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IV. ABSTRACT

In this study, the possibilities of using general and

algebraic topology as a metaphor and perhaps even as a model to

probe relationships in the fields of spatial perception and

meaning were investigated. Some interesting connections emerged

and many possible avenues of both further modeling and empirical

testing are left to be explored.

The body of the work includes a presentation of the intuitive

concepts of topology, a sort of annotated guide to topology for

environmental psychologists, and an attempt, through many

fragmentary investigations, to seek out possible applications of

the topological concepts to the study of environmental psychology.

The last two examples developed tell of ways to systematize the

Gestalt rules of good configuration and explore how topology

might describe how people perceive space through feelings of

enclosure, separation of objects, patterns and systems of

movement.

No empirical study in the field of environmental psychology

has gone into the findings of this paper, though several avenues

of such study are recommended. Rather, the hypothesis here is

that the forms of topology are tools that can suggest relationships

and functions of the human mind and human perception.
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V. PREFACE

Though this study should be judged on its merits as a

self-contained piece, there were problems and limitations

encountered along the way which affect the final product and

which the reader ought to understand.

First, there was a deadline which kept me from exploring a

much broader range of topics in the fields related to topology,

any of which might have turned up significant results. Also,

this prevented any good testing of some of the forms hypothesized

relevant to environmental psychology. Particularly unfortunate

was the impossibility of including extensive findings of my own

ongoing research in child care centers which employs some of the

concepts of "spatial gestalt" and graph theory.

The mathematics presented is, of course, the work of an amateur;

some statements may be so condensed as to not be quite technically

correct. This is not, however, important to my purposes here.

A third constraint was a lack of communication with others

who might be involved in related work. No doubt, the section on

the history of the "topology metaphor" is already obsolete.

Finally, one serious failure altered the final status of this

paper greatly. Initially, it was my goal to discover something

new about perception of the environment or to clarify possible

contradictions which may exist in our understanding of sudh

perception. The latter is the role usually assumed by analytic

philosophers toward a branch of science in order to reveal

meaningless statements and inconsistencies in research through
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the rigorous application of logical, systematic models. This

kind of effort might be relevant in environmental psychology,

particularly in the study of perception (Piaget, after all, was

an epistemologist), yet I was not, from the start, clear on

what kind of effort and restrictions this would entail and was

never really prepared to perform such a task. The first goal,

to discover new knowledge about psychology, is quite impossible

without some kind of experimentation or ovservation of people in

real or artificial environments. A body of mathematical knowledge

can only be used as a model or a metaphor for a real-world

situation; in my final effort, I have endeavored to use topology

as a metaphor.
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VI. MODELING BY METAPHOR

It is fitting to begin by discussing the use of a branch

of mathematics as a metaphor. What does such a use mean? Of

what value is it? What are its limitations? In this section,

I shall address these three questions.

The metaphor is to artistry as the scientific method is to

science. In the ways it occurs in various art forms, the metaphor

is a juxtaposition of forces that seem to have little relation

to one another. This process may be thought of as putting on a

strange set of glasses to look at an object just to see it in a

new way. If artists are, as Marshall McLuhan says, the "antennae

of the race" and if one accepts that we are utterly surrounded by

a mystery of which we know very little, they perhaps such a far-

flung idea as looking at the spatial environment through the

"glasses" of topology takes on the form of a potentially useful

probe*

Of course, I don't pretend to justify this effort on purely

artistic merits. There are precedents for using such a method

to achieve new ideas that might eventually become more grounded

in scientific fact. For example, Edward C. Tolman, in adopting

a sociological model for general behavior, calls this type of

approach a sui generis model which invents

"a set of explanatory structures and processes (hypothetical
constructs) which draw on analogies from whatever other dis-
ciplines---mathematics, physics, mechanics, physiology, etc.---
as may be deemed useful. Freud's water-reservoir concept
of the'libido' and Lewin's 'topological and vector' psychology
belong primarily in this...category."*

*Tolman, Edward, "A Psychological Model", p. 283.
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One justification for choosing to use this metaphorical

model is that the seemingly "random" choice of a modeling system

is perhaps not so random at all. After all, we are limited

creatures and perhaps there are more unconscious correlations

between seemingly disparate fields of our knowledge than would.

at first appear obvious. In comparing the Twentieth Century

breakdown of atomistic physics to the discoveries of Freud, L. L.

Whyte states,

"We hear of unstable particles in physics and of unconscious
mind in psychology. Is this a mere.chance or a sign of a
parallel between the two sciences? Is there some common
factor which leads both to name a basic idea in this
backhanded manner? I believe there is..."*

In the case of the subjects of this paper, it seems quite plausible

that the men who originated the concepts of topology were

unconsciously influenced by the forms they experienced in dealing

with their spatial environment.

Still another reason for such a probe is the potential value

to the modeling system itself, gained through its application to

the modeled structure. The psychology of perception, even if it

does not benefit from being modeled by a deductive system, may

still provide a concrete example of the reality of topological

forms. This could benefit the teaching of topology as well as

possibly advancing topological horizons. Since Piaget has suggested

that the primacy of topological principles in perception indicates

that it might be taught much earlier in the mathematics program,

*Whyte, L.L., Essay on Atomism, pp. 4-5.
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I hope that this paper can be of some assistance to one interested

in developing such a curriculum.

In adopting a metaphorical method one also must accept some

rules of operation. Tolman states these well:

"Such a model can be defended only insofar as it proves
helpful in explaining and making understandable already c
observed behavior and insofar as it also suggests new
behaviors to be looked for. And any such model must,
of course, be ready to undergo variations and modifications
to make it correspond better with new empirical findings.
Finally, insofar as such a model holds up and continues to
have pragmatic value, it must be assumed that eventually
more and more precise and intelligible correlations will
be discovered between it and underlying...structures and
processes..."*

These are the tests, then which will ultimately determine the

validity and usefulness of the ideas presented here.

Now that some of the reasons underlying a metaphorical

approach have been noted, I would like to mention some further

reasons for attempting such a connection in the particular cases

of topology and environmental psychology, reasons which are to

be found in the specifid natures of these two fields.

Topology, as a branch of mathematics, is a relatively recent

addition to the study of geometry, originating in the mid-nineteenth

century. In the past several decades, its relationships to other

fields of mathematics have been established, thus bringing topology

into its own in importance. What is important about it is that,

though more recent than geometry, it is also more fundamental in

its theory and axiomatic basis. General topology does not concern

itself with angles, straight lines, size or shape. The concepts

*Tolman, Edward, loc. cit.
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of topology---continuity, connectedness, separation, order,

denseness, proximity and enclosure, to name a few---are much more

intuitive to picture and describe. In actuality, geometry in

the classical Euclidean sense is a special form of topology,

one with projective concepts (straight lines and perspective),

affine concepts (parallelism) and metric concepts (distance)

added.

It is in this sense that topology, or analysis situs, as it

is sometimes called, is fundamental---a very general theory of

what space is, though this does not imply that the study of

topology is simple. The nature of this study is to find ways to

classify and categorize in very basic ways as well as in more

refined distinctions.

Man's experience in physical space is likewise a very basic

phenomenon. By basic, I mean to differentiate the awareness

(conscious or unconscious) of being in a room or being exposed to a

wide open field- on one side from the knowledge of a condeptual

relationship or one's memory of a remote person. This latter type

of experience is largely detached from a spatial milieu, yet it

is my belief that our ability to perform these latter, more

abstract functions, derives from the archetypal forms we learn

from perceiving and interacting with physical space. It is the

belief that lines, angles, metrics and similar concepts cannot

adequately represent these psychological archetypes that leads

me to the study of topology.
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VII. ESSENTIALS OF TOPOLOGY
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PROCEDURES

Notation

V = for all or for every

3 = there is

= logically implies

4# or iff = is logically equivalent to; if and only iff

= such that or so that

El is the real number line, i.e. all rational and non-rational

numbers from negative infinity to positive infinity.

(a,b) is the inclusive interval between a and b (all xla 4x 4b)

(ab) is the exclusive interval between a arid b (all x -a <x (b)

I = 0,1 the real inclusive interval between zero and one

E2 is the set of all points on the real plane, represented as the

set of all ordered pairs, e.g. (3.45,-24)= the element 3.45

as the first meinber and -2 as the second member. This is

not the same point as (-2,3.45). (Unfortunately, we use the

same notation for ordered pairs as we do for exclusive

intervals. One must judge which is meant from context.)

E3 is the real Euclidean 3-space, represented as the set of all

ordered triplets of real numbers.

In general, we let En be real Euclidean n-space, all ordered

n-tuples of real numbers, e.g. (xlx2*..*Xn)*

Other procedures

Key concept names are underlined when first defined.

In the glossary one can find references to the section in which

any mathematical term is first defined.
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SET THEORY AND ORDER

1. Sets and operations

1.1 Points are a fundamental accepted notion in mathematics. A

set is represented as a collection of points by brackets, e.g.

B=Ex,y,z3. One can aixo say x cB to mean x is an element of B

or x belongs to B. Sets can also be called classes---we say

A CB (or B::A) to mean A is contained in B, i.e. Yx, xe A4xe B.

It is also proper to say. A= B if ACB and BCA (Vx, xeA0'x eB).

Because -of logical stickiness (the Russell antimony), not all

classes can be considered sets, while sets and points are the

only things that have the right to belong to (e) another entity,

but we need not worry about this problem.

There is no formal distinction between points and sets; we

just call something a point in a circumstance if we want it to

be thought of as an uncuttable object. Any set can be identified

to a point (see 1.8) and treated as one from them on. It is all

a matter of perspective.

1.2 The null set (/) is the set with no members. All null sets

are identical. The universe is the whole set of points or sets

to which we restrict our discussion at a given time.

1.3 Union (U): Au B =all x which belong to either A or B or both.

Intersection(n): A nB= all x which belong to both A and B.

Complement ('): A' = all x which do not belong to A.

Difference (-): A -B =An B'.

1.4 Cartesian product (x): AxB= the set of all ordered pairs

(a,b) a asA and b eB. An example is E2 which = E1 X El. As
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mentioned before, order matters in the formation of ordered pairs.

Another example of a. Cartesian product: Let M = the set of males

in a group of people and let F = the set of females in the same

group. Then MX F= the set of all possible couples in the group.

Cartesian products can also be extended beyond two-set products

to include any finite number of sets (e.g. En).

1.5 A function or map assigns to each member of one set a unique

member of another set. We say f "takes" X into Y and write

f: X4 Y. Note that a point in y can be the map of more than one

point in X, just one point in X or no points at all, but every

point in X has exactly one point in Y to which it is mapped. A

function can also be seen as a set of ordered pairs in XX Y. For

a subset Ac X, we say f(A)= B iff B= all y which..hae at least

one xe A mapped into them. Every function has an inverse

function, f1l, not necessarily a function itself. For any set

BCY, f-l(B) =all x in X -f(x)e B.

1.6 For an f: X-+Y, not every element of Y must necessarily ef(x).

If this condition does hold, the map f is called surjective or

onto. Also, a y which is the function of some x eX can also be

the function of another x1 in X. If this is not the case for any

y in Y, the map f is called injective or one-to-one. If a map

is injective and surjective at the same time, it is called bijectire..

