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ABSTRACT

One goal of quantitative studies of physical
phenomena consists in transforming a set of measured
variables into another set that will describe the
phenomenon under investigation in terms of meaningful
parameters. Most analyses of brain waves by means of
autocorrelation functions that have been carried out
seem to have been based on two implicit assumptions:
(1) that frequency-emphasizing transformations (such
as autocorrelation) are relevant to the study of the
EEG and (2) that probabilistic models (inherent in
the use of autocorrelation analysis) are applicable.
Both these assumptions were examined in the present
investigation which concerned itself with the problem
of estimating the autocorrelation function of the EEG
from a finite sample of the EEG time series. A narrow-
band, Gaussian noise model was assumed in order to
study the errors that arise from the estimation of the
autocorrelation function on the basis of a finite
sample of the time series. A measure of both the mag-
nitude and form of these errors is derived and verified
experimentally. The EEG time series is then discussed
in the light of this noise model. Some estimate of
the distribution of amplitudes is computed. The results
obtained showed in particular that the cyclic activity
exhibited by EEG correlograms for "long delays" may
derive from such errors of truncation.
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CHAPTER 1 INTRODUCTION

The electroencephalogram (EEG)* is an electrical

potential measurable at the surface of the scalp of

man. It is of the order of magnitude of 50 microvolts

peak to peak, and spectral analysis indicate a range

of frequencies from 2 or 3 cycles/sec to 35 cycles/sec.

At the present time little is known concerning the

specific origin of this electrical activity from the

microscopic structure of the brain. It has been known

for some time, however, that the units of the nervous

system (neurons) exhibit spontaneous or background

activity (8, 19, 22, 48, 66, 67, 81, 85, 99) that is

unrelated to any known stimulus. It is clear that the

gross electrical activity as reflected by the EEG is

some function of this unit activity. Various sources

have suggested that the EEG is a summation of the

classical action potentials of the single units. Others

claim that slower dendritic potentials contribute to

the gross potentials. The question of origin is by

no means settled at this time. (6, 16, 18, 21, 23, 51,

52, 59)

*The term "EEG" will be used here to apply to
that brain potential that is measured extra-cranially
when no known, externally-applied stimulus is present.
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Equally important is the question of the physi-

ological significance of this electrical potential.

Lindsley, (68) among others, claims that some of the

components in the EEG (alpha rhythm) reflect an excit-

ability cycle in the cortex. That is, some basic

metabolic and respiratory rhythm of the organism's

nervous system is responsible for the rhythmic compo-

nents of the EEG. This question of rhythms and syn-

chronous activity is one which will be returned to later.

Another view of the EEG is its interpretation as

a reflection of the state of the organism. This view

stems from a considerable amount of evidence of the

sensitivity of the temporal patterns of the EEG to the

internal and external environment of the organism.

The effect of the consciousness of the subject upon

these patterns is marked. EEG patterns show slower

activity as the subject becomes dormant and exhibit,

high frequency components as the subject becomes attentive.

(14, 29). Furthermore, the effects of anaesthesia are

as marked as those of sleep and wakefulness.. The

concept of state is given more meaning by some results

of research done in the reticular formation. (70) It

has been found that a non-specific pathway to the cortex

through the reticular formation of the brain stem has

much to do with the rece'ptivity of the cortex to sensory

information. Furthermore, changes in the electrical
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potentials of the reticular formation have resulted

in concomittant changes in both the behavior of the

animal and the electrical potentials of the brain.

Indications of the interpretation of the EEG as

a reflection of physiological state also come from

studies of reaction time versus EEG (40, 62) and

effects of visual attention (10, 13, 91) upon EEG

patterns. Here again, there is evidence that some

connection exists, although detailed knowledge of

the relation is unknown.

From results gleaned from the literature*, it can

be concluded that the EEG is of neural origin and

bears some relationship to important physiological

processes and also correlates with behavioral changes

in the organism. It is also apparent that the EEG is

a highly labile phenomenon, varying in its patterns

from individual to individual, varying as a function

of the state of a given individual and as a function

of the positions of recording electrodes on the scalp

of an individual. In fact, determining and controlling

the many sources of variation of the EEG is one of

the chief problems confronting the research worker today.

In the past much of the research in the EEG field

*For review articlqs of EEG literature see references
11, 72, and 95.
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has resulted in the collection of a vast amount of

data. Experiments have depended to a large extent

on ill-defined criteria and human judgements. In

recent years, however, there has been an effort to

get away from these kinds of experiments. More empha-

sis is being placed on asking specific questions

and attempting to find answers to these questions by

quantitative and objective methods. One of the major

efforts has been to find some transformation of the

EEG patterns of voltage versus time that will yield

a new variable or set of variables that will be easier

to interpret. Easier to interpret in the sense that

the new variables will be insensitive to those changes

in the experiment that the experimenter is not concerned

with and yet sensitive to those changes that the

experimenter is studying.

One such technique (37, 38) was designed to empha-

size the rhythmic burst activity (alpha rhythm) that

is prominent in the EEG of many subjects when they

are asked to relax in a particular kind of environment.

This environment is one in which the subject is deprived

of all auditory and visual stimulation. The aim of

the project was to determine some measure of the varia-

bility of the amount of rhythmic burst activity in

the records of four normal subjects when the conditions
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of -the experiment were controlled as best as they

could be. The ultimate goal was to determine if

these statistics were stable enough under the con-

ditions of the experiment to make them useful vari-

ables for a study of the effects of a changing envir-

onment upon the EEG of a subject or group of subjects.

Essentially, the experiment was a beginning in the

search for methods of characterizing the physiological

state of a subject. Since all the EEG data used in

this thesis were recorded in the same manner as in

this experiment, a more detailed discussion of the

project will be given here.

Subjects who were instructed to keep their eyes

closed were seated in an anechoic chamber with the

lights off. The EEG data of these subjects were

recorded from standard electrode positions (7, 9)

(left parieto-occipital area) with gross, wire electrodes.

The experiments consisted of 13 minute recording runs

followed by a 3 minute intermission in which the lights

were turned on and the subject was allowed to chat

with the experimenters. At the end of this intermission

the dark, quiet environment was restored and another

4 minutes of resting EEG data were recorded. This

procedure was followed for 4 subjects on 6 different

occasions. These experiments covered a period of
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approximately two months and were generally run once

a week at approximately the same time of day.

The data were recorded on magnetic tape at a

tape speed of 1.2 inches per second after amplification

by low noise amplifiers. The analysis was performed

on 3 minutes of data at a time. This length of data

was sampled at 300 samples per second and read into

the memory of the TX-0 Computer through an analog to

digital converter. Once in the memory of the computer,

the data were analyzed by a program that essentially

marked those intervals of the record that contained

bursts of rhythmic alpha activity. The criteria for

this determination were based on amplitude, zero-crossing

intervals and succession of intervals of the proper

interval length. All three of these criteria could be

varied at the programmer's desire. Furthermore, the

resulting statistics of this analysis were independent

of gain and time base. The two statistics that were

of particular interest were the number of bursts in

a particular length of record and the percentage of time

in which there was alpha activity. The only results

to be even schematically mentioned here are those to

which there will be some reference later.

It was found that in successive three minute

intervals of EEG record, the total activity (percent



time during which there was alpha activity in the

record) decreased in a statistically significant

manner. After the three minute intermission, the

activity tended to increase again for the next inter-

val. These were by far the most significant data

produced concerning the resting alpha activity.

Aside from this effort at quantification of EEG

data, most of the other methods used to date can be

categorized as harmonic analysis methods. Two dif-

ferent techniques that emphasize essentially the fre-

quency components of the EEG have been in use. The

first method consists of filtering the EEG with a

series of narrow band filters and thus determining

an estimate of how much energy is contained in various

frequency bands. In general these frequency spectra

are very complex except for the case of a pronounced

alpha activity, in which instance there is often a

sharp peak at 10 cps.

The.second and theoretically equivalent, although

computationally quite different, method coming under

the general heading of harmonic analysis is the correl-

lation analysis approach. This method will be discussed

in detail in the ensuing chapters.

The correlation analysis technique has been used

relatively successfully-in the case of the EEG when
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exhibiting alpha activity. Successfully, in terms

of the relative simplicity of the derived data (auto-

correlograms). Examples of data taken from four

different subjects exhibiting varying amounts of

alpha rhythm in their EEGs is shown in figure 1.1.

As can be seen from the data, three of the subjects

exhibit a marked amount of roughly 10 cps activity.

The persistance of this activity in the EEG of many

of the subjects has led many researchers to feel that

this relatively simple-looking phenomenon is more

readily quantifiable. Figures 4.41 and 4.42 show

the kind of correlograms that are machine calculated

from this kind of data. Note that the correlograms

exhibit some of the important temporal characteristics

of the signals. For a simple sinusoid, the correlo-

gram looks like the bottom curve of figure 3.12. It

is itself a sinusoid.

The problem with which this thesis is conerned

is the behavior of the autocorrelograms of EEG when

characterized by large amounts of alpha activity. It

has been noted for some time now, that these correlo-

grams exhibit a damped sinusoidal behavior. There

has been a considerable amount of discussion concerning

the significance of the fact that the autocorrelogram

(machine calculated, finite time sample autocorrelation

function) exhibits rhythmic 10 cps activity at relatively
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large values of the delay parameter (7). This type

of behavior can be noted in figure 3.24 as opposed

to the activity in figure 3.26.

The problem has come about from the interpre-

tation of this phenomenon. As will be discussed more

fully in Chapter 2, a correlation function whose dec-

rement for an interval T is small indicates that the

signal at two points in time separated by T are

strongly related. In fact, their mean-square linear

relationship is given by the correlation function. Thus

a long term cyclic activity in the autocorrelogram

might be interpreted as showing a strong relationship

between the values of the EEG at time intervals separated

by as much as several seconds. This interpretation

has led to the formulation of a clock hypothesis. That

is, the rhythmic alpha activity has been assumed to

be the manifestation of some very precise timing

mechanism in the nervous system. The major support for

this hypothesis is the above-mentioned feature of the

autocorrelogram of EEG.

