed set-Opeﬁ set 6omplementéry pair. Thus the forming of
é Gestalt, a whole perception,. represents the creation of a
closed set or figure.l The following is a list of five of the
most relevant rules by which we perceive figures:

1) The primary phenomenon in a group of organizational
principles is proximity. Figure 32 is an illustration of
proximity in action; proximity seems from this example to'be‘
primarily a grouping based on the natural Euclidean metric, yet
in other instances, it may be related to less metric quaiities.
Piaget, for example uses proximity in close association with
separation, that is, two figures form a proximity if they are
not separable by the presence of non-intersecting, surrounding
neighborhoods. Intuitively, wé think of there being a "misty"
space between fhe two figures, In many cases, proximity depends
on the relations of the other rules, | |

2) Similarity is almost as important as proximity and stands

a good deal more on its own merits, rather than as a relative
‘quality. Figure 33 illustrates how similarity of objects in a
vmatrix causes them to be grouped together. In cases like this,
this rule can be strongér than proximity. Similarity deals with
the entire study of regular figures and also with the homeomorphism
concept. AS én example of the latter, the importance of the human
face is very eaéily learned by infants, according to Piaget,
despite the various positions, types, expressions and perspective
views which faces can provide. The reason behind this is that
however different two faces are and however different a similing

face may be from a frowning face, they are all continuous
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the two matrices, 32a is perceived
as horizontal groupings of dots while
'~ 32b is seen as a vertical grouping.
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Figure 3%, Closure. The drawing on
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separate figures because the whole

[ figure is not convex but each of the

‘two parts is in itself convex.
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deformations of each'othervwith the reiationships of eyes, ears,
nose, mouth, hair) etc. to one another always the same.‘

3) Closure is another Gestalt principle, shown in Figure 34,
but topotogically speaklng. the phenomenon should be called
convex1ty. Notice that, although its analytlc definition involves
straight lines, there are really few size or shape restrictions
.,imposed on the possible convex figure; for example, any ellipse
.or rectangle, whether regular (circles or squares) or very elongated,
is convex.

The well-known illusion of Figure 35, as Well as many other
optical iilusiOns are based on convexity. The figure that appears
shorter does so because it is nearly defined as a part of a closed
figure which is implied by the direction of the surrounding
segments., The other figure is left hanging in between two slightly-

defined, or at least implied, convex closures.,

L) Continuity (see Figure 36) may mean topologic continuity,
or possibly connectedness'or'convérgence; all of which are related.
“In the illustration, what forms the continuity is a set of vectors
between each,pair of adjacent points. ~Thesé form a kind of
Cauchy sequence=---as one's eyes move along the sequence one more and
more expects the direction of the next vector to be neighborhood-
cloée to the direction of the last few. _Thus certain cohfigurations
.are avoided.,

5) A final general phenomenon which is closely tied in with

convexity is boundedness. Boundedness is indepéndent of convexity,
‘but the principle of convexity allows one to infer a bounded

figure from just a few elements, Figure 37 is a reversible figure---
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Figure 35. An Optical Illusion Based on Closure. The horizontal
line in 35a appears to be shorter than the one in 35b, even
though they are the same length. The two lower diagrams
suggest that impled convex sets influence this illusion.
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, Figure 36, Continuity. If you
PER SR A T . -’ ~ had a choice of adding one of
L4 ' . v the three labeled points to the

rest of them, you'd immediately
choose point x, generally
disregarding rules of proximity.