A function is bijective iff f-1 is also a function. (See .Fig. 1.)

1.7 A binary relation, R, in a set X, is a subset of XX X, i.e.

a set of ordered couples. if (xqy)6.R, we can also write xRy or

"x has .relation R to y". There are several special types of
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relations:

Reflexive relation: Yxc X, xRx. E.g. "lives with".

Symmetry relation: xRy4)yRx. E.g. "is married to".

Antisymmetry relation: xRy and yRx 4x-y. E-.g. "is the father of".

Transitive relation: xRy and yRz=xRz. E.g. in El, "is greater than".

Complete relation: Every pair is related in some way---Yx,yeX,

xRy or yRx or both. E.g. "" in El.

1.8 An equivalence relation is a relation which is reflexive,

symmetric and transitive. Every equivalence relation bteaks a

set into equivalence classes such that any two members of one

class are related while any two members of distinct classes are

not and each element belongs to exactly one equivalence class.

"Lives with" is an equivalence relation; "=" in El is a trivial

example of a relation in which each point is its own equivalence

class. An equivalence relation, R, in a set X, creates a new set,

the quotient set or X/R, whose points are the equivalence classes

created by R. (See Fig. 2.) For a subset AcX, if we let (x,y)

R iff x=y or both x and yeA, then X/R (sometimes called the

quotient set of A, or X/A) consists of X- A plus the set A

identified to a point.

1.9 A partition of a set X is a group of disjoint sets which

cover X, i.e. each x in X belongs to one and only one set of the

partition. A set of equivalence classes in X- is always a partition.

2. Orderings and order

2.1 A weak ordering or preordering is a relation R on a set X

which is transitive and reflexive. If a preordering is also
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la 1b

Figure 1. Types of functions. The function in la is neither

surjective (because d Y has no inverse) nor injective (because

f(a)= f(c). The function in lb as shown is both injective and

surjective; thus, it is bijective.

X X/R,
A0)

Figure 2. Quotient set. The points of X/R represent equivalence

classes of X with respect to R. A, B and the point x are each

identified to a point in the quotient set X/R.

1 2 3 4 5 6 ... Figure 3. Cardinality. If a simple

.24-bijection ca established between2 46 81012 ietoca e

two sets such as the integers and

the even integers, the sets must

be of the same cardinality-(i.e. equipotent), in this case-Yo. Other

bijections, such as that between El and E2 are harder to find.
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symmetric, it is an -equivalence relation. If it is anti-symmetric,

it is called a nartial order or order relation. (Example: If we

allow a person to be his own descendant, the relationship

"descendant of" is a partial order of the human races also, in

any set X, the relation of inclusion, "&", among the set of all

subsets of X is a partial order.) I can think of few examples

of a preordering which are not also either equivalence or order

relations. In an order relation, it is not necessary that every

two elements be related (i.e. that the relation be complete); if

this condition does hold, the set is called a totally ordered set,

e.g. the relation "4" in El. (In fact we must use this total order

on El before we can talk about Euclidean spaces.)

2.2 A well-ordered set or ordinal is a totally ordered set in

which every non-empty subset A has a first element, i.e. 3aie A3'

VareA, aiRa.. A totally ordered set need not be well-ordered,

e.g. for the relation "g" in E!, there is no first element for

any exclusive interval (ab), since a does not belong to .the interval

and every element in the interval has lesser elements. The relationt

"" is well-ordered for the set of non-negative integers, but again

not for the set of all integers.

2.3 Remarkably enough, every set has some relation in it which is

an ordinal! This allows one to "count" the elements of any set

and compare them with elements in any other set, since the well-

ordering- relation dictates a first element to the whole set, a

second element, etc. Thus one can assign a cardinal number to

each set and say that two sets have the same cardinal number (or
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are equipotent) iff 3a bijective map between them. (See Fig. 3.)

So two finite sets are equipotent if they have the same number

of elements in them. The concept of equipotence is only interesting

when we consider non-finite sets. The first non-finite cardinal

is calledJCo ("Aleph-zero"). If the cardinal number associated

with a set X (written card X) is X, we also say that X is

countable. Examples include the set of even integers, the set of

integers and the set of rational numbers. The next highest

cardinal (we assume) and the first uncountable one is X1 and in

general one can create higher cardinals by considering the set of

all subsets of a set X, call it P(X). Then card X< card P(X).

Card El = card En =X 1 . I think that we need only worry about the

finite cardinals, X 0 and Xi.

FUNDAMENTALS OF GENERAL TOPOLOGY

1. Topological spaces

1.1 Open sets---We define a topology, T, on a set X as a collection

of subsets of X3-all intersections of a finite number of members

of T belongs to T and all unions of any number of sets in T also

belong.- to T. Each set in the topology is called an open se.

(See Fig. 4.) $ and X both T. A set and a topology on it form

a topological space, (XT). Note that there is no intrinsic

meaning to the term'bpen set" other than that. any finite intersection

or arbitrary union of ope sets is open. An example of a very

strange topological space, let X4 EO,13 and let T consist of [],
O,13 and $, but not [13. This space, called Sierpinski space,
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is a perfectly legitimate one.

1.2 Examples: In E1, let all exclusive intervals and all unions

of exclusive intervals be open. This is called the Euclidean

topology for El. (Notice that if we didn't restrict our topology

to finite intersections of open sets, then (a-1,b+1)!l (a--,bi)/)

(a-*, b+)h ... [a,b) would also be open, therefore, every subset

of El would be open.) Similarly, in E2 let the open sets be the

interiors of any closed curve, that is all the points inside, not

including the points on the curve itself, and all unions of these

sets. We can likewise define the Euclidean topology for any En

and from now on, when I speak of a Euclidean space, I mean a set

with the Euclidean topology. Intuitively speaking, because we

allow all unions and only finite intersections of the open sets,

open sets in Euclidean spaces are usually "fuzzy"---that is, one

cannot pinpoint where they end because their "borders" are not

part of them. In the discussion here, I think it is worthwhile

to understand the mathematical definition of openness, instead

of just the specific Euclidean applications.

1.3 We use the word "space"to refer to any topological space. The

word "set"'is usually used to referrto a set which is not topologized.

Thus, the same set X can form riany topologies, e.g. (X,T1 ) and

(X,T2 )e For example, consider El with the topology described

above (called the Euclidean topology). Another topology could

be defined as all intervals. which are exclusive at their upper

end and all unions of these intervals. Thus both (ab) and

(a,b) are open. Clearly, this topology is larger than the

EuclideanL toology in the sense that it includes all of the
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Figure 4. Open sets in E2. The three

sets shown are represented by dotted
lines to show that they do not include
their borders. This representation,

the Euclidean topology is only one
possible topology on the set E2.

5a b

,Y07

Figure 5. Two ways to form closed sets. The sha area in 5a-
is the complement of the open set A. The shaded area in 5b
is the closure of the open set A.

6a y 6b

Filure 6 Metrics on E2. The natur .1 Euclidean metric is shown
in 6a. d(xty)= do. The metric d(xty)= dh+ dv is shown.in 6b.

7b

Figure 7. Formation of metric spaces. 7a and 7b show examples of

open balls for the metrics of 6a and 6b, respectively. Though

each of tiese different metrics forms a different basis$ the

two bases generate the same topology.

- "I
d

c,
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open sets of the Euclidean topology and more.

1.4 A neighborhood of a point x, U(x) is an open set. xe U, i.e.

any open set which contains that point. One can also talk about

neighborhoods of a set. In Sierpinski space, the only neighborhood

of 13 is the whole space, while i0j has itself as well as the

whole space as neighborhoods.

15 Closed sets can be defined in two ways, either one necessarily

implying the other. First, a set Cc X with a topology T is

closed iff C' is open. In other words, the closed sets in a t

topological space are the complements of the open sets. The

second' definition requires the definition of boundary or f

For any A C X, Fr(A) = all x6 X -9- any neighborhood of x intersects

both A and A', i.e. YU(x), U /)A/ and U nA'/ X. For example, in

the Euclidean space El the fringe of the set (alb) is the points

a and b. This is also the fringe of the set [a,b]. The second

definition for a closed set is thus: A set A id closed iff it

contains its own boundary, i.e. Fr(A)C A. In E1, Ca,b2 is closed.

It is possible though, in some topologies, for a set to be both

open and closed0 (See Fig. 5.) Other concepts are:

Interior: Int(A) = A - Fr(A) = ail points in A that are not on the

fringe. Int(A) is the largest open set contained in A.

Closure: Closure of A = X =A v Fr(A) = thi smallest closed set which

contains A. Thus, for any space and any set A, Int(A) and Fr(A)

form a partition of I and Int(A), Fr(A) and Int(A') form a partition

of the whole space. A subset of a space X is dense if D= X. For

example, with the Euclidean topology, the set of rational numbers
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is dense in El.

16 A metric, d, on a set X is a map d: Xx X->E 1 assigning a non-

negative real number (called the distance) to each pair of points

in Xi, under the following conditions:

1) d(x,y)= 0 iff x= y, i.e. two distinct points are a positive

distance apart.

2) d(x,y)= d(y,x) i.e. distance is symmetrical.

3) d(xy) + d(yz)o d(xz) i.e. the "direct" distance between two

points cannot be greater than any indirect distance.

A metric set is said to be bounded iff d has a finite maximums M,

i.e. for any x and y, d(x,y)< M. (See Fig. 6,)

An open ball, written B(x;r) where x is a point in a set X

and r is a positive real number, is a subset of X with a metric d,

such that all points in B are "closer" than r to x. Formally,

B(x;r) =all yc X +d(x,y) <r.- In El with the metric d(x,y) = x-yJ,

the open ball B(x;r) is just the set of all points in the interval

(x-rx+r). For E3 with the metric corresponding to our traditional

notion of distance, any open ball, B(x;r), is just the set of all;

points in the interior of a sphere centered around x with radius

r. Another example would be a four-dimensional space with three

physical coordinates and one temporal coordinate. To deterinine

the distance between two events or points of this space, one must

find some way to combine temporal duration with physical length

to form a single metric. Special relativity goes beyond our

definition of a metric in this space since it states that the

distance between two points is not uniquely determined by the
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position of those two points; in addition, there are "subjective"

factors referring to the measurer. A metric must be an objective

phenomenon. However there are many other metrics in Euclidean

spaces besides the traditional one (the straight line distance);

some of these may even be based upon objective psychological

states, such as common ways in which humans distort duration and

distance because of environmental cues. The traditional distance

is called the natural Euclidean metric.

17 A basis for a topology is a collection of open sets any

open set can be expressed as the union of sets from the basis.

Thus, the Euclidean topology for El has as a basis the set of-all

exclusive intervals, (x,y). In general, we can create a topology

on a set by establishing a basis, rather than dealing with the

whole topology. For example, .for any set, X, with a metric

defined on it, we can create a space by letting the set of all

open balls in X be the basis for a topology. The last example

of a basis for El is such a basis. A space created in such a way

is called a metric space. Any metric on a set thus defines a

unique space, but a topological space may not be metric or may

have several different metrics. (See Fig. 7.)

