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ABSTRACT

In this thesis, we explore the use of stochastic Navier-Stokes equations through the
Dynamically Orthogonal (DO) methodology developed at MIT in the Multidisciplinary
Simulation, Estimation, and Assimilation Systems Group. Specifically, we examine the
effects of the Reynolds number on stochastic fluid flows behind a square cylinder and
evaluate computational schemes to do so. We review existing literature, examine our
simulation results and validate the numerical solution. The thesis uses a novel open
boundary condition formulation for DO stochastic Navier-Stokes equations, which allows
the modeling of a wide range of random inlet boundary conditions with a single DO
simulation of low stochastic dimensions, reducing computational costs by orders of
magnitude. We first test the numerical convergence and validating the numerics. We then
study the sensitivity of the results to several parameters, focusing for the dynamics on the
sensitivity to the Reynolds number. For the method, we focus on the sensitivity to the:
resolution of in the stochastic subspace, resolution in the physical space and number of
open boundary conditions DO modes. Finally, we evaluate and study how key dynamical
characteristics of the flow such as the recirculation length and the vortex shedding period
vary with the Reynolds number.

Thesis Supervisor: Pierre F. J. Lermusiaux

Title: Associate Professor
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1. Introduction

1.1 Background and Motivation

In recent times, modeling stochastic fluid systems has become increasingly popular

as the need and applications for these models has grown while uncertainties in the model

parameters, parameterizations and inputs still often remain significant. Stochastic models

are applied to varied engineering and scientific disciplines including Mathematical

simulations, Mechanical Engineering models, and Aeronautics and Astronautics system

designs. With the wide array of cross disciplinary applications, modeling methods such as

the Monte-Carlo (MC), Polynomial Chaos Expansion (PCE) and Proper Orthogonal

Decomposition (POD) were developed to solve these problems. Unfortunately, these

original methods are prohibitively expensive and have since received much attention to

improve their efficiency. More specifically, the stochastic simulation of the Navier-Stokes

equations through different computational methodologies is an active area of research.

Although many improvements have been made to PCE and POD methods, many stochastic

fluid flow problems remain computationally intractable. Thus, the most recently developed

Dynamic Orthogonality (DO) method, developed by Sapsis and Lermusiaux (2009) from the

MIT MSEAS group, is of great interest, since it promises to cut down computational costs by

an order of magnitude or more for the same accuracy. The more efficient the fluid flow

representations are with the same level of accuracy, the more engineers can utilize these

simulation and design better fluid dynamical systems under a range of uncertain

conditions.

This thesis is focused on examining the effects of the Reynolds Number on stochastic

fluid flows behind a square cylinder and evaluating the DO methodology and computational
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schemes to do so. This involves reviewing existing literature, examining our simulation

results, and validating that our numerical solution is correct. The thesis uses a novel

boundary condition formulation for stochastic Navier-Stokes equations (Ueckermann et al,

2012) which allows the modeling of a wide range of random inlet boundary conditions

with a single DO simulation of low space-time dimensions. For this thesis, the range of inlet

boundary conditions considered corresponds to variations of the Reynolds number,

defined byRe = pVD, from approximately 20 to 100. This range contains two distinct

laminar flow regimes: the lower-Reynolds number regime is steady and is characterized by

a recirculation zone behind the cylinder, while the unsteady regime is characterized by

vortices shedding at a frequency correlated to the Reynolds number.

Since the stochastic DO simulation is discrete, we evaluate the effect of different

discretization parameters on the stochastic results. Specifically, to evaluate the approach,

we first evaluate its accuracy, understand its constraints. Next, we can extend the approach

or apply it to other problems. The numerical discretization of the continuous DO equations

leads to discrete equations with matrices. One of the ways to evaluate the adequacy of the

numerical code is to evaluate the convergence of the discretized simulations. In this thesis,

we show that the new open-boundary stochastic modeling approach allows one to

complete a large number of deterministic simulations with varied Reynolds numbers with

a much cheaper single DO simulation with stochastic open boundary conditions. We also

describe the dynamic global properties of the flow. We evaluate our dynamics result by

comparisons with existing knowledge about flows behind a cylinder at varied Reynolds
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number values. The key aspect of our application is that we can compute all of the solutions

with a large ensemble of Reynolds number values with a single stochastic simulation.

Next we adjust the parameters to better understand their role in creating the

realizations and how certain values will impact the convergence of the numerics.

Convergence is important since we are modeling continuous equations with discrete time

steps. At sufficient resolution, we should reach very close approximations of the governing

fluid equations with parameter (Re) values described only by a probability density

function.

Lastly, we calculate key characteristics of flows behind a square cylinder for mean

Reynolds numbers within the interval 20-100. For that range of Re numbers, we find the

recirculation zone length and vortex shedding frequency. The validation of this new

method and calculation of key characteristics, like recirculation zone length and vortex

shedding period, illustrates the possibilities of the new stochastic boundary condition

approach we utilize. In the future, we can then transfer this knowledge to applications in

different fluid test cases and in cross-disciplinary scenarios.

1.2 Background Literature

There is a large body of established literature on the topic of simulations and

models of fluid flow around a cylinder. Within this literature, we found benchmarks which

establish qualitative trends in the behavior of such flows. These trends are used to verify

our unique approach to model uncertainty using our finite volume Navier-Stokes solver

which uses the Dynamically Orthogonal method to predict probability densities of the flow.