'Figure 37. Boundedness. Either
the vase or the two facing
. .-profiles may be seen in this

configuration since they are-
both equally “good".-
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one which can be perceived in two ways each beiﬁg about equal in
its "*goodness" to an observer., What occurs if one looks at a
reversible while relaxing, yet fixing one's stare for awhile, is
that the two possible figures althrnatezroles,‘one playing
figure and the other beinz the ground and vice-versa. In toﬁolo—
gical terms, we say that the two figures share a common boundary
(which is already the case between any figure and ground), and,

" moreover, each figure is bounded, while a ground is generally
.not bounded. The importance of this difference lies in the fact
that a dlosed; bounded space is usually compact; a quality which
gives a figure finitude (or “fatﬁomableness"'as I said before).
Note that this topologizing of perceptual patterns or.
configuration is Euclidean and spatial in some réspects, yet
also involves a mixture of other qualities (e.g. facial homeomorphs)
which are also topological in nature. What has been done in this
section, then, is to fit the topological concepts to the facts of
empirically-derived reality, not the other way around. If such
a model is to be of more than mere illuminatory value, it must
bear fruit as a predictor or aid in undérstanding phenomena.,

‘Topologizing sense of place-=-Can we carry this knowledge

of the topological rules fqr forming good Gestalt over into
people's perception of physical space around them as a shell or
place? I believe there are several possible analogies to at
least be investigated. Let me begin the discussion of these
possible analogies with an énecdotal example,

My cat, who is considerably less prone to depend on his eyes
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and more prone to use his senses of touch, taste and smelljthan
humans, is lying comfortably curled up on a kitchen chair. Pick
him up for any reason and you will probably receive a dirty 1ook
and a cold reaction for having destroyed his peaceful equilibrium,
Yet if you pick up the whole chair without disturbing his =
relaiionship to it, he will not seem the least bit flustered, =
though you may move him to another room this way and even though
he is not totally unaware of your intervention. | |

What are the cat's figure and ground? Is he the figure
and the chair the ground? This is a possibility, yet it seems
ﬁgst‘gnalogous to the idea of the figure-ground relationship to
‘call the-cat and chair together a figure, since they form in the
cat's perception a good Gestalt. Thus the background out of
which such a figure emerged, a background which is apparently
still vaguely in the cat's conscious or unconscious awareness,
can be called the ground. A r

From this example we .can see'some of the relationships
b?tween visual perception of objects and patterns and total
perception of shell. The most important difference is that in
the latter case, the perceiver is always.a part of the figure.
This is really part of my definition of sense of place, not an

empirical fact, but I think it is an accurate assumption because

it places the phenomenon in a highly functional position,.that
is, one feels a sense of place because an environment and a
subjéctiVe‘set of needs and expectations one might have at a
particular moment ali come fogether to form the best "spatial

Gestalt" at that moment. Thus one's subjective state is a vital
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part of this configuration. In addition, this perception‘is
not merely visual though the visual contribution is still quite
significant. Thus, by stepping into a physically sealed room, ‘
Qe may no longer be able to see the ground at all, though it
still presumably has some impbrtance for us. Finally.‘as in
the example of my cat, formation of a good spatial Gestalt does
not preclude movenent or change, but these temporal dimensions
do, of course, complicate the matter.

With these guiding principles in mind.and conscious of the
simiiarities and differences that the perception of a place has
to the perception of an object in a visual field, we can look af
sdme'possible topological qualities of shell-perce?tion space.
Of course, unlike the last topic, this one is operating in a
relative vacuum of established empirical data.

Obviously, convexity plays a great role,in aiding one's
feeling of place. Is this true convexity, or do;s it just mean
“that anything which can be connected to the perceiver by a

straight line is considered available for inclusion into the

 figure? (See Fig, 38.) I sense through observation that even

Figure 38, Convexity in spatial perception. Does the perceiver
at x sense himself as part of all the space within his visual
field, as in 38a, or does a more objectivé sense of convexity
limit his sense of place, as shown in 38b?
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though tﬁe latter criterion may be of precedence on the most .

iﬁmediate level, the former seems to Eecome just as important

through one's continual practice and increasing experience with
good spatial Gestalt. It also may be more favored by senses
other than vision. |