One facet of this hypothesis makes itself clear.

The concept of an autocorrelation function, which is

a mathematically defined but operationally useless

concept, has been used interchangeably with the con6ept

of an autocorrelogram. A correlogram yields an estimate

* )
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Figure 1.1

Samples of the EEG of Four Resting Subjects

Sample length - 20 seconds
Location - left parieto-occipital area

Figure 1.2

Typical Movement and Muscle Potential Artifacts

Sample length - 20 seconds
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of phe autocorrelation. func tion of a process. The

autocorrelation function is the statistical function

defined for infinite time samples of data while the

correlogram is the estimate of the correlation function

computed by instruments of finite resolution and from

finite sample lengths of data. A probabilistic model

is suitable for the analysis of these data and indeed

the probabilistic model is at the heart and core of

the definition of an autocorrelation function. But,

the bridge between the correlation function and the

correlogram is not at all obvious. Certainly the two

are not identical. Thus the correlogram's behavior

must be examined in the light of the probabilistic

model that has been used in the definition of the auto-

correlation function.

It is the purpose of this thesis to investigate

the behavior of correlograms computed from finite

lengths of time series and to determine if the type of

behavior exhibited at large values of delay can be

explained by the probabilistic model used. In this

light Chapter 2 is an effort to introduce the probabilis-

tic model and to investigate the estimation of the

autocorrelation function of a process from a finite

sample of time series. For this purpose a narrow-band

noise signal is used both for theoretical and experi-

mental work. This is done for several reasons. First,
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this type of signal is easily characterizeable

analytically and second, it bears some resemblance

to EEG, at least in a very gross way. For instance,

some of the correlograms of EEG and narrow band

noise appear indistinguishable to the naked. eye.

Upon investigation, of this narrow band noise

problem, the implications of the results of this

work upon EEG analysis are studied.
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CHAPTER 2 ESTIMATION OF THE AUTOCORRELATION FUNCTION

2.1 Introduction and Background in Probability Theory

A probabilistic model of a physical process is often

a useful approach to its description when all the causal

effects upon the phenomenon are not known or when these

effects are too complex to be analyzed on a microscopic

scale. In this thesis a probabilistic model is presumed

for the study of the EEG. A particular EEG record is

visualized as a finite piece of a sample function of a

random process. Consider, therefore, a universe of EEG

records taken under the same conditions and interpret a

particular piece of finite data as being a piece of one

of the sample functions of the random process (the sample

functions being defined for all time). With this sort

of model of the physical process, the autocorrelation of

the EEG can be investigated using the mathematical tools

that have been developed in the 'field of probability theory.

The first question that might be raised about this

model is, what is meant by the term "same conditions" in

reference to the ensemble? The point to be emphasized

here is that the ensemble of sample functions of EEG is

an abstraction. It is a mathematical ensemble and the

tacit assumption that the experiment could be repeated

many times under precisely the same conditions is made.
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In reality, the experiment is, of course, not repeatable

in exactly the same way, but this is of no consequence

here. The only thing that is demanded of the model is

that it describe the data in some way. The point of how

well the EEG actually fits this model will be returned

to in Chapter 4.

Accepting this model for the time being, the question

that may now be asked is what does a finite piece of

data recorded in the laboratory say about the model? What

can be inferred about the statistics of the model from the

observed phenomenon? This is a very different question

from, what can be inferred from the model about the neuro-

physiological process involved? The second question is

by far the more interesting and the ultimately important

one, but the first question must be answered before the

second can be approached. This paper is an attempt at

answering one aspect of the first question. In order to

pursue the question of what the observations of the EEG

determine about the statistical model, the language of

probability theory must be introduced. It will be assumed

throughout this paper that the reader has some familiarity

with probability theory* and this introductory section is

*See references (3), (25), and (28) for a treatment
of basic probability theory and the theory of stochastic
processes..
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intended merely as a systematic and convenient mechanism

for the introduction of the notation to be used.

The discussion in this chapter will be concerned

with real stochastic processes whose sample functions

have time as a parameter. Thus, the random variable

defined over an ensemble of sample functions is denoted

as x . The subscript t denoting the time index of the

random process x. A particular sample function of the

ensemble is denoted as x(t). The probability density

function p(xt) is defined as the probability that at any

time t the random variable will lie between the values x

and x + 6x, where 5x can be chosen arbitrarily small.

Defined in this way, the probability density function has

the following properties:

p(xt) dxt = 1 and

p(xt) 2 O

The probability distribution function is defined as

the probability that the random variable xt is less than

some value X or:

P(xt x) p(xt) dxt

Since the probability density function is defined as being

non-negative, the probability- distribution function must

be monotonically increasing with values 0 at -co and

1 at+co .

These definitions for the univariate case can be
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extended to the multivariatd case by defining the joint

density function of n random variables, x , x 2 ''''''.n'

as p(x1 , x2 '''''xn). Here the subscript t has been dropped

since it will be assumed that time is a parameter for all

the random processes discussed here (unless otherwise

stated). The subscript then serves to differentiate the

random variables. In a similar fashion, the joint distri-

bution function becomes P(x1 s Xx 2 m X2 ''''xn s Xn)'

In addition to the joint density functions, it is

convenient to use the concept of the conditional density

function in the multivariate case. The notation used for

the bivariate conditional density function is p(x /x2)'

which is to be read as the probability of the occurrence

of x 1 given the occurrence of x 2. The conditional proba-

bility notation can be extended to the more general multi-

variate case and can also be defined for, the probability

distribution function.

This brief outline should suffice to explain the

notation to be used with respect to random variables and

their associated probability functions. The next step

is to define various statistical averages that may be

of interest. The meam or expectation of the random variable

x is defined as:

Efxti = mx xtp (xt) dxt



-24-

This definition can be extended to functions of the random

variable by defining the mean of f(xt) as

00
E h t t t d

For example, the nth moment of the random variable x t is

defined as:

E xtnlJ nJp x) dxt

t-0

and the nth cenal moment of xt is defined as:

E[(xt - m f(xt _ n() t

Of these higher moments, the second central moment or

variance is of particular interest and is defined as:

2 = E(xt mx)2

All of these statistical expectations, defined

above for the uni-variate case, can be generalized for

the multi-variate case. For the bivariate case in par-

ticular, the joint first moment of the two random variables

x and x2 is:

E[x 1x21 1 x2P(x, x2 ) dxldx,

and is given the name of covariance function. This covari-

ance function has a number of very interesting properties.

It can be shown, for instance, that this function is pro-

portional to the slope of the- regression line that is the

best linear mean-square fit of the joint occurrences of
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x and x2. That is, if one wanted to predict, say x2

for a particular value of x1 using a least-mean-square

error criterion that was linear, the covariance function

would be proportional to the slope of the predictor. This

assumes that the experiment of finding the joint occur-

rences of x and x2 has been repeated many times and has

formed a part of the history of the prediction problem.

For the very important case of the Gaussian Dis-

tribution, it can further be shown that the optimum mean

square estimate is also the optimum linear mean square

estimate. The covariance function, therefore, takes on

a particularly important meaning in this case. In fact,

if all the covariance functions and means of the random

variablese. X,x 2 ''. n are known then the joint density

function, P(xl,x2,**x ) is also know, if it is jointly

Gaussian.

The concept of a covariance function is also a

very useful one in the study of some stochastic processes

if the subscripts 1,2,...n are interpreted as different

points in time t ,t2 ''' .t Under these conditions the

random process is discussed at these various times and

the covariance function becomes a very useful concept.

It gives a relationship between the values of the random

variables at two instants in time. A more thorough inves-

tigation of the properties of this function are made in

the succeeding sections.



-26-

Befoe e this introductory section is complete for

our purposes, one more very useful statistic is introduced.

This is Mx (jv), the characteristic function of the. random

process xt and is defined as:

Mx (jv) = E[ejvxt1=f p(xt)ejvxtdxt
xt

Under the usual conditions for which p(xt) is well-behaved,

it forms a Fourier Transform pair with M (jv) and the
t -

inverse transform can be defined. The multivariate case

of the characteristic function again follows by analogy.

The working language of probability theory is

now defined for the purposes to be used here and all

further definitions will be made as they are needed.
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2.2 Correlation as a Time Average Process

For a real, stochastic process the covariance

function of the random variables x and x is defined as:

R (t ,t2  l x 2 1 2 x' 2 ) dx dx
x l - 2 1 , -9 21 2 ' x 2 ) 1 2

where x is the value of xt at t and x is..the value'

of x t at t2. Under conditions of strict sense station-

arity, the probability density function, p(xt x+u't2+u'''

xtu) is independent of u, and it can be seen quite
-.n
readily that the covariance function Rx(t1 ,t2) becomes

a function of m, the time difference t -t2 . Thus,

Rx(r) = f x xt+Tx t tdxt+T

If the further assumptions of ergodicity are

invoked then there are more powerful statements that

can be made about the process. Ergodic ensembles are

formed by taking one sample function x(t), defined for

all time, and generating the entire ensemble (except for

pathological sample functions) by merely shifting the

time origin of the original sample function. Thus any

finite piece of a particular sample function is assured

of appearing identically in some part of all the other

sample functions with probability one. The probability

one statement allows the occurrence of a finite number

of pathological cases in the infinite ensemble. If a
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particular ensemble is ergodic, therefore, then looking

at any one sample function for all time must be equivalent

to looking at the whole ensemble at any one time with

probability one. Thus it is possible to define time

average statistics of the process that are entirely equiva-

lent to ensemble average statistics. In particular, the

autocorrelation function of the sample function x(t) is

defined as:

) = limT- fx(t)x(t+T) dt

For the ergodic ensemble =() Rx(T) with 'probability

one. Heuristically, it can easily be seen that these two

are equivalent for this case since for fixed T they each.

average the occurrences of all possible products xt t+

and this average is then performed for all values of T.

