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Abstract

Soft lithography is a printing process that uses small features on an elastomeric stamp

to transfer micron and sub-micron patterns to a substrate. Translating this lab scale

process to a roll-based manufacturing platform allows precise control of the stamp

contact region and the potential for large area, high rate surface patterning. In this

manner, emerging devices can be produced economically, including flexible displays,
distributed sensor networks, transparent conductors, and bio-inspired surfaces.

Achieving and maintaining collapse-free contact of the soft stamp features is a

necessary condition for printing. In the first part of the thesis, stamp behavior is

examined at two length scales. First, microfeature collapse is examined across a range

of dimensionless aspect ratios and pattern ratios to determine the collapse mode and

the feature stiffness. Second, behavior of roll-mounted stamps is investigated on the

macroscopic scale.
The results of these analyses, simulations, and experiments show that contact is

prohibitively sensitive as the feature scale shrinks to single microns or below. In the

second part of the thesis, methods are developed to reduce the contact sensitivity. A

compliant stamp architecture is introduced to tune the mechanical response of the

stamp. Next, a new process for manufacturing cylindrical stamps is developed that

removes limitations of planar stamp templates.

The third part of the thesis addresses process control. A parallel kinematic stage is

designed to manipulate the height and pitch of a roll over a substrate with submicron

precision. A hybrid state-space / classical feedback control approach is used to achieve

high bandwidth servo control in the presence of coupling and unmodeled dynamics.

Using optical instrumentation, the stamp contact pattern is monitored and can be

controlled using camera images as a control variable. Ultimately, a practical method of

impedance control is implemented that demonstrates excellent disturbance rejection.

The results of this thesis provide models for stamp behavior at the local microscale

and the roll-based macroscale. These results illustrate the high sensitivity of contact

to displacement disturbances in roll-based lithography, but also provide valuable de-

sign insight towards designing stamps and processing machinery that are robust to
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these inherent disturbances.
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Chapter 1

Introduction

Contact lithography holds the potential to pattern large areas of micro- and nano-

scale features at high rates by using mechanical contact to replicate patterns. In

recent years, interest has risen in adapting contact lithography processes to roll based

platforms to enable large area printing of micro- and nano-scale features, including mi-

crocontact printing [87] and nanoimprint lithography [1]. Successful implementation

of contact lithography in roll based platforms would enable scalable manufacturing

of flexible engineered metasurfaces, electronics, displays, and sensor systems.

This thesis examines microcontact printing from the perspective of the elastomeric

stamp contact interface. The three central parts of this thesis examine (i) fundamen-

tal contact phenomena, (ii) stamp design and manufacture, and (iii) process control

schemes. Ultimately, the thesis contributes a holistic understanding of stamp defor-

mation behavior, a new stamp architecture and casting technique for robust printing,

and a machine model for precision roll-based manufacturing.

1.1 Thesis Contributions

This thesis provides contributions to both (i) the theoretical understanding of elas-

tomeric stamp behavior and (ii) ways that this behavior can be used to create robust

printing through new machine and process designs.

An experimental approach is developed to observe the load, displacement, and
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collapse mode of microscale stamp features. The stiffness of individual stamp features

is established as a function of feature geometry. Using this stiffness result, a unified

theory is developed that maps feature collapse modes as a function of dimensionless

geometrical, material, and load parameters. The experimental method developed is

used to validate these models of stiffness and collapse mode. This result predicts the

acceptable pressure or displacement imposed on any particular microfeature, which

in turn guides robust stamp design and establishes an upper bound on feasible stamp

contact stresses.

The contact pressure evolution in roll mounted stamps is derived by augmenting

classical contact mechanics solutions in the limit of either very small or very compliant

stamp features. The models developed are validated using numeric simulation and

experimental studies on a custom designed lab scale rolling stage. The results of these

models illustrate that the stamp contact behavior has a significant dependence on the

microscale stamp features, even when the body of the stamp is many times thicker

than the characteristic feature dimensions. Combining the prior bound on stamp

contact stresses with these models provides feasible roll displacements or contact

errors.

A feasible process window for roll based processing is developed using the roll

based contact models. Design opportunities for a large (robust) process window are

discussed and compared to reports in the literature. A new stamp architecture is

developed to dramatically increase this process window beyond the ability of conven-

tional stamp designs. Analytical, numerical, and experimental approaches prove that

this new architecture greatly increases the permissible roll displacement before stamp

feature collapse. Additionally, a new centrifugal casting process is developed for cre-

ating cylindrical stamps for roll based processing with high dimensional uniformity

and continuous peripheral patterns.

A machine design is presented that provides precise submicron resolution posi-

tioning between a processing roll and substrate. Excellent linearity is achieved by

supporting the roll in a parallel kinematic configuration with flexural bearings. A

new controller architecture and synthesis strategy are developed for servo control of
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the resulting complex dynamical system. Two process control strategies are demon-

strated for maintaining a uniform area contact region during printing. The results

of this machine design and control provide guidelines for manufacturing scale imple-

mentations of roll based contact lithography.

1.2 Lithographic Techniques

1.2.1 Conventional Lithography

Surface patterning, or lithography, has been an active area of development since the

advent of the printing press in the 1400's. During the industrial revolution of the

1800's, roll-to-roll printing presses replaced plate presses [99], resulting in unprece-

dented rates of production for patterned materials.

Modern roll-to-roll printing presses are capable of printing flexible substrates at

rates of meters per second with sub-millimeter resolution and registration between

multiple colors. As in the beginning, printing at these rates is still accomplished

using mechanical contact with the printing substrate, but has evolved into modern

technologies like gravure, offset, and flexographic printing.

Each of these three processes - gravure, offset, and flexography - uses an impres-

sion, or backup, roller to engage a flexible substrate against a printing roller. Gravure

printing uses a rigid cylinder with small engraved pockets to selectively transfer ink

(housed in each pocket) to the substrate. Offset printing patterns ink on a metal

roller, transfers the ink to a rubber roller, and finally to the printing substrate. Fi-

nally, flexography uses a patterned print roller with positive relief to transfer ink

between an inking roll and the substrate. Since the 1990's, flexography has overtaken

the gravure and offset printing processes as the process of choice when it comes to

throughput and quality of printing [99].

Development of flexography may have begun as early as 1860, when rubber plates

were used to transfer aniline dyes diluted with alcohol. The term flexography was

coined in the 1950's, but the process didn't reach its current state until 1972 when
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more advanced polymer printing plates were developed to replace molded rubber

stamps.

Flexographic plates consist of a soft cushion layer, a polyester layer for transverse

stiffness and dimensional stability, and a UV sensitive polymer layer, with a total

thickness of about 3 mm. By selectivley exposing the UV sensitive polymer layer and

developing with a solvent, these stamps can achieve feature resolutions as fine as 70

pum [99].

Modern flexography can be implemented on rolls up to 2 m in diameter on web

widths of 3 m. Top web speeds can range from 5 to 12 m/s. Using a central impression

roller (with multiple print rolls in a planetary arrangment) printing layers can be

registered within 100 pm total indicated runout (TIR) [99].

1.2.2 Photolithography

Over the last 50 years, photolithography has been developed for semiconductor ap-

plications. Using selective exposure to light, photosensitive polymer resists can be

patterned optically without mechanical contact, allowing unprecedented resolution,

accuracy, and alignment.

As of 2010, modern photolithography operates at the 45 nm half-pitch node. The

critical transistor gate dimension at this level is 25 nm with an allowable variation of

1.6 nm; overlay registration between layers is 18 nm [61]. There is a coordinated effort

in industry (cf. International Technology Roadmap for Semiconductors) to continue

reducing these characteristic dimensions per Moore's law [72].

The steady reduction of limits in photolithography has been brought about by par-

allel improvements in the polymer photoresists, optics, low wavelength light sources,

and wafer flatness [61]. The resolutions and accuracies have been shrinking while

overall throughput has increased, requiring dramatic innovations and improvements

in the wafer steppers responsible for aligning photomasks, optics, and wafers during

exposure. These wafer steppers are now capable of processing 200 wafers per hour,

but at a capital equipment cost of $50 million USD each.

The high cost of capital equipment and photoresist materials results in a corre-
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spondingly high cost of photolithographic patterning. A detailed analysis of manu-

facturing expenses shows a total patterning cost of tens of dollars per wafer in a high

volume production environment [61]. With 300 mm diameter wafers (0.07 m2 ), this

corresponds to hundreds of dollars per square meter per layer of patterning. The

manufacturing cost of finished multilayer semiconductor devices can easily be tens of

thousands of dollars per square meter or more.

While photolithography is expensive, it represents the cutting edge of patterning

capabilities and the gold standard of quality against which emerging technologies

must compete.

1.2.3 Hybrid Lithography

The high cost and optical limits of photolithography have motivated the development

of alternative technologies. Of particular interest are nanoimprint lithography (NIL)

and microcontact printing (pCP), which use mechanical contact between a stamp

and substrate to transfer a pattern.

NIL uses a tool to transfer a three dimensional relief pattern to a polymer, either

through thermal embossing [13] or UV curing of a polymer during contact [34, 88].

To a first order, this process is rate limited by (i) viscous fluid flow, both into feature

relief and decay of a residual layer between the stamp and substrate, and (ii) energy

transfer cycles, either thermal or UV. Despite these rate limits, NIL remains a topic

of much interest because it has no inherent physical resolution limit (cf. diffraction

limit in optical lithography).

pCP transfers a two dimensional pattern from selective contact of a stamp, quite

similar to conventional flexography. The use of a conformable polymer for the stamp

and special monolayer inks allow reliable patterning of features down to about 200

nm. The two dimensional pattern can be subsequently processed by selective etching

or deposition to reveal three dimensional structures. While the ultimate resolution

is limited by use of soft conformable elastomers in stamps, PCP is rate limited by

diffusion of the molecular inks and can be performed at much higher rates than NIL.

These two methods appear to be a reversion to contact based methods that have
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dominated economical production of printed matter since the advent of the printing

press. In this thesis, these patterning techniques are classified as contact lithography:

a hybrid class of patterning that aims to achieve resolutions characteristic of optical

lithography but by more traditional mechanical means.

Each of these methods has in common the replication of patterns from a tool,

which is itself often replicated from a master surface. In this fashion, the process

can be quite economical by amortizing the effort and cost associated with creating a

high resolution template over perhaps hundreds of printing tools that each pattern

thousands of parts. Moreover, these contact based processes are amenable to roll-

based manufacturing implementations, where paCP in particular has the possibility of

extraordinarily large rate-resolution products.

1.3 Microcontact Printing

pCP was pioneered by Whitesides and colleagues [59]. In the seminal embodiment

(Figure 1-1), pCP used a rubber or polydimethylsiloxane (PDMS) stamp. This stamp

was inked with alkenethiols and contact with a gold surface, where the alkenethiol

formed a self assembling monolayer (SAM) exactly one molecule thick. The SAM

protected the gold during a mild ferro-cyanic wet etch, which selectively developed

the transferred pattern.
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Figure 1-1: Process steps in microcontact printing: (a) a master template is cre-
ated, typically using photolithography and a durable photoresist like SU8. (b) an
elastomeric stamp, typically PDMS, is cast against the master template and parted,
leaving a negative of the pattern geometry. (c) A SAM is selectively patterned on a
separate substrate using the elastomeric stamp, typically a layer of gold on a silicon
wafer. (d) The SAM protects the substrate layer during a wet etch to selectively
expose the negative of the original master pattern.
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This section examines the details of the ink, stamp, and substrate material systems

used for pLCP and their evolution since the invention of the process.

1.3.1 Monolayer Inks

SAMs are typically formed of a functionalized molecule that include a ligand group

(head), an alkyl chain (tail), and an optional functional group.

pCP uses alkenethiols, a particular type of SAM. Alkenethiols, interchangeable

referred to as thiols in this thesis, have an alkane tail formed by saturated C-C bonds

and a sulfer head group. For example, the first three alkanes are methane (CH 4 ),

ethane (C2H6 ), and propane(C 3Hs). Alkenethiols in pCP more typically use large

molecular number tail groups, such as hexadecane (C16 H3 4) or octadecane (Ci 8 H3 8 ).

Alkenethiols have a sulfer head group (e.g. octadecanethiolate Ci 6H33S is quite

similar to octadecane, except that one hydrogen atom has been replaced with a sulfer

atom). Sulfer has a high affinity for Group 11 metals (i.e. gold, silver, copper), pro-

moting adhesion of the head group to the metal lattice. When a number of alkenethi-

ols are present, they will self organize into a protective molecular layer where the

head groups are in contact with the metal lattice and the tail groups are arranged

normal to the surface (Figure 1-2).
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Figure 1-2: Self assembling monolayers as etch resists. (a) Alkenethiols are fully
saturated hydrocarbons with a sulfer head; the species length n is typically 10-20
for microcontact printing. (b) The sulfer head has a high affinity for gold (among
other materials) and will self create a self assembling monolayer on the face centered
cubic lattice structure of gold. (c) This SAM protects the underlying gold during wet
etching, acting as a selective etch resist.
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In pCP, alkenethiols are introduced to the printing substrate through diffusion

processes. Ideally, thiols only diffuse from the PDMS stamp to the substrate precisely

where the two make contact. Alternatively, the thiol can diffuse along the substrate

surface from the contact region or diffuse through the ambient from stamp recesses.

Thiols diffuse through PDMS obeying conventional mass transport laws, allowing

the stamp-thiol system to be modeled using Fick's law [5]. This phenomena means

that the PDMS stamp acts as an 'ink pad' to allow a number of stamping replications

between inking steps.

This diffusion behavior is one reason that microcontact printing can achieve such

high resolutions. In contrast to fluid inks typical of conventional lithographic pro-

cesses, the molecular thiol ink diffuses to the substrate exactly in the area of contact

but does not substantially alter the mechanical contact between the stamp and sub-

strate. Most importantly, there are no effects of fluid dynamics to consider.

For a substantial review of SAMs, their recent history, and application to pCP,

the reader is referred to [66].

1.3.2 Stamp Replication

Stamps for pCP are made of polymers formed against a master surface, or template.

These master surfaces are almost exclusively a silicon wafer patterned with photoresist

in conventional photolithography, or for very small features, electron beam lithogra-

phy. The patterned surface typically has sufficient mechanical strength to permit

forming the stamp directly against the photoresist pattern. Using this strategy of

replication, the cost and effort of obtaining a single high resolution master can be

amortized over a large number of replicated stamps.

The original report of pCP used both a conventional rubber stamp (for example

the type used in flexography) and a PDMS stamp [59]. PDMS has been used almost

exclusively thereafter because of its ability to precisely replicate small features and

its favorable material properties.

Replication of features down to 200 nm were demonstrated almost immediately

[58] and within several years features below 100 nm were reported [7] using com-
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mercially available Sylgard 184 PDMS (Dow Corning). The use of this thermoset

elastomer allows the thin prepolymer fluid to conform to a patterned surface in a

liquid state and be cured to a crosslinked solid with negligible shrinkage or distortion.

Complete contact between the stamp and printing substrate is a necessary con-

dition for selective thiol transfer and the high resolution of pCP. Complete contact

can be guaranteed by choosing a stamp material that makes conformal contact with

printing substrate, where the two surfaces automatically conform over small asperi-

ties without application of external pressure. PDMS is a good material for stamps

because it achieves conformal contact over reasonable asperities; the ratio of surface

energy -y, (about 20 mJ/m 2 ) to elastic modulus Eo (about 2 MPa) is quite large. The

material radius of curvature pm = ys/Eo (as defined by [47]) of PDMS is about 10

nm. At this length scale the surface energy of the stamp is quite significant, creating

conformal contact over a substrate with surface roughness on the order of pm.

This high surface energy also presents problems. When features are on the order

of 100 nm, elastic collapse occurs and the features adhere to one another, destroying

any periodic pattern. To counter this, harder stamp materials have been developed.

Formulations of hard-PDMS have been developed with elastic moduli around 8 MPa,

though significantly more brittle than standard PDMS [89]. A UV-curable hard

PDMS formulation was developed by [12], which speeds the curing time and eliminates

shrinkage that occurs as a result of cooling from the thermal cure step. In addition

to PDMS, block copolymer elastomers with moduli above 10 MPa have also been

successfully used for pCP [100]. These block copolymers are thermoplastics rather

than thermosets, requiring higher forming temperatures and pressures during stamp

formation than PDMS. With any of these higher hardness stamps, additional contact

pressure may be required for conformal contact if the radius of curvature pm becomes

too large relative to substrate roughness [47].

1.3.3 Material Systems

The invention of pCP did not hinge on the idea of pattern transfer by a stamp:

this had in fact been a core concept of lithographic techniques since inception of the

41



printing press. Rather, the core discovery of pCP was the stamp, ink, and substrate

material system that allowed for precise replication and transfer from the master wafer

to the etched gold pattern. In the last twenty years, a number of researchers have

discovered additional material systems that are compatible with elastomeric stamps.

Gold was the first material for patterning via microcontact printing and still re-

mains the most popular due to its resistance to oxidation. The technique of patterning

and etching using thiols has been shown to work on other noble metals from Group

11 in the periodic table, namely silver and copper [29]. Etching of palladium and

aluminum films was also demonstrated with use of the appropriate SAM [29].

The gold structures formed by microcontact printing can themselves be used as

etch resists. As one example, gold structures form a resist on the underlying silicon

substrate such that three dimensional patterns can be formed using a potassium

hydroxide (KOH) etch bath [64].

SAMs and their resulting structures can be used as a deposition resist. SAMs

have been shown to form a direct resist to copper chemical vapor deposition (CVD)

on silicon and aluminum oxides (SiO 2 , A12 0 3 ) [50]. Thiols on a substrate film form

a resist for electroless deposition of nickel on gold film [58] or a specially synthesized

polyimide substrate [68].

Deposition catalysts can also be patterned using the principles of pCP. A pattern,

etch, and plate process developed by [29] allows patterning silver, copper, and nickel

by electroless deposition on a gold film formed by print and etch. Gold can be de-

posited on commercial polyimide film using a process developed by [110]. Rather than

printing a SAM, palladium colloids (small particles with single-nanometer dimen-

sions) can be printed on silicon, glass, or polymers to act as a catalyst for electroless

deposition of copper.

In addition to metals, organic materials can be patterned by microcontact print-

ing. Patterns of carbon nanotube (CNT) forests have been defined in a three step

process by printing palladium colloids, depositing silver by electroless deposition, and

catalyzing CNT growth on the silver [44]. Polymer multilayer resists for etching have

been developed [45] and polymer CVD has been demonstrated with patterns defined
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by pCP of a precursor or photoinitiator [76]. Active organic materials have been

patterned using pCP, for example organic light emitting diodes (OLEDs) [80].

This brief review of compatible material systems should serve to highlight the

versatility of [pCP in forming surface patterns and structures. The reader is referred

to several substantial reviews to gain a broader appreciation for the material systems

that can be produced using pCP as a patterning precursor [84, 81, 106, 20, 54].

1.3.4 Outlook

pCP attracted significant early research attention from IBM [19, 8, 7, 27, 28, 29, 62,

5]. It appears that the process never became developed to the point of mainstream

manufacturing in the semiconductor industry, due in part to difficulties with cross-

layer registration at nanometer scales and the industry's existing investment and

continued advances in photolithography.

At the same time, high speed puCP has been demonstrated with stamp residence

times on the order of milliseconds [37]. This maps directly to the feasibility of high

speed roll to roll printing, which has been demonstrated at web speeds of 2 m/s

[96, 92, 56, 4, 17, 107].

While PCP may not be appropriate for semiconductor fabrication that requires

single nanometer resolution and accuracy, it can fill a niche in high resolution, high

speed processing of large areas with characteristic feature dimensions of 100 nm or

above. Candidate device architectures may be those with registration requirements

of several pam rather than several nm (i.e. thin film transistor (TFT) matrix displays

vs. integrated circuits) or where registration requirements are altogether absent (i.e.

single layer metamaterials).

The outlook of pCP as a large area, high rate patterning technique is indeed

positive. Elastomeric pCP stamps can act as a flexographic plate, so that pCP can be

adapted to roll-based processing drawing on existing industry expertise. A successful

manufacturing scale implementation would permit an unprecedented combination of

feature resolution and manufacturing rate in a variety of material systems for emerging

device architectures.
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1.4 Printing Applications

Emerging device architectures require the rates and economy of traditional roll based

printing, but with resolutions characteristic of modern photolithography. These in-

clude both active devices, such as large area displays or sensor networks, and passive

devices, such as a metasurfaces that use a specific micro- or nano- scale pattern to

achieve certain bulk optical, electrical, or mechanical behavior on a macroscopic scale.

Each of these applications has in common the requirements of (i) high resolution

patterning (microscale or below) (ii) over very large areas (iii) at costs on the order

of single dollars or cents per square meter. These common goals requires develop-

ment of processes that match the resolution of photolithography with the processing

paradigms of roll based flexography.

1.4.1 Active Surfaces

The transistor is the basic element at the center of modern electronic devices, whether

logic devices such as central processing units or interfaces such as visual displays.

TFTs have been instrumental in development of flat panel displays. Characteristic

dimensions (transistor channel length and gate registration) of these devices are in

the range of single microns [16].

The last decade has seen significant interest in development of flexible display

technologies, transitioning flat panel displays from glass substrates to polymer films.

These films would both open opportunities for new form factors and be amenable to

economical roll-to-roll processing.

Developments in flexible displays would directly translate to other flexible elec-

tronic devices, including flexible sensor arrays. Commonly cited applications are in

consumer electronics, medicine, and defense. Flextech is an industry consortium ac-

tively developing technologies toward this end, similar to the Sematech consortium

that has been instrumental in semiconductor development across the .

As examples of success in flexible electronics, material systems have been devel-

oped for creating copper TFT interconnects using puCP [21] and pCP has been shown
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a strong contender for patterning of TFT array contacts compared to alternative

inkjet or screen printing technologies [79]. It has been argued that that pCP can

provide the means for overcoming limits of conventional lithography, especially as

related to low cost production of flexible displays and electronics [75].

1.4.2 Passive Surfaces

Beyond consumer electronics, pCP has great potential to become a dominant pat-

terning technology to produce metasurfaces that require a pattern with high spatial

frequency over a large area of substrate. While a number of such metasurfaces exist,

two examples are provided here that are directly applicable to /CP.

Transparent conductive layers are required in flat panel display technologies and

amorphous / polychrystaline photovoltaic modules. Indium tin oxide (ITO) has tra-

ditionally been used for these applications because of its good conducting behavior

and high optical transmission. At the same time, indium is scarce and ITO is brittle,

leading to failure in flexible devices. Alternative approaches must have a resistance

less than 10 ohms per square and a visible spectrum transmission of greater than

90%. Sparse grids of metallic nanowires have shown promising results toward this

goal [42], and could be patterned quite economically with pCP.

Superhydrophobic surfaces can be used to achieve dropwise condensation, dramat-

ically improving heat transfer coefficients. These improved heat transfer coefficients

map directly to higher efficiency in steam power cycles and desalination. Alterna-

tively, the superhydrophobicity can be leveraged for a self cleaning effect, perhaps

useful on solar cell modules to prevent reductions in photonic flux from surface foul-

ing. [22] shows that dropwise condensation can be achieved on surfaces patterned

with thiols by pCP. While thiols would not be a robust surface modifier in an indus-

trial setting, it is possible that a ptCP based patterning combined with polymer CVD

of polytetrafluoroethylene (PTFE, i.e. Teflon) [76] can create a similar hydrophobic

surface.

45



Table 1.1: A survey of stamp defect modes reported in literature

Defect Sources
Ink swelling [5, 37]

Dimensional distortion Edge rounding [47]
Ink diffusion [37, 5, 62]
Vertical collapse [19, 47, 86, 31]
Lateral collapse [7, 19, 47, 86, 31, 91]

Mechanical defects Incomplete conformal contact [47, 8]
Buckling [47, 31, 46, 91]
Roof collapse [106, 47, 91, 48, 8]
Dynamic air entrapment [96, 37]

1.5 Manufacturing Challenges

1.5.1 Feature Deformation

PDMS is a promising stamp material because it acts as a diffusion medium for thiol

inks, ensures conformal contact, and replicates template geometry exceptionally well.

At the same time, this soft elastomer is the source of a variety of printing defects

due to phenomena like swelling, spontaneous collapse, or deformation under contact

stresses. These stamp deformations have been the subject of much difficulty and

research effort.

Table 1.1 summarizes stamp defect modes that have been identified in literature.

These modes are classified here into dimensional and mechanical modes: the former

affects the dimensional distribution of the transferred pattern, while the latter af-

fects the integrity or fidelity of the pattern. Dimensional defect modes include ink

swelling, curing shrinkage, rounding of punch edges by surface tension, and ink diffu-

sion at feature edges. Mechanical defects (Figure 1-3) include vertical punch collapse,

vertical punch buckling, lateral punch collapse, incomplete conformal contact, and

roof collapse.
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1.5.2 Accuracy

The flexibility of elastomeric PDMS stamps has been touted as a means of patterning

curved objects [106]. This same phenomena makes it quite difficult to control the

alignment and stretch of stamps when high accuracy is required. While high resolution

is easy to achieve by replicating a master template, the absolute accuracy is difficult

to maintain over large areas.

To control the lateral stretch of stamp patterns, many researchers cast stamps

against rigid backplanes, for example quartz [55, 89]. On parting the stamp and the

master template, the lateral dimensions of the stamp are maintained by the rigid

backplane.

In other cases, a flexible (but transversely stiff) backplane is used, for example

metal shim stock [96, 92, 56, 4, 17, 107, 40] or polymer films [60]. This approach is

similar to the use of a polyester layer to maintain dimensional stability in flexographic

plates [99].
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Figure 1-3: Effect of mechanical stamp deformation on pattern trasnfer. (a) Ideal
stamp contact behavior and (b) resulting substrate pattern after development; (c)
actual stamp contact behavior and (d) resulting substrate pattern after development.
Mechanical contact defects like (i) air entrapment between the stamp and substrate,
(ii) lateral feature collapse in small features with large aspect ratios, and (iii) roof
collapse in wide feature spacings alter the actual contact pattern and result in a
drastically different pattern transfer.
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1.5.3 Machine Implementations

Manufacturing machines for pCP must address control of the stamp (i) contact pres-

sure and (ii) registration. These two goals are often contradictory.

Contact integrity can be maintained by carefully controlling the pressure or dis-

placement imposed on the elastomeric stamp. The majority of automated process-

ing techniques reported have controlled the hydrostatic pressure applied behind the

stamp, allowing it to conform to the substrate surface on the meso-scale while main-

taining a uniform pressure at the substrate interface (Figure 1-4a) [18, 15]. While this

approach leads to uniform pressure, alignment and dimensional accuracy are difficult

to control.

To overcome these difficulties, other machines have been designed that utilize

a rigid backplane behind the stamp, often to print on a silicon wafer substrate [9,

55]. In this rigid backplane case, feature deformation is determined by displacement

boundary conditions. Roll-to-plate and roll-to-roll processing allow precise control of

registration and contact propogation along a narrow zone in the roll nip, but impose

similar displacement boundary conditions (Figure 1-4b).

Position and pressure errors are unavoidably introduced in each of these processing

strategies, leading to either feature collapse or incomplete contact. Dimensional errors

are introduced through machine, substrate, and stamp errors, especially as printing

is scaled to manufacturing level implementations. These errors may be geometric in

nature, for example an imperfect backplane, or temporal in nature, such as thermal

variations or stamp swelling due to ink concentrations [5]. If the stamp is mounted

to a rigid backing or roll, the stamp experiences uniform displacement with these

spatially varying errors superimposed. Ultimately, these superimposed errors cause

one region of the stamp to collapse while another region fails to make contact. Any

successful manufacturing implementation must be robust to these errors.

48



1.5.4 Roll Based Processing

Roll based processing, or roll-to-roll manufacturing, is identified as an exemplary

implementation of microcontact printing. There exist unequalled opportunities for

attaining large rates and areas in a continuous process with roll-based processing.

Roll based configurations typically provide narrow line contact between the stamp

and substrate, which manages contact propagation, minimizes air entrapment at high

speeds, and provides opportunities for active control of pressure and spatial registra-

tion. Moreover, roll based microcontact printing is able to leverage an existing body

of knowledge in high precision roll-to-roll and web-handling techniques.

The first demonstration of roll based piCP was a simple experiment by Xia et al.,

where a stamp was mounted on a cylinder and rolled by hand over a 100 mm wafer

[105]. A lack of uniformity is clearly evident in the images shown in this report,

indicating the need for more precise control of the process.

A roll-based configuration for printing organic transistors was proposed by Rogers

et al., where the PDMS stamp is mounted to a glass roller after plasma bonding, then

4 rigid displacement 4
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Figure 1-4: Stamp behavior differs based on imposing a uniform displacement or
uniform pressure on the stamp. (a) A stamp under hydrostatic pressure can easily
conform to substrates, even in the case of large substrate or stamp dimensional er-
rors. In this case, there may also be transverse stiffening, such as backing the stamp
with a metallic shim. In this printing configuration, it is difficult to control lateral
pattern distortion and registration. (b) Printing using a rigid backing, particularly a
roll, allows high rate printing with good control over pattern registration. However,
this configuration results in fixed displacement boundary conditions, where very high
pressures develop in the incompressible stamp material. This type of deformation is
extremely sensitive to dimensional errors in the roll or substrate.
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used to pattern a flexible substrate [87]. The same group has developed a method

of creating a flexography-style PDMS stamp using a flexible Kapton backplane [60].

Methods of web handling and pressure control were not presented in these reports.

A series of high-speed roll-to-roll printing trials were performed at MIT, where

closed loop tensioning and a compliant backup roller were used to modulate contact

pressure [4, 17, 56, 96, 92, 107]. Stamps were cast with an integrated ferrous back-

plane, which was attached to a magnetic roller. This machine was demonstrated at

a 2 m/s substrate speed, but exhibited air entrapment and had no means of actively

regulating the stamp contact behavior.

1.5.5 Grand Challenge

This thesis poses a grand challenge of translating pCP from a bench level prototyping

process to an industrial roll-to-roll process on par with flexography. This endeavor

seeks to combine the merits of flexography and photolithography, two highly sophis-

ticated manufacturing processes.

This challenge is daunting. The end result would be a factor of 1000 reduction

in resolution in flexography (from 100 pm to 100 nm) while maintaining the same

rate (meters per second web speed), accompanied by a factor of 100 improvement in

alignment (100 pm TIR to 1 pm TIR). As compared to photolithography, a factor of

10000 reduction in cost per unit area is required (100's of dollars per square meter to

single cents), with a corresponding factor of 1000 increase in processing rate. At these

rates and resolutions, patterning features on a pitch of 1 pm across a 1 m substrate

a web speed of 1 m/s requires patterning of no less than one terabit per second.

A manufacturing scale roll to roll system must contend with web handling, stamp

inking, contact region control, inline inspection, and interlayer registration. While

these certainly exist in conventional flexographic machinery, there must be dramatic

improvements in each to improve pattern registration and accuracy. There must be

an efficient and repeatable method of producing and mounting polymer stamps to

roll based processing machinery. The effect of material and process variations on

the final output must be well understood from a process control perspective. Any
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one of these problems constitutes a significant research effort and moves well beyond

demonstrations of benchtop feasibility.

Neglecting any particular choices of material system or device architecture, the

fidelity of stamp contact is at the core of successful processing. This thesis focuses

on this core tenet.

The broad goal of this thesis is thus to completely understand the contact behavior

and sensitivity of roll mounted PDMS stamps with surface microfeatures (Figure 1-

4b), with the goal to obtaining robust contact at the stamp interface. As this thesis

will show, the process window for stable stamp contact often allows only a few mi-

crons of roll displacement; holding this tolerance becomes a significant engineering

challenge. Hence beyond the fundamental understanding of contact behavior, paral-

lel goals of this thesis are to develop designs or techniques for either broadening the

process window or actively regulating the stamp contact behavior. The three central

parts of this thesis reflect these goals towards process modeling and innovation.

1.6 Thesis Outline

This thesis is organized into three parts (excluding the introduction and conclusion),

each addressing (i) fundamental stamp deformation behavior, (ii) robust stamp design

and manufacture, and (iii) machinery and process control .

In Part II, Chapter 2 provides an introduction the mechanics of incompressible

elastomers, such as PDMS used in puCP stamps. An example is given of calibrating

material models by fitting constitutive model parameters to tensile test data.

Chapter 3 investigates the deformation of stamp microfeatures at a local scale.

Analytical, numerical, and experimental approaches are taken to identify the dom-

inant collapse mode as a function of dimensionless geometrical and material char-

acteristics. The critical interface pressure is established for each collapse mode. A

relationship between feature load and displacement is developed based on these same

dimensionless characteristics.

Chapter 4 develops models of the contact pressure profiles at the stamp-substrate
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interface in roll-based printing. The load-displacement behavior from Chapter 3 is

incorporated in these models to identify the effect of stamp features on the corre-

sponding pressure distributions. A strategy for incorporating the surface energy of

the stamp in numerical simulations is developed and implemented. These results are

validated experimentally.

In Part III, Chapter 5 develops a model of the process window as a function of

roll displacement in roll-based pCP. This process window is related to error sources,

showing that the process window is too narrow for practical implementation of a

robust process. This observation is used to motivate design of a new stamp architec-

ture that can be used to increase the process window. This architecture is explored

analytically, numerically, and experimentally. A case study demonstrates the utility

of this architecture.

Chapter 6 examines conventional stamp casting and develops a new method for

creating cylindrical stamps especially for roll based processing. A prototype machine

is designed and constructed to demonstrate this new stamp casting method. Analyt-

ical and experimental results show that microscale features can be produced in the

stamp while maintaining excellent dimensional uniformity of the stamp.

In Part IV, Chapter 7 introduces the design of a precision roll positioning stage.

Using a parallel kinematic design with flexural bearings, submicron resolution and

repeatable motion are obtained between a 50 mm processing roll and substrate.

Chapter 8 discusses servo control of the parallel kinematic positioning stage from

Chapter 7. To implement feedback control in the presence of mode coupling and un-

modeled dynamics, a nested state-space / classical loop shaping control architecture

is used. A decoupling criterion is derived that allows application of this control archi-

tecture. The parallel kinematic positioning stage is used as an example of controller

synthesis with this nested conrol structure.

Chapter 9 demonstrates two methods of controlling the stamp contact behavior

using the roll positioning stage. These two control strategies show good disturbance

rejection, supporting a practical and robust manufacturing scale process implemen-

tation.
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Part II

Contact Behavior
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Chapter 2

Polymer Mechanics

This chapter provides a foundation for mechanical analysis of PDMS stamps in subse-

quent chapters through a review of relevant mechanics of material deformation. The

presentation of mechanics here is limited to material pertinent to elastic deformation

of elastomers, for example the PDMS used in soft lithography stamps.

The following sections introduce the material behavior of PDMS, develop general

notation of material deformation, and introduce constitutive models of value to finite

deformation elastomeric analysis. The final section describes how the constitutive

models are calibrated using mechanical test data of elastomer specimens.

2.1 PDMS Composition

PDMS is a crosslinked polymer with a siloxane backbone; the corresponding monomer

is shown Figure 2-1. PDMS can be readily obtained in industrial formulations, most

commonly Dow Corning Sylgard 184 product. The PDMS is supplied as a two part

pre-polymer, which is mixed at a specific ratio and allowed to cure. The prepolymer

will cross link naturally over the period of a few days, or curing can be thermally

accelerated to a matter of hours or minutes [103].

Crosslinked PDMS is a soft elastomer with elastic modulus on the order of 1.5

MPa. The exact modulus is quite sensitive to mixing ratios of the prepolymer and

exact thermal cycle during curing [43]. This polymer has a moderate surface energy
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Figure 2-1: PDMS monomer; the polymer is formed with a silicon-oxygen backbone.
Crosslinking occurs between polymer chains by removing the methyl (CH 3 ) groups.

of about 20 mJ/m 2 [11]. As with most elastomers, PDMS has a viscoelastic response

with a characteristic relaxation timescale of about 5 s [63]. In this thesis, elastomeric

stamps are modeled as a purely elastic material to examine quasi-static behavior.

2.2 Material Deformation

Displacement of a continuum material during deformation is given by vector u as

a function of initial position X. The vector u represents the position change of a

material point between its undeformed and deformed coordinates. (Throughout this

thesis, the material deformation is often analyzed in two dimensional coordinates

using u and v as the components of u along the - and Q directions, respectively.)

The strain at a particular point is dependent not on u, but on the spatial derivative

thereof. For example, a rigid translation of a body will result in a uniform finite u at

all X, but will not strain or deform the body in any way. The spatial derivative of

displacement gives rise to the displacement gradient tensor H and the deformation

gradient tensor F:

H = Vu (2.1)

F = H + 1 (2.2)

56



The strain tensor E is given by

E = I(FTF -1) = -(H + HT+ HTH) (2.3)
2 2

In the special case that deformations are small, that is |HI < 1, the strain tensor

E reduces to the infinitesimal strain tensor c:

E = 1(H + HT (2.4)
2

In terms of the displacement components, this strain field is

I ( aj + (2.5)
"j 2 8Xj OXi

Deformation given by components of E must satisfy the compatibility equation,

which links the strain field to the displacement field (for example, in 2D deformation

there are two deformation directions, ux and uy, but three strain components Exy, eY,

and cxy, only two of which can be independent):

V x (V x c) = 0 (2.6)

The volume change at each material point is a useful metric of deformation. The

volume ratio J > 0 at each point is

J = det F (2.7)

J gives the relative volume change at a point. For example, a general material in

positive hydrostatic stress will expand (J > 1), while a material in negative hydro-

static stress will contract (J < 1). If the material is incompressible, J = 1 will always

hold.

A general deformation leads to stress in material, characterized at each point by

a stress tensor o- that must satisfy the equilibrium condition (neglecting body forces
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and tractions):

V - 0 (2.8)

The way that the strain tensor E and stress tensor a correspond at each material

point depends on the particular material and its properties. This relationship is

characterized by a constitutive model.

2.3 Constitutive Models

2.3.1 Small Deformation Elasticity

Small deformation isotropic elasticity is characterized by shear modulus y and bulk

modulus K that relate stress o and strain E:

a = 2iE' + (tre)1 (2.9)

where the deviatoric strain tensor r' = E - -(tr c) 1.

This constitutive model links elastic stress and strain in the familiar linear elastic

relationship. From (2.9), changes in the state of stress will affect either the deviatoric

material strain with a scaling determined by the shear modulus (e.g. the shear or

elongation) or the volume ratio of the material with a scaling determined by the bulk

modulus (e.g. uniform expansion or contraction).

2.3.2 Finite Deformation Elasticity

In finite deformation elasticity, material deformation is characterized by stretch A=

1 + Eii. In small deformation elasticity, strain E is a linear function of u because

the term HTH is neglected in (2.3). In general finite deformation elasticity, the

strain tensor E is a nonlinear function of the deformation vector u, requiring that

constitutive behavior be characterized by an energy function rather than a linear

relationship between stress and strain.

One of the most common forms of isotropic finite elasticity is the Neo-Hookean
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model [85], which captures nonlinear behavior from large deformations:

U = C1 0(11 - 3) + ( - 1)2 (2.10)
D1

where the first invariant I1 is

11 =A, A2 A3(2.11)

with volume ratio J = A1 A2A3 and deviatoric stretches Ai = J-1/ 3 Aj. C10 = po/2

and D1 = 2/ro are material parameters. In this formulation, moduli are denoted

with the subscript 0 (for example po, Ko), representing the linearized moduli at small

deformations about A = 1.

For Ai near unity, U =a : E and the Neo-Hookean model can be shown to reduce

to the consitutive model for small deformation elasticity (2.9).

2.3.3 Stiffening Finite Deformation Elasticity

The Neo-Hookean model fails to capture stiffening behavior that is common at mod-

erate A in elastomers. While several models of this behavior exist (e.g. Yeoh [109]

and Gent [30]), the Arruda-Boyce model [3] is introduced here because it is derived

from physical mechanisms and requires only two parameters to calibrate (each with

physical significance).

The Arruda-Boyce model explains stiffening by an examination of polymer chain

behavior. At small stretches, the polymer can deform by rotation of atomic bonds,

but at some point these bonds become fully aligned with the direction of rotation.

This locking point is characterized by a maximum stretch, or Am. The chain behavior

is described by the inverse Langevin function. This function is unwieldy, but can be

approximated by the first five terms of a Pade approximation to arrive at a strain

energy function given by:

U = C1±ail-,(-1)(I, - 3) + 2  -In J) (2.12)
i=12

59



where

1/2

1/20

af 11/1050 (2.13)

19/7000

519/673750

and

/-o= C1 (+ 3 99  + 513 + 42039 (2.14)5A2 175A4 875A 67375A

Thus, the Arruda-Boyce model can be fully characterized by only the initial shear

modulus yo and the maximum stretch of the polymer chains Am.

This model can be shown to match the behavior of the Neo-Hookean model at

moderate levels of Am, but departs at more extreme deformations to describe stiffening

behavior (see for example Figure 2-3).

2.3.4 Incompressibility

Throughout this thesis, PDMS is assumed to be incompressible such that volume ratio

J = 1. This assumption reduces the constitutive models above to more convenient

forms. For example, the small deformation constitutive model (2.9) becomes

-= 2pic + pl (2.15)

where p is some hydrostatic pressure field that does not affect the strain components.