The fluid dynamics considered is that of flows around a square or circular cylinder in a
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channel with a specified inlet velocity profile and boundary conditions. It has been

observed that with increasing Reynolds number, the flow separates first at the trailing

edges of the cylinder, leading to a closed steady recirculation region consisting of two

symmetric vortices is observed behind the body. The size of the recirculation region

increases with an increase in Reynolds number. When a critical Reynolds number is

exceeded, the well-known von Karman vortex street with periodic vortex shedding from

the cylinder can be observed from the wake. Based on experiments, Okajima (1982) found

periodic vortex shedding at Reynolds number of approximately 70. Another value of 54

was found by Klekar and Patankar (1992) based on a stability analysis of the fluid flow.

Separation at the leading edges has been found to occur between the bounds of Re = 100 to

150 by Okajima (1982) and Franke (1991). For a circular cylinder, this number is

approximately 180.

Bruer et. al (1999) model laminar flow past a square cylinder using two numerical

methods: lattice-Boltzmann and finite volume methods. For flows in the creeping steady

flow regime, Re < 1, the flow past the cylinder persists without separation (Bruer 1999).

For flows in the earlier parts of the laminar regime, Re > 1, for example Re -20, we see a

recirculation region (

Figure 1) consisting of two symmetric, vertically-stacked vortices in the wake. It is

observed and proven that the length of this recirculation zone increases as the Reynolds

number grows (Bruer 1999).

Bruer also found that the correlation between the recirculation zone length and the

Reynolds number for the region between Re = 4.4 and Re = 60 is:
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Lr/g = -0.065 + 0.0554 * Re 4.4 < Re < 60

(eq. 1)

Re = 30

.1

Re = 60

Figure 1: Recirculation Zone

At the higher Reynolds numbers, Re >100, there is the formation of eddies from the

rollup of the free shear layers described as the von Karman vortex street as shown in the

figure below (

Figure 2: von Karman Vortex Street
Vortex shedding is longer and broader for the square cylinder than for the circular cylinder. This

figure only shows the circular cylinder case. (Van Dyke 2002)

This pattern also has a frequency and it is observed that the period increases with

rising Reynolds number (Davis et al. 1984). In Venturi (2008), they used an extension to
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the proper orthogonal decomposition (POD) method to analyze a random laminar wake

past a circular cylinder. Using stochastic eigen-decomposition and modal analysis, they

suggests the shedding period for a circular cylinder to be roughly 6 convective time units

(Venturi 2008). This was used as a benchmark for our calculations and experiments. The

authors also found that stochastic modes required to reproduce the correct simulation are

not directly dependent on the dimensionality of the flow, so they hypothesize that their

approach can be used to analyze varied fluid flows.

Franke (1990) completes numerical calculations of laminar vortex-shedding flows

past square and circle cylinders in the laminar regime. He observed that for Reynolds

numbers below 150, separation occurs at the rear corners of the cylinder and the size of

the vortices decrease as the Reynolds number increases to this threshold. However, at

Reynolds numbers greater than 150, the opposite behavior is observed. The separation

occurs at the front corners and the size of the vortices increase with increasing Reynolds

number (Franke 1990).

Galletti (2003) employ the proper orthogonal decomposition to simulate multiple

Reynolds numbers. The low dimensional modeling sets up the square cylinder

symmetrically between two semi-infinite parallel walls. The inlet flow has a preset

parabolic velocity profile and a set of boundary conditions to render the initial conditions

consistent with the Navier-Stokes equations. They found that the numerical POD models

are valid for certain Reynolds numbers and blockage ratio beyond the original

investigations which includes Reynold number ranges from 60 to 255 and blockage ratio

ranges from 0.125 to 0.375.

14
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For a circular cylinder, shedding frequency can be found from modeling the lift force

(Lin 2007). In that manuscript, the author modeled stochastic simulations of compressible

and incompressible flows using the Polynomial Chaos method. Incorporating the

randomness of the stochastic inlet velocity, he found an empirical relation between the

Reynolds number and vortex-shedding frequency. He found that for the range of Re, [90,

100], the shedding frequency,fs, varies linearly between [0.1592, 0.1697]. The author

concluded that that the analytical solutions found verify the numerical methods developed

in the paper. We can use all of these results as benchmarks for our square cylinder case

study.

Lastly, Sharma described the previous findings on the Recrit values for flows and

their blockage ratio (Table 1). This is used to benchmark our results since there hasn't been

a definite answer to the value of the Recit. The answer is heavily influenced by the initial

dynamic conditions of the flow like Reynolds number, and also by the Prandtl number and

Strouhal number.

15
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Table 1: Previous Recrit findings in existing literature

Leading or Leading or

Author Recrit Blockage ratio Trailing edge at Trailing edge at
high Re (Re very high Re

<150) (Re >150)

Kelkar et. al. 54 14.3 %
Norberg 47 ~0% .
Sohankar et. al. 51.2 5 % Trailing edge Leading edge
Franke ._8.3% . Leading edge
Robichaux ._5.56 % Trailing edge Leading edge

1.3 Dynamically Orthogonal (DO) representation of Stochastic Navier-

Stokes Simulations

Fundamentally, the Dynamically Orthogonal representation is a decomposition of

the Stochastic differential equations, in our case the Navier-Stokes equations. To fully

represent the randomness of a discretized field, each point on the grid would require its

own random variable. However, DO takes advantage of the assumption that if the flow is

sufficiently continuous, then we may be able to obtain accurate estimates on the velocity

and energy states at a point on the grid deduced from what we know about the nearby grid

points. To put it simply, the velocities are correlated to each other. This intuitively makes

sense because in fluid flows, for the liquid to move from one position to the next one, it

must affect the nearby liquid, just by local conservation of mass and momentum.

DO uses the following discrete decomposition:

S

u(x, t; o) = U(x, t) + uL(x, t)yj (t; w)
i=O

(eq. 2)
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The variable u is the stochastic velocity. It can be decomposed into two parts, the

mean and sum of the stochastic modes times the coefficients. The variable i! is the average

velocity. The variable ui represents the velocity-field for a single random variable on the

grid based on how the local velocities are affected by that random variable, and y, is the

stochastic coefficient, which is a realization of that random variable. The Eq=O uiyi term is

the sum of all the stochastic aspects of the flow. Depending on the magnitude ofs, the

number of "DO helper modes", we can realistically model stochastic fluid systems.