Some of the important properties of correlation

and covariance functions can be demonstrated by doing a

simple example. Consider the case of an ensemble of

random-phased, equal amplitude and equal frequency sinu-

soids. Thus a typical sample function might be:

x(t) = sin(ot+G) where 9 is a random

variable and has a uniform distribution between 0 and

27. From the definition of the covariance function:

I =
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The limits are imposed since the amplitude of the func-

tions xt and xt+Tare limited by unity. Now p(xt'xt+)

is found by using as extension of Bayea' Theorem which

says:

p(xtxt+1d p(xt+ /xt)p(xt)

But, p(xt+T /xt) is a degenerate conditional probability

density function since if the value of xt is known then

the value of xt+is known with unit probability. The

probability density function, p(xt+,/xt) is then a unit

impulse occurring at xt+T

p(xt+) =o (xt+-sin(sin xt +wT) where

o (x) is the unit impulse function having infinite

height and unit area at x=O and being zero elsewhere.

The density function, p(xt) can be found quite simply

to be: p(xt) = 1/Tr -lsx t :
2 t

The covariance function then becomes:

R(T)= 1/7r t 2 dxt )t+1o t+-sin(sin~t+W1) dxt+
-I 1-xt -1

R ( -)= 1/7r t

-a 1

sin(sin x t+m )dxt

' 2 (I

Ry(1) = 1/rcosos x dxtt1/ySi rm - xtdxt
-. 1-xt -
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The second integral is seen to be zero and the first

integral is found to give the result:

R-(-r) 91/2 coswut

Before this result is discussed at any length,

the same problem is solved by taking the time average

or correlation function. Since the function is periodic,

the limiting operation can be eliminated and the integral

can be evaluated for one period.

Oix(T) = 1 sin(wt+G) sin(ot+-cO+G)dt
27r/o jo

(T) = o fcosw-cos(2ot+wT+2G) dt
27 o

The second term contributes nothing to the integration

and the first term yields the result:

Ox(*-) = 1/2coso-c

Several important properties of covariance and

correlation functions have been illustrated by this simple

example. First, it is seen that time and ensemble averages

are actually equal for the ergodic model used here.

Secondly, the correlation function of any arbitrarily-

phased sinusoid is a cosinusoid (with the same frequency

as the original sinusoid) and furthermore, the phase of

the original sample function is not expressed at all in

the autocorrelation fundtion. It should be noted in this
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connection that the same correlation function results

from an infinite number of sinusoids, all differing in

phase. Finally, the value of the autocorrelation func-

tion for T=O is the mean-square value of the sinusoid

which can be shown to be equal to the variance of the

distribution of the sinusoid.

The results of this problem can be extended to

the more general case of any random process by expanding

the process into a Fourier Series or by transforming the

process by a Fourier Integral. The results show that in

general the correlation function has the same frequency

components as the time series and all the frequency com-

ponents are in cosine phase. Thus the correlation func-

tion is an even function with all the phase information

of the time series destroyed. Furthermore, each frequency

component has an amplitude that is its mean-square value.

Sums of statistically independent non-periodic components

also havethe property of additive correlation functions.

In addition, it can be shown that for T=O,
.2 2

RX(O) = = aX + m

and for T+ ,

Rk(-co ) = Ox(T--o) = m + periodic com-

ponents, where xt is any random process that has a corre-

lation function.

Because of these properties, it is clear that the

correlation function is not a unique function. That is,

1; ee.,
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there are many different random processes that have

the same correlation function. Furthermore, the corre-

lation function does not uniquely define the probability

distribution function of a process in general. This

can be seen by expanding the multivariate character-

istic.ofunction in a Taylor's Series and noting that

the coefficients of the terms are the moments of the

distribution. The correlation function is just one of

the coefficients in this expansion. For the particular

case of the Gaussian distribution, the correlation func-

tion uniquely specifies the distribution. Since this

is the case, then it is also clear that for any random

process (that has a first and second moment) there is

a Gaussian random process with the same autocorrelation

function.

Thus it is concluded, that correlation can be

viewed as an extension of frequency analysis to stochastic

processes. With this view in mind Wiener (96) has

lumped all the various frequency-emphasizing-transformation

methods (for periodic, non-periodic and random time

series) under the title of General Harmonic Analysis.
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2.3 Convergence and Estimation of the Autocorrelation

Function

As the Introduction indicatedi the problem with

which this chapter is concerned is the estimation of

the autocorrelation function of a stochastic process

from a finite sample of time series. This problem has

been attacked in the past by a number of authors. (7,

(26, 27, 30, 6o, 88) Most of these efforts, however,

have been directed at getting general results. In this

paper the effort is directed more at getting specific

results that can be related to the problem of estimating

the autocorrelation function of the EEG.

The function with- which this paper is concerned

(2.31) is: O0(Tr) = l/T fx(t)x(t-T)dt
0

The most important point to note about this function-is

that it is itself a discrete random variable with parameters

T and T, where T is the sample length and T is the delay

-*or shift parameter. The desired solution to the problem

is the probability density function of ox(T,T) in terms

of the probability density function of xt. This func-

tion could then be studied for convergence .as T approached

infinity. That this function, fx(T,1) is !consistant

estimate of the autocorrelation function and converges

to OX(T) in the limit, follows from the following argument

given by Davenport, Johnson and Middleton. (27')
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Consider the general problem of a

moving average:

y(T) =1/Tfz(t)dt
0

where z(t) is some sample function of an ergodic

random process zt'

The mean of the random variable y(T)

E[y(T) = E1/Tf z(t)dt

S/TjE Lz(t)] dt

= E z(t)]

Thus the mean of y(T) is the mean of z(t).

variance of y(T)

argument:

Efy 2 (T))

Using

can be gotten by the following

= E [1/T 2ffz(t )z(t2)dt dt2

= l/T2 JE [z(t z(t2) dtdt2

l/T2 f (t--t2 )dt dt2

the change of variables:

t -t2 o land

t +t= U the result is:

E y2 (T) = 2/T2f Rz( 0 )dUd-t0

finite

is:

The
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where J is the Jacobian

It1

ST0

&tl

t 2

S' t2

I/2

1/2

- 1/2

1/2

21
S/T. JR ('C ) dt~d

Z 0 0

= 2/T f(1

= E y2 T)j

= E y(T)]

- T/T) Rz ('o)dt

- E2 [y(T)j

- E2 z(t)j

= 2/Tj - T0 /T) (R z oE) - E2 z(t)]) d-o

-TO/T) (Rz (o)

0/TI IRz 0 )

E2 z(t)])

- E2[z(t)I

-r

J( R z(0)CL~O )If

- E2 z(t)f

- E2 z(t)]I

then qy2(T) approaches zero as T approaches infinity.

The conclusion of this argument is that the

finite moving average as defined,

= 1/2J

E y 2 (T)

E LY2 (T)1

2cr ( T)

Now,
1~

(i
0

1*

( 1 -C

d Ol

<oO

fo

d-c 0

converges in the
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mean to the expectation of the process as the sample

length is allowed to increase to an unbounded value,

provided that the condition that

Rz( o) - E 2z(t)] dr0 <e

is met. If the z(t) function is now defined as,

z(t) = x(t)x(t-T)

then it has been proven that g'x(T, ) converges in the

mean to Px(T) as T approaches infinityv This is an

encouraging thought in the estimation problem, since

it says that if longer and longer record lengths are

taken, eventually the computeable, finite sample length

autocorrelation function converges to the theoretical

autocorrelation function. The manner in which # (T,c)

converges to ,(T) is, however, unknown at this point.

It is conceivable that 0 (TT) converges to Ox(T) in

some oscillatory manner and there exists an optimum

length T or a set of optimum lengths Tk for which the.

estimates of the autocorrelation function areibeat.

On the other hand the convergence might be uniform

and the estimate get better continuously as the sample

length is increased. This question about the manner

of convergence can best be settled by finding the

probability density function of O (Tr) and examining

its behavior as T. is increased. 'Unfortunately this

problem is a very complex one and to date there is no

general solution.
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Some measure of the deviation of O (T,1) from

its mean, (T), can be gotten, however, by calculating

the variance of fx(T,1). This can be done by starting

with the equation for the second moment of y(T) as

previously derived:

E y2 (T)] = 2/TJ (1-o/T)Rz (ro)dto

This equation now becomes:

(2.32) E 2 (T,r)] = 2/TJ(l-T0 /T)Ex(t)x(t-T)x(t-To)x(t--To) d'r0

If no further assumptions are made about the xt

process then the above equation is the best that can

be done in terms of estimating the second moment of

,V (T,T). This is an unahppy situation, for in order to

estimate the errors incurred in the finite autocorrelation

function of some process, knowledge of the fourth-order

moments must be available. Thus a higher-order statistic

is needed. One might ask the question at this point

that if indeed the higher-order statistic were known,

for what reason would one need to know the estimate of

errors of a lower order statistic? One would presumably

already know it.

To get some estimate of the truncation errors, the

assumption that xt is a Gaussian process is made. This

allows for a simplification of the above expressions

and a variance term can then be calculated. This
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assumption of Normality is not as severe as one might

think. First of all, for the very important case of

Gaussian random variables the expression for the vari-

ance is exact, and secondly, for non-Gaussian processes

some estimate of errors can still be achieved through

this approximation. As has. been poaisni out by Tukey

(87), (88) the errors of finiteness of record length

are very much dependent upon the distribution of the

particular random variable in question. The estimate

for the Gaussian process, however, is neither the worst

nor the best. As Tukey has pointed out, some random

processes will yield good estimates while others will

not. For instance, consider a process that consists of

long bursts of constant frequency sinusoids. The fre-

quency of the bursts is abruptly changed at random. It

can be seen, heuristically, that a particular finite

autocorrelation function will yield a very poor estimate

of the autocorrelation function of the process and

furthermore, neither will yield much information about

the actual process. Thus the estimate of the autocorrela-

tion function of such a process will be exceedingly

poor. Similarly, random processes can be constructed

for which the estimate of the autocorrelation function

can be better than for the Guassian case.