The Neo-Hookean model (2.10) becomes:

U = C10(11 - 3) (2.16)

and the Arruda-Boyce model (2.12) reduces to:

5

UC1 a gA -- 1 (I' - 3') (2.17)
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Engineering solutions are often given in terms of elastic modulus E (not to be

confused with strain tensor E or its individual elements Ejj) and Poisson ratio V

rather than shear modulus y and bulk modulus t. In an incompressible material, K

is infinite and v is identically 1. The elastic and shear moduli are related by

E = 2p(1 + v) (2.18)

An equivalent linearized elastic modulus EO can be found using this relationship for

finite deformation elasticity. In an incompressible material (v =), the initial elastic

modulus is identically

EO = 3pO (2.19)

2.4 Material Characterization

Each of these constitutive models (small deformation, Neo-Hookean, and Arruda-

Boyce) must be calibrated by fitting to experimental data. Perhaps the most popular

characterization is the tensile test, which places the material specimen in a state of

uniaxial stress.

The Neo-Hookean and Arruda-Boyce models can be rewritten in terms of the

primary stretch A, to calibrate the material constants in each model based on uniaxial

tension data. For an incompressible material, J =1 gives A = 1/ /A. The

first invariant 1 (2.11) in the uniaxial case is thus

I = A, + 2A1 -1 (2.20)

Substituting the expression for the first invariant into the Neo-Hookean model

(2.16) gives an incompressible energy function of

U = Cio(A2 + 2A- 1 - 3) (2.21)
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where the engineering stress can be found as dU/dA,:

dU
o- = 2C 10(Al - A- 2 ) (2.22)

dA1

Similarly, this form for the first invariant can be used to reduce the Arruda-Boyce

model (2.17) to

o- 2C1 - ioiA2(- 1I (2.23)
.,_i=1I

Material parameters can be determined by fitting these uniaxial tension models

to physical tensile test data that records o- and A,. In experiments throughout this

thesis, PDMS samples are characterized using a Zwick load frame equipped with a 20

N load cell. Test specimens are cut from PDMS sheets using a die with gage width

and length of 4 and 20 mm, respectively (Figure 2-2a). These specimens are mounted

in the jaws of a load frame (Figure 2-2b) and strained to A = 2 at a strain rate of

0.01/s.

1cm

(a) (b)

Figure 2-2: Uniaxial tensile testing specimen. (a) Die and corresponding PDMS
tensile testing specimen; (b) specimen mounted in the jaws of a load frame.

The resulting experimental data resembles the 'S' curve typical of a strain-stiffening

material (as described by the Arruda-Boyce model). Figure 2-3 shows a comparison of

the Neo-Hookean models and Arruda-Boyce models overlaid on a single experimental

data set. Each model was fit by regression; only data for small stretches (A, < 1.2)
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is used to fit the Neo-Hookean model.
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Figure 2-3: Experimental tensile test data with superimposed best fit Arruda-Boyce
(po= 0.43 MPa, Am,=1.21) and Neo-Hookean (po= 0.49 MPa) models.
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Chapter 3

Stamp Feature Deformation

3.1 Feature Collapse

While the low shear modulus yo of PDMS stamps allows conformal contact with

printing substrates, it also permits undesired deformations at the local scale at modest

contact pressures (Figure 3-1). Because pLCP is based on selective stamp contact,

stamp feature collapse results in failure of the printing process. Although other

processing limits exist in puCP, achieving correct contact of the stamp features is a

critical and necessary condition for successful pattern transfer.

(a) (b) (c) (d)

Figure 3-1: Microfeature collapse modes: (a) Sidewall collapse, where pattern collapse

progresses from the pinned edges of contact as the feature sidewalls bulge; this is the

most stable mode of deformation. (b) Roof collapse, where features spaced far apart

permit the roof to collapse against the substrate. (c) Buckling, wherein tall features

buckle under load. (d) Lateral collapse, where tightly grouped features adhere to

their neighbors under with no external loading.

Contact integrity can be maintained by carefully controlling the pressure or dis-

placement imposed on the elastomeric stamp. Position and pressure errors are in-

herently introduced in each of these processing strategies, leading to either feature
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collapse or incomplete contact. To understand this sensitivity and resulting process

limitations, one must first understand the mechanistic load-displacement behavior of

the stamp features.

Many authors have examined defect modes in PDMS microfeatures, not limited to

those illustrated in Figure 3-1. Interestingly, the behavior of elastomeric microfeatures

is important not only for microcontact printing, but also to other fields like biomimetic

surfaces for dry adhesion (i.e. synthetic gecko feet).

Models predicting the onset of roof collapse (Figure 3-1b) were investigated in-

dependently by IBM [8] and Hui et al. [47], while Sharp et al. [91] experimentally

validated the latter. The behavior of roof collapse after the defect has been initiated

has also been studied, especially the spread of collapse due to surface energy [112].

Roof collapse in the limit of small feature aspect ratios represents an analytically

tractable case that can be solved using well known solutions of periodic cracks [57]

and crack propagation [24]. Unfortunately, these models are not generally applicable

to all practical or conceivable stamp feature designs.

Feature buckling (Figure 3-1c) has been predicted using an Euler buckling model

[47]. Sharp et al. show that the attachment of the feature to the stamp is sufficiently

rigid to consider it a fixed boundary condition, though their experimental results

showed buckling at a pressure much less than predicted by a fixed-pinned Euler beam

[91]. Buckling was again examined by the same group of researchers in the context

of biomimetic adhesion [31, 46].

Early efforts at IBM identified feature instability (Figure 3-1d) as an important

defect mode [7] and proposed onset of collapse based on empirical data. An analytic

modeling strategy was proposed by Hui et al. [47], developed by balancing strain

energy in each laterally adhering feature and the work of adhesion with its neighbor.

This modeling approach was compared to experimental results by Glassmaker et al.

[31] and Roca-Cusachs et al. [86], showing that the approach provides a reasonably

accurate prediction of instability. This phenomena has also been widely studied in

silicon microelectromechanical systems (MEMS), where small cantilevers will adhere

to each other in bistable configurations [108].
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All of these existing studies of PDMS microfeatures have reported critical pres-

sures at which a particular collapse mode occurs. There has been no discussion of

critical collapse displacements or even the stiffness, which would relate the load and

displacement behaviors. Without understanding this relationship, the complex prob-

lem of macro-scale stamp deformation is intractable. To this end, this chapter seeks

to establish the stiffness of PDMS microfeatures to relate load and displacement.

The remainder of this chapter provides a review of analytic results, a numeric

investigation using finite element methods, and an experimental investigation of col-

lapse. The primary purpose of this work is to develop and validate models for feature

stiffness, although the onset of particular collapse mode (Figure 3-1) is simultaneously

examined to demonstrate congruence with existing studies. Ultimately, the coherence

of these models is demonstrated by using them to correctly predict experimental col-

lapse modes.

3.2 Analytical Models

This section introduces notation and examines the deformation problem from an

analytical perspective. The goal in the following is to develop a foundation for both

the stiffness of the microfeature arrays and the onset of each failure mode shown in

Figure 3-1.

3.2.1 Notation

The analysis and results in this paper examine a soft lithography stamp with periodic

lines on its surface (resembling a series of parallel punches), a cross section of which

is shown in Figure 3-2. The stamp is composed of an incompressible elastomer that

can be characterized by a large deformation Neo-Hookean constitutive model with

shear modulus yo and elastic modulus Eo = 3po. The stamp material has surface

energy of -y (or work of adhesion Wad with a substrate, as appropriate). The stamp

has some bulk thickness t and the microfeatures on its surface that have width w,

height h, and are regularly spaced at an interval a.
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(a) (b)

Figure 3-2: Stamp geometry and feature dimensions. (a) Cross section of nominal
stamp configuration, labeled with characteristic dimensions and material properties.
(b) Cross section of deformed stamp showing far field displacement and pressure. In
both cross sections a unit cell is shown shaded.

During loading, the surface of each stamp feature experiences no-slip contact

against the stamp substrate. The vertical faces of the unit cell shown in Figure 3-2

are free of shear stress and have no lateral displacement, as dictated by symmetry.

The upper edge of the same unit cell is subject to some uniform pressure o-,, and

uniform downward displacement vo,.

Normalized parameters are introduced to describe the geometry, load, and dis-

placement behavior of each stamp feature to scale the following numerical and ex-

perimental results. Geometrical quantities are normalized by the feature width w,

resulting in an aspect ratio A and pattern ratio P:

h
A = - (3.1)

w

P =- a(3.2)
w

Surface energy is normalized by the elastic modulus and feature dimension, re-
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sulting in conformability Cf:

Cf = (3.3)
Eow

Far field contact stress is normalized by elastic modulus:

S c (3.4)
E0

Displacement vo is normalized by the maximum displacement of a feature vo,max

(when the stamp features have deformed to fill all voids at the contact interface),

resulting in a normalized displacement value X between zero and unity. Examining

the unit cell of Figure 3-2 and applying incompressibility and continuity, it is evident

that Voo,max (a + w) = h -a. From this it follows that normalized displacement is:

X = voo E [0, 1] (3.5)
ha

Finally, dimensionless stiffness K = dS/dX is introduced to relate the load and

displacement behavior. This value can be related to sheet stiffness k = dUoco/dvoo by

applying (3.4) and (3.5):
dS ha
dX Eo(a + w) (3.6)

3.2.2 Stiffness

Feature stiffness can be examined analytically in two limits: first where features are

very short (A < 1,A < P), and second where the features are very tall and dense

(A >> 1, P < 1) (Figure 3-3).

69



V00 oo Goo

x

v(x)

(a) (b)

Figure 3-3: Stamp feature deformation in two analytical limits. (a) In the limit of

very small aspect ratio, the stamp features can be considered rigid compared to the

bulk stamp thickness. This configuration can be modeled as an infinite series of rigid

punches on an elastic halfspace. (b) In the limit of very large aspect ratio, the bulk

stamp can be considered rigid relative to the stamp features and the no-slip boundary

condition can be neglected. This configuration can be modeled as a series of elastic

columns compressed between frictionless plates. In both A and B, the rigid elements

are shown shaded and the undeformed state of the elastic elements are shown thin.

In the first case, that is A < 1, Hui et al. [47] show that the deformation problem

converges to the solution of an infinite series of rigid punches on an elastic halfplane

(Figure 3-3a). The solution to this problem is identical to that for a series of col-

inear cracks in an elastic plane (where the cracks represent the gap space between

punches). This configuration is examined by Koiter [57] using Muskhelishvili's com-

plex field analysis [73]. Koiter derives a strain energy per crack for an elastic space;

the corresponding energy for the halfplane is one half Koiter's result:

(a + w) 2 U2  (ra
U = (a log cos - (3.7)

w E* 2a+w

where E* - E/(1 - v 2 ) for plane strain.

The stiffness o-oo/voo can be derived from U using complementary energy and

virtual work. It is a familiar result that the elastic energy stored in a compliant

system scales with the square of displacement:
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U =(a+ w) - - o du,(3.8)
2 dvs,,

This expression can be re-written using the identity v, = o- -dv/do-2:

U = (a + w) - -- o( ,.(3.9)
2 do-

Equating this relationship with Koiter's result (3.7) provides the stiffness Uo-/vO

of the features. Assuming an incompressible material (v = 1/2) in plane strain, this

stiffness is

dox. 27r E (3.10
=o,,, 2 E log cos ((3 10)

dvo 3 a+w [ 2a+w _

Converting to the dimensionless stiffness K (3.6) gives the stiffness in the first

limit:

K1 = KIA40,A/P-0 (3.11a)

2- AP log cos - ) (3.11b)
3 (P + 1)2  2 P + 1

In the second limit, that is A > 1, the deformation problem approaches a series

of closely spaced columns compressed between frictionless plates (Figure 3-3b). In

this case, the stiffness of each column would be df/dvs = E*w/h. Converting this to

a far field stiffness by a-, = f /(a + w) gives

do- _ E*w 1
h a~w(3.12)dv,,, h a+w

Assuming plane strain incompressibility and converting to dimensionless stiffness

K (3.6) for the second limit results in
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K11 = K| A-oo,P-o (3.13a)

4 P
3 ( P 1)2 (3.13b)5 (P +1)

The value of stiffness K in the region between these two limits remains an open

question. In Section 3.5, a general expression is developed for K by fitting the models

of (3.11a) and (3.13a) to results from numerical simulations.

3.2.3 Collapse Onset

Collapse modes are dependent on some critical displacement and pressure. In the

following, the critical point of feature collapse is examined where analytically possible,

individually considering instantaneous collapse, roof collapse, buckling, and lateral

collapse.

Sidewall Collapse

The critical point for sidewall collapse (Figure 3-la) is trivial, since loss of line reso-

lution does not occur until X 1. From the definition of stiffness K, this results in

a collapse pressure Sc of

Sc = K (3.14)

Roof Collapse.

When the roof collapse mode (Figure 3-lb) is observed for A < 1, the deformation

converges to the that of an elastic halfplane loaded by an infinite series of rigid punches

(Figure 3-3a). Koiter [57] provides the roof displacement for this problem in terms of
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distance x from the center of the roof:

v(x) = 2 (a
-r E*

Collapse occurs when v(x = 0) = h.

corresponding collapse pressure:

±W)log [c(x) + lc2(x) -c2(a/2)
c(a/2)I

Using (3.15) to solve for this point gives the

i7r h -1o-c = E* - h log-
2a+w

S1+ sin, a 1
cos aa2 a+wJ

Assuming an incompressible material in plane strain (E* EO) and converting to

dimensionless variables gives normalized collapse pressure Sc:

37r A _1

Sc = log-
8 P + 1 [1 + sin -___

2 Pco
CS7r Pcs2 P+1

Normalized displacement X at this collapse point can be found by integrating the

displacement profile
fa/2v(x)dx

Xc = fo v()d
V (0) - a

(3.18)

In the limit that P < 1, a lower bound of Xc = r/4 can be found using (3.18) and

an elliptical displacement profile given by Koiter. For larger P, the collapse point lies

between this bound and X = 1. A practical lower bound on collapse pressure is thus

given by

Sc = -K (3.19)

Buckling.

In the case of feature buckling (Figure 3-1c), the conventional model for Euler buckling

[93] in plane strain can be applied. The critical buckling load fEuler on each feature is

wr2E*I
fEuler c 2 b *
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I (3.17)

(3.20)

c(x) = Cos 7 )(a+w



where be is a boundary condition constant as given in Table 3.1 and I is the beam

moment of inertia, identically w3 /12 for the microfeature geometry.

Table 3.1: Boundary condition constants for Euler column buckling

Boundary Condition bc
Fixed-fixed 4
Fixed-pinned 2
Pinned-pinned 1
Fixed-free 1/4

Putting this buckling load in terms of far field pressure a, = f/(a + w), assum-

ing incompressibility, and rearranging into normalized parameters gives the Euler

buckling pressure as

2
SEuler = bc - (3.21)

9 (P+1)A
2

This expression (3.21) is essentially the model for critical buckling pressure given

by [47], but expressed in dimensionless variables for an incompressible material. At

this point be remains a variable that is dependent on the load conditions: a substrate

that is fixed laterally will resemble a series of fixed-pinned columns, while one that is

free to translate laterally will resemble a series of fixed-free columns.

The work of adhesion Wad between the stamp and the substrate results in a

delayed onset of buckling (as observed in the experimental results of Sharp et al.

[91]), where additional elastic energy is required to overcome the energy barrier of

Wad. To augment the traditional buckling model assumed by other authors, this

thesis considers the balance of strain energy per unit area U and work of adhesion

per unit area Wad (Figure 3-4).

Assuming linear behavior, this balance can be written using complementary energy

and sheet stiffness k. In the stable configuration, just before the point of buckling,

the features will have only mechanical elastic energy:

1 1
UEuler = I9 (3.22)

2 k
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Figure 3-4: Loading and unloading paths for microfeature buckling in the presence
of surface energy. The work of adhesion at the contact interface delays the onset of
buckling during loading; the delay can be found by equating the difference in strain
energies Ubuckle and UEuler with the work of adhesion.

In the buckled configuration, just after the point of buckling, the features will

have a strain energy composed of the sum of the elastic mechanical energy at the

Euler buckling point and the additional mechanical energy required to compress to

the delayed buckling point in a state of bifurcation (Figure 3-4):

11 1
Ubuckle 2 uer + k Euler(0 - JEuler) (3.23)

The work of adhesion per unit area is the surface energy scaled by the stamp

contact area (Wad here denotes the work of adhesion between the stamp and substrate

materials)

w
Wa*, = Wad (3.24)

a+ w
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The delayed buckling point can be found by equating the difference in strain

energies Ubuck1, (3.22) and UEuler (3.23) with the work of adhesion Wad:

Ubuckle - UEuler -- Wa*d (3.25)

Substituting the corresponding expressions allows solving for the additional pressure

required to cause buckling in the presence of surface energy:

w
- - OEuler = k -Wad (3.26)

Converting to dimensionless parameters provides a critical buckling load Sbuckle:

Sbuckle = SEuler + -KCf (3.27)
AP

Lateral Collapse

Lateral collapse (Figure 3-1d) is predicted by balancing microfeature strain energy

U and work of adhesion Wad to find the minimum energy state of an arbitrarily tall

feature. For a feature of height h with collapse contact length lc (lc < h) the critical

height for spontaneous lateral collapse is hc = h - lc (Figure 3-5a).

The critical collapse height he is found by first finding the equilibrium collapse

length 1c. The equilibrium condition requires a minimum energy state, calculated

using the necessary condition d(U + Wad)/dle = 0 [47]. Expanding this condition

gives
d kbeam(a/2 ) 2 +d (_Wad) 0 (3.28)

dIc ( 2 dic 2

where kbeam is the beam stiffness of a microfeature of length h - lc, a/2 is the length

that the same feature must deflect to contact a neighboring feature, and Wad is the

work of adhesion between the stamp material and itself. Rewriting this for some
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(a) (b)

Figure 3-5: Schematic of feature lateral collapse. (a) Fixed-fixed beam configura-
tion and characteristic dimensions. (b) Schematic of similar features collapsing in a
cantilever beam mode.

arbitrary beam stiffness gives a critical condition of

d(keam) d (keam) 4Wad (3.29)
dle dhe a

Prior studies have all assumed that the deformed shape of features is that of

a fixed-fixed beam as shown in Figure 3-5a, where kbeam = 12E*I/(he)3 (I is the

cross sectional moment of inertia) [47, 31, 86]. However, experimental observations

(Figure 3-6) show that deformed features near the critical point assume the shape of

a cantilever beam, where kbeam= 3E*I/(he)3 (Figure 3-5b).

Evaluating criterion (3.29) with the cantilever beam stiffness, letting I = w3/12

for a rectangular beam in plane strain, and assuming incompressibility gives

Ew 3 
_ 

4 Wad (3.30)
hM a 2

Rearranging and converting to dimensionless parameters gives a critical condition

for lateral collapse of

P
2

4A4 = Cf (3.31)4 A4
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(a) (b)

Figure 3-6: Micrographs of lateral feature collapse showing (a) stability (w=20[tm,
a=10pm, h=30pm), (b) onset of collapse (w= 20pm, a=16pm, h=54ptm), and (c) full
collapse with a high mode number(w=20pm, a=10pm, h=77pm). Scale bars: 100

tm.

This model in (3.33) is strictly valid only for small displacements of long beams,

requiring P < 1 and A > 1. For aspect ratios smaller than ca. 3, the model should

include the shear stiffness of each beam. Timoshenko beam theory [98] includes this

effect, where the corresponding cantilever beam stiffness is

kbeam = + OShc (3.32)
(3E*I Api

with cross sectional area A, moment of inertia I, shear modulus y, and shear factor

a9 = 6/5 for rectangular features [98].

Applying this Timoshenko beam stiffness to (3.30) gives a more accurate criterion

of
P2 A 2 +a8 /3_P'. +o =1 Cf (3.33)

4A2 (A2 + a,) 2

In the limit of large aspect ratio A, this expression derived with Timoshenko beam

stiffness (3.33) converges to the criterion derived from Euler beam stiffness (3.31).

This more accurate criterion is unfortunately implicit in aspect ratio A.

The strain energy at the contact point has been neglected for features undergoing

cantilever deflection (Figure 3-5b); this will be small for features very near the critical

height he. Despite this approximation, the expression given in (3.33) provides an

accurate estimate of stability.
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3.2.4 Summary

These models provide a means of estimating the onset point of each type of defect

shown in Figure 3-1; (3.14), (3.17), and (3.27) give the collapse pressures for modes

a, b, and c (respectively) while (3.33) gives the collapse criteria for mode d. Each

critical collapse displacement Xc can be found from these critical pressures Sc by the

relationship Sc = KXc.

3.3 Numerical Simulation

A numerical investigation of microfeature behavior was conducted using finite element

methods, particularly to determine the load-displacement behavior not described in

the limits of (3.1la) and (3.13a). Features with aspect ratios from A = [0.1 ... 10] and

pattern ratios from P = [0.1 ... 10] were simulated, resulting in 441 unique simulations

as a function of varying geometry.

3.3.1 Geometry

The stamp deformation can be simulated using plane strain conditions when the

stamp features are long parallel lines (giving uz = 0). A cross section of these features

is depicted in Figure 3-2. Symmetry provides a unit cell that is half of a characteristic

feature as shown in grayscale. Normalized geometry was analyzed that was consistent

with the dimensionless parameters introduced in Section 3.2.1. The contact width

w/2 of each unit cell was unity for each geometry, while the height of the feature h

and width of the unit cell roof w/2 were determined by the desired aspect ratio A

and pattern ratio P (Figure 3-7a).

Table 3.2: Feature numeric simulation parameters

Geometric Parameter Simulation Values
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The overall height of each unit cell was set to be the greater of three times the

feature height h or unit cell width '(a + w) to ensure a uniform far field pressure

distribution at the top surface by Saint-Venant's principle [101].

Rigid geometry is used to represent the substrate. A rigid symmetry plane is

used to constrain sidewall bulge to half of the roof width; the sidewalls of adjacent

features with large aspect ratios can bulge and touch at this midplane. The use of

these rigid elements (rather than very stiff deformable elements) results in a smaller,

faster numerical implementation.

Stamp (deformable)

top

right 4$
left max[6A, 3(P+1)]

roof P

sidewall

S Symmetry Plane (rigid)
base 2 Substrate (rigid)

(a) (b)

Figure 3-7: Feature numerical simulation geometry. (a) Example numerical simula-
tion geometry showing characteristic dimensions, features, and rigid geometry; (b)
example mesh with minimum of ten elements along an edge.

3.3.2 Meshing

Uniform rectangular mesh elements were used to mesh each unit cell. The mesh

density was chosen so that minimum of ten mesh elements were used along the shortest

edge of each simulation (w/2, a/2, or h) (Figure 3-7b). Testing of a higher mesh
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density showed this to be sufficiently resolved for accurate results.

Large deformation plane strain elements with non-linear geometry conditions were

used in each simulation (ABAQUS element type CPE4RH).

3.3.3 Material Model

An incompressible Neo-Hookean constitutive model was used in the simulations. Sen-

sitivity testing did not show significant changes in the loading curve, collapse dis-

placement, or deformed shape using a full Arruda-Boyce model [3]. Typical results

(Figure 3-8) do not exhibit material stretches where the strain stiffening is important

(above about A > 1.25, cf. Figure 2-3) except near full collapse (Figure 3-8).

Incompressibility was assumed (D1 = 0) and EO = 3po =1 was used to calculate

material parameter C10 in the Neo-Hookean constitutive equation (2.10).

3.3.4 Boundary Conditions

Boundary conditions were used to impose symmetry and appropriate contact behavior

(summarized in Table 3.3 and Table 3.4). Symmetry dictates no lateral translation

or rotation at the left and right faces. Symmetry is imposed on sidewall bulging

using a rigid symmetry plane coupled with a frictionless contact condition. The roof

and sidewall faces have no-slip contact conditions (a.k.a. rough contact) with the

rigid substrate element, as well as each other. The base of the feature has fixed

displacement, emulating a no-slip contact condition but without the computational

complexity of a contact condition.

Table 3.3: Microfeature simulation boundary conditions

Face Boundary Condition
Left IJ symmetry (Bv/8x = 0, u = 0)
Right - symmetry (By/ax = 0, u = 0)
Top Irrotational (o/Dx = 0, u = 0)
Base Fixed (u = v = 0)
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Table 3.4: Microfeature simulation contact conditions

Face 1 Face 2 Boundary Condition
Sidewall Substrate No slip (rough)
Sidewall Symmetry Plane Frictionless
Roof Substrate No slip (rough)
Roof Sidewall No slip (rough)

3.3.5 Loading

A rigid compressive displacement is imposed on the top surface of the unit cell (Fig-

ure 3-7a) from X = 0 to X = 1 in steps of AX = 0.01.

3.3.6 Implementation

The numerical model was implemented in ABAQUS 6.10.

Scripts were used to automate execution of the simulations. ABAQUS can be

executed either through the available user interface or at the command line. When

a model is built in the ABAQUS interface, a Python language journal (.jnl) file is

saved. ABAQUS can be executed from the command line by changing this journal

file to a Python script file (.py) can calling "abaqus cae noGUI=JOURNALFILE.py",

similar to executing a recorded macro command.

A master program was written in C++ to iterate through each combination A

and P shown in Table 3.2. At each point, this master program alters the geometrical

parameters in the slave Python script and executes ABAQUS through the command

line. It required several days of computation time to simulate all permutations of A

and P.
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(a) (b) (c)

0,75 0.75 0,75
0.52 0.52

0.00 0.00 -00

(d) (e) (f)

Figure 3-8: Example numerical simulation steps showing maximum principle strain
(1-A); the feature in this figure has aspect ratio A = 0.5 and pattern ratio P = 1.0.
The simulated unit cell has been mirrored for clarity. The deformed geometry is
shown for (a) X = 0, (b) X = 0.2, (c) X = 0.4, (d) X = 0.6, (e) X = 0.8, and (f)
X = 0.94 where roof collapse occurs.
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3.3.7 Interpreting Results

During each simulation the internal energy U, displacement v,, and roof displacement

v(x = 0) of the model were recorded to allow reconstruction of the load-displacement

curve S(X) and collapse point Xc.

From the principle of virtual work, the strain energy in the simulation is the

integral of force along the path of displacement. Writing force as the product of far

field pressure and area gives

U = a + w dv (3.34)2

Differentiating twice with respect to vo, gives

d2U _ a+wdo, (335)
dv2 2 dv.

This result can be related to the dimensionless quantities to extract dimensionless

stiffness K from each simulation. In the simulated geometry, w = 2, a = 2P, h = 2A,

and E = 1. Using these values and the relationships in (3.34) and (3.35) gives

Kd2U AP
K = d P(3.36)

dX 2 (1 + P) 2

Stiffness K is a function of position X and, neglecting elastic instability (i.e.

buckling), increases monotonically with X. The exact stiffening behavior depends on

the feature geometry. For example, the simulation shown in Figure 3-8 stiffens slightly

at X = 0.4 where the roof and sidewall make contact, and severely at X = 0.94 where

the roof collapses. To generalize the behavior across all geometries, an ideal behavior

is assumed that has constant stiffness K = Ko for X E [0, 1) and infinite stiffness at

X = 1 due to incompressibility. This approach is illustrated on a load-displacement

plot in Figure 3-9.

The exact point of roof collapse X, is detected in the simulations when v(x =

0) = -h = -2A (Figure 3-10).
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0.9 .----- Ideal Approximation

0.8-

0.7-

S0.6

0.5 Roof Collapse - :

d 0.4-

0.3-
Roof-Sidewall

. Contact ...- -' i Ko

0.1

0
0 0.2 0.4 0.6 0.8 1

Displacement, X

Figure 3-9: Dimensionless load-displacement behavior of feature in numerical sim-
ulation. Substantial stiffening occurs when the deformation imposes new boundary
conditions, such as roof/sidewall contact or roof collapse. This behavior is approxi-
mated by an ideal load-displacement curve.
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Figure 3-10: Roof displacement plot and corresponding roof collapse point from nu-
merical simulations.

3.4 Experimental Methods

This section describes the experimental methods that were used to simultaneously

measure the (i) load, (ii) displacement, and (iii) contact pattern of compressed mi-

cro features. This experimental protocol represents the first time that these three

measurements have been made simultaneously for PDMS microfeatures. It is quite

difficult to isolate the displacement behavior of these very small features; the key to

the approach taken here is to use a very thin but very wide stamp specimen so that

the body of the stamp appears very stiff compared to the microfeatures. The stiff

stamp body allows extraction of a meaningful measurement of feature behavior from

the resulting experimental data.

3.4.1 Experiment Design

A set of experiments were designed to test the behavior of polydimethylsiloxane

(PDMS) features across a range of reasonable A and P values. A photomask was

86



designed with 20 pm and 50 pm line and post features on varying pitches (Table 3.5).

Control areas were included on the photomask to create regions of (i) no photore-

sist and (ii) fully crosslinked photoresist . Each pattern was organized into 12.5 mm

square regions.

Selectively exposing a layer of photoresist with this photomask creates a master

template with a variety of pattern ratios P and an aspect ratio defined by the thickness

of the photoresist. Because multiple feature scales and pattern ratios are incorporated

in each master template, very few master wafers and stamps need to be made to span

a large portion of the A - P space. The post features on the master templates were

not used in this particular set of experiments.

3.4.2 Test Specimens

A master surface was created by patterning a wafer with SU8 resist (Microchem).

Each wafer contained 20 and 50 pm wide lines on six different pitches arid included

control regions with no features, as defined by the photomask described above. Four

wafers were developed with different resist thicknesses and measured using a Zygo

interferometer. This approach resulted in four different aspect ratios (A) and six

pattern ratios (P) for each feature size (Table 3.6).

PDMS stamps were cast 200 pm thick using vacuum-assisted injection molding

between two precision ground aluminum plates separated by a shim. The mold was

cured at 600 C for two hours and subsequently parted using pressurized ethanol. The

stamp was diced into 12.5 mm square samples using a razor blade.

Each PDMS sample was mounted on a glass slide with the microfeatures facing

Table 3.5: Mask Design

Parameter Value

Sample Area [mm] 12.5 x 12.5
Feature Width, w [pm] 20, 50
Pattern Ratio, P 0.3, 0.5, 0.8, 1, 1.5, 3
Control Full Exposure / No Exposure
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Table 3.6: Feature experimental parameters

Geometric Parameter Experimental Values
Feature Width, w [pm] 20, 50
Pattern Ratio, P 0.3, 0.5, 0.8, 1, 1.5, 3
Resist Thickness, h [pm] 17, 30, 54, 77

upward. To mount each sample, the slide was flooded with ethanol, the sample floated

into place, and the ethanol allowed to evaporate. This technique eliminated both air

pockets and residual stresses in the thin PDMS stamps.

3.4.3 Experimental Protocol

An optical prism and steel hemisphere (Figure 3-11) was placed on top of each sam-

ple. The prism permits observation of the contact region during loading, while the

hemisphere provides a single contact point on which to exert a vertical load with no

lateral tractions.

steel hemisphere

dove prism

PDMS sample

microscopy slide

compression
force

light
source

(a)

camera

(b) (c)

Figure 3-11: Experimental construct and contact visualization. (a) PDMS samples
were mounted on glass slides with the microfeatures facing away from the slide. A
15 mm dove prism with a 25 mm hardened steel hemisphere (combined weight of
1.2 N) was placed on top of the sample using an alignment fixture. (b) The entire
assembly was compressed between the platens of a load frame. A light source and
camera were placed at opposite ends of the dove prism to capture the stamp contact
pattern during loading. (c) A typical contact image of 50 pm wide lines as viewed by
the camera.

The sample, with the prism and hemisphere, were mounted in an Instron load
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frame and compressed at a rate of 1 pm/s. The samples were precycled once to 80 N

to ensure full contact and alignment between the load frame elements before ramping

to a final value of 350 N (0.5 MPa and 2.25 MPa mean contact pressure, respectively).

Displacement was measured via a linear variable differential transformer (LVDT),

force by a 1 kN load cell, and contact collapse was monitored by a camera through

the optical prism. The optical prism and loading components resulted in a preload

of 1.2 N (7.68 kPa) that was not captured by the load cell.

(a) (b)

Figure 3-12: Feature loading experimental apparatus. (a) The experimental construct

was compressed in an Instron load frame. The sample was located on the lower platen

with an alignment fixture and compressed through contact of a steel hemisphere and

v-groove coupling. Displacement between the lower platen and v-groove mount was

measured with an LVDT. (b) A light source and camera were positioned on opposite

sides of the prism to visualize the contact interface during loading.

The collapse mode (Figure 3-1) of each sample was determined by inspection

of the camera frames (Figure 3-13). Sidewall collapse was identified when the field

of view became uniformly dark, roof collapse was identified when the pitch of the

pattern doubled before full collapse, and buckling was identified when the width of
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the features suddenly and dramatically decreased, resulting in a lighter field of view.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3-13: Experimental feature collapse images. Images before and after (a-b) side-
wall collapse (w=50pm, a=40pm, h=54tm), (c-d) roof collapse (w=50pm, a=150pm,
h=17tm), (e-f) buckling (w=20tm, a=30pm, h=54pm), and (g-h) lateral collapse

(w=20pm, a=10pm, h=30,54pm). (a-f) were observed using the experimental setup
described; (g-h) are optical micrographs of the stamp features. Scale bars: 200 y m.
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3.4.4 Data Collection

A PC was used to log data from the load frame and camera. This approach allowed

exact correlatiion of the load-displacement data and camera images in real time during

the experiment.

The Instron 5800 load frame used in these experiments has facilities for analog

output of the measurement signals. The LVDT position signal and load cell force

signal were output on two separate analog channels of the load frame. These analog

signals were interfaced with the data logging computer via a National Instruments

PCIe-6343 data acquisition card.

The camera (Dino-Lite AM413T) is supplied with a USB interface.

A Windows program was written in C++ to record data from the load frame

and camera using C++ API's supplied by National Instruments and Dino-Lite. Each

camera frame was converted from a 24 bit RGB image to an 8 bit grayscale image by

averaging each color channel. This 8 bit pixel data was saved to an indexed binary

file for each camera frame. The unfiltered analog signals were recorded at 10 kHz,

registered against a timestamp and image index, and saved to a binary file with double

floating point precision.

3.4.5 Material Characterization

The elastic modulus of PDMS is highly dependent on mixing and curing parameters.

To experimentally determine material properties, two tensile test samples were cut

from a portion of each stamp. The exact thickness of each specimen was measured

with a Zygo interferometer. The specimens were tested according to the protocol

described in Section 2.4; the initial elastic modulus Eo = 3[po of each stamp was

determined by fitting an incompressible Neo-Hookean constitutive model (2.16) to

the experimental data at low stretches (A, < 1.2).

All specimens were cast, tested, and characterized within a period of several days.

It is not believed that any significant temporal drift in material parameters occurred

over this time period.
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3.4.6 Measurement Repeatability

The repeatability of each measurement type was examined with a repeatability study.

Roof collapse measurements were repeated using a sample with w=50 Pm, A=0.6,

P=3.0. The initial stiffness, maximum displacement, collapse force, and onset of col-

lapse displacement were measured independently six times. Buckling measurements

were repeated using a sample with w=50 pm, A=1.54, P=3.0. Buckling force at

loading and unloading was measured independently six times. By inspection, each

set of six loading curves appeared nearly identical. The 95% confidence intervals (CI)

associated with the results of these tests are summarized in Table 3.7.

Table 3.7: Feature measurement repeatability, showing sample mean pu, sample stan-

dard deviation s, and a 95% confidence interval (95% CI)

Measurement y s 95% CI
Initial stiffness[N/pm] 1.32 0.09 ±0.23
Maximum displacement [jm] 22.3 0.43 ±1.10
Collapse force [N] 35.8 1.03 ±2.64
Collapse displacement [pim] 17.9 0.51 ±1.32
Buckling (loading) [N] 15.1 0.20 ±0.52
Buckling (unloading) [N] 9.40 0.09 ±0.23

3.5 Results

This section presents the stiffness and collapse mode of each experiment and com-

pares these results to FEA results. Each of the following subsections discuss these

phenomena and their comparison with analytic models from Section 3.2. These re-

sults provide collapse mode boundaries to predict the type of failure that will first

occur for a particular stamp pattern.

3.5.1 Stiffness

Load-displacement data from the numeric simulations exhibited common character-

istics: deformation would initially progress linearly for X < 1, exhibit large defor-
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mation stiffening at moderate X, and finally converge to an asymptote at X = 1 due

to incompressibility (Figure 3-9). To characterize the behavior of each simulation, an

initial stiffness K = dS/dX was fit for X < 0.01.

The analytic stiffness results from (3.11a) and (3.13a) apply only in the appropri-

ate limits (Figure 3-14).

10

Pattern Ratio, P Ratio, A
10 101

Figure 3-14: Feature stiffness from (3.11a) and (3.13a) shown superimposed over
FEA stiffness results. The models and simulations show excellent coherence in the
appropriate limits

From Figure 3-3, all deformation in the first limit occurs in the roof of the features

(resulting in stiffness Kr), while in the second limit all deformation happens in the

features themselves (resulting in stiffness K 1 ). If the models in these two limits are

independent, a general model of stiffness can be developed by simply considering the

two limits as springs in series, that is:

1 1 1

K K1 K11
(3.37)

For tall features that are spaced far apart, this series approximation fits the FEA
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Pattern Ratio, P 101 10 Aspect Ratio, A

Figure 3-15: Series spring model of feature stiffness using K and K 1 from (3.37)
shown superimposed over FEA stiffness results. The tentative model and simulation
results agree well except for the rear quadrant with small A and small P.

data well. However, for short, closely spaced features (A, P < 1) the series model

underestimates the actual stiffness from the FEA simulations (Figure 3-15). In this

region, the no-slip boundary condition at the feature interface results in much higher

stiffness than predicted by the frictionless column model of K. To empirically adjust

(3.37) where A, P < 1, a correction factor is incorporated of the form

(A + P)" + (3.38)
(A + P)"

which converges to unity for large (A+P). Using these modifications, constants n and

m were fit by regression (1 and 0.6, respectively). This procedure results in a general

closed form model for stiffness K (Figure 3-16), which can be shown to converge to

the form of (3.11a) and (3.13a) in the appropriate limits:

K =1 (A + P) + 0.6 (3.39)
K1 (A, P) 1 + K11 (A, P) 1  (A + P)
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Figure 3-16: Final closed form model of feature stiffness from (3.39) shown superim-
posed over FEA stiffness results. This single model shows excellent agreement with
the simulation results.
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The maximum displacement voo,max and initial stiffness k (in Pa/m) were calcu-

lated to characterize each experimental load-displacement curve. Load-displacement

curves were first corrected by subtracting the compliance of control specimens (with-

out features) to isolate the behavior of the microfeatures (Figure 3-17).

2500 xeiea
Control Curve xperimental ->

(no features) Curve

2000 <- Corrected
Curve

1500

1000 -

500I

- - - Simulation

0
0 10 20 30 40

Displacement, voo (pum)

Figure 3-17: Experimental load-displacement curves showing the control sample (with
no features), the sample of interest (with features), and the corrected curve where
the control effect has been subtracted. After correction for the control stiffness, the
data represents the response of only the features and fits well with the corresponding
FEA results.
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The maximum displacement Vo,max was determined from the corrected data,

showing good agreement with the maximum displacement based on incompressibility

(Figure 3-18).

70 .
Error bars based on 95% CI
of corrected displacement

3 60

0

0

40-

30 - O

1t 20-

10 -
0 Raw Data

|~ x Corrected Dal
0

0 10 20 30 40 50
Theoretical Displacement, vo,max (Am)

60

Figure 3-18: Theoretical and experimental maximum feature displacement Vo,max,
both before and after correction of the experimental data with the control sample
data. The theoretical maximum displacement is based on incompressibility at X =
1. After correction, the prediction and measurement match within experimental
uncertainty.
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Experimental stiffness was found by fitting a least-squares line to the load-displacement

data. The experimental stiffness results are summarized in Figure 3-19, where they

are plotted against the values predicted from the empirical model of (3.39).

102

Un

101

101 102
Predicted Stiffness (kPa/pm)

Figure 3-19: Predicted stiffness values from the proposed model (3.39) versus the
experimentally measured values. Error bars along the prediction axis represent a
95% confidence interval based on variation in measurements of the elastic modulus,
while error bars along the experimental measurement axis represent a 95% confidence
interval based on control sample variation. The model and experimental values agree
well within the experimental uncertainty, though this uncertainty is large for high
stiffness features that are on the order of the control sample stiffness.

3.5.2 Roof Collapse

The collapse point in each numerical simulation was interpreted as the time when the

roof first made contact with the substrate (Figure 3-8). The far-field pressure and

displacement were recorded at this point for each simulation.

Images recorded during the loading experiments were used to determine the point

of roof collapse. During the experiments, roof collapse began from the center of

samples, and within some finite displacement spread to the entire stamp (these edge
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effects are evident in the partial collapse shown in Figure 3-13d). The collapse points

reported in the following figures are the critical point at which collapse was first

observed.

