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Abstract

Selecting proper transforms for video compression has been based on the rate-distortion
criterion. Transforms that appear reasonable are incorporated into a video coding sys-
tem and their performance is evaluated. This approach is tedious when a large num-
ber of transforms are used. A quick approach to evaluate these transforms is based
on the energy compaction property. With a proper transform, an image or motion-
compensated residual can be represented quite accurately with a small fraction of the
transform coefficients. This is referred to as the energy compaction property. How-
ever, when multiple transforms are used, selecting the best transform for each block
that leads to the best energy compaction is difficult.

In this thesis, we develop two algorithms to solve this problem. The first algorithm,
which is computationally simple, leads to a locally optimal solution. The second
algorithm, which is more intensive computationally, gives a globally optimal solution.
We provide a detailed discussion on the ideas and steps of the algorithms, followed by
the theoretical analysis of the performance. We verify that these algorithms are useful
in a practical setting, by comparing and showing the consistency with rate-distortion
results from previous research.

We apply the algorithms when a large number of transforms are used. These
transforms are equal-length 1D-DCTs in 4x4 blocks, which try to characterize as
many 1D structures as possible in motion-compensation residuals. By evaluating the
energy compaction property of up to 245 transforms, we quickly determine whether
these transforms will bring potential performance increase in a video coding system.

Thesis Supervisor: Professor Jae S. Lim
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Energy Compaction

Transforms are used in many transform-based image and video compression systems.

It is well known that these signals can be represented quite accurately with only a

small fraction of the transform coefficients using proper transforms. This phenomenon

is referred to as the energy compaction property [1]. Energy compaction can be

measured as a function of preserved energy with respect to the number of largest-

magnitude transform coefficients. A transform that preserves more energy when a

fixed number of coefficients are used is considered desirable, since the loss of energy

is related to the distortion present in image or video signals which the human visual

system perceives.

A transform with good energy compaction property is an indication of an effective

signal representation. Consider the following example shown in Figure 1-la, where a

discrete sequence x[n]= u[n]-u[n-8] is approximated with different numbers of largest

coefficients in both the time domain and the DCT domain. If this process is done in

the time domain, the energy preserved is linear to the number of coefficients we use,

which is shown in Figure 1-1c. This means using one coefficient only preserves 12.5%

of its total energy. Intuitively, this representation is inefficient since each coefficient is

equally important and it is not reasonable to discard any one of them over any other.

However, if the signal is transformed with the DCT of length eight, the resulting

13



transform coefficients only have a nonzero DC value, as shown in Figure 1-1b. This

implies that all the energy can be preserved with one coefficient. The corresponding

preserved energy function is shown in Figure 1-1d. In order to preserve the same

amount of the energy, the time domain representation typically uses coefficients than

the DCT representation. In other words, when the same amount of coefficients are

used, the DCT representation preserves more energy than the time domain represen-

tation. Therefore, in this case, using DCT is a more efficient representation of the

signal.

0 1 2 3 4 5 6 7 8 9
Nth largest coefficients

(a) Sequence x[n]

3

-

''|10

0 1

(b)

2 3 4 5 6 7 8
Kth largest coefficients

DCT coefficients X[k]

0
2
W1

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Number of coeffcients used Number of coefficients used

(c) Energy preservation in the time domain (d) Energy preservation in the transform domain

Figure 1-1: Example of the energy compaction property of DCT. The sequence in the
time domain has equal-valued coefficeints and the energy is not compacted, while in
the DCT domain, the energy is compacted into only one transform coefficient, which
leads to a more efficient representation of the signal.

For most typical image and video frame signals, the 2D-DCT behaves in a similar

14



manner, which can preserve much of their energy with a small number of coefficients.

Figure 1-2 shows a typical image, its 2D-DCT coefficient magnitudes and the re-

constructions from 5% and 15% of the largest transform coefficients. Figure 1-2b

shows the DCT coefficient magnitudes of the original image. Most of the transform

coefficients have small amplitudes (shown as darker), except those low frequency co-

efficients located at the upper left corner. This indicates a concentration of image

energy by using a few transform coefficients that have large magnitudes. By only

keeping these large-magnitude coefficients, most of the information in the image sig-

nal can be preserved and the image can be reconstructed with a fairly acceptable

visual quality. Typically, fifteen percent of coefficients lead to a reconstruction that

is not distinguishable from the original version by human eyes, as shown in Figure

1-2d.

Such an effective representation of a signal is important for a coding system, where

these signals need to be compressed and transmitted without too much distortion. At

some reasonable distortion level, a coding system attempts to minimize the number

of bits used to represent the signal. For transforms with good energy compaction

property, such as the 2D-DCT, most of the transform coefficients are close to zero.

The length of the bit sequence produced by a 2D-DCT based compression system can

be significantly reduced by discarding these coefficients with small magnitudes. As a

result, the 2D-DCT has been extensively used in many image and video compression

systems.

15



(b) Magnitude of 2D-DCT of original image

(c) Reconstruction from 5% of coefficients (d) Reconstruction from 15% of coefficients

Figure 1-2: An example of 2D-DCT and energy compaction property. The original
image in (a) is transformed with 2D-DCT and the magnitudes of the transform co-
efficients are shown in (b). We reconstruct the image by keeping only the largest
5% and 15% transform coefficients and setting others to zero, and then applying the
inverse 2D-DCT.

16
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1.2 Evaluating the Energy Compaction in Multiple-

Transform Environment

Many practical image and video coding systems are block-based. For example, in

JPEG image coding system, images are segmented into 8x8 blocks, and 8x8 2D-DCT

is computed for each block. The resulting block transform coefficients are further

processed to bit streams. The block-based transform design is reasonable due to its

effective implementation and decorrelation. First, compared to the local block-based

transforms, global transforms are typically computationally more intensive. Second,

a block transform decorrelates the signals well enough if the block size is chosen

properly according to the signal contents. Most practical pictures have local features

that can be better characterized by a block transform than a global transform. This

issue will be further discussed in the next chapter.

In a coding system that utilizes only one transform, preserving the maximum

energy with a given number of transform coefficients can be accomplished simply in

the following way. We can compute the transform coefficients for all the blocks of

interest and select the transform coefficients whose magnitudes are above a certain

threshold. By varying the threshold we can select the given number of coefficients

that preserve the most energy.

This process can be illustrated with the following example shown in Figure 1-3.

Suppose we have two blocks whose transforms coefficients have magnitudes 5,3,2 and

4,1,0, as shown in Figures 1-3a and 1-3b. If we choose all the coefficients whose

magnitudes are no smaller than five, only one coefficient is chosen. That results an

energy preservation of 25 with one coefficient. If we change the threshold to four, we

choose two coefficients, one from each block. The preserved energy is 41 with two

largest coefficients. By repeatedly changing the threshold and taking more coefficients

into energy count, we can evaluate the energy preservation as a function of all possible

numbers of coefficients used, as shown in Figure 1-3c.

It is well known that the characteristics of image intensities vary significantly

from one region to another region within the same video frame. Though motion-

17
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4;4

Nth largest coefficients

(a) Transform coefficients in Block 1

I

V

i

(b)

5 1

0

Nth largest coefficients

Transform coefficients in Block 2

SU

Number of coefficients used

(c) Energy preserved with different numbers of co-
efficients used

Figure 1-3: An example of energy preservation computation with single block trans-
form.

compensated residuals share similar characteristics as typical images, recent studies

have found that the characteristics of the image and the motion-compensated resid-

ual are often quite different [2]. Figure 1-4 shows an example of an image and a

motion-compensated residual. These phenomena are observed in [3] that Motion

compensated-residuals have many local one-dimensional structures. This result leads

to the possibility that using more than one transform to allow a different transform for

each block may significantly improve the performance of a video compression system.

In this multiple transform environment, choosing the best transform for each block

and selecting the transform coefficients that preserve the most energy for a given num-

ber of transform coefficients is a very difficult task. Consider a single block. The best

18
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(b) A motion-compensated residual

Figure 1-4: An example of a typical image and motion compensated residual. The
typical image shown here has many visible two-dimensional structures. While it also
has one-dimensional structures, these are different from the one-dimensional struc-
tures present in motion-compensated residuals. This is mainly because most of the
image intensities in the motion-compensated residual are zero-valued (shown in grey
color) and the one-dimensional structures display non-zero intensities. In typical im-
ages, one dimensional structures are generally separating two areas with different
intensities.

transform for this block depends on the number of transform coefficients selected.

However, the coefficients selected for a specific block depend on the coefficients se-

lected in other blocks due to the total number of coefficients constraint. This implies

the best transform for this block depends on the transforms used in other blocks. As

a result, the optimal transform for each block cannot be determined independent of

other blocks.

A brute force method that considers all possible transform combinations for all the

blocks may conceptually solve this problem. For example, if we have two transforms A

and B for each block and we have two blocks, we may consider using transforms A for

both blocks, denoted as combination AA. The computation of preserved energy with

given number of coefficients follows and this is compared with the cases using the other

three transform combinations AB, BA and BB. However, we note that the number

of possible combinations is the number of transforms to the power of the number of

blocks, which is very large even for the simplest case of two transforms. Some recent

studies [2] have considered a set of as many as 17 different transforms that can be

19
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chosen for each block. This implies that brute force method is not practical. As a

result, effective methods to evaluate the energy compaction with multiple transforms

need to be developed.