In looking at a fluid environment, one where a wealth of -

. factors other than *just walls" contributes to the "mist" from
which one will choose a "good shell® at a particular instant, it
seems that many of the same rules that apply to the two-dimensional
visual field may go into determining our choice.of figure. Certain

‘'rules of similarity and hémeomrpﬁiém may help us to differentiate
potential places, as may the preéence of elements in proximity
to one another and perhaps some aspects‘of continuity. However,

| none of these constructs are yef'developed to the point where I

can discuss them systematically and intélligently. The study of

such *fluid environments" has importance not only for some

indoor spaces like day care centers, but also for many outdoor

spaces and the highway route, TOpoiogyvCan suggest éome factors

that could be important and, if these factofs.test out, topology
can provide a-forﬁal framework in which these phenomena can be
discussed and articulated.

The question of separation between spaces seems more
ambiguous in perception of place than in perception of object
configuration, mostly because the three-dimensional quality of
the former prevents vision from having absolute mastery over

whether two spaces are separated. Since most walls are not
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often perceived as being two-sided entities, because we rarely.
are able to make that connection, it might seem that walls
"de-normalize” space because they make it difficult to perceive
disjoint open fields which contain our objects, i.e. shells,
This is not meant to cast aspersions on our uge;of walls to
divi&e spacey rather it is to open the possibility that this
separation has some psychological importance which can thus be
btested in regard to any other spatial arrangement. There are
‘as well, many types of walls, such as temporary room-dividers,
partiﬁions, etc., which encourage perception as "normal" space.

 Mappings between spaces---Once again, I must present a

‘bare skeleton of a possible use for topological concepts. This

is the idea of mappings between spaces to check for homeomorphiém

or to test for various homotopy classes. Here are some fragﬁentsz
1) Sense-spaces: Most studies in ﬁerception have tended

to segmeﬁt the senses and study them one at a time. Very

little has been done to relate any two senses,_really. Rééearch

has been performed to test the development of eye-hand coordination

in children and to experiment with the.effeété of hampering one

sense on the functioning of another. As more of this sort of

thing is done, and more integrative knowledge of the senses is

acqquired, systematization will be necessary. A topological

mapping can compare whether two sensé-spaces might be homeomorphic,

or if they are not, whether there are cohtinuous mappings in either

direétion._ Or one could compare two actions such as eating and

readiﬁg to see if there are different types of mappings between
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a dqminént sense and a somewhat passive sense in various functions.
Likewise, inter-cultural mappings might turn up similar structﬁres.
We might find, for exémple. that our sense-space is less prone.
to formation of Gestalten in many situatiohs than the space of a
primitive society. This.is .to say that mappings from éur sense-
space are continuous in cases where a primiti#e's may not be.
(These formulations are identical since they both assert that
our topology is larger, i.e. contains moré open sets, than theirs.)
2) A possible group of mappings which strikes me aé having
a more natural derivation consists of mappings between.spatial
.relations and social or psychological systems, or between spatial
relations and conceptual frameworks. This soft of mapping
would seem to be a logical foilow-up toALewin'S:work, since he
divided the life-spaCe into three planes---physical, social and
conceptual---without much discussing iniegration of them, . By |
mapping the regions involved in'é péychological space, one might
find it homeomorphic to another space from anéther field. An
-example of this being accomplished in a>non;rigorous way was the
analogous carryover of the Gestaltist theories of perception into
the theory of Gestalt fherapy.'.