Both the numeric and experimental collapse pressures agree well with the model

presented in (3.17). The experimental roof collapse pressure is plotted versus the

predicted stiffness in Figure 3-20. (3.18) predicts that collapse occurs at X > wr/4.

This corresponds to a lower bound on collapse pressure S =r/4- K, which is plotted

against the experimental data in Figure 3-20.

1.2-
Error bars based on 95% CI
of elastic modulus

0.8-

0.6

I 0.4 -

S0.2 4 I

0 0.1 0.2 0.3 0.4 0.5
Predicted Sheet Stiffness, K

Figure 3-20: Experimental roof collapse pressure as a function of predicted stiffness.
The collapse pressure has a lower bound of S = 7r/4 - K. The experimental data
support this lower bound, while some values fall substantially above this bound due
to large deformation stiffening before collapse.

Simulations validated that roof collapse occurs in the range X = [7r/4, 1) as pre-

dicted using (3.18). The roof collapse observed during experiments fell within this

same range (Figure 3-21).
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Figure 3-21: Roof collapse displacement vooc from experimental data set as a function
of maximum displacement voo,max. Each simulation exhibited the onset of roof collapse
between X = 7r/4 and X 1 as predicted analytically.

3.5.3 Buckling

Buckling during experiments occurred instantaneously and completely across the

stamp at a particular load, allowing determination of a single collapse pressure and

displacement. The collapse pressure upon loading and unloading was determined

from local extrema in the corrected load-displacement curve (Figure 3-22).

The critical buckling pressures are compared to the model in (3.27) in Figure 3-

23. Because coefficient be in (3.27) is highly sensitive to boundary conditions, bc is

fit by least-squares regression to the unloading data in each plot. These coefficients

range from 0.20 to 0.44; one can conclude that the fixed-free boundary condition

(bc = 1/4) provides a practical lower bound on buckling pressures. Using these

boundary condition coefficients and a value of Wad ~ 200 mJ/m 2 for PDMS on glass

[2], the model presented in (3.27) is plotted in each figure using stiffness K proposed

in (3.39). Curves for pinned-pinned and fixed-free boundary conditions are shown in
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Figure 3-22: Typical experimental load-displacement curve for buckling. The loading
and unloading buckling pressure for each sample were determined from the local
maxima on each respective curve.

each figure for reference.
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Figure 3-23: Critical experimental buckling pressures sorted by aspect ratio. Bound-
ary condition coefficient bc is fit to each set of unloading collapse points using (3.21)
and the loading model of (3.27) is plotted for each aspect ratio using this bc. Curves
for bc = 1/4 (fixed-free) and bc = 1 (pinned-pinned) are shown for reference.

3.5.4 Failure Mode Prediction

Based on the models and empirical observations presented here, boundaries are de-

veloped that predict the particular mode of collapse. These boundaries can be used

as a design tool to understand the expected collapse mode, for example to optimize

feature aspect ratio. Failure mode is predicted with the following precedence:

(i) The condition for lateral collapse is examined to determine the inherent stability

of features.

(ii) The critical collapse pressure for buckling is examined to determine stability

under load.
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(iii) Roof collapse and sidewall collapse are differentiated by the feature geometry.

The condition for lateral collapse is given by (3.33), where conformability Cf is

calculated using the work of adhesion between the stamp material and itself. If this

condition is violated, the features will not be useable for printing.

P 2 A 2 +aS/3
- -< Cf (3.40)

4 (A 3 + asA)2

Buckling is a dominant mode when the critical pressure is less than the pressure

of either roof collapse or lateral collapse. From (3.14) and (3.18) collapse occurs

at approximately Xc = 7/4, giving an ultimate collapse pressure of approximately

Sc = /4 - K. A criterion for buckling is thus ShuckIe < 7/4 - K, given by (3.23) and

(3.39) respectively. In this criterion, conformability Cf is calculated using the work

of adhesion between the stamp and substrate materials:

x2 1 2KCf i
bc + < -K (3.41)

9 (P+1)A2 V AP 4

If neither lateral collapse nor buckling occurs, the features experience either roof

collapse or sidewall collapse. In both numeric and experimental results, roof collapse

occurred only when A < P. Identically, only when the feature spacing a is greater

than the feature spacing height h (such as shown in Figure 3-1b) can the roof touch

the substrate. In the alternative case that A > P, the sidewalls of each feature bulge

and touch the substrate as X -> 1. The empirically developed condition for roof

collapse is thus

A < P (3.42)

Each of these boundaries was computed numerically and superimposed on the ex-

perimental results in Figure 3-24. For numeric calculation of the boundaries, material

parameters are assumed to be an elastic modulus Eo=1.5 MPa, PDMS-PDMS work

of adhesion Wad=44 mJ/m 2 [11], PDMS-glass work of adhesion Wad=200 mJ/m 2 [2],

and the average experimental buckling boundary condition constant bc = 0.4 (Fig-
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ure 3-23). These boundaries for observed collapse mode show excellent agreement

with the experimental data.

101
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Figure 3-24: Feature collapse modes from experimental observations are plotted as

a function of aspect ratio A and pattern ratio P. Boundaries from the proposed

models are superimposed for reference, showing excellent prediction of collapse mode

regimes.
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3.6 Discussion

3.6.1 Experimental Agreement

The experimental data matches the analytical and numerical results well. Deviation

from the expected values is due to difficulties in experimentally isolating the behavior

of the microfeatures from the behavior of the stamp thickness.

In calculations of stiffness, it was assumed that the stamp body and stamp features

are independent (Figure 3-17); in reality the behavior of the stamp body changes

because the microfeatures alter the boundary condition against the observation prism.

This assumption gives corrected experimental curves that are less stiff than the true

feature behavior; this effect is visible in Figure 3-19 where the experimental values

tend to be just less than the predicted values. Moreover, the uncertainty associated

with high k features are due to difficulty in resolving the feature and control behavior

when they are of similar magnitudes.

In Figure 3-20, the reported experimental collapse pressure is the mean pressure

on the experimental sample when collapse is first observed, often at a small point

of maximum pressure at the center of the sample. Thus, the true local pressure

that causes collapse is expected to be greater than the experimental values reported.

This observation explains why several values fall below the expected collapse pressure

bound (S = r/4. K).

3.6.2 Scaling

The results have been reported in dimensionless quantities to allow extrapolation to

other scales, especially sub-micron or nano-scale features. While these features would

be too small to effectively characterize using the experimental methods described

here, it is believed that the models will accurately describe collapse behavior across

these scales.

The reported difficulties associated with nano-scale printing can be explained using

the models in this chapter. As the feature scale shrinks, the conformability Cf

106



increases. This has the effect of shifting the buckling boundary to the right and the

lateral collapse boundary to the left (Figure 3-25), such that lateral collapse becomes

a limiting design factor. Features on the order of 100 nm often experience lateral

collapse in PDMS, leading to development of harder elastomeric stamp materials

[89, 12, 100, 82]. The example of collapsed 350 nm PDMS gratings given in [82] is

just on the critical boundary predicted by (3.33).

10 10 10

iiiiiiii ii

1 0 C1 0 10

iv v iv

10 ' 010 10

Aspect Ratio, A Aspect Ratio, A Aspect Ratio, A

(a) (b) (c)

Figure 3-25: Predicted collapse mode boundaries as a function of feature scale for (a)
20 pum, (b) 2 ptm, and (c) 200 nm features. Collapse modes are (i) sidewall collapse, (ii)
roof collapse, (iii) buckling, and (iv) lateral collapse. Material properties of PDMS-
PDMS Wad = 0.044 mJ/m 2 , PDMS-substrate Wad = 0.2 mJ/in 2, and elastic modulus

=1.5 MPa are assumed.

This scaling result shows that at the nanoscale, the dominant defect modes are

roof collapse and lateral collapse.

3.6.3 Alternative Geometry

This chapter analyzes regular grating patterns because they are a commonly fabri-

cated structure and admit a tractable plane strain analysis. An extension of this

study is a similar analytical and experimental approach towards arrays of post fea-

tures. In many of the analyses (derivation of column stiffness, buckling, and lateral

collapse), this can be accomplished by assuming plane stress rather than plane strain,

giving E* = E rather than E* = E.
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More interesting geometry, such as metallic interconnects and contacts, form reg-

ular grids of feature patterns. The behavior of these two dimensional patterns can

be approximated by the equivalent plane strain behavior of a cross section using the

models given here (for example, a stamp with 5 pm tall, 5 pm wide feature that forms

a 50 x 100 pm grid around display pixels can be modeled as a grating with w = h = 5

pm and a = 45 pm). This approach will provide a conservative estimate of collapse

behavior. If more accurate models of behavior are required, the results of this study

show that finite element simulations provide very accurate predictions and that an

ideal linearized approximation of feature behavior (Figure 3-9) gives a strong lower

bound on expected collapse pressures.

3.7 Summary

This chapter characterized the deformation of PDMS microfeatures through analyt-

ical, numerical, and experimental results. A model for feature stiffness ((3.39)) has

been developed by studying the load response across two orthogonal geometric pa-

rameters (aspect ratio A and pattern ratio P).

These results are also able to predict the collapse mode that a particular set

of features will experience. (3.14), (3.17), and (3.18) predict the critical collapse

pressure and displacement for sidewall and roof collapse modes. Buckling predictions

were augmented with the effect of work of adhesion, and in these experiments show

that features buckle as if they are fixed-free columns (3.27). The buckling point

may be greatly delayed if the stamp is fixed relative to the backplane, resulting in a

fixed-pinned architecture. Lateral collapse is more accurately predicted by adjusting

the collapsed mode shape to that of a cantilever beam (3.33). These models predict

buckling and lateral collapse at about one-half the aspect ratio predicted by the

results of Hui et al. [47]. Using these more accurate predictions of collapse mode, the

feature aspect ratio can be optimally designed to provide the maximum pressure or

displacement before feature collapse.

The model for feature stiffness K provides a link between load and displacement
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behavior of pCP stamp features. This stiffness, along with the maximum displacement

at X = 1, permits observing two inherent load and displacement limits. First, the

permissible load can never be greater than the order of K. Regardless of the particular

choice of A and P, K never exceeds unity, hence imposed pressures should never

exceed the elastic modulus of the stamp material. Second, displacements imposed

on stamp features must never be greater than the characteristic feature dimension

because buckling and lateral collapse occur above aspect ratios of about unity.

Ultimately, this chapter has developed and experimentally validated a general

model for the load-displacement behavior of elastomeric microfeatures across a prac-

tical range of feature patterns and aspect ratios. This work provides new analytic

and empirical models to create a coherent framework for predicting feature stiffness k

and collapse pressure pc. In subsequent chapters, this enables examination of macro

scale stamp deformation behavior and design of robust stamp geometry.
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Chapter 4

Roll Based Contact Mechanics

4.1 Roll Based Stamp Contact

While several demonstrations of roll based pCP have been reported [105, 87, 4, 17,

56, 96, 92, 107], there is little understanding regarding phenomena specific to the

roll-substrate interface. Independent of particular inks or substrate materials, the

integrity and quality of the stamp contact pattern at this interface is paramount

to success of the process. The corresponding high surface energy and low elastic

modulus of PDMS stamps guarantees conformal contact over nanoscale asperities,

but permits stamp feature deformation and collapse at moderate contact pressures.

As demonstrated in Chapter 3, commonly identified collapse modes (Figure 4-1) occur

at contact pressures much less than the elastic modulus of the stamp material.

(a) (b) (c) (d)

Figure 4-1: Elastomeric stamp features deform or collapse in modes like (a) bulging,
(b) roof collapse, or (c) buckling when compressed at the contact interface. If the
aspect ratio of features is too large (d) the features will adhere to each other even in
the absence of contact forces.

In this chapter, the contact pressure at the stamp interface is considered a surro-
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gate for contact pattern quality. Finite compressive pressures below a certain thresh-

old will guarantee contact but not cause feature collapse. The results of Chapter 3

clearly delineate the boundaries between expected feature collapse mode and provide

models for critical contact pressures at collapse. Despite this work, it remains to be

seen how this feature behavior translates to a roll-based contact regime such as that

in roll-to-roll or roll-to-plate printing.

The displacement-dependent stamp deformation between rigid rolls is difficult

from the perspective of both analysis and implementation. In analysis, the finite

stiffness of the microfeatures has a non-negligible effect on the contact pressure dis-

tribution. In implementation, any asperities or dimensional errors are superimposed

on the displacement boundary conditions, resulting in a very sensitive process. To

address these challenges, this chapter uses analytical, numerical, and experimental

investigations of stamp contact mechanics between a rigid roll and a rigid substrate

to identify the relationship between roll displacement and contact pressure.

During printing the stamp is assumed to be in a condition of plane strain along the

length l2 of the roll, admitting a two dimensional analysis of the stamp cross section

in the x, y plane (Figure 4-2). The deformation of the stamp between a rigid roll and

rigid substrate is determined by the displacement 6 of the roll towards the substrate

along Q, with some resulting pressure distribution p(x) with maximum pressure po,

contact force per unit length f, and contact length 21. In this chapter, deformation

between a rigid roll and a rigid substrate is considered; Section 4.2.1 will justify this

approach by showing that the results can be mapped to a general case of deformation

between two surfaces of arbitrary radii.

This work considers a thin elastic stamp of thickness t (typically less than 1 mm)

bonded to a roll of radius r (typically on the order of cm) (Figure 4-3). Retaining the

notation of Chapter 3, the surface of the stamp has a series of protruding features of

width w, height h, and spacing a (typically at the microscale). The stamp is assumed

to be of an incompressible elastomer with elastic modulus Eo. The stamp is bonded

to the roll, providing a zero displacement boundary condition at the roll surface.

Likewise, a no-slip boundary condition is assumed at the contact interface from the
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large work of adhesion Wad between the stamp and substrate.

The sensitivity of contact length 21 and contact pressure p to roll displacement

6 must be well understood. From a process control perspective, this sensitivity de-

termines disturbance rejection, where displacement disturbances might result from

positioning errors or geometrical errors in the roll equipment, stamp, or substrate.

This chapter examines the contact mechanics of the roll-stamp construct to elucidate

these relationships.

Stamp behavior will be explored in two practical limits (Figure 4-4): (i) very small

Figure 4-2: An elastic stamp bonded to a rigid roll and translated over a rigid sub-
strate can be analyzed in plane strain.

Figure 4-3: Cross section view of stamp showing coordinate frame, stamp dimensions,
material properties, and contact variables.
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(i.e. micron or submicron) stamp features and (ii) very large or compliant stamp

features. The utility of these contact models will be demonstrated in subsequent

chapters to derive the process sensitivity and guide robust stamp design.

(a) (b)

(c)

Figure 4-4: Two analytical limits of stamp architecture: (a) very small features and
(b) very compliant features. These cases are illustrated with micrographs of stamp
cross sections with (a) 3 pm tall lines in a hexagon pattern and (b) 50 tm tall lines
in a grating pattern; subimage in (a) shows magnified 3 im features (scale bars: 100
pm). (c) Schematic of corresponding stamps mounted to a roll.

4.2 Contact Mechanics

This section reviews pertinent principles of contact mechanics to provide a frame-

work for subsequent presentation of analytical and numerical approaches. Requisite

concepts of contact mechanics are reviewed in the context of elastomeric stamp con-

tact: (i) a parabolic curvature mapping approach, (ii) models of contact mechanics
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between cylinders (i.e. printing rolls), and (iii) the effect of a large work of adhesion

at the stamp-substrate interface

4.2.1 Curvature Mapping

Referring to Figure 4-3b, the nominal surface of the stamp can be described through-

out the range of motion by a circle in the x, y plane:

y= (r - X/2)x (4.1)

The square root in this expression can be rewritten as a series expansion

22
y= -6 + r1- 1-2(4-2a)

I~ ~ (II2 1X74
+2r 2  8 r + - (4.2b)

When the contact length 1 is small compared to the roll radius r, assuming x < r

allows removing higher order terms in the series expansion, resulting in a parabolic

approximation of the roll profile:

19z
y = -- o(4.3)2 r

If two adjacent rolls of radius r1 and r 2 are compressed together (rather than a

single roll of radius r against a rigid plane), the contact problem can be mapped to

a single roll of radius r* compressed against a rigid plane. This result follows from a

difference of each parabolic roll profile (at 8 = 0):

X2 2 2

Y1-Y2= -+- - (4.4)
2r1  2r2 2r*

where

* rl'r 2r = r2  (4.5)
r1 +r2
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This parabolic approximation and curvature mappings are ubiquitous in contact

mechanics [51], including derivation of the familiar Hertz solutions. These expressions

lead to a more tractable analysis and allow developing generalized relationships for

varying combinations of roll radii. In particular, the generalization of r* permits

analyzing and testing the case of a roll pressing against a rigid plane without loss of

applicability to other cases, such as processing a flexible web through the nip of a

printing roll and backup roll.

4.2.2 Hertz Contact

Contact between homogeneous bodies of curvature is well understood through Hertz

contact mechanics [39]. In this derivation, Hertz assumes (i) small deformations,

(ii) large radii of curvature (r* > 1), and (iii) frictionless contact.

The assumption of large radii of curvature allows analyzing the corresponding

deformation of a planar elastic halfplane with local surface tractions. In this analysis,

an equivalent elastic modulus is calculated:

1 1 - V 2 V 2
1 = E, 1 + E22 (4.6)

E* E1  E2

Hertz solves for the general case of two bodies defined major and minor radii of

curvature (see [51] for an easily accessible and tutorial review). In the special case of

rmajor OC the solution for contact between two cylinders arises. When the axes of

the cylinders are aligned, the behavior at the contact interface is given by

I = f2r (4.7)

p(x) = E* - ( )2 (4.8)
2r* 2~

po = E* (4.9)

f = 2E* (4.10)
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In the case that a soft, incompressible (v = 0.5) elastic stamp pressing against a

relatively rigid substrate or rigid backup roll, E* = Eo/(1 -- v 2 ) evaluates to 'EO.

4.2.3 Elastic Layer

Application of the Hertz solution to elastomeric stamps mounted on rigid roll ma-

chinery is an abuse of the underlying assumptions: the thin elastomeric layer has a

boundary condition at the roll interface not accounted for by Hertz theory and the

stamp experiences no-slip contact rather than frictionless contact.

A number of models have been published that treat the case of a thin elastic layer

on rigid machinery, motivated especially by analysis of rubber coatings on processing

rolls. A thorough review of these elastic layer approaches is provided by [51].

Meijers [70] develops the integral equations that govern elastic layer contact for a

layer that is rigidly bonded to a substrate at one interface and compressed with a roller

in friction free contact at the other. He pursues numerical solutions in two limits,

(i) small contact lengths (I < t) and (ii) large contact lengths (1 > t). His paper

shows that these limits converge for moderate contact lengths 1, allowing accurate

calculation of contact pressures over a complete range of displacements. The resulting

expressions for contact pressure are quite unwieldy and not repeated here.

Bentall and Johnson [6] examine a similar case of an elastic tire, which is fixed

to a rigid roll and compressed against a rigid planar substrate with frictionless con-

tact. Their paper includes a general derivation that considers a roll of finite stiffness

(relaxing the assumption of rigidity). An approximate solution for an incompressible

elastic layer on a rigid roll is derived for 1 > t:

S= V6r*5 (4.11)

3 Eor* 3  X )2
pWx = - 1 - 066 (4.12)

Johnson [51] shows that the more exact solution by Meijers converges to this

approximate solution (4.12) for 1 > t and to the Hertz solution (4.8) for 1 < t.
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In general, the formulation of the elastic layer problem seems dependent on the rel-

ative thickness of the layer and makes it quite difficult to develop a simple expression

that gives accurate but intuitive insight into the contact behavior. As an example,

it would be advantageous to have a straightforward expression like the pressure dis-

tribution in Hertz contact (4.9) to clearly illustrate the effect of system variables on

contact pressure evolution.

4.2.4 Elastic Foundation

Johnson [51] introduces the elastic foundation model as a method to approximate

contact behavior. He notes that the difficulties associated with calculating contact

stresses lie in the coupling between material deformations at each point. If each ma-

terial point can be assumed decoupled, then a much simpler mathematical expression

for contact behavior can be applied.

For example, Johnson's elastic foundation approach can be applied to the elastic

layer problem when the Poisson ratio v is near zero, that is, material deformation in

one direction does not affect the state of stress in orthogonal directions. If this is the

case, the contact pressure at each point x can be independently calculated based on

the local displacement 6(x) and layer thickness t(x), giving

p(x) = EO (4.13)
t(z)

4.2.5 Work of Adhesion

Common stamp materials (e.g. PDMS) for contact lithography have large ratios of

surface energy to elastic modulus Wad/Eo. This work of adhesion must be captured

in the models above to accurately model the contact behavior. Generally speaking,

the work of adhesion at the contact interface results in larger contact lengths and

lower contact forces than otherwise predicted.

Contact length and displacement are linked variables that can be found using an

energy approach. The equilibrium state will be that which minimizes the total system
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energy U, which consists of external work, strain energy, and surface energy (work

of adhesion). This miminum energy state must satisfy the necessary condition that

the first derivative of energy is zero; this can be achieved through two approaches.

In the first approach, the displacement is assumed constant at 60 and the necessary

condition becomes
dUext al dUstrain + dUadhesion

dl dl dl

where the external work is constant because of fixed displacement. Alternatively, a

constant contact length lo is assumed, giving a necessary condition

dUexternal dUstrain dUad = 0on (.5+ 3 + d, =0f (4.15)d6 d6 -- "d6

where the energy of adhesion is constant because of the fixed contact length.

Johnson, Kendall, and Roberts (JKR) [52] adopted the latter approach (4.15) to

extend the Hertz contact solution to include the effects of adhesion. This approach

considers two related deformation paths (Figure 4-5): First, the strain energy to

compress two bodies together to some displacement 60 and contact length 2lo is cal-

culated. Second, the strain energy is found that results when relaxing from 6o to Jeq

while maintaining the same contact length 21o. Equilibrium occurs at the point where

the interface energy Wad - 21o is equal to the difference in the two strain energy paths.

This same energy approach can be applied to the stamp contact problem, where

the first load path requires a strain energy U,

U1 =J f(6)d6 (4.16)

and the second path results in a strain energy U1,

U11 =] f11 (6)do (4.17)
60e

where fir(6) is the load path as displacement is relaxed. For small deformation

elasticity where deformation is a linear problem, relaxation along path II with fixed
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contact length occurs at the instantaneous stiffness found at 60 during loading along

path I. This observation gives f11(6) as

fII(Seq,60) = f (6O) + o - (6eq - 60)
dz

(4.18)

Since there is a pattern on the stamp, the work of adhesion must be scaled by the

fraction of the stamp area that is in contact with the substrate

Wad Wada
a+ w

(4.19)

From Figure 4-5, it follows that equilibrium requires

UI(6 eq) + UI(6 eq, 60) - Wa*d - 2l(6o) = 0

C

0

(4.20)

Roll Displacement, 6

Figure 4-5: Load path for determining static equilibrium while accounting for surface
energy. The construct is loaded to 60 considering only strain energy, then relaxed to
6 eq while holding contact length lo constant. The energy difference between the load
curves represents the energy stored at the contact interface.
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4.3 Feature Continuum Viewpoint

Referring to Figure 4-6, the individual stamp features can be considered as a con-

tinuum if they are small compared to the thickness t of the stamp and the contact

length 21. Using this continuum approximation of feature behavior allows separation

of the stamp into two continuum domains: (I) the stamp body and (II) the stamp

features. This continuum viewpoint results in an elastic bilayer problem (Figure 4-6)

composed of a rigid roll, an elastic layer of thickness t (Layer I), and an elastic layer

of thickness h (Layer II).

Figure 4-6: Bilayer approach to considering microfeature behavior. Two elastic layers
exist on a rigid roll, where Layer I has the properties of PDMS and Layer II has
properties determined by a continuum approximation of the stamp microfeatures.

While the stamp material in Layer I is assumed isotropic and incompressible,

the anisotropic behavior of the features in Layer II is best described by orthotropic

elasticity:

[oxx Exx 0 0 i xx

-Y = 0 Egy 0 yy (4.21)

[xy 0 0 ixyJ exy

This model reflects the constitutive behavior of stamp features by incorporating

directionally dependent behavior. The shear modulus puy of the continuum approx-

imation is the material shear modulus scaled by the volume fraction occupied by

features:
E0 m

PXY = - (4.22)
3 a+w
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Features cannot transmit lateral shear stresses to adjacent features, hence the cir-

cumferential modulus is negligible (E,, = 0).

Egy is the compressive modulus, which can be determined numerically or experi-

mentally for various stamp patterns. When the stamp pattern is a grating, the results

of Chapter 3 can be used to predict the microfeature sheet stiffness. This model gives

dimensionless stiffness K as a function of dimensionless feature aspect ratio A = h/a

and pattern ratio P = w/a:

1 (A + P) + 0.6 (4.23a)
K1(AP)-1+K 1 (A,P)-1  (A+P)

K1 2-AP =-log cos - (4.23b)
3 (P + 1)2 2 P + 1I_
4 P

K 11 = - (4.23c)3 (P + 1)2

which can be converted to sheet stiffness k (in units of Pa/m) by

k-Eo(a + w)K (4.24)
ha

The effective modulus Ey, = hk in the radial (compressive) direction follows from

this sheet stiffness.

The constitutive behavior in (4.21) applies to Layer II in Figure 4-6 and is strictly

valid for small deformations. Sheet stiffness k approximates an ideal feature behavior

(Figure 3-9). This approximation remains reasonably valid until feature collapse

(though fails to capture large-deformation stiffening); it follows from (3.5) that this

approximation is valid up to small finite compression that satisfies

egy > -Xc a (4.25)
a + w

Though this constitutive model fails to accurately describe deformations beyond this

limit, these deformations are not of practical interest because the process window has

been exceeded by feature collapse.
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4.4 Analytical Models

Analysis of stamp deformation can be approached by matching the stress and strain

fields at the interface between Layer I and Layer II in Figure 4-6. This section

analyzes the pressure distribution at the stamp-substrate interface for each limit

illustrated in Figure 4-4, namely very small or very compliant features.

4.4.1 Small Features

The stamp features do not appreciably influence the displacement field in the stamp

body when they are very small (h < 6, Figure 4-4a). This assumption allows imposing

the displacement boundary conditions directly on the stamp body (neglecting the

features) to solve for the resulting pressure and contact distribution at the contact

interface. The pressure distribution is hence identical to that on a smooth stamp

with no features, allowing application of classical contact mechanics solutions.

The contact behavior of an elastic stamp wrapped around a rigid roll deviates

significantly from the Hertz solution when the contact half-width I is on the order

of the stamp thickness t. For even moderate displacements, accurate models require

application of elastic layer solutions, where the stamp constitutes an elastic body

compressed between a rigid roll and rigid substrate (Section 4.2.3).

Elastic layer derivations presented in the literature assume a frictionless contact

condition at the elastic layer interface. Conversely, the large work of adhesion between

PDMS stamps and substrate materials creates a no-slip condition at this interface.

The following derivation examines an approximate solution for the desired boundary

conditions. The resulting expression for pressure distribution will be similar to (4.12),

which is simple enough to offer intuitive insight into the contact behavior.

An approximate solution can be derived for an incompressible stamp in the case

that the stamp thickness is much less than both the contact length and roll radius:

t < l, r* (4.26)

Referring to Figure 4-7, a material deformation field (u and v in the - and Q
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directions, respectively) must be found that satisfies zero slip at the stamp interfaces

u(y = 0, t) = 0 (4.27)

zero displacement at the roll interface

v(y = t) = 0 (4.28)

and the prescribed deformation imposed by the rigid substrate from (4.3)

(4.29)v(y = 0) = -
2r*

The displacement fields u and v can be related by inspection of the control vol-

ume shown in Figure 4-7. Continuity and incompressibiliy require that the material

displaced at y = 0 between x = [0, x) be the same volume as that displaced through

a vertical bisection at x = X:

rigid displacement, 6

rigid roll
control volume, x=[0,4)

rigid substrate

Figure 4-7: An incompressible elastic stamp with no-slip boundary conditions results
in parabolic displacement profiles u and correspondingly large hydrostatic pressures.
The control volume shown is used to relate roll displacement to the net stamp defor-
mation.
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jXv(y = 0)dx = u(x = x)dy (4.30)

This relationship yields an approximate contact length I by solving for displace-

ment field u(x = 1) = 0 (as at the edge contact in Figure 4-7):

1 = V/6r6 (4.31)

Small deformation isotropic elasticity must satisfy equilibrium (2.9) and compat-

ibility (2.6). It was shown that the equilibrium condition reduces to (2.15) for an

incompressible material. In plane strain (uz = 0), these tensor equations can be

rewritten as a pair of differential equations involving the displacement field u,v and

pressure field p:
1 (p 2 U (92U

+ + = 0 (4.32)
pox a x a2 19y2

1 Dp 82 V D2 V
-- + + = 0 (4.33)
po Dy Dx 2  Dy2

where yo is the shear modulus, identically Eo/3 for an incompressible material. Sim-

ilarly, the assumption of incompressibility reduces the continuity equation to

Da Dv
+ 9= 0 (4.34)Dx Dy

And compatibility to

d2E~ d2ey± d2Ex 0(.5d2cx+ "" +E " = 0 (4.35)
dy 2  dx 2  dxdy

Analysis can be simplified by eliminating negligible terms in (4.32) and (4.33);

dimensionless quantities are required to determine the relative magnitude of each

term. The characteristic dimensions of the problem are x oc I and y oc t. The

characteristic vertical displacement is uY cc 6; applying the continuity equation gives

ux oc 6l/t. The material shear modulus po can be used as a characteristic pressure.

Normalizing variables by these quantities gives dimensionless variables of order unity

P= p/po, i = v/6, z, = x/l, Q = y/t, and ii = ut/3l. These variables are substituted
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into (4.32) and (4.33), where small terms are cancelled assuming 3 < t < 1:

8~ 39829P+ -
612 92f

+ t 3 = 0

2 + 2 0

These scaling arguments reduce (4.32) and (4.33) to a much simpler form:

1 0p 82 U
_ + = 0
po 8x By2

1 8p
I = 0

PO By

(4.38)

(4.39)

(4.39) shows that pressure p is a function of x only. It follows that (4.38) admits

a parabolic deformation field u (Figure 4-7) that satisfies the displacement boundary

condition in (4.27)

S= I (ty - y2) (4.40)

The displacement field u is related to roll displacement 6 by applying the control

volume in (4.30) and boundary condition dictating v(y = 0) as a function of 3 (4.29):

fx/

1(3 ) dx I0 t ( (ty - y 2) dy (4.41)

Evaluating these integrals and solving for the pressure gradient gives the pressure

gradient as a function of roll displacement

dp 12pio

dx 03
(x - x ) (4.42)

The pressure p(x) at any point along the interface can now be found by integrating

this pressure gradient and substituting I = /r16 from (4.31):

p(x) -p(< =1dX 6=2 rEo
(4.43)_-( X)2
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By inspection, the maximum contact pressure po occurs at the center of the roll

contact region

Po = 6tE0 (4.44)

Integrating the contact pressure p across the contact interface give the contact

force f per unit length:

f p(x)dx - 32, 5 /2 r* 3 /2 E (4.45)

This solution for contact behavior is valid when the elastic layer is thin and the

contact length is large over the range of relevant roll displacements, as required by

(4.26). This assumption can be quantified by finding the contact length at which a

critical feature collapse pressure pc is reached. From the solution for center contact

pressure po, the collapse displacement 6c is

OcP=c - tPC (4.46)
6r* F0

The corresponding contact length at this displacement is found using (4.31):

IcIPO=Pc = 6r* -IPO|pc (4.47)

Substituting 6c from (4.46) and requiring lc > t gives a criterion for model validity

of

6r* (4.48)
t E0

This criterion is strong when the elastic layer is very thin (r*/t > 1) and the

features have a large collapse pressure pc. As an example, features with an aspect

ratio and pattern ratio of unity will collapse at about pc = 'KE, where K

0.28 (Chapter 3). The criterion developed above (4.48) is well satisfied (i.e. C1 >

3) when r*/t > 48, for example a 500 pm thick stamp on a 25 mm radius roll.
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The kinematically admissible solution derived here is expected to overpredict contact

pressure when (4.48) is weakly satisfied.

4.4.2 Compliant Features

When the stiffness of the stamp features is much less than the stamp stiffness in the Q
direction, the stamp body can be assumed rigid and the contact pressure distribution

can be calculated from the features alone.

The effective Poisson ratio v of the feature continuum approximation is zero; each

microfeature deforms independently of every other (Section 4.3). This allows accu-

rate application of the elastic foundation model (Section 4.2.4) because the pressure-

displacement relationship is independent at each point along the contact interface.

A similar application of this approach has been used to analyze PDMS fibrillar

structures for dry adhesion (e.g. biomimetic gecko feet) [74, 33].

Pressure at each point x along the interface is independent of the neighboring

behavior, so that contact pressure is simply a function of the parabolic displacement

profile (4.3):

p(x) = k - vy=o(x) = k 6 - 2 (4.49)

By inspection, the maximum contact pressure again occurs at the center of the

roll

Po = k (4.50)

Contact length is given by the chordal intersection of the roll and substrate, ob-

tained from the parabolic approximation of contact in (4.3):

1 = v/2r5 (4.51)

Integrating contact pressure over this length gives the contact force
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f = p(x) dx = k-/2r*63  (4.52)
3

This solution is valid only when the features are very compliant relative to the

stamp body of thickness t. This requires that the feature deformation is much greater

than the stamp body deformation:

Vly=O,body < Volfeatures (4.53)

At the feature collapse pressure pc, the feature deformation will be vo, = pc/k,

where k is the feature stiffness (found either experimentally, numerically, or through

the closed form model (4.24) developed in Chapter 3). The deformation of the stamp

body is estimated using the model (4.44) developed in the previous section, where

Vo=o,body = 6:

03 PC
Vy=O,body = (4.54)

Substituting these expressions into (4.53) gives a criterion of applicability

C2= 6r*pc >1 (4.55)
kt t E0

This criterion is strong when the feature height h is a significant fraction of the

stamp thickness t. As an example, features with an aspect ratio and pattern ratio

of unity will collapse at about pc = -r/4 - KEo, where K = 0.36 (Chapter 3) and

will have a stiffness of k = 2EoK/h (4.24). Assuming a roll radius of r*=25 mm and

a stamp thickness of 500 pm, the criterion (4.55) is well satisfied (i.e. C2 > 3) for

h > 78pm. Smaller feature heights h satisfy (4.55) when larger roll radii or smaller

stamp thicknesses are used. The solution derived here is expected to overpredict

contact pressure when (4.55) is weakly satisfied.
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4.4.3 Surface Energy

The two models developed in this section have not taken into account the effect

of surface adhesion. To include the effect of significant work of adhesion Wd, the

procedure developed in Section 4.2.5 can be applied. Finding df/dz is straightforward

for the contact models derived in this section, but (4.20) results in implicit equations

that must be solved numerically.

4.5 Numerical Simulation

Finite element methods were used to both validate the analytical models in their

appropriate limits and to explore contact behavior in analytically intractable regimes,

for example where the stiffness of the stamp body and the stamp features are of similar

magnitudes.

4.5.1 Geometry

The roll-mounted stamp deformation is simulated using plane strain analyses, which

holds for configurations where the length of contact along the roll axis is much greater

than the contact width 21. Symmetry allows simulating the behavior of only half the

contact region (Figure 4-8).

Normalized geometry and material parameters were used in the simulation so that

the results can easily be adapted to different material parameters or roll scales. The

characteristic length scale and pressure are (t + h) and E0 , respectively. Normalizing

by these quantities gives dimensionless feature height I and radius i

~ h
h =(4.56)

t + h

t = h(4.57)

Material parameters are normalized to give conformability Cf
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W*
Cf= ad (4.58)

E0 (t + h)

The loading parameters are normalized to give displacement 6, contact length 1,

pressure p, force f, and energy U:

(5= (4.59)
t + h

1 
(4.60)

t + h

f- (4.61)Eo(t + h)

Po (4.62)

U (4.63)
Eo(t + h)2

The simulation modelled a stamp region with an arclength three times the pre-

dicted contact length given by (4.31) (Figure 4-8a). This approach keeps the finite

element model relatively small (as opposed to simulating a full roll), but emulates the

full construct by Saint-Venant's principle [101].

A rigid element is used to represent the substrate. No element was created to

represent the rigid roll interface; this is accomplished by later imposing a rigid dis-

placement at the inner diameter of the stamp.

4.5.2 Meshing

Uniform rectangular mesh elements were used to mesh each unit cell. A minimum of

50 mesh elements were used per unit stamp thickness; this dense mesh is required to

provide high resolution contact length data (Figure 4-8b).

Large deformation plane strain elements with non-linear geometry conditions were

used in each simulation (ABAQUS element type CPE4RH).
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(a)

(b)

Figure 4-8: Finite element implementation of elastic stamps mounted to a rigid roll
showing (a) multiple domains for stamp feature continuum approximation with char-
acteristic dimensions and (b) typical mesh

4.5.3 Material Model

Stamp features were modeled as a continuum material as proposed in Section 4.2.

An orthotropic linear elastic constitutive model was applied to the mesh elements in

the corresponding region of the stamp; each parameter was set to match the feature

continuum model (4.21).

An incompressible Neo-Hookean hyperelastic constitutive model (2.10) was ap-

plied to the remainder of the mesh elements representing the bulk thickness t of the

stamp. Material parameters were scaled to Eo = 1 so that the results reflect the

dimensionless contact parameters.
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4.5.4 Boundary Conditions

Boundary conditions were used to impose symmetry and appropriate contact behavior

(summarized in Table 4.1 and Table 4.2). Symmetry dictates no lateral translation or

rotation at the center face. Displacements and stresses must disappear far from the

contact interface, requiring a rigid irrotational displacement at the outer face. The

inner diameter is limited to rigid displacements in the vertical direction to emulate

being fixed to a rigid roll. The outer diameter of the stamp has an irreversible no-slip

contact condition: once the stamp face contacts the substrate it is not allowed to

separate.

Table 4.1: Roll-based stamp simulation boundary conditions

Face Boundary Condition

Center X symmetry (av/ax = 0, U = 0)
Outer Irrotational (v/ax = 0, u = 0)
Inner Diameter Rigid displacement (u = 0)

Table 4.2: Roll-based stamp simulation contact conditions

Face 1 Face 2 Boundary Condition

Outer diameter Substrate Irreversible no slip (rough)

4.5.5 Loading

A two-stage load path was used in each simulation to capture the effect of surface

energy (Figure 4-9): the stamp was compressed to some finite displacement o by and

subsequently relaxed while maintaining a constant area of contact (imposed by the

irreversible contact condition between the stamp and substrate). This loading was

accomplished by imposing a rigid displacement u = [0 3 ]T on the inner diameter of

the stamp.

This load path emulates the JKR contact analysis used to find equilibrium be-

tween a contact force and surfaces with a finite work of adhesion as given by (4.20).
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This approach requires a number of simulations at varying levels of So for each stamp

configuration to reconstruct contact behavior as a function of displacement 6 (Fig-

ure 4-8).
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(a)

(b)

(c)

Figure 4-9: Typical roll-based stamp simulation results. Finite element model shown
at (a) zero displacement, (b) displacement to 6o, and (c) relaxation to 6 eq to simulate
the effect of large W,*d. The geometry has been mirrored for clarity.
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4.5.6 Implementation

The numerical simulation was implemented in ABAQUS 6.10, a commercial finite

element software package.

Scripts were used to automate execution of the simulations. ABAQUS can be

executed either through the available user interface or at the command line. When a

model is built in the ABAQUS interface, a Python script is saved in a corresponding

journal (.jnl) file. ABAQUS can be executed from the command line by changing this

jounal file to a Python script (.py) can calling "abaqus cae noGUI=JOURNALFILE.py".

A master program was written in C++ to iterate through different initial dis-

placements &o for each stamp geometry. At each point, this master program alters

the loading parameters in the slave Python script and executes ABAQUS through

the command line.

4.5.7 Interpreting Results

Each simulation recorded the normalized roll displacement 3, contact area I, contact

force f, strain energy U, and center pressure PO. For these dimensionless parameters,

(4.20) can be rewritten as

0I( Seq) + U11 (6eq, o ) - Cf - I(60) = 0 (4.64)

where 0 1 and U1 r are the strain energies during the first and second loading steps,

respectively.

Each simulation, with a distinct 60 and 10, was interpolated to find the equilibrium

displacement Seq as a function of conformability Cf. Combining these curves from

multiple simulations creates a surface in the Io, Cf plane that gives the equilibrium

values of 8, f, and Po (Figure 4-10).
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Figure 4-10: Typical contact simulation results. Simulated contact equilibrium curves
are constructed as a function of conformability Cf = W,*d/(t + h)Eo. Sets of these
curves form surfaces that can be interpolated across to find the behavior of a system
with a particular Cf, including (a) roll displacement 6, (b) roll force f, and (c) roll
center pressure po.