1.8 A subspace is a subset YCa space (X,Tx) with its own topology,

Ty3Y e Ty iff V = Y ) U for some U E Tx. This topology is called

the relative topology, denoted T(Y). It is important if, for

-example, we want to discuss topologies of a curve on a surface,

the latter of which has already been topologized. (See Fig. 8.)

Obviously, if Y is open in (XTx), T(Y) =all open U in X aUdY.
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Map

U
'8b

A '

Figure 8 o Subspaces. Consider a curve, L, in E2 as shown in 8a.

Although L and any subsets of L are closed in E2 with the

Euclidean topology, as a subspace, L contains many open and

closed sets. The subset of L within the dotted lines is open

because it can be represented as L nU, where U is open in E2.

By the same reasoning, An L is a closed set in the subspace.

Let P= (0,a) V(a,bj be a subspace of El as in 8b, The subset

(O,a) is both open and closed in P: (0,a)= (ed) n P [e,dP.

Also, (d,bJ is open and (O,cJ is closed.

Figure 9. Continuity. For the f: X->;Y illustrated, f is not continuous

since f'1 (B) (with B open in Y) equals xu xlJ U vL, which is

not open in X.
Y

x

Figure 10. Metric continuity. For f: X-+Y, where X and Y are both'

metric spaces, f is continuous iff Ve 0, however small, there is

some 6 > 0 .4f (Bx(x,6)) lies entirely within By(f (x) ,e)..

I
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1.9 A continuous function f: (XTx)--(YTy) maps a topological

space (not just a set but a space) into another >-YV open in Y

(Ve Ty), f- 1 (V) is open in X (i.e. f-(V)eTX). (See Fig. 9.)

The conventional idea of continuity in Euclidean space in delta-

epsilon terms (I use "e" instead of "e" to avoid confusion) is

just a specific application of topological continuity to metric

spaces, that is. for any x and f(x), Ye7 0, no matter how small,

3g>03,f(B(x,5))c By(f(x),e). (See Fig. 10.)

1.10 A homeomorphism between two topological spaces, X and Y is

a bijective, continuous map, f, 3f-l(which is also a map, due to

bijectivity} is continuous. Thus, a homeomorphism is a bijective,

bicontinuous map, written f: X EY. This also means that f-1 : X Y.

If any such map exists between two spaces, we can also say that

the two spaces are homeomorphic to one another. A homeomorphic

relation sets up a one-to-one correspondence both between the

points of each space and between the open sets o'f each topology.

We say two homeomorphic spaces are topologically equivalent (that

homeomorphism is indeed an equivalence relation is easily

verifiable) and the qualities in which the study of topology is

most interested are topological invariants, that is, qualities for

which, if the quality applies to a space X, it applies to any

space homeomorphic to X. Examples: 1) E' is not homeomorphic

to En, nor, in general, is Em="'En unless m=n. 2) A sphere=2'a

cube e any polyhedron or ellipsoid or any enclosing surface in E3

as long as all these figures are given the relative topology as

subspaces of E3 with the tuclidean topology. Such a surface may
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Figure 11 Homeomorphism. A sphere = a cube = any
o-losed, bounded subset of E2, call it X, for which the quotient

set, X/Fr(X), has beentaken.

Figure 12. Simple nonhomeomorphic curves. These curves must be
.non-homeorphic since any continuous f: K->L would have to have
f (a)= f71 (b);

Figure 13. Homeomorphic classes among surface

in E3. The sphere; the 1-fold torus (just called torus), and

the two-fold torus are examples of three different homeomorpic

classes among the surfaces possible in E3', in fact, all other

physically real homeomorphic classes of this type surface are

exemplified by all the n-fold toruses, where n is any positive

integer.
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be pictured as a closed, bounded sheet in a plane with all the

boundary points identified to form one point. (See Fig. 11 and

12.) Yet none of these surfaces is homeomorphic to the surface-

of a 1-fold-torus (or simply called a torqa) or donut-shaped

figure. (See Fig. 13.) Because of the equivalence classes created

by homeomorphisms, topology is said to be geometry without size

or shape.

2. Separation

2.1 There are several axioms of separability referred to as To,

T1,T2, etc. (I only know of those up to T5 through my reading).

Each successive one is more restrictive than its predecessors.

We will only look at T2 and T4, the most important ones, although

for my purposes, many possible psychological spaces are less

clearly separated than the ones that topologists study, so the

lower axioms become more relevant.

2.2 We call a space T iff for any two points, at least one of

them has a neighborhood which does not contain the other point.

One might say that at least one point can be separated from the

other. A space is TI iff for any two points, each has a neighborhood

not containing the other, i.e. each point can be separated from

the other. A space is 2, also called Hausdorff, iff, for any

two points, x and y, there are neighborhoods U(x) and V(y) 3-

U n V =, in other words, if. any two points possess disjoint

neighborhoods.

2.3 Examples: All metric spaces (including the Euclidean spaces)

are Hausdorff. Since most spaces we can intuitively grasp are
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Hausdorff, I will provide some mathematical examples that are

not Hausdorff. (See Fig. 14.) Sierpinski space is To but not

T1 or T2 * The only points to consider are 0 and 1; 0 can be

separated from 1, but I has no neighborhood which does not contain

0. Another example of a To but not Tj (or higher) space is the

space X= [0,1)C El (the interval which includes 0 but'not 1)

with Tx= all B C X -B= [O,k), for any k greater than 0 and $1.

Any neighborhood of x eX contains all y <x.so the lesser of two

points can be separated from the greater one, but not vice-versa.

A final example is provided by any infinite set with the topology

consisting of all sets of the form X minus a finite number of

points. This space is T1 but not Hausdorff: for two points

x and ye X the open set X-y is a neighborhood of x which does

not contain y and likewise the set X-x separates y from x, but

these two sets (and any other two sets) cannot satisfy the Hausdorff

condition since they intersect.

2.4 All points and all finite sets are closed in a Hausdorff

space (though they may also conceivably be open). A subspace of

a Hausdorff space is also Hausdorff.if it has the relative topology.

And the Hausdorff quality is a topological invariant (i.e. any

space which is homeomorphic to a Hausdorff space is Hausdorff).

2.5 A space X is :T or normal iff V disjoint closed sets A and B

in X, Jopen U V A and an open V D B 3 U n V= The requirement for

normality just replaces both points in the Hausdorff condition

with closed sets. Another, intermediate condition, called or

regular requires that there be nonintersecting neighborhoods for



30

14b14a....,

Figure 14. Spaces of little separation (To). Sierpinski space,

whose open sets are shown in lka, is TO: 0 can be separated

from 1, but not vice-versa. The interval (0,1) with open sets

all-iofthelform (0 ,x) 0< x;l, is also To since any neighborhood

of b also contains as though a can be separated from b.

15a- 15b 15c

Figure 15. Separation axioms. Separation asks if nonintersecting

neighborhoods canbe found for: 15a) distinct points, Hausdorff;

15b) a closed set and a distinct point, regularity; 15c) non-

intersecting closed sets, normality.

(

K -/

Figure 16. An alternate characterization for normality. For any

closed set A and any neighborhood U(A), is there an open V such

that Ac VcTc U?

JI Jr
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any point and any closed set which does not contain that point.

For any space, normal implies regular which implies Hausdorff

and normality is the strongest criterion I will cover; (See

Fig. 15.)

2.6 There is another easy way to define normal: Aispace Xris.

normal iff V closed A and any open neighborhood ,UA, Jan open

V.WAcVcVcU. (SeeiFig i'6") Normality is a topological

invariant, but a subspace of a normal space need not be normal,

unless it is a closed subspace.

3. Connectedness

3.1 A space is gonnected iff there exists no partition of it

into two or more open sets. An equivalent way to state this is

that there can be no subset which is both closed and open (other

than X and the- space itself). Any En with Euclidean topology is

connected; in fact for n >1, En minus any countable subset is

connected. Connectedness is invariant under any continuous mapping.

3.2 A subset of a space is connected iff it is connedted as a

subspace. (This is a definition, not a derived fact.) Thus, for

example, though El is connected, the set D= El minus any point x,

is not, since fall-y-<x30 D# al. y x3fD is both open and closed

by the relative topology. (Fig. 8b provides another similar

example of a disconnected subspace of El.) In general, the only

connected subsets of' E are individual points, intervals and El

itself.

3.3 A component, C(x), of a point in a space is the largest

connected subset of the space which containsx. Examples: In

the example given above in 3.2, there are just two components:
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all y <x and &l y> x3. In the set of all rational numbers

considered as a subspace of El, each point is its own component

because no two points belong to a connected subset. In a

connected space there is only one component. The relation

"belongs to the same component as" is an equivalence relation,

so the components of any space form a partition of that space.

Every component is a closed set.

3.4 Intuitively, the presence of disconnection in a space means

that there is at least one subset, A, Int A =A= A. Thus, A

has no border outside itself though it is open or "fuzzy".

Usually, I picture disconnection as breaking a space into two

(or more) totally disjoint subspaces with no "interesting"

relationships between individual members or subsets across the

break(s).

3.5 A pajh is intuitively a curve in a space which connects two

points, formally p: I-X, is a continuous map, with p(O) called

the initial point of the path and p(l) called the terminal point.

(Fig. 19 incidentally shows some paths.) The concept of path is

important in many fields of topology.

3.6 A Dath-connected space is a space in which every two points

are connected by a path. This is a more intuitive notion of

connectedness than the first one and it is also stronger, though

in most cases comes out to the same thing. The path-connectedness

idea also leads to path-components in an anlogous way.

4. Compactness

4.1 A coverin; of a set is a collection of sets.9every x eX belongs
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to at least one member of the covering. An open covering of a

space is (obviously) a covering in which all the sets are open,

e.g. any basis. There are both finite coverings and infinite

coverings depending on the size (i.e. cardinality) of the covering.

A subcovering is a covering which is a subset of the origninal

covering, i.e. is a refinement of the covering in that it elimi-

nates some redundant sets.

4.2 A space is compact iff every open covering contains a finite

subcovering. (See Fig. 17.) Compactness is invariant under all

continuous mappings. Also, any closed subspace of a compact

space is compact.

4 3 Examples: Consider the interval (0,1) as a subspace of E1

and the infinite open covering including all sets of the form

(0,1-A) for each n> 1. This is indeed a covering---every point

belongs to some interval, no matter how close to 1 it is---yet

there is no finite refinement of this covering which still covers

the whole interval; hence (0,1) is not compact. The unit interval

I= [0,1] , on the other hand, is compact. For instance the infinite

open covering which includes every [0,1-A) plus (1-1,11 for some

fixed m> 1 can reduced by eliminating all but a necessary number

of sets, e.g. (0,1-A) and (1-11.MT-h. m
4.4 Metric spaces provide a more understandable meaning for

compactness. A compact subspace of a metric space is necessarily

closed and bounded and, in particular, for any subspace of a

Euclidean space En, compactness closed and bounded.