' If one believes that our mental processes develbp in close
correlation with”our experience in spatial perception énd inter=-
action, than it is natural to expect close correspondence between
some spatial constructs and analogous conceptuél patterns. It

has struck me that Mircea Eliade's discussion of “sacred space"

in The Sacred and the Profane provides a start toward this type
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of mapping. Why is heaven up and not out? 1Is this because our
ejes are horizontal or because gravity is vertical or are the two
related? If the idea of a pole or hole in a house was so
iﬁportant for many primitive men to communicate with the spiritual
plane, how would‘the same man react on the second story of a
high-rise apartment building? The answers to such questions
‘ reqﬁire a system. for relating mappings of sense-spaces into both
Euclidean "pure" space and so-called religious space.

| 3) As a concrete example.of;anappiﬁg between spaces,

consider the way I (and, I assume, many others) read a map.
-Because of the disconnected, foué-component space that I try fo
map any connected real area into; I am inevitably susceptible to
confusion. These four components are the- four points of a compass,
if a route that is close enough to North for me to label it such
gradually (connectedly) éhanges to more-or-less East, my sense
of direction is thrown off. We really want a Homeomorphism in
this situation. A system of keeping track of all right-angled
turns and separately imagining the summﬁry effect of all curves
might work, Or perhaps each éection of a region could post.
signs stating what kind of space it is! '

k) The notions of homotopy and homeomorphism classes may
find use in categorizing different spatial patterns of urban and
non-urban life. The outdoor system of a city may be characterized
in the roughest sense as a flattened m=fold torus,’thét is, a
connected figure with-a hole in it for every place where there

is a building or the plane is broken up by some indoor use. This
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representation is extremely crude, ignbring all the previously
mentioned subtleties of spatial Gestalt, metric factors, and
much, much more besides, Yet even this simplified map and its
fundamental group can be used to classify various paths by their
homotopy type (which may also be somewhat partially ordered)
and to test for correlations between these classes of path and
various psychological relations such as perceived time, memory
df paths and reasons for choosing a paths, On a small scale, it
‘might,be possible to combine this crude system with the ideas of
spatial Gestalt including a metric relation (but not necessarily
.the naturai Euclidean metric).

In Manhattan, where éveryAblock is a huge development, few
closed paths are null-homotopic and it seems that, perhaps
becaﬁse of this fact, most everyone might return from a place in
the same way they came, for such a retufn is the only way to
make the'cloéed path nullhomotopic. In the heart of Boston,
which has a more delicate,fiber, with a greater possibilify of
ngll-homotopic paths (in the sense that a null-homotopic ‘path is
a loop whose interior is easily undersfood); the whole feel of
the city is different, |

It is my feeling that looking at movement through an
environment as a contiﬁuing series of changing figure-ground
"relationships could lead to some kind of increased understanding
of perceived time (e.g. perhaps perceived time is proportional
to the number of figures that occur to a percéiver in a given
journéy). But this experiméntation,»after the géneral topological

structure of the spatial Gestalt is discovered, might work better
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- using gfaphs in é similar‘fashioh‘as the method to be expounded
for child care study in the next section.

Graphs | | ’

Even though they entail a reduction of a system by uniform
application of a few'abétract“principles, graphs probably provide
the most useful possible systematic use of topology in the
study of environmental psychology. Their application to
transportation is already well-developed; their application to
human—scélg environments is just beginning. |

- To perform a representation of a spatial configufation by
a graph, one must first select the appropriate set of elements
to be the points. This could be buildings in a town or land use
zones or some form of place, but quite bbviousiy oﬁe‘must bglieve
that the relationships between these points is, for one reason
or another, not terribly metric .(in the Euclidean sense) and, |
moreover, that the connections betweén points are such that it
is usually only important to know whether or not a connection
‘exists between two points, not what the quality of that relationship
| is. If your system can be reduced that much, and still retain
meaning, you have an ekcellent'network.

’To provide an example,‘I have chosen to discuss a network
I drew to usé in analysing a two-year old rdom in the Eliot Pearson
Nursery School in Medford, Massachusetts. (See Fig. 39.)