In any event, to carry out the derivation of the

variance of the finite sample autocorrelation function
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in this chapter, normality is assumed since it simpli-

fies the mathematics. Thus, for the Gaussian case,

with zero mean for the random variable xt

E x(t)x(t-T)x(t-T )x('t-T-r)]= E[x(t)x(t-To)] E[x(t- )x(t-To-') +

E~x(t)x(t-t.)J E[x(t--0 0)x(t-T-1 +

Efx(t)x(t-T -c)E x(t-)x(t-T

This result follows from the expansion of the char-

acteristic function of the random variables xt' M'

xtT'XtTT Therefore,

E [x(t)x(t-T)x(t--y)x(t-- 1) (T T (=+Tedy(o-C)

.and,

(2.33) - 2/T2 (T- TO ) 0 $(I T x( TT o)OX(1r--r)} d 0

Equation 2.33 is the final result if no further

assumptions are made about the random process xt. To

summarize the results so far:

The mean of the random variable

defined in equation 2.31, is O (1) and the

variance is given in equation 2.33. The assump-

tions that have been made are that the joint

fourth order distribution of x tis Gaussian and

that further the mean of xt is zero.



2.4 The Finite-Sample Autocorrelation Function of the

Narrow-Band Gaussian Process*

Equation 2.33, although still quite general, reveals

very little about the finite autocorrelation of the

EEG. For reasons that might become clearer in Chapter

4, a further assumption about the nature of the random

variable xt is made. It is assumed here that xt is a

narrow-band Gaussian process. It is to be emphasized,

that this is in no way to be -construed as an assumption

upon the nature of the EEG signal. The discussion in

this section is concerned only with the mean and variance

of the finite sample autocorrelation of narrow-band

Gaussian noise.

The narrow band noise signal is derived by fil-

tering white Gaussian noise with a linear, quadratic

filter whose impulse respone is:

(2.41) h(t) = Ae- tsin(wodt-5) fortto

where,
A =W 0 / .o 2

d 2

/-1 1 2 a2
y =sin o0

W0

*
The expression given here is derived independently

of a similar expression given in Bendat. (7)



The Spectral Density of the input noise is N

watts/cps. The autocorrelation function of the output

of' this system is computed in Appendix 1 and the norma-

lized results:1.s:

R (r) = e- Icos01

which is valid for the assumption that o cy*

Now the expression for the autocorrelation function

of narrow-band noise (equation 2.42) is substituted

into equation 2.33.

o 2 (Ty)= 2/T (Ttr)je cos-2a 1, +

- 0 -e cos(to±+T)e

2fr
= 2/T (T- 0) e

2/T2 (T-co) e

2/T2 f(Tr ) e

cosm 0 (T0 -t) d-r.

_2C2
cos U) Te +

0 coswo0 (-C+1 0 ) coswo(T- 0 ) d-r0  +

coso ((+T0 ) coso (0(T-r) dT0

(2.42)

(2.43)
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These three integrals are evaluated in Appendix

2 and the result in simplified form is:

(2.44) o (T,.r) = 1/T2e-2aT 2 a2 sin2o0 T +
(0w +0)

2 222 (x.K )C%2
cos2w 0T + 1

42

2 2 2l/T fC w- . I + 1' e

S4(a 2+ 2)2

e - 2arsin2o 0 ' .aon

2(a2o )2

e ' 2 cos2o% w 2_a 2
4(2+ 2)2

Te -2rsin2mo 0T wo

2(a2+ )- 2

-0

-Te cos2w T( a

2 ( 2(a2+o2)

-2 e cos2'0T
20~

l/T f1 22 +
2a 2 +

cos2m 
l

2a -c

4 2

2wo )
+ 1 )

2a /

e-2aTsin2 ( 1

0

e- 2ac ros2o ( a

2(a 2- ) 2
0

,re 2 acos2 w 0 '1

+

2(a 2 +w 2

+ 1 +

2a

+

+

+

+
412)

0

+

+

+

+
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To make sense of these cumbersome expressions

a series of reasonable approximations are made. The

first approximation'is one that already has been made,

namely that M y7a. This assumption is due to the state-

ment that the noise signal considered is narrow-band.

It is further assumed that the record length, T, of

the sample function is much larger than the maximum

value of delay for which the autocorrelogram will be

examined. This is done to prevent rather obvious

truncation errors from destroying the entire meaning

of the correlogram. The last assumption is that the

maximum value of delay of the correlogram is larger

than the longest time constant present in the autocorre-

lation function. This assumption simply says that the

correlogram will be computed to a sufficiently long

enough value of delay so that the phenomenon to be

studied canbe examined.

To summarize, the assumptions made are the

following: Wo>> a

T max

max 1/a



-44-

Making use of these approximations in equation

2.44, the following results:

(2.45) T ) /T2  1 + 1 e-2c + 1 e-2'-21 sin2w Tr +

o o _3 04w 4W2W
0 0 0

e-2a-t cos2w0t - T e-2accos2  t +

4a2 2a

- e -2a cos2- +

22~-

l/T 1 + 1 e cos2mor +
2a 2(x

,r e- 2a-rcos2m 0 1

A further simplification can be made in equation

2.45 by noting three facts. First, the sum of the

maxima of terms that comprise the coefficients of the

1/T2 term, are small when compared to the coefficients

of the l/T term. Secondly, the terms in the coefficient

of l/T tend to cancel. Thirdly, the assumption of

dropping the l/T2 terms becomes more valid for large

values of T since for these values, one term, 1/2aT,

predominates in the evaluation of the variance. For

a first order result, therefore-, the following is offered:

2.46) O(T,) =1/2aT [1 + (1+2a1)e- 2c cos2oTJ

This result is shown plotted in normalized form

in figure 2.41 In addition, the theoretical autocorre-

lation function of narrow-band Gaussian noise is also

plotted in the same figure.
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Figure 2.41

Mean and Variance of Estimate of the Autocorrelation

Function of Narrow Band, Gaussian Noise
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Several features of this function, a (

should be noted. As a first approximation it varies

inversely with T for a fixed value of T. Thus if longer

and longer sample lengths are taken, the variance

decreases to zero. Furthermore, for a fixed value

of T, the variance approaches a constant as T is

indredsed. However, the signal level is decreasing

exponentially. Thus the signal-to-noise ratio is

decreasing approximately exponentially for large values

of 7. This is seen from the following defini'tion of

the signal-to-noise ratio:

E [Ox (T, T )] . e~T coson0 r

a1(TIT) [l/2'T 1+(l+2a T )e - 2 aTcos2o 2 1/2

For large values of 'T the approximation becomes:

(2.47) E E0x(TT)] = 2T e~ cosw0 -0 >>O

a 0(TT)

This expression can be shown to be a valid expression

for the signal-to-noise ratio at large r, even with

the condition that T;a>T-dropped. The new conditions

become: T>>l/a

-T ol /9.

Another way to viualize the phenomenon described

is toplot the theoretical autocorrelation function



and to superimpose upon it a 3a confidence limit

(shown schematically in figure 2.42). Since the

cdistribution of 0x(T,T) is not known, some of the

significance of this tolerance band is lost. That

is to say, a probability of the signal lying outside

of this range cannot be calculated. Nevertheless,

this sort of display is useful for visualizing the

effect of the errors of estimation introduced by the

finiteness of the record.

The results of this section so far have given

some estimate of the errors introduced into the com-

putation of the autocorrelation function of narrow-

band, Gaussian noise due to the finiteness of the

record. Since the form of these errors can be found

experimentally, it is of some interest to see if the

theory can predict something about their form. If

this form were simply random in amplitude, with no

correlation between successive points, then it might

be expected that the estimation of the autocorrelation

function would be a simple process. Only two parameters

are required to determine the autocorrelation function

of narrow-band noise, the central frequency and the

bandwidth. Since the signal-to-noise ratio is very

good for small values of c and if the signal and noise

are readily separable to the eye, then estimation of
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Figure 2.42

Estimated Autocorrelation Function of Narrow-band,

Gaussian Noise with Confidence Limits
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of the necessary parameters is simple. It is the

purpose of this last section of this chapter to show

that this is indeed not the case, and in fact, the

errors due to finiteness or record look like the signal

(theoretical autocorrelation) for large values of T.

To examine this problem, consider the cross-

correlation of two samples of the finite sample auto-

,correlation function for large values of delay. The

function to be studied is:

E [O(T,T) OX(T,T+T ).

Proceeding in the computation of this function.in a

similar manner as before, the following results:

= 1/T2 f E x(t 1 --r)x(t2 )x(t2--r-t)dt 1dt2

The joint distribution of tie variables xt ' t -1, x t

and xt 2 1 is again assumed to Gaussian with zero

mean and, therefore, factors to give:
2 -r

= l/T fffEx(tl)x(t-T)] E x(t )x(t 2 -T- )1 +

E [x(t 1 )x(t2 )J EEx(t 1 -T)x(t 2-T-1 )] +

E x(t )x(t 2-r-r 1)] E x(tl-1)x(t 23 dt 1dt 2

It is now assumed that the value of the delay,

T, is large enough to consider the variables x(t) and

x(t-T) statistically independent. That is to say, the

phenomenon to be studied occurs at values of T for which
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the theoretical autocorrelation function is reduced

essentially to its baseline. With this assumption

of independence the joint second moment E[x(t)x(t-T)

factors into E[x(t)] E[x(t-T) and this term is dropped

due to the assumption that the process has zero mean.

Equation 2.49 then becomes:

+

R (t -t2T+ )Rx(t-t2-T)} dt 1dt2

Performing the change of variable To=t 1-t2 and

t +t2 as previously shown, the following results:

=2/T2 j(T-o)Rx(To)Rx(T +TJ) +

R (T +T+T )R.(T -T) d

The narrow-band assumption is again made at this

point and then becomes:

.= 2/T (T-T )[e cosM T e coso0 ( T r ) +
0

0 0 (~++ )e c0c(r d0

e cosw 00 0 ,+recsOd-)dr

[= 2/T e
-)r

_L(T-T 0 ) e

- 2x.-E
0 coso0T0 cosm0(T0 + 1 )d 0

2/T 2 e f (T-, )e
-2 crC0 1

ocosw0 (Tc0 +r+t )coso0 ( 0 -T)dr 0 +

2/1 22 e V++ 1( c
2/Ie e (T--'0 )cosw0 ( 0++ )cosw 0(- 0-Td 00

+

1//T 2 f Ir :r 1 )f fR x ( t 1- t 2 )Rx(t 1- t 2 +,r
0

i
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These three integrals are evaluated in Appendix

3. Making the assumptions that: m;.7a

T .> 1/
T > .-/a

the result, as shown in Appendix 3, is:

(2.410) = 1/2aTe . coso 0 ..- 0

This result can be checked against the variance

in equation 2.46. If this equation is evaluated for

2
large T, then a (T,T) = 1/2aT

Evaluating equation 2.410 for T1 equal to zero gives

the same result.