1.3 Overview of Thesis

In Chapter 2, we review some recent research on the development of multiple trans-

forms in video compression applications. Specifically, we observe that these trans-

forms are selected and tested by incorporating them in video compression systems.

We point out that this methodology is tedious and may not be efficient when a very

large number of transforms are used. We then propose an approach to select trans-

forms based on the energy compaction property.

Evaluating the energy compaction in multiple-transform environment is a difficult

task. In Chapter 3, we develop two algorithms to solve this problem. The first

algorithm is computationally and conceptually simple, but leads to a locally optimal

solution. The second algorithm is more computationally intensive but leads to a

globally optimal solution. We describe the algorithms and analyze their performance

in theory.

In Chapter 4, the performance of the two algorithms is tested with practical

settings. The energy compaction results are compared with the rate-distortion per-

formance under similar settings.

In Chapter 5, we demonstrate the power of the algorithms when a very large

number of transforms need to be tested and analyzed. We evaluate these transforms

by investigating the energy compaction of some transform sets.

In Chapter 6, we make conclusions and discuss the future research.

20



Chapter 2

Previous Research

2.1 Direction-Adaptive 1D DCTs

Energy compaction occurs due to the decorrelation of signals with proper transforms.

For a specific signal, some information of the current signal value may be obtained

observing previous or future values of that signal. This is referred to as the correlation

within a signal. In the example shown in Section 1.1, the time domain representation

of a signal fails to consider the correlation between different coefficients. In contrast,

the DCT has the ability to explore the global pattern in the signal and effectively uti-

lizes the information provided by the correlation within the signal. This functionality

leads to a very effective representation of the signal in the DCT domain.

Similar to DCT used in the above example, many transforms have the ability

to explore the correlation within a signal. Some transforms are designed in such

a way that they minimize the correlation. A statistical model that characterizes

the correlation within a category of signals is first developed. Based on this model,

the transform that minimizes the correlation in theory is developed. For example,

Markov-1 process is used extensively to model images. This model leads to an auto-

covariance function of images signals, defined as:

(1, J) = plil lP iI

21



where I and J represents the horizontal and vertical distance between image pix-

els, and p1 , p2 represent the correlation parameters along horizontal and vertical

direction, respectively. The 2D-DCT is then developed by minimizing the correlation

of images given this auto-covariance function, with an additional assumption that the

correlation parameters along both directions are close to one. The Markov-1 model

that characterizes the statistics of images approaches typical images well enough in

practice. As a result, the 2D-DCT demonstrates fairly good performance when decor-

relating the image signals, and thus is useful in image compression. This is consistent

with the observation that the most energy of an image signal can be preserved with

a few DCT coefficients.

It was generally believed that the motion-compensated residuals share the same

statistics with typical images. Therefore, the 2D-DCT has been extensively used

as a residual transform in video coding system such as H.264 [4]. Recently, it has

been observed that the statistics of motion-compensated residuals is different from

that of typical images. Specifically, the work in [2] reports that the correlation of

motion-compensated residuals can be better characterized as:

C(I, J, 0) = pIcosO+Jsinel -Isin+Jcosel
L-\,JV= 1  P2

where the additional parameter 0 represents the directionality of the correlation.

This model can be interpreted as the Markov-1 model rotated by a degree 0 . Based

on this new model, the correlation parameters pi, P2 have been estimated. The result

implies one correlation parameter approaches zero while another approaches one for

typical residual signals. In other words, for a residual signal, the correlation may be

strong only along a certain direction, meaning these one-dimensional structures may

appear more frequently in residual signals.
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Based on this observation, a set of 1D-DCTs have been developed to exploit the

1-D structures present in the residual signals. Figure 2-1 shows sixteen block 1D-

DCTs of size 8x8. Figure 2-2 shows eight block 1D-DCTs of size 4x4. The DCT is

only applied in one direction along the lines shown in the figures. These transforms

cover many possible ID directions within a block.

These transforms have been incorporated into the H.264 system and their per-

formance is verified with rate-distortion metric. The simulation results have shown

that the rate-distortion performance increases significantly with these additional 1D-

DCTs [2]. Further analysis of the 1D-DCTs is investigated in [5], where only vertical

and horizontal 1D-DCTs are used instead of 1D-DCTs of many different directions.

Simulations are performed with three different transform settings: 2D-DCT only, 2D-

DCT with all 1D-DCTs, and 2D-DCT with only vertical and horizontal 1D-DCTs.

By comparing the rate-distortion performance of three different settings, it is reported

that for typical video sequences, much bit saving is due to the use of only vertical

and horizontal 1D-DCTs.

2.2 Rate-Distortion Performance of 1D-DCTs

In video coding systems, the transform performance is evaluated using the rate-

distortion metric. It measures the distortion of the reconstruction of a video sequence

from a coded bit stream as a function of the bitrate. When multiple transforms are in-

corporated into a video coding system, it is necessary to choose the correct transforms

that optimize the coding performance. In other words, when we allow each coding

block to use a different transform, each different choice of transform will produce a

different bit stream. Among these bit streams, there is a specific one that introduces

least distortion given a specific bit rate, which is considered optimal.

In practice, there are many algorithms that can help to choose the optimal trans-

forms. In [2], the Lagrangian multiplier method is used. In this method, the rate

profile associated with each transform is designed according to some proper choice of

quantization and entropy coding. Then for each block, a cost function f(i) = RI+ADj

24



for all possible i is computed, where i represents the index of a specific transform,

and Ri, Di represent the rate and distortion, respectively, using transform i . The

parameter A is referred to as the multiplier, which is a fixed positive parameter that

controls the video quality. Intuitively, a small A will almost ignore the distortion.

A larger A instead, tends to minimize the distortion regardless of the bitrate. By

choosing a proper A , one may balance the tradeoff between minimizing the rate and

distortion. Finally, for all these transforms, the one that leads to the minimum cost

function f(i) is chosen as the optimal transform for the block. For more details,

readers are referred to [6].

The Lagrangian multiplier method is proved to be an optimal solution in the sense

that it can choose the optimal transforms that lead to the optimal rate-distortion per-

formance, given transforms and corresponding codewords. Still, well-designed code-

words for transforms are necessary in order to achieve desirable performance. Poorly

designed codewords will severely degrade the performance, even if the transforms are

correctly chosen. Meanwhile, designing these codewords in terms of quantization and

entropy coding is quite involved. In [2], the codewords are designed simply by mod-

ifying the existing quantization and entropy coding within H.264 system. Still, the

rate-distortion performance increases significantly, indicating that these transforms

work well on the residual images. The potentials of these transforms can be better

explored if the codewords are more carefully designed.

2.3 Motivation for Thesis

As discussed in the previous section, in the work of [2], a set of transforms that appear

reasonable were first determined. For this given set of transforms, their rate profiles

which depend on the quantization and entropy coding methods were obtained and

incorporated into a practical H.264 system, which is a tedious process. This type of

process is, of course, necessary when we have determined a specific set of transforms

and wish to incorporate them into a specific video compression system.

Suppose we have a large number of possible sets of transforms. Evaluating the
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performance of each possible set in a video compression system can involve a great

deal of efforts. In the end, we may find that only a small number of the many

transforms are useful and are incorporated into the video coding system. Evaluating

the transform performance based on the rate-distortion performance relies on well-

designed codewords, so that the potentials of these transforms will be fully explored.

The work involved in designing the codewords for the many transforms that are not

used is quite wasteful.

In this thesis, we evaluate the performance of a set of transforms based on the

energy compaction capability. The energy compaction indicates the performance

of the transforms independent of how the codewords are designed. It is true that

eventually the performance of these transforms needs to be tested in a practical

coding system, we can still use this method to screen out some transforms that may

not have any potential to increase the performance. By doing so, the codeword

designing workload will be significantly reduced. This approach is more effective

especially when a large number of transforms are involved.
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Chapter 3

Algorithms

Suppose we have a given set of transforms. In this chapter, we develop two algorithms

that choose for each block the best transform within the set and the best transform

coefficients to preserve the largest amount of energy for a given total number of

transform coefficients to be selected.

This chapter is organized as follows. We first formulate the energy compaction

evaluation as a maximization problem. Then we develop two algorithms to solve this

problem. The first algorithm is an iterative procedure that consists of two steps in

each iteration. The first step chooses the best transform for each block given the num-

ber of coefficients used in that block. The second step chooses the best coefficients in

each block that lead to the optimal energy preservation, given the chosen transforms.

The second algorithm computes the block optimal energy function, which contains

all the information necessary to obtain the optimal solution. The best coefficients

and transforms are determined by minimizing some cost function associated with

the block optimal energy function. For each of the two algorithms, we analyze their

performance in theory. We summarize this chapter by comparing their performance.
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3.1 Problem Formulation

Suppose a signal is segmented into N blocks, indexed by n = 1, 2.. .N . Without loss

of generality, we assume that each block has M data point. For each block, we can

choose from K candidate transforms.