4.5 A.Hausdorff space is 20 countable (read: "second-degree

countable") iff it has a countable basis. For a space to be 20
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X - -Figure 17. Compactness. The illustration

3- ~symbolically shows a possible infinite open

covering of a space, X. Can a finite sub-

-bcollection of these sets be chosen which

will still cover X? If so, X is compact.

Closed and bounded subspaces of Euclidean

spaces are always compact.

X Figure 18. Convergence. An infinite sequence

of points, xn (n ranging from 0 to infinity)

A. ) in a space, X, is said to converge to a point,
x, iff every neighborhood of x contains all

but at most a finite subset of the xn. The

point x is called a limit point of the sequence.
In fact, this concept is akin to the idea of a fringe.

~~yo)

Figure 19. Homotopy of paths. Functions f and g are mappings of

I = 0,1 El into a space, X. We say f is homotopic to g iff

there is a continuous deformation of f into g, i.e. a continuous

set of paths with f as the first path and g-as the last. Unlike

homeomorphism, with homotopy, the deformation must take place

within a space (in this case X) that both functions relate to.
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countable every open covering has a countable subcovering. So

20 countable is a weaker property than compactness. For example,

El is 20 countable. Consider all open balls, B(xr) both x and

r are rational numbers. This set is countable and is a basis.

Yet El is not compact.

5. Convergence and completeness

5.1 A secuence is an infinite set of points, x1,x 2 *.. called

"the sequence xn." A sequence xn is said to converge to a point

x a space X iff for any neighborhood U(x), an integer N n N

xfh U. (See Fig. 18.)

5.2 In a Hausdorff space, a sequence can converge to, at most,

one point.

5.3 The Cauchy criterion for convergence in a metric space is

this: For any positive number e (no matter how small), 3an integer

N,9Yn and m both greater than N, d(xn,xm)<e, i.e. the members

of the sequence grow closer and closer to each other as the

sequence progresses. (This is not quite the same as saying that

the members grow closer and closer to a limit point, which is the

criterion for convergence in a metric space.) If a sequence in

a metric space converges, it meets the Cauclycriterion; the

converse is not necessarily true, but if it is, the metric space

is called comnlete. Note that a space may be complete with one

metric, but not with another. In general we call a space complete

if it has at least one complete metric.

5.4 Examples: All Euclidean spaces are complete. The interval

(0,0 as a subspace of El is not complete, for the Cauchy sequence
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Xn= , converges to a point outside of the space, namely 0. The

rational numbers are similarly incomplete since a sequence of

rational numbers may converge to an irrational. Though the

irrationals 'are .alsolincomplete with the natural Euclidean metric,

there are other metrics for which the irrational numbers are

dompletee

5.5 Oddly enough, completeness is not a topological invariant.

6. Homotony

6.1 Homotoy () is a relation between two continuous functions

that take a given topological space into another. We say that

given ft X->Y and g: X-4Y (or simply f,g: X-+Y), f-'g iff 3a

continuous F: X X I-)Y 3-F(X,0)= f(X) and F(X,1) g(X). Intuitively,

if we let Ft = F(X, t) for 0 t.9 1, then the set of all the Ft

represents a continuous deformation between f and g, ro that F0 = f

and F1 = g. (See Fig. 19.)

6.2 A constant map, f: X-+Y is a map for which Yx e X, f(x)= yo.

In other words, f takes the whole space X into one point of Y.

Sdzch a map is always continuous. Any function homotopic to a

constant function is called nullhomotonic.

6.3 YX is the set of all continuous functions from X into Y,

called the function set. Homotopy is an equivalence relation

on this set and divides it into homotopy classes. For example

in a connected space there is one and only one nullhomotopic

class, i.e. set of functions which can be deformed into a

constant map. If a space is disconnected, there are as many

nullhomotopic classes as there are components.
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' c 0

Figure 20. Basic homotopy eLasses of loops :on a torus. co is a

nullhomotopic loop and thus belongs to the null class. c1 is

called a meridian and c2 is. called a parallel-

21a
r= 9
S=1

Figure 21. Homotopy classes of loops on a torus. All classes of

loops on a torus can be described as a combination of two

integers---the number of times the loop crosses the meridian

(or goes around a parallel), called r, and the number of times

it crosses a parglle goes around in the direction of a meridian)

21b called s.

r=10

s= 2
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6.4 Paths are a particular type of function, ps I4Y and among:

these there is a subset of closed paths, called loops or Jordan

curves, consisting of those paths for which the initial point and

terminal point are the same, ise.' p(0)= p(1) ay4>This set of

loops is called the fundamental group at yo when its homotopy

classes are identified.If the space, Y is connected, then all

fundamental groups have the same form, regardless of their

base point yo.

6.5 Examples: On the surface of a sphere, any closed path is

continuously deformable into a point, i.e. all loops are null-

homotopic, so the fundamental group has only one member. Whenever

the fundamental has only one meber, the space is called simrly-

connected; thus# all closed surfaces homeomorphic to a sphere

are simply-connected All Euclidean spaces are also simply-

connected. For the 1-fold torus, the situation is more complex.

(See Figs. 20 and 21.) And for toruses with more "donut-holes"

the complexity multiplies considerably.

6.6 The unit square is 12= Ix I. Generally, the unit n-cube=

In= the set of all n-tuples (ulu2e*.,un) with 04 ui5 1 for any

i from 1 to n. Jn is the boundary of In defined to be all points

with at least one co-ordinate equal to 0 or 1. (See Fig. 22.)

If we have a space Y and consider all continuous maps p: Ing Y

9Wp(Jn) = y6 and thence, the homotopy classes thus formed, we find

we have an n-dimensional homotony groun. This whole concept is

nearly impossible to visualize, but it becomes easier if you

realize that the fundamental group is just the one-dimensional
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homotopy group and try to extend it from there.

6.7 Homotopy bears a peculiar relationship to homeomorphism.

Homeomorphism compares the forms of spaces in a very fundamental

way, while homotopy compares various maps between two spaces,

and thus is usually a way to measure the relative complexity of

spaces. In many cases, comparing maps to see if they are

deformable into one another is the same as comparing those maps

considered as spaces. Yet in other cases, there is a difference

e.g. loops which are all homeomorphic to one another as spaces

but not always homotopic as maps. Repladingione of the two

spaces in a function set by a space homeomorphic to it will not

change the structure of the homotopy classes; we have already

used this fact to assert that all spaces homeomorphic with the

sphere are simply-connected.'.

GLIMPSES OF ALGEBRAIC TOPOLOGY

This section may seem contrived and quite distant from the

last two. This is partly because its paractical applications are

already so well deVeloped that I have directed my choice of what

to cover towards those known uses and also partly because, in

ignoring some of the difficult theoretical material, particularly

the concept of homology, I have cut out many of the means by

which one could have seen how it all fits together. Nevertheless,

this section will stand up on its own and suit our purposes well.

1 Simplicial complexes

1.1 In En a set, P, of m points (mg n) is linearly independent,
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22b

22aJ J J

Figure 22. The unit n-cube.' 22a-c show the unit n-cubes for n =

1, 2 and 3. In each case, J represents the set of all points

on the boundary of I (where J is just two points), 12 (J is all

points on the four edges) and I3 (J is all the points on faces,

edges or vertices. If we form the homotopy classes of the

mappings of In/j onto any selected space, X, we obtain the
n-dimensional homotopy group. For n=1, I/J is a loop and the

group obtained is the fundamental group.

a .Figure 23. Linear subspaces of Euclidean spaces.

b , d Because points b, c and d are not linearly
independent, the dimension of P =a,b,c,d is only
2. The subspace spanned by fat,bc,d3 is E2 9 the

plane of this sheet of paper. The convex hull

formed is shown by the shaded area.

24a
4 Figure 24. Convexity. A figure is convex (in a

Euclidean space) iff any line segment connecting

two points 'of the -figure is totally contained

within the figure. 24a is convex in E2 , 24b

is not.



41

iff, intuitively speaking, no subset consisting of 3 points

lie on a line, no 4 points lie in the same plane and, in general,

no i+2 points lie in the same i-space. The dimension of P is m

if P is linearly independent; otherwise the dimension is the i

dimension of the largest linearly independent subset contained

in P. For any PcEn, the dimension of Pn. (See Fig. 23.) -

12 A set of points, P, forms a linear subspace of En iff all

the points on any line determined by two points in P also

belong to P. If the word "line" in this definition is restricted

to the "line segment" between two points in P, we have a convex

linear subspace.-In general, any figure forf:which any line segment

between two points is contained in the figure is called convex.

(See Fig. 24.) For example, three linearly independent points

will determine a traiangle as its convex subspace. A set 6 m+1

independent points (or any m-dimensional set) will determine

the interior of an m-dimensional polyhedron, with the points of

the set as vertices. The points of the set are said to span the

subspace.

1.3 An open m-simlex (0 fm) is a convex linear subspace spanned by

m+1 linearly independent points. The union of an open m-simplex

and its boundary, the surface of its m-polyhedron, is called a-

closed m-simolex (). A -face of an m-simplex (q-< m) is a

q-simplex whose spanning set of q+1 points is a subset of the

spanning set of the m-simplex. Thus, a 0-face is called a vertex,

a 1-face is called an edge and a 2-face is usually just called

a face.
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1.4 A simplicial complex or just complex is a set of simplexes

of (possibly)various dimensions with the only stipulation being

that all the q-faces (04 q 4m) of any m-simplex,,aj'9 also members

of: theecomplex. (See Fig. 25.) The dimension of a complex K

is the dimension of the largest simplex in K, iie. the maximum

m for which 3an m-simplex in K. A q-section of a complex K is

the subcomplex consisting of all m-simplexes 3m 4q.

1.5 Triangulation is a process of finding for a given subspace

of an En, a complex K, so that for any point in the subspace,+

there is a simplex K that contains the point. To extend

triangulation beyond just polyhedra, we must define a new

simplex =any set which is homeomorphic to our previous definition

of simplex. (Some triangulations of two-dimensional spaces are

illustrated in Figures 26 and 27.)

i.6 The Euler characteristic of a triangulation is a function of

the number of simplexes of each dimension that belong to the

triangulating complex K. Each subspace of En has an Euler

characteristic which does not change for different triangulations;

moreover, the Euler characteristic (I will call it P) is a

topological invariant. The formula for any two-dimensional

figure is P= the number of 2-faces minus the number of 1-faces

(edges) plus the number of 0-faces (vertices)=F -E+V. P for

any simply-connected, bounded space =a sphere =2. P for any

space a 1-fold torus =0. P for any space= a diskai..

2. Graphs

2.1 .A gro is a set of points, A, with a relation PCAX A. In
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A

B .CD 
G

Figure 25. Simplicial complexes. Ill ustrated is a simplicial

complex with one 3-face (EFGH)l five 2-faces (ABC, EFGEFH,

EGH aid FGH), ten 1-faces (or edges) and eight 0-faces (or

vertices). This complex is not connected.

Figure 26. Triangulation of a sphere. One

possible triangulation of a sphere into eight

curvilinear faces, 12 edges, and six vertices.

The Euler characteristic, P =2.