To further understand, we can take a close look at the last term incorporating the

randomness. This sum of products is broken down in two factors: ui and yi. The ui

represents the orthonormal basis of the portion of the velocity field that is random; it is a

field that can range in values over the spatial domain. The values for this variable depend

on the dynamics of the flow, time and spatial constraints, and the boundary and inlet

conditions of the system. The yj's are the stochastic coefficient for each mode. Depending

on the value of these stochastic coefficients, yi, which is described by a probability density

function, we can obtain diverse results for the direction and magnitude of the velocity. For

example,
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plots the 1D projected (along the diagonal) and 2D projected scatter plots of realizations

for the base case examined, and this shows the complexity of this 10-dimensional

probability space (Ueckermann and Lermusiaux, personal communication).
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35

30

Figure 3: Graphical Representation of Stochastic Coefficients.
The 1D projected (along the diagonal) and 2D projected scatter plots of the realizations of the

stochastic coefficients, yi's. The coefficient realizations are colored by the corresponding Reynolds
number (Ueckermann and Lermusiaux, personal communication).

As illustrated on
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, the magnitude of the modes in the DO decomposition encompassing the stochastic

coefficients decrease as the mode number increases (see Figure 4). This allows one to limit

the number of DO modes needed to represent the uncertainty in the flow or its probability

density function.
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YTi.

Figure 4: Magnitudes of Mean and Modes
The dotted line is the magnitude of the mean, and the next five lines show the amplitude of the first

5 modes.

If, at a particular point in time, we take a single, 10-dimensional point from

Figure 1, multiply each dimension by its corresponding mode, sum up all of these

(so, essentially a dot-product), and add the mean velocity, we can construct a deterministic

realization of the field. However, in the above results we only showed the DO

decomposition, that is the mean and the first five modes, as the final output for each time

step. To illustrate realizations proper, Figure 6 shows the DO decomposition on the left,

and 5 deterministic realizations at different Reynolds numbers for the base simulation.
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The number of DO modes necessary, that is, the value of s, to accurately model a

range of different dynamics depends on the complexity of the flow (Sapsis and Lermusiaux,

2011). Based on the expected flow behavior at the Reynolds and Strouhal numbers for the

flow we are studying, we can make a good approximation for how many DO modes are

necessary to reach convergence for our numerical simulation. For larger Reynolds

numbers, it is expected that more DO modes will be needed. While we can make a good

approximation of the number of DO modes needed, this thesis dives deeper in testing the

boundaries of DO and understanding its effectiveness.
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2. Model set up and Validation

The deterministic version of the Navier-Stokes code used has been extensively

verified with standard CFD test-cases. The Stochastic version, in turn, was validated against

this deterministic version (Ueckermann et. al. 2012). However the new stochastic

boundary conditions (Ueckermann and Lermusiaux, pers. com.) have not been previously

validated and this is one of the goals of this thesis. To validate this, we examine a particular

flow setup, described next. To ensure that this setup was accurately modeled, we varied

several numerical discretization parameters, but each time only one at a time. By both

increasing and decreasing the resolution of the discretization, we could examine whether

the results converged. Since many of these test runs were the same as those used in the

results presented in the next section, excepted that their objective was to validate the

numerical model and open boundary condition methodology, we present all the results in

the next section. In addition to those tests, we also ensured that the base simulation was

repeatable given different realizations of the stochastic coefficients.

We also wanted to study the effect of different flow and dynamical model

parameters. In this thesis, we will focus on the flows behind a square cylinder. Our

objective was to create a similar test case setup to those we found in the literature. For

example, we set a uniform inlet boundary condition for the velocity. We also used a no-slip

condition for the fluid around the cylinder, while using a slip condition at the top and

bottom boundaries. We had the choice between a square or circular cylinder, but chose the

latter because we could accurately represent a square cylinder using a structured grid.

Lastly, we chose to study two-dimensional flows (see Figure 5 for a summary).
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u n = 0, du/dn = 0
u = (1,0) + (U(-a, a), 0)

+Y x du/dn= 0
P =0

-+ u-n = 0, du/dn = 0

P(Yd)

Figure 5: Square Cylinder Model of the test scenario

To define the flow characteristics for the stochastic simulation, we had to set the

Reynolds number and Reynolds number range. Specifically, it is the uncertain inlet

boundary condition that leads to a variable Reynolds number. Since the behavior of the

flow drastically changes depending on the Reynolds number, it was important to capture

all of this variation within a single DO simulation. This was possible because the random

realizations of the inlet boundary velocity are mapped uniquely to the stochastic subspace,

in the form of stochastic coefficients that are defined in that subspace. This is a key of the

new boundary condition approach. It allows representing simulations over a wide range of

Re numbers with a single DO simulation. Numerically, the randomness is modeled by

taking a large number of Monte-Carlo samples from MATLAB's pseudo-random number

generator for uniform distributions. Of course, the realization in the subspace can also be

re-mapped to the physical space, as illustrated in Figure 6 for five different Re number

values.

24
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Reconstruction Realizations
Mean Re 28.2

marginal M
model1 pdfs/Re3

Mode 2 n eO1I

Re= 40.1

Mode 3W

Mod*eS

Figure 6: Mean and first 5 modes of DO Decomposition (left) and reconstruction of 5 deterministic
realizations (right).