The preserved energy is a function of two factors. The first factor is the transform

used for each block, which we denoted as T . Once the transforms are fixed, we can

choose some transform coefficients to preserve the energy, which leads to the second

factor. The second factor is the coefficients selected in each block, which we denote

as C . Note that in order to preserve the maximal amount of energy, we should only

choose largest coefficients in a block. As a result, these coefficients can be indicated

by the number of coefficients used in each block. Note that both T and C consider

the transforms and numbers of coefficients chosen in N blocks. As a result, they are

vectors of length N. The energy preserved is denoted as E(T, C)

Our notation can be illustrated with an example. Suppose N = 2 , M = 3 and

K = 4 ,which corresponds to two blocks with size three, and we can choose from four

candidate transforms. T = (2, 4) and C = (1, 3) means that for these two blocks,

we use transform 2 for the first block and choose one largest coefficient, and we use

transform 4 for the second block and choose three largest coefficients. In this example,

we use a total of four coefficients to preserve the energy.

With this notation, our problem can be formulated as follows:

maximize E(T, C)

subject to |C 1 = Co

where Cl1 is the 1-norm of C , representing the total number of coefficients used,

which equals the given total number of coefficients constraint Co.

The notation used in this section will be used throughout the rest of this thesis.
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3.2 Algorithm A

3.2.1 Algorithm Description

The first algorithm, denoted as Algorithm A, is based on two observations. In one ob-

servation, when the best transform for each block is given, the transform coefficients

can be optimally chosen by selecting in the order of the largest magnitude transform

coefficients until the given total number of coefficients is selected. In the other obser-

vation, if we know the number of transform coefficients to be selected for each block,

choosing the optimal transform for each block is straightforward. For each block, we

can compute the transform coefficients for each possible transform, choose the known

number of coefficients starting from the largest magnitude coefficient, and choose the

transform that preserves the largest energy for that block.

These two observations suggest an iterative procedure. In each iteration, we choose

the best transform for each block from the most recent number of coefficients selected

for the block, and then choose the best set of transform coefficients from the most

recent transforms chosen for all the blocks.

If we denote the transforms of the ith iteration as Tj , and the numbers of coeffi-

cients used as Ci , each iteration consists of two steps described below:

Step Al: From Step A2 of the previous iteration i - 1 , we are given the number

of coefficients Cj_1 used in each block. Based on this, we update the transforms in

current iteration Tj as:

Tj = argmax E(T, Ci_ 1)
T

Since the number of coefficients used in each block is given, this optimal transform

selection can be carried out in each block independently by comparing the energy

preserved with this specific number of coefficients over all possible transforms.

Step A2: From Step Al, we are given the transforms selected in the current

iteration, denoted as Tj . We compute the transform coefficients Ci for all the blocks
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based on the chosen transforms as:

Ci = argmax E(Ti, C)
C

subject to |C|1 = Co

This maximization can be performed by selecting the largest Co coefficients in all

blocks. Then we trace these selected coefficients back to the blocks where they belong,

and these numbers of coefficients selected are used as the Ci in the next iteration.

To illustrate the algorithm, we show the process of one iteration with an example.

Suppose we have a signal that has two blocks of length three, which are transformed

by two candidate transforms. We consider preserving the energy with two coefficients.

In other words, N = 2, M = 3, K = 2 and Co = 2 . Figure 3-1 shows the magnitudes

of coefficients when two different transforms are applied on two blocks. Suppose

we initiate the iteration by choosing two coefficients from the first block and nothing

from the second block, which means Ci_1 = (2, 0) . In Step Al, by comparing Figures

3-la and 3-1c, we find that for the first block, the first transform preserves energy

25 while the second transform preserves energy 26 with two coefficients. Therefore,

we decide to choose the second transform for the first block. For the second block,

we can choose either transform since in both Figures 3-1b and 3-1d, zero energy

is preserved. Then, we decide to choose the first transform. In this case, we get

Ti = (2, 1) after Step Al is finished. In Step A2, with the selected transforms, we

choose two largest coefficients from 5, 3, 2, 1 and 1. This is achieved by choosing one

coefficient 5 from the first block and one coefficient 3 from the second block, resulting

in C2 = (1, 1). The preserved energy is now 34, which is larger than 26. We can verify

that the algorithm converges at this point, by repeating the above iteration process.

In this example, we can verify that this result is optimal by comparing the results

with enumerating all transform combinations. For the performance of the algorithm

A in general cases, further analysis is carried out in the following sections.
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Figure 3-1: An example for iteration process of Algorithm A.

3.2.2 Convergence

The Algorithm A discussed in Section 3.2.1 can be shown to converge, under any

initial conditions. From the computation in Step Al, E(Ti, C 1) E(Tj_1, CI_1).

This is because the transforms are selected such that the resulting energy is maximized

when Cj_1 is given, thus larger than the energy when any other transform combination

is used. Similarly, from Step A2, E(Ti, C) 2 E(Ti, Ci_ 1) since the chosen transform

coefficients are the largest ones that lead to the maximal amount of preserved energy.

From both inequalities, we obtain E(Ti, C) E(T_ 1 , C _1) , which implies a non-

decreasing sequence E(Ti, Cj) with respect to i. In addition, this sequence is upper

bounded by the total energy of the signal. Therefore, a monotonically non-decreasing
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and bounded sequence must be convergent. This result indicates that Algorithm A

is guaranteed to converge in terms of the preserved energy. Notice that this result

is consistent with the example in Figure 3-1, while the preserved energy is actually

increasing as the iteration proceeds.

3.2.3 Initial Conditions and Local Convergence

While this algorithm is guaranteed to converge, it may be sensitive to initial condi-

tions. In other words, this algorithm may be trapped at different local maxima when

different initial conditions are used. To show this point, we consider the energy map

with respect to both C and T .

For a specific transform combination T* , we first ignore the constraint Cl1 = Co.

The unconstrained energy E(T*, C) can be expressed as the sum of the energy in

each block, denoted as Ei(T*, C), i = 1, 2 ...N . It can be seen that Ei(T*, C) is

a concave function with respect to the number of coefficients used in that block.

This is because the incremental energy when one more coefficient is used is non-

increasing. Therefore, E(T*, C) = EN 1 Ei(T*, C) is also concave since it is the sum

of several concave functions. Now if we consider the constraint ICl1 = Co, the result

is the intersection of the unconstrained concave energy function with a affine linear

subspace described as |Cl1 = Co , which is still a concave function. Based on this

argument, we conclude that Step A2 finds the optimal solution on a concave surface.

For a specific coefficient distribution C* , Step Al searches the highest energy for all

different possible transform combinations T .

Graphically, the process of Algorithm A is illustrated in Figure 3-2. In this figure,

we plot the energy E(T*, C) with respect to the coefficient distribution C. Each

curve represents the energy function of a specific transform combination T*. Note

that in practice, there are a very large number of curves and C is multi-dimensional.

We simplify the figure just to show the idea.

Suppose we start from the state A and perform the iteration Step A2. Step A2

searches on the concave surface until it reaches the maximal point B. Then Step Al

checks all possible transform combinations and reaches the maximal point C where
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Figure 3-2: Graphical illustration of the iteration process of Algorithm A.

the number of coefficients used is fixed. The iteration stops when it reaches D, which

is a locally maximal solution. However, as we can see, D is different from the globally

optimal solution F, which implies that the algorithm is trapped at a local maximum.

If the algorithm starts from E and Step A2, with one step we reach the global optimum

F. We can see from this argument that the convergence may be sensitive to initial

conditions.

The best case for this algorithm is that all the locally optimal solutions are the

same. In this case, the algorithm converges to the global optimum under any initial

conditions. Even if they do not, the locally optimal solution may be very close to

the globally optimal solution. Since the structure of the energy function is dependent

on the specific signal to be evaluated, analyzing the structure in theory is difficult.

Instead, we test this property in the next chapter, by comparing the locally opti-

mal solution with the globally optimal solution obtained from the other proposed

33



algorithm.

In practice, there are many possible choices of initial conditions. For example,

one may specify certain transforms, such as 2D-DCT for each block, and start from

Step A2. One may also use an equal number of coefficients in each block and start

from Step Al. The results from our simulations in the next chapter indicate that

the preserved energy after convergence is not sensitive to reasonable choices of initial

conditions.

3.2.4 Computational Complexity

The overall computational complexity depends on the number of iterations. In prac-

tice, for typical image and video signals, the convergence occurs within several itera-

tions, as shown in the next chapter. The computational complexity of one iteration

can be roughly estimated as follows. We make the assumption that each transform is

comparable in complexity. With the Big 0 notation which evaluates the asymptotic

complexity, the computational complexity in Step Al is O(KN), when all transforms

are performed and compared once in each block. For Step A2, we need to find the

largest Co coefficients. This can be accomplished by sorting the coefficients with a

complexity of O(NM log NM) , where NM equals the number of pixels. This com-

plexity, however, can be improved using the median-of-medians algorithm [7], where

the complexity of the worst case is O(NM) that is linear to the number of pixels.