C

D

EE

A
Figure 27. Triangulation of a torus. The illustration represents

a triangulation of a torus into 14 curvilinear faces, 21 edges

and seven vertices. P=0' (The representation is formed into

a'torus by joining the upper and lower edges of the rectangle

together (ABCA) to form a cylinder and then joining the two

bases of the cylinder (ADEA) together to obtain a torus*)
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simpler terms, a graph is a set of p with some pairs of them

connected by arrows, called arcso, We write (xty)e P iff there is

an arc from x to y. The basic things we seek to ask about a

graph deal with the form or pattern of the existing arcs. (See

Pig. 28a.)

2.2 A graph is reflexiveo#all possible loops are included, i.e.

iff Vx9 (xx) P.

A graph is transitivef4 if tatb) and(blc) are arcs, then so is (atc)

A graph is symmetric 0 if (ab) is an arc, so is fa). A symmetric

graph usually uses a non-directed line, called an edge,- to represent

any arc-pair or loop. (See Fig. 28b.)

A graph is anti-symmetric if (a,b) is an arc and a /b, then

(b,a) is not an arc.

A graph- is complete ( every pair of points is connected by at

least one ara

An equivalence graph is a symmetric, reflexive and transitive

graph.

A preordered graoh is transitive and reflexive.

An ordered graph is anti-symmetrict transitive and reflexive.

A totally-ordered graph is complete and ordered.

2.3 A path (or chain, in a symmetric graph) is an ordered set

of arcs (or edges) 3each arc (or edge) except the last leads into

the same point that its successor leads out of. (In Fig. 29a,

abcdefg is a path.) A circuit (or cycle, in a symmetric graph)

is a specific kind of path (or chain) which ends at the same

point it begins.
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28a 28b

Figure 28. Graphsis 28a shows a graph and 28b shows the same graph

represented as a symmetrical graph' In either case"" the point

x is an articulation point.

29a f29b

Figure 29' Arborescences and trees. 29a illustrates an arborescence
and 29b shows the same figure represented as a tree. Note that,

while every arborescence has a unique root (in this case .at a),

a tree need not have a unique root.

30 30

Figure 30. Simply-representable graphs. Both of the figures

shown above are not simply-representable in two dimensions*

Figure 31. A simply-representable configuration

in three dimensions for 30b. Note that the

-'cyclomatic here is 10.
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2.4 One often wants to know the qualities and "density" of the

overall connection in a graph. A graph is connected iff' there

is no way to divide the graph into two parts without at least

one arc joining them. A graph is strongly connected if there

is a path leading from any point to any other point. A connected,

gymmetric graph is automatically strongly connected. A point in

a connected graph, the loss of which point would mean a disconnec-

tion is called an articulation point. (See Fig. 28.)

2.5 In a symmetric graph, there are several indexes used to

relate the number of edges, Eand the number of points, V, to

tell us something about the "density"of the graph. = is

the simplest, but there are many others.

2.6 Another key concept in graph theory is distance, though it

rarely meets the requirements of a metric in the sense we used

it previously. The length of a path or chain is equal to the

number of arcs 6r edges in it. The distance from x to y, d(xy)

is the length of the shortest Plath (or ,chain) 'from x to y.

Example: In Fig. 28a, d(xy)= 3 and-d(yx)= 2. Only in a symmetric

graph does d(xy)= d(y,x) always.

2.7 In a strongly connected graph, the diameter is the maximum

distance found between any two points in the graph. In Fig. 28b,

the diameter =5. For a given point in a strongly connected graph,

its accessibility= the sum of the distances from it to all other

points. In Fig. 28b, the accessibility of x is 14. The Konig

number for a point is the maximum distance to any point. In the

whole graph, the mean dispersion is the average accessibility for
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all the points in the graph.

2.8 An arborescence with a,.root r (one of the points in the graph).

is a graph with every point having only one arc leading, into it,

except r which has none. A tree is a symmetric representation of

an arborescence, with arcs replaced by edges. (See Fig. 290)

Arborescences and trees have no circuits (or cycles). Another

way'to think of a tree is as a miimally-connected symmetric

graph, E= V-1. A tree is one of very few-graphs for which distance

is a true metric.

2.9 I will call a symmetrical graph simply-representable iff it

can be represented on a plane without any arcs or edges intersecting

one another. More generally, I will assign a Jimension n to a

graph (not to be confused with previous definitions of dimension)

iff En is the smallest dimension Euclidean space in which the

graph can be represented without intersection. A graph of dimension

1 is no more than a chain. The largest complete'graph which is

simply-representable (dimension 2) has only four points. (See

Fig. 30 and Fig. 31.)

2.10 Any graph in simply-represented form on a plane can be seen

as a degeneralte form of a triangulation if we expand the concept

of 2-face (or just face) to include any cycle, no matter how

many members, that is not subdivided into other cycles. If we

allow this system, we find that any such graph has an Euler

Characteristic of 1, i.e. F-E+V= 1. Another way to express it is

in terms of the cyclomatic or number of cycles in a graph. Since

this is the same as F, we say C E-V+1 for any graph of dimension 2.
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SUMMARY

The point of this summary is to pull some of the major

points of this mathematical outline together in a concise fashion

and to emphasize to the reader those concepts of topology which

I feel are most applicable to environmental science and psychology.

These are the concepts which will be explored in a rather

disconnected fashion in the next sections.

Set theory and order---Set and operation ideas are very

general ones which form the foundation of any mathematical study.

They are all that we have, so it is difficult to say anything

good or bad about them. Order is a similarly fundamental concept,

but in it we find the beginning of the topologist's desire to

categorize sets. I am led to believe that in the mathematician's

few methods for ordering a space---whether it be into a partition

of equivalence classes or a comparative relation which imposes a

linear order of some sort and whether the pointsrare perceived

as a continuum XGi), as discretely countable, but still infinite

(X0 ) or as finite---there may be a clue to that fiels of psychoogy

that deals with"pattern recognition".

General topology---Topology, it seems to me, has grown through

several negations of restrictive previbus notions of mathematics,

thus leading it to seek broader formulations and categories. A

couple of mathematicians may state that the known Euclidean spaces

all exhibit the trait that any covering has a finite subcovering,

which leads someone to ask what spaces could be like which do not

have this quality. Hence, the study of compactness begins its
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development.

The concepts of continuity, convergence, homeomorphism,

separation, connectedness, compactness, completeness and homotopy

are qualities of spaces and mappings of spaces which have had

limited application so far and all of these in the realm of

psychology. I feel that exploration of the basic structures of

the mind is the best area in which these properties will find

further application. Perhaps the computer programs written for

the study of artificial intelligence can also utilize the structures

involved int these properties, though this is a field of which I

know next to nothing.

Separation and connectedness offer formal means of dissecting

a space. Separation gives us a means of seeing a part of a space

as an object unto itself while connectedness allows us to relate

any part to any other part. They are not opposites though. A

space can have both, or neither or just one of these characteristics.

Convergence is a formal way to characterize proximity. By

isolating a sequence of points and an "idial" to which these

points grow closer and closer we have discovered a convergent

sequence, If the space is not Hausdorff separable, then this

ideal is not unique; if the space is metric in some fashion,

then we can have sequences which "ought" to converge (i.e. Cauchy

sequences),-but may not coverge if the metric -space is incomplete.

Compactness and 20 countable are topological concepts which

measure the complexity and depth of a topology in much the same

way that cardinality measures any set. In a psychological space
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the absence of compactness means that the mind has no method of

analysing the space into a finite set of complexly related (i.e.

open) overlapping components. To say a subset of a space is

compact is .a much more detailed characterization of-fuzziness"

than openness, for compactness measures this fuzziness or unfathom-

ableness throughout a set while openness is only at the borders.

Homeomorphism and homotopy are equivalence relations which

compare structures of spaces and functions-between spaces,

respectively. I will discuss possible applications of these tools

soon, but I should note here that :examples of thiir use so far

are almost entirely as explanatory and clarifying -metaphors, not

as models which can generate possible new data.

Algebraic topology---With the application of purely topolo-

gical concepts to structures of graphs and simplicial complexes,.

much of the broadness and complexity of these general categorizations

is lost, or at least reduced to an algebraic situation with highly

precise numerical indexes substituted for depth. The notions

about algebraic topology presented in this paper are just a small

sample of what is possible---this is because my emphasis is on

the possibilities of application to psychological problems, for

which the broad concepts of general topology, including non-Eucli-

dean spaces, may be found to be most useful.
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VIII. APPLICATIONS OF TOPOLOGY TO

ENVIRONMENTAL PSYCHOLOGY

I.
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PAST EFFORTS*

Topology, despite its youth, has already earned quite an

illustrious history of use as a modeling system. Basically, most

of these applications have occurred ourside the field of general

topology, using principles of graph or network theory, a branch

of algebraic topology, the development of which has consisted

greatly in the work of applied mathematicians and specific

practitioners.

Network theory has had broad applications to many purely

physical systems, such as transportation systems, other urban

service delivery systems, electronic circuitry and certain aspects

of economics (e.g. imports and exports among a set of nations).

Part of the appeal of graphs to these studies is that they are

easily adapted to a simple level of computer programs, including

the use of numerical weighting of the connections between

points. Such systems will not be discussed here, since they are

in no way psychological; however they are useful since they

demonstrate the complex development of which network theory is

capable.

Another major use of network theory, more directly related

to human psychology, is the sociogram, a tool of analytic

sociology in which points represent people in a group and arcs

or edges represent relations between them such as communications

relayed (letters, phone calls, conversations, etc.) or relations

of authority, kinship or friendship. This analysis, with much

*Any reference to authors of books or papers is listed in the
bibliography.
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clearer definitions of certain concepts than a purely intuitive

approach is an excellent tool for observing leadership qualities,

bureaucracies and hon-hierarchical social structures, cliques

and strengths of connection in a group, to name just a few. Of

course, there is a limitation of such a reduction of individuals

to total equals, or, possibly with the aid of some weighting

system, equals who differ only in one linear value in addition

to the differences in the position of each-individual in the graph

relative to the graphed relation ship. This reduction hampers

the adaptation of this sociometric model to individual or inter-

personal psychology as well as to man-environment relationships,

as we shall observe.

An interesting application of a network model to city

systems is noted by Christopher Alexander in "A City Is Not a

Tree." Actually, this "tree" is an arborescence. In his model

of the city, the root point is the entire city, possibly repre-

sented by its government, and the other points signify systems

or elements of various systems of services throughout the city.

The idea is that an individual or group may be served by more

than one element of a system (e.g. he may visit and use several

libraries outside of his neighborhood branch) and also served by

several different systems which overlap to meet his (or their)

integrated needs. Alexander takes municipal planners to task for

ignoring this overlap of elements and overlapping needs of

individuals. They rely on a bureaucratic (tree) model of

districts and sub-districts and neighborhoods and segmentation

of individual needs which not only ignores the human psychological
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situation in cities,- but also the fact that cities are primarily

formed so as to provide increased mobility for residents to

enlarge choice and possible configurations. The planning connec-

tions ought to be multiplied to conform to the realities of city

living.