4.6 Experimental Methods

4.6.1 Experiment Design

Two sets of experiments were designed to investigate the contact models derived

in this chapter. Stamps without features were used to investigate the elastic layer

model, while stamps with 50 pm features were used to verify the elastic foundation

model. The exact combinations of stamp parameters are summarized in Table 4.3;

each experiment was repeated three times to establish confidence in the results. A

representative displacement and contact profile was selected from the three replicates

for analysis.
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Table 4.3: Stamp topologies and material parameters as tested in roll contact exper-
iments. Stamp thickness t, feature width w, feature height h and feature spacing a
were varied.)

t (pim) w (pm) h (Pm) a (pm) Eo (MPa) (95% CI)
(a) 317 1.73 ± 0.12
(b) 698 1.61 ± 0.12
(c) 978 - - - 1.84 ± 0.10
(d) 311 50 47 50 1.37 ± 0.14
(e) 311 50 47 150 1.37 t 0.14
(f) 590 50 47 50 1.51 i 0.11
(g) 590 50 47 150 1.51 ± 0.11
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4.6.2 Test Specimens

Stamps were fabricated by casting PDMS precursor (Dow Corning Sylgard 184)

against a patterned silicon wafer in a mold cavity. The wafers were patterned with

photoresist (MicroChem SU8 2025) and passivated with hexamethyldisilazane for 10

minutes in a vacuum desiccator. The mold was formed by holding a patterned silicon

wafer in a vacuum chuck and assembling a polymethylmethacrylate (PMMA, a.k.a.

acrylic) spacer and an aluminum plate on top (Figure 4-11). The PMMA spacer

thickness and relief pattern defined the stamp thickness and dimensions; each stamp

was 60 mm wide.

Precision ground

W*- top plate with

injection ports

PMMA spacer

Wafer master

O-ring seals

Vacuum chuck

Figure 4-11: Mold used for casting stamps; fastening hardware, ejection port, and
integrated heater omitted for clarity. The PMMA spacer defines the exact profile and
thickness of each stamp, while the wafer imparts the stamp feature geometry.

Sylgard 184 PDMS precursor (Dow Corning) was mixed at the manufacturer's

recommended 10:1 ratio (base:curing agent) and degassed under vacuum. The mold

cavity was filled by supplying prepolymer to one injection port while applying vacuum

to the opposing port. After curing for 2 hours at 600 C, the mold was parted with
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pressurized ethanol through an ejection port, the stamp removed from the wafer, and

rinsed thoroughly with ethanol (Figure 4-12).

(a) (b)

Figure 4-12: Stamp replication from a master template. (a) Master wafer with differ-
ent 50 Am feature patterns over a width of 60 mm, (b) PDMS stamp with replicated
feature patterns.

4.6.3 Experimental Apparatus

A precision roll positioning stage with equivalent roll radius r* = 25.4 mm was used to

measure the contact force, displacement, and contact area of different stamp config-

urations (Figure 4-13a). The stage was operated in a force control mode to maintain

zero net torque on the roll pitch while varying the force imposed between the roll and

substrate. Calibration experiments demonstrated the stage to have J and f resolution

of ca. 180 nm and 50 mN and accuracy of 300 nm and 150 mN, respectively. Further

details on the experimental apparatus design are provided in Chapter 7.

Each stamp was loaded against a rigid planar substrate with a trapezoidal cycle

that ramped between 0 N and 40 N at 2 N/s with a hold time of 5 s. This trapezoidal

load profile was smoothed with a first order low-pass filter at 1 rad/s to minimize

inertial affects at the ramp extrema (Figure 4-14).
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(a) (b)

Figure 4-13: Precision roll positioning stage (a) can manipulate roll height and pitch
over an optical prism (b) for contact experiments

0 10 20
Time (s)

30 40 50

Figure 4-14: Experimental load profile for roll-based stamps. The experimental sam-
ples were loaded between 0 and 40 N at a rate of 2 N/s and with hold times of 5 s.
The load profile was smoothed with a low pass filter to minimize inertial effects at
the ramp extrema.
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4.6.4 Data Collection

The contact area was monitored using an optical prism as the rigid substrate in the

positioning stage. Lights and cameras were mounted at angles that would normally

result in total internal reflection of the light through the prism (Figure 4-13b). The

similar indices of refraction between the PDMS stamp and prism cause disruption

of internal reflection wherever the two make contact. This observation technique

captures accurate light field in situ images of contact during the load cycle (Figure 4-

15a). Post processing of the images was used to correct for camera perspective and

measure the contact width (Figure 4-15b). (Further details on this visualization

technique are given in Chapter 9.)

(a) (b)

Figure 4-15: (a) Raw and (b) corrected image used in measuring contact area (a
w=50pm). Each raw image was corrected for the perspective transformation and
image foreshortening that results from an inclined camera angle.

A Windows program was written in C++ to record data from the roll positing

stage and camera using C++ API's supplied by National Instruments and Dino-Lite

(respectively).

Camera frames were recorded at 10 frames per second and converted from a 24

bit RGB image to an 8 bit grayscale image by averaging each color channel. This 8

bit pixel data was saved to an indexed binary file for each camera frame.

The analog roll position signals were recorded at 10 kHz, registered against a

timestamp and image index, and saved to a second binary file with double floating

point precision.

142



4.6.5 Material Characterization

After completing the loading experiments, five coupons were cut from each stamp

with a gage length of 20 mm and width of 4 mm. Each coupon was subjected to a

tensile test in a Zwick load frame equipped with a 20 N load cell. Elastic moduli were

determined by fitting a large deformation Neo-Hookean model for moderate stretches

up to A = 1.2. Additionally, cores were cut from each stamp and measured using

a Zygo interferometer to determine the actual thickness and feature height of each

stamp.

All specimens were cast, tested, and characterized within a period of several days.

It is not believed that any significant temporal drift in material parameters occurred

over this time period.

4.6.6 Experiment Accuracy

The accuracy of experimental results was limited by three factors: (i) machine accu-

racy, (ii) material property uncertainty, and (iii) stamp asperities.

The machine accuracy has an effect on the observed zero position of the roll. For

example, an error in the machine force of c will result in an error in the registration of

load-displacement data. This force error can be related to a corresponding displace-

ment error by c/kstamp, where kstamp is the initial stiffness of the stamp construct.

Uncertainty in material properties gives a varying elastic modulus, which will

directly affect the observed force on the roll. This uncertainty must be taken into

account when comparing the experimental results to analytical or numerical models.

Moreover, a varying elastic modulus changes the relative effect of the work of adhesion

Wad and will affect the equilibrium contact length and force.

Finally, small micro-scale asperities in the stamp result in variable behavior at

small forces and displacements. Generally speaking, these asperities tend to reduce

the observed stiffness; this effect disappears once moderate forces and displacements

are reached. To counter this problem, load-displacement curves are registered with

each other at some finite load (5 N is used in this chapter) rather than the equilibrium
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point (0 N). An example of this effect is summarized in Figure 4-16.

40 40

35. 35-

/ 30 4 30

25 25
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15 15
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5 5 ----- ...-.-- - - .- -- .- ------ ----- ---- --

0 0
0 10 20 30 40 -20 -10 0 10 20

Roll Displacement, 6 (pm) Roll Displacement, 6 (.tm)

(a) (b)

Figure 4-16: Typical experimental replications of load-displacement behavior. (a)
Experimental roll based load-displacement curves from three different locations on
the same stamp and (b) the same curves registered at some finite load (5 N). The
data shows good repeatability when registered at a finite load; the range of energy
integral under each curve is less than 5%.

4.7 Results

This section compares the analytical models to numeric simulations to illustrate their

goodness of fit in the appropriate limits. Following this, experimental results are

compared to numerical simulations.

4.7.1 Elastic Layer Simulation

Figure 4-17 shows a comparison of the elastic layer model with numerical simulations

representing Table 4.3a-c. In this limit of very small features the elastic layer model

applies, where the maximum contact pressure po, contact length 21, and contact force

f are given by (4.44), (4.31), and (4.45), respectively. Hertz contact results from (4.7),
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(4.9), and (4.10) are also superimposed to illustrate the divergence of this elastic layer

case from the well known Hertz solutions.

Results are scaled for r* = 25.4 mm and the work of adhesion is assumed zero.

The reported contact pressure po is normalized by elastic modulus E0 , while force f

is reported per unit length of contact interface and also normalized by E.

In these results, the elastic layer model converges to the numerical simulations as

l/t increases as required by the condition in (4.26). As expected, the kinematically

admissible solution overpredicts the actual contact pressures. For each of the three

cases in Figure 4-17, C1 = l/t evaluates to 1.5, 2.1, and 4.7. It is interesting to note

that the expression for contact pressure po (4.44) remains quite accurate even when

C1 = l/t >> 1 is not strongly satisfied, though the models for contact length and force

diverge more quickly from the simulation results.
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Figure 4-17: Comparison of finite element results and the elastic layer model for max-
imum contact pressure po, contact force f, and contact length 21. The approximate
elastic layer model and numerical results converge as C1 = l/t >> 1; at a contact
length 21 of 3 mm, C1 = l/t evaluates to 1.5, 2.1, and 4.7, respectively. Results have
been scaled for r* = 25.4 mm.
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4.7.2 Elastic Foundation Simulation

Figure 4-18 compares the elastic foundation model with corresponding numerical

results for the geometry of Table 4.3e,g. In this limit of very compliant features the

elastic foundation model applies, where the maximum contact pressure po, contact

length 21, and contact force f are given by (4.50), (4.51), and (4.52), respectively.

Roll radius r* = 25.4 mm and dimensionless feature stiffness K = 0.17 were assumed

for the model and simulations. The contact force is normalized by elastic modulus

and reported per unit length of roll.

The comparison in Figure 4-18 shows the elastic foundation model converges to

the simulation results when condition (4.55) is satisfied; C2 evaluates to 4.7 and 1.8,

respectively.

It was assumed in the the derivation of the feature continuum approximation that

all displacements were moderate and less than the feature collapse height, requiring

the criterion in (4.25). The features used in this simulation (w = 50 pum, a = 150

pm, h = 47 pm) will collapse at about 28 [m of displacement, as predicted by (3.18).

As roll displacement 3 nears this point in Figure 4-18, the numerical results stiffens

beyond the analytical prediction. The results beyond this point will be inaccurate

once feature collapse occurs.
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Figure 4-18: Comparison of finite element results and the elastic foundation model.
The model and simulation match well when C2 > 1. Results have been scaled for r*
= 25.4 mm and stamp features with w = 50 pm, a = 150 pim, and h = 47 pm.
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4.7.3 Work of Adhesion

Figure 4-19 shows the influence of work of adhesion Wad between zero and 200 mJ/m 2

on simulation results. These simulation assumed a roll radius r* = 25.4 mm, stamp

thickness t = 700 pm , and elastic modulus Eo=2.0 MPa. Each simulation result

was translated by some arbitrary displacement so that f(6 = 0) = 0; this translation

gives the force and displacement relationship that would be observed experimentally.

The contact force is normalized by elastic modulus and reported per unit length of

roll.

Even though the stamp conformability Cf = W,*d/Eo(t + h) is small, a dramat-

ically different different force and pressure relationship is observed in the numerical

simulations for different surface energies. Higher work of adhesion results in larger

contact pressures, forces, and areas at all points (relative to the equilibrium point

where f = 0). The presence of surface energy results in finite contact pressures and

contact widths even at zero applied force f.
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contact interface. Even though conformability Cf = W',*/Eo(t + h) is small, the
presence of surface energy results in dramatically different observed contact behavior.
Results have been scaled for r* = 25.4 mm and Eo = 2.0 MPa.
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4.7.4 Experimental Data

Work of Adhesion

The sensitivity of the observed force to work of adhesion makes it difficult to exactly

correlate the experimental data to numerical simulation results, especially since the

work of adhesion of PDMS can vary significantly. Values between 30 and 300 mJ/m 2

have been reported for the work of adhesion between PDMS and glass [41, 91].

The high material damping of PDMS will result in a lower apparent work of

adhesion on advancing contact and a higher apparent work of adhesion on receding

contact [94]. This phenomena is apparent in the experimental data, where significant

hysteresis is observed between advancing and receding contact in the loading cycle

(Figure 4-20). This hysteresis is due to viscoelastic material effects that are not

included in the equilibrium contact equation (4.20), but can be explained by using

different values for Wad during advancing or receding contact.

40
Experiment

35 .------ Simulation :

30 -- -

25

20

% 15
(Advancing)

r 10 - Wad=30 mJ/m 2 _

<- Wad=200 mJ/ m 2

(Receding)

0
0 5 10 15 20

Roll Displacement, 6 (pm)

Figure 4-20: Experimental load-displacement data for a stamp with no features
(t=698 pm, r*=25.4 mm, Eo=1.61 MPa). Numerical simulations match the advanc-
ing behavior with Wad=30 mJ/m 2 and the receding behavior with Wad=200 mJ/m 2 .
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Figure 4-20 shows that Wad=30 mJ/m 2 is consistent with the experimental behav-

ior during advancing contact. In the following presentation of results, the advancing

portion of the experimental data is compared with numerical simulations that assume

this corresponding work of adhesion.

Experimental Uncertainty

Three dominant sources of experimental error are discussed in Section 4.6.6: (i) stamp

asperities, (ii) material property uncertainty, and (iii) machine accuracy. In the

following comparisons of experimental data with simulation results, each of these

errors must be accounted for. The effect of stamp asperities is mitigated by registering

the experimental and simulation data at some finite load (5 N) where the asperities

have a diminished effect (Figure 4-16). The remaining error sources (material property

uncertainty and machine accuracy) are addressed by creating an error band about

the nominal simulation behavior.

This error band is constructed using both the 95% confidence interval of stamp

modulus EO (Table 4.3) and the 95% confidence interval of machine accuracy (±I.96machine)

based on a low frequency accuracy standard deviation amachine = 75 mN. For exam-

ple, the upper bound on force is determined by mapping the dimensionless simulation

results to dimensional variables using the upper confidence interval limit on E0 . Sim-

ilarly, the lower bound is determined using the lower confidence interval limit on Eo.

An additional uncertainty of ±1.96amachine/kstamp is added these limits to account

for the machine accuracy, where kstamp is the nominal simulated stiffness about the

registration point (5 N).

1z - fbounds = 1z - fsimulation(EO ± CI) T 1.96 kmachine (4.65)
kstamp(E )

21bounds=- 21simulation (EO i CI) i 1.96 Umachine (.6
kstamp(EO)
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Summary of Results

The following plots compare experimental and numerical results for the stamp pa-

rameters shown in Table 4.3. Figure 4-21 shows cases a-c, representing very small

features and elastic layer contact. Figure 4-22 shows cases d-e, representing elastic

foundation contact with large compliant features on a thin stamp. Figure 4-23 shows

cases f-g, representing an intermediate stamp with similar feature and stamp body

stiffness.

The reported force measurements in Figures 4-21 - 4-23 correspond to the actual

force superimposed on a 60 mm wide stamp; contact length 21 reported is the average

of two contact images at different points along the roll axis. Measurement uncertainty

is expressed by an error zone about the nominal simulation result, reflecting both a

95% confidence interval of elastic modulus Eo as reported in Table 4.3 and a 95%

confidence interval of the experimental apparatus accuracy (low frequency o = 75

mN).

These experimental results support the accuracy of the analytical and numerical

modeling approaches. The experimental and simulation data match well given the

difficulty associated with making accurate measurements of this contact behavior.

Exploration of these models is motivated by the need to understand the sensitivity

of the process to small perturbations and asperities; these same inherent variations

make an accurate measurement difficult to obtain. The load-displacement data does

not always match the simulations well at small loads and displacements where small

asperities dominate the contact behavior. Throughout the entire range of displace-

ments, the total contact area is highly sensitive to the work of adhesion and often

varies dramatically between camera frames (the average of the two camera images is

shown in the results). These discrepancies are believed to be associated with the dif-

ficulty in obtaining a 'perfect' experimental construct rather than fundamental flaws

in the models.
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Figure 4-21: Experimental results for solid stamps with no features, emulating an
elastic layer with submicron features. Simulation results are shown in gray with
width corresponding to experimental uncertainty (see text). Experimental samples
correspond to Table 4.3a,b,c.
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Figure 4-23: Experimental results for patterned stamps with nominal thickness of 500
pm. Simulation results are shown in gray with width corresponding to experimental

uncertainty (see text). Experimental samples correspond to Table 4.3f,g.
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4.8 Discussion and Summary

The analytical models agree well with the numerical results in the appropriate limits.

While the elastic layer model does not always accurately predict the contact force

or area, it gives an accurate estimate of contact pressure. In each case shown in

Figure 4-17 the model and the simulation show the same trends, such that the model

can be considered a valid for determining scaling laws and sensitivities.

The elastic foundation model matches the simulation behavior for large values

of the criterion r/t > 1 and strains that satisfy cy > Xc - a/(a + w) (4.25). The

latter is satisfied until a displacement of 35 pm; the simulations show stiffening as

this limit is approached that the model does not capture (Figure 4-18). The elastic

foundation provides a good estimate of contact behavior when the features are much

more compliant than the stamp body.

This study examined quasi-static contact between the roll-mounted stamp and

a rigid substrate. When this process is implemented in a dynamic state, i.e. the

roll moves relative to the substrate, both advancing and receding contact will be

observed. This combination of contact states will result in asymmetrical contact

with simultaneous advancing and receding contact on opposite sides of the roll (cf.

Figure 4-20).

The patterns used in this study were all continuous about the perimeter of the

stamp (in the b direction, Figure 4-2). Patterns consisting of posts, intermittent lines,

or lines oriented along the axis of the roll, the discontinuities in <b must be taken

into account when considering the work of adhesion. These discontinuities prevent

features from being 'pulled' into contact with the substrate until some portion of

the feature makes contact; when features are very small this will result in effectively

zero work of adhesion during advancing contact. On receding contact, however, these

patterns will have an even larger apparent work of adhesion because a separate crack

must be initiated at each discontinuity.

Maintaining selective contact between a stamp and a substrate is paramount to

the success of contact lithography processes. In puCP, the stamp features can collapse
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at moderate pressures, often at less than 10% of the elastic modulus Eo (as evidenced

by K ; 0.1 in Figure 3-16). This collapse leads to a destruction of the intended

pattern transfer during printing. In roll based printing, the success of contact is thus

dependent on the pressure distribution in the contact region.

The models, numerical simulation, and experimental validation in this chapter

show that the contact behavior of roll mounted PDMS stamps has a strong depen-

dence on the size and stiffness of microfeatures. Given the relative scale of the stamp

features in comparison to the stamp body, this result is at first nonintuitive. It is

shown that this behavior is driven largely by the incompressible nature of the stamp

materials used in soft lithography. As seen in Figures 4-17, large pressures (> 0.1Eo)

can be reached in single microns of roll displacement 6 for reasonable roll and stamp

dimensions. This results in a very narrow process windowws and a very high sensi-

tivity to stamp or substrate asperities and roll positioning errors.

Analytical results are provided in two limits, where the maximum contact pres-

sure for very small features and very large features is given by (4.44) and (4.50),

respectively. The approximate analytical results are shown to match finite element

and experimental data well, but remain simple enough to allow practical engineering

insight. For example, these expressions can be used to predict the process window

for a particular printing operation as a function of roll displacement or geometric

disturbance rejection. In Part III of this thesis, viewing this process window as a

function of stamp parameters will illuminate design tradeoffs for creating compliant

stamps and robust printing performance.
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Part III

Robust Stamp Design
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Chapter 5

Stamp Architecture

5.1 Process Sensitivity

In Part II of this thesis, it was shown that features can collapse at pressures that

are only a few percent of the elastic modulus, and moreover, that these pressures can

evolve at only single microns of roll displacement. The results of Part II can be used

to derive process sensitivity models and inform design of robust stamps. At the center

of this exercise lies disturbance rejection: how well can a particular stamp maintain

faithful contact in the face of varying contact pressures or displacements?

In the case of roll-based lithography, the contact behavior must be able to reject

position disturbances, which may occur from simple misalignment of the roll ma-

chinery or more spatially complex geometrical errors manifested through roll runout,

stamp thickness variations, or substrate asperities. This chapter will introduce a

number of errors that can easily produce several microns of variation along the roll

length, enough in fact to exceed the printing process window. The printing features

will either fail to make contact or collapse under excessive pressure if these position

disturbances are too large; either of these events results in process failure.

By analyzing the spatial frequency content of these errors, it will be shown that the

most problematic variations are those at with a spatial wavelength that lies between

the feature scale and the roll length. These variations can only be attenuated by

actuation at high spatial frequencies or an appropriately compliant stamp; the latter
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would be preferable from a cost and complexity perspective. To this end, this chatper

will examine opportunities for robust (compliant) stamp design and propose a new

compliant stamp architecture.

5.1.1 Error Sources

Disturbances in roll-based contact lithography come from a number of sources and

are manifest across multiple length scales. Figure 5-1 gives several examples of these

errors and their sources.

Geometrical Thermal

Roll runout Roll distortion

Contact Errors

Mechanical Material

Figure 5-1: Fishbone diagram of disturbance sources in roll based printing. Displace-
ment errors can be characterized as geometrical, thermal, mechanical, or material.
Each of these specific error sources can easily contribute one or more microns of vari-
ation, resulting in a cumulative error that is greater than the collapse displacement
of sensitive stamps.

Dimensional errors c may come from fundamental geometrical inaccuracies in the

processing equipment, temporally dependent thermal distortions, load-induced dis-

tortions, or diffusive processes in the stamp material itself.

Geometrical inaccuracies include roll and bearing runout and substrate waviness.

At a smaller scale, the surface roughness of the same components becomes important.

The stamp dimensions are typically determined by the mold that the stamp is cast
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in; any variations in this mold are superimposed at the roll nip region by replication

in the stamp itself.

Thermal errors can dramatic, especially as the scale of processing equipment in-

creases. The error Ethermal associated with expansion of a component is given by

Ethermal ~ loaT (5.1)

where I is a characteristic dimension, a is the coefficient of expansion, and AT

is the change in temperature. Steel has a coefficient of expansion a ~ 10 ppm/oC,

while PDMS has a coefficient of a ~ 900 ppm/0 C [67], almost two orders of magnitude

higher. Thus, a single degree change in temperature will alter the diameter of a 100

mm roll by 1 pm, while a 1 mm thick PDMS stamp would also expand by 1 Pm.

Mechanical deformations will occur during loading. While the roll loads are small

in microcontact printing compared to, for example, coating or sheet forming pro-

cesses, small deflections will still occur in bearings, rolls, and even rigid substrate

carriers. An interesting example of mechanical deformation is stamp stretching: if

the stamp is not perfectly mounted to the processing roll thickness variations will

occur. Incompressibility gives that the stamp material volume ratio is unity (2.7):

J = ArAzAp = 1. This constraint on volume ratio J can be rearranged to show that

a thickness error Estretch associated with non-uniform stamp stretching (As, A, # 1)

during mounting scales with stamp thickness t and is given by

Estretch r(A - 1)t = (A-A- - 1)t (5.2)

For example, a local mounting stretch of Az = 1.01 will cause not only a 1% distortion

in the stamp pattern, but also a 10 pm thickness variation through a t = 1 mm stamp.

Material properties can change as a function of environmental parameters. For

example, PDMS is used because it absorbs alkenethiols and acts as an ink pad, or

reservoir, during printing. This beneficial behavior can become detrimental; high

concentrations of thiols will cause PDMS to swell up to 6% [5]. Others suggest

operating at less than a 40 mM ink concentration to keep this swelling below 0.5%
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[37]. Even so, 0.5% results in a characteristic 5 pm variation through a 1 mm stamp

thickness.

5.1.2 Process Window

These errors ci have varying temporal and spatial frequencies. These errors can be

modelled as variations from the nominal roll displacement 6 along the roll axis 2.

This perspective results in a locally varying roll displacement P* that has an error

content c as a function of cylindrical coordinate [z, V@] at any point in time:

*(z, ') = 6o + C(z, @b) (5.3)

The magnitude of 6* must lie within the process window (0, 6c) for all z and '0 for

a robust printing process, where 6c is a critical feature collapse displacement. There

are three ways to improve the process performance: increase robustness (increase 6c),

decrease disturbances (decrease 6), or add a control effort u:

*(z @0) = 6 + C(z, 4) + u(z, ') E (0, 6c) (5.4)

The remaining chapters of the thesis approach this process window from all three

perpectives. In this chapter, an effort will be made to decrease the stamp sensitivity

by making it more compliant under compression. In Chapter 6 a new method of

producing a more accurate stamp with smaller thickness errors will be developed.

Finally, in Chapters 7 and 8 develop a two degree-of-freedom roll positioning stage for

low spatial frequency actuation u(z, 4') and Chapter 9 studies methods of in-process

feedback control using this stage.

5.1.3 Spatial Frequency

Analyzing error c from the perspective of spatial frequency content provides powerful

insights. Here error E, is defined in the frequency domain (inverse of wavelength AE)
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as the Fourier transform of e:

EE(1/A,) = F (c(z, V)) (5.5)

The frequency content of E, can be divided into four basic ranges of spatial fre-

quency (Figure 5-2): low (roll length), midrange (stamp thickness to roll length),

high (feature scale discontinuities), and ultra (nanoscale surface roughness).

Spatial
Frequency Low Mid Hih

Wavelength (m)

100 10-3 10-6 10-9

Figure 5-2: Process disturbances viewed in the frequency domain. The effect of pro-
cess disturbance e depends on the spatial frequency content as captured by its Fourier
transform EE. Errors have different effects at different frequencies, for example (i) low
frequencies with wavelength on the order of the roll length, (ii) mid range frequencies
with wavelength on the order of the roll radius or stamp thickness, (iii) high frequen-
cies with wavelength on the order of the feature scale, or (iv) ultra-high frequencies
with wavelength less than the feature scale.

It is assumed that the magnitude of these disturbances is much less than the

wavelength (E/A, < 1), which is a good assumption for the physical phenomena

described in the wishbone diagram. For example, thermal distortion will not create

asperities larger than a fraction of the wavelength in metallic roll equipment that has

a high diffusivity and low coefficient of expansion. Similarly, mechanical bending or

stretching will not result in large error magnitudes relative to the error wavelength.
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This assumption gives that the error E, is Brownian with respect to spatial frequency.

Nanoscale surface roughness (ultra-high spatial frequency) is typically not a prob-

lem in microcontact printing because PDMS has been specifically chosen to make

conformable contact with the substrate. A criterion for spontaneous conformable

contact can be derived by balancing the work of adhesion with the strain energy

required for the stamp material to conform to surface asperities [8]:

Ee aA (5.6)
2.2E*

or, in terms of dimensionless variables (assuming incompressibility with v = 1/2)

E -Cf (5.7)
Ac 3

where the relevent conformability is Cf = Wad/AEo.

Similarly, high spatial frequency disturbances can be accommodated by small

deformations of the stamp features. If the stamp features have an aspect ratio of

order one, they can easily accommodate a value of e that is a fraction of their height.

Midrange and low spatial frequency errors are thus the most problematic in soft

lithography. These errors force deformations in the entire stamp, resulting in far

field pressures that are often substantial enough to cause feature collapse. Very low

frequency errors can be accommodated by active positioning of the roll relative to

the substrate, which is examined in Part IV of this thesis. Midrange errors are much

more difficult: they either require active control of the stamp displacement with a

corresponding spatial frequency, which may be complicated and expensive, or require

a stamp that can tolerate the error magnitude c, which can be quite difficult to achieve

through conventional stamp design practices. The distinct purpose of this chapter

to examine the latter: how can the stamp be appropriately designed to provide a

sufficiently large process window?

The following sections examine stamp design from two perspectives. First, the

consequences of local feature deformation (Chapter 3) are used to understand optimal
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feature design, namely choice of feature aspect ratio A. Second, the results from the

analysis of the roll based contact mechanics analysis (Chapter 4) are used to provide

insight into higher level stamp architecture, especially stamp thickness t and material

composition. The results of these analyses will show that stamps are highly sensitive

to disturbances and that there is little opportunity to adjust this during the design

phase. Ultimately, this observation motivates a new stamp architecture that allows

tuning the contact sensitivity.

5.2 Robust Stamp Design

5.2.1 Feature Design

A holistic approach to feature deformation was taken in Chapter 3 to map out the

dominant stamp defect modes as a function of stamp geometry (aspect ratio A and

pattern ratio P) and load conditions (far field pressure S and displacement X). Fig-

ure 3-24 showed that collapse mode could be predicted by aspect ratio A and pattern

ratio P. In practice, the pattern ratio P of a stamp is often dictated by a desired

device architecture or pattern, leaving the aspect ratio A as the only free variable in

stamp feature design. The goal of design is to maximize the real far field pressure occ

or displacement vc that the stamp can withstand.

Using the same results that led to Figure 3-24, the critical collapse load and

displacement can be computed as a function of aspect ratio and pattern ratio. Once

the collapse mode has been determined, the appropriate collapse pressure can be

determined using either (3.27) for buckling or (3.19) for roof and sidewall collapse.

This critical collapse pressure Sc = orc/Eo can be plotted as a function of aspect

ratio A and pattern ratio P (Figure 5-3a).

The critical collapse displacement Xc can be found using the feature stiffness K:

Xc_ = (5.8)
K

This dimensionless displacement can be converted to physical feature displacement
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v, using the relationship in (3.5):

Se AP
VOO'c = WKA (5.9)K P + 1

Displacement v,,c is plotted in Figure 5-3b for the example of w = 20 pIm features.

Inspection of Figure 5-3 gives design insight into robust feature design. It is the

goal of any such design to maximize either the pressure or displacement that any

particular feature pattern can sustain before collapse. From these plots it is evident

that these two variables are synonymous: maximizing Sc for some particular P also

maximizes vo,c. This maximum occurs along the boundary of the buckling collapse

mode; a larger aspect ratio increases feature robustness until buckling occurs, at

which point larger aspect ratio becomes detrimental.

An important observation of this exercise is that features can only tolerate a far

field displacement that is on the order of their characteristic width w, and a pressure

that is on the order of the material shear modulus yo = jE 0 . If the printing pattern

is sparse, the pattern ratio P becomes large and tolerable pressures drop to only a

few percent of E0 .

168



10

(Dense)

101
(Short) 100 (Tall) 101

Aspect Ratio, A

(a)

10
(Sparse) u _i1

69

iv

10
10-1 (Short) 100 (Tall) 101

Aspect Ratio, A

(b)

Figure 5-3: Critical collapse points during stamp loading: (a) contact pressure Sc =

Pc/Eo and (b) displacement voo,c (pm) for a stamp with w=20 pm. Collapse modes

are (i) sidewall collapse, (ii) roof collapse, (iii) buckling, and (iv) lateral collapse.
Material properties of PDMS-PDMS Wad = 44 mJ/m 2 , PDMS-substrate Wad = 200
mJ/m 2 , and elastic modulus Eo = 1.5 MPa are assumed.

169



5.2.2 Stamp Design

An estimate of the acceptable position error (equivalently, disturbance) can be made

by considering the elastic layer and elastic foundation models developed in Chapter 4.

The maximum contact pressure po must remain below some critical level Pc where

stamp features collapse, as determined by the results in Chapter 3. A model for the

collapse displacement 6c of the roll can be constructed using results from the two

analytical limits of roll behavior in Chapter 4:

In the case of very small or very stiff features, the elastic layer model (4.44) gives

the critical roll displacement 6cI as

oci = pt3 (5.10)
6or*

where t is the stamp thickness, r* is the equivalent roll radius, and EO is the stamp

modulus.

In the case of very compliant features the elastic foundation model (4.50) gives

6cII as

PC (5.11)

where k, is the stiffness of the printing features on the stamp.

An estimate of permissible displacement using a conventional stamp architecture

(i.e. with no backing layer) is obtained by assuming that both the features and stamp

body deform as springs in series, requiring in a sum of displacement 6 cI and 3 c1I in

response to a contact pressure of Pc:

Pc Pct3

6c = "+ pes(5.12)
kp 6Eor*

This model is expected to give a conservative estimate of permissible displacement.

In making the approximation of series springs, it is assumed that the boundary of

the stamp body still experiences zero slip relative to the substrate. In reality, this

boundary can move slightly under load as the features deform in shear.

In the limit of large features, the first term in (5.12) gives a significant contribution
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to total displacement. Substituting expressions for pc and kp from (3.4) and (3.6)

(respectively),

PC_ ScEo (5.13a)
k PIEO

= h (5.13b)
K P + 1

This result shows that the first term in (5.12) can never be larger than the feature

scale, because (i) Sc/K = Xc is never greater than unity, (ii) P/(P + 1) is never

greater than unity, and (iii) h can never be greater than about the feature width w

(cf. limiting aspect ratio A = 1 in Figure 5-3a).

This observation indicates that for very small patterns (micron and submicron),

significant displacements in the system to tolerate E must come from the stamp body,

represented by the second term in (5.12). Sparse patterns (large P) have very small

collapse pressures, often only a few percent of the stamp modulus (5% of E0 or less).

The results of Chapter 4 showed that these pressures can be reached at very small

displacements 6 (see for example Figure 4-17 where these pressures can occur at only

a few pm).

If catastrophic pressures occur at displacements of only single microns, it will be

very difficult to implement a manufacturing scale process that is robust to distur-

bances E that are of the same order. The process design task is thus to design a

stamp that maximizes 6c in (5.12) regardless of the scale of printing features.

There are two clear design variables that arise from (5.12): stamp thickness and

stamp material properties. Each variable is examined in the following subsections

with the goal of maximizing 6c.

Stamp Thickness

Increasing the thickness t of the stamp will increase Jc, though this improvement

comes at the cost of higher stamp pattern distortion and poor adhesion between the

stamp and roll.
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Application of beam theory predicts that strain at the stamp surface will increase

with stamp thickness t. In Euler beam theory, radius of curvature p induces a variable

strain throughout the beam thickness that is zero at the neutral axis:

6= , y E [-t/2, t/2] (5.14)

From this relationship, the surface strain cx(y = t/2) is proportional to t/2r.

As an example, a stamp with thickness t = 1 mm will have a surface strain of 2%

when mounted to a roll with r = 25.4 mm. This strain causes a distortion in the

stamp pattern, which may or may not be tolerable for the application at hand. It is

clearly desirable to minimize this effect, though there are certainly opportunities to

account for this deformation (i.e. create the stamp with a feature pitch 2% smaller

than desired).

A similar application of beam theory shows that bending energy increases dra-

matically with stamp thickness. Using Euler beam theory, the energy per unit length

of the stamp is

dU 1 M2
d- =- (5.15)dx 2 E0I

With the relationships M = EoI/p and I = t/12, this becomes

dU _E~t
3  

(5.16)
dx 24p 2

When a stamp is mounted to a roll (p = r, where r is the roll radius), this strain

energy must be overcome by the work of adhesion Wad between the stamp and roll.

This requirement that dU/dx < Wad limits the stamp thickness to

O/r 3Cf (5.17)

where conformability Cf = Wad/rEo.

As an example, the 25.4 mm radius roll used in the experimental sections of this
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thesis can only support a stamp that is slightly more than 1 mm thick (assuming

values of Eo=2 MPa and Wad= 2 0 mJ/m 2 ). During the experimental work reported

in this thesis, it was found that stamps thicker than about 500 pm were difficult to

reliably mount to the roll. Even if the stamp is cast against a metal shim that is

magnetically mounted to the roll (as described by [17]), the bond between the stamp

and shim is not permanent and only as strong as the work of adhesion.

Only chemical bonds can overcome this limit. As an example, benchtop experi-

ments during this research demonstrated a bond between PDMS and aluminum can

be formed using cyanoacrylate (Loctite 420) after priming the PDMS surface (Loctite

770). Peel tests caused the PDMS to tear, indicating that the bond formed with this

adhesive is stronger than PDMS itself. Other researchers have used the strategy of

creating a plasma bond between the PDMS and a glass roll [111, 49], drawing inspi-

ration from bonding of PDMS microfluidic chips to glass slides. Unfortunately, these

irreversible bonding methods present significant challenges in implementation.

At this juncture, the design tradeoffs of surface strain and adhesion make it dif-

ficult to arbitrarily increase the thickness of stamps. This limitation constrains the

ability to increase the process window oc (5.12) through adjusting stamp thickness t.

Stamp Material

When the conformability Cf = y8/Eow of features approaches one, surface forces

begin to dominate elastic forces. Equivalently, the radius of curvature of the material

can be defined as Pm = y/Eo [47], indicating the length scale where Cf = 1. In

the example of PDMS, Pm = 10 nm (Eo=2 MPa, -Y,= 2 0 mJ/m 2 ). This characteristic

length presents a particular challenge in very small features below 100 nm, resulting

in edge rounding and poor feature definition [82, 89] in addition to the limit of lateral

collapse introduced in Chapter 3.

Stiffer materials (higher EO) give a smaller pm, providing accurate replication

of smaller features. With this motivation, stiff elastomeric materials have been in-

vestigated for contact lithography. Hard PDMS (h-PDMS) formulations have been

reported with an elastic modulus of about 8-9 MPa [89, 12]. This higher modulus
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comes at the expense of much smaller fracture strains, about 7% compared to well

over 100% for traditional PDMS.

Simply employing a stamp material with a higher modulus offers no improvement

in 6c. Any change in elastic modulus Eo does not affect the deformation in this

displacement boundary value problem; pc and k, in (5.12) are likewise linear functions

of EO and cancel out any uniform change in modulus.

However, using a hard material for the stamp features (modulus EO) and a softer

material for the stamp body can increase 6, (as proposed by [89]). This architecture

increases pc and k, in (5.12) by a factor of E6/Eo, giving an improvement of V E6/Eo

in 6c. With the published values of E6, this composite stamp architecture can offers

a factor of 2 improvement in 6c.

The conclusion is drawn from this analysis that there exists no method to dramat-

ically alter the process limit 6c of stamps using the conventional stamp architecture.

5.2.3 Compliant Architecture

The preceding discussion shows a lack of flexibility in stamp design to achieve a robust

printing process with large 6c. When features are large, the first term in (5.12) is large

and the features themselves absorb a significant portion of the contact energy. For

example, 50 tm features result in a forgiving process with 6c on the order of tens of

microns. Conversely, small features have a correspondingly higher stiffness and direct

the majority of contact energy to the stamp body. These small features result in very

small 6c, typically on the order of several microns.

The key observation of this section is the following: large, compliant stamp fea-

tures decouple the contact sensitivity from the stiff mechanics of the incompressible

stamp body. Unfortunately, the stamp features are dictated by the device architec-

ture being printed. An innovative approach introduced here is to include a second

set of features in the stamp architecture; a logical point to incorporate these is at the

interface between the roll and the stamp (Figure 5-4).

Introducing this backing layer improves stamp design flexibility to achieve a pro-

cess that can tolerate large disturbances compared to varying stamp thickness or
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modulus. If a backing layer (with stiffness kb) is added to the stamp, (5.12) becomes

(5.18)pct
3

c = + p + -
kp 6EOr* kb

The final term in (5.18) provides significant design flexibility to create a stamp

with some desired printing pattern, thickness, and roll diameter while retaining the

ability to tailor the stamp compliance and resulting process window 5-5.

Figure 5-4: Motivation for backing layer architecture. (a) Large features absorb
significant contact energy before collapse, while (b) small features cannot absorb much
contact energy and collapse at much smaller roll displacements. (c) Incorporating
large backing features allows a stamp with small printing features to absorb large
amounts of contact energy before collapse for robust printing.
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kb

(a) (b)

Figure 5-5: Compliant stamp architecture with two feature layers. (a) Cross section
micrograph of a stamp with (i) printing features and (ii) backing features; inset is a
zoomed view of the printing features (scale bars 100 pm). This stamp was formed by
laminated two thin stamps together in a back-to-back configuration. (b) This archi-
tecture is more compliant; the backing features have stiffness kb that is presumably
much lower than the stiffness k, of the printing features. This design allows tuning the
mechanical behavior of the stamp independently of the stamp thickness t, allowing
the stamp to absorb more mechanical energy before the printing features collapse.
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5.3 Contact Analysis

A stamp with a backing layer resembles a beam suspended between two beds of

springs (printing features and backing features) with stiffness k, and kb, respectively.

The contact behavior of the beam can be examined by considering the displacement

w of the stamp body from its nominal position (Figure 5-6).

Figure 5-6: Beam theory analogy of backing layer behavior. The stamp body forms
a beam suspended between two layers of features that act as individual springs with
stiffness k, and kb. The load q on some differential element dx of the stamp body is
dependent on the local displacement of the neutral axis w(x).