Now what does the result obtained for the cross-

correlation of the samples of the finite sample autocorre-

lation function mean? It says essentially that the

errors of estimation that result from the finite sample

computation have a form that has the same basic temporal

characteristics as the autocorrelation function and the

original narrow-band process. That is, successive

samples separated by a value of delay T are correlated

in the same manner as the signals x(t) and x(t+I ). This

is unfortunate since if the signal (theoretical autocorre-

lation function) and the noise (errors due to the trunca-

tion Of the.time .sebies) look alike, then how are they

to be told apart? The answer is that the noise decreases

as the sample length (T) is increased while the signal

is not decreased. This is really the only way the two

can be told apart unless more is known about the signal.
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CHAPTER 3 - EXPERIMENTAL RESULTS OF THE AUTOCORRELATION
OF A FINITE-TIME SAMPLE OF NARROW BAND,
GAUSSIAN NOISE

3.1 Introduction and Description of Correlator and

Machine Correlation Method

This chapter presents the results of an experi-

mental investigation of the effects of truncation of

a time series on the autocorrelation function of that

time series. In particular the narrow-band process

studied in Chapter 2 is investigated. For this purpose,

the Analog Correlator (2) of the Communications Biophysics

Laboratory was used for computing the correlograms

(machine-calculated finite time sample autocorrelation

functions). The Correlator is a device that calculates

the value of the integral

Kj x(t)x2 (t-T)dt

for discrete intervals of T. The schematic diagram of

this device is shown in figure 3.11.

x2 Dela Timer

Multiplier -- j Integrator

x

figure 3.11
Schematic Diagram of Correlator

The delay is achieved by the use of a magnetic

drum. The two signals to be correlated are recorded
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on the drum in adjacent tracks. The delay is achieved

by reading the two signals from read heads that are

displaced along the circumference by a distance propor-

tional to the value of delay. This value of delay can

be stepped incrementally in values of T from 0.05 milli-

seconds to 5.0 milliseconds. The maximum total value

of delay is 185 milliseconds.

The multiplier is a quarter-square device and

the integrator is a simple Miller integrator. Thus, to

get a correlogram by this method, it is necessary to

record the data on magnetic tape. Reflectors are then

taped onto the magnetic tape separated by a distance

along the tape proportional to the sample length (T).

The correlator can then be set to automatically make

one pass over the data (from reflector to reflector) for

each point on the correlogram. The beginning and end

of the sample are sensed by shining a light on the tape.

When the reflector is reached, a photo-electric cell

produces a pulse that triggers control relays that rewind

the tape, start the correlator, and stop the correlator.

Before the narrow-band noise data is dealt with it

might be propitious to present some control runs on the

correlator in order to demonstrate that the errors of

extimation to be encountered with the data are not

machine artifact. In this light, the top correlogram

of figure 3.12 shows the correlogram that results from
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cross-correlating zero with a narrow-band noise signal.

This control is a-check on the correlator balance, which

is seen to be good for the gain settings employed.

These gain settings are the same as those used for most

of the correlograms of narrow-band noise. The second

correlogram of the same figure shows the amount of zero

drift for inputs constrained to zero. The last correlo-

gram shows the autocorrelogram of a 250 cps sinusoid.

There is no significant change in the period of the sinu-

soid as a function of delay. Thus the effects of tape

stretch and wow are seen to be negligible.

For the sake of completeness it might be added

that the auxilliary equipment (amplifiers, tape recorder,

etc.) have. bandwidths that are more than adequate to

reliably reproduce both the narrow-band noise and the

EEG signals to be studied here. Thus it can be concluded

that, for the purpose of studying the statistical errors

of finite sample correlation, as defined in Chapter 2,

the Analog Correlator and associated equipment appear

to be more than adequate. The machine artifacts can be

assumed to be second-order effects.
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Figure 3.12

Correlograms of Control Signals

Top
Crosscorrelation of Narrow-Band Noise with

Zero Input

T sample length) = 7.5 seconds
' (delay increment) = 0.25 milliseconds

Tax maximum delay) = 185 milliseconds

Center
Autocorrelation of Zero (Inputs Shorted)

T sample length) = 7.5 seconds
6 T delay increment) = 0.25 milliseconds

rmax maximum delay) = 185 milliseconds

Bottom
Autocorrelation of 250 cps Sinusoid

T sample length) = 7.5 seconds
6T delay increment) = 0.25 milliseconds

"max maximum delay) = 185 milliseconds
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3.2 Machine Correlation of Narrow-Band, Gaussian Noise

The narrow-band signal to be studied here was

obtained by filtering wide-band (20 kc) noise with a

narrow-band, quadratic filter. The schematic circuit

diagram is shown in figure 3.21.

Noise Amplifier DA
Source

Figure 3.21
Schematic of System to Generate
Narrow-Band Noise

The 500 ohm potentiometer was used to vary the

Q of the circuit, Q being defined as:

Q = -o = central frequency
2a band width

The central frequency (c0) and the Q of the circuit were

picked such that convenient circuit parameters could be

used for the filter and so that the phenomenon to be

studied would be easily discernable. A value of Q exceed-

ing ten was desirable to make the approximations of a

narrow-band process, made in Chapter 2, valid. Too large

a value of Q would, however, make circuit parameters for

the filter inconvenient and would make the finite sample

errors impossible to study. Due to the physicallimita-

tions of the correlator's ability to carry out long

delay correlograms, a value of Q is needed such that the

correlogram will reduce to its theoretical baseline in
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about 1/3 of the maximum delay available. This would

allow the examination of the record for values of

delay beyond the point where the correlation function

should theoretically be reduced to zero.

The frequency characteristic of the filter and

associated equipment is shown in figure 3.22. The

central frequency is 237 cps with a value of Q of 13.2.

The transfer function, impulse response and autocorre-

lation function of the output of the filter are given

below with normalized gains:

H (s) = s

s 2+113s+2. 21x106b

h (t) = e-ll 3 tcosl488t t ..O

e-113 It os1488fr

The left-hand presentation of figure 3.23 shows a

sample of the wide-band noise, above which is shown a

histogram of the amplitudes of this signal. The center

curve shows the same information for the narrow-band

noise. In each case the noise was sampled at 5 kc and

the histogram represents a total of 262,000 samples.

The right most curve is a control run of a 250 cps

sinusoid that was randomly sampled. Each of these his-

tograms was computed on the Average Response Computer.(24)

This device is a digitalcomputer that operates in its

histogram mode by sampling a quantized signal and adding
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Figure 3. 22

Frequency Characteristic of Narrow-Band,
Quadratic Filter



CENTRAL FREQUENCY a 237
BAND WIDTH s 13.2

100
FREQUENCY -

m
0

Lii
0

I.-
-I
0~

1000



-59-

Figure 3.23

Histograms of Amplitudes of Known Signals

Left
Wide-Band Noise (Bandwidth = 20 Kc)

Number of samples = 262,000
Sampling frequency = 5 Kc

Center
Narrow-Band Noise

(Central frequency
Bandwidth

Number of samples
Sampling frequency

= 237 cps
= 13.2 cps)
= 262,000
= 5 Kc

Right
Sinusoid (250 cps)

Number of samples = 262,000
Random sampling
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the number of times the amplitude of the samples reaches

each quantization level.

This narrow-band noise signal, recorded on magnetic

tape, was then autocorrelated by the Analog Correlator.

A series of ten correlograms were run, each of sample

length of 7.5 seconds with a maximum delay of 185 milli-

seconds in incremental steps of 0.25 milliseconds.

Figures 3.24 and 3.25 show six of the ten correlograms.

It is to be noted that the correlograms decrease uniformly

in each case, but in some cases they start to increase

again. This characteristic "waxing and waning" of the

envelope of the correlogram for large values of delay

(it was evident in nine out of the ten correlograms) is

the phenomenon that is to be studied experimentally in

this section.

Two interpretations can be given for the effects

seen in figures 3.24 and 3.25. Either the "waxing and

waning" of the envelope of the correlogram indicates the

presence ofa. periodic signal plus some corrupting signal

or this effect is an error of the finite sample correla-

tion process. If the former is the case, then it must

be assumed that there is some strong in-phaseness of the

237 cps activity in the narrow-band signal. That is to

say, the signal x(t) is strongly correlated with the

signal x(t-T) for -c equal to as much as 185 milliseconds.
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Figures 3.23 and 3.24

Six Correlograms of Narrow-Band, Gaussian Noise

T sample length) = 7.5 seconds
6T delay increment) = .25 milliseconds

Tmax maximum delay) = 185 milliseconds
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But, it is known that this should not be the case

since the theoretical autocorrelation function of the

narrow-band noise indicates that in approximately 30

milliseconds the autocorrelation function of the noise

should be reduced by about 95 per cent of its peak value

at T=0. It is known, therefore, that for the narrow-

band noise process that "waxing and waning" effect

is a statistical error. To show that it is, in fact,

the error calculated in Chapter 2, the following series

of experimental results are offered.

a) The first experiment is an effort to show

that the long-delay oscillatory behavior does not exhibit

a marked in-phaseness, and that instead the "waxing and

waning" of the envelope is random. Note in figures 3.24

and 3.25, that the six correlograms do not all show the

same behavior at large values of delay. This emphasizes

the point made in Chapter 2, that the finite time sample

autocorrelation function is itself a random variable.

In any case, note that the center correlogram of figure

3.24 is an excellent example of the "waxing and waning"

effect while the last correlogram shows very little of

this effect. The top correlogram of the same figure

shows an example of the type of phase changes that are

encountered. Note the distance between peaks near the

twelfth peak is a little longer than the average period

of the rest of the signal. The central correlogram of
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figure 3.25 also shows this kind of phase reversal.