During our study of stochastic fluid flows past a square cylinder, we wanted to

evaluate how well our new method could capture multiple dynamical regimes in a single

simulation. For this, we needed to better understand how the numerical discretization of

the stochastic fluid flow equations affects the behavior of the solution. Understanding how

discretization errors behave is important for any application, not just the flow we studied.
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3. Understanding the Parameters of DO

3.1 Experiment Setup and isolation of parameters

After we verified the model, we are able to set up cases. Each simulation is ran to a

non-dimensional time of 65, which would allow the fluid to travel approximately 4 times

the size of our domain. We save snapshots of the solution at every half-unit of non-

dimensional time, for a total of 130 snapshots for analysis. For the initial case, also referred

to as the base case or original case, we chose the optimal numerical parameters, i.e.

parameters that led to what we deemed "good" results by comparisons with the literature

but also by numerical convergence analysis for the stochastic DO simulation. From the

latter results, we concluded that the simulation had converged, or in other words it

provided a reasonably accurate numerical solution of the Navier-Stokes Equations and had

acceptable errors at the boundaries. These results are presented next.

We implemented numerous test cases to understand how the simulation will

behave if we change the key input parameters to the stochastic simulations. The main

inputs that determine the flow characteristics and accuracy of the simulation consist of

Reynolds number (Re), number of Monte Carlo samples (MC) in the subspace, number of

spatial points (N), and number of "helper" DO modes(s). The Reynolds number determined

the flow characteristics of the test and we expected to see significant changes in flow

behavior as we adjusted its value. The number of Monte Carlo samples helped us represent

the probability density function of the randomness we wanted to capture for our problem.

Therefore, we expected changing the Monte Carlo samples to affect the shape of the

probability density functions. The number of spatial points determined the spatial

27



resolution of the simulation. The size of the domain for our test is three units high by

sixteen long in non-dimensional spatial distance, but the number of finite volumes per

these unit blocks is controlled and determines the numerical resolution. We expected the

higher the resolution, the "cleaner," or more accurate the results in terms of paths for

streamlines, eddies, vortices and recirculation zone. Lastly, the "helper" DO modes are

instrumental in capturing the variation due to the uncertain inlet boundary condition, or

uncertain Reynolds number. We expected that changing the number of DO modes would

change how well we capture the dynamics at different Reynolds numbers.

The original case that converged was optimized manually to achieve the most

accurate result in the shortest computational time by using heuristic methods. The original

case we arrive at has the parameters listed in Table 2, and the result is illustrated seen in

28



. Importantly, we note that the base case corresponds to a single DO simulation but

actually represents 10s deterministic simulations.

Table 2: Original Parameters for the Base Case

Mean Range of Monte No. of Observation No. of DO
Reynolds Reynolds Carlo Spatial Time step helper

Numbers Samples points modes

Base Case Re = 40 Re-span = MC = 105 N=15 T=65 S = 9
(Case 2) 0.3 | | 1 |

29
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0.8

0.6

0.4
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Figure 7: Mean and first 5 DO Modes and marginal pdf's of the Base Case. The top right plot shows
the 2D projected scatter plot of Y1 (x-axis) and Y2 (y-axis).

Using this initial case as the control, we adjusted one of these parameters in each of

the following cases. The simulation results differ depending on the parameter change. The

parameters that are varied between runs can be seen in Table 3 and Table 4, along with a

qualitative description of the effects compared to the base case. In Table 3, the changes in

Reynolds number mean and range, and the number of Monte Carlo is examined. In Table 4,

the changes in spatial resolution and number of DO modes is examined.
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Table 3: Test Cases Observation Table: Reynolds number and Monte Carlo Samples.

Base Low Reynolds High Reynolds Low MC High MC
Case No. (Case 3) No. (Case 4) Samples (Case Samples (Case
(Case 2) 5 6)

Variable of . Re & Re-span Re & Re-span MC MC
interest
Parameter of . Reynolds Reynolds Monte Carlo Monte Carlo
interest number and number and Samples Samples

range of range of
Reynolds Reynolds
Numbers Numbers

Value of . Re = 20 Re = 60 MC = 104  MC =106

parameter Re-span = Respan =

0.60 0.67
Observations . Larger eddies 4t and 5* Modes reverse Same.
of simulation and less mode have eddies

uniformity, much finer direction, and
lack of structures chaotic
symmetry streamlines.

Observations . Straight Larger Profiles have Mode 1 has
of pdfs curves. Odd Amplitude. less resolution slightly

profiles Very smoother curve
I asymmetric. symmetric. I
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Table 4: Test Cases Observation Table: Spatial points and DO helper modes.

Base Low Spatial High Spatial Low DO Helper High DO Helper
Case Points (Case Points (Case Modes (Case 9) Modes (Case

(Case 2) 7) 8) 10)

Variable of . N N S S
interest
Parameter of . No. of Spatial No. of Spatial No. of DO No. of DO
interest points points Helper modes Helper modes

Value of .N = 10 N=20 S = 5 S = 13
parameter
Observations
of simulation

Observations
of pdfs

Same. Except
for divergence
in modes 2
and 3. Mode 5
is incorrect.

Simulation is
more refined
with the same
curves and
streamlines.

Mean and
modes vary
significantly
from base case.
Eddies occur in
different
positions and
the streamlines
are incorrect in
later modes.

Models nave
different
pressure
densities and
streamline
patterns.
Eddies differ in
size but the
shape stays
constant.