The beam load function q can be derived by considering a differential element of

the beam dx. Assuming that the stamp body is rigid in compression, all deformation

must occur in either the printing features or the backing features. The displacement

on the backing features is the same as the beam displacement w(x), giving a load

function dependent only on this displacement and the backing feature stiffness kb:

qb(x) = kbw(x) (5.19)

The load function of the printing features is more complex. The nominal displacement

will be the difference between the substrate boundary condition (6 - x 2/2r*) and the

beam deformation. However, these features are only engaged in the contact region
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where x E [-1, +1], giving a piecewise load function:

k,(6- 1x2 W)

0

x l

X >
(5.20)

Combining these individual loading functions gives the complete loading function

q = qb + qp:

kP (6 - _x2) - (kb +kp)w
q -

- kbw

x <l

x >l
(5.21)

The boundary conditions on the stamp body are dictated by symmetry at x = 0

dwI
d o = 0 (5.22)

VL=o = 0 (5.23)

and vanishing deformation far from the contact region

w2==0 (5.24)

ML.=0 0 (5.25)

5.3.1 Euler Beam Theory

The simplest form of beam deformation is Euler beam theory, governed by moment-

induced bending. The the curvature p of the beam is proportional to the moment M

in the beam

M
P E*I (5.26)

The shear V at each point x along the beam axis is the local derivative of the

moment at that point:
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V dM
dx

(5.27)

And the rate of change of shear gives the load distribution q at each point on the

beam:

dV
q = ddx

(5.28)

Finally, the displacement w(x) of the beam must be linked to the local curvature:

1 d2 w
dx

2

[d]2

(5.29)

For small displacements, dw/dx is small, giving

1 d2 W

p dx 2 (5.30)

Hence, by combining the preceding equations, the stamp displacement in Euler

beam bending is governed by the relationship

d4w q
dx4 E*I

(5.31)

Substituting the loading function (5.21) into the governing equation gives a piece-

wise differential equation of the form

{ + kb -kp _ - 2
@ + Ew E 0I 2r*

d4W + _LbW =0

X <l

x >l
(5.32)

The characteristic equation of this system is of the form A4 + a = 0, giving roots

A that are two pairs of complex conjugates ±/ (1 ± i). Letting # a results

in a homogeneous solution of the form

WHS = ex (Ci cOS &I + C2 sin OX) + ex (c3 cOS &3 + C4 sin ox) (5.33)
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This homogenous solution gives w(x) that oscillates well beyond the contact region

defined by x < 1. This behavior is unexpected in the actual physical system: one

would imagine that the stamp displacement simply decays to zero beyond the contact

region.

5.3.2 Timoshenko Beam Theory

In reality, the stamp is able to not only bend, but shear, giving a much smaller

transient beyond the contact region. Timoshenko beam theory incorporates this

shear deformation [98]. The beam slope <D is now defined, and again determined by

the moment in the beam:

dx - = (5.34)dx E I

However, the derivative of w is now dependent on shear deformation as well

dw a8 Vdw= <D - a (5.35)
dx GA

where G is the shear modulus and A is the cross sectional area of the beam. Cor-

rection factor a is of order unity; for rectangular beam profiles Timoshenko gives

as = 6/5 [98]. This gives a governing differential equation of

d4w 1 as d2q
dX4 El GAdx 2  (5.36)

Substituting the loading function q gives{ d4W kb+kp d 2W4 kb~kpW=_p _IX2+ask X x<
GA dX2 +E*I E*I\2r*J SGAr* (5.37)

$ -as 2 +L Wm = 0 X > 1

This differential equations has a characteristic equation of form A4 - aA\2 + b = 0.

It can be shown (assuming v = 1/2) that for kb > 4a2E/t this characteristic equation

has two pairs of identical real roots. These real roots # and -y result in a homogeneous
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solution of form

WHS = (ci + c2 X)e'fx + (c3 + c4x)e^x (5.38)

This solution gives exponential decay of the beam displacement, matching physical

expectations much better than the Euler solution.

5.3.3 Elastic Layer

The beam theory analysis can be forgone when the bending energy is very small

compared to the strain energy in the features. In this limit, an elastic foundation

model will give accurate estimates of center contact pressure po.

Similar to the elastic layer analysis of large compliant features in Section 4.4.2,

the pressure is assumed independent at each point. This assumption amounts to

permitting discontinuities in w(x), in contrast to the beam bending models that

require C4 continuity in w(z). The net force q on each differential element dx must

be zero; it follows from the loading function (5.21) that

w= kb+kp(62r - *2 (5.39)
0 X > 1

The pressure at each point along the interface is identically qp, giving

p(x) - kbk - 1x2 (5.40)
kb + kp 2r*

At this point, equivalent stiffness k* is defined as

k* = kbk_ (5.41)
kb + kP

The contact behavior can now be derived following the reasoning in Section 4.4.2

(see (4.49), (4.51), and (4.52)), substituting k = k*. This gives roll contact center
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pressure po, contact half length 1, and contact force f as

Po = k*3

Assuming the contact area to be defined by a chordal intersection gives

I = V/2r*36

Integrating the pressure across this area gives force:

4
f = -k*v2r*3

3

(5.42)

(5.43)

(5.44)

For this approach to be accurate, the bending energy Ubending must be small com-

pared to the elastic energy Ufeature stored in the features during deformation:

Ubeam < Ufeatures (5.45)

Euler beam theory gives the bending energy per unit length as

dUbeam M 2

dx 2EoI (5.46)

where the moment M in the beam is proportional to the moment of inertia I ( 3 /12)

and inversely proportional to the radius of curvature p:

EoI
P

(5.47)

Substituting these expressions give the bending energy in terms of the contact vari-

ables:
dUbeam = t3O

dx F 24r*2 (5.48)

At the critical collapse point the strain energy in compressed features at the center
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of the contact interface is

dUfeature 1 = k* 2 = P (5.49)
dx 2=k*c~ 2k*P (549

Applying (5.48) and (5.49) to (5.45) yields the criterion that

C3 = 12 >>l1 (5.50)
Eo k*t t 2

This criterion holds when the backing layer is compliant and when the stamp is

very thin. A typical printing configuration might have small printing features with

w = h = a = 1 pm and much larger backing features with w = 50, h = a = 100 pm.

Chapter 3 shows that these printing features will have a collapse pressure of about

Pc = 7r/4 -KEo, where K = 0.36 for features with an aspect ratio A and pattern ratio

P of unity. The stiffness of the printing features k, and backing features kb can be

found using (4.24) (720000EO and 4200EO, respectively). Using these stiffness values,

the criterion developed above is satisfied (C3 > 3) for stamp thickness t less than 3.1

mm.

5.3.4 Numerical Solution

The beam-based equations are solved numerically for particular values of 6 using the

given boundary conditions. The contact length I is determined by minimizing the

sum of strain energy in the stamp features, strain energy in the stamp body, and

work of adhesion:

U = Ub + Up + Ubeam + Uadhesion (5.51)
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where each energy component is given by

dUb 1d-x -kw 2  
(5.52)dx 2

dU {kb (63 __2 _W)2 X<l
(5.53)dx 0 0 x>l

dUbeam 1 1_ M + asV2 (554)
dx 2 E*I 2 AG

dUadhesion _ Wad X < 1 5.5I
dx 10 (5.55)

For a stable numerical implementation, each spatial variable (6, x, w, 1) is trans-

formed into a dimensionless variable of order unity by normalizing by the stamp

thickness t. Likewise, each energy (Uj and Wad) is normalized by k*t 3. Figure 5-7

compares the solution for each model presented above (Euler beam theory, Timo-

shenko beam theory, and elastic layer).
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Figure 5-7: Calculated contact behavior for backing layer beam theory models. Stamp
body displacement w and contact pressure p are shown as a function of position x
from the center of the roll for a roll radius of r* = 40t. Numerical solutions of the Eu-
ler, Timoshenko, and elastic foundation boundary value problems are shown. These
results show that the Euler model overpredicts center contact pressure po and affects
w over an excessive range of x; the Timoshenko model gives a more accurate behav-
ior prediction. The elastic foundation model predicts po as well as the Timoshenko
model.
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5.4 Results

The same numerical simulation routine and experimental protocol were used as de-

scribed in Sections 4.5 and 4.6. This section compares the analytical and numerical

results, shows experimental verification, and provides a discussion of the data.

The experimental samples are summarized in Table 5.1. In practice, these were

the exact stamps used during experiments of roll contact mechanics (Table 4.3) but

were mounted with the stamp features against the roll interface.

Table 5.1: Experimental parameters for stamps with backing layers, including the
stamp thickness t, feature width w, feature height h, feature gap a, and elastic modu-
lus EO with a 95% confidence interval. These stamps were mounted with the features
against the roll, leaving the flat side of the stamp at the contact interface.

t (im) w (pum) h (pm) a (pm) Eo (MPa) (95% CI)
(a) 311 50 47 50 1.37 t 0.14
(b) 311 50 47 150 1.37 ± 0.14
(c) 590 50 47 50 1.51 ± 0.11
(d) 590 50 47 150 1.51 ± 0.11

5.4.1 Numerical Data

Simulations of backing layers (assuming infintessimally small printing features) were

done in the same manner as described in Section 4.5, but with the feature layer

adjacent to the roll interface rather than the substrate interface to emulate backing

features.

Figure 5-8 shows simulation results for identical features that have been placed at

the printing interface and the substrate interface. In both cases, the features absorb

a majority of the vertical roll displacement. This observation supports the hypothesis

that backing features placed at the roll interface can absorb disturbances and prevent

collapse of very small printing features.
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Figure 5-8: Comparison of numerical simulations for identical (a) printing features
and (b) backing features. In both cases the majority of strain energy is absorbed by
the features, as shown by strain in the vertical direction egy.

The mechanical response of these two cases (corresponding to Table 5.la-b) is

plotted in Figure 5-9 assuming a roll radius of 25.4 mm. The contact pressure p is

normalized by E 0 and the contact force f is reported per unit length of roll, normalized

by Eo.

The stamps plotted in Figure 5-9 have C2 = 7.68 > 1 (4.55) and C3 = 119 >
1 (5.50). Because C2 > 1 the elastic foundation model will give accurate results,

and because C3 > 1 the bending energy of the stamp body can be neglected. The

numerical results support this conclusion, showing that the behavior of each stamp

is nearly identical and follows the prediction of the elastic layer model until near the

theoretical collapse point at Jc=28 ytm.
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Figure 5-9: Comparison of numerical simulations and elastic foundation model for a
stamp mounted in both the printing and backing configurations, assuming a stamp
with dimensions shown in Table 5.1b compressed on a roll with r* = 25.4 mm. These
models show nearly identical behavior in this case where beam bending energy is
small (C3 = 119 > 1).
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5.4.2 Experimental Data

The following plots compare experimental and numerical results for the stamp pa-

rameters shown in Table 5.1. In short, Figure 5-10 shows results for a 0.31 mm thick

stamp and Figure 5-11 shows results for a 0.59 mm thick stamp. In both figures,

the corresponding data from the experiments in Chapter 4 to allow comparison of

identical stamps with features in either the printing or backing configuration.

The reported force measurements in Figures 5-10 and 5-11 correspond to the ac-

tual force superimposed on a lz = 60 mm wide stamp; contact length 21 reported is

the average of two contact images at different points along the roll axis. Measurement

uncertainty is expressed by an error zone about the nominal simulation result, reflect-

ing both a 95% confidence interval of elastic modulus EO as reported in Table 5.1 and

a 95% confidence interval of the experimental apparatus accuracy (low frequency a

= 75 mN) (see Section 4.7.4). As in Chapter 4, a work of adhesion Wad=30 mJ/m 2

was assumed.

When mounted in a backing layer configuration, the flat surface of the stamp was

exposed to the printing interface. Since there were no printing features on the stamp

in this orientation, a collapse pressure pc = 0.05Eo (corresponding to a sparse pattern

with A = 1, P = 9) was assumed to calculate C3 (5.50). Because C3 is much greater

than unity in each case, the beam bending energy is expected to be negligible so

that the stamps behave regardless of mounting direction (printing versus backing).

Indeed, this behavior is observed, where each load-displacement curve appears nearly

identical within the bounds of uncertainty.

In each experimental case, the force f is slightly lower when the stamps are

mounted in a backing configuration. This phenomena is perhaps due to a larger

effective work of adhesion W,*d: when the stamps are in a backing configuration, the

smooth surface in contact with the substrate interface has an effective pattern ratio

P = 0, resulting in larger W,*d per (4.19).
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Figure 5-10: Experimental results for patterned stamps with nominal thickness of 200
pm. Simulation results are shown in gray with width corresponding to measurement
uncertainty (see text). Experimental samples correspond to Table 5.1a-b; Wad of 30
mJ/m 2 and pc = 0.05EO assumed.
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Figure 5-11: Experimental results for patterned stamps with nominal thickness of 500
pm. Simulation results are shown in gray with width corresponding to measurement
uncertainty (see text). Experimental samples correspond to Table 5.1c-d; Wad of 30
mJ/m 2 and pc = 0.05EO assumed.

191

40

a/w=1 (Printing)

- - - a/w=3 (Printing)

- -- - - a/w=1 (Backing, C3 = 6.5)

. a/w=3 (Backing, C3 = 17)



5.4.3 Discussion

A new stamp architecture was proposed, operating on the hypothesis that stamp

features at the stamp-roll interface could alter the mechanical response of the stamp

to improve rejection of asperities and positioning errors. An analogy was drawn

between stamps with backing features and beam theory, leading to a model for contact

behavior based on Timoshenko beam theory. A scaling argument based on strain

energies showed that for many practical stamp designs, the bending energy of the

stamp can be neglected. In this case, the behavior of the stamp can be described by

an elastic foundation model.

The numerical and experimental results support this hypothesis, showing that

microfeature patterns affect stamp mechanical behavior similarly regardless of their

location (at the roll interface or at the substrate interface). In each experimental

case, criterion C3 > 1 was satisfied.

These results are powerful: in a printing configuration, large features can absorb

a much larger displacement before collapse pressures are reached at the contact inter-

face. As an example of this, compare the pressure evolution in Figure 4-17 (very small

features) and Figure 4-18 (large features). Small features can often not be avoided at

the contact interface because they are dictated by the desired pattern transfer. Using

this new stamp architecture, large features can be introduced at the roll interface to

tune the mechanical response of the stamp even when very small features are used

for printing.

5.5 Case Study

A sparse honeycomb pattern (Figure 5-12a) is used as a design case study to illustrate

the effect of including a backing layer. This pattern would be useful for creating

transparent conductive electrodes, but is very difficult to print because it collapses

(Figure 5-12b) at small displacements and low pressures.
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Figure 5-12: Hexagonal pattern used in backing layer case study. (a) Micrograph of
a 300 pm thick stamp with honeycomb pattern: edge length of 50 mm, feature width
5 pm, and feature height 3 pam. (b) Image from experimental apparatus showing
collapse propagating from the center of the contact zone at only a few microns of roll
displacement.

Table 5.2: Case study stamp parameters

Parameter Value
t 300 pm
w 5 pm
h 3 pm
a 80 pm
r* 25.4 mm

Using the stamp parameters in Table 5.2, (3.39) predicts a dimensionless stiffness

of K = 0.022. These sparse features are expected to experience roof collapse at a

pressure of pc = EKEo (Chapter 3). The feature stiffness k is given by (4.24). Using

this collapse pressure and stiffness in (5.12) predicts a critical collapse displacement

of 6c = 4 pum.

Two backing layers were tested in the configuration shown in Figure 4-4d) to

evaluate their impact on process robustness, measured by maximum roll compression

before feature collapse. Two separate stamps (Table 5.1a-b) were laminated against

the honeycomb stamp (Figure 5-12) to form the desired stamp architecture. Table 5.3

shows the corresponding predictions for critical collapse displacement, neglecting the
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additional stamp thickness.

Table 5.3: Predicted collapse displacement of case study pattern

Ab Pb 6c [mi]

(a) - - 3.9
(b) 0.95 1 5.1
(c) 0.95 3 7.4

These laminated stamps were tested using the same machine and protocol de-

scribed in Section 4.6. Figure 5-13 shows the resulting load-displacement behavior of

each stamp truncated to the point where collapse was observed in the contact images.

Force f is reported as the actual force applied to the lz = 60 mm wide stamp during

the experiment.
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25

Figure 5-13: Experimental load-displacement behavior to collapse point for a sparse
hexagonal printing pattern. Compared to a control case with no backing layer (a),
backing layers of increasing compliance (b,c) allow both higher force f and higher
displacement 5 before collapse.

The results of the backing layer experiment are dramatic. The control experiment
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(Figure 5-13a) exhibits collapse near the 4 pm predicted value. The stamp can tolerate

both more displacement and more force before the delicate pattern features collapse

by adding backing layers with increasing compliance (Figure 5-13b-c).

The observed collapse displacements are much greater than originally predicted

(Table 5.3). This is likely due to two effects: (i) a larger stamp thickness that occurred

when laminating the two stamp patterns together and (ii) a relaxation of the no-slip

boundary condition imposed on the stamp body as the backing layer is allowed to

not only compress, but shear.

The conclusion from this case study is that the inclusion of a backing layer enables

a more robust printing process, especially through tailoring the mechanical behavior

of a stamp independent of the particular printing pattern or stamp thickness t.

5.6 Summary

This chapter used stamp deformation results from Part II to guide a discussion of error

sources, process limits, and ultimately development of a new stamp architecture for

roll based printing that is more robust to displacement disturbances than conventional

designs.

The review of error sources showed that mechanical, thermal, and geometric effects

can often contribute several microns each to the total positioning error c observed

at the roll and substrate. This error enters the process as a disturbance to nominal

roll displacement 6, sometimes causing the local displacement * to fall outside the

process window of (0, 6c) (5.4). Moreover, 6c is often smaller than the magnitude e of

possible disturbances because of the high collapse pressures that rapidly develop at

the stamp contact interface.

To improve robustness to c, especially at mid-range spatial frequencies (Figure 5-

2), a new stamp architecture was designed in order to dramatically increase permis-

sible displacement 6c even when very small micron or submicron patterns are being

printed.

Analysis shows that features placed on the reverse side of the stamp (i.e. at the
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roll bonding interface) will result in the same mechanistic behavior as if they were

mounted on the front of the stamp, as long as criterion C3 >> 1. The numerical and

experimental validations support this analysis. In a case study using a very sensitive

printing pattern, this stamp architecture was shown to significantly increase the load

and displacement that the stamp construct can tolerate before feature collapse is

observed.
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Chapter 6

Stamp Casting

6.1 Stamp Replication

The economies of contact lithography are realized by massively parallel replication

of features between a stamp and substrate. The stamp itself is a product of surface

replication; in both pCP and NIL stamps are patterned by forming against a master

surface.

The methods of manufacturing the master surface and subsequently producing

stamps are a critical technological hurdle in large area contact lithography. In this

chapter, conventional methods of master preparation and stamp production are re-

viewed. This discussion will show that there remain a number of challenges in the

path of truly large scale patterning. The remainder of the chapter is dedicated to

introducing and developing a new way of making stamps that are both more precise

and inherently scalable compared to silicon-based master templates.

6.1.1 Master Templates

At the heart of contact lithography lies the master template. This surface dictates

the ultimate resolution, accuracy, and fidelity that can be achieved in any subsequent

patterning step.

While the end goal of contact lithography is often to break the rate limits of
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conventional lithography, it is interesting that each template is almost exclusively

produced using conventional lithography. This processing choice leverages a well de-

veloped, highly accurate system. Eventually, the high cost of producing the template

by conventional means is amortized over a large number of reproduced surfaces.

The approaches towards manufacturing templates can be classified into one of two

categories: monocrystalline or resist based.

Monocrystalline templates are formed by etching patterns into silicon wafers. Op-

tical lithography is first used to define a pattern in a photoresist. This photoresist acts

as a mask during subsequent reactive ion etching (RIE), which forms relief structure

in the surface of the wafer.

Resist-based templates are also typically based on silicon wafer substrates, but

in contrast to reactive ion etching, the resist itself forms the relief structure. The

most common photoresist for these templates is a permanent epoxy-based resist (e.g.

Microchem SU8); SU8 was originally developed for MEMS applications [65] but has

become widely used for patterning templates for soft lithography and microfluidics

fabrication. SU8 can be processed in thicknesses less than 1 tm to greater than 100

pm with large aspect ratios, giving similar geometric capabilities as RIE.

Each template fabrication method has its own advantages. The monocrystalline

templates have exceptionally high structural integrity (though small features pro-

mote brittle fracture). These templates are typically used for high temperature or

high pressure embossing, for example thermal nanoimprint lithography [14], microem-

bossing [25], or casting of amorphous alloys [38]. While resist-based templates are not

as mechanically sound, they offer superior surface finish; the base of each replicated

feature is defined by the polished substrate rather than an RIE surface with nanoscale

surface roughness.

Because of the superior surface finish and low relative cost (no etching equipment

required), resist based templates are used almost exclusively for soft lithography,

including microcontact printing.
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6.1.2 Conventional Stamp Casting

For a manufacturing application, replication of stamps from a master template must

satisfy two requirements. First, the stamp must exactly replicate each micro or

nanoscale feature on the template. Second, the macroscopic dimensions of the stamp

must be precisely controlled. The latter requirement is often the more difficult to

satisfy.

Section 5.1 developed a process window in terms of allowable roll displacement

6c or error distribution c(z, O). In that discussion, it was shown that catastrophic

pressures develop at the printing interface at only several microns of displacement.

This same process window maps directly to the tolerance that must be placed on the

thickness of stamps.

Two general approaches to stamp casting have been reported in the literature:

open face casting [60, 49] and injection molding [40, 17, 55].

Open face casting is performed by placing the master template on a horizontal

surface, forming a dam around it, and pouring prepolymer over the surface. Gravity

is allowed to equilibrate the free surface of the prepolymer before it cures. This

method is able to produce very flat and smooth free surfaces, with the exception of

edge effects near the dam driven by surface tension o. The thickness t of the stamp is

determined by mass conservation within the dam. Any error in leveling the horizontal

surface will be manifest as a taper (taper in the cured stamp.

Injection molding is performed by forming a mold around the master surface and

using a pressure differential to introduce prepolymer. In contrast to conventional

injection molding, the pressure gradient in this process may be formed by pulling a

vacuum on the mold rather than applying pressure to the feedstock; this can help

degas the precursor and prevent gas entrapment in the cured stamp. The mean

thickness t in this process can be controlled more carefully by the mold and gravity

has nominally no effect on stamp taper. At the same time, any surface roughness or

waviness of the mold will be imparted on the stamp.
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6.1.3 Conventional Stamp Mounting

Once stamps are cast, they must be mounted to rolls. The accuracy of the final stamp

construct can be no better than the accuracy of this mounting process, regardless of

the accuracy of the master template. With this in mind, the transfer process must

both (i) bond the stamp to the roll and (ii) provide a means of aligning the stamp to

the roll. .

In planar stamping (i.e. patterning of silicon wafers), it is common to cast the

stamp between the master template and a rigid backplane [55, 89]. In this manner,

dimensional accuracy imparted by the master is maintained by this rigid backplane

that becomes an integral part of the stamp.

In roll based processing, a similar concept has been reported where stamps are

cast against a flexible (but transversely rigid) backplane, for example ferrous shim

stock [96, 92, 56, 4, 17, 107, 40] or polymer films [60]. These films can subsequently be

mounted to rolls using magnetic attraction or double sided adhesive tape, respectively.

Other approaches directly mount the stamp to the roll from the master surface

using an irreversible bond. As one example, it is well known that a strong bond can

be formed between PDMS and glass after plasma treatment of both surfaces. This

technique has been used to bond stamps directly to glass processing rolls [111, 49].

While quite common, this plasma bonding technique is sensitive to plasma treatment

parameters, requires specialized plasma treatment equipment, and requires a glass

roll. As an alternative permanent bonding method, bench level tests during this thesis

showed that cyanoacrylate (Loctite 401) will form suitable bonds between PDMS and

metal rolls with an appropriate primer (Loctite 770).

6.1.4 Challenges

Distinct challenges exist in each of these areas (master templates, stamp casting, and

stamp mounting), especially as processing rolls are scaled larger towards practical

manufacturing sizes.

As rolls increase in diameter and length, stamp dimensions (nominally a rectangle
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with dimension of roll length and roll circumference) will outgrow conventional wafer

processing technology. Opportunity certainly exists to adapt larger scale lithographic

processing, such as that used in manufacture of flat panel displays. Regardless of the

approach, it is likely that some entirely new technology will be required to manufac-

ture master templates with scalable dimensions.

Even if a large area template is made, it will be quite difficult to cast stamps

with extremely uniform dimensions. Stamp dimensions c must be controlled within

the process window 6c as given by (5.4), placing bounds on acceptable manufacturing

tolerances. For example, maintaining thickness uniformity within a tolerance of single

microns will be quite difficult when stamps are scaled to large dimensions (i.e. one

meter), but will be paramount for achieving a robust process. This level of stamp

uniformity represents a daunting challenge of dimensional control within a few parts

per million.

Mounting large stamps accurately will require new approaches or specialized pre-

cision alignment machinery. Non-uniform mounting leads to both pattern distortions

and variations in stamp thickness (5.2). As discussed in Section 5.2.2, wrapping a flat

stamp around a cylindrical roll results in a residual stress distribution and pattern

distortion on the surface of the stamp.

A challenge that has not been addressed is the ability to eliminate discontinuities

in roll mounted stamps, i.e. how to create a stamp that creates a continuous pattern

around the periphery of a roll. In conventional printing, e.g. flexography, roll equip-

ment is simply made large enough (more than 1 m in diameter if necessary) that an

entire printing panel (newspaper page; packaging box panel, etc) can be mounted.

The repeating patterns in thin film transistor arrays or engineered metasurfaces could

be made using much smaller and less expensive rolls and stamps if a single continuous

pattern could be replicated in the stamp without discontinuities.

Based on these challenges, several requirements are proposed for an 'ideal' stamp

production method. The resulting stamp should:

(i) possess no fundamental scaling limitations
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(ii) exhibit micron-level thickness uniformity

(iii) be in a stress-free state when mounted

(iv) have a pattern continuously about the periphery

6.2 Cylindrical Stamps

The problems persistent in conventional stamp casting motivate development of an

improved stamp manufacturing method. The entire process should be re-examined

rather than trying to optimize individual steps within the confines of traditional

processing techniques.

A stamp must be cast against a cylindrical master if it is to have a stress-free

state when mounted to a roll. Moreover, adopting a cylindrical master allows the

opportunity to create a continuous stamp that completely wraps the processing roll.

Cylindrical processing requires redevelopment of not only the stamp casting pro-

cess, but also master template patterning. Conventional optical lithography is typ-

ically limited to planar substrates and cannot be directly adapted to surfaces with

curvature.

Photoresist remains an attractive patterning medium because of the high resolu-

tions attainable. Photoresist patterning can also reach high levels of accuracy in a

non-contact process with no disturbance forces (compared to, for example, microma-

chining or embossing).

Photoresist can be patterned on a curved surface using direct write lithography

with a single focused light source. Rather than selectively exposing a resist on on a

wafer stepper or aligner using a mask, the resist can be patterned using the serial

process that is used to make the mask itself.

Very uniform coatings can be applied in a centrifuge. A drum of radius r spinning

at a high speed w will create a uniform free surface just as in open face casting.

The Bond number Bo = prw2 h 2 /u. will increase as a result of the high centripetal

acceleration, reducing edge effects driven by surface tension o- in a fluid layer of density
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p and height h. At the same time, the Galileo number Ga = rw2 hs/V 2 will increase

for a given fluid with kinematic viscosity v, resulting in much faster convergence to

the uniform free surface. These effects can be leveraged to create uniform layers of

photoresist and prepolymer on the interior of a centrifuge drum.

Using a centrifuge-based approach to master template fabrication and stamp cast-

ing can be done by depositing three distinct layers within a centrifuge drum (Figure 6-

1 b, c, and d respectively):

(i) Planarizing layer (photoresist)

(ii) Patterning layer (photoresist)

(iii) Stamp layer (PDMS)

(a) (b) (c) (d)

Figure 6-1: Coating steps required to create a patterned cylindrical stamp: (a) ma-
chined drum surface, (b) planarizing layer, (c) patterning layer, (d) stamp layer.

In the first step, a layer of photoresist is deposited on the inner surface of a drum

by centrifugal coating, as opposed to spin coating on a wafer. The entire layer of

photoresist is cured; in the case of a negative photoresist this can be accomplished by

uniform exposure. This critical step provides a precise and uniform datum surface,

(nominally) regardless of the quality of the drum surface.

Next, a second layer of photoresist is deposited on the inner surface of the same

drum by centrifugal coating. This photoresist is selectively exposed by a direct-write
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laser system. After exposure, the resist is developed to create a pattern that will

eventually be transferred to the stamp surface.

In the third step, polymer precursor is deposited on the inner surface of the same

drum (for example PDMS precursor). The PDMS is allowed to cure while the drum

is spinning, which may be accelerated by heating the drum.

Finally, the cured stamp (Figure 6-2) is removed from the drum and mounted to

a roll. The third step can be repeated a number of times to create additional stamps

from the same template that was patterned in the first two steps.

Figure 6-2: PDMS stamp made with the proposed centrifuge process

Ordinarily centrifugal casting is performed with phase-change materials (i.e. molten

iron for pipes or melted thermoplastics for bushings [32]). In this adaptation, the

chemical curing (as opposed to thermally dependent solidification) of photoresists

and PDMS precursors allows carefully tuning the spin time and curing point to reach

an optimally uniform surface independent of the thermal history of the process.

The remaining sections develop an analytical model of centrifugal coating, discuss

the design of a direct write laser system, and highlight experimental results from a

proof of concept implementation.
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6.3 Centrifugal Coating

This section examines the governing fluid dynamics of a centrifugal coating process.

Photolithographic processes ubiquitously use spin coating to deposit a uniform

layer of fluid. In this process, fluid is dispensed at the center of a wafer (or other

substrate), which is then rotated at high speeds (often several thousand rpm) to create

a thin layer of fluid. During the spinning, centrifugal forces are balanced by viscous

forces, resulting in a final film thickness that scales inversely with the square root of

rotational speed. Higher order effects, due to solvent evaporation and non-Newtonian

flow, result in slight deviations from this scaling law and a final film that is slightly

thicker at the center of the substrate [26].

Alternatively, high speed centrifuging of liquid on the interior of a drum is a

uniquely stable case of flow on a cylindrical surface. If the flow is on the outside of

the drum ('coating flow'), surface tension gives rise to edge effects at slow rotation

speeds, ribs form at moderate speeds, and the fluid is shed from the cylinder by

centrifugal forces at high speed [83, 35, 69, 53, 71].

On the inside of a drum ('rimming flow'), ribs or 'disks' form at low speeds [83].

Only at high rotational speeds does a uniform layer form on the inner surface of a

rotating cylinder, stabilized by centrifugal forces.

In contrast to spin coating, the final film thickness in centrifugal coating can be

governed by mass conservation rather than rotational velocity. Longer spin times

can be used to eliminate defects like bubbles that plague thick films of photoresist.

Finally, the film thickness on a perfectly cylindrical surface will not have the thickness

variation present in the radial direction during spin coating.

The following subsections present the derivation of a coating model, followed by

a discussion of implications on photoresist and PDMS films.

6.3.1 Fluid Dynamics

The transient behavior of a fluid inside a rotating drum is considered here, where the

drum is of radius r, length l, and the fluid layer has a variable thickness h($) that
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is a function of the local coordinate inside the drum. The drum is spinning rapidly

at a constant speed w with its axis oriented horizontally in a constant gravitational

field g (Figure 6-3).

z

rr

h(V)

Figure 6-3: Cylindrical coordinate system and characteristic dimensions for a hori-
zontal centrifuge drum with a layer of coating fluid on its interior.

In the following analyses, it will be assumed that the centripetal acceleration is

much greater than gravity (w2r > g) and that the fluid layer is everywhere thin

(h(4) < r).

The Navier-Stokes equation for incompressible flow of a Newtonian fluid is

p (vVv = -Vp+ pV 2 v +b
at/ (6.1)

where p is the fluid density and p is the dynamic viscosity, linked by kinematic

viscosity V = p/p. v, p, and b are the velocity field, pressure field, and body forces

(respectively). Continuity of an incompressible fluid requires that

V -u = 0 (6.2)

This problem can be analyzed in rectilinear coordinates - and g with velocity field
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components u and v (respectively) when the fluid layer is thin relative to the drum

radius (Figure 6-4).

S2
ra/

Figure 6-4: Rectilinear approximation of a coating flow flow inside a centrifuge drum.
The centrifugal acceleration rw 2 creates a stabilizing body force that causes sinusoidal
asperities (as shown) to decay to a uniform free surface of height h. Analysis shows
that asperity decay occurs as a first order system with fluid decay time constant Tf.

For small Reynolds number flows Re = pvl/p (where v and I are a characteristic

velocity and dimension) the inertial terms on the left hand side of (6.1) can be shown

negligible. For a horizontal centrifuge, the body force of a point located at angle @

on the centrifuge drum is

b1 g cos(wt + +)
b L g gc(wt + pr (6.3)

For high speeds w, gravity g is very small and its oscillation has a time average

of zero, justifying the assumption that b = [0, prW2 T. Expanding the rectilinear

notation in (6.1) with this assumption gives two partial differential equations that

relate the pressure field p and the velocity field [u, v]:

0 = ( + +0 (6.4a)
ax ax2 +y2

0 = + y + - prW2 (6.4b)
ay 8X2 9Y 2

Continuity (6.2) likewise becomes

Ox + = 0 (6.5)
x ay
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The boundary conditions on the fluid are given by a no-slip condition at the drum

interface and zero shear at the free surface:

uy=o = 0

yu y= t) = 0ax

(6.6)

(6.7)

Additionally, the pressure at the free surface is taken to be zero:

(6.8)Ty=h(x) = 0

To reduce these differential equations to a more tractable form, dimensionless

variables of order unity are considered. Length scales x and y are normalized by

characteristic lengths r and h, while pressure is normalized by centrifugal pressure

pw2rh:

z = 2 (6.9)
r

h
P

pw 2rh
UL

(6.10)

(6.11)

(6.12)

where u* is some (as yet) unknown

to the continuity equation gives

characteristic velocity. Applying these variables

- V yr
= h

u* h
(6.13)

Converting the system of differential equations (6.4) to these dimensionless vari-

ables gives
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ap pwrh u* rai9t a2 
fN (6.14a)

y wrxh r2 a2J

0 = -apwrh pwrh (6.14b)

It was assumed that h < r, which permits neglecting au/ax in (6.14a). Assuming

also that
U* pwrh
- < (6.15)
wr

the velocity gradients can be ignored in (6.14b) (this assumption will be checked once

the characteristic velocity u* is known). Dropping these terms simplify the original

differential equations to

ap a9p (6.16a)
ax ay2

0 ap pr2 (6.16b)

Integrating ap/ay (6.16b) across the fluid height h(x) with the boundary condition

(6.8) of zero pressure at the free surface, gives pressure p as a function of height y:

p(x, y) = prW2 (h(x) - y) (6.17)

From which ap/ax follows directly:

ap _ dh
x prW2 (6.18)ax dx

This result for ap/By enters (6.16a) as a forcing function. Because ap/ax is a

function of x alone, (6.16a) can be solved for velocity field u by integration and

application of the boundary conditions in (6.6) and (6.7):
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1 Op (y2
la = - yh(x) (6.19)

pYh(x))

At this juncture, the assumption of (6.15) can be checked. Substituting u*

u(y = h(x)) and ap/ax above into (6.15) gives

dh 2r
__< - (6.20)
dx h

Assuming smooth asperities, dh/dx will be of order h/r. This allows rewriting (6.20)

as h 2 /r 2 < 1, which clearly holds given the original assumption that h < r.

Next, the volume flow rate Q through a plane in x is given by integrating the flow

profile u (6.19) between 0 and h(x):

h(x)

Q(x) = u(x)dy = dP h3(x) (6.21)
1 3p dx

0

If variations in height h(x) are small around h, flow rate can be approximated as

1 dp3
Q(x) = -dp h3 (x) (6.22)

3pu dx

this flow rate Q must be related to the instantaneous change in height profile h(x)

to find the rate of decay of sinusoidal asperities (e.g. Figure 6-4). Applying a control

volume in an infinitesimally small volume about some x coordinate, one can show

that the temporal derivative of height is related to the spatial derivative of flow rate:

d h _dQdt - -d (6.23)dt dx

Substituting the volume flow rate Q from (6.21) gives

dh d (pr 2 dhh3 (X) (6.24)
dt dx 3p dx

This partial differential equation relates the temporal and spatial aspects of the
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fluid film profile h. The form of (6.24) admits a decaying sinusoidal solution for h

with wavelength Af:

h(x, t) = h + e/Tf cos 27r (6.25)

applying this solution form to (6.24) and solving for the asperity decay time constant

in the fluid layer Tf gives

r= - p 2  (6.26)
TY 472pro)2h 3

This result shows that sinusoidal height asperities decay as a first order system

with a time constant given by (6.26).

When the centrifuge drum is perfectly horizontal, the free surface of the fluid

layer will conform to a perfect cylinder about the drum's axis of rotation. At high

rotational speeds, the system is insensitive to gravitational effects from leveling errors,

but not completely decoupled. To analyze the effect of leveling errors, consider the

body force b on an arbitrary fluid element in r, z coordinates when the drum has

some leveling error Eaxis (Figure 6-5):

br = pw 2r + pg cos(Eaxis) cos(Wt + @) (6.27a)

bz = pg sin Eaxis (6.27b)

The time average of b, is pw2r. For small Eaxi, the mean body force vector will be an

angle of # from r:

fluid= tan-i p9 sin axis _ Eaxisg (6.28)
pw 2r w 2r

Because w2 r is typically much greater than g (often by a factor of 100 or more),

an error Eaxis in leveling is greatly attenuated (by the same factor of 100 or more).

For example, if the centrifuge axis is level within Eaxis = 1 degree (20 mrad) the free

surface would exhibit a taper of only Efluid = 200 prad.
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Figure 6-5: The horizontal centrifuge arrangement is insensitive to leveling errors

Eaxis. Because the centrifugal acceleration rw is typically much greater than gravity
g, the leveling error is greatly attenuated and is manifest as a much smaller taper

Efluid in the fluid free surface.

6.3.2 Photoresist

The first step of depositing a photoresist layer is paramount to obtaining a uniform

stamp thickness. This creates an ideal cylindrical surface that is replicated by the

outer diameter of the cast PDMS, independent of the quality (roughness, eccentricity,

or cylindricity) of the drum surface.

Solvents are used to tune the fluid properties of resists for coating. Spin coating

typically governed by dynamic viscosity and speed; thickness goes with the square

root of speed [26]. The solvent is evaporated from the photoresist before exposure or

development.

The same principle is used in this centrifugal coating application to adjust the

time constant Tf of centrifugal coating. The photoresist is entirely too viscous to

spread in a thin layer (several microns) even in a rapidly spinning centrifuge. For

example, coating a 50 pm thick layer of SU8 2015 (v=1250 cSt) in a 50 mm diameter

centrifuge spinning at 300 rad/s would result in an excruciatingly long time constant

Ty of nearly one day.

Solvent is added to the photoresist to both (i) reduce the viscosity (Figure 6-

6) and (ii) increase the effective height of the fluid film. These combined effects

212



dramatically reduce the time constant for equilibriation. For example, a typical time

constant is only a fractional second for a dilute (v=2.5 eSt) 500 pam film in a 50 mm

diameter centrifuge spinning at 300 rad/s. In fact, the drum must be spinning much

slower when the fluid layer is introduced to avoid transient turbulent flow as the fluid

matches the speed of the drum (the relevant Reynolds number is Re = wrh/v).
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Figure 6-6: Kinematic viscosity v
crochem).

= p/p of SU8 with respect to solids fraction (Mi-

The evaporating solvent limits the ability of the planarizing layer to compensate

for long wavelength errors in the centrifuge drum. While the diluted photoresist

converges to a uniform free surface, the evaporation of solvent leaves a resist layer

that is a fraction of the original fluid height. When the evaporation time constant

Te becomes shorter than the fluid equilibration time constant Tf, the fluid can no

longer reach the ideal free surface before additional solvent evaporates. This crossover

point is inevitable as Tf increases with about h-3 while Te will remain constant.

Nevertheless, the planarizing layer can easily remove drum imperfections at small

spatial wavelengths (e.g. machining marks) and attenuate long wavelength errors
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(e.g. drum eccentricity or taper).

The thickness of the photoresist is determined by mass conservation and can be

related to the initial volume of photoresist V:

#V = 2rrAlz (6.29)

where 3 is the solids fraction in the photoresist, r is the drum radius, h is the mean

resist thickness, and 1, is the length of the drum along its axis. This can be rearranged

to give the relationship
V 2,rrl,
V -w(6.30)
h#

which can be use to calculate the required volume of photoresist for a particular film

thickness h.

6.3.3 PDMS

PDMS is prepared by mixing a base and curing agent in a ratio of about 10:1. This

mixture will cure by crosslinking at ambient temperature in about 24 hours, though

heating can significantly reduce the curing time to a matter of minutes.

This temperature-dependent effect is used to an advantage in the centrifuge pro-

cess developed here. The PDMS prepolymer can be allowed to centrifuge to a uniform

free surface for several minutes, then heated and cured after the fluid has equilibri-

ated. An exceptionally uniform free surface can be achieved because there is no mass

transfer (i.e. solvent evaporation) or appreciable volume change upon curing.

PDMS has a density of about 1.04 g/cm3 and a viscosity of 3.5 Pa-s (Dow Corning).

Using a 25 mm radius centrifuge spinning at 300 rad/s, this results in a fluid decay

constant of Tf = 3 s for h = 1 mm.

By inspection, the time constant rf (6.26) shows that a thicker stamp (larger h)

will converge to a free surface faster, and thus allow a higher throughput when casting

stamps. Section 5.2 shows that thicker stamps provide a larger processing window

before feature collapse modes are observed. These two phenomena are complementary
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and allow designing stamps that are fast to cast and robust to use.

6.4 Machine Design

This section presents a machine designed ot provide a test bed for testing the cen-

trifugal stamp casting process introduced in this chapter. This machine was designed

to allow both (i) rotation of a hollow drum, acting as a centrifuge, and (ii) translation

of a stage parallel to the drum axis, allowing manipulation of a laser writing head.