To show that the long delay behavior is not

phase-locked to the short delaytehavior of the correlo-

grams, the mean of ten correlograms was computed and

is shown in figure 3.26. This mean was computed by

adding up the ten correlograms, point by point. That

is to say, each point in figure 3.26 represents the

summation of ten points for a fixed value of delay.

The results show that the oscillatory behavior at long

delay has tended to cancel. In other words, the long-

delay oscillatory behavior is random-phased. Furthermore,

the three-time constant level of decrement of the auto-

correlogram is reached in about 30 to 40 milliseconds,

as predicted theoretically.

b) The second experiment is an effort to show

the same phenomenon from a slightly different point of

view. It is to be recalled from Chapter 2 that succes-

sive samples of the finite sample autocorrelation function

separated by some delay TI are correlated in the same

manner as are two samples of the signal separated by

the same delay. To check that this is indeed the case,

an experiment was done that autocorrelated narrow-band

noise but used statistically independent samples of time

series for each point in the correlogram. As shown in

the schematic diagram (figure 3.27) the noise source
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Figure 3.26

Point-by-point Sum of Ten Correlograms of Narrow-
Band, Gaussian Noise

T sample length) =
6T delay increment) =

Tmax maximum delay) =

7.5 seconds
.25 milliseconds
125 milliseconds
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was kept running continually into the Analog Correlator.

The Correlator's delay mechanism was indexed 0.25

milliseconds. Samples 7.5 seconds in length were taken

at regular intervals with more than 10 seconds between

samples and the signal was then autocorrelated. The

10 second interval insures statistical independence of

the noise samples, since it is known from theoretical

considerations of the autocorrelation function that at

about 40 milliseconds the signals are linearly independent.

In the Gaussian case linear independence implies sta-

tistical independence and therefore the noise samples

can be assumed to be statistically independent.

The schematic of figure 3.27 shows a crystal oscil-

lator used to trigger a multiple synch pulse generator.

This device was used to pulse the Correlator such that

it would start and stop the correlate cycle, index the

delay mechanism of the correlator and restart the crystal

oscillator timing mechanism. Thus a very accurate inte-

grating time for the correlator was achieved.

Crystal Multiple
Oscillator Synch ---- +eCorrelator

Pulse P
.Generator-~--

Noise Amplifier
Generator

Figure 3.27
Schematic for Determining Autocorrelograms
That Result from Independent Samples of Signal
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Figure 3.28 is the result of the above procedure.

From top to bottom the correlograms represent sample

lengths of 7.5, 15 and 30 seconds. It is to be noted

that in each case, the correlogram has traces of some

oscillatory behavior for about 50 milliseconds and from

there on appears to be just random noise. The "waxing

and waning" phenomenon is gone. Therefore, it has been

shown that if successive samples of time series used for

the finite sample correlation are independent from point

to point then the errors of estimation reduce to random

noise. This noise should have variance that is equal to

the one calculated in Chapter 2, namely d2 (T,-) = 1
2aT

It is a little difficult to estimate the mean square

value of the noise from figure 3.28, but it should be

noted that there is a decided decrease of the amplitude

of the noise as the sample length is increased in the

three runs. It must be remembered that for comparison

of the three runs, the noise amplitude must be normalized

by dividing it by the value of the correlogram at zero

delay.

Figure 3.29 shows two control runs to check both

equipment and signal. The top correlogram shows the

result of correlating the unfiltered wide-band noise.

Note here, that the delay increment is 0.05 milliseconds

and that the correlogram is essentially zero after



approximately 0.3 milliseconds. This insures that the

noise is white when compared to the filter characteris-

tics. The remainder of the same cQrrelogram shows the

extent of correlator drift. ,,

The second correlogram is a control run on a sinu-

soid to show frequency stability. No significant change

in the period of the sinusoid can be seen as a function

of delay.,

The thi'rd correlogram of figure 3.29 shows a 7.5

second sample of noise, correlated by the independent

sample method again. In this case the Q of the filter

has been set to 6.4. It is seen that the correlogram

now reduces to the noise level in about 30 milliseconds.

This again checks with the theoretical computation of the

autocorrelation function.

c) The last experiment that was done to demonstrate

that the "waxing and waning" effect is an error due to

the finite sample length of the time series was designed

to show that the error decreases as the sample length

increases. This is most easily shown by cross-correlating

two statistically independent samples of narrow-band

noise. The Correlator actually computes the function:

(TT) = Kjxl(t)x2 (t-v) dt. In the case of the auto-

correlation function (x 1=x2 ), normalization is achieved

by noting the peak value of this function relati.ve to
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Figure 3.28

Autocorrelograms Computed from Successively
Independent Samples of Narrow-Band, Gaussian

Noise as a Function of Sample Length

Top
Ti(sample length) = 7.5 seconds

6T (delay increment) = 0.25 milliseconds
Tmax (maximum delay) = 93 milliseconds

Center
T length = 15 seconds

6TI (delay increment = 0.25 milliseconds
Tmax (maximum delay) = 108 milliseconds

Bottom
T (sample length) = 3Q seconds

6- (delay increment) = 0.25 milliseconds
Tmax (maximum delay) = 86 milliseconds
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Figure 3.29

Autocorrelograms Computed from Successively
Independent Samples of Control Signals

Top
Wide band noise

T (sample length)
6t (delay increment)

Tmax (maximum delay)

(bandwidth - 20kc)
= 7.5 seconds
= 0.05 milliseconds
= 11 milliseconds

Center
Sinusoid (250 cps)

T (sample length = 7.5 seconds
6T (delay increment = 0.25 milliseconds
T max (maximum delay = 63 milliseconds

Bottom
Narrow-band, Gaussian noise

T (sample length = 7.5 seconds
5t (delay increment = 0.25 milliseconds
'max (maximum delay = 71 milliseconds
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its value at long delays. For the case of cross-

correlations, however, the constant l/T must be

included in calculating Px(T,1) so that comparisons

of runs at different sample lengths can be made.

This was done in the series of correlograms shown

in figures 3.210 and 3.211 by halving the gain of

the correlator each time the sample length was doubled.

The figures represent sample lengths of 4 to 32

seconds starting at the top of figure 3.210 and ending

at the bottomof figure 3.211. It is clear from these

correlograms that the amplitude of the error decreases

as the sample length (T) is increased. To get some

quantitative measure of this decrease, the root-mean

square values of the peaks of the correlograms were

computed. The results, along with the theoretical

values, are shown in Table. 3.21. The agreement of

experimental results to theoretit-ally expected values

is seen to be good, considering the difficulty of

estimating a 0(T,T).
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Table 3.21

Normalized Root-Mean-Square Height of Peaks
of Crosscorrelograms of Narrow-Band,

Gaussian Noise as a Function of Sample Length

Sample length
(seconds)

4
8

16
32

Estimate of Normalized
Root-Mean-Square Value

5.1
2.1
1.6
1.0

Normalized,
Theoretical
Root-Mean-
Square Value

2.8
2.0
1.4
1.0
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Figure 3.210

Crosscorrelograms of Independent Samples
of Narrow-band, Gaussian noise as a Func-

tion of Sample Length

6T (delay increment) = 0.25 milliseconds
'max (maximum delay) = 185 milliseconds

Top
T (sample length) = 4 seconds

Bottom
T (sample length) = 8 seconds
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Figure 3.211

Crosscorrelograms of Independent Samples
of Narrow-band, Gaussian Noise as

Function of Sample Length

6'r (delay increment = 0.25 milliseconds

Tmax (maximum delay = 185 milliseconds

Top
T (sample length) = 16 seconds

Bottom
T (sample length) = 32 seconds
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3.3 Summary or Experimental Work on the Finite Time

Sample Autocorrelation Function of Narrow-Band,

Gaussian Noise

In this chapter, the theoretical results of

Chapter 2 have been verified. It has been shown that

the interpretation of the finite time sample correlo-

gram of narrow-band, Gaussian noise must be approached

with some caution. In particular, the "waxing and

waning" of the envelope of the correlogram for large

values of delay has been shown to be a statistical

estimation error due to the finite sample process and

not an indication of marked in-phaseness in the time

series. This confirms the suspicions of Frishkopf (39)

with respect to the narrow-band process.

In addition to the mathematical interpretation

of these results, a physical interpretation of this

error is offered here. The narrow-band noise time

series can be vizualized as pieces of essentially oscil-

latory time series (to be referred to as bursts from

now on) separated by other non-oscillatory random

time series. Thsee bursts, as shown in figure 3.23,

occur at random and are not constant in amplitude, but

their maxima occur at an average number of times that

is proportional to the bandwidth of the filter. It

is proposedi, therefore, that in the finite sample

correlation of this signa-li,"the correlogram gets

-74-
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contributions from only bursts that are shifted with

respect to themselves for small values of delay (small

with respect to the time constant of the exponential

decay of the correlogram). As the delay is increased,

the bursts interact with each other in a random way.

For a short sample of time series, this random inter-

action of neighboring bursts may contribute considerably

to the correlogram and the result is the waxing and waning

phenomenon. As the sample length is increased, however,

the random interactions of neighboring bursts contribute

proportionately less to the correlogram when compared

to the interaction of the bursts with themselves (an

interaction which is not random). Thus as the sample

length is increased, the waxing and waning decreases.

Furthermore, it has been shown that if the samples of

time series are chosen independently for each point in

the correlogram, then the smooth appearance of the waxing

and waning phenomenon also disappears, since the sys-

tematic interactions of neighboring bursts is eliminated.

In conclusion, it has also been shown that useful

information can be extracted from the finite time sample

correlograms of narrow-band processes. The important

parameters of bandwidth and central frequency can be

estimated reasonably accurately by any of the procedures

discussed in section 3.2. A fur1er word of caution must



be offered, however, with regard to the estimation of

these parameters. In particular, frequency is determined

experimentally by measuring some reasonably stable time

interval such as the time between peaks or the time

between the zero crossings of a waveform. It must be

recalled from Chapter 2 that this time interval is

itself a random variable. Thus all that can be determined

is an estimated average period and it is hoped that

this estimate converges rapidly to the period of the

process as the sample length is increased. That it does

indeed converge is assured since it has been shown that

$X(T, ) converges to Ox(T) as T approaches infinity.