Furthermore, we note that for those blocks for which the number of coefficients chosen

or the transform chosen does not change from a prior iteration, the computation can

be reduced by using the results from the prior iteration. Since the majority of blocks

remain to use the same transform, the intensive computations needed in computing

the transforms can be drastically reduced. In conclusion, with these optimizations on

the implementation of Algorithm A, it becomes a very efficient algorithm computa

tionally.
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3.3 Algorithm B

3.3.1 Algorithm Description

The second algorithm, denoted as Algorithm B, finds the globally optimal solution

in two steps. The first step finds the optimal energy function for each block. The

second step searches for the optimal solution.

In the first step, to compute the block optimal energy function, we consider a

single block. For this block, when the number of coefficients used in this block is

fixed, choosing the optimal transform that gives the highest energy is straightforward

using the same procedure in Step Al of Algorithm A. By varying the number of

coefficients used in this block, we can determine the optimal energy preserved as a

function of the number of coefficients. We will refer to this function as the block

optimal energy function and denote it as E(c), where c represents the number of

coefficients. Note that the chosen transforms in this block optimal energy function is

the only possible ones that will be selected in the optimal solution. This is because

once the optimal number of coefficients used in this block is obtained in some way,

the corresponding chosen transform gives the highest possible energy. As a result, it

is clear that this block optimal energy function carries all the information that will

be used to obtain an optimal solution.

Figure 3-3 shows an example of computing the block optimal energy function. A

block is transformed by three transforms T1 , T2 and T3 with length four, which result

in the transform coefficients (5,4,3,1), (6,3,Vf ,v ) and (5,v ,xf3 ,v ), shown

in Figures 3-3a, 3-3b and 3-3c respectively. To compute the block optimal energy

function, we start from c = 0. For this case, we decide not using anything to preserve

the energy, and the energy preservation is 0. Next, we can preserve the energy, with

one coefficient, of 25,36,25 for these three transforms. Obviously, we should choose

T2 to obtain the maximal amount of energy 36. If we preserve the energy with two

coefficients, we sum up the square of the magnitudes of two largest coefficients for

three transforms, which result in the energy preservation of 41,45 and 46. As a result,

the optimal energy is 46 and the best transform T3 is selected. In the same manner,
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when three and four coefficients are used, the optimal energy is 50 and 51, and the

best transform is T and T (or T2 , T3 ), respectively. The block optimal energy

function for this specific block is given in Figure 3-3d.
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(a) Transform coefficients of TI
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(c) Transform coefficients of T3 (d) Block optimal energy function

Figure 3-3: An example of computing the block optimal energy function.

In the second step, we use a method to determine the optimal number of coef-

ficients used in each block. In this method, we first fix a positive parameter A and

then minimize the cost function f(c) = c - A 1 E(c) for each block. The parameter c

is the number of coefficients (from zero to the size of the block) and E(c) is the block

optimal energy function. The number of coefficients that leads to the minimum f(c)

is chosen as the optimal number of coefficients used in the block.

To verify that we can obtain the optimal number of coefficients used in each block

with this method, we first show that this is true for a special case when all block
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optimal energy functions are concave, where A has an intuitive explanation related to

the incremental energy. We then extend to the case where all block optimal energy

functions are not concave.

The case when all the block optimal energy functions are concave

When all the block optimal energy functions are concave, we consider the incremental

energy when one more coefficient is added. If the incremental energy is maximized

for each new coefficient added among all the remaining coefficients in all the blocks,

the cumulative energy is also maximized. This can be accomplished by computing

the incremental energy from each block optimal energy function and selecting all the

coefficients in all the blocks that contribute the incremental energy above a certain

threshold A. All the selected coefficients can be traced back to the blocks where they

come from and the optimal number of coefficients used in each block can be obtained.

It will be shown that the parameter A used in the cost function f(c) represents the

incremental energy threshold.

This maximization process can be illustrated with Figure 3-4. Figures 3-4a and

3-4b show optimal energy functions of two blocks. The incremental energy where one

more coefficient is added in each block is shown in the left upper and right upper

of Figure 3-4c. The incremental energy of all blocks can be aligned together, as is

shown in the lower part of figure (c). The mapping of the incremental energy in each

block to the overall incremental energy is illustrated with arrows. By decreasing the

energy threshold A from 12 to 0, we can select the coefficient one by one that has

the largest incremental energy in the rest of unselected coefficients. Since when all

the block optimal energy functions are concave, the incremental energy is decreasing

with respect to the number of coefficients used. Therefore, no smaller incremental

energy will be chosen ahead of a larger one.
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When a A is fixed, we can choose some optimal energy and the corresponding

optimal numbers of coefficients used in the blocks. For example, the horizontal lines

in Figure 3-4c correspond to the energy threshold A of 8. It can be seen that these

two selected coefficients are distributed to both blocks using the same threshold. In

this case, the optimal energy is 22 and each block will use one coefficient. This is

indeed the highest amount of energy that we can preserve with two coefficients.

We now relate the process discussed above with minimizing the cost function

f (c). Specifically, we discuss how the incremental energy thresholding can be related

with minimizing the cost function. We consider selecting all the incremental energy

within a specific block that are larger than A. This can be achieved by computing

the incremental energy from the block optimal energy function as E(c + 1) - E(c)

. Another approach is to directly consider E(c) . Figure 3-5 shows a concave block

optimal energy function, which is linearly interpolated. It is clear that the incremental

energy when a certain number of coefficients c is used is the slope of segment right to

this point. In order to choose the coefficients that have incremental energy larger than

A, we can instead determine the point where the slope of left segment is larger than A

and that of right segment is smaller than A. This point can be determined by pushing a

line with slope A until it is tangent to the interpolated function. Equivalently, pushing

the line corresponds to make the intersection of the y-axis and this line as large as

possible when this line is intersecting with the function. From a simple computation,

we can see the intersection of this line with y axis is E(c) - Ac. Maximizing E(c) - Ac

is the same as minimizing c - A-1 E(c) with respect to all c. This minimizes the cost

function f (c) = c - A-'E(c) discussed above.

The case when all the block optimal energy functions are not concave

When all the block optimal energy functions are not concave, the above discussion

based on the concavity of the functions case does not apply. However, every non-

concave block optimal energy function can be modified to a concave function in the

following way. We consider the convex hull of the block optimal energy function. If

some values do not lie on the convex hull, we modify the values of those points to the
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Figure 3-5: Illustration of minimizing the cost function.

convex hull. This is illustrated in Figure 3-6. Note that this function is not concave

due to the point lying under the convex hull, which is outlined in this figure. We

modify this point straight up to the convex hull, as marked by the arrow. When all

these non-concave block optimal energy functions are modified to the concave ones,

we can apply the method discussed above to the modified problem where all the block

optimal energy functions are replaced by the concave ones.

We now show that these modifications of block optimal energy functions do not

affect the optimal solution obtained by using the minimization method discussed

above. We first observe that the values that have been modified increase due to the

property of convex hull. Intuitively, a sequence point either lies on the convex hull

or lies under the convex hull. If it lies above the convex hull, it means that the

convex hull we found is not correct. Instead, it should be modified to include the one

that lies above. This implies that the optimal energy E* we obtain in the modified

version is not smaller than that of the original E. In other words, E* is an upper
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Figure 3-6: Modification of the non-concave block optimal energy function.

bound of the optimal solution for the original problem. Another observation is that

the optimal solution obtained in the modified problem is a feasible solution in the

original problem. This can be seen from the following argument. By pushing a line

with a certain slope A, only the points that lie on the convex hull can be reached.

Therefore, those modified points will never be included into the optimal solution since

they can never be reached by the proposed method. This means the optimal numbers

of coefficients obtained will not be affected by modifying those points that lie under

the convex hull. As a result, the upper bound E* is actually feasible in the original

problem. We can conclude that the minimization process discussed accomplishes the

optimal number of coefficients used in each block.

We also refer to [6] for complement, since the rate-distortion optimization dis-

cussed in [6] has a similar mathematical structure with our method. In addition, it

provides an alternative explanation based on the Lagrangian multiplier method. The

relationship between these two explanations is quite involved. An intuitive view is

41



that Lagrangian multiplier method is actually derived from the duality theory, where

the dual variables consider whether the optimal solution is sensitive to the infinites-

imal change of some prime variables. In our explanation, we show that the optimal

solution is not sensitive to the sequence points that lie under the convex hull but is

sensitive to the sequence points that lie on the convex hull.

To conclude, we outline the algorithm steps of Algorithm B:

Step B1: Compute the block optimal energy function E(c) for each block. For each

block, we compute the optimal energy among the transforms within the transform

set, as a function of the number of coefficients (from 0 to the size of the block M).

Step B2: Choose a fixed positive parameter A. For each block, compute f(c) =

c - A- 1E(c) where c is the number of coefficients and E(c) is the block optimal energy

function. Choose the number of coefficients that minimizes f(c) as the chosen number

of coefficients used in this block. Then the optimal transform for that block is the

one that leads to the highest energy when the number of coefficients is given.

3.3.2 Global Optimality

As shown in the previous section, Algorithm B finds the globally optimal solution.

This means for the number of coefficients used in Algorithm B, the resulting energy

is the highest among all possible transform combinations and used coefficients. This

global optimality is not guaranteed in Algorithm A, when the algorithm may fall into

the local maximal trap. The global optimality of Algorithm B can be also be observed

from the following chapter, where Algorithm B preserves higher energy relative to

Algorithm A in the simulations.