The network was derived in two stages. First, by observation
and interaction with the children I determined a set of points

which represent the most likely occurrences of spatial Gestalt
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due to design, attitudes encouraged by'the program and neéds and
desires of the children. Second, I determined which places were
connected directly to which others, i.e. I would draw a line
between two points if I perceived that a child could fairly - .=
dirégtiy move (physically and psychologically) from one placé to
the 6fher. Unfortunately, the graph was always considered to be
symmetric and thus places of privelege, places closer to the
outside, and other places which could cause anti-symmetric
relations were disregarded. Moreover, it is quite obvious to
me now, that my—ability to determine what "places" should be
réfresented as points in a graph lags far behind my ability to
‘build points into a graph and manipulate graph theory. Because
of~this, it might be better to provide as an example a less
fluid environment such as a conventional house. Nevertheless,
this graph should illustrate to the reader what the graph system
can do. | ‘ : Y ‘

The system shows a diaméter of Seven; a relatively lbng one
for such a small child care room, The diameter will depend, not
only on size and elongation of a sPace; but, perhaps more
fundamentally, on how complex and subdivided the space is,

Points P and N are significant articulation points though there
are several other points (T,R,0) that, if removed would cut the
systém off from one other point, and point B controls the access
of the system., Point J is the most accessible point of the graph,
i.e.‘its'accessibility is numerically less than that of any other
point. Other measures given in the foundation section or graphs

might provide other bases of comparison with other systems,
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Figure 40, Graph of a child-care room. The above is a graphic
representation of the places and connectors in the space of
Figure 39. (T and U are elevated above the floor level,)

The graph is shown in simply-representable form (no intersections
of any connectors), but, as in any graph, the relative positions

i of’points or lengths of connectors are irrelevant,
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(See.Fig. 40,)

In my initial use of this system-I drew quite clear
distinctions between certain kinds of place connectors, never ;
intending to treat them eqdallys Furthermore, observation of a
few child care centers has led me to find further distinctions
in the type and strength 6f connectors possible. In addition,
there are distinctions in importance between types of places.
Hence, it would seem reasonable that in a system like this one,
one might want to weight the connectors'(the stronger the
conhection, the lower the weight) and, to a lesser extent (because
they are less_quantifiablé in théir differences), the places,

The ﬁse of graphs for systeﬁs like child care centers or
houses or'systems of buildings also raises the questioh of how
to measure dimension. Does the presence of cycles constitute

a'raising_of dimension (from one to two) by destroying linear

order? Does simple-representability mean psychologically that

a system is only twb-dimenéional, even though there may be three-
dimensional relationships in the Euclidean sense? (This is the
case in the example I provided.) It would be interesting to find
an existing real example of a non-simply-representable system
and observe its effects (if any). Or wouldn't it be interesting

to build a house modeled after the graph in Figure 317
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CONCLUDING REMARK

As a possibly useful system for modeling phenomena occurring-
in environmental psychology, one must be very sceptical of
topology. Perhaps this is because environmental psychology is
still quite a young science. Certainly, it is beyond my scope
of thinking here to speculate on the future of this science, if
indeed it does have a future,

Throughout this effort I have only been able to produce
"possible future applications" because empirical knowledge is
not réally ready for such sysfematizatioh. ‘And there is most
certainly the possibility that it will never be. Still, I
’recommeﬁd the study of‘topological concepts to those interested
in psychology and deSign for the possibilities of illuminated
undérstanding, for much the same reasons that designers seriously
study art, and---who knows?---for the pbssible applications of

topology’in'modeling. : i
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 X. GLOSSARY

The fdllowing alphabetical listing refers the concepts covered

in the Essentials of Topology section.to the place in which it

was first defined. P =Procedures; S=Set Theory and Order; T=
Fundamentals of General Topology; A= Glimpses of Algebraic Topology.
If a term is referred to another term ("See .¢o") this means that
ERS two terms are identical,