The following subsections examine the specific design of the centrifuge, optics,

system assembly, and control.

6.4.1 Centrifuge

The centrifuge shaft must be carefully designed to provide repeatable motion, high

speed operation, and a high temperature tolerance. The drum (and thus shaft) tem-

peratures must be able to reach at least 1000 C for solvent evaporation, photoresist

crosslinking, and PDMS crosslinking.

A set of back-to-back angular contact bearings are used to support a steel shaft in

this initial design (Figure 6-7). This arrangement provides very good shaft constraint

(axial, radial, and pitch), but allows the shaft to expand relative to the bearing

housing.

The difficulties related to thermal expansion are not trivial in this bearing design.

The elongation of the shaft at an elevated temperature is given by

Al = alAT (6.31)

For a shaft length of about 50 mm between bearing and a temperature differential of

75 C, steel (a = 10 . 10-6 /C) will expand by 38 pm. A set of Belleville washers are

used to maintain bearing preload as the shaft expands through this distance.

A 70 mm face plate is integrated into the shaft for mounting centrifuge drums.

The drum is located to the faceplate around a center boss and secured with capscrews.
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A DC motor is coupled to the opposite end of the shaft using a flexible coupling

to account for shaft misalignment. For a centrifuge, the motor speed is typically

more important than torque; the only significant dynamics occur when starting or

stopping rotation. An available DC brush servo motor was used to drive the centrifuge

(Table 6.1).

Table 6.1: DC brush motor characteristics

Specification Value

Maximum Speed, w 3000 rpm

Torque constant, Kt 0.137 N-m/A

Winding resistance, R 1.9 Q
Winding inductance, L 3.3 mH
Inertia, J 0.186 g-m4

Encoder resolution 1000 lines/rev

The assembled shaft faceplate has 7 pm of radial runout and 15 pm of axial

runout.

Drums are turned on a mandrel so that the mounting face, outer diameter, and

Centrifuge drum
Shaft

Bearing housing Angular contact bearings

Belleville washers

/-Jam nuts

Figure 6-7: Centrifuge bearing design. Back-to-back angular contact bearings were
used to constrain the shaft axially and radially. Belleville washers provided a com-
pliant preload between the jam nuts and washers to accommodate large thermal
expansions during heating of the centrifuge drum. The centrifuge drums are inter-
changeable on the shaft.

216



inner bore can be machined in one setup. This maintains accuracy and results in a

balanced rotating assembly. The finished drums typically measure at about 3 pam of

total indicated runout (TIR) on the lathe before removal.

TIR of about 30 pm is typical after mounting each drum to the centrifuge shaft.

This runout is due to both alignment errors and propogation of runout in the cen-

trifuge shaft. The centrifuge (Figure 6-8) runs very smoothly with no vibrations at

300 rad/s, though no formal measurement was made of rotating assembly balance.

Figure 6-8: Assembled centrifuge. The bearing set and drive motor are mounted to
a common base with a kinematic coupling.

6.4.2 Direct Write Optics

Photoresist patterning requires selective exposure to a UV light source. Depending

on the resist, this exposure will cause cause either cross linking or degradation so that

the pattern can be developed in a solvent.

A direct write laser system is designed for this machine. A set of focusing optics

are used to direct a collimated laser beam to a small spot on the inner surface of the

centrifuge drum. The ultimate patterning resolution of the system will be dictated

by the minimum spot diameter achievable.
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Gaussian Behavior

Laser beams are characterized by a Guassian profile: the irradiance (power density)

follows a bell shaped distribution with the maximum intensity at the center of the

beam. The irradiance profile I is given as a function of radius r from the beam axis

[36]:

I(r) = Ioe-2r2/W 2  (6.32)

where Io is the irradiance at the beam axis and w is the characteristic radius of the

beam (Figure 6-9). From this relationship, it is clear that w is the radius at which

I(r) drops to 1/e 2 (or 14%) of the maximum Io.

10

0
-w 0 w

Radius, r

Figure 6-9: Gaussian beam irradiance profile; the beam irradiance drops from its
maximum power density Io to Io/e 2 at the characteristic beam radius w.

Focusing a Gaussian beam results in a finite spot size determined by diffraction

limits (Figure 6-10). The profile w(z) of the beam radius along the beam axis is

given by [36]
F /\2- 1/2

w(z) = Wo 1i + Z ) (6.33)

where the minimum radius wo at the beam waist is a function of wavelength A and

beam divergence angle 6:

wo = 1.22-- (6.34)
E
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Integrating the irradiance profile over the beam area gives the total transmitted

power P:
1 2

P = -irow2
2

(6.35)

The Rayleigh range is where the beam area doubles, or equivalently the radius

increases by v-2:
2

z1 = Iwo (6.36)

The depth of focus (centered about the beam waist) is typically considered 2z, (twice

the Rayleigh range).

Figure 6-10: Gaussian beam waist. A beam with a convergence angle of e with have
a Rayleigh range z, and a waist radius wo.

The relationship in (6.36) shows the primary tradeoff in laser focusing: smaller

spot diameters result in a smaller depth of focus. In other words, a higher resolution

system becomes increasingly sensitive to the relative positioning of the optics and

desired image plane. In the case of this direct write system, a smaller depth of focus

requires higher accuracy in the positioning of the optics and centrifuge drum.
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Table 6.2: Direct write laser specifications

Specification Value
Power, P 80 mW
Wavelength, A 405 nm
Beam diameter, D 6 mm
Maximum trigger frequency 1 MHz

Optics Design

A single element focusing system is designed for direct write operations in the cen-

trifuge drum (Figure 6-11). In this relatively simple architecture, a single plano-

convex lens is used to focus a collimated laser beam to a single spot.

Df

Figure 6-11: Single element focusing architecture using a single plano-convex lens to
focus a collimated laser beam to a concentrated spot. Characteristic dimensions used
in the design analysis are shown.

The Guassian beam waist equations can be rewritten in terms of design variables,

where D is the collimated laser beam diameter and f is the focal length of the lens.

A 405 nm wavelength, 80 mW power laser with a 6 mm beam diameter was selected

as a light source (Table 6.2). Figure 6-12 shows the design balance between spot

diameter 2wo and depth of focus 2 z, for these laser parameters.

For this initial design, a lens with focal length f = 75 mm was chosen to provide

reasonably small spot size (2wo = 12 pm) while still providing a relatively large depth

of focus (2z, = 0.6 mm).
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Figure 6-12: Laser focusing design tradeoffs. A shorter focal length f provides a
smaller spot diameter 2wo, but also results in a much shallower depth of focus 2 z,.
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Traditional direct write systems are designed for planar substrates, where there

is little or no space constraint. When writing on the inner diameter of a drum, the

beam path must enter along the axis of the drum and be redirected towards the drum

surface. This redirection is accomplished by incorporating a right angle prism in the

optics stack (Figure 6-13).

Extension tube

Plano-convex lens

Centrifuge drum-

Figure 6-13: Laser optics design using C-mount components. The beam travels
through a stack of C-mount components located coaxially with the centrifuge drum.
A right angle prism is used to redirect the focused beam towards the drum surface.

Standard C-mount components were used to build the optics assembly. An ad-

justable body tube was placed between the lens element and the prism to adjust the

beam focus to the drum surface. The entire optics stack was mounted to an aluminum

baseplate (Figure 6-14).
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Figure 6-14: Assembled focusing optics, mounted on a base with a kinematic coupling.

6.4.3 System Integration

The centrifuge drum and laser optics must be capable of relative motion to pattern

the entire drum surface. Cylindrical motion coordinates are used, where the drum is

able to spin in its own bearings (along 5) and the laser optics travel relative to the

drum axis (i). These two degrees of freedom allow patterning the entire area of the

centrifuge drum at a constant radius r.

The motion of the optics relative to the drum along z can be accomplished by

moving the either the optics or the drum. In this design, the optics are chosen as

the moving element because they have much lower mass. An available linear motion

stage with crossed roller bearings and a lead screw drive was selected as the motion

platform. The stage was driven with a motor identical to the one used in the centrifuge

drive (Table 6.1).

The centrifuge (Figure'6-8) and focusing optics (Figure 6-14) must be precisely

aligned, but should also be fixed in such a way to allow disassembly. Each component

must be removable, for example to allow draining solvent from the centrifuge drum.

To this end, the centrifuge and laser optics are located to the machine base using

three groove kinematic couplings (Figure 6-15).

All components are arranged on an optical breadboard to provide flexibility and

modularity. The centrifuge kinematically couples to a baseplate that mounts directly
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to the breadboard. The focusing optics kinematically couple to the moving surface

of the motion stage where the laser is permanently fixed; the motion stage is in turn

mounted to the breadboard.

The assembled machine is shown in Figure 6-16, where the position of the laser

optics along the axis of the centrifuge drum can clearly be seen.

The laser beam was collimated and aligned using a target reticle at each end of

the focusing tube (without focusing elements). The laser focus was adjusted to be at

the inner surface of the centrifuge drum. Once the system was aligned and focused,

0
0

Figure 6-15: Schematic of direct write system, showing removal of laser optics and
centrifuge drum from their kinematic mounts.
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the individual subassemblies could be removed and replaced without misalignment.

6.4.4 Servo Control

Each of the two servo motors is driven by a linear current amplifier. The servo

motor encoders and amplifiers are interfaced to a PC using a National Instruments

(a)

(b)

Figure 6-16: Assembled direct-write system. (a) The individual components are
mounted to an optical breadboard. (b) The laser and focusing optics travel along the
axis of the centrifuge drum.
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PCIe-6343 data acquisition card. Closed loop feedback control is performed using the

National Instruments Labview platform.

Centrifuge Control

The controller architecture for velocity control of the centrifuge drum is shown in

Figure 6-17.

+ Ge, G,

G5 s - -

Figure 6-17: Centrifuge controller block diagram, showing transfer functions for the
plant G,, filter Gf, and compensator Gc. The position output of the plant x is
differentiated for velocity control. The reference re, error e±, and effort u signals are
shown on the block diagram.

The encoder output x is differentiated find the instantaneous motor velocity x.

Care must be taken in the differentiator when the encoder is near its index, where

the position counter resets to zero. In a discrete time controller with control period

T, differentiation of an n line encoder can be accomplished with a piecewise discrete

differentiator:

(xt - xt-1 + n)/T (xj - xi1) < -n/2

(xt - xt-1)/T -n/2 < (xt - xt_1) < n/2 (6.37)

(xt - xt_1 - n)/T (xt - xt_1) > n/2

The differentiated signal is filtered to remove the high frequency content that

comes from differentiating a discrete spatial signal:

1
Gf(s) = 1 (6.38)

rys +1
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The current-driven centrifuge is a second order system that appears as a pure

mass (neglecting higher frequency dynamics):

G,(s) 1 (6.39)
(Jm + Jc)s2  (.9

where Jm is the motor inertia (Table 6.1) and Jc is the centrifuge inertia. With respect

to velocity, the mechanical transfer function becomes first order and permits integral

control without phase compensation. Hence, the centrifuge speed is controlled using

proportional-integral (PI) control implemented as a lag compensator:

Ge(s) = Kc TCs + 1 (6.40)

This controller can be tuned by setting the time constant rc at the desired band-

width and gradually raising Kc until an appropriate amount of step response overshoot

is observed. The achievable bandwidth is limited primarily by the flexible coupling be-

tween the motor and drum, which adds higher frequency factors to the plant transfer

function G,.

Stage Control

The controller architecture for the linear motion stage is shown in Figure 6-18. A

velocity control loop is at the center of this control structure, nearly identical to that

used for the centrifuge but with the addition of a feed forward term.

The idealized plant transfer function of the stage resembles

G,(s) 1 (6.41)

where the stage mass m has been reflected back through the lead screw of pitch p.

No integrator is required in Gc, in the position feedback loop for reference tracking;

the inner velocity control loop already includes an integrator in Gc. This allows using

a simple proportional control law in the position loop:
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Figure 6-18: Optical stage controller block diagram, showing transfer functions for
the plant GP, filter Gf, position compensator Gc, velocity compensator Gc, and
feedforward Gff. Nested state feedback loops are implemented, where the position
output of the plant x is differentiated for velocity z control in the inner loop. The
position referenece rx, position error ex, velocity reference rg, error es, and effort ru
signals are shown on the block diagram.

Gex = Kex (6.42)

The lead screw in the stage has a finite amount of friction, which presents partic-

ular problems when reversing direction. With no compensation, the integrator in Gc

must slowly wind up to overcome the friction (which is often much greater than the

inertial load of the stage). To counter this effect, a feedforward term Gf is added to

the velocity control loop, where

-Kff r< 0

Gf = 0 r = 0 (6.43)

Kff > 0

This controller is tuned in three steps. First, Kff is set to the effort required to

maintain steady state motion. Second, Gc, is tuned as described for the centrifuge
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controller. Third, Kc, is slowly increased until acceptable overshoot is observed in the

x/rx response. The achievable bandwidth is limited by a flexible coupling between

the motor and stage along with the Coulombic friction in the lead screw.

This control architecture has several advantages over a conventional proportional-

integral-derivative (PID) or lead-lag compensator architecture. Isolating the velocity

control loop decouples controller tuning, permits straightforward application of feed-

forward to overcome Coulomb friction, and gives the option to jog the stage using

velocity commands (for example from a joystick).

6.5 Experiment

The planarizing step is expected to create stamps with very low surface roughness,

while the centrifuge action is expected to make stamps of very uniform thickness.

A set of experiments and measurements were carried out to investigate these two

hypotheses, as well as demonstrate the feasibility of developing direct-write pattern

on the interior of the centrifuge drum.

6.5.1 Experimental Protocol

Stamps were created using the three coating steps proposed in this chapter (Figure 6-

1): (i) a planarizing layer of photoresist, (ii) a patterned layer of photoresist, and

(iii) a layer of PDMS.

SU8 is traditionally processed in five steps: (i) application via spin coating, (ii) a

pre-exposure bake to evaporate solvent, (iii) selective UV exposure to release acid,

(iv) a post-exposure bake to cross-link the photoresist with the acid catalyst, and

(v) a developer bath to dissolve undeveloped photoresist. The following description

shows how these traditional processing steps map to centrifugal coating and direct

write developing.
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Planarizing Layer

SU8 2015 (Microchem) was used for the planarizing layer. SU8 2015 has a solids

fraction of # = 0.63, the drum has an internal radius of r = 26.4 mm, and the length

of the cavity is l = 60 mm. This results in a ratio of 0.015 mL / pm of resist to final

film thickness (6.30). 1.0 mL of resist was used for the planarizing layer (about 67

pm final thickness).

In the experiments, the resist was carefully metered from a 2.5 mL syringe into

a small 10 mL glass beaker. SU8 thinner (cyclopentanone) was added to the beaker

to bring the total volume to about 8 mL and mixed using a stirring rod. When fully

mixed, the resist solution was stored in a 10 mL syringe for dispensing. Care was

taken during mixing to not introduce bubbles into the solution.

The aluminum drum was rinsed with acetone and allowed to dry. The resist

solution was introduced from the syringe into the centrifuge spinning at 50 rad/s,

after which the centrifuge was ramped to 300 rad/s over a period of 5 s. Introducing

the resist at a moderate speed prevents turbulence and bubbles, but still promotes

formation of a uniform layer.

The solvent was evaporated from the photoresist solution by heating the centrifuge

with a heat gun to about 950 C (as indicated by the material data sheet) for one hour.

A thermocouple was used to measure the air temperature near the drum surface and

adjust the heat gun accordingly (Figure 6-19).

The resist was exposed after the solvent evaporated and the drum cooled. The

planarizing layer was exposed by a set of three 405 nm wavelength LED modules, each

with a light output of 20 mW. With the drum spinning at 300 rad/s, the LED lights

were translated along the drum axis 2 at a rate of 5 p/s (determined empirically).

After exposure, the SU8 layer was again heated to about 95' C for one hour to

cross link the resist. The planarizing layer was post baked at about 200' C for one

additional hour to ensure full crosslinking and promote adhesion to the aluminum

drum. Planarizing layers without this post bake delaminated from the drum when

the resist solution was introduced for the patterning layer.
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(a) (b)

Figure 6-19: Curing the planarizing layer of photoresist with (a) near-UV LED ex-
posure and (b) thermal treatment with a heat gun and thermocouple (arrow).

Patterning Layer

The patterning layer also used SU8 2015. 0.5 mL of resist was used, corresponding

to a final layer thickness of about 33 pm. The resist was prepared, introduced into

the drum, and solvent evaporated in the same manner described previously.

The patterning layer was exposed with the laser and focusing optics in a set of

exposure experiments. The drum was rotated at 300 rad/s while exposed with the

laser for periods of 8, 10, 15, and 20 s. A series of lines were written with the laser

head at each exposure level on a pitch of 50 pm using a step-and-expose routine.

Each of these exposures were at significantly higher energy levels than indicated

by the material data sheet. The 405 nm wavelength near-UV light sources used have a

significantly different effect than the intended 365 nm i-line UV wavelength. Figure 6-

20 shows that the material transmittance is significantly higher at 405 nm than 365

nm, requiring much higher energy input to achieve the same absorption.

Cross linking of the photoresist was accomplished by heating to 950 C for one

hour. After cooling, the resist was developed with SU8 developer (Microchem) and

rinsed with isopropyl alcohol as described in the material data sheet.
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PDMS

PDMS (Sylgard 184, Dow Corning) was mixed at the recommended 10:1 base:curing agent

ratio in a 50 mL syringe. The PDMS was degassed under vacuum to remove bub-

bles. 10 mL (a slight excess) of PDMS was dispensed into the centrifuge drum while

rotating at 50 rad/s, then the drum was ramped to 300 rad/s.

The centrifuge was allowed to operate for about 10 minutes to equilibriate the

PDMS layer to a uniform thickness. Excess PDMS was allowed to exit through the

open face of the drum so that the lip of the drum defined the exact inner diameter

of the PDMS layer.

The heat gun was used to heat the spinning centrifgue drum to about 65 C for

one hour to crosslink the PDMS.

After cooling, the cured PDMS stamp was removed from the drum using tweezers

and rinsed with ethanol.
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Figure 6-20: Transmittance of SU8 with respect to wavelength A (Microchem).
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Mounting

The cylindrical stamps are not trival to mount on rolls. In particular, attempting to

slide the stamp over the roll is nearly impossible because the PDMS tends to cling to

the roll surface.

An air cushing technique was developed to accurately mount stamps in a stress

free state (Figure 6-21). A special bushing was fabricated to supply compressed air

between the stamp and roll. The compressed air creates a fluid film that acts as a

bearing and prevents the stamp and roll from contacting. This fluid bearing allows

sliding the stamp over the roll in a stress free state. When the stamp is correctly

positioned, the air pressure is released and the stamp collapses against the roll where

it remains naturally adhered. The portion of the stamp connected to the bushing can

be released, leaving only the cylindrical stamp wrapped around the roll.

(a) (b)

Figure 6-21: Cylindrical stamps are mounted to rolls using an air cushion. (a) The
stamp is connected to a bushing that supplies compressed air between the roll and
stamp. (b) The air creates a fluid bearing and prevents the stamp and roll from
contacting, allowing the stamp to slide onto the roll in a stress-free state. Releasing
the air pressure allows the stamp to collapse against the roll, where it remains fixed
by the large work of adhesion between the two surfaces. Scale bars: 5 cm.
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6.5.2 Measurement and Results

The experiments were successful in creating microfeatures in the SU8 patterning layer

and replicating the same into the PDMS stamp (Figure 6-22).

Figure 6-22: Image of centrifuge drum with planarizing and patterning layers, along
with a cylindrical PDMS stamp. The direct write features on the inner diameter of
the centrifuge drum (black arrow) were exactly replicated on the outer diameter of
the stamp (white arrow).

Exposure Level

The laser exposures at 15 and 20 s created well defined features in the photoresist. The

10 s exposure created features that appeared well defined, though some delaminated

from the underlying planarizing layer after casting the first PDMS stamp. Exposure

at 8 s failed to create well defined features (Figure 6-23).
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Figure 6-23: Laser exposure level experiment showing gratings formed by (from left
to right) 20, 15, 10, and 8 s of exposure. Note delamination of 10 s features at the
top of the frame and poor definition of 8 s features.
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Surface Roughness

The surface roughness, feature definition, and uniformity of the photoresist layers

could not be measured with conventional metrology equipment on the interior of the

drum. Instead, measurements were made of the respective PDMS stamp features and

the resulting data used to infer the quality of the photoresist.

Measurements of the PDMS surface with a white light interferometer (Zygo)

showed very low surface roughness of 22 nm RMS (Figure 6-24).
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Figure 6-24: Surface map of planarizing layer

sured from a replicated PDMS stamp surface.
shown 22 nm RMS roughness, as mea-

Thickness Uniformity

To evaluate the thickness uniformity of the stamp, 2 mm diameter cores were cut

from the stamp at multiple locations (Figure 6-25a). These samples were mounted

to a glass microscopy slide by floating on a layer of ethanol and allowing the ethanol

to evaporate; this created a stress-free mount (Figure 6-25b).
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Coring locations

(a) (b)

Figure 6-25: Core samples for stamp thickness measurement. (a) Location of core
samples in stamp for thickness measurements and (b) cores mounted to a glass mi-
croscopy slide for measurement.

The height difference between the glass slide and top surface of the stamp core

was measured using a white light interferometer (Zygo). A plane was fit to the data

points corresponding to the glass slide. The height of the core was measured as the

mean distance between this plane and the remaining data points (Figure 6-26).

The height of three sets of cores was measured to establish measurement re-

peatability: (i) from a first stamp, (ii) a second replicate from the same stamp,

and (iii) from a second stamp. The first and second stamp were cast in the same

centrifuge drum with the same planarizing layer. An analysis of variance (Table 6.3)

showed a measurement repeatability variance of 3.73 [m 2 , and that there was no

significant effect due to the specific stamp or core replicate (p > 0.05). This implies

that the core measurements are an accurate measure of stamp uniformity.

The analysis of variance showed a statistically significant effect due to both axial

and angular core position (p < 0.05). The mean thickness residual is summarized in

Figure 6-27 as a function of core location.

The thickness residuals indicate both a taper and an eccentricity in the stamps.
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Figure 6-26: Interferometer data of core sample. The thickness of the sample was
measured as the height between a best fit plane to the glass slide and a parallel plane
at the mean height of the core surface.

The residual steadily decreases as a function of axial position, indicating a taper of

about 200 prad (10 pum over 60 mm). Eccentricity of about 10 pm TIR is indicated

by the maximum and minimum residuals at opposite angular positions (0 and ir).

Despite deviations of about 10 prm over a 1 mm stamp thickness, the drum runout

has been attenuated. The thickness residuals are bounded by measurements of the

Table 6.3: Stamp thickness analysis of variance. The axial and angular core po-
sition are significant effects, while the casting replicate is not. This indicates that
the measurements of variation in stamp thickness are statistically significant, with a
repeatability variance of 3.73 m.

Effect Variance (pim 2) p value
Casting Replicate 0.01 0.9973
Axial Position 339.07 <0.0001
Angular Position 148.36 <0.0001
Error 3.73
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Figure 6-27: Stamp thickness residual as a function of axial position; separate curves

indicate different positions along @. The data suggests both a slight taper and eccen-

tricity of about 10 pm.

drum runout after mounting on the centrifuge (30 pm and 8 pm TIR at each end of

the drum as indicated on Figure 6-27).

It is hypothesized that the stamp residuals are due primariliy to errors in the free

surface of the planarizing layer. While the PDMS is able to conform to a uniform free

surface over time, the planarizing layer is subject to competing fluid dynamics and

mass transfer phenomena because of solvent evaporation. It is believed that while

the planarizing layer is able to attenuate runout and taper in the drum surface, it is

unable to reach a perfectly cylindrical free surface like the PDMS.

Feature Definition

The quality of the direct-write features on the inner diameter of the centrifuge drum

was assessed by casting a PDMS stamp in the drum and measuring the stamp. Fig-

ure 6-28 shows optical micrographs of features, both from a top view and a cross

sectioned view, for three different exposure levels. These micrographs show that fea-
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tures can indeed be produced using the centrifugal coating, direct write, and casting

technique developed in this chapter.

An exposure level of 15 s produced features that were very near the 12 pum theo-

retical spot size of the laser system; exposure at 20 and 10 seconds resulted in either

over- or under-exposure of the features. The edge roughness of the features is poor

in this proof of concept demonstration, likely due to the low sensitivity of the pho-

toresist to the 405 nm laser light, mechanical vibration over multiple turns of the

drum, and reflection from the rough aluminum centrifuge surface or small bubbles

in the photoresist. It is believed that better matching of the laser wavelength and

photoresist sensitivity, improved centrifuge bearings, and an antireflective treatment

on the drum surface will produce smooth feature edges. Feature resolution.

(a) (b) (c)

Figure 6-28: Micrograph of direct-write features replicated in PDMS stamps at (a)
20 s, (b) 15 s, and (c) 10 s exposure per line using an 80 mW laser in a 52.8 mm
diameter centrifuge drum. The laser spot diameter was 12.8 pm and the drum was
rotating at 300 rad/s during exposure. Scale bars: 50 tm.

Mounting Alignment

The stamp mounting uniformity was evaluated by fixing the mounted stamp and shaft

in an air bushing, where it was held with opposing collars. A video camera captured
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the location of the line features in the stamp as the roll freely rotated in the bushing.

The video showed a periodic axial alignment error of about 100 Pm over one rotation

of the roll. It was unclear whether this error was entirely due to misalignment of the

stamp or if the collars holding the shaft contributed to a periodic error.

It is emphasized that this level of accuracy was obtained using a very simple

mounting method with no control mechanisms. It is expected that stamps could

be mounted with single micron accuracy levels in an ideally stress free state with

appropriate development of the technique.

6.6 Summary

This chapter developed a new process for casting large, dimensionally uniform stamps

for roll-based soft lithography. Problems with conventional planar stamp casting,

including scalability and roll mounting difficulties, were used to motivate a centrifuge

based process. Three sequential fluid layers are applied in a horizontal centrifuge

drum to create a continuously patterned cylindrical stamp: (i) a planarizing layer

of photoresist, (ii) a patterned layer of photoresist, and (iii) a layer of PDMS that

becomes the cylindrical stamp.

The fluid dynamics of a rimming flow in a centrifuge drum were analyzed to

determine the time constant of asperity decay. If the centrifuge is operated for a

sufficient number of time constants, the free surface of the fluid will converge to

a perfect cylinder. This asperity decay results in very low surface roughness and

exceptional dimensional uniformity when the fluid layers are cured with UV or thermal

processing.

A proof of concept machine was constructed to demonstrate the feasibility of

this stamp manufacturing process. A direct write laser system was used to create

10 micron features on the inner diameter of the centrifuge drum. Measurement of

stamps produced in the patterned drum exhibited low surface roughness (22 nm),

good dimensional uniformity (10 pm / 1 mm) and good feature replication.

A next generation prototype machine should incorporate improved bearing sys-
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tems and large numerical apperture laser optics for patterning of small features at

the diffraction limit. This direct write approach can be scaled to features with a half

pitch of the laser wavelength being used. For smaller patterns, interference lithogra-

phy or other advanced approaches will be required. At a minimum, the direct write

approach can easily produce micron and sub-micron patterns for a large number of

flexible electronics and metasurface applications.

This centrifuge technique can be adapted to other stamp materials. For example,

harder polymers can be cast for use in NIL or self aligned imprint lithography (SAIL)

stamps. Very durable nickel stamps can be produced for NIL through electrodepo-

sition. With appropriate development, this centrifugal stamp casting process should

find wide application in roll-to-roll technologies beyond pCP.
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Part IV

Process Control
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Chapter 7

Machine Design

7.1 Motivation

Roll based processes have long offered high processing rates and economies of scale,

especially in the areas of surface coating and patterning. New methods of contact

lithography have been developed that allow patterning micro and nanoscale features

through mechanical contact of a patterned stamp to a substrate, including micro-

contact printing (puCP) [59, 106] and nanoimprint lithography (NIL). Adapting these

contact lithography processes to roll based platforms [96, 4, 1] promises to function-

alize large surface areas at low costs, with applications in engineered surfaces, flexible

electronics, and photonics.

Implementing roll-based contact lithography requires extreme precision in asso-

ciated roll based machinery. The characteristic dimensions of these processes are

typically submicron, whether the stamp feature relief in pCP or the residual layer

thickness in NIL. These dimensions require the utmost precision and accuracy in roll

positioning equipment, below levels that are typically required in well established roll

coating processes. Moreover, the characteristic contact force in PCP is on the order

of 10 N per meter of roll length (Chapter 4), requiring very accurate machinery to

observe or control contact pressure.

The objective of this work is to develop a precision positioning stage to control

the height y and pitch 0 of a roll over a substrate. These degrees of freedom allow
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(i) experimental investigation of contact printing over a range of contact parameters

and (ii) active compensation for non-uniformities in the contact printing stamp or

substrate. In Chapter 5 develops a process model that includes some nominal roll

displacement 6 along y, a spatially dependent error component E(z, 0), and a control

effort u (5.4). For reference, this result is repeated here:

6*(z, ) = S+ E(z, ') + u(z,4 ) E (0, 6c) (7.1)

Developing a machine to control roll height y and pitch 4 allows exerting a control

effort u = y(O) + 6(@)z, where y and 6 can have trajectories dependent on roll angle

4. Substituting this expression for u gives

6*(z, ') = S + E(z, 4) + y(O) + zO(V) E (0, 6c) (7.2)

where the roll positioning stage is now able to compensate for errors at the contact

interface that have low spatial frequencies in & or midrange spatial frequencies in 4.

substrate

motion

Figure 7-1: A simply supported shaft design can be moved relative to a printing
substrate in the y and 0 directions by independently controlling the position yi of
each endpoint

The design and control principles developed here will provide models for both a
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lab scale test bed and a future manufacturing scale machine.

7.2 Design

The lab scale printing considered here requires a mechanism that can accommodate

100 mm Si wafer substrates or 100 mm wide flexible webs with submicron position

resolution and mN force sensitivity. Millimeter range of motion is required to ac-

commodate a variety of stamp and substrate thicknesses. Accurate experiments of

stamp contact mechanics will require a stiff structural loop, high sensor accuracy,

and minimal hysteresis for repeatable load-displacement data between the roll and a

substrate.

7.2.1 Design Concept

It is common for coating and printing machines to use a cantilever shaft design when

printing widths are less than ca. 0.5 m. While this work targets a printing width of

only 100 mm, a simply supported shaft design is employed that offers superior stiffness

characteristics over cantilever designs. A simply supported shaft exhibits nearly ten

times the stiffness in bending and eliminates large moments on the support bearings

along with the corresponding angular deflections. Moreover, the height and pitch of

the shaft in the Q and 6 directions be controlled by independently manipulating the

position of each end support (Figure 7-1).

To implement this concept, bearings at each end of the roll must provide the free-

dom of (i) shaft rotation , (ii) shaft translation in the lateral direction , (iii) vertical

translation Q, and (iv) rotation 9 within the y - z plane (Figure 7-2a). The first and

second degrees of freedom allow the shaft to be kinematically constrained in the i

and 4 directions by contact with the (eventual) substrate.
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7.2.2 Bearings

The simply supported shaft design concept is implemented as a parallel kinematic

mechanism, allowing design of identical bearing sets for both ends of the roll. A serial

bearing design was chosen for simplicity of implementation and ease of actuation and

sensing. The desired degrees of freedom are implemented by placing deep groove ball

bearings (0 motion) between ground and the box frame of a flexural bearing (Q motion)

that in turn supports an air bushing (i, L motion) (Figure 7-2b). Ball bearings were

chosen for high stiffness and economy; their associated nonlinear behavior at small

angular displacements was not found to adversely affect the machine resolution. The

flexural bearings provide repeatable motion throughout the desired vertical range,

straightforward integration of position sensing through the use of strain gages, and

can be absorb the weight of the shaft to minimize actuator power. Finally, the air

bushings (NewWay S305001) provide frictionless, repeatable motion of the shaft.

flexural

bearing

Ay

(a) (b)

Figure 7-2: Degrees of freedom for end bearings of a simply supported shaft. (a)
Desired Cartesian degrees of freedom at each shaft end point and (b) serial bearing
design to provide desired degrees of freedom

Design of the flexural bearing thus becomes a key design challenge. A symmetric

parallel flexure design is used (Figure 7-3) to achieve linear performance throughout
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the range of motion, a thermally balanced design, and large range of motion. The

load and actuators are easily placed through the center of stiffness of the flexure stage

in this configuration.

17

I

Figure 7-3: Parallel flexure design showing key design parameters and desired stage
motion along Q.

The stiffness of each flexural bearing must be chosen to provide sufficient preload to

offset the shaft weight while not requiring excessive actuator power to move through-

out the range of motion.

Each flexure blade can be modeled using Euler beam theory to develop a set of

design equations. Straightforward application of beam theory shows that the stiffness

of each flexure blade is

kbeam - 12E (7.3)
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and that the maximum strain occurs at the root of each blade as a function of

blade displacement 3 beam

(7.4)Emax 3h 6beam

If the stress in the beam is to remain below some safety factor n of the yield stress,

the following constraint is imposed:

ory 1
Emax < -

E n
(7.5)

This bearing design has four parallel pairs of serial flexure blades (Figure 7-3),

resulting in a stage with twice the stiffness and twice the displacement of a single

blade:

24EI
kf lexure = 2 kbeam =7.6 (7.6)

(7.7)

The total displacement of the flexure must absorb both the preload of the shaft

weight mg and the static range of motion imposed by the actuator force fa:

kflexure 6flexure > mg + fi (7.8)

The stiffness must also be low enough to permit the desired range of motion lyIl
with actuator force Ifil:

kfiexure <
lydl

(7.9)

The formal design challenge is to minimize the actuator power requirements and
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overall flexural bearing envelope (namely, length 1) while satisfying the constraints of

(7.5), (7.8), and (7.9). In doing so, each dimension in Figure 7-3 must be chosen along

with the actuator sizing |fil. A heuristic solution method is used where the static

actuator force Ifil is matched with the load weight mg in (7.8) rather than applying

a rigorous optimization approach. A solution is chosen that lies on the boundaries of

constraints (7.5) and (7.9), allowing deterministic calculation of the flexure height h

and length 1 as a function of flexure thickness b.

Applying this heuristic method to the design at hand results in actuator sizing

of 25 N each to support a total shaft weight of 50 N. The desired flexure stiffness

kflex.re is 25 N/mm from (7.9) to achieve 1 mm of motion lyil. Finally, using 6061-T6

aluminum (E = 69 GPa, uy=240 MPa), this stiffness and range are satisfied using

flexure blades that are h = 1.25 mm thick, b = 25.4 mm (1 in) wide, and I = 65 mm

long with a safety factor n = 4.

This flexure design provides large range and exceptionally linear force-displacement

behavior, but exhibits dynamic resonance from the intermediate flexure grounds. Nu-

meric simulations (SolidWorks/COSMOS) verify linear load-displacement over the

entire range of motion and validate the stiffness and maximum stress within 5%. The

same simulations show the undesired modes of the flexural bearing were found to be

at or above 150 Hz (Figure 7-4), about an order of magnitude greater than the desired

system bandwidth.

The stiffness of each flexural bearing is very sensitive to the blade height h ((7.6)).

As a matter of economy, the flexural bearings were machined using an abrasive water-

jet, though ideally electric discharge machining (EDM) would be used to manufacture

more accurate monolithic elements.

7.2.3 Actuators

The actuators must have sufficient force to both meet the requirements of (7.8) and

(7.9) and to provide sufficient dynamic acceleration. The inertial dynamic impedance

can be written in the frequency domain as
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ft(s) = ms2 (7.10)
yi (s)

The supported mass is about 5 kg, the desired bandwidth is on the order of 30

Hz, and the typical range of motion required for control of the roll contact region is

about 10 pim. Substituting these values into (7.10) gives a required dynamic force of

1.8 N. The actuator force sizing is thus dominated by the static requirements given

in (7.8) and (7.9) rather than the dynamic requirement of (7.10).

Lorentz force actuators (voice coils) were chosen as actuators because they can

provide bidirectional non-contact force over the range of force and displacement de-

sired. While electromagnetic actuators require significantly more power for static load

positioning than piezoelectric actuators, they are capable of much larger ranges and

do not have the hysteresis typical of piezoelectrics. Coils capable of t 25 N continuous

force (H2W NCC03-15-050-2X) (Table 7.1) were chosen to satisfy the range require-

ment (7.9) given the stiffness of the flexural bearing (25 N/mm) and the desired range

(I 1 mm).

The actuators are placed directly between the flexural bearing box frame and

the moving stage (Figure 7-5). This location places the resultant force through the

center of stiffness and center of mass of the flexural bearing and load, respectively.

(a) (b)

Figure 7-4: Flexural bearing design showing (a) second and (b) third dynamic modes
of flexure stage from numeric simulation at 153 and 165 Hz, respectively.
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Table 7.1: Actuator specifications

Specification Value
Stroke 6.4 mm
Resistance 3.75 Q
Inductance 1.30 mH
Motor Constant 11.9 N/A

The actuator coils and magnets are mounted with brass screws to avoid magnetic

cogging.

Figure 7-5: Actuator and sensor placement on each flexural bearing.

Each actuator is driven with a linear current amplifier.
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7.2.4 Sensors

The position of the flexural bearing varies linearly with the strain in each flexure blade

(7.4), allowing strain gages to be used as position sensors; [78] provides a detailed

analysis of strain gage design for low noise position sensing. The large flexure blades

employed here allow mounting a full Wheatstone bridge array on each flexural bearing

without significant thermal effects; this provides a more sensitive and thermally stable

measurement.

Each Wheatstone bridge is mounted on a pair of flexure blades opposite the actua-

tor to minimize thermal drift from actuator heat dissipation. The bridge elements are

arranged in a thermally balanced pattern on the flexure pair as shown in Figure 7-6.

Figure 7-6: Circuit diagram of strain gage sensors in a full Wheatstone bridge con-
figuration and corresponding mounting locations on each flexural bearing.

Referring to the notation in Figure 7-6, the output of this bridge can be derived by

applying the identity Ri = R- (1+GF.-q). The strain Ei in each gage is governed by the

deflection of the respective flexure blade as given in (7.4). Substituting ei= -62 = CI
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and 63 = -64 EIi, voltage divider equations find V and V2:

V1 R(1+ GF -6i)
Vb - R(1+GF . c1)+ R(1 - GF - .)

V2 R(1 + GF - 11)

V6 R(l + GF -e11) + R(1 - GF .- Ci)

It follows that the bridge signal voltage signal is

1i- v2 _1

Vb - -GF (Eli - 6i) (7.13)
V 2

The relationship in (7.4) shows that Elf relates linearly to the position of the interme-

diate stage 6 beam,I = yg, while -ej relates linearly to the height difference between

the flexure ground and stage obeam,I = Ys - Yg. Substituting these identities give the

voltage signal from the strain gage bridge:

V1 - V2 3h(7.14)

V 2 G () (g + [YS -Yg])(

Hence this Wheatstone bridge configuration thus observes only the position of the

flexure stage with respect to ground and is nominally unaffected by the exact position

Zg of the intermediate ground.

The small gage factor GF of the strain gages requires signal amplification. If an

instrumentation amplifier with gain Ga is used, the position sensor gain Kp, can be

determined:

Vs = K y VGa 4GF y)] yj (7.15)

where K,4 relates position yi and the sensor voltage signal V.

Metallic strain gages (Omega SGD-2/350-LY13, 350 ohm, GF = 2.02) were as-

sembled to the flexure blades using cyanoacrylate (Loctite 401). Each bridge is driven

with Vb= 5 V and amplified by a commercial strain gage conditioner (Intronics Power

2B31K).

Velocity sensors are integrated into each flexural bearing to simplify full-state

controller feedback without implementing differentiators or observers. Velocity is
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measured using the open-circuit voltage V, generated across secondary voice coils,

determined by the velocity constant K, of the coil.

V = Kvi - d (7.16)
dt

These secondary coils are 12 mm diameter and 19 mm long with about 100 turns

of wire; these are small enough to be embedded within the flexural bearing box frame

opposite the actuator coils (Figure 7-5). Each velocity signal is amplified by an

instrumentation amplifier (Analog Devices AD620ANZ).

7.2.5 Mounting

A schematic of the full parallel kinematic mechanism is shown in Figure 7-7, where two

identical flexural bearing assemblies support the shaft at both endpoints. In practice,

the ball bearings are supported in bearing blocks that can be adjusted vertically along

mounting posts; this allows for coarse adjustment of the shaft height over different

substrates and instrumentation. Figure 7-8 shows the fully assembled machine with

such instrumentation.

256



Figure 7-7: Schematic of complete kinematic stage design. Key mechanical elements

are highlighted.
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Figure 7-8: Precision roll positioning stage. The flexural bearing pivots are mounted
on vertical shafts to provide coarse adjustment above various substrates. In the state
shown, optical instrumentation is mounted beneath the roll for in situ stamp contact
observation.
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7.2.6 System Model

A kinematic model of the system is required to relate the forces and displacements

exerted at each flexural bearing to the height and pitch of the supported shaft in

a Cartesian coordinate frame (Figure 7-9). Each support point of the shaft can be

represented by p1 and P2 as

= i y+ sin 0

yj Cos6

(7.17a)

(7. 17b)i =1, 2

(a) (b)

Figure 7-9: Machine kinematics. Cross section schematic of (a) the flexural bear-
ings and shaft at zero displacement and (b) the same with finite flexural bearing
displacement.