3.3.3 The difficulty of specifying the total number of coeffi-

cients

The total number of coefficients used is explicitly specified in Algorithm A, while it is

controlled by A in Algorithm B. The relationship between the number of coefficients

used and A is complicated and cannot be determined explicitly. This brings another
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issue about how to choose the correct A, which is out of the scope of this thesis.

One possibility is that in order to use some specified number of coefficients, one may

iterate Step B2 back and forth among different A values to match the desired number

of coefficients. This method is used in this thesis. Furthermore, the possible range

of A does not cover all possible total numbers of coefficients. This is because some

total numbers of coefficients may be related to those points that lie under the convex

hull, which can not be reached by this method. In other words, the optimal solution

cannot be obtained for a certain set of total numbers of coefficients for any choice of

A.

Despite this limitation, Algorithm B is useful in verifying the convergence quality

of Algorithm A. Specifically, we can specify the total number of coefficients in Algo-

rithm A to exactly match that generated by a particular A in Algorithm B, and see

how close their solutions are. This method is used in the next chapter to evaluate

the performance of Algorithm A.

3.3.4 Computational Complexity

For each block, in order to determine the block optimal energy function in Step

B1, each transform needs to be performed once and compared when each number of

coefficients is used. This results in O(KM) tests for one block. For all the N blocks,

Step B1 has a complexity of O(NMK) . Step B2 has a complexity of O(NM) since

the cost function needs to be computed M times in order to find the minimum in

each block. In addition, finding the value of A that leads at least approximately to

the total given number of coefficients involves performing Step B2 for multiple values

of A . This fact further increases the complexity of Algorithm B.

3.4 Comparison between Two Algorithms

Table 3.1 summarizes the major differences between the two proposed algorithms.

Algorithm A is more practical than Algorithm B mainly because of the compu-

tational complexity. As analyzed in previous sections, Step Al has a complexity of
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Table 3.1: Major differences between Algorithm A and Algorithm B.

Algorithm Algorithm A Algorithm B
Quality of so- Locally optimal solutions, Globally optimal solutions
lutions close to globally optimal so-

lutions in practice (shown in
Chapter 4)

Complexity Low Higher than Algorithm A
Convergence Preserved energy converges No convergence issue regard-

within several iterations ing the preserved energy
Parameter The number of coefficients The parameter A, which is
specified that are used to preserve the related to but not an explicit

energy function of the number of co-
efficients

Useful Con- Compare the preserved en- Determine the upper bound
text ergy of different transform of the preserved energy, ver-

sets, given the same number ifying the convergence of Al-
of coefficients used gorithm A

O(KN) and Step A2 has a complexity of O(NM), while Step B1 has a complexity

of O(MNK) and Step B2 has a complexity of O(NM). Due to the extensive com-

putation of transforms in Algorithm B relative to Algorithm A, we conclude that

Algorithm B has a higher computational complexity than Algorithm A, with a factor

of M, the number of data points within a block. To illustrate the idea, we consider

a practical example where we use 8x8 block transforms. In this example, M is equal

to 64. By using Algorithm A, the computational complexity is significantly reduced.
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Chapter 4

Simulations

In Chapter 3, we developed two algorithms for the energy evaluation problem in

multiple-transform environment. We discussed the theoretical performance of both

algorithms. In this chapter, we test these algorithms in simulations. Section 4.1

discusses the implementation of the algorithms and the experimental setup used to

obtain the simulation results. Section 4.2 tests the performance of Algorithm A. We

show that Algorithm A performs well enough to be practical regarding the convergence

speed, the insensitivity to initial conditions, and convergence quality. Section 4.3

compares the energy compaction with the rate-distortion performance. We present

that our energy compaction results are consistent with the rate-distortion performance

in previous research.

4.1 Implementation and Experimental Setup

In this chapter, we test the performance of different transform sets based on their

energy compaction capabilities. The transforms include 2D-DCT and 1D-DCTs, as

described in Chapter 2. The details of the implementation for these transforms along

with the codeword design can be found in [2]. In our algorithm implementation,

we use the transform matrices from the source code developed in [2] to perform the

transforms. Since we only evaluate the energy compaction of these transforms, the

quantization and entropy coding parts are not included. This is the major difference
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between our experimental setup and a practical video coding system.

We now evaluate the energy compaction of multiple transforms for the motion-

compensation residuals. Specifically, the motion-compensation residual of the QCIF

sequence (resolution 177 x 144) "foreman", generated from H.264 codecs, is used as

the source. We use this specific residual image as a representative since it is observed

that most results obtained from other residual images share the same characteris-

tics. The source image is segmented into 4x4 or 8x8 blocks, depending on different

transforms used. This residual is shown below in Figure 4-1:

Figure 4-1: Source image used in simulations: QCIF sequence (resolution 177 x 144)
MC residual "foreman".

In order to quantify the energy compaction, we plot the preserved energy as a

function of the used number of coefficients. This number of coefficients used is spec-

ified in Algorithm A and generated according to a specific choice of A in Algorithm

B.

The preserved energy is in terms of the percentage relative to the total energy.

The number of coefficients used is represented in terms of the percentage relative
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to the total number of coefficients in the entire image. When comparing the energy

preservation of different transforms sets, we plot the preserved energy function for each

of the transform set in one figure. At the same used number of coefficients, higher

energy preservation indicates the better performance of the corresponding transform

set.

We initialize Algorithm A by using the 2D-DCT for all the blocks. This initial

condition is conceptually reasonable since other transforms are used as complements

of the 2D-DCT, when the 2D-DCT does not characterize certain areas well enough.

It should be noted that the results of Algorithm A are not quite sensitive to the initial

conditions, as is shown in the next section.

4.2 Algorithm Performance

In Chapter 3, we analyzed the theoretical performance of the algorithms. We have

shown that Algorithm A is guaranteed to converge to locally optimal solutions under

any initial condition, and Algorithm B gives globally optimal solutions. In prac-

tice, Algorithm A is more desirable since it is less computationally intensive and the

number of coefficients used can be easily specified. However, several issues regarding

the performance of Algorithm A remain to be addressed. We need to find out the

number of iterations required before convergence, the choice of initial conditions, and

the quality of locally optimal solutions. In this section, we show that Algorithm A

converges fast, is not very sensitive to initial conditions, and converges to locally op-

timal solutions that are close enough to globally optimal solutions. This implies that

Algorithm A performs well enough to be a practical method.

We use 8x8 2D-DCT along with sixteen 8x8 1D-DCTs in this section as the trans-

form set.

4.2.1 Number of iterations required in Algorithm A

Figure 4-2 shows, with Algorithm A, the preserved energy in the first two iterations

and after convergence, when different numbers of coefficients are used. From this
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figure, we can see that the preserved energy increases with more iterations, which is

consistent with the theoretical analysis. Another observation is that the preserved

energy after convergence is very close to that of the second iteration. This implies that

Algorithm A converges very fast. Numerically, when three percent of the coefficients

are used, the preserved energy for the first four iterations is: 58.6%, 60.5%, 60.6%

and 60.6% respectively. This result suggests that the energy converges after the third

iteration. In all the simulations we have performed, the convergence occurs within at

most four iterations even if we use around 250 transforms in later sections.
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Figure 4-2: Preserved energy in the first, second iterations and after convergence.

4.2.2 Initial conditions of Algorithm A

In practice, there are a very large number of possible initial conditions that we can

start from. For example, we can use a specific same transform for all the blocks and

start from Step A2. We can also use the same number of coefficients in each block and
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start from Step Al. With different initial conditions, Algorithm A may give different

locally optimal solutions.

Figure 4-3 shows the preserved energy after convergence with the above two dif-

ferent initial conditions. The preserved energy differs slightly between the two cases.

The difference is around 0.1%, which implies that Algorithm A is not sensitive to

initial conditions. Similar results are observed for other transform sets and video

sequences.
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Figure 4-3: Preserved energy with different initial conditions.

4.2.3 Quality of the locally optimal solutions obtained by

Algorithm A

Figure 4-4 shows the preserved energy obtained after convergence by Algorithm A and

Algorithm B. It is difficult to specify the number of coefficients used in Algorithm B.

Therefore, we first generate the preserved energy profile by different A in Algorithm
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B. Then we specify the same number of coefficients used in Algorithm A as those

generated in Algorithm B. From this figure, we can see that Algorithm A converges to

locally optimal solutions that are slightly worse than the globally optimal solutions in

Algorithm B. The difference between them is no more than one percent and is hardly

visible in this figure. This result indicates the results obtained using Algorithm A

are quite close to the globally optimal solution in this example. We have observed

similar results for many other video sequences.
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Figure 4-4: Preserved energy of Algorithm A and Algorithm B.