Same Same Probability Same but differ
density in higher
function are modes
much more
coarse and

_choppy

3.2 The test cases and their results

Sensitivity of the stochastic DO simulation to the Reynolds number: In the first

parameter changing pair of test cases, we look at adjusting the Reynolds number. Because

the inlet velocity conditions are set, we are able with this model to adjust the mean

Reynolds number of the flow thus changing the dynamics. The first case, we adjust the

mean Reynolds number to twenty (
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) and the latter case, we adjust the Reynolds number to sixty (
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). Along with this adjustment of the mean, we have to change the Reynolds number

range (Re-span). The span of the Reynolds number is equal to plus or minus twenty for the

base case, but changes need to be made for the new mean Reynolds numbers. We desire

the upper bound Reynolds number for the low Reynolds number case to equal the base

case (Re = 40) and the lower bound for the high Reynolds number case to also equal the

base case (Re = 40) so we have a continuous spectrum. A range of twenty for the low

Reynolds number case would have equated to zero on the low end, meaning there is no

flow which is not helpful for our study. For the lower boundary, we fix the lower span to be

8 so the Re-span became 0.6 rather than 0.3. For the high Reynolds number case, we could

succeed in making the lower bound of 40 to be included so we changed the span to two

thirds.

After running the simulation, we see the low Reynolds number case shows very

different flow patterns in comparison to the base case. The mean has a smaller

recirculation zone length, and the first five modes are significantly different. The fifth mode

for the low Re case resembles the third mode for the base case (but with a dominant

signature at the outlet boundary), while the first four modes are more similar to the fourth

mode in the base case. This is as expected, since the low Re case does not contain

realizations with vortex shedding. For this case, the pdfs are also vastly different, with

curves seeming smoother, without the single sharp peaks as in the base case.

We see that the high Reynolds number case exhibits the same flow direction, but

with denser streamlines, irregular eddies, and possibly more vortex shedding. In particular,

modes four and five are significantly different from the base case, showing much finer,
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vortex-shedding structures. This is expected since every realization from this case exhibits

the recirculation-zone dynamics. In addition to the actual means and modal portions of the

simulation, we can also comment on the mode-by-mode marginal probability density

profiles. The two higher Reynolds number cases show significant differences in the shape

of the marginal profiles for the modes, especially due to oscillations. They indicate the

nonlinear (non-Gaussian) behavior in the stochastic subspace, where the non-marginalized

probability densities are not uniformly distributed. In other words, the different Re

numbers lead to a single curve in that space, but that curve is organized in the space (it

does not randomly cover the whole space). Of course, if we recombine all of the modes

together, we recover the original uniform probability density, up to numerical errors.
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Figure 8: Low Reynolds Number (Cases 3)
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Figure 9: High Reynolds Number (Case 4)

Both the low and high Reynolds number cases vary from the control case in their

streamline structure and how the stochastic profiles impacts the flows. The Reynolds

number, by definition, should impact the dynamics of the flow and how it will react to the

square cylinder obstacle.

Sensitivity to the Stochastic Resolution: T he next parameter for analysis is the impact

of the number of Monte Carlo (MC) Samples in the stochastic subspace. For this stochastic

simulation, the number of samples dictates the randomization and repeatability of the

results so it is important to inspect how this quantity impacts the resulting realizations. In

37

.......... --- Aw 4F -



similar fashion to the Reynolds number trial cases, we increased and decreased the number

of Monte Carlo samples on the simulation and probability profiles. The results are shown in
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and
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, respectively. To do this, we changed the Monte Carlo input value.

The results are very interesting. In addition, the realization in mode four shows a

different set of streamlines, in thickness, proximity, and direction. The higher Monte Carlo

samples displays results almost identical to the base case, confirming convergence.

However, the streamlines in two and five have noticeably more streamlines. There are also

slightly different pressure gradients. The higher MC case also has higher pressure peaks

than the base case. In addition, it is important to note that these plots do not necessarily

show a clearer or higher resolution.

Of course, if we vary the number of sample, we can mainly expect variations in the

profile of the density function. Interestingly, the profiles for the higher MC case are very

similar to those of the base case, again showing convergence. The profile for mode 1 is

closer to a uniform one, as expected. The other marginal for higher modes remain very

similar, still showing the same peaks, indicative of the very organized (and non-uniformly

distributed) sample curve in the stochastic subspace. For the former lower-resolution case,

the marginal profiles have noticeably less resolution, but have overall similar shapes..

40



-2 0 2

S11

0.6

0.4

0.2

0-J

1 0 1

Fe1
0.8
0.6
0.4

0.2

0-

Figure~ ~ ~ ~ ~ 10 Lo1ot al Smls(ae5

41

MU609" 91 41



-2 0 2

"Kit I

0.6

0.40.2

0

0.8
0.6

- 2.22.

0

0.8

0.6

0.4

0.2

-1 0

Figure 11: High Monte Carlo Samples (Case 6)

Sensitivity to the Spatial Resolution: The next parameter we studied is the number of

spatial points. We set up our finite-volume grid in a similar fashion to that of simulations

employed in the literature. In our 3 by 16 non-dimensional unit spatial blocks, we have to

divide each block in a number of discrete finite-volumes. This drastically affects our

computational cost and simulation run time. The goal is to see how an increase or decrease

in this mesh size resolution affects the result of our simulations.

For the two test cases dealing with spatial points, we change the number from of

finite volumes per unit distance from fifteen to ten for the lower bound (
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) and twenty for the upper bound (
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). This implies that we vary the total number of finite volumes from (15x3 by 15x16, i.e. 45

by 240) to (10x3 by 10x16, i.e. 30x160) for the coarser simulation and to (20x3 by 20x16,

i.e. 60x320) for the higher resolution. In the lower resolution case, we observe the pressure

gradient becomes opposite in mode two but then corrects itself in later modes. This is not

relevant because if the pressure or velocity in the DO modes is flipped, then the probability

density function will also be flipped. Mode three shows small deviations from the base case

in terms of streamline path. Mode four shows a possible re-convergence to the base case

model and in the last mode of the figure, mode five, the graphic displays a clear streamline

divergence. That is, the result of mode 5 diverges from the base case, which seems to

indicate the spatial resolution is insufficient. For the latter higher-resolution case, the

modes looked more refined with the same curves and streamlines. However, they are

similar to that of the base case.