Alexander has generally been interested in applying mathema-

tical models to the architectural and planning processes, yet most

of them have been only tangential to perception of environments.

An application of the network approach which is much closer to

the mark is a paper by Ranko Ban, which looked at the micro-

environment of single-family dwellings at a scale with considerable

direct relevance to humans. By using points to represent rooms

and edges to symbolize doorways and other connections, he was

able to classify various possible configurations of a house, and

particularly to investigate forms of cycles such as the living

room-dining room-kitchen-hall cycle which was most common in

frequency. Ban his done little to investigate the effects of

such configurations on the people who live in them; thus'the

psychological import of such a model is, as yet, unknown.

We shall find, in turning away from networks for the moment,

that applications to sociology and psychology in the field of

general topology are much rarer, much less versatile, and thus

much more difficult to draw broad conclusions from.

Kurt.Lewin, the well-known psychologist, looked at-various

forms of mathematically modeling psychology, topology among them.

In his book, Principles of Topological Psychology, he endeavored

to-construct an entire framework, however rudimentary$ in which
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psychological behavior can be placed and observed. Though he

did not specifically discuss perception, and dealt very little

with spatial experience, Lewin's effort is not just the isimple

network theory of most sociologists, and thus is of great interest

to this study.

Lewin's basic notion is that of the region, physical, social

or conceptual in which an individual may exist and possibly move

via paths to and from other regions. Barriers and boundaries

of varying difficulties are covered (though varying strength of

boundary is not a strictly topological concept) and examples are

given of structures. in which an individual may exist for a time,

illustrating certain configurational qualities such as possible

paths, regions of free access and structures built around a goal

(also represented as a region). Lewin concentrates a great deal

of his attention on topologizing conceptual processes. The

development of any of these concepts into theories with meaningful

implications is avoided; his purpose here is just to provide a

system for psychologists to use in representing behavior. Of

course, in encouraging such a system, one is also encouraging a

sort of world-view that accompanies this system, a world-view

which, in this case, asserts the psychological reality of the

configuration of these regions, boundaries and contiguities in

determining possibilities for an individual in a situation. As

such, I find this model useful for integrating the dynamic concepts

of spatial perception and meaning.

Undoubtedly. the author of the most significant studies done

using general topological concepts to model experience with space
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is the Swiss philosopher and psychologist, Jean Piaget. Combining

a habit of rigorous analytic thinking in philosophy and skill in

psychological experimentation, he restricted his efforts to

studying the growth of intelligent behavior in children' Child

study, more and more, seems to be a necessary prerequisite for

the study of any fundamental psychological issues, since questions

about the nature of.a phenomenon almost inevitably raise questions

about its evolution. (Kurt Lewin was also primarily based in

child psychology.)

In.a book co-authored by Barbel Inhelder, The Child's

Conception of Soace, Piaget documents -his findings in the

development of conception (as studied through representation)

of space in children. His thesifs is that before a child is

able to conceive of Euclidean space with definite sizes, shapes,

angles, straight lines and parallelism, he condeives of space

topologically and evolves through intermediate stages, most

notably a projective stage. There are but two related limitations

to Piaget's work which I hope can be overcome in the future&

One is that$ in the author's words, "The subject of the present

work is not the development of space in general, but only that

of representational space, and, therefore the analysis of perceptual

space goes beyond our set -limit's " (p. 5.) The second limitation

is the application of topological constructs only to objects as

more-or-less sparate from a spatial surrounding. Perhaps this

is a result of the emphasis. on cognition and conception as opposed

to perception and spatial feelings such as sense of place. The

authors assert that, "This primitive, topological space is purely
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internal to the particular figure whose intrinsic properties it

expresses, as opposed to spatial relationships of the kind which

enable it to be related to other figures. Thus it has none of

the features possessed by a space capable of embracing all

possible figures# and the only relation between two or more

figures comprehended by topological operations is that of simple

one-one and bi-continuous correspondence, the basis of 'homeo-

morphism* or structural equivalence between figures." I would

argue that this is a limitation of the authors' perspective, not

of pbychological reality, and that topological notions can

address problems of total relationships. Aside from these limi-

tations (which are, after all$ limitations and not errors), the

effort is a significant contribution to the psychology of space,

particularly in the creative and extensive set of detailed

experiments conducted.

A study by Kevin Lynch also applied a concept of general

topology# in this case, homotopy, to people~s representations of

spatial form in a city-scale environment. Experiments showed

that persons having a reasonable familiarity with an area mapped

that area by a map which was always a continuous deformation of

the real map. .hough often quite distorted, these maps would

contain all the correct topological relationships of paths to

regions and of regions to other regions. Furthermore, those

whose maps were "torn" renditions, i.e. non-continuous deformations,

were found to have a basic misunderstanding of the area. As in

Piaget's studies, this topological construct was applied only

W_-
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to representation.

The last field of research to be included in a certainly

incomplete list is the topological study of regular figures* In

a sense;' the various developments in the field of patterns$'

symmetrical repetitions and modules are no more significant as

integrative modeling than any other purely mathematical research.

However, the study of regular figures as a mathematical phenomenon

is so closely tied to the realities of the empirical world of

architecture and design; that it seems to afford a ready-made

springboard for psychological research and testing. Sadly, this

is the- last mention of the subject of regular figures that I will

make, except for one reference to be found in the bibliography.

To summarize this section, it is obvious that I am not first

in calling for the application of topological concepts in the

social sciences (though spatial perception and meaning have only

been investigated tangentially so far);' and indeed; it seems that

often the convenience of mathematical models guides the research

more perhaps than it ought to,' particularly in the field of

sociology. So the main difficulty is, in Kurt Lewin's words;

"the dealing with problems which lie, so to say, between

sociology and mathematids."

POSSIBLE FUTURE APPLICATIONS

General Notions about Set Theory and Order

The following is a random compendium of possible "meanings"

and philosophical points to consider about set theory and order.

The idea of sets and points with a general undifferentiated
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belonging-to relationship is basic to set theory, to any human

language and, apparently, to human thinking. One may talk about

a set of many elements, perhaps the city of Boston, and by

changing the perspective or scale of the discussion, create a

quotient set, with "the city of Boston" and other sets identified

to points. Conceptually, we make these changes quite easily,

and as our civilization has progressed, we have increased our

ability to perform these changes of scale and broadened the

range of scales in which we can operate.

Similar archetypal forms are partitioning and ordering.

The arborescence, an order relationship, is the form of all

bureaucracies and hierarchies. We also frequently use real-

valued functions, i.e. maps of a space into El, as indexes to

totally -order a set. More common and closely related to the

shape of things in physical space is partitioning. Socially, we

construct groupings and "types" often to make our treatment of

others easier.

In architecture, we create rooms to serve the partition

function. In a sense, one is put into an equivalence class

according to what room he or she is in. The implication of such

an architectural ordering is that one's relations to others are

symmetric, i.e. one is related to those people and objects that

are in the room and not related to anything outside the room.

Of course the whole situation in any architectural system is much

more flexible, and rooms constitute one factor out of many which

affect us, spatially and temporally---so partitioning should be
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evaluated as part of a complex.

In some cases, symmetry is taken for granted. We generally

assume that most relations between two people or two places.are

symmetric, especially for places, yet the possibilities for

accomodating asymmetrical relationships have not been investigated

enough perhaps. Certainly there are ways in which authority is

identified with certain places, making the connections between

those places and other places antisymmetric. The transportation

between places by automobile, on the other hand, may be too

asymmetric, so that some trips and some particular roads are not

recognized when reversed. Perhaps in many cases there ought to

be some landmarks or other key elements that are perceived in

about the same way from either side, so that paths can be easily

identifiable, even if most of the elements are asymmetric.

An analogous situation exists for transitivity. The

assumption that friendship and kinship webs are transitive may

be inconsistent, and destructive of some social groupings, such

as. communes.

In thinking about order, I feel that there must be an

assignment of cardinalities to places and objects so that the

various cardinal numbers---finite, countably infinite, uncountable---

have different psychological meanings. (Probably density would

have a similar role.) Many people believe that the quality of

being planned. destroys the infinite complexity of the "organic

city". It seems to me particularly that the difference between

Xl, the cardinal of the continuum, andX 0 , the countable infinity,
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is significant; for example, in the case of packaged do-it-yourself

handiwork kits of many types which are fashionable now, I would

set as a criterion for a kit's value as a creative medium wheth'er

or not it allows a continuum,Xj, of choices for the user to

determine the final product. A finite, or evenX 0 number of

choices, even though the latter would almost insure that every

individual's product would be unique, would still leave the entire

creative process in the hands of the kit manufacturer. Similarly,'

politics, with its polls and images, and other sociological and

psychological institutions draw distinctions by reducing continuums

to a countable or finite number of possibilities. Obviously, all

such evaluations are not purely mathematical ones.

Topological Snaces

In this section, I will attempt to formulate the basic rules

for at least two topologies in physical space,' or more precisely

in the space in which people perceive physigal space; this is

physical space as we know it, or perceive it.

The simplest way to look at physical space is as a pure

Euclidean three-space where an open set may be thought of as the

interior of any closed, two-dimensional surface homeomorphic to

a sphere or any union of these sets.

This space is pure in the sense that it is unaware of any

form that exists within it, whether it be people or objects or

atoms. It is a homogeneous, dense collection of locations (though

the positioning of the origin is unimportant),' much in the sense

in which Newtonian .physics liked to picture space. (Perhaps the
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relativistic model could be expressed as Euclidean four-space

with a strangely curved metric.) It is not useful for our purposes

except as other spaces are mapped into or from it. We also may

want to use the natural Euclidean metric as a foundation for other

more relative and personal metrics.

There are other ways of portraying topologies.and open and

closed sets.' In Marshall McLuhan's hot and cool media we find

an analogy for closed and open sets. (This idea was brought to

my mind .by Ken Kesey, who used the names "closed circle" and

"open circle" or "trip" to describe much the same thing.) Cool

media, or open sets, lack something which makes them incomplete

(in a topological sense), thus encouraging participation.' We can

consider that any open set can be closed by filling in the missing

fringe, and that any closed set has an open set as its interior

or "content". (This differs from McLuhan's system, for which

every medium, hot or cool, has an interior.) Similarly, we can

use neighborhoods of sets as cool media which use those sets as

parts of their content. It may then be possible to place the

study of media in a framework which includes separation, continuity

of maps between media, or')specific objects in a medium, connec-

tedness of spaces, denseness (one might assert that television

is dense within the space of social affairs, which may in turn be

a subspace of one's total life-space), compactness, etc;

In general, topologizing by use of open and closed sets may.

be possible in many situations where a dialectic tension occurs.

Topologizing the good configuration---One of the most
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important theories developed by the Qestalt school of psychology

was the rules of organization for the visual perception field.