4.3 Comparison with R-D Performance

The algorithms we propose can be used to obtain the optimal energy profiles in

multiple transform environments. These energy profiles can be used to determine

whether a specific transform set will possibly be useful in a real video coding system.
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The work in [2] reports that with additional 1D-DCTs of 16 different directions,

the rate-distortion performance of a video coding system significantly increases. The

work in [5] analyzes the performance of these 1D-DCTs, and reports that much of

the performance gain by using the 1D-DCTs is due to the use of only horizontal

and vertical 1D-DCTs. In this section, we evaluate the energy compaction of three

transforms sets. 1), Using 8x8 2D-DCT only. 2), Using 8x8 2D-DCT along with

all sixteen 8x8 1D-DCTs. 3), Using 8x8 2D-DCT and only horizontal/vertical 8x8

1D-DCTs. We compare the energy compaction capabilities with the rate-distortion

of the same transform sets.

Figure 4-5 shows the preserved energy when these three transform sets are used.

For these three settings, we notice that when more transforms are used, the pre-

served energy increases. When only 2D-DCT is used, the energy compaction is the

worst. When horizontal/vertical 1D-DCTs are incorporated, the energy compaction

performance significantly increases. The preserved energy continues to increase when

another fourteen 1D-DCTs are incorporated, but not as much in proportion to the

number of 1D-DCTs used.

Qualitatively, this result is consistent with the rate-distortion performance re-

ported in [5], where these transforms are incorporated into a H.264 video coding

system. The preserved energy is related with the distortion present in a compressed

video sequence, and the number of coefficients used roughly indicates the number of

bits in coding a residual image. When more coefficients are used, the preserved energy

increases and the distortion decreases. This corresponds to a higher bit rate coding.

Besides, compared to using only 2D-DCT, the performance increases, in terms of pre-

served energy, when only horizontal and vertical 1D-DCTs are incorporated. When

additional fourteen 1D-DCTs are used, the performance increases further, but still,

not as much when performance gain per transform is considered. This performance

gain is even smaller when we take the side information into account, since it requires

more bits to signal a specific transform from seventeen transforms rather than only

from three.
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Figure 4-5: Preserved energy when 1), 2D-DCT only. 2), 2D-DCT with all 8x8
1D-DCTs. 3), 2D-DCT with horizontal/vertical 1D-DCTs are used.
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Table 4.1: Percentage of coefficients used at different preserved energy levels.

Energy Level 2D-DCT only 2D-DCT with ver- 2D-DCT with all 1D-
tical horizontal 1D- DCTs
DCTs

40% 2.1% 1.4% 1.0%
50% 3.5% 2.3% 1.8%
60% 5.6% 4.0% 2.9%
70% 9.0% 6.7% 4.9%

Table 4.2: Coefficients saving at different preserved energy level.

Energy Level 2D-DCT only 2D-DCT with ver- 2D-DCT with all 1D-
tical horizontal 1D- DCTs
DCTs

40% - 33.3% 52.4%
50% - 37.1% 48.6%
60% - 28.6% 48.2%

70% - 25.5% 45.6%

Table 4.1 shows the percentage of coefficients used at different preserved energy

level. Table 4.2 shows the relative coefficients saving with respect to using only 2D-

DCT. These results are consistent with the Bjontegaard-Delta bitrate results reported

in [5]. The coefficients saving, as well as the bitrate saving, increases when more trans-

forms are used. When we first incorporate only horizontal and vertical transforms in

addition to 2D-DCT, the coefficient saving is significant. When we further increase

the number of transforms to seventeen, the additional coefficient saving is still signifi-

cant. The coefficients saving introduced by additional horizontal/vertical 1D-DCTs is

slightly more than that introduced by other additional fourteen 1D-DCTs. However,

using only vertical and horizontal transforms may be more efficient than using the ad-

ditional fourteen transforms, if we consider the average coefficient saving introduced

by each transform.

There are two major differences between energy-compaction results and rate-

distortion results. First, in addition to the number of coefficients, the magnitudes

of the coefficients and the locations of the coefficients also affect the performance of

the transforms in real video coding systems. In general, larger coefficients require

53



more bits to code and smaller ones require less. Even if we can throw away some

small coefficients in energy compaction evaluation, these small coefficients may not

be quantized to zero and still need several bits, especially in high bit rate situations.

Second, the side information in the bit stream may be significant. Specifically, we

need to transmit the information of which transform is used for a block. These is-

sues are related to the transforms, quantization, and entropy coding that we do not

consider in this thesis.

Evaluating the energy compaction performance is probably effective in obtaining

some qualitative results. For example, if a certain transform set significantly increases

the energy compaction performance, we may conclude that incorporating the trans-

form set in a video compression system to test in a practical setting may be worth

the effort. In general, it is hard to get quantitative results regarding the transform

performance in a real coding system by evaluating only the energy compaction per-

formance. However, we show in the next chapter that some approximated approach

can be used to accomplish such a task.
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Chapter 5

Applications: Evaluating the

Energy Compaction for

Equal-Length 1D-DCTs

In this chapter, we demonstrate the power of the proposed algorithm when the per-

formance of a very large number of transforms needs to be tested. In this situation,

designing the codeword for every single transform and then incorporating these trans-

forms into a video coding system to test their performance is not practical. Instead,

we use our algorithms to obtain some preliminary results on energy compaction, so

that we can decide whether these transforms can possibly be useful in a real video

coding system.

We use 4x4 2D-DCT, 4x4 directional 1D-DCTs and 4x4 equal-length 1D-DCTs.

Section 5.1 discusses the designs of the equal-length 1D-DCTs. In the remainder of

this chapter, we present and discuss the energy compaction results obtained by using

different sets of transforms.

5.1 Designs of Equal-Length 1D-DCTs

In [2], sixteen 8x8 directional 1D-DCTs and eight 4x4 directional 1D-DCTs are de-

signed based on the one-dimensional structures within residual images. These trans-
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forms are effective in representing these one-dimensional structures of certain direc-

tions. We illustrated the transforms in Figure 2-1 and Figure 2-2 for 8x8 and 4x4

cases, respectively.

We observe that these transforms are not of the equal length. In other words,

the number of data points in a single directional 1D-DCT is not the same. For some

transforms such as the vertical and horizontal transforms, every single directional ID-

DCT uses the same number of data points as other transforms in one block. Every

transform spans four or eight pixels for 4x4 and 8x8 cases, respectively. For the rest

of these transforms, each transform within a block spans a different number of data

points. For example, the 8x8 diagonal transforms have lengths varying from three to

eight. This varying transform length also brings the varying number of transforms

within a block. The vertical and horizontal 8x8 directional 1D-DCTs have eight

transforms in a block while the diagonal one has thirteen.

Many modern video codecs are accelerated by using parallel computing and hard-

ware implementation of frequently used processes. For example, butterfly structure is

proposed as a hardware implementation of transforms in recent video codec standard

HEVC [8]. In addition, different transforms in different blocks can be performed in

a parallel manner. In these cases, transforms with equal lengths are desirable since

they simplify the hardware structures. Every hardware transform processor has the

same number of inputs and every block uses the same number of processors.

The 1D-DCTs proposed in [2] only considers the one-dimensional structure along

certain straight directions. However, some one-dimensional structures may not be

exactly straight. If these curved one-dimensional structures appear, neither 2D-DCT

nor straight directional 1D-DCTs are effective in representing them.

Based on these observations, we design a set of equal-length 1D-DCTs. We find all

possible one-dimensional structures of the same length. Then we segment one block

to these one-dimensional structures. Each one-dimensional structure is transformed

with a length four 1D-DCT. Every different partition of a block corresponds to an

equal-length 1D-DCT. We only design the 4x4 transforms, since the number of all

possible partitions of an 8x8 block is estimated to be much more than one million,
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which is too large for exhaustive search of possible partitions.

Figure 5-1 shows 12 possible one-dimensional structures used in 4x4 equal-length

transforms. These one-dimensional structures are rotated for 90, 180 and 270 degree.

They are also flipped in the horizontal, vertical and diagonal direction. The 4x4 blocks

are tiled using different combinations of these length four one-dimensional structures.

Figure 5-2 shows an example of an equal-length 1D-DCT. In this example, the block

is tiled using the two rotated or flipped versions of the fifth structure, one fourth

structure and one tenth structure. We find all possible partitions which segment a

4x4 block into four one-dimensional structures. This process results in 237 equal-

length 4x4 1D-DCTs.
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Figure 5-1: All possible structures used in 4x4 equal-length transforms.

With these additional equal-length 1D-DCTs, the one-dimensional structures in

a residual image can be better characterized. The energy must compact into fewer
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Figure 5-2: An example of 4x4 equal-length 1D-DCT.

coefficients since we are allowed more options of transforms. However, this perfor-

mance gain in energy compaction does not come without costs. Since we are using

more transforms, it implies that in a real coding system, the bits used to transmit

side information increase as well. There is a tradeoff between using more transforms

to achieve better transform performance and using fewer bits for overhead. One may

incorporate all the transforms, or only incorporate a subset of them. The problem of

choosing the optimal subset of transforms from a huge set of transforms arises.

The best way to solve this transform selection problem is by incorporating these

transforms into a video coding system and test the rate-distortion performance of

certain reasonable subsets of transforms. However, designing codewords for hundreds

of transforms, which is necessary for obtaining rate-profile, is incredibly tedious. The

rest of this chapter tests and analyzes the performance of these equal-length 4x4 1D-

DCTs, along with the 2D-DCT and 4x4 directional 1D-DCTs, based on their energy

compaction property. From this process, one can roughly determine the possibly

reasonable subset for which further work on designing codewords may be worthwhile.