When observing the marginal probability density profiles, we see that they nearly

look exactly equal to these of the control test run. The lower spatial resolution case exhibits

an exact copy of the profiles for the first four modes; however, in mode five, there is a sharp

contrast. For the higher spatial resolution, the profiles are in line with the original test case,

indicating convergence of the marginal densities with respect to the spatial resolution in

the physical domain.
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From these spatial resolution studies, we can conclude that the spatial resolution

does not alter significantly the dynamics of the simulation but change its details. The lower

resolution causes the simulation to diverge in the fifth mode so the accuracy of the

stochastic simulation is not sufficient for the five modes. For the larger number of spatial

points, we obtain a higher similarity with our base case simulation; there is not much

added information from this increase in mesh size. Thus we conclude that using 15 spatial

points gives a sufficiently accurate solution.
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Sensitivity to the number of open boundary condition DO modes: In the last parameter

investigation, we examine how the number of Dynamically Orthogonal (DO) helper modes

affects the simulation. The DO helper modes are the stochastic summations needed to

represent uncertain open boundary conditions. Each mode represents a stochastic velocity

basis. A realization consists of a combination of the mean velocity, velocity modes and

sample realizations of the stochastic coefficients which is defined by the probability density

function (pdf). There are nine DO helper modes in the initial test case to encompass all of

the randomness. We examine two deviations in similar fashion to the previous parameters.

The low number of DO helper modes is five (
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) and the high number of DO helper modes is thirteen (
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The results of the simulation for the low number of DO helper modes show the

mean and modes varying significantly from the base case. Eddies occurred in different

positions across modes. For example, the modal streamlines and eddies differ in size and

direction in modes two, three and five. In particular, due to the orthogonally constraint and

some variations in the mode shapes, it seems as though the order of modes two and three

are switched, and mode five has finer-scales than observed in the base-case. The reason for

this change in vortices size is that with only five modes, each helper mode needs to

encompass more of the dynamics, but they can only do so approximately. If we consider the

marginal probabilities, we find that the marginal probability density functions are affected

by the decrease in the number of DO helper modes. We note that since we used a

consistent set of randomly generated numbers, the differences in marginals are only due to

the lack of sufficient modes.

The case with a higher number of DO helper modes has marginal profiles that are

more similar to that of the base case. The higher DO helper modes are similar to the base

case, but begin to differ from the base case at mode five. Mode five has much more

symmetry and it is evident that there are more modes describing more complex dynamics,

like vortex shedding that is not shown here. The base case seems to have finer-scale

structures than the higher mode case, and the higher-mode case is also more symmetric.

Since there are many more modes in this case, we are not seeing the whole decomposition

but we can infer that the more modes available, the more accurate the decomposition of the
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stochastic simulation can be. Each mode takes on less of the dynamics in the case with a

higher number of DO modes.
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Figure 14: Low number of DO helper modes (Case 9)
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What do the above results mean? Since the DO helper modes create the

decomposition of the actual simulation, the order and patterns play a large role. The level

of complexity of the system determines the amount of DO helper modes needed. For

example, for low Reynolds numbers, the mean velocity is very small so the higher DO

helper modes will have limited effects of the final realizations since the slow flow isn't as

dynamic. We also realize that the number of DO modes affects how much of the dynamics

can be described with each mode. In some sense, the higher the number of DO modes there

are, the more the dynamics can be broken down in each mode. The coefficients are also

linked to the number of modes so this number affects the stochastic dynamics in the
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subspace as well. However, since we plotted coefficients that are scaled (normalized) by

the magnitude of the total perturbation of the ut velocity term, the smaller the u, or slower

and less complex flows, the less the stochastic coefficients actually plays role. All in all, we

can deduce that the more complex the flow, the more DO helper modes are needed for a

proper stochastic representation. It seems as though the higher DO mode case better

separates the different dynamics of the flow in mode 5, and it would suggest that we could

obtain better results using more DO modes. However, for our purposes, these are similar

enough to the base-case (since the contribution from the 5th mode is 4 orders of magnitude

smaller than that of the mean).

3.3 Summary

In summary, we obtained optimal parameter values for our flow of interest by

bracketing of values, adjusting of each value until the control case was similar to the case

with higher resolution in the physical space, stochastic space or stochastic dimension. Out

studies focused on mean Reynolds numbers between twenty and sixty because this allows

for some dynamics develop, requiring several DO helper modes. The number of Monte

Carlo samples is optimized at one hundred thousand samples (105) because this shows all

the detail of the simulation without becoming too computationally expensive. Additional

increase in Monte Carlo members did not add much more information. The number of

spatial finite-volumes is optimized in this setup with fifteen volumes per unit distances in

non-dimensional terms. Additional increase in mesh size does not add much more

information. We also understood through heuristic methods that the less spatial points we

used, the less accurate our simulation became. For number of DO helper modes, nine was
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chosen for our dynamics since additional modes did not alter the modes 1-to-S. Such

comments are qualitative versions of the quantitative criterion employed in Lermusiaux

(1999) for evaluating convergence of the stochastic subspace.
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4. Determining and Calculating New Dynamical Characteristics

4.1 Recirculation Length

After understanding the inputs, limiting factors, and capabilities of our single DO

stochastic simulation, we used it to calculate key characteristics or properties of the fluid

flow: the recirculation length and vortex-shedding frequency. As described in past

literature, the recirculation length is characterized by the initial separation of the flow at

the trailing edges of the cylinder and the formation of two closed and steady symmetric

vortices.