The pitch 0 of the shaft can be found from the slope between points p1 and p2:
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tanO Ply - P2y
Plz ~ P2z

(Y1 - y 2 ) COS O

l - (y1 - y 2 ) sin 0

(7.18a)

(7.18b)

And the height y of the center of the roll can be found by interpolating between

points pi and p2:

Piz
Y =ply+ P2z - Plz (P2y Ply)

1 -y sin 6
=J y1S co - 2 . (Y1 -- Y2) COS 0

1 - (Y1 - y2 ) sin (

(7.19a)

(7.19b)

The flexural bearings only permit motion of about 1 mm and I is 228 mm, re-

stricting 0 to a small angle. For this small angle case, (7.18a) and (7.19a) reduce

to

0 = -(Y - Y2)

1
Y = (y1 + Y2)

Application of (7.20) and (7.21) gives the forward and reverse kinematic equations

of the mechanism. Similarly, the net force f and torque T on the shaft can be shown

to reduce to

1
f = -(fi + f2)2

r = -(fi - f2)

(7.22)

(7.23)

The dynamics of the system are developed in terms of these kinematic variables

(y, 0, f, and r) rather than the sensor and actuator variables (yi, Y2, fl, f2) without
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loss of generality. This transformation requires the following rotation matrices:

y 1/2 1/2 y1 (7.24)

0 -1/1 -1/1 Y2

[ [(7.25)
T 1/2 -1/2 f2

The net force and torque on the roll can be written in the time domain as

m
fi - f2 = k1 y1 + k 2 Y2 + biy1 + b2 j2 + - (I + y2) (7.26)

2

1 1 J.
-(f1 - f2) = (ky 1 - k2y2) (b1i1 - b2 2) + -(y1 - y2) (7.27)

where ki and bi are the stiffness and damping of each flexural bearing (i = 1, 2), m

is the equivalent mass of the shaft and air bushings, and J is the rotational inertia of

the shaft, air bushings, and flexural bearings. (7.26) and (7.27) can be expressed in

terms of the variables given in (7.24) and (7.25) and written in standard state space

matrix form ( =Ax + Bu, y = Cx + Du):

0 1 0 0 0 0
k1+k 2  b1_+b2 l(k1+k 2 ) I(b1+b 2 ) 1/M 0

m m 2m 2m X+ u (7.28)
0 0 0 1 0 0

1(k1-k 2 ) 1(b1 -b 2 ) l2 (k1-+k 2) 12 (bi+b 2 ) 0 1/J
2J 2J 4J 4J _

1 0 0 0
y =X + 0 - U (7.29)

0 0 1 0

where the state vector, input vector, and output vector are

x = [y i 0 (7.30)
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U =If rT (7.31)

Y = y 0 (7.32)

In this model, the C matrix has been chosen so that y includes only the position

states of x, resulting in a square system model (u and y are in the same vector

space). Indeed each state in x is accessible from the position and velocity sensors on

the machine and in the following sections it will be assumed that x can be accessed

directly.

7.3 Characterization

7.3.1 Sensors

Each strain gage bridge was calibrated using a digital gage (Mitutoyo ID-F150HE)

with 1 pm resolution and 3 pm accuracy (Table 7.2).
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0

-1-

-2 -K, 1 =3.954 V/mm -+
RMSE = 1.7 pm
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-5-

S-6
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-8 RMSE 1.4 pm

-9

-10
-1 0 1 2 3

Position, y. (mm)

Figure 7-10: Position sensor calibration. Each experimental calibration point is shown

with a least-squares fit superimposed. The RMSE error is within the calibration tool

accuracy of 3 pm.

The velocity sensors are very short relative to the stage stroke, resulting in a

position-dependent gain over their range of motion. To map this velocity sensor

response, small sinusoidal oscillations (10 im amplitude at 30 Hz) were performed

about discrete points throughout the range of the flexural bearings. The amplitude

of the position and velocity sensor signals were compared at each point to determine

the local linearized velocity gain. A first order model provides an analytical function

describing the velocity gain Kj as a function of position yi (Figure 7-11).

Table 7.2: Position and velocity sensor gains
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Flexural Bearing 1 Flexural Bearing 2
K, 3.954 V/mm 3.070 V/mm
Kv (0.0984 + 0.0129zi) V-s/m (0.0703+ 0.0111z 2 ) V-s/m



0.1

0.09- Ki =0.0984 + 0. 0 1 2 9 y1
RMSE 0.0003 J

0.08-

0.07

0.06
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0.04 - Ko 2 = 0.0703 + 0.011z 2

rr 0.03 .RMSE 0.0001

0.02

0.01

0
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Stage Position, yj (mm)

Figure 7-11: Velocity sensor calibration. The velocity sensors are non-linear, that is,
the sensor gain is a function of position. The small-displacement sensor gain about
different positions is shown for each of the velocity sensors, along with a least-squares
fit of the position-dependent gain.

To measure the resolution and accuracy of the position sensors, the stage and

each intermediate ground were clamped to the ground frame of each flexural bearing,

effectively fixing sensor position. Sensor data was recorded for 15 minutes at a rate

of 10 kHz and the power spectral density calculated for the noise in measurement

yj (Figure 7-13). The corner frequency between Johnson and flicker noise is 1 Hz.

Rolloff from a 5 kHz hardware anti-aliasing filter is evident at high frequencies.

Using the spectral density in Figure 7-13a, the RMS noise above 10 Hz is 174 nm

(representing the sensor noise above the approximate closed loop servo bandwidth).

This noise level corresponds to a sensor dynamic range of 81 dB over the 2 mm range

of motion.
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Figure 7-12: Time domain sensor noise of (a) yi and (b) y2 position sensors. Low

frequency thermal drift and digital to analog conversion discretization are clearly

visible in these data.
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Figure 7-13: Power spectral density of (a) y1 and (b) Y2 position sensor noise. Par-
ticular characteristics of the sensor noise are denoted on the plots, along with an
approximate fit based on low frequency flicker noise and high frequency Johnson
noise. Spikes are evident at 50, 60, 120, and 240 Hz, presumably from background
electrical noise.
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7.3.2 Flexural Bearings and Actuators

Each flexural bearing stiffness and actuator constant were calibrated experimentally

by varying both the actuator signal and a known load on each stage. The actuator

signals were changed in 0.5 V increments. A known load mg was created using a

set of masses (20.1, 50.0, 100.4, and 200.5 g). At each combination of V and mg

the position yj of each stage was recorded using the calibrated strain gage sensors.

The model in (7.33) was used to determine the each actuator constant Kai, flexure

stiffness ki, and sensor bias yOi by regression (Table 7.3).

ki(yi - yoi) -=mg + VaKai, i = 1, 2 (7.33)

Table 7.3: Calibrated flexure and actuator constants for the roll positioning stage.

Flexural Bearing 1 Flexural Bearing 2

ki 8600 N/m 9200 N/m
KA 6.22 N/V 6.00 N/V
RMSE 0.088 N 0.088 N

The flexural bearings were cut from aluminum stock using an abrasive waterjet

as a matter of economy and availability. Manufacturing tolerances in this process

resulted in thinner flexure blades than the 1.25 mm design value, resulting in each

calibrated flexural bearing stiffness being less than the 25000 N/m design value.

7.3.3 Linearity

The linearity of each flexural bearing stage was evaluated independently (without

coupling by the shaft) by measuring the relationship between the actuator and sensor

signals. Each stage was actuated sinusoidally over its entire range; the frequency of

actuation was a 1/8 Hz so that the mechanical impedance was dominated by flexural

bearing stiffness. The two flexural bearing stages had measured linearity of 0.48%

and 0.29% with very little observable hysteresis.
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7.3.4 Repeatability

Open loop repeatability was measured using a technique similar to the stage linearity

evaluation. The stage was sinusoidally excited with a force f at 0.125 Hz and a

torque T at 0.1 Hz over a period of 15 minutes. Considering only static terms and

incorporating an error term E, the dynamic system equation (7.28) reduces to

k1 + k2 {{k1 - k2)
0 [k= -k2 2i+; y + U + E (7.34)

L2k - k2 (1 2)

The stiffness parameters k1 and k2 in (7.34) were fit to minimize the root mean

square of error e. Figure 7-14 shows c plotted in the time domain.

The spectral density of r indicates the open loop resolution and accuracy of the

machine, important for measurements of printing contact forces. This spectral density

is shown in Figure 7-15 with the sensor noise spectral density superimposed (scaled

by the stage stiffness). The alignment of these curves suggests that the dominant

source of low frequency error (i.e. drift affecting accuracy) can be attributed to the

sensor drift.
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Figure 7-14: Time domain data of (a) f and (b) T repeatability error E. Low frequency
thermal drift is evident in these data, along with the actuation frequencies of 1/12
Hz and 1/8 Hz.
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Figure 7-15: Power spectral density of of (a) f and (b) T repeatability error (. The
apprpriately scaled model of sensor noise is superimposed on the data, showing that
the low frequency error is due primarily to sensor drift. Spikes are evident at harmon-
ics of the excitation frequencies (1/8 Hz and 1/12 Hz) and at the natural frequency
of the rolling stage (10 Hz).
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7.3.5 Shaft Runout

The shaft runout was measured in the fully assembled machine using a capacitive

probe. Runout was measured at three points along the shaft as it was allowed to

freewheel in the air bushings. The total indicated runout was 3.8 pm.

7.3.6 Structural Loop

The structural stiffness of the machine was measured using the actuator and sensor

signals. The shaft was loaded using the actuators and the displacement measured

using the strain gage sensors while supporting the shaft against the machine baseplate

(shown in Figure 7-8). The structural loop data shows that the machine is much stiffer

(0.1 pum/N) than could be attained using a cantilever design with the same shaft and

bearings. The manufacturers data sheet lists the radial stiffness of each air bushing at

110 N/ptm and the pitch stiffness at 23 N-m/mrad. If this live shaft were cantilevered

over a 100 mm span, the pitch compliance would affect the structural loop by 0.44

ptm/N.

7.3.7 Dynamic Response

The frequency domain transfer function between the inputs and outputs in the system

equation (7.28) was measured using a swept sine input (Figure 7-16). The damping

and inertia terms in (7.28) were fit visually to the frequency response data; all terms

in the model are summarized in Table 7.4.

The system model (7.28) describes the primary dynamics of the system well, but

fails to capture a number of high frequency dynamics. Because the flexure blade

stiffness is lower than designed, the first mode of the flexural bearing intermediate

grounds is at about 100 Hz instead of the 153 Hz predicted by numeric simulation in

Figure 7-4. In addition to the dynamic modes shown in Figure 7-4, other unmodeled

dynamics result from coupling the two flexural bearings with the rigid shaft. The

measurement noise floor at -135 dB (equivalent to 180 nm/m sensor resolution) is

evident in the frequency response measurements.
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Table 7.4: Calibrated system model parameters for the roll positioning stage.

Parameter Value
1 228 mm
m 5.50 kg
J 0.0805 kg.m 4 mm
ki 8600 N/m
k2 9200 N/m
b1 10.0 N-s/m
b2 10.0 N-s/m
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Figure 7-16: Experimental frequency response of roll height y and pitch 0 with respect

to inputs (a) force f and (b) torque 0. The system model shown dashed. The

experimental data were collected using the swept sine method. Mode coupling and

high frequency unmodelled dynamics are evident in the measurements.
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7.4 Summary

This chapter presents the design and characterization of a precision rolling stage

appropriate for laboratory scale manufacturing experiments. The design presented

uses a simply supported shaft design, which results in symmetric machine design and

high structural stiffness. The use of zero friction elements, including flexures, air

bushings, and voice coil actuators, results in repeatable motion without significant

hysteresis. The strain gage position sensors have good dynamic range and provide

submicron resolution and accuracy.

The design concept of this machine can also be used in larger manufacturing scale

implementations. While this machine used ball bearings and waterjet flexural bear-

ings as a matter of economy, future machines can improve linearity by using friction-

less bearings (air bushings) and match the designed stiffness using more a accurate

manufacturing process for the flexural bearings (electric discharge machining).
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Chapter 8

Machine Control

8.1 Parallel Kinematic Dynamics

Parallel kinematic mechanisms, like the roll positioning stage designed in the preced-

ing chapter, offer a primary advantage of lower total mass, where the motion stage

is coupled to ground through multiple parallel actuators rather than stacked serial

stages. From a power perspective, this lower mass results in lower actuator efforts and

higher accelerations. From a kinematic perspective, this parallel arrangement creates

a coupling between each actuator degree of freedom, giving rise to the forward and

reverse kinematic problems. When the full machine dynamics are considered, this

coupling results in a complex multi-input multi-output (MIMO) plant that is quite

difficult to control.

Attempts at parallel kinematic mechanisms in the machine tool industry can serve

to illustrate this problem. Traditional three axis mills are constructed by stacking an

,i and Q motion stage on top of each other in a serial arrangement. This arrangement

allows independent tuning of the respective servo loops; the orthogonal axes see the

same apparent mass regardless of the immediate behavior of the other stage. High

stiffness can be obtained by appropriate design of each motion stage. The detriment

of this design lies in the fact that the Q stage must accelerate both its own weight

and the weight of the stage that it carries. The actuator efforts become even larger

when trunions for four- or five-axis machining is added to the serial kinematic stack.
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As one example, parallel kinematic designs are often employed in miniature preci-

sion motion stages, for example microelectromechanical systems (MEMS) for nanopo-

sitioning. These designs give superior performance in theoretical bandwidth as calcu-

lated from the ratio of actuator size to stage mass. However, the controller design is

neither trivial nor straightforward and the theoretical bandwidth is rarely achieved.

As one example, [23] uses a 3 9 th order model to describe the dynamics of a 3-axis

stage. Their design uses three 27 N actuators to move a stage with a mass of grams

over a range of less than 100 pm. This combination gives a theoretical bandwidth

over the entire range of motion in the range of kHz. In contrast, the resulting con-

troller design achieves only 32 Hz and 57 Hz bandwidth in the ± and Q directions due

to limiting system dynamics.

The dynamics of the roll positioning stage developed in Chapter 7 are likewise

difficult to control at a high bandwidth despite having only two degrees of freedom.

Measurements of dynamic system response (Figure 7-16) indicate a significant degree

of cross-coupling between modes and unmodeled high frequency dynamics that emerge

at about 50 Hz and above. This chapter introduces a nested control architecture that

is able to effectively and intuitively achieve closed loop position control at 35 Hz.

8.2 Nested Control Architecture

The parallel kinematic stage designed here is an example of a multi-input multi-output

(MIMO) dynamic system where the actuators and sensors are inherently coupled by

the system kinematics. This machine also falls in a class of precision servomecha-

nisms where the control objective is not simply regulation, but also good tracking of

reference commands. A state space system of form + = Ax + Bu can be dynami-

cally characterized by the Eigenvalues and Eigenvectors of the A matrix, where the

Eigenvalues dictate the speed of system response and the Eigenvectors dictate the

direction of the response (i.e. state interactions). While many MIMO control syn-

thesis techniques seek to achieve a particular set of Eigenvalues with some degree of

robustness, [97] suggests that the Eigenvectors are of equal import for servo tracking
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performance. Ideally the Eigenvectors in a precision servomechanism are orthogo-

nal so that each state can be independently controlled without perturbing any other

state (e.g. in this case the height z and pitch 0 of the roll should be independently

manipulated).

Eigenstructure assignment (EA) is well known method of altering the dynamic

characteristics of a plant using full state feedback [1021. A linear time invariant

dynamic system given by . = Ax+Bu with a feedback law of u = -Kx has a closed

loop dynamic equation given by & = (A - BK)x. The dynamic response of this

closed loop system is governed by the Eigenvalues and Eigenvectors of (A - BK),

which can be assigned by the correct choice of feedback matrix K. If states are

successfully decoupled using EA, then they can be treated as independent subsystems.

In the case of servo control, each output in y is mapped to a reference r in the same

vector space R", allowing straightforward application of single-input single-output

(SISO) compensators or feed forward paths for good reference tracking.

A challenge in this particular example is the resonance modes observed at high

frequencies (Figure 7-16). These modes are impractical to fully model, leading to in-

vestigation of robust EA in the case of bounded uncertainty and unmodeled dynamics

[95]. While these robust methods guarantee stability, exact decoupling is impossible

with unmodeled dynamics and the stability of independent SISO compensators be-

tween y and u is correspondingly compromised.

In the case of this machine, the high frequency dynamics from the flexural bearings

result in incomplete decoupling at those frequencies using EA. While loop shaping

techniques allow intuitive evaluation of stability and sensitivity and can be based on

experimental data, they fail to predict the interaction between coupled modes in a

MIMO system. To combine the strengths of both state space methods and classical

loop shaping techniques, this section presents an control architecture of nested de-

coupling and servo control loops, derives a criterion for adequate decoupling in the

former, and ultimately applies these developments to this machine to achieve position

control.
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8.2.1 Controller Synthesis

A nested controller architecture is utilized to combine the strengths of both state

feedback and classical loop shaping design techniques (Figure 8-1). This control

architecture is synthesized in two steps:

(i) The K matrix is determined using well known EA methods to separate the

dynamic modes of the plant, and

(ii) Compensators Ci(s) are designed using loop shaping techniques to meet design

specifications such as overshoot, sensitivity, and tracking error.

Plant

.. B(., + 1/s C -,, --

C~ts)

Loop Shapig:
Classical Control ,-, -

Eigenstructure Assignment
State Space Control

Figure 8-1: Block diagram of general square system in state-space representation
with nested feedback loops. The inner loop allows shaping the plant dynamics via
full state feedback and Eigenstructure assignment to decouple dynamical modes, while
the outer loop provides intuitive servo loop design of independent modes via classical
frequency domain techniques.

The application of this control architecture assumes full decoupling of all system

modes during the first synthesis step. While state space feedback design is math-

ematically straightforward, it is sensitive to small variations in system parameters

and, more importantly, unmodeled dynamics. Thus, while the compensators Ci(s)

are provided to more intuitively deal with unmodeled dynamics, the very presence of

these dynamics precludes exact decoupling and blind application of SISO controllers.
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8.2.2 Unmodeled Dynamics

An additional design criterion must be applied to the design of the loop shaping

compensators Ci(s) to address unmodeled system dynamics. To evaluate the quality

of mode separation based on experimental data, a block diagram representation of

the system is considered where each SISO transfer function is found in the transfer

function matrix G(s):

G(s) = C(sI - A)-4B + D (8.1)

Arranging the elements of G(s) for a square system in R2 and adding the (as yet

to be determined) SISO compensators C1, 2 (s) results in the block diagram shown in

Figure 8-2a.

Rearranging this block diagram (Figure 8-2b) it is clear that the SISO control

loops are separate if G21(s) and G 12(s) are zero at all frequencies. Even if these two

transfer functions have small finite values, the control loops are strongly decoupled if

-C2
IGul > G21  - G12 , Vw (8.2)1 + C2G22

Rearranging (8.3) provides a decoupling criterion DC(s):

DC(s) = >> , i = 1, 2, VW (8.3)
G12G21 > 1 + CjG

This result shows that the closed loop response of each input-output pair (Ci and

Gei) must be much less than a criterion DC(s) defined by the plant transfer functions

at all frequencies. The term |G1 G2 2 /G 12G 2 1 | can be determined experimentally from

the state-space feedback result (8.1) and used as a design constraint for the closed

loop transfer function. Each compensator Cj can be designed as if applied to a fully

decoupled SISO subsystem as long as the closed loop transfer function satisfies the

inequality in (8.3). The criterion DC(s) is less general than results for square systems
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in R" by other researchers (for example [104]) but is more exact for the case of a

square system in R2.

(a)

Ideal sepamted SISO subsystem

(b)

Figure 8-2: (a) Block diagram of a square (two input, two output) system with
feedback compensation implemented between respective inputs and outputs; (b) re-
arranged block diagram used in deriving criteria for treating compensator designs
independently
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8.3 Position Control

In this section, the nested feedback architecture shown in Figure 8-1 is used as an

example for controller synthesis. The machine dynamics (measured in Figure 7-16)

are particularly appropriate because they (i) show a high degree of coupling between

the y and 0 modes and (ii) exhibit a number of high frequency unmodeled dynamics.

Control algorithms were implemented in C++ and executed on the CPU of a Dell

T7500 workstation. Interfacing with the hardware was done through a 16-bit data

acquisition board (National Instruments PCIe-6343) with a control sampling rate of

10 kHz. First order R-C anti-aliasing filters were placed on the analog inputs at 5

kHz.

Eigenstructure Assignment

Matrices A and B in the system equation (7.28) are in block diagonal form that

allows algebraic determination of feedback matrix K without applying formal EA

algorithms. Representing the elements of K as Kj gives closed loop dynamic behavior

determined by the Eigenstructure of

0 1 0 0

k1 +k 2+K 1 1  b1 +b2 +K 1 2  l(k1 +k 2)+2+K 13  l(b1+b 2 )+2K 14

(A - BK)= m m 2m 2m

0 0 0 1
1(ki -k 2 )+2K 2 1  l(b1 -b 2 )+2K 2 2  12 (k1 +k 2 )+4K23  12 (bi +b2 )+4K2 4

_ 2J 2J 4J 4J

(8.4)

The off-diagonal blocks should be 0 to eliminate cross coupling while the diagonal

blocks can be shaped by second order matrices

0 1

_1/W2 -2(/on, 
(8.5)

where w is the desired natural frequency and ( the desired damping ratio. These

requirements call for a closed loop system matrix of
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0 1 0 0

(A - BK) = 1/n -2(1/wn1  (8.6)
0 0 0 1

o 0 -1/w 2  -2( 2 /Wn2

Matching terms in (8.4) and (8.6) gives the individual components of feedback

matrix K:

K [ -(ki +k 2 ) -(b1 + b2 ) -j(k1 - k2 ) - (b1-b 2 ) (87)

[-(ki - k2) -T(b 1 -b 2 ) ( --((ki + k2) - - -(b1 + b2)

The frequency ni of each diagonal mode was left unaltered from the open loop

plant (stiffness and inertia were not changed) in this design but the damping ratio (i

was set to unity (critical damping). The complete K matrix was calculated from (8.7)

with the system parameters found in Table 7.4 and implemented on the hardware.

The experimental frequency response of the shaped system (Figure 8-3) shows an

improvement over the original plant response (Figure 7-16). The diagonal responses

z(s)/f(s) and 0(s)/T(s) exhibit critical damping, the low frequency response of the

off-diagonal responses z(s)/r(s) and 6(s)/f(s) have been reduced by 10 dB, and

more importantly the separation between the diagonal and off-diagonal modes in the

magnitude response remains strong over a much wider range of frequencies.
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Figure 8-3: Plant frequency response after Eigenstructure assignment. Experimental

frequency response of roll height y and pitch 0 with respect to inputs (a) force f and

(b) torque 0. The system model with identical feedback is shown dashed. In compari-

son to the original plant frequency response, this data shows superior mode separation

and improved damping, but remaining high frequency unmodelled dynamics.
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8.3.1 Loop Shaping

The dynamic response of the plant remains coupled at high frequencies above 300

rad/s. The result of (8.3) becomes invaluable in implementing the SISO compen-

sators. The utility of DC(s) is demonstrated here by two compensator designs for

Ci(s).

As an initial controller design attempt, it is assumed that the plant has been

completely diagonalized by EA. Lead-lag compensators are designed for each input-

output pair:

Ci(s) = Ki - Tois + 1 reTs + 1 (8.8)
S r's + 1

Classical loop shaping techniques are applied to the experimental frequency re-

sponse data to provided a phase margin of 45 degrees at about 20 Hz, with a sensitiv-

ity S = [1 + C(s)Gjj(s)]- 1 of less than 6 dB (dashed curve in Figure 8-4a). Despite

meeting these well established frequency domain stability criteria, these compensators

prove unstable when implemented on the hardware.

Applying the criterion of (8.3) to the experimental data clearly highlights fre-

quencies above the closed loop bandwidth that were not well separated by the state

feedback. The compensator design is repeated (solid curve in Figure8-4) with the

decoupling criterion (8.3) as a constraint on the closed loop transfer function. To

stabilize the plant, notch filters were added to each compensator at the overlapping

frequencies in Figure 8-4b (400 rad/s and 680 rad/s) to attenuate the closed loop re-

sponse at those points. Similar crossover frequencies, phase margins, and sensitivities

were achieved but while also satisfying the constraint imposed by DC(s). The revised

compensators are stable when implemented on the hardware.

The closed loop bandwidth of each mode is 35 Hz at -3 dB with this compensator

design. The closed loop step response of each reference (y and 6) demonstrates

excellent separation of each mode in the time domain (Figure 8-5).

This controller design illustrates the power of nested state space EA and classi-

cal loop shaping feedback. Using the mode separation criterion developed in (8.3)
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Figure 8-4: Compensator design. (a) Loop shaping of y(s)/f(s) and (b) predicted

closed loop response versus decoupling criterion DC(s). The gray curve in each plot

is a simpler compensator design (no notch filters) that violates the constrain imposed

by DC(s) and results in instability.
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Figure 8-5: Closed loop time domain step response of roll positioning system. In-
dependent step responses of (a) roll height y and (b) roll pitch 0; the step reference
command is shown dashed. In each case, these experimental data show good response
time and separation of modes.

provides a powerful tool to intuitively visualize and remedy incomplete decoupling

during loop shaping design.

8.4 Summary

The simply supported shaft design results in a parallel kinematic machine. To decou-

ple the modes of the machine, a strategy for nested state space and classical feedback

loops is presented, including a criterion for the degree mode separation. In the con-

troller design, the use of this criterion was shown to be a valuable design tool to

achieve high system bandwidth despite coupled high frequency dynamics.
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Chapter 9

Process Feedback Control

9.1 Process Control

Appropriate stamp design can greatly attenuate the sensitivity of stamp contact to

local disturbances. Some level of process control is still required to compensate for

errors at larger spatial and temporal wavelengths. To this end, this chapter explores

active control of stamp contact by manipulation of the entire processing roll.

Chapter 7 developed a roll positioning stage capable of motion in two degrees of

freedom: roll height y and pitch 6. It was shown that the process model developed in

Chapter 5 could be rewritten in terms of these two degrees of freedom (7.2), repeated

here:

(Z = + E(z,4 ) + y(@) + zO(O) E (0, 6c) (9.1)

This chapter addresses appropriate choice of the y(4) and 0(0) trajectories to keep

the local roll displacement * within the process window. The approach taken in

this chapter is one of feedback control, where the stamp contact pattern is moni-

tored and the trajectories adjusted accordingly. In comparison to a strategy of error

mapping and subsequent open loop compensation, this feedback control method can

compensate for both spatial and temporal errors.

The precision roll positioning stage developed in Chapters 7 and 8 is used as

a platform for implementing process feedback control. The immediately following
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section shows how instrumentation is incorporated in this machine to permit real time

in situ observation of the stamp contact pattern. Following this, a feedback control

law is implemented that uses the visualized contact pattern as a control variable.

Finally, an impedance control scheme is used that maintains uniform contact through

mechanical feedback between the roll and substrate.

9.2 Contact Imaging

9.2.1 Total Internal Reflection

In roll based processing opportunity rarely arises to visualize the contact behavior in

situ: inspection is typically performed downstream or offline of the process and the

process behavior is inferred from these measurements. The lab scale rolling stage de-

veloped in this thesis, combined with the optical properties of PDMS stamps, permit

a unique opportunity to measure in situ contact behavior. The conventional printing

substrate was replaced with a set of optical instrumentation in the lab scale machine

to allow visualizing and actively manipulating the stamp contact region.

Other researchers have used high resolution microscopy and fringe methods to

visualize the three dimensional contact behavior of collapsing PDMS structures [91,

31, 112]. In this thesis, an alternative method is used to visualize the two dimensional

contact pattern using total internal reflection. While fringe based methods give better

visualization of local behavior at the feature scale, the total internal reflection method

is better suited for examining large areas of contact (for example, along the length of

a roll) and can still identify when feature collapse occurs.

Reflection Criterion

A large optical prism was used as a substrate in the roll positioning stage to visualize

contact at the stamp interface. Contact between the stamp and prism disrupts total

internal reflection within the prism, allowing visualization with cameras (Figure 9-1).

When light passes through an interface between two mediums, the resulting angle
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Air, n,.

Camera

Light
source

Figure 9-1: Stamp contact measurement using total internal reflection at the contact
interface. Light incident within a certain range of 01 will escape the prism where the
PDMS stamp makes contact, but internally reflect at the prism-air interface. This
technique results in a high contrast image of the stamp contact pattern.

is given by Snell's Law

ni sin 01 = n 2 sin 02 (9.2)

where ni and n 2 are the refractive indices of the two mediums and O6 is given relative

to the surface normal. When the angle of incidence 01 is large within a medium where

ni > n 2 , the light will fail to escape the interface and will reflect back into the first

medium (total internal reflection (TIR)). This critical angle of incidence is

sin 1 n2/ni (9.3)

These basic relationships from Snell's Law can be used to design the contact

visualization optics in Figure 9-1. From (9.3) 01 must be large enough to force TIR

at the glass-air interface

01 > asin nair
nglass

but must be small enough that TIR does not occur at the glass-PDMS interface

01 < asin nPDMS
nglass

(9.4)
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Assuming use of a right angle prism,

02 = 01 - - (9.6)
4

Refraction also occurs at the light and camera interfaces of the prism, giving

nglass sin 02 = nair sin 03 (9.7)

Combining the above equations gives a minimum viewing angle 03 of

03 > asin 1-1 (9.8)
Table9.:In [ r o fair )

Table 9.1: Index of refraction for optical materials

Material Index of Refraction, n
Air ~ 1.0
Glass (N-BK7) 1.51
PDMS 1.4 [67]

Physical values for the index of refraction in different materials are summarized

in Table 9.1. Applying these values to (9.8) gives the requirement that 03 > -5.30.

Image Distortion

While this technique results in a high contrast image of the stamp contact pattern, the

required camera angle prevents an orthogonal view of the contact plane. The inter-

section of the camera view frustum and prism face result in imaging of a trapezoidal

section of the image plane (Figure 9-2).

This camera view angle results in foreshortening of the real image when viewing a

contact pattern on this prism surface. The contact interface incident angle 01 should

be as small as possible to minimize this foreshortening and the variation in field depth.

Equivalently, the viewing angle 03 should be as small as possible while satisfying (9.8).
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Implementation

The TIR imaging concept was implemented using a 50 mm right angle prism (diagonal

length 70 mm). The prism was epoxied to a custom mount. This mount was placed

on a linear motion stage to control relative motion between the roll and prism.

Two cameras were mounted on opposite sides of the prism with 63 = +7. Rather

than fixing the cameras to the prism, the cameras were mounted to the ground of the

roll positioning stage. This strategy allowed focusing the cameras on specific points

on the roll axis so that the contact region is always centered in the field of view.

Compact CMOS sensors with integrated lenses (DinoLite AMS413T) were used to fit

within the space constraints of the roll positing stage. These cameras were mounted

to the frame using flexural mounts for fine alignment and adjustment.

Arrays of light emitting diodes were mounted behind the prism to provide stable

backlighting.

Plane of focus Prism Prism

Camera view Intersection of frustum
frustum with prism face Region in focus

Region ofinterest Region of interest
(stamp contact zone) £ (stamp contact zone)

Camera image '

planeNominal light ray

Backlight

(a) (b)

Figure 9-2: Perspective distortion of contact interface images. (a) Images at the
contact interface are projected onto the camera image plane. Only a portion of the
image is in focus where the plane of focus intersects the contact interface. (b) A
trapezoidal region of the contact interface is projected onto the camera image plane,
resulting in a perspective distortion and foreshortening of the image.

291



9.2.2 Perspective Correction

The inclination of the prism plane relative to the camera view vector results in three

phenomena:(i) the image is distorted by perspective, (ii) it is foreshortened, and

(iii) only a portion of the image is in focus (Figure 9-2). The detriment of these

phenomena depends on the specific measurement task.

For example, if the goal is to detect local feature collapse, then the foreshortening

and distortion may not be important, while the limited focus band would have a

dramatic impact. Alternatively, if the intent is to measure the macroscopic contact

area (21), the perspective distortion would be much more important than either the

foreshortening or focus.

A distortion free image is obtained by digital correction for the purposes of this

thesis. In a high bandwidth imaging system, an equivalent effect could be obtained in

the hardware by using additional optical prisms to refocus the image or a telecentric

lens to eliminate perspective distortion.

The foreshortening and tapering cause by a perspective view can be compensated

for computationally by a transformation to the image; a general case of this is ex-

amined by [90]. While image analysis are traditionally done in x, y coordinates, this

discussion used a z, x coordinate system to remain consistent with the coordinate

Backlit prism

Cameras

Figure 9-3: Positioning of optics in the roll positioning stage. Two sets of LED
backlights and cameras are used to image two locations along the contact interface.
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system used for roll based printing throughout this thesis. Taking the center of the

image to be the origin (Figure 9-2b), the shear can be removed by mapping from the

original image space zi, xj to a corrected space zi', x* (these spaces are written with

subscripts i, j to remind that they are discrete pixel locations in an image). A ray

tracing approach (Figure 9-4a) shows that this transformation is given by:

z< = azi+

of = 1+# zX
Zn)

(9.9)

(9.10)

(a) (b)

Figure 9-4: Mapping from the camera view plane to the contact interface for correction
of contact images. (a) The camera view plane with coordinates z, x can be mapped
back to the contact interface coordinates z*, x* with a ray-tracing approach. (b) This
transformation can equivalently be performed in two steps, with an intermediate
image in coordinates z, x*. In both figures, parallel lines at the contact interface are
projected through the transformations to illustrate the image distortion.

This transformation can be calibrated using a fiducial grid in two steps, illustrated

in Figure 9-4b. First, the angular distortion in a calibration image is measured to

determine 3. Second, the image is transformed into space z, x*, where the ratio of

the vertical feature pitch px and the horizontal feature pitch p, is measured to find
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3. Knowledge of the precise pitch px also gives the scaling factor of the image.

In the first step, points pi with coordinates zi, x are selected from two horizontal

rows of features at the top and bottom of the image (P1P2 and p3p4) (Figure 9-5a).

After the transformation, the lines formed between these points should be parallel,

giving equal slopes:

x* - x* x* - x*
2X X4X3 (9.11)
z - * I - z*

Substituting x* and y* gives

(X4 - x 3 )(z 2 - zi) - (x 2 - X1)(z 4 - z3)

/ (z2x 2 - ziXi)(z 4 - z3 ) - (z4x 4 - z3x3 )(z 2 - zi)

Next, the feature pitch is examined to find a (Figure 9-5b). The three corners of

a square (selected by zi, xi) must be transformed to be equidistant:

- zl*)2 + (z; - x*)2 - /(z - z)2 + (z; - x)2 (9.13)

Substituting z* = az gives

(z -x)2 _ z *)2
a = \Z )21)2 (9.14)

(Z3 -- 22 -(Z2 -z3

This calibration procedure is illustrated in Figure 9-5 using a fiducial pattern of

50 pm posts on a 100 pm pitch. The results of the calibration procedure for each

camera are summarized in Table 9.2.

Table 9.2: Camera perspective calibration constants from calibration

Parameter Camera 1 Camera 2
1.66 1.65

/3 0.075 0.077
Pixel resolution, pm/px 6.1 6.4
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(a)

(b)

(c)

Figure 9-5: Example of camera perspective calibration. (a) Camera calibration image
with 50 pum posts on a 100 pm pitch. The original image is mapped from space (a)
z, x to (b) z, x* and finally (c) z*, x* using the calibration procedure described in the
text.
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9.3 Contact Measurement

After obtaining images of the contact interface, some variable of interest must be

extracted from the pixel data. A number of phenomena are of interest, for example

contact width, feature collapse, or local contact defects. A fast, automatic, and

repeatable measurement of contact width is required for a number of experimental

and control components of this thesis.

The objective of the measurement strategies presented here is to extract the mean

contact width in an image frame regardless of local behavior, collapse, or defects. In

effect, the measurement techniques presented here act as a spatial filter F to convert

a large number of pixels (typically one million or more) to a single variable describing

the state of contact.

In this section two methods of contact width measurement are presented, based

on well established image processing techniques of thresholding and edge finding.

9.3.1 Thresholding

The contact pattern formed by the total internal reflection mechanism is high con-

trast, offering an opportunity to measure contact area simply by measuring the ratio

between light and dark pixels in the image frame.

As a roll-based stamp contacts the measurement prism a contact pattern of width

pattern 21(z) will form as a function of the coordinate along the roll axis . Assuming

a uniform pattern ratio P = a/w, the area in contact along a differential element of

the roll will be

d _21(z)
_Acontact = (9.15)

dz P + 1

The total contact area can be measured by integrating across the camera field of

view zc (along the roll axis )

Zc

Acontact = (z) dz (9.16)
P + 1

0
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The total viewing area will be A = zcx (where xe is measured along the rolling

direction z), so that the fill factor C of the frame will be

c = Acontact 1 f 21(z)dz 1 21 (9.17)
A xc(P+1) ze Xc(P+1)

This relationship connects the dark/light fill factor C of the image frame to the mean

contact width 21.

The fill factor of a frame can be measured by converting a grayscale image to a

black and white image by thresholding. The typical objective in choosing a threshold

value is to separate data at the exact point that minimizes the variance within each

of the two subsets.

To avoid a brute force approach to finding these two subsets, Otsu shows-that

minimizing subset variance is identical to maximizing interset variance [77]. Otsu

goes on to show that this dual of the problem can be accomplished in a single pass

through a histogram of the pixel values, resulting in a fast and efficient thresholding

algorithm.

The result of Otsu's method is shown in Figure 9-6a-b. The algorithm is able to

clearly distinguish contact in the center of the image where the image is in sharp focus

and the lighting is uniform. However, near the edges the algorithm gives incorrect

results due to inconsistent lighting, poor focus, and vignetting. This difficulty is

evident in a histogram of the pixel data (Figure 9-6c), where a poor signal-noise ratio

is evident in the pixel data.

This thresholding measurement technique works quite well when lighting is uni-

form, the image is in focus, and the pixel resolution is sufficiently high to resolve each

feature. In practice, this method was limited to a region of interest in the center of

the image with good focus and uniform lighting for reliable results.
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Figure 9-6: Thresholding method of contact measurement. The contact length in
a raw image (a) can be measured by thresholding the image (b) and relating the
resulting fill factor to the contact length as described in the text. This method works
well when the pixel data is bimodal, but is not robust when the modes are not well
separated (c) (i.e. low signal-to-noise ratio), such as caused by nonuniform lighting
or vignetting.
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9.3.2 Edge Finding

Edge finding techniques can be used to identify the extrema of the contact region,

in contrast to the exact contact pattern within a region. The extrema of the contact

region will be the edge, or point of maximum intesity gradient, in the image. An

advantage of this technique is that it will work even when the features are smaller

than the sensor pixel resolution, or even when they are smaller than the diffraction

limit of light. Contact of these very small features will still impact the average degree

of reflection within the observation prism, giving areas of lighter and darker intensity

in the raw image.

The maximum gradient in images can be found by convolving the image data with

a discrete gradient operator. In the case of Sobel edge detection, a 3 x 3 operator is

convolved with the image I to find the z and x gradients:

1 0 +1

G2 = -2 0 +2 (9.18a)

-1 0 +1

1 -2 -1

GX = 0 0 0 * (9.18b)

+1 +2 +1

The gradient is then calculated as

G G = G+ G 2 (9.19)

The Sobel method is a fast way of finding edges in an image, indicated by bright

areas in G. More sophisticated filters use larger kernal functions during the convo-

lution that provide low pass filtering of high frequency pixel noise, for example for

example Canny edge detection [10]. The disadvantage of these more sophisticated

approaches is the large computation time required.

Measuring the stamp contact width does not require specific knowledge of the local
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contact pattern, or even the gradient G2. In this specific case of examining mean

contact width 21, a meaningful measurement can be extracted from the aggregate

pixel data averaged along the roll axis , obtained by summing along z:

I*j)= ZI(i, j) Vj (9.20)
i=1

The problem is now reduced to edge finding in a one-dimensional vector I*, which

is much faster computationally that edge finding in a two dimensional array of pixels.

The edges corresponding to the contact width are difficult to discern when the

contact pattern is highly periodic in the y direction. The periodic contact pattern cre-

ates a number of higher frequency variations in image intensity that have a gradients

similar to the contact perimeter.

High frequency variations can be countered by using a low pass filter in conjunction

with the gradient operator; see for example the convolution kernals suggested by [10].

A similar operation can be achieved using a linear filter.

Using a bandpass filter will provide a smoothed gradient with attenuation of high

frequency content. This can be achieved by combining a differentiator with two poles

at the bandpass frequency:

s
F (s) =(9.21)(fs + 1)2

In the case of a periodic stamp pattern, the bandpass filter should accept frequen-

cies at the contact scale of millimeters but reject frequencies at the pattern scale of

microns.