The principal precept of this theory is the figure-ground

relationshipo* Simply stated, it says that at various times,

particularly at the first moment we see a visual (mostly two-

dimensional) field, we perceive an undifferentiated mass of data

without definition, as in a mist. We then proceed to create

order and configuration in the field, to distinguish objects,

or figures into a "good" pattern, one with usually just enough

order. to suit our needs. Of course the ways in which this field

is organized will depend on specific unique qualities it posseses,

on cultural and psychological forces operating on the individual,

on particular needs the observer may have at that instant, and

on a host of other factors, yet through a great deal of experi-

mental research (most of it, admittedly, utilizing quite abstract

material), the Gestalt psychologists have produced a pretty

convincing set of rules for how a "good" configuration is

perceived* Although some of these rules were based indirectly

on ideas of form selected from different fields of mathematics*

and also in spite of work done by Piaget which, in some sense,

extended those concepts in a topological direction, I feel some

value is to be had in exploring topological meanings of these

concepts, whether original to me or suggested by others. At

least one reason for doing this is to introduce the succeding

discussion of place or shell-perception.

The figure-ground relation itself seems quite analogous to
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a closed set-open set complementary pair. Thus the forming of

a Gestalt, a whole perception,. represents the creation of a

closed set or figure. The following is a list of five of the

most relevant rules by which we perceive figures:

1) The primary phenomenon in a group of organizational

principles is proximity. Figure 32 is an illustration of

proximity in action; proximity seems from this example to be

primarily a grouping based on the natural Euclidean metric, yet

in other instances, it may be related to less metric qualities.

Piaget, for example uses proximity in close association with

separation, that is, two figures form a proximity if they are

not separable by the presence of non-intersecting, surrounding

neighborhoods. Intuitively, we think of there being a "misty"

space between the two figures. In many cases, proximity depends

on the relations of the other rules.

2) Similarit is almost as important as proximity and stands

a good deal more on its own merits, rather than as a relative

quality. Figure 33 illustrates how similarity of objects in a

matrix causes them to be grouped together. In cases like this,

this rule can be stronger than proximity. Similarity deals with

the entire study of regular figures and also with the homeomorphism

concept. As an example of the latter, the importance of the human

face is very easily learned by infants, according to Piaget,

despite the various positions, types, expressions and .perspective

views which faces can provide. The reason behind this is that

however different two faces are and however different a similing

face may be from a frowning face, they are all continuous
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Figure 33. Similarity.

This' illustration is

perceived as blocks of

vertical groupings and

probably would still be
seen as that even if the

horizontal rows were

further apart.
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gure 32. Proximity. Because of the

different intervals between dots in

the two matrices, 32a is perceived

as horizontal groupings of dots while

32b is seen as a vertical grouping.

0g

gure 3,4 Closure. The drawing on

the left is perceived almost as two

separate figures because the whole

figure is not convex but each of the

two parts is in itself convex.
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deformations of each other with the relationships of eyes, ears,

nose, mouth, hair, etc. to one another always the same.

3) Closure is another Gestalt principle, shown in Figure 34,

but topologically speaking, the phenomenon should be called

convexity. Notice that, although its analytic definition involves

straight lines, there are really few size or shape restrictions

imposed on the possible convex figure; for example, any ellipse

or rectangle, whether regular (circles or squares) or very elongated,

is convex.

The well-known illusion of Figure 35, as well as many other

optical illusions are based on convexity. The figure that appears

shorter does so because it is nearly defined as a part of a closed

figure which is implied by the direction of the surrounding

segments. The other figure is left hanging in between two slightly-

defined, or at least implied, convex closures.

4) Continuity (see Figure 36) may mean topologic continuity,.

or possibly connectedness or convergence, all of which are related.

In the illustration, what forms the continuity is a set of vectors

between each pair of adjacent points. These form a kind of

Cauchy sequence---as one's eyes move along the sequence one more and

more expects the direction of the next vector to be neighborhood-

close to the direction of the last few. .Thus certain configurations

are avoided.

5) A final general phenomenon which is closely tied in with

convexity is boundedness. Boundedness is independent of convexity,

but the principle of convexity allows one to infer a bounded

figure from just a few elements. Figure 37 is a reversible figure---
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Figure 35. An Optical Illusion Based on Closure. The horizontal

line in 35a appears to be shorter than the one in 35b, even

though they are the same length. The two lower diagrams

suggest that impled convex sets influence this illusion.

Xe
yo4*

0

0 * E. 1 ,0

Figure 37. Boundedness. Either

the vase or the two facing

profiles may be seen in this

configuration since they are

both equally "good".

Figure 36. Continuity. If you

had a choice of adding one of

the three labeled points to the

rest of them, you'd immediately

choose point x, generally

disregarding rules of proximity.
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one which can be perceived in two ways each being about equal in

its "-goodness" to an observer. What occurs if one looks at a

reversible while relaxing, yet fixing one's stare for awhile, is

that the two possible figures altbrnate roles, one playing

figure and the other being the ground and vice-versa. In topolo-

gical terms, we say that the two figures share a common boundary

(which is already the case between any figure and ground), and,

moreover, each figure is bounded, while a ground is generally

not bounded. The importance of this difference lies in the fact

that a closed, bounded space is usually compact, a quality which

gives a figure finitude (or "fathomableness" as I said before).

Note that this topologizing of perceptual patterns or

configuration is Euclidean and spatial in some respects, yet

also involves a mixture of other qualities (e.g. facial homeomorphs)

which are also topological in nature. What has been done in this

section, then, is to fit the topological concepts to the facts of

empirically-derived reality, not the other way around. If such

a model is to be of more than mere illuminatory value, it must

bear fruit as a predictor or aid in understanding phenomena.

Topologizinq- sense of place---Can we carry this knowledge

of the topological rules for forming good Gestalt over into

people's perception of physical space around them as a shell or

place? I believe there are several possible analogies to at

least be investigated. Let me begin the discussion of these

possible analogies with an anecdotal example.

My cat, who is considerably less prone to depend on his eyes

I -_- I R. - 77 7 , z -IT I
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and more prone to use his senses of touch, taste and smell than

humans, is lying comfortably curled up on a kitchen chair. Pick

him up for any reason and you will probably receive a dirty look

and a cold reaction for having destroyed his peaceful equilibrium.

Yet if you pick up the whole chair without disturbing his

relationship to it, he will not seem the least bit flustered,

though you may move him to another room this way and even though

he is not totally unaware of your intervention.

What are the cat's figure and ground? Is he the figure

and the chair the ground? This is a possibility, yet it seems

most analogous to the idea of the figure-ground relationship to

call the cat and chair together a figure, since they form in the

cat's perception a good Gestalt. Thus the background out of

which such a figure emerged, a background which is apparently

still vaguely in the cat's conscious or unconscious awareness,

can be called the ground.

From this example we can see some of the relationships

between visual perception of objects and patterns and total

perception of shell. The most important difference is that in

the latter case, the perceiver is always a part of the figure.

This is really part of my definition of sense of place, not an

empirical fact, but I think it is an accurate assumption because

it places the phenomenon in a highly functional position, that

is, one feels a sense of place because an environment and a

subjective set of needs and expectations one might have at a

particular moment all come together to form the best "spatial

Gestalt" at that moment, Thus one's subjective state is a vital
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part of this configuration. In addition, this perception is

not merely visual though the visual contribution is still quite

significant. Thus, by stepping into a physically sealed room,

we may no longer be able to see the ground at all, though it

still presumably has some importance for us. Finally, as in

the example of my cat, formation of a good spatial Gestalt does

not preclude movement or change, but these temporal dimensions

do, of course, complicate the matter.

With these guiding principles in mindand conscious of the

similarities and differences that the perception of a place has

to the perception of an object in a visual field, we can look at

some possible topological qualities of shell-perception space.

Of course, unlike the last topic, this one is operating in a

relative vacuum of established empirical data.

Obviously, convexity plays a great role,in aiding one's

feeling of place. Is this true convexity, or does it just mean

that anything which can be connected to the perceiver by a

straight line is considered available for inclusion into the

figure? (See Fig. 38.). I sense through observation that even

Figure 38. Convexity in spatial perception. Does the perceiver

at x sense himself as part of all the space within his visual

field, as in 38a, or does a more objective sense of convexity

limit his sense of place, as shown in 38b?
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though the latter criterion may be of precedence on the most

immediate level, the former seems to become just as important

through one's continual practice and increasing experience with

good spatial Gestalt. It also may be more favored by senses

other than vision.

In looking at a fluid environment, one where a wealth of

factors other than "just walls" contributes to the "mist" from

which one will choose a "good shell" at a particular instant, it

seems that many of the same rules that apply to the two-dimensional

visual field may go into determining our choice.of figure. Certain

rules of similarity and homeomrphism may help us to differentiate

potential places, as may the presence of elements in proximity

to one another and perhaps some aspects of continuity. However,

none of these constructs are yet developed to the point where I

can discuss them systematically and intelligently. The study of

such "fluid environments" has importance not only for some

indoor spaces like day care centers, but also for many outdoor

spaces and the highway route. Topology can suggest some factors

that could be important and, if these factors test out, topology

can provide a formal framework in which these phenomena can be

discussed and articulated.

The question of separation between spaces seems more

ambiguous in perception of place than in perception of object

configuration, mostly because the three-dimensional quality of

the former prevents vision from having absolute mastery over

whether two spaces are separated. Since most walls are not
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often perceived as being two-sided entities, because we rarely

are able to make that connection, it might seem that walls

"de-normalize" space because they make it difficult to perceive

disjoint open fields which contain our objects, i.e. shells.

This is not meant to cast aspersions on our use of walls to

divide space; rather it is to open the possibility that this

separation has some psychological importance which can thus be

tested in regard to any other spatial arrangement. There are

as well, many types of walls, such as temporary room-dividers,

partitions, etc. which encourage perception as "normal" space.

Mappings between soaces---Once again, I must present a

bare skeleton of a possible use for topological concepts. This

is the idea of mappings between spaces to check for homeomorphism

or to test for various homotopy classes. Here are some fragments:

1) Sense-spaces: Most studies in perception have tended

to segment the senses and study them one at a time. Very

little has been done to relate any two senses, really. Research

has been performed to test the development of eye-hand coordination

in children and to experiment with the effects of hampering one

sense on the functioning of another. As more of this sort of

thing is done, and more integrative knowledge of the senses is

acqquired, systematization will be necessary. A topological

mapping can compare whether two sense-spaces might be homeomorphic,

or if they are not, whether there are continuous mappings in either

direction. Or one could compare two actions such as eating and

reading to see if there are different types of mappings between
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a dominant sense and a somewhat passive sense in various functions.

Likewise, inter-cultural mappings might turn up similar structures.

We might find, for example, that our sense-space is less prone.

to formation of Gestalten in many situations than the space of a

primitive society. This is-to 'say that mappings from our sense-

space are continuous in cases where a primitive's may not be.

(These formulations are identical since they both assert that

our topology is larger, i.e. contains more open sets, than theirs.)

2) A possible group of mappings which strikes .me as having

a more natural derivation consists of mappings between spatial

relations and social or psychological systems, or between spatial

relations and conceptual frameworks. This sort of mapping

would seem to be a logical follow-up to Lewin's work, since he

divided the life-space into three planes---physical, social and

conceptual---without much discussing integration of them. By

mapping the regions involved in a psychological space, one might

find it homeomorphic to another space from another field. An

example of this being accomplished in a non-rigorous way was the

analogous carryover of the Gestaltist theories of perception into

the theory of Gestalt therapy.