To calculate the characteristic recirculation length for a specific mean Reynolds

number, we can monitor the horizontal velocities along the center line at a single point in

time. Assuming the recirculation zone occurs directly behind the cylinder and that the

Reynolds number is in the appropriate regime, the horizontal velocities should be toward

the cylinder (opposite to the inlet velocity direction) when inside the recirculation zone.

However, after reaching the end of the recirculation zone along the center line, the

direction of the horizontal component of the velocity should change. If we track the

position on the grid where this change of sign or direction of the horizontal velocity

component occurs, we can estimate the recirculation length.

Below we have four cases where we calculate the recirculation zone length. These

cases vary the Reynolds Numbers: Re = 20 (Case 3), 40 (Case 2), 60 (Case 4), and 110 (Case

11). We refer to these cases as low Reynolds number, Mid Reynolds number, High Reynolds

number, and very High Reynolds number.
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For the low Reynolds number case, we see an upward trend in the recirculation

zone length (Figure 16). It increases linearly from slightly less than one non-dimensional

unit distance to slightly over 1.6 non-dimensional spatial units. Also, the slope is 0.0537

with a covariance of 1.24x10-6 and standard deviation of 0.0011. The covariance and

standard deviation is from possible error since the slope is calculated by averaging the

slope between numerous points on the line. This positive slope agrees with previous

literature, e.g. Bruer also found that the recirculation zone length increases with the

increase in Reynolds number, after Re = 5, passing the creep zone.
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Figure 16: Low Reynolds Number, Non-dimensional Recirculation Zone Length (Case 3)

For the mid Reynolds number case (
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), we see an upward trend, a peak, and then a decline in the recirculation zone

length. It increases from slightly more than one 1.8 non-dimensional unit at Re = 30, peaks

a little after Re = 40, then declines. The curve is no longer linear (there are changes in slope

and curvature). In the subplot below showing the decline, the curve loses its definitive

linearity. This makes intuitive sense because at this Reynolds number regime, we begin to

see the onset of the vortex shedding and it no longer makes sense to find the edge of a

steady recirculation zone because of the periodic separation. The slope of the line from Re

= 28 to Re = 42 is 0.0553 with a covariance of 7.65x10-5 and with standard deviation

0.0087. However, it is the same slope as in the low Reynolds number case which we

expected to hold true, further validating the DO simulations with our new open boundary

condition formulation.
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Recirculation Zone length vs. Reynolds Number
at time 65
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Figure 17: Mid Reynolds Number, Non-dimensional Recirculation Zone Length (Case 2).

Next we can analyze the recirculation zone length in the high and very high

Reynolds number cases (

Figure 18 and
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). Here, we continually see a decline; however, the slope is very far from being linear. The

reason for this, as discussed in the mid Reynolds number case, is the vortex shedding,

which is very apparent In the very high Reynolds number case (
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), this is especially clear. The slope for the high and very high Reynolds number cases

respectively were, -0.0408 and -0.0139. However, the covariance and standard deviation

were two and one orders of magnitude larger than the low Reynolds number case. This

once again makes sense because the recirculation zone length does not hold for high

Reynolds numbers. This makes the slopes irrelevant because this behavior is not exhibited.

Therefore, these slopes, covariance, and standard deviation values are not included in

Table 5.
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Figure 18: High Reynolds Number, Non-dimensional Recirculation Zone Length (Case 4)
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Recirculation Zone length vs. Reynolds Number
at time 65
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4.2 Vortex Shedding

In addition to estimating the recirculation length and its dependence on the

Reynolds number, we can measure the vortex-shedding period for the different stochastic

cases that we simulated. As mentioned in the introduction, at larger Reynolds numbers

(Re> Recrit) flow separation occurs. When we pass the critical Reynolds number, Recrit, we

observe a well-known phenomenon: the von Karman vortex street with periodic vortex

motion.
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The vortices however, move with time so calculating this frequency is not trivial.

Once again, we look to the velocity components on the grid. To measure this oscillatory

motion, we can track one spatial point over several time steps instead of many spatial

points at one time step as was done for the recirculation zone length calculation. We

monitored the vertical velocity component at a single point at the bottom of the cylinder,

and a fixed number of units points in to the wake at location (x, y) = (10,0) to allow for

sufficient space for eddies to completely mature into full vortices. Next, we observe when

the vertical velocity component changes sign from up to down. This gives us the entire

period and therefore, allows us to track the shedding frequency.

We also compare these properties for different mean Reynolds numbers. Based on

the existing literature, the threshold for the appearance of dynamical characteristics such

as the vortex shedding frequency or the recirculation zone length varies with the Reynolds

number of the fluid flow. In our simulations, we estimate such characteristic for stochastic

flows with mean Reynolds numbers of 20, 40, 60, and 110. For each of these cases, we

calculated the shedding period and recirculation length of every the Reynolds number

range captured in the DO simulation, and compared results among each other and to those

in the literature. In our case, the shedding period is related to the Strouhal number as St =

L/UT, where L is the length of the side of the cube, U is our non-dimensional velocity, and T

is the shedding period.