accessibility A2,7 complete relation S1.7
anti-symmetric graph A2.2

completeness T5.3
anti-Symmetric relation S1.7

complex See simplicial complex

arborescence A2,8
S component T3e3
arc v A2,1
' : _ connectedness T3.1
articulation point A2.4 :
' ' connected graph A2.4h
basis T1 07 ’
constant map T6.2
Boundary T1.5 :
- o continuity T1.9
boundedness T1.6 A
convergence : T5.1
cardinal number S2.3 ,
convexity Al.2
Cartesian product Si.4
countable (Xp) S2.3
Cauchy criterion T5.3 ‘
. countably infinite See countable
chain A2.3 ;
covering _ Th,1
circuit A2.3
' cycle A2.3
class S1,.1 :
o cyclomatic A2,10
closed set T1.5 , :
denseness : Tl.5
- closed m-simplex Al.3 ~ :
diameter - A2.7
closure Ti.5 _ '
‘ difference S1.3
- compactness T™",2
: . dimension of a complex AlL
complement ‘ ' S1.3 )
' dimension of a graph A2.9

completé'graph A2.2

LA D,



distance

distance in a graph
edge of a simplex
.edge of a graph

equipotence

equivalence class _

equivalence graph
equivalence relation
Euclidean set
Euclidean space
Euclidean topology -
Euler characteristic
8xclusive interval
 face of a graph
face of a simplex
finite cardinal

- finite covering
fringe

function

function set
.fundamental group
-graph |
Hausdorff space
homeorphism
homotopy

‘homotOpy class: -

homotopy group

See metric

A2,6
Al1.3
A2,2
S2.3
S1.8
A2-2
S1.8
P
T1,2
T1.3
Al.6
P
A2,10
A1,3
S2.3
T4.1.

See boundary

See map

7643 .

T4
A2.1
T2:2
T1,10
T6e1
T6.3
T6.4

m-simplex
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I, thenunit interval P

identification S1.8
iff ’ P

inclusive interval P

infinite covering Th;i
initial point T3.5
injectiﬁe 3156
interior Tl.5
intersection (n) S1.3
inverse function S1.5
Jordan curve See loop
Kohig number A2.7
length A2.6
linear independence A2,1
linear subspace " Al.2
loop ’ T6.4
map S1.5
mean dispersion A2,7
metric Ti.6
metric space Ti.7

See simplex
natural Euclidean metric T1.6

n-dimensional homotopy

group See homotopy group
neighborhood T1.4
network See graph
normal sbace T2.5



nullbset' S1.2
nﬁilhomotopic function T6.2
one-fold torus See torus
one-to-one See injective
onto | See surjective
open ball T1.6
_ open covering Thoa1
open m-simpiex Al.3
open set Ti,1
order relation See partial order
ordered pair P
ordinal S2.2
partial order S2.1
 partition S1.9
path T3.5
path'ih a graph A2.3
path-component T3.6
path-connectedness ‘T3.6
point S1.1
preordering S2.1
g-face Al,3 -
g-section Alh
quotient set S1.8
reflexive-graph A2,2
reflexive relation Si.8
relative topology T1;8
. reguiar spaée T2.5

second=degree countable
sequénce

set

Sierpinski

simplei

simplicial complex

simply-conhected space

- 86
T4e5
T5.1
S1.1
Ti.1
Al.3
AL
T6.5

simply~representable graph A2.9

tree

space Ti.1
span Al.2
gstronglyéconnected graph A2,.4
Esubcdvering | T4,1
subspace T1.8
surjective S1.6
symmetric graph A2,2
symmetric relation S1.8
terminal point T3.5
topological equivalence T1,10
topological invariant T1.10
topological space See space
topology | Ti.1
torus T1.10
total order S2.1
totally-ordered graph A242
transitive graph A2,2
transitive relation 1.8

A2.8



triangulation
To |

Ty

T2

T3

Ty
uncountable (¥ )
union (U)
unit interval
unit square
unit n-cube
‘universe

vertex

well-ordered set

Al.5

T2.2

T2.2

See Hausdorff
See Regular

See Normal

S2.3

S1.3

See I

T6.6

T6.6

S1.2

Al.3

See ordinal
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