5.2 Overall Performance

We evaluate the energy compaction of all possible transforms before testing on any

specific transform set. These transforms include: 4x4 2D-DCT, 4x4 directional 1D-

DCTs and 4x4 equal-length 1D-DCTs. The source image we use is the motion-

compensation residual of the QCIF sequence (resolution 177 x 144) "foreman", gen-
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erated from H.264 codecs, as shown in Figure 4-1. We first verify that Algorithm A

converges well enough where so many transforms are used. Then based on the re-

sults of Algorithm A, we inspect the frequencies for selection of transforms. This can

help us roughly estimate which transforms are used frequently. By utilizing this kind

of information, we can eliminate the transforms that are seldom selected and select

sets of transforms that look reasonable, which will be further tested in the following

sections.
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Figure 5-3: Preserved energy of Algorithm A and Algorithm B.

Figure 5-3 shows the preserved energy using both algorithms, when all the trans-

forms are used. In this figure, we notice that Algorithm A converges to locally optimal

solutions worse than the globally optimal solutions obtained by Algorithm B. The en-

ergy difference between these two curves is larger than that in previous chapter. This

is due to the number of transforms we use increases from 17 to around 250. Still,

this difference is much smaller compared to the energy difference between different

transform sets, as we will see in the next sections. Therefore, Algorithm A is still
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considered accurate enough even when so many transforms are used.

Figure 5-4 shows the frequencies of selection of transforms. We use three percent

of coefficients in Algorithm A. When Algorithm A converges to the locally optimal

solution, every block selects a specific transform. For every transform, we count the

number of blocks that choose this transform. The transforms are ordered in the

following way: 2D-DCT is numbered #0, and directional 1D-DCTs are numbered

from #1 to #8, among which the #1 is the vertical one and #5 is the horizontal one.

The rest are equal-length 1D-DCTs, numbered from #9 to #245.

250 111

2D-DCT
200

150

100

so

00 so 100 160 2MO 2M0

ID-DCTs

Figure 5-4: Frequencies for selection of transforms.

From this figure, we can see that 2D-DCT is chosen most frequently. This is rea-

sonable since motion prediction performs well in most smooth areas. In these areas,

the residual signal has close to zero pixel values and is basically two-dimensional,

which can be effectively characterized by 2D-DCT. Next frequently chosen trans-

forms are #1 and #5, which correspond to vertical and horizontal 1D-DCTs. This

is because in motion-compensation residuals, many one-dimensional structures are

aligned vertically and horizontally, as analyzed in [5]. Besides 2D-DCT, horizontal

and vertical 1D-DCTs, other directional 1D-DCTs are chosen more frequently than

the equal-length transforms, which implies directional 1D-DCTs are strong enough to

characterize most one-dimensional structures. This result suggests that equal-length

1D-DCTs may only be potentially useful as complements, not replacements of these

directional 1D-DCTs.

Among all the equal-length transforms, the frequencies for choice of transforms
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Table 5.1: Frequencies for selection of different subsets of transforms.

Transforms 2D-DCT only H/V 1D-DCTs Other 1D-DCTs Equal-Length

#Transforms 1 2 6 237
Frequencies 234 217 419 714
Percentage 14.8% 13.7% 26.5% 45.1%

significantly differ. Only a few equal-length 1D-DCTs are used frequently, and the

frequencies of other transforms are close to zero. This indicates even if we are using

equal-length 1D-DCTs, we may not need all of them. Only a small subset of these

equal-length 1D-DCTs are sufficient in characterizing those curved one-dimensional

structures. This is intuitively reasonable, due to the special structures of these equal-

length 1D-DCTs. These equal-length 1D-DCTs are different combinations of a same

set of tiling components, shown in Figure 5-1. That means there are a number of

transforms sharing a specific one-dimensional structure at the same location within

the 4x4 block. If such one-dimensional structure happens to exist in the residual

image, using one representative from these transforms to characterize this structure

is sufficient. Therefore, the frequencies cluster to a single transform when this specific

one-dimensional structure exists in the residual image. The frequencies for choice of

these transforms are summarized numerically in Table 5.1.

Based on these observations, we divide all the transforms into four subsets. 2D-

DCT, horizontal and vertical 1D-DCTs, other directional 1D-DCTs and equal-length

1D-DCTs. The rest of this chapter deals with evaluating and analyzing the energy

compaction of different combinations of these transform sets. By doing so, we attempt

to see if these equal-length 1D-DCTs can potentially help to improve the performance

when incorporated into a video coding system.

5.3 Using all equal-length 1D-DCTs

In this section, we evaluate the energy compaction of five transform sets of size 4x4,

listed below:

Transform Set 1: 2D-DCT only;
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Transform Set 2: 2D-DCT and horizontal and vertical 1D-DCTs;

Transform Set 3: 2D-DCT and all eight directional 1D-DCTs;

Transform Set 4: 2D-DCT, horizontal and vertical 1D-DCTs, and equal-length

1D-DCTs;

Transform Set 5: 2D-DCT, all eight directional 1D-DCTs and equal-length ID-

DCTs.
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5-5: Preserved energy of five 4x4 transform sets with all equal-length 1D-

Figure 5-5 shows the preserved energy when using these five transform sets. We

design these transforms sets as combinations of the subsets listed in Table 5.1. We

note that in this section, we only consider the 237 equal-length transforms as a whole.

Improvement by using part of these transforms is included in the next section.

Transform Sets 1-3 only consider using subsets of directional 1D-DCTs. These

three curves display similar patterns as in the 8x8 case discussed in Chapter 4. By

incorporating more transforms, the energy compaction increases. The increase intro-
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duced by only using horizontal and vertical transforms is larger than that of using

the rest six directional 1D-DCTs.

Transform Set 4 replaces six tilt directional 1D-DCTs with 237 equal-length 1D-

DCTs. We include the horizontal and vertical transforms in this set due to two

reasons. First, horizontal and vertical transforms can characterize horizontal and

vertical one-dimensional structures that appear so frequently in the residual images.

Second, horizontal and vertical transforms are equal-length transforms as well. In

other words, we include 2D-DCT and all equal-length transforms in this set. The

result shows that the preserved energy using this transform set is higher than that of

using Transform Sets 1-3.

Compared to the number of transforms we use, the increase in energy compaction

is not that significant. The preserved energy increase is almost the same when we

progressively include three transform sets: horizontal and vertical 1D-DCTs, six direc-

tional 1D-DCTs and 237 equal-lengths 1D-DCTs. However, the number of transforms

used increases from one, three, nine to over two hundred. Intuitively, this selection of

transforms that uses 237 equal-length transforms may not be desirable. For the rest

of this section, we provide an argument to illustrate this point.

Table 5.2 shows the percentage of coefficients used at different preserved energy

level. We use this information to estimate number of bits used in a coded video

sequence. The same energy level indicates the same distortion level in the coded

sequence. The number of coefficients is roughly proportional to the number of bits

used to represent these coefficients with a scaling factor. To transmit a specific block,

we need to transmit the additional side information regarding the type of transform

we use. If we use one bit to signal using 2D-DCT, and using code words with equal

lengths for other transforms, this scheme results in the overhead load of 1 bit for

2D-DCT and 1 + log(N - 1) bits for other transforms. For Transform Set 2, we

need 1 extra bit is we use transforms other than 2D-DCT. For Transform Set 3 and

Transform Set 4, we need three and eight more bits, respectively.

Having a heavy overhead does not necessarily mean the transform set is useless.

It is useless only when the side effect of heavy overhead cannot be compensated by
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Table 5.2: Number of coefficients used at different preserved energy levels.

Energy Level Transform Set Transform Set Transform Set Transform Set
1 2 3 4

50% 2.6% 1.9% 1.6% 1.4%
60% 4.3% 3.2% 2.6% 2.2%
70% 7.0% 5.5% 4.3% 3.8%

the coefficient saving from a better energy compaction. In order to compare the

effect of overhead and coefficient saving, the relationship between them has to be

established. That is, we need to convert the coefficient saving to bit saving. The

number of coefficients is not linear to the number of bits. However, linearity is a fair

approximation when we consider the performance difference within a small range.

Therefore, we only need to consider the scaling factor between number of bits and

percentage of coefficients. If the scaling factor is known, we can convert the coefficient

saving into bit saving and see if that is sufficient to overcome the side effect of heavy

overhead.

It is shown in [5] that using Transform Set 3 slightly increases the rate-distortion

performance than using Transform Set 2. Roughly speaking, we consider their rate-

distortion performance to be the same. That means at the same energy level, the

difference between the percentage of coefficients in Transform 2 and Transform 3

can be compensated by the 2 extra overhead bits. Using this information, we can

estimate the scaling factor between percentage of coefficients and number of bits. For

example, the percentages of coefficients when we preserve 50% using Transform Set

2 and Transform Set 3 differ by 0.3%, which means we can scale 0.3% coefficients to

two bits. Therefore, using eight bits to transmit the overhead is beneficial only when

the percentage of coefficients is decreased by at least 0.3x7/2=1.05% from Transform

Set 2. However, this decrease of percentage of coefficients from Transform Set 2 to 4

is only 0.5%, which is much smaller than 1.05%. This implies using Transform Set

4 will introduce too large overheads. The results are similar when we preserve 60%

and 70% energy.