For the low Reynolds number case (Figure 20), there was no evidence at all of a

vortex shedding period. This shows that our method is correct in this case because within

this range, the flow will exclusively exhibit the recirculation zone length behavior. This is
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consistent with previous literature which expresses Recrt to be a number less than 70. The

lowest value found by Klekar and Patankar (1992) also found a Recrt = 54, suggesting that

no vortex shedding should occur for the low Re range examined by our first case.
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Figure 20: Low Reynolds Number, Non-dimensional Vortex Shedding Period (Case 3)

It is for the Mid Reynolds number case (Figure 21) that we first see evidence of

Vortex shedding. Figure 21 illustrates the Vortex shedding period for the different

Reynolds number values. There is a clear correlation: the higher the Reynolds number, the

smaller the period (or higher the frequency). The estimated slope if we assume it is linear,

is -0.01156, with a covariance of 0.0015 and standard deviation of 0.0383. The covariance
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and standard deviation values are derived from the average error produced by calculating

the slopes over many of the data points used in the fit to a line.
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Figure 21: Mid Reynolds Number, Non-dimensional Vortex Shedding Period (Case 2)

For the high Reynolds number cases (Figure 22), the vortex shedding phenomenon

becomes much more apparent Once again, there is a clear correlation: the higher the

Reynolds number, the smaller the period (or higher the frequency). The estimated slope, if

we assume a linear relation, is -0.0748, with a covariance of 0.0066 and standard deviation

of 0.0256. In this model, it is clear that the higher DO modes show there is vortex shedding
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as discussed in the previous section. With the downward trend, these results are consistent

with the researched findings as well as the governing fluid dynamic equations.
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Figure 23: Very High Reynolds Number, Non-dimensional Vortex Shedding Period (Case 11)
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), the results are similar to the previous high Reynolds number case. The slope is still

negative, which points to the negative correlation between the Reynolds number and

vortex shedding period. However, there is an apparent largest curvature around Re = 90.

The relation is clearly not linear for all Re regimes. This is also mentioned in previous

literature. For example, Lin et al (2007) found for the circular cylinder case that the

shedding frequency from (0.1592,0.1697) for the Reynolds number range (90, 110). This is

equivalent to (6.28, 5.89) in non-dimensional time units or periods. If we non-

dimensionalize their results the same way we non-dimensionalized our, we obtain a

shedding period of (2.51, 2.36), which is close to our result if we keep in mind that Lin et al

(2007) used a circular cylinder and a wider domain.

Vortex Shedding Summary: In the previous literature, Frank (1990) pioneered the

comparative study of vortex shedding frequency to lift coefficients and to the size of eddies.

As mentioned in section 1.2, there have been many different estimates for when the onset

of vortex shedding occurs for the square cylinder case. Kelkar et. al. reported 53, Norgberg

estimated 47 with a deviation of 2, Sohankar et al. reported its value to be 51.2 standard

deviation of 1.0. Although the hasn't been one solution deem correct since the result

depends on fluid characteristics like Prandtl and Strouhal numbers, our DO simulation

results fall within this range by displaying characteristics of periodic vortex shedding when

the Reynolds number reaches 43.

Table 5: Mean Slopes of Recirculation Zone Length and Vortex Shedding Plots
*This slope comes from only the upward trend in the left sub graph in the Figure with the

Recirculation zone length for the base case (

68



Recirculation Zone Length Vortex Shedding Period

Reynolds Cases Average Covariance Standard Average Covariance Standard
Number Slope Deviation Slope Deviation

20 3 0.0537 1.24x10-6  0.0011 N/A N/A N/A
40 2 0.0553* 7.62x10-5  0.0087 -0.1156 0.0015 0.0383
60 4 . . . -0.112 0.0009 0.057

100 11 . . . -0.108 0.0006 0.099
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5. Conclusion

Franke (1990) states in the introduction that "A trustworthy numerical method

should be able to predict the occurrence of periodic vortex shedding by itself." In this

thesis, we used the stochastic Navier-Stokes equations to predict the recirculation zone

length and vortex shedding period for a large range of Reynolds numbers in a single

simulation. Specifically, we evaluated a new computational scheme that uses a novel open

boundary condition formulation for Dynamically Orthogonal (DO) stochastic Navier-Stokes

equations. This approach allowed us to model a wide range of random inlet boundary

conditions with a single DO simulation of low stochastic dimension, reducing

computational costs by orders of magnitude.

In this thesis, we reviewed existing literature, examined our simulation results and

validated the numerical solution. The convergence was tested and we validated the

numerical solution. We then studied the sensitivity of the results to: the resolution of in the

stochastic subspace; the resolution in the physical space; and the number of DO modes.

Finally, we evaluated and studied how the recirculation length and the vortex shedding

period varied with the Reynolds number.

With the ability to model a range of Reynolds number in a single simulation, the DO

method also enables us to determine how different flow characteristics are correlated to

the different Reynolds numbers. We found that the recirculation zone length increased

linearly with Reynolds number, and the slope of this increase was approximately 0.55. This

correlation was only valid up until the Reynolds number where the dynamics changed to

periodic shedding, or for Re < 40. The literature agrees with our findings, suggesting that
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this curve should follow a linear slope of 0.0553 (Bruer 1999). Additionally, for Re > 42 we

found that the vortex shedding period decreased nearly linearly with increased Re, and this

also agreed with existing literature. We obtained shedding periods of [1.8, 1.6] for Reynolds

numbers [90, 100]. While we could not find results for the same problem setup, our results

compare well with the results of Lin et. al. (2007) who found shedding periods of [2.51,

2.36], for the same Reynolds numbers but using a circular cylinder and a wider domain.

Our results fall below this range but it is expected that the vortex shedding period is larger

and broader for the square cylinder case.

When the DO method is combined with the new open boundary condition

formulation, it is a very efficient alternative to the current stochastic modeling methods

available because of its unique approach to decomposing the Navier-Stokers equation with

uncertain parameters. This new approach can be used to quantify uncertainty in large fluid

dynamic systems, such as weather or ocean predictions. Coupled with new data-

assimilation methods that take advantage of the non-Gaussian statistics, the accuracy of

numerical ocean and weather prediction can be improved. Additionally, we have shown

that this method can be used to determine correlations between flow characteristics and

uncertain parameters for a simple case. In the future, this method could be used for more

complex problems to determine engineering design parameters. This thesis brings the DO

methodology one step closer to practical applications.
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