A few words must still be said about sample lengths

and delay increments at this point. In general, the.

correlogram is computed in incremental steps of delay.

That is to say, the correlation function is evaluated

at discrete intervals of delay and what results is really

the finite time sample autocorrelation function sampled

at the sampling frequency that corresponds to the inverse

of the delay increment. If a certain frequency w radians/

second is to be recovered from the data then the sampling

frequency of the correlogram must obey Nyquist's Sampling

Theorem and be at least equal to 2w radians/second.

This procedure insures that a given high frequency

will be detectable by the correlation method. For the



-77-

detection of the presence of some low frequency compo-

nent, the maximum value of delay must be made large

enotgh to show as many cycles of the low frequency as

are desirable. If the maximum value of the delay is

increased then the sample length must be increased

proportionately to keep the signal to noise ratio the

same. As has been shown in Chapter 2 and 3, the longer

T, the better. No general rule about the length of

sample required can really be made as this depends on

the statistics of the time series in question. For a

particular time series, however, these parameters can

be calculated.
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CHAPTER 4 INTERPRETATION OF THE AUTOCORRELOGRAM OF
OF THE ELECTROENCEPHALOGRAM

4.1 A Statistical Model of the EEG

The problem of estimating the autocorrelation

funttion of a process from a finite sample of time

series has been discussed with respect to the model

established in Chapter 2. This is a classical model

in the study of stochastic processes. The observed

data is assumed to be a finite length of a sample

function that is visualized as coming from some ensemble

of sample.functions. This ensemble is a mathematical

reality and can be defined quite precisely. However,

the definition of the ensemble from which the observed

sample function is drawn is left at the discretion of

the analyst. That is to say, the process of finding an

ensemble to which a given sample function will fit is

by no means a unique one. The criteria for picking a

particular ensemble or model is dictated only by what

useful predictive or descriptive function the model

will have with respect to the phenomenon under investi-

gation. Once the ensemble is chosen, with the above

criteria as a guide, its definition can be made precise.

Before the specific problem of the estimation of

the autocorrelation function of the EEG is approached,

such concepts as stationearity, ergodicity and normality

must be discussed to determine how far (if at all) the
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results of the estimation of the autocorrelation func-

tion of narrow-band, Gaussian noise can be applied to

the EEG.
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4.2 The Concept of Stationarity as Applied to EEG

Stationarity is given a very precise mathematical

definition with respect to a random process xt. A

stochastic process is defined as being strictly sta-

tionary if its nth order distribution is independent

of the time origin; the multivariate distribution of

. t + t + t. +T x is independent of T. A wide
1 2 n

sense stationary process is one for which E [xt 2 J 2]0<

and E[xtxt+T is independent of t. For the particular,

but very important, case of the Gaussian random process,

wide sense stationarity implies strict sense stationarity.

Precise as this definition is, it must be approached

with caution if it is to be made use of to study some

physical process. The dilemma occurs since one is

usually confronted with data that consists of some func-

tion defined at a discrete and finite number of points.

But the question of stationarity makes sense only in

the context of an ensemble. It has already been shown,

however, that the ensemble or model is dictated by extra-

mathematical considerations. The concept of stationarity,

therefore, makes sense only after the model of a physical

process has been chosen. To make this point a little

clearer, consider the following example:

Given a sample function that consists of a series

of randomly presented rectangular pulses. In an interval, L,
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the function can be either zero or unity with equal

probability. In the next adjoining interval, the func-

tion is zero. This pattern is repeated so that a par-

ticular sample function might look like the one depicted

in figure 4.21.

One might now ask the question, "Is'this process

stationary?" But this question does not make sense unless

something more is either known or assumed about the process.

If the ensemble from which this sample function comes is

visualized as the one in figure 4.22, then the answer is

no. This can be seen by looking at the distribution of

amplitudes of xt at t1 and at t1+6t. At t1 the distribu-

tion is such that the value of zero or unity are equally

likely, while at t1 +5t, right after the discontinuity

the probability of having zero amplitude is unity. Thus

the distribution of xt depends very much on the time

origin and the process is defined as non-stationary.

Now suppose that the same sample function comes

from an ehsemble of random-phased functions as depicted

in figure 4.23. Now the probability distribution is the

same at each point in time. The probability of unity is

1/4 and probability of zero amplitude is 3/4. The process

is, therefore, judged to be stationary.

This example further supports the contention that

the question of statiorwity is an improper one when applied

to only a single member of the ensemble of functions
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defining a random process. In the case of EEG there

are still further problems in a.statistidal characteri-

zation. In the first place, the EEG is a dynamic func-

tion that may reflect something as changeable as physi-

ological state. It-would be absurd as this, stage of

the science to talk about an all inclusive statistical

model of the EEG; one that would adequately describe

the EEG in all of.-.its many ramifications. As a-logical

start, some limitations can be made on a permissible

class of EEG functions for which a statistical characteri-

zation will be attempted. The constraint of studying

*the EEG when the subject is in a "relaxed" state has.

already been discussed in Chapter 1. Assume, therefore,

that the characterization is attempted on the EEG of a

subject who is in a relaxed state; that state in which

large percentage of the subjects exhibit rhythmic bursts

of alpha activity.

In Chapter 1, it was pointed out that in successive

three minute intervals, the amount of alpha activity

tended to decrease, for four consecutive such intervals.

At least this trend was shown to be statistically sig-

nificant. Two interpretations are possible now. Either

the EEG of a "relaxed subject" is a function whose alpha

content decreases on the average or it must be assumed

that some constraint of the experiment upon the subject

has affected the results. The first assumption leads to
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obvious absurdities and it is reasonable, therefore,

to assume that the latter is the case. This interpre-

tation does not help in deciding how the experimental

results can be used to estimate important statistics

of the EEG. Before this can be done, more will have

to be known about the important physiological variables

that affect the EEG. The question of stability of cri-

teria, discussed in Chapter 1, is intimately tied to

this idea.

Unless the important physiological variables can

be controlled, an ergodic model will not be applicable

to the study of the EEG. Unfortunately, non-ergodic

models are difficult to work with and there is the hope

that EEG can be adequately described by an ergodic model

if the effect of time can be abated in the course of the

experiments. This is not to imply that the effects of

particular experiments (such as the change in the amount

of activity with time) are not useful in terms of know-

ledge gained of some specific physiological question.

These particular results have interest in their own

right, however, it would be valuable to obtain a more

general characterizaton of the EEG; one that would explain

the results of many experiments.

Until experiments can be done with the above goal

in mind, the only way that the data gotten in connection
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with this thesis can be handled is to assume the results

gotten are essentially time averaged results. Thus

any statistic of the EEG process computed here is con-

sidered as an estimate of the time average statistic

defined over the interval for which it was taken. This

point will hopefully be clarified with the discussion

of particular concepts such as histograms and correlograms.
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4.3 Estimation of the Distribution of Amplitudes of

the EEG in the Resting State

The estimation of the distribution of amplitudes

of the EEG is again wedded to the ensemble idea. Only

in the context of an ensemble does a probability dis-

tribution make complete sense. In the case of many

observed signals the assumptions of an ergodic model

are justified on the basis of a knowledge of the under-

lying microscopic structure of the process (the shot

noise model for instance) and the task of finding a

distribution to describe the data is simplified. If

the ergodic assumption is made a histogram of amplitudes

can be taken on the finite piece of data. The Law of

Large Numbers can be called upon to insure that if a

sufficient number of statistically independent samples

of a well-behaved function are taken then the cummulative

histogram of amplitudes will approach the theoretical

distribution of the amplitudes of the sample function.

Ergodicity further insures that with probability one

this distribution of amplitades of the sample function

will equal the distribution of amplitudes of the random

variable. With this theoretical background the thing

that is actually measured, the histogram of amplitudes

of a finite piece of a sample function, makes mathe-

matical sense.



With EEG the problem is more complex. Very

little is known about the underlying microscopic struc-

ture that givo rise to this signal. No model that has

yet been proposed for the microscopic structure has

been both physiologically sound and mathematically

reasonable. The only thing one has to work with,

therebre, is the gross phenomenon itself. Furthermore,

a model for this phenomenon is complicated by the

effects of the particular experimental conditions.

In particular, an ergodic model can not be strictly

justified for the data taken in connection with this

thesis, due to the change of some statistics of the

EEG with time. Thus, the meaning of an estimation of

the probability distribution gotten by sampling the

EEG amplitude, loses some of its validity. The assump-

tions of time average statistics is forced upon the

investigation once again. Results presented in this

section are then to be interpreted in this light and

are to be accepted as preliminary results in the inves-

tigation of some statistical characteristics of the EEG.

Amplitude histograms (estimates of the time

average probability density function) are shown in

figures 4.31 and 4.32. A short sample of the EEG of

the subject is shown below each histogram. The subjects

range from low to high alpha subjects.
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Figure 4.31

Amplitude Histograms of EEG
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Figure 4.32

Amplitude Histograms of EEG
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Preliminary tests on the nature of these histo-

grams are presented graphically in figures 4.33 to 4.36.

In these curves, the cummulative histograms are plotted

on probability paper with a straight line approximation

to the points. This type of graph paper plots Gaussian

probability distributions as straight lines. The experi-

mental points are seen to fit the straight line quite

well for the center of the distribution, but the tails

do not appear to fall off as fast as the Gaussian dis-

tribution. This is just what would be predicted for

data that contains some muscle potentials and movement

artifacts. These artifacts (as shown in figure 1.2)

introduce large voltage changes and thus contribute more

samples at large negative and large positive values.

Note that very few samples are involved at the points

of deviation.