We can obtain similar results for Transform Set 5 using the same type of analysis.
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In conclusion, using all the equal-length 1D-DCTs specifically used in this experiment

introduces too large overheads. Therefore, this scheme may not be practical in a real

video coding system.

5.4 Using part of equal-length 1D-DCTs

From the previous section, we can see that using all the equal-length transforms costs

too much in transmitting the side information. One way to reduce the size of the

overhead is to reduce the number of transforms used, while maintaining a fair amount

of energy preservation. This is discussed in this section.

When only part of the equal-length 1D-DCTs are used, the specific subset of

transforms to be included should be chosen carefully. We first determine the number

of transforms that are used. This can be accomplished by utilizing the information

from Table 5.2. Similar to the argument in the last section, we can see that Transform

Set 2 needs one extra bit to signal the transform we use while Transform Set need

three bits. This indicates that the coefficient percentage difference between Transform

Set 2 and 3 at the same energy level roughly corresponds to two bits in a video

coding system. We further observe that this difference between Transform Set 3 and

Transform Set 4 is around half of that between Transform Set 2 and 3. This indicates

that the number of bits in the side information of any transform set probably should

not exceed that of Transform Set 3 by more than one. In other words, besides 2D-

DCT, we should use no more than 16 transforms, whose side information can be

coded with no more than four bits. Suggested by this observation, we modify the

transform sets we use as the following:

Transform Set 1: 2D-DCT only;

Transform Set 2: 2D-DCT and horizontal and vertical 1D-DCTs;

Transform Set 3: 2D-DCT and all eight directional 1D-DCTs;

Transform Set 4: 2D-DCT, all eight directional 1D-DCTs, and eight equal-length

1D-DCTs with the highest frequencies shown in Figure 5-4.

Figure 5-6 shows the energy profile with these four transform sets. By incorporat-
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ing only eight more equal-length 1D-DCTs in Transform Set 4, the preserved energy

slightly increases compared to using Transform Set 3. It is graphically clear that the

extra 1 bit side information introduced in Transform Set 4 can hardly be compensated

by the small amount of coefficient saving.
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Figure 5-6: Preserved energy of four 4x4 transform sets with part of equal-length
1D-DCTs.

5.5 Conclusions

In this chapter, we design a set of equal-length transforms to illustrate the power of

an algorithm developed in Chapter 3. The equal-length transforms were considered

based on two considerations. One is simplification and acceleration of both software

and hardware implementation of transforms. The second is that these equal-length

transforms can be used to characterize those curved one-dimensional structures which

are not considered in directional 1D-DCTs.
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We design a total number of 237 equal-length 1D-DCTs. It is not practical to test

the performance of these transforms based on the rate-distortion performance after

incorporating them into a real coding system. Instead, we test them based on their

energy compaction performance using the proposed algorithms.

Different transform sets that seem reasonable are proposed to be tested. We first

use all equal-length 1D-DCTs as a whole and estimate the preserved energy in the

best case. With some reasonable approximation, we show that it is inefficient to

use all these transforms. Then we get an upper bound of the number of transforms

that can be used, and redesign these transforms that can give best possible results,

based on this upper bound. We evaluate the transform performance again by doing

simulations on the new transform sets. The results show that the newly incorporated

eight transforms do not bring in much preserved energy increase.

This result implies that the specific set of the proposed equal-length transforms

may not be effective if they are incorporated into a video coding system. It is sug-

gested that further work on designing the codewords for these transforms is not neces-

sary. We also conclude that using more complex transforms may not bring additional

performance gain to a coding system. The directional 1D-DCTs may exhaust the

performance of exploiting the one-dimensional structures.
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Chapter 6

Conclusions

6.1 Summary

Transforms are used in many image and video coding system. For example, 2D-DCT

has been used extensively in image coding systems such as JPEG [1], and in video

coding systems such as H.264 [4]. It is generally believed that the performance of these

coding systems can be improved by using more than one transform. Recent studies

consider using up to seventeen one-dimensional transforms in a video coding system,

and it is reported the performance significantly increases with multiple transforms

[2].

The performance of a coding system is generally measured by its rate-distortion

profile. Transforms are incorporated into a coding system and the rate-distortion

performance is tested. To obtain the rate-distortion performance of a system, one

needs the rate profiles of all used transforms. These rate profiles are not depen-

dent exclusively on the transforms themselves. The corresponding quantization and

entropy coding parts have to be carefully designed as well, in order to achieve the

best performance of the transforms. Since the designs of these parts are typically te-

dious, evaluating the transforms based on rate-distortion performance is not effective,

especially when we have a large number of transforms.

Instead of evaluating the rate-distortion performance, we evaluate the energy com-

paction capability of a specific set of transforms. We find the largest possible energy
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that we can preserve using some given number of coefficients. Since the energy is

related to the distortion and the number of coefficients is related to rate, the energy

compaction property roughly indicates the actual performance of the transforms in a

practical coding setting.

When multiple transforms are used, obtaining the largest amount of energy is a

difficult task. One may use the brute force method by enumerating all transform

combinations used in all blocks. However, this type of approach is not practical in

terms of computation due to the exponentially increasing complexity. We propose

two effective algorithms to solve this problem and make energy compaction evaluation

possible in a multiple transform environment.

The first algorithm is based on the two observations. First, finding the best trans-

forms given the number of coefficients used in each block can be easily accomplished.

Second, finding the optimal number of coefficients used in each block given selected

transforms can be easily accomplished as well. We develop this algorithm by it-

eratively applying these two steps. We show that this algorithm is guaranteed to

converge at least to locally optimal solutions. The complexity of this algorithm is

fairly low and can be used in practice.

The second algorithm searches the optimal solutions in the block optimal energy

functions. We show that this algorithm always finds the globally optimal solutions.

However, this algorithm is more computationally intensive than the first one. Spec-

ifying the number of coefficients used in this algorithm is not as easy as the first

algorithm. As a result, we use this algorithm as the benchmark of the first algorithm.

We test the performance of these two algorithms in simulations by applying 2D-

DCT and directional 1D-DCTs on a motion-compensation residual image. We demon-

strate that the first algorithm converges to locally optimal solutions that are slightly

worse than the globally optimal solutions. Other issues regarding this algorithm are

discussed to verify that it can be used in practice. The energy compaction property

obtained with our algorithms is shown to be consistent with the rate-distortion results

in a similar setting.

We propose another set of more than two hundred transforms in complements to
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the transforms we already have. It is not practical to implement these transforms into

a coding system. Therefore, we test the energy compaction performance of all these

transforms. We analyze the relation between the energy compaction and the rate-

distortion performance after trying different sets of transforms that seem reasonable.

The results show that the side information needed by potentially incorporating these

particular sets of transforms is too large. We conclude that these transforms may

not be useful in a practical video coding system. By doing this, we verify that our

proposed methods are useful in quickly determining whether a large set of transforms

may be useful.

6.2 Future Research

In this thesis, we demonstrated the power of the proposed methods with a limited

number of examples. They can be used to determine if other transforms sets can be

useful for a particular type of images. For example, we may apply our algorithms to

3D video coding applications. We can determine if these 1D-DCTs can be useful for

binocular prediction residuals and depth map prediction residuals.

The interpretation of the energy compaction results can be improved by taking

consideration of other issues besides the number of coefficients used. We may also

include the statistics of the magnitudes of the coefficients. Another improvement is to

explore a more accurate relationship between the numbers of coefficients and the rate

profiles, which can better characterize the transform performance in a video coding

system. This can be done, for example, by assuming varying-length code words for

different transforms based on their choice of frequencies. In many video and image

coding systems, the transform coefficients are weighted in a frequency-dependent

manner due to different sensitiveness to different spatial frequencies of human visual

system. In this case, our algorithms can also be applied to the weighted transform

coefficients, which better reflect the actual coding process in a real coding system.

Our algorithms are designed for determining which sets of transforms can be useful

in video compression. In addition to solving this specific problem that the algorithms
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were designed for, they can also be useful in other contexts. The basic approach of the

algorithm can be useful in a more general optimization problem, where it is desirable

to preserve the energy of a signal with a small number of parameters. In other words,

while Algorithm B can be extended to a general but slow approach based on duality,

Algorithm A suggests an effective and fairly accurate approach to solve this type of

optimization problems.

As another example of possible application of our algorihtms, when the constraint

is bit rate instead of number of coefficients, our algorithms can be modified to work

in a real coding system. We note that while Algorithm B is degenerated into the

Lagrangian multiplier method in this case, Algorithm A is particularly useful when we

want to have a strong control over the bitrate. This is because when using Lagrangian

multiplier method, the resulting bitrate is controlled by a specific multiplier parameter

and is strongly dependent on the video contents. If we use an idea similar to Algorithm

A to control the bitrate, the bit rate can be at least roughly specified. This is an area

of our current research.
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