If one believes that our mental processes develop in close

correlation with our experience in spatial perception and inter-

action, than it is natural to expect close correspondence between

some spatial constructs and analogous conceptual patterns. It

has struck me that Mircea Eliade's discussion of "sacred space"

in The Sacred and the Profane provides a start toward this type
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eyes are horizontal or because gravity is vertical or are the two

related? If the idea of a pole or hole in a house was so

important for many primitive men to communicate with the spiritual

plane, how would the same man react on the second story of a

high-rise apartment building? The answers to such questions

require a system for relating mappings of sense-spaces into both

Euclidean "pure" space and so-called religious space.

3) As a concrete example.of_,a mapping between spaces,

consider the way I (and, I assume, many others) read a map.

Because of the disconnected, four-component space that I try to

map any connected real area into, I am inevitably susceptible to

confusion. These four components are the-four points of a compass.

If a route that is close enough to North for me to label it such

gradually (connectedly) changes to more-or-less East, my sense

of direction is thrown off. We really want a hoineomorphism in

this situation.- A system of keeping track of all right-angled

turns and separately imagining the summary effect of all curves

might work. Or perhaps each section of a region could post

signs stating what kind of space it is!

4) The notions. of homotopy and homeomorphism classes may

find use in categorizing different spatial patterns of urban and

non-urban life. The outdoor system of a city may be characterized

in the roughest sense as a flattened m-fold torus, that is, a

c6nnected figure with-a hole in it for every place where there

is a building or the plane is broken up by some indoor use. This
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representation is extremely crude, ignoring all the previously

mentioned subtleties of spatial Gestalt, metric factors, and

much, much more besides. Yet even this simplified map and its

fundamental group can be used to classify various paths by their

homotopy type (which may also be somewhat partially ordered)

and to test for correlations between these classes of path and

various psychological relations such as perceived time, memory

of paths and reasons for choosing a path. On a small scale, it

might be possible to combine this crude system with the ideas of

spatial Gestalt including a metric relation (but not necessarily

the natural Euclidean metric).

In Manhattan, where every block is a huge development, few

closed paths are null-homotopic and it seems that, perhaps

because of this fact, most everyone might return from a place in

the same way they came, for such a return is the only way to

make the closed path nullhomotopic. In the heart of Boston,

which has a more delicate,.fiber, with a greater possibility of

null-homotopic paths (in the sense that a null-homotopic 'path is

a loop whose interior is easily understood), the whole feel of

the city is different.

It is my feeling that looking at movement through an

environment as a continuing series of changing figure-ground

relationships could lead to some kind of increased understanding

of perceived time (e.g. perhaps perceived time is proportional

to the number of figures that occur to a perc~iver in a given

journey). But this experimentation, after the general topological

structure of the spatial Gestalt is discovered, might work better



76

using graphs in a similar fashion as the method to be expounded

for child care study in the next section.

Graphs

Even though they entail a reduction of a system by uniform

application of a few abstract principles, graphs probably provide

the most useful possible systematic use of topology in the

study of environmental psychology. Their application to

transportation is already well-developed; their application to

human-scale environments is just beginning.

To perform a representation of a spatial configuration by

a graph, one must first select the appropriate set of elements

to be the points. This could be buildings in a town or land use

zones or some form of place, but quite obviously one must believe

that the relationships between these points is, for one reason

or another, not terribly metric .(in the Euclidean sense) and,

moreover, that the connections between points are such -that it

is usually only important to know whether or not a connection

exists between two points, not what the quality of that relationship

is. If your system can be reduced that much, and still retain

meaning, you have an excellent 'network.

To provide an example, I have chosen to discuss a network

I drew to use in analysing a two-year old room in the Eliot Pearson

Nursery School in Medford, Massachusetts. (See Fig. 39.)

The network was derived in two stages. First, by observation

and interaction with the children I determined a set of points

which represent the most likely occurrences of spatial Gestalt
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due to design, attitudes encouraged by the program and needs and

desires of the children. Second, I determined which places were

connected directly to which others, i.e. I would draw a line

between two points if I perceived that a child could fairly

directly move (physically and psychologically) from one place to

the other. Unfortunately, the graph was always considered to be

symmetric and thus places of privelege, places closer to the

outside, and other places which could cause anti-symmetric

relations were disregarded. Moreover, it is quite obvious to

me now, that my ability to determine what "places" should be

represented as points in a graph lags far behind my ability to

build points into a graph and manipulate graph theory. Because

of this, it might be better to provide as an example a less

fluid environment such as a conventional house. Nevertheless,

this graph should illustrate to the reader what the graph system

can do.

The system shows a diameter of seven, a relatively long one

for such a small child care room. The diameter will depend, not

only on size and elongation of a space, but, perhaps more

fundamentally, on how complex and subdivided the space is.

Points P and N are significant articulation points though there

are several other points (T,R,O) that, if removed would cut the

system off from one other point, and 'point B controls the access

of the system. Point J is the most accessible point of the graph,

i.e. its accessibility is numerically less than that of any other

point.. Other measures given in the foundation section on graphs

might provide other bases of comparison with other systems.
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a

AV.

Figure 40. Graph of a child-care room. The above is a graphic

representation of the places and connectors in the space of

Figure 39. (T and U are elevated above the floor level.)

The graph is shown in simply-representable form (no intersections

of any connectors), but, as in any graph, the relative positions

Sofpoints or lengths of connectors are irrelevant.
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(See-Fig. 40.)

In my initial use of this system I drew quite clear

distinctions between certain kinds of place connectors, never

intending to treat them equally. Furthermore, observation of a

few child care centers has led me to find further distinctions

in the type and strength of connectors possible. In addition,

there are distinctions in importance between types of places.

Hence, it would seem reasonable that in a system like this one,

one might want to weight the connectors (the stronger the

connection, the lower the weight) and, to a lesser extent (because

they are less quantifiable in their differences), the places.

The use of graphs for systems like child care centers or

houses or systems of buildings also raises the question of how

to measure dimension. Does the presence of cycles constitute

a raising of dimension (from one to two) by destroying linear

order? Does simple-representability mean psychologically that

a system is only two-dimensional, even though there may be three-

dimensional relationships in the Euclidean sense? (This is the

case in the example I provided.) It would be interesting to find

an existing real example of a non-simply-representable system

and observe its effects (if any). Or wouldn't it be interesting

to build a house modeled after the graph in Figure 31?
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CONCLUDING REMARK

As a possibly useful system for modeling phenomena occurriig

in environmental psychology, one must be very sceptical of

topology. Perhaps this is because environmental psychology is

still quite a young science. Certainly, it is beyond my scope

of thinking here to speculate on the future of this science, if

indeed it does have a future.

Throughout this effort I have only been able to produce

"possible future applications" because empirical knowledge is

not really ready for such systematization. And there is most

certainly the possibility that it will never be. Still, I

recommend the study of topological concepts to those interested

in psychology and design for the possibilities of illuminated

understanding, for much the same reasons that designers seriously

study art, and---who knows?---for the possible applications of

topology in modeling.
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X. GLOSSARY

The following alphabetical listing refers the concepts covered

in the Essentials of Topology section.to the place in which it

wag first defined. P= Procedures; S= Set Theory and Order; T=

Fundamentals of General Topology; A= Glimpses of Algebraic Topology.

If a term is referred to another term ("See .. ") this means that

two terms are identical.

accessibility

anti-symmetric graph

anti-%ymmetric relation

arborescence

arc

articulation point

basis

boundary

boundedness

cardinal number

Cartesian product

Cauchy criterion

chain

circuit

class

closed set

closed m-simplex

closure

compactness

complement

complete graph

...- n

A2.7

A2.2

A2.8

A2*1

A2.4

T1.7

T1.5

T1.6

S2.3

S1.4

T5*3

A2.3

A2.3

S1.1

T10'5

A1.3

T1.5

T4.2

S1.3

A2.2

complete relation Si.7

completeness T5.3

complex See simplicial complex

component T3.3

connectedness T3.1

connected graph A2.,4

constant map T6.2

continuity T1.9

convergence T5.1

convexity A1.2

countable X) S2.3

countably infinite See countable

covering T4.i

cycle A2.3

cyclomatic A2.1O

denseness T15

diameter A2.7

difference S1.3

dimension of a complex A1.4

dimension of a graph A2.9
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distance See metric

distance in a graph A2.6

edge of a simplex A103

edge of a graph A2.2

equipotence S2.3

equivalence class S1.8

equivalence graph A2.2

equivalence relation Si..8

Euclidean set P

Euclidean space T1.2

Euclidean topology- T13

Euler characteristic A1.6

dxclusive interval P

face of a graph A2.10

face of a simplex A1.3

finite cardinal S2.3

finite covering T4.1.

fringe See boundary

function See map

function set T63

fundamental group T6.4

graph A2.1

Hausdorff space T2.2

homeorphism T1.10

homotopy T6.1

homotopy classl T6*3

homotopy group T6.4

I>'thepynit interval P

identification Si.8

iff P

inclusive interval P

infinite covering T4.1

initial point T3.5

injective Si1.6

interior T1.5

intersection (A) S1.3

inverse function S1.5

Jordan curve See loop

Konig number A2.7

length A2.6

linear independence At.1

linear subspace A1.2

loop T6.4

map S1.5

mean dispersion A2.7

metric Ti.6

metric space T1.7

m-simplex See simplex

natural Euclidean metric T1.6

n-dimensiondl homotopy

group See homotopy group

neighborhood T1.4

network See grkaph

normal space T2.5



86

null set S1.2

nullhomotopic function T6.2

one-fold torus See torus

one-to-one See injective

onto See surjective

open ball Tl.6

open covering T401

open m-simplex A13

open set T.1

order relation See partial order

ordered pair P

ordinal S2.2

partial order S2.1

partition s1.9

path T3.5

path in a graph A2.3

path-component T3.6

path-connectedness T3.6

point S11

preordering S2.1

q-face A1.3

q-section A1.4

quotient set 51.8

reflexive graph A2.2

reflexive relation S1.8

relative topology T1.8

regular space T2.5

second-degree countable T415

sequence T5.1

set Sl.1

Sierpinski T1.1

simplex A1.3

simplicial complex Ai'.4

simply-connected space T6.5

simply-representable graph A2.9

space T1.1

span A1.2

strongly-connected graph A2.4

subcovering T4 -1

subspace T1.8

surjective 51.6

symmetric graph A2.2

symmetric relation S1.8

terminal point T3.5

topological equivalence T1.10

topological invariant Tl.10

topological space See space

topology Ti.1

torus T1.lO

total order S2.1

totally-ordered graph A2.2

transitive graph A2.2

transitive relation S1,8

tree A2.8



triangulation

To

T1

T2

T3

T4

uncountable(Xi)

union (1)

unit interval

unit square

unit n-cube

universe

vertex

well-ordered set

A1.5

T2.2

T202

See Hausdorff

See Regular

See Normal

S2.3

S1.3

See I

T6.6

T6.6

S1.2

A1.3

See ordinal
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