It is certainly not presumed here that the proba-

bility paper plots represent a very sensitive test of

the Gaussian hypothesis. On the basis of these results,

however, the Gaussian hypothesis can not be discarded.
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Figure 4.33

Cummulative Histograms of EEG
Plotted on Probability Paper
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Figure 4.34

Cummulative Histograms of EEG
Plotted on Probability Paper
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Figure 4.35

Cummulative Histograms of EEG
Plotted on Probability Paper
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Figure 4.36

Cummulative Histograms of EEG
Plotted on Probability Paper
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4.4 The-Estimation of the Autocorrelation Function

of the EEG

The implications. of all the work done to this

point are now directed atthe problem of interest;

the autocorrelation function of the EEG. It has

already been shown that the long delay cyclic activity

of the autocorrelogram of narrow band noise is a statistical

error of estimation. Since this fact is now established

then it follows that it can bedffered as an alternate

hypothesis to the explanation of the long delay cyclic

activity as resulting from a very narrow band spectral

component in the EEG. This is the weakest case that

can be made here. It is really the only one that can

be completely justified on mathematical grounds. This

alternate hypothesis places the burden of proof on those

that choose to interpret the long delay cyclic activity

of the autocorrelogram of EEG as evidence for the

existance of a physiological clock.

If a stronger statement of the results of this

thesis is desired then the statistics of the EEG must

be examined more carefully. The problems of an ergodic

model have already been cited and the way out of the

delimma mentioned; consider the results of the autocorre-

lation process as essentially time-averaged. Figures

4.41 to 4.42 show samples of the estimated time average

autocorrelograms of EEG for several subjects. Note
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Figure 4.41

Autocorrelograms of EEG

T (sample length) = 3 minutes

5Sr (delay increment) = 6.25 milliseconds

Tmax (maximum delay) = 4.6 seconds
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Figure 4.42

Autocorrelograms of EEG

T (sample length) = 3 minutes

5-C (delay increment) = 6.25 milliseconds

Tmax (maximum delay) = 4.6 seconds
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also the resemblance of these correlograms to the

correlograms of narrow-band noise (figures 3.24 and

3.25).

Now consider how well the EEG data fits the narrow-

band model. The first problem is the time-dependence

problem. It has been stated that this time dependence

is a statistically significant trend. That is, some

records did not exhibit this time dependence. If the

percent time that there is alpha activity in the record

is accepted as an indication of time dependence, then

records can be found that exhibit little such time

dependence. Table 4.41 gives a summary of the change

in alpha content vith time for one such record of EEG.

Time Interval o/o Alpha Activity o/o Change
(minutes)

0 to 3 88.5 --

3 to 6 86.6 -1.9
6 to 9 88.3 -0.2
9 to 12 85.5 -3.0

Table 4.41 Change in Alpha Activity as a Function
of Time

Subject: TW
Run: M-3 aa

This is the only record that could be found that

contains very little variation of alpha activity with

time. However, it can now be tested to see if the

correlogram exhibits long delay cyclic activity that

decreases with sample length. In other words, for this

particular sample of data a stationary model would be

a reasonable assumption. Figure 4.43 shows the correlograms
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of this data as a function of sample length. The

first correlogram represents 1 minute.and 40 seconds

of data. The next one is twice that length and the

last correlogram is four times that length. It is

clear that the long delay cyclic activity decreases

with sample length. Therefore, it must be an error

of estimation. To get some measure of how fast it

decreases, the root-mean square value of the peaks

of the cyclic activity is computed and shown in table

4.42. The computation was done on data after 1.1

seconds of delay to insure that the first decay of

the correlogram.is not included in the computation.

Sample Length Average Amplitude of Peaks
(seconds) (arbitrary units) (normalized)

100 2.2 2.0

200 1.4 1.4

4oo 1 1.0

Table 4.42
Normalized Root Mean Square Height of Peaks
of Autocorrelogram of EEG as a Function of

Sample Length Subject: TW
Run:

It must be recalled that the function computed in

Table 4.42 is an estimate of the root-mean-square

value of the error and that this may account for some

of the discrepancy. It is seen that the cyclic

activity decreases considerably with sample length
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Figure 4.43

Autocorrelograms of EEG as a Function of

Sample Length

5T (delay increment)
"max (maximum delay)

= 6.25 milliseconds
= 4.6 seconds

Top

T (sample length) = 100 seconds

Center

T (sample length) = 200 seconds

Bottom

T (sample length) = 400 seconds
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and that the narrow-band noise model gives a good

estimate of this variation; at least for this one

sample of data.

An estimate of the central frequency and band-

width of the sample shown in figure 4.43 yields:

o = 11 cps

band width = .9 cps

The other assumption of the narrow-band model

is the Gaussian nature of the probability distribution.

It has been shown that the relatively insensitive test

of the probability paper has not contradicted this

assumption. Assume for the moment, however, that a

more sensitive test would discard the Gaussian hypothe-

sis for the particular piece of data chosen for the

correlogram in figure 4.43. It is clear that any non-

Gaussian character of this sample of data has not

seriously impaired the estimation of the error. It

is entirely possible, therefore, that a Gaussian hypothe-

sis be invalid in general and yet a Gaussian model be

valid for the estimation of some particular statistic

of the process. For this reason no great effort has

been made to justify the Gaussian hypothesis by more

sensitive statistical tests. This model appears to give

a reasonably good prediction of the phenomenon in

question.
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CHAPTER 5 CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY

5.1 Conclusions

Motivation for the quantitative study of the EEG

phenomenon has been given by citing experimental evidence

for its connection with important physiological and

behavioral variables. Assuming, therefore, that quanti-

tative studies of the EEG are desirable, a particular

effort at quantification has been examined to investi-

gate its relevance.

The reason for this study of the estimation of

the autocorrelation of EEG is simply due to the fact

that it is a widely used technique. It has been assumed

in the past that some sort of frequency-emphasizing

transformation is desirable for this kind of data.

There is no reason to suppose that this is in any way

the optimum transformation. It is not assumed here

that autocorrelation is the best way of studying EEG,

but it is certainly a way. Furthermore, much work has

been done in this connection, and hypotes concerning

the nature of the EEG have been made on the basis of

"evidence" obtained by correlation techniques.

One such hypothesis is the "physiological clock"

hypothesis that stems from the long-delay cyclic

activity noted in the correlograms of EEG that contain

some alpha activity. This phenomenon has been studied
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here by making a narrow-band, Gaussian noise model of

the EEG and examining the behavior of this model.

Chapter 2 has shown that the finite-sample length

of time series leads to a prediction of a long-term

cyclic activity in the correlogram. Chapter 3 verifies

the computation by exhibiting this behavior and by

showing that it is indeed the finiteness of the record

length that yields this statistical error.

Finally, EEG is discussed to see how well it fits

the narrow-band model. Estimations of the time average

probability distribution of the EEG are made and a

reasonably good fit to a Gaussian distribution is indi-

cated over the central range of the distribution. No

presumptions of a proof of this hypothesis are made (if

indeed this were possible at all).

In any case, it is seen that in a particular case,

the narrow-band, Gaussian noise model predicts the

behavior of the finite-sample autocorrelation function

of EEG.

As a result of this research, the hypothesis that

the long-delay cyclic behavior of the finite-sample

autocorrelation function is a statistical error of

estimation is offered.
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5.2 Suggestions for Further Study

A start has been made in the direction of determin-

ing a reasonable model of the distribution of ampli-

tudes of some EEG records. Forihis purpose the methods

of statistical hypothesis testing are a propos. Pre-

liminary tests were made using both the Chi-square

Test and a test of third and fourth moments of the dis-

tributions. These tests essentially give the deviation

of data points from an assumed distribution. In each

case, however, the parameters of the hypothetical dis-

tribution are estimated from the data points. For the

particular data used in connection with this thesis,

these tests indicated a significant deviation from the

Gaussian hypothesis. This result can be explained in

part by the effects of the deviations of the tails of

the distributions of the experimental data. It would

be of considerable interest to modify the data to

eliminate the effects of the pathological tails and

then test for significance on several pieces of data.

For this purpose, a general purpose digital computer

could be used to do the data reduction.

In addition to a test of the distribution of ampli-

tudes of the EEG, some further statistics might be

tested to see how well the narrow-band noise model fits

the data. For instance,-the distribution of the amplitudes
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of the envelope of narrow-band, Gaussian noise is

well-known (the Rayleigh distribution) (76) and

this could be tested. The average time between

siXccessive maxima of the noise is also well known and

is related to the bandwidth of the noise (76). This

is in turn related to the time constant of the decre-

ment of autocorrelation function. There are,some

indications that a similar relationship may exist

for the EEG. It if were found that the narrow-band

model were a good representation of the alpha-activity-

exhibiting EEG time series then a particular method

of quantification for this phenomenon might be simply

to estimate the variance, bandwidth and central fre-

quency. In principle, all other statistics of the

time series could then be computed.

To generalize the results of this thesis it might

be of interest to study the effects of perturbations

in the spectrum of the narrow-band noise upon the

results. For this thesis a quadratic spectrum was

assumed.
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Appendix I - Calculation of the Autocorrelation Function
of Narrow Band Noise
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Breaking up R0 (T) into the

on them separately:
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Combining terms and substituting:

Using the approximation that w and simplifying

the above, the result is:

R( N .41w Co1 Ls'r
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Appendix II - Evaluation of the Variance of the
Finite-Sample Autocorrelation Function
of Narrow Band, Zero Mean, Gaussian Noise
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The final form of I is:
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The last of the three integrals, 13, is considered next:
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Appendix 3 - Evaluation of the Expression for the
Cross Correlation of Samples of the
Finite-Sample Autocorrelation Function
of Narrow Band, Gaussian Noise for Large
Values of Delay
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The first of these integrals has already been

evaluated in Appendix 2.
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The 13 integral will not be evaluated since

it has the term 2 -acl-a as a

2/T e e

coefficient and it has already been assumed that T

is large in comparison to 1/a.

The final result therefore can be evaluated

by recalling the approximations made 2.4 plus the

additional approximation mentioned.

I then becomes:

I= T/4acoso 0t l

All the 12 terms have factors of either e-2ac

or e -2aT Therefore, under the assumptions made,

these terms can be considered negligible.

The final result for p. is:

. 1/2aTe~aT coso0T1
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