In implementation, the filter in (9-5) is converted to the discrete domain with a

sampling period T of 1 pixel (with break frequency f also in units of pixels). This filter

is then applied to the aggregate image vector *, where the minimum and maximum

points in the result give the contact edges in the original image.

This approach (aggregating data and finding the mean edge location by filtering)

is illustrated in Figure 9-7. The aggregate intensity and filtered results are plotted to
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illustrate the effect of the filter (9.21). Finally, the minimum and maximum points

are annotated on both the filtered result and the original image.
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Figure 9-7: Example of contact measurement using edge finding. The raw image (a)
is processed to find mean pixel values across the area of contact (b). Using a bandpass
filter on this spatial average is able to easily identify the contact edges, even in the
case of nonuniform lighting where the thresholding method fails.

In a second example, the filter is applied to a sparse hexagonal pattern with very

small line features (Figure 9-8). Because P is large for this pattern, the signal-to-noise

ratio is much smaller and thresholding methods would fail. The periodic nature of

the pattern results in sharp gradients in the contact region. The filtered result is able

to correctly identify the contact edges.

In each of these examples (Figures 9-7 and 9-8) the linear filter F (9.21) results

in some finite level of phase shift (the contact edges are slightly lower in each image

than the human eye would naturally identify). The relative distance between each

edge is still maintained. A convolved kernel (e.g. [10]) would eliminate the phase

shift, but require a more intense computation.

301



0

100

200

300

400

. 500

600

700

800

900

1000
160 180 200 -1 0 1

Spatial Average Filtered Result

(a) (b)

Figure 9-8: An example measuring the contact width of a stamp pattern (a) that is
periodic along the direction of filtering. This example highlights the importance of
using a bandpass filter F that identifies edges at the scale of the contact length rather
than at the scale of the feature pattern. The contact edges are correctly identified
despite the poor signal to noise ratio observed in the spatially averaged data (b).

9.3.3 Robustness

Each of the measurement methods proposed breaks down when features collapse or

the stamp looses contact with the substrate. For example, stamp features with P > 1

will create a more significant signature during roof collapse than during ideal contact.

To illustrate this phenomenon, Figure 9-9 shows the edge detection method applied to

a hexagonal pattern exhibiting collapse. This example shows incorrect identification

of the collapse boundary rather than the contact boundary.
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Figure 9-9: The contact measurement methods are only robust within a certain range
of contact behavior. For example, when a sparse stamp collapses (a), the edge finding
algorithm will incorrectly identify the edges of the collapse region (b) rather than the
contact region. This error occurs the collapsed features have a stronger signature
than uncollapsed features.

9.4 Contact Feedback Control

The camera images can be used not only for metrology, but also as an online con-

trol tool. If some characteristic of the contact area can be extracted with sufficient

computational speed, that characteristic can be used a control variable.

A control architecture using camera images for feedback compensation is shown

in Figure 9-10. The objective of this feedback compensation is to regulate contact

area, and thus presumably contact integrity.

In this design, the plant consist of two elements: the roll positioning stage and the

stamp, which are separated for the purposes of discussion. The positioning stage G,

has a transfer function defined by the closed loop dynamics of the servo controlled roll

positioning stage. The stamp dynamics G, relate the position to contact behavior.

The control task is thus to use the contact images to decide the position reference

of the roll positioning stage. The camera images are passed through a filter F to
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Figure 9-10: Block diagram of contact feedback control. The plant G, is assumed to
be the servo controlled roll positioning stage, where the roll position is related to the
contact length x, by stamp dynamics G,. The image filter F is applied to the contact
region images to supply the mean contact length 1 as a feedback signal.

determine the contact length 1. The error el is calculated and passed through a

controller Ge, which provides the control effort ul. In this architecture, u is a vector

that sets the position reference r for the positioning stage.

The primary design tasks are identification of the plant dynamics, the choice

of filter F, and design of controller Gc. A discrete time sampling strategy will be

assumed throughout, adopting the camera frame rate (10 fps) as the control clock.

9.4.1 Plant model

The positioning bandwidth of the stage is well over the camera bandwidth (35 Hz

compared to 10 Hz) and the stage settling time is much less than T=100 ms (Figure 8-

5). This justifies assuming that G,(z) = 1.

Similarly, the stamp transfer function G, is assumed constant, assuming that

viscoelastic effects in the stamp have a negligible influence on contact area.

The gain of G, is determined using the contact models from Part II of the thesis.

It was shown that for large features, the contact length is given by

1 = /2r*6 (9.22)
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This relationship is linearized by

dl
1 = i(60) + d ol60( - 6o)

d6o

l1 /r o + ( - oo)

giving

(9.23)

(9.24)

and the system gain about the operating point 60 is

dl
d6

(9.25)

Often the specific displacement of the roll 60 is unknown, in which case the system

gain can be written as a function of the operating contact length lo:

dl r*

d 1 (9.26)

Using a 25.4 mm radius roll gives a system gain of 25 mm/mm for a nominal

contact length 2lo = 2 mm.

9.4.2 Controller design

Image filter F was implemented as a thresholding measurement. In effect, this pro-

vides a spatial filter where localized contact defects do not appreciably influence the

overall contact measurement.

Pure integral control can be used to (theoretically) achieve settling in a single

time period when the system appears constant with respect to the discrete sampling

period T. In the discrete z domain, this gives a compensator

Ge(z) = K z
z- 1

(9.27)

Using this compensator gives a closed loop transfer function
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I(z)

ri (z)

KZZGPGSF

1+Kz1 GpGsFz-I (9.28)

(9.29)
1(z) KGGsFz

ri(z) z-1+KGpGsF

i/ri has a closed loop zero at the origin and a closed loop pole at (1 - KGPGSF).

The closed loop response will appear instantaneous if this pole is placed at the origin

by setting K = (GGsF)-1:

1i(z) _

r,i (z)
(GpGsF)-1 GpGsFz

z - 1 + (GpG 5F)-1 GGF (9.30)

Values of K slightly lower or higher will result in a slower rise time or overshoot,

respectively.

The compensator implementation becomes clear after dividing by z

U'
Gc(z) -- -K

ei
1

1 -z-
(9.31)

and rearranging the transfer function

u = Uiz-1 + Ke,

ul,t = ul,t-i + Ke,t

(9.32a)

(9.32b)

Finally, these controller efforts must be converted to the reference variables (y

and 6) for the stage position. This can be accomplished using a linear transformation

similar to (7.24):

y

0
(9.33)

1/2 1/2 ull

1/lc -1/11c U12

where 1e is the distance between the camera viewpoints (about 50 mm).

306



9.4.3 Experimental Results

The camera control loop was implemented on the same Dell T7500 PC that controlled

the positioning stage. The USB cameras were interfaced using drivers and an applica-

tion programming interface (API) supplied by the camera manufacturer (DinoLite).

A single Windows program was written in C++ to execute all of the control loops;

multiple program threads and CPU cores were used for parallel camera frame acqui-

sition at (sampling frequency 10 Hz), image processing, and stage position control

(sampling frequency 10 kHz).

The camera controller Gc, was tuned by starting at the calculated value of K =

(FGG,)-1 = .04 and adjusting K until an appropriate step response was achieved.

Settling time was less than one second; a single step settling time could not be achieved

because the system elements are not entirely static as modelled.

Two sets of data were taken using a stamp with w = a = h = 50 pum and a sub-

strate speed of about 1 mm/s. In the first data set, the roll position was held constant

and the camera images used simply to measure the observed stamp contact behavior

(Figure 9-11a). In the second data set, the compensator Gc was activated and the roll

position was actively modulated depending on the image information (Figure 9-11b).

In both data sets, the same roll and substrate registration was maintained, allowing

comparison of the two data sets.

These results demonstrate a clear improvement using closed loop process feedback

control. The contact area is well regulated in the closed loop case. Disturbance

rejection is quite clear: in the open loop case the maximum contact area occurs at

a stage position of 12 mm; this corresponds to the control effort ul maximum at 12

mm in the closed loop case.

These results also support earlier predictions of very high sensitivity of the contact

region to displacements. While the open loop data shows significant variations in

contact area, the closed loop data shows that changes of only single microns were

required to maintain a uniform contact area.
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Figure 9-11: Contact feedback control results. (a) Contact behavior of a stamp in
open loop (constant roll position operation) is erratic with large variations in contact
area. (b) Closing the loop with control efforts uui effectively regulates the contact
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9.5 Impedance Control

Impedance control is investigated as an alternative method of regulating contact be-

havior. Compared to the prior method, which used contact images to determine

changes in roll position, this method uses mechanical feedback between the roll,

stamp, and substrate to determine roll position. In essence, all stiffness is inten-

tionally removed from the processing equipment so that the roll can 'float' over the

substrate.

9.5.1 Controller Design

The objective in servo control is to create a very stiff plant (with high mechanical

impedance) that rejects disturbances to maintain a particular position trajectory.

In contrast, impedance control uses feedback compensation to alter the dynamical

characteristics of a plant, sometimes to create very low mechanical impedance. This

form of control can make the plant appear to be an altogether different mechanical

system. Applications are typically in robotics or haptics, where the interaction of a

manipulator with the environment is very important for performance.

Feedback compensation for obtaining a particular plant impedance must satisfy

the same stability criteria as any other feedback system, namely, poles must remain in

the left half of the imaginary plane. Attempting to remove all stiffness and damping

from a system will likely cause instability when unavoidable parameter variations

result in apparent negative stiffness or damping. Attempting to alter the apparent

inertia of a system is also quite difficult and unreliable unless accelerometers are

included in the sensor design.

In this impedance control design, a feedback scheme is used that cancels out all

stiffness in the machine. For stability, the damping and inertia are not altered.

The same EA method presented in Chapter 8 can be used to implement force

control. By creating a low impedance mechanical plant, a reference force u, can

be superimposed on the actuators to create a constant-force controller (Figure 9-

12). Operating the machine in this mode allows precise measurement of the force-
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displacement relationships in roll based processes.

Ur Plant

0 + u y
+ B(,, 4 + 1/s C,,4 - - -

Eigenstructure Assignment
State Space Control

Figure 9-12: Controller architecture for impedance control of the roll positioning
stage. Full state feedback matrix K is used to alter the dynamical characteristics
of the plant with a zero reference. In this linear system, an external reference force

Ur can be superimposed as a disturbance to provide a constant force to the printing
interface.

The diagonal nature of the system equation (7.28) again makes Eigenstructure

assignment simple. In this example, no attempt is made to alter the inertia or damp-

ing of the system. The damping is light and guarantees that the Eigenvalues of the

closed loop system lie in the left half plane; attempts to remove both stiffness and

damping results in feedback that is not robust to small parameter changes. The feed-

back matrix K is determined by examination of (8.4) and setting K11, K 13 , K21 , and

K 2 3 to cancel the machine stiffness components ki.

This feedback matrix was implemented in the hardware. Impedance measurements

(Figure 9-13) were made between y and u, demonstrating sufficiently low impedance

for accurate experimental measurements of quasi-static contact behavior.

The accuracy of the applied force between the roll and substrate is dependent on

the linearity and repeatability of the machine itself. In Section 7.3.4, the repeatability

of the stage was shown to have a non-negligible low frequency variability (Figure 7-15).

To address these long time scale parameter variations in the machine, a calibration

procedure (similar to that described in Section 7.3.4) was run before each experimental

set. The exact feedback matrix stiffness coefficients Kj were determined from this
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Figure 9-13: Experimental measurements of roll impedance using a swept sine method
between u, and y (units of N/m). The data show that the roll behaves as a pure

mass (impedance slope + 20 dB/dec) after implementing feedback compensation to
eliminate the flexure stiffness. High frequency dynamics are observed at about 300
rad/s and damping, stiffness, or parameter variations maintain a finite impedance at

low frequencies.

calibration data by minimizing E in (7.34).

Neglecting inertial effects, this roll control strategy results in a uniform con-

tact force at the stamp interface regardless of substrate height. The roll is able

to 'float' over step changes in substrate height, or equivalently reject displacement

disturbances.

9.5.2 Experimental Results

Two experiments were performed using a 500 pum thick stamp with the honeycomb

pattern shown in Figure 5-12. In each experiment, a force of 5 N was superimposed

on the roll and the substrate was moved at a rate of 3 mm/s. The camera frames

were not used for feedback, but rather recorded and measured using the edge finding
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filter developed in this chapter (9.21).

In the first experiment, the stamp was mounted directly to the roll and traversed

over the substrate. The results (Figure 9-14) show very good regulation of the contact

area and automatic adjustment of the roll height through several pm of displacement.
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Figure 9-14: Impedance control experimental results showing (a) roll position and

(b) contact area over a 25 mm range of substrate travel. These data show very good

regulation of the contact area and automatic adjustment of the roll height over a ±2

pm.
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In the second experiment, a piece of adhesive tape was mounted between the roll

and stamp (Figure 9-15). The tape created a step disturbance about 40 pum high and

10 mm long.

Figure 9-15: Impedance control disturbance rejection experiment. A piece of tape

(arrow) was mounted between the stamp and roll to simulate a 40 pm step disturbance
about 10 mm long.

The same impedance control experiment was repeated with a 5 N preload force

on the roll. The results (Figure 9-16) clearly show the roll height moving over the

disturbance. The contact area is well regulated with small dynamic effects evident at

the step height changes.
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Figure 9-16: Experimental results of impedance control step disturbance rejection,
showing (a) roll position and (b) contact area over a 25 mm range of substrate motion.

The position of the roll clearly changes by about 40 pum over a range of about 10 mm

as the 'step disturbance' is encounted. The contact area measurements show excellent

disturbance rejection and contact area regulation, with some dynamics at each step

location. No feature collapse was observe* 5 luring the experiment.



The repeatability of the impedance control was outstanding. The substrate tra-

versed and reversed under the roll a total of four times, plotted in Figure 9-17. The

roll motion between passes replicated within 500 nm.
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Figure 9-17: Repetition of the impedance control experiment over the same stamp-
substrate contact region four times (the roll traversed forward and reverse twice).
These data show very repeatable performance of position and contact area.

No collapse was evident at any point in the experiment despite the 40 tm step

change, an exceptional observation given the fact that the fragile honeycomb pattern

collapses at only a few microns of displacement. This demonstrates the ability of

an impedance control strategy to effectively maintain a very sensitive contact area

despite disturbances nearly an order of magnitude larger than the process window.

9.6 Summary and Outlook

Two control strategies were demonstrated in this chapter: (i) a feedback control

method using contact images as a feedback variable for servo control and (ii) an

impedance control method that regulates contact by maintaining a regular force.
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Both were shown to regulate disturbances.

While a powerful experimental tool, the contact imaging approach is perhaps im-

practical in the demonstrated embodiment. This approach is essentially a brute force

method of examining the contact region and making a position correction. The con-

troller architecture is relatively complex. The image processing problem is nontrivial;

the two methods of contact measurement shown are not particularly robust outside

of a certain contact window (i.e. loss of contact or feature collapse). Finally, the

physical arrangement of cameras viewing the contact interface is not possible in a

general implementation of roll based printing.

In contrast, the impedance control strategy is simple and elegant. The controller

architecture and implementation are far simpler; the only requirement is a linear and

repeatable machine design. This control strategy is robust to phenomena like loss of

contact and feature collapse. At very large scales the inertia of the processing rolls

could require impedance control that alters the apparent inertia of the system.

One must acknowledge the host of other control requirements in a full scale roll-

to-roll system. While this editorial has discounted vision systems as an immediate

measure of contact integrity, they will likely be instrumental in detecting low fre-

quency temporal drifts (i.e. fundamental limitations in machine accuracy), detecting

inter-layer registration, or detecting the ink or thiol quality. While it may be difficult

to directly examine the stamp contact region, vision systems mounted inline with the

process and shortly downstream of the roll equipment can detect phenomena with a

periodicity of the roll circumference, and then feed these back to the roll manipulation

stage.

Ultimately, this chapter has demonstrated two feasible process feedback control

techniques. It is likely that a successful manufacturing scale implementation will

require perhaps a combination of at least these two methods to compensate for errors

at different spatial and temporal scales.

317



318



Part

Conclusion

319

V



320



Chapter 10

Conclusion

This thesis has examined stamp contact in roll based soft lithography. This final

chapter assesses the unique contributions of this thesis, especially with respect to

advancing the understanding in the field. This thesis has focused primarily on the

ability to achieve and maintain faithful and robust stamp contact; a discussion is

provided on the future extensions of this focus and the remaining challenges that lie

ahead before manufacturing scale implementations of roll to roll lithography are likely

to be realized. In closing, some comments are provided on the outlook of large area

contact lithography.

10.1 Contributions

10.1.1 Stamp Deformation

The examination of stamp feature deformation in Chapter 3 of this thesis represents

the first time that the stiffness of PDMS microfeatures have been systematically

characterized. The rigorous development of a set of dimensionless parameters allowed

exploring and characterizing the full design space of microfeatures.

These dimensionless number also provide a convenient and intuitive method of

categorizing stamp defects to guide stamp design. Before this work, the most com-

prehensive and widely cited work on stamp collapse modes was that by Hui et al.
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[47]. In this report, collapse boundaries were characterized by a series of dimension-

less constraints n that must not be violated. Unfortunately, these K had no common

meaning and did not bound an intuitive design space, such as feature aspect ratio.

Using the dimensionless parameters in this thesis, namely pattern ratio P and as-

pect ratio A, collapse can be analyzed in term of intuitive parameters that translate

directly to stamp design variables (Figure 3-24).

The individual models of feature collapse extend or improve upon those previously

reported in the literature. In the case of lateral collapse, Timoshenko beam theory is

used to explain the behavior of very low aspect ratio features (especially important

at the nano-scale) and the correct cantilever beam deformation mode is identified

through empirical observations (something missing in the purely analytical approach

of [47]). Buckling models are augmented with a work of adhesion to explain the

delayed buckling observed in experimental data. Most importantly, the limits between

very large and very small aspect ratios were bridged to explain phenomena near

practical aspect ratios of unity, a regime ignored in other studies.

The systematic study of microfeature stiffness allowed addressing the larger scale

problem of roll-based stamp deformation. Results from classical contact mechanics

were augmented with the specific load-displacement behavior of features to explain

the behavior of soft elastomeric stamps mounted to rigid roll processing equipment.

The excessive contact pressures that develop in thin incompressible elastomeric

stamps during roll contact is one of the core findings of this thesis. Moreover, these

pressures can develop at single microns of roll displacement. This high sensitivity

has not been clearly developed or explained in existing literature regarding roll based

processing, and represents significant challenges from the perspective of robust man-

ufacturing processes and precision machine design.

10.1.2 Stamp Design and Manufacture

The results developed from studying stamp deformation allowed developing a process

model and exactly quantifying permissible contact pressures and roll displacements

(5.12). This process model can guide machine and process design based on the funda-
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mental physics of the printing process. Moreover, developing this model of permissible

deformation allows straightforward determination of parameter sensitivity for robust

stamp design.

The discussion in Section 5.2.2 shows that after designing robust features, the only

remaining design variables are stamp thickness and stamp material. These design

variables are shown to be bounded by several factors, limiting the ultimate process

window that can be obtained for any particular stamp.

The limitation on ultimate process window motivated invention of an improved

stamp architecture that includes a set of backing features at the stamp-roll inter-

face. This set of features can be tailored to create a more compliant stamp construct

that can absorb significantly more mechanical energy during contact before feature

collapse, permitting both higher loads and greater displacements. Figure 5-13 sum-

marized the results of a case study supporting this conclusion. Using this stamp

architecture greatly desensitizes the stamp from disturbances with midrange spatial

frequencies (Figure 5-2).

Stamp casting and mounting is one of the primary sources of dimensional errors

in the contact zone: any imperfections in the stamp or mold are transferred and

superimposed on the stamp features in the roll contact region. A new stamp casting

process was invented to create a more uniform stamp in an inherently scalable manner.

Using a centrifuge-based process, stabilizing fluid dynamics can be exploited to create

very uniform layers of photoresist and PDMS precursor.

A prototype machine was constructed to demonstrate feasibility of this centrifu-

gal stamp casting process. A laser was incorporated for direct-write patterning of

microfeatures in photoresist. In initial demonstrations with this machine, 10 pum fea-

tures were created on the surface of cylindrical PDMS stamps, which had a thickness

uniformity of better than 10 pm out of 1 mm.

Future implementations with more precise motion stages, larger numerical ap-

perature optics, and lower centrifuge runout should be able to create continuously

patterned submicron features in stamps with single micron thickness uniformity.

This cylindrical stamp casting process holds the potential to revolutionize microcon-
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tact printing, but also other contact lithography processes like nanoimprint lithogra-

phy (NIL) and self aligned imprint lithography (SAIL).

10.1.3 Process Control

A means of actuation is a requisite component for process feedback control. A new

roll positioning stage was designed that can manipulate a simply supported roll with

submicron resolution. The high precision and linearity of this stage were instrumental

in making experimental measurements of roll based stamp contact.

A new control architecture and decoupling criterion DC (8.3)were developed for

servo control of two-input, two-output MIMO systems. This architecture and synthe-

sis technique were applied to the parallel kinematic roll positioning stage to achieve 35

Hz closed loop bandwidth. This bandwidth is well above that required to compensate

for periodic errors in high speed (1 m/s) roll processing.

Two methods of regulating contact behavior were demonstrated. The most promis-

ing method uses the roll positioning stage in an impedance control mode, which allows

the roll to 'float' over any asperities in the substrate. This control strategy effectively

reverts from position control to pressure control, where the mean contact pressure is

regulated (though asperities can still cause local collapse). The impedance control

strategy was shown to effectively reject severe step disturbances on the order of 40

pm with out collapsing very sensitive stamp patterns (Figure 9-16).

These machine and control designs provide guidance for future implementations of

roll based microcontact printing, including both next generation laboratory machines

and full scale manufacturing implementations.

10.2 Design Example

This section uses two design examples to demonstrate the utility of the results re-

ported in this thesis. First, a general design approach is developed drawing from

results throughout the thesis. Second, separate examples of a submicron pattern

(perhaps for an optical or mechanical metasurface) and a pattern with features at
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different scales (such as that found in electronics) are examined using the design

approach.

10.2.1 Design Approach

The goal in stamp design is to create an architecture that minimizes the sensitivity of

feature collapse to roll displacement subject to constraints including feature distortion

and roll bonding. The design problem can be decoupled into three separate stages

to determine the printing feature aspect ratio, stamp body thickness, and backing

feature pattern:

The contact pattern of printing features is determined by the desired pattern

transfer, leaving the feature height (or aspect ratio A) as the only free design variable.

The goal in choosing the aspect ratio is to maximize the resulting collapse pressure

under loading (cf Figure 5-3). The models of feature behavior derived in Chapter 3

and summarized in Section 5.2 can be used to predict collapse pressure and choose

the appropriate feature height.

Next, the stamp thickness is chosen to minimize sensitivity to variations in dis-

placement, in other words, to maximize compliance. The results of Chapter 4 show

that compliance increases monotonically with stamp thickness t. Constraints due

to roll adhesion (5.17) and pattern distortion (5.14) must be observed when pla-

nar stamps are mounted to rolls (Section 5.2); these requirements are relaxed when

cylindrical stamps are used (Chapter 6).

Finally, the backing features are designed to maximize compliance, identical to

maximizing both pattern ratio and aspect ratio. The choice of aspect ratio A and

pattern ratio P are constrained by pressure uniformity, roll adhesion, and collapse

pressure. Pressure uniformity can be maintained by ensuring that the pitch (a+ w) of

the backing features does not exceed 1 of the stamp thickness t; this creates a uniform

pressure at the printing interface by Saint Venant's principle. The effective work of

adhesion W*d (4.19) of the backing features should be at least that of the printing

features to keep the stamp adhered to the roll during receding contact, requiring

that the pattern ratio P of the backing features not be greater than the printing
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features. The collapse pressure of the backing features should be at least that of the

printing features so that their effect is utilized throughout the entire process window.

Combining these requirement suggests using a backing pattern that has the same

pattern ratio P = a/w as the printing features, but at a scale such that a + w = t/3.

The process window can be estimated by 6c (5.18). The derivation of 6c involved

kinematically admissible approximations, so that a conservative estimate of the pro-

cess window is expected. To implement the impedance control developed in Chapter 9,

a load-displacement curve from numerical simulation or experimental data should be

used to determine the appropriate contact preload u, (Figure 9-12). The force that

results in one half the collapse displacement 6c is suggested as an appropriate choice

for u, to permit equal bilateral variations in local roll displacement before either loss

of contact or feature collapse.

10.2.2 Grating Example

A grating with 500 nm line widths is representative of a pattern that may be desired

for an optical or mechanical metasurface. This pattern (ap = WP = 500 nm) is difficult

to print because the pattern features will be unable to absorb a significant amount of

mechanical energy before collapse.

In this example, it is assumed that printing is to be performed on a flexible

substrate passed between a 100 mm diameter printing roll and a 100 mm backup (or

impression) roll. Each of the design steps discussed above will be performed to create

a stamp that maximizes the process window 6c while keeping pattern distortion below

0.5%.

The printing features are designed by using the results of Chapter 3 to predict

the failure mode and collapse stiffness of the grating features (pattern ratio P = 1).

The feature height hp (and thus aspect ratio A) is selected to maximize the collapse

pressure based on these predictions (Figure 10-1). The result of this design is a feature

height of about 500 nm, with a corresponding collapse pressure of 0.28Eo.

Next, the stamp thickness is determined within the required constraints. Wrap-

ping a flat stamp of thickness t around a roll of radius r will result in a pattern strain
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Figure 10-1: Collapse pressure 0o/Eo as a function of feature height hP for a grating
pattern with w = a = 500 nm, assuming Eo = 1.5 MPa, PDMS-PDMS Wad = 44
mJ/m 2 , and PDMS-substrate Wad = 200 mJ/m 2 . The ultimate feature height is
limited by lateral collapse, where the most robust features are just over 500 nm tall
and can tolerate a pressure of o-,/Eo = 0.28.

of c = t/2r. The maximum stamp thickness is thus 500 Am for a maximum distortion

of 0.5% on a 100 mm diameter roll.

The backing pattern is designed using the guidelines developed above: the pattern

ratio should be the same as the printing features and the pitch should be about

one third of the stamp thickness. In this case, this requires a backing pattern with

P = ab/wb 1 and ab + Wb = t/3 ~ 150 am. These conditions call for a backing

pattern with ab = Wb = 75 pm. The results of Chapter 3 are again used to predict the

failure mode and collapse pressure of the backing features (Figure 10-2). The height

hb of the backing features is selected as the maximum height that has a collapse

pressure equal or greater than that of the printing features, in this case about 75 pm.

The full stamp design is summarized in Table 10.1, along with the predicted

collapse displacement Jc as determined by (5.18) and numerical simulation. Figure 10-
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Figure 10-2: Collapse pressure o-O/Eo as a function of feature height hb for backing
features with w a = 75 pim, assuming Eo = 1.5 MPa, PDMS-PDMS Wad = 44
mJ/m 2 , and PDMS-substrate Wad = 200 mJ/m 2 . The backing features must support
at least the printing collapse pressure (oo/Eo = 0.28; horizontal dashed curve). This
criterion is met at the critical point between the roof collapse and buckling modes
where the feature height is about 75 pm.

3 shows the predicted mechanical behavior of the stamp from simulation. Using the

load-displacement results in the plot, a preload force of ur = 1.25 - 10 4 Eo is selected

as an appropriate operating point under impedance control (Eo = 1.5 MPa gives Ur

= 188 N per meter of roll length).
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Table 10.1: Stamp dimensions and mechanical properties for the grating pattern

design example. A backing layer is used to increase the roll collapse displacement oc
using a thin stamp.

Parameter Value

width, w, 500 nm
spacing, ap 500 nm

height, hp 500 nm
Printing features stiffness, K 0.36

stiffness, k 1.42- 106EO m- 1

collapse mode Roof Collapse

collapse pressure, o, 0.28EO

Stamp body thickness, t 500 pm

width, Wb 75 pm
spacing, ab 75 pm

height, hb 75 pim

Backing features stiffness, K 0.36
stiffness, k 9.5. 103 EO m-1
collapse mode Roof Collapse

collapse pressure, o, 0.28EO

Collapse displacement, 6c (5.18) 45 ptm
Process window Collapse displacement, o, (simulation) 103 pim
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Figure 10-3: Contact force and pressure as a function of roll displacement for the
stamp designed in the grating example. Feature collapse occurs at a critical pressure
of pc/Eo = 0.28, denoted by truncation of the load curves at 6c = 103 pm (marked
x). A proposed preload force is f/E 0 = 1.25 - 10-4 per meter of roll length (marked
as o), selected at half the collapse displacement.
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10.2.3 TFT Interconnect Example

A common application in flexible electronics is the thin film transistor (TFT). Large

arrays of display pixels, sensors, or memory locations can be individually addressed

with sets of horizontal and vertical interconnects. In the case of a display, selectively

energizing the vertical and horizontal interconnects that address a particular pixel ac-

tivates a transistor, which stores the interconnect voltage signal in a capacitor within

the pixel. A typical layer of the device would include both one set of interconnects

(e.g. vertical), the transistor gates, and a capacitive pad. Printing this pattern is

challenging because the interconnects are very sparse pattern that will experience

roof collapse at low pressures, while the transistor gates are very small with a very

narrow channel between them and will be susceptible to lateral collapse. In this ex-

ample, a pattern is considered that has these dual scale features: interconnects with

dimensions wp = 5 pm, a, = 45 pm and transistor gates with dimensions w =a =

1 pm.

In this example, it is again assumed that printing is to be performed on a flexible

substrate passed between a 100 mm diameter printing roll and a 100 mm backup (or

impression) roll. Each of the design steps discussed above will be performed to create

a stamp that maximizes the process window 6c while keeping pattern distortion below

0.5%.

The printing features are designed by using the results of Chapter 3 to predict

the failure mode and collapse stiffness of both the interconnect and gate features.

The feature height hp is selected to maximize the collapse pressure based on these

predictions (Figure 10-4). The result of this design is a feature height of 1.4 pm, with

a corresponding collapse pressure of 0.019Eo.

Next, the stamp thickness is determined within the required constraints. Wrap-

ping a flat stamp of thickness t around a roll of radius r will result in a pattern strain

of E = t/2r. The maximum stamp thickness is thus 500 pm for a maximum distortion

of 0.5% on a 100 mm diameter roll.

The backing pattern is designed using the guidelines developed above: the pattern
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Figure 10-4: Collapse pressure Ou /Eo as a function of feature height hP for a thin film
transistor gate pattern using interconnects with w = 5 pm, a = 45 pm and a transistor
channel formed by gates with a = w = 1 pm, assuming EO = 1.5 MPa, PDMS-PDMS

Wad = 44 mJ/m 2 , and PDMS-substrate Wad = 200 mJ/m 2 . The feature height is
limited by lateral collapse of the smaller gate features at h, = 1.4 pam. At this height
the interconnects have a very low collapse pressure -oo/Eo = 0.019 (marked o), less
than the maximum of 0.050 at the boundary between roof collapse and buckling.

ratio should be the same as the printing features and the pitch should be about

one third of the stamp thickness. In this case, this requires a backing pattern with

P = ab/wb = 9 and a + w = t/3 ~ 150 pm. These conditions call for a backing

pattern with Wb = 15 pam and ab = 135 pm. The results of Chapter 3 are again used

to predict the failure mode and collapse pressure of these backing features (Figure 10-

5). The height hb of the backing features is selected as the maximum height that has

a collapse pressure equal or greater than that of the printing features, in this case 32

pam.

The full stamp design is summarized in Table 10.2, along with the predicted

collapse displacement 6c as determined by (5.18) and numerical simulation. Figure 10-

6 shows the predicted mechanical behavior of the stamp from simulation. Using the
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Figure 10-5: Collapse pressure go/Eo as a function of feature height hb for backing
features with w = 15 pm, a = 135 pm, assuming Eo = 1.5 MPa, PDMS-PDMS Wad
= 44 mJ/m 2 , and PDMS-substrate Wad = 200 mJ/m 2 . The backing features must
support at least the printing collapse pressure (o-,/Eo = 0.28; horizontal dashed
curve). This criterion is satisfied for hb between 4 pum and 32 pm; a height of 32 pm

(marked o) is chosen for maximum backing feature compliance.

load-displacement results in the plot, a preload force of ur = 3.5 - 10- 6 Eo is selected

as an appropriate operating point under impedance control (Eo = 1.5 MPa gives u,

= 5.25 N per meter of roll length).

This compliant stamp design (using a backing layer) provides a process window

of 12.8 pm. If the cylindrical stamp casting method developed in Chapter 6 is used,

stamps of arbitrary thickness can be produced and mounted in a stress-free state.

This relaxes the constraints on stamp thickness, so that for example a 3 mm thick

stamp could be used with the TFT printing pattern. Even if no backing layer is used,

this can provide a much larger processing window (Table 10.3). This tradeoff shows

how the backing layer and cylindrical stamp casting can both be useful in creating

stamps for robust printing.
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Table 10.2: Stamp dimensions and mechanical properties for the TFT interconnect
design example. A backing layer is used to increase the roll collapse displacement 6 c

using a thin stamp.

Parameter Value
width, wP 5 pm
spacing, a, 45 pm
height, h, 1.4 pm

Printing features stiffness, K 0.025
stiffness, k 1.94. 104 EO m-1
collapse mode Roof Collapse
collapse pressure, o-, 0.019Eo

Stamp body thickness, t 500 prm
width, Wb 15 pim
spacing, ab 135 prm
height, hb 32 prm

Backing features stiffness, K 0.081
stiffness, k 2.8- 103 Eo m-1
collapse mode Buckling
collapse pressure, o-, 0.019Eo

Process window Collapse displacement, 6c (5.18) 11.8 Pm
Collapse displacement, 6c (simulation) 12.8 Atm

Table 10.3: Stamp dimensions and mechanical properties for an alternate TFT inter-
connect design example. Cylindrical stamp casting is used to create a thick stamp
with a large pattern collapse displacement deltac without the use of a backing layer.

Parameter Value
width, W, 5 pm
spacing, ap 45 Atm
height, hp 1.4 tm

Printing features stiffness, K 0.025
stiffness, k 1.94. 104 EO m 1

collapse mode Roof Collapse
collapse pressure, o,- 0.019Eo

Stamp body thickness, t 3 mm

Process window Collapse displacement, 6c (5.18) 59 pm
Collapse displacement, 6c (simulation) 60 tm
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Figure 10-6: Contact force and pressure as a function of roll displacement for the

stamp designed in the thin film transistor example. Feature collapse occurs at a

critical pressure of pc/Eo = 0.019, denoted by truncation of the load curves at 6c =

12.8 pum (marked x). A proposed preload force is f/E 0 = 3.5 - 10-6 per meter of roll

length (marked as o), selected at half the collapse displacement.
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10.3 Extensions

While the results in this thesis add significantly to understanding of roll based PCP,

there are several directions in which these research approaches can be extended.

The study of microfeature behavior in Chapter 3 is limited to regular grating

patterns. These grating patterns admit simpler plane strain analysis and provide a

framework from which to derive general scaling laws and behavior. A logical extension

of this work would be to characterize the behavior of two dimensional arrays of pillars

and orthogonal lines, as would be found in superhydrophobic post arrays or grids of

transistor interconnects, respectively. In the example of pillars, much of the existing

analysis can be applied by replacing the plane strain modulus E* = Eo/(1 - VA) with

the plane stress modulus E* = Eo.

A second important extension of the feature behavior models would include the

effect of fluid inks. The models in this thesis have been developed using no slip

boundary conditions at the stamp-substrate interface; the SAM inks used in classical

pCP do not appreciably affect the surface adhesion between the stamp and substrate.

An alternate and perhaps equally useful mode of printing uses the PDMS stamp as

essentially a high resolution flexographic stamp to print liquid inks. The presence

of a liquid at the stamp-substrate interface will dramatically change the boundary

condition. Lubrication theory will show that the stamp will approach a nearly fric-

tionless interaction with the substrate, changing the apparent stiffness and collapse

modes of microfeatures. The presence of capillary forces from a liquid ink may result

in new modes of collapse in very small features.

Chapter 4 develops contact pressure models that apply in the case of a rigid roll

with a rigid substrate. These boundary conditions were chosen because they emulate

printing on both rigid plates (i.e. display backplanes or photovoltaic cells) and flexible

webs with a backup or impression roller; the latter has been shown to provide the best

dimensional stability in flexography [99]. Use of a rigid impression roller makes the

contact region very sensitive to disturbances; it may be advantageous to use either a

very compliant impression roller or a positive wrap angle on the printing roller with
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no backup roller. The analysis of contact pressure should be repeated for the cases of

a compliant roller (in effect an additional elastic layer in Figure 4-6) and for a positive

wrap angle on the roller (i.e. by applying a capstan model).

Chapter 5 introduces a new stamp architecture and shows that the use of a com-

pliant backing layer can dramatically alter the stamp behavior and collapse point

(Figure 5-13). This is a promising method for creating a robust printing process, but

still has significant room for exploration. Use of different microfeature structures may

improve the stiffness ratio of the backing layer so that it remains stiff in shear but

becomes compliant in compression. As another example, there may be an optimal

backing layer design for each printing pattern that depends not only on the mean

stiffness k of each layer but also on the relative location of features.

Chapter 9 presents methods of contact inspection and control. New methods are

needed for visualizing and rapidly evaluating the printed pattern once it has exited

the contact region in a real process implementation. The new found understanding

of feature stiffness and collapse points from Chapter 3 can be used to design test

patterns into the final device architecture or along the edge of a flexible web to

inspect for appropriate contact pressures. For example, a grating with a progressive

pattern ratio P can be designed so that grating will have a corresponding progressive

collapse sensitivity. Such a grating would provide a simple evaluation of the contact

pressure in the rolls (i.e. the P ratio between collapsed and uncollapsed grating

features would correspond to a particular contact pressure). Moreover, this approach

could be designed to include microscale test patterns for inspection by optical means

even if the desired device patterns are subwavelength.

10.4 Future Challenges

This thesis was motivated by noting that contact integrity is a necessary condition

for printing. While this work addressed stamp contact fidelity from the perspective

of modeling, sensitivity, and control, a number of other hurdles remain before a full

manufacturing scale system can be realized. A turnkey printing system must provide
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a means of contact actuation, stamp inking, web steering for layer registration, and

online inspection.

The machine designed in Chapter 7 is capable of two degree of freedom motion to

compensate for error with very long spatial wavelengths. New actuation schemes may

be required that have higher spatial resolutions, for examples thermal actuation zones

along the length of the roll to take advantage of the large coefficient of expansion of

PDMS stamps. Other types of local actuation might be required to maintain tight

control of pattern registration during printing.

Inking of thiol SAMs is quite different from inking techniques in the printing

industry that are designed for fluid inks. It is possible that a similar approach can

be adopted as flexography, where a separate set of inking rollers are used to apply a

uniform layer of ink to the surface of the printing stamp. Bench level experiments

have proven the efficacy of using a second PDMS slab as an 'ink pad' for the printing

stamp [62]; this can potentially be applied to a separate inking roll.

Web steering and handling are well developed technologies. In their implementa-

tion of a roll-to-roll pCP machine, [4, 17, 56, 96, 92, 107] use off-the-shelf components

for web tensioning and guiding. For precision patterning and registration, the accu-

racy of conventional web steering will need to be improved by at least two orders of

magnitude, requiring both higher resolution sensors and actuators.

Metrology tools and techniques must be advanced to accomodate higher feature

resolutions and tighter accuracy requirements. It will likely be impossible to perform

100% inspection of printed material; a significant challenge will be defining local

measurements that are indicative of printing quality across a broader scale. A goal

in metrology should be the development of online, real time measurement techniques

that can be incorporated as a feedback control sensor in the processing equipment,

similar to the optical control techniques demonstrated in Chapter 9.
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10.5 Outlook

Methods of contact lithography, including pCP, NIL, and SAIL hold incredible promise

for creating a new class of high speed, high resolution patterning systems. In the end,

no single process will emerge as an end-all technology, advanced device architectures

will require a combination of these technologies as appropriate.

The research community seems hopeful that mapping contact lithography to a roll

will be simple, straightforward, and allow large area, high resolution printing with

very low cost equipment. The experience gained through this thesis shows that this

will be anything but a trivial endeavour.

If the ultimate goal is to achieve semiconductor resolutions, and possibly accura-

cies, it would be foolish to imagine roll based processing equipment any less sophis-

ticated than the wafer steppers used in optical lithography. Achieving the desired

performance is not impossible, but will require a number of innovations and engineer-

ing breakthroughs that redefine the capabilities of roll processing equipment.

Requirement will be the greatest driver: as an example, thin film transistors

cannot currently be printed roll to roll with micron resolution and overlay because

conventional roll-based lithography (i.e. flexography) has had no need for this level of

precision. Achieving goals of resolution, accuracy, and rate will require coordinated

efforts across academe and industry. These advances must progress in parallel with

research and development in material systems and device architectures for flexible

substrates.

The challenges facing roll-based contact lithography are numerous, but not insur-

mountable. Rather, these challenges represent a rich research area in the years to

come. The work in this thesis aims to lay the foundation for further development

of robust roll based pCP through the resulting holistic understanding of stamp con-

tact behavior and examples of deterministic design of machines and processes for its

implementation.
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