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Abstract

Sub-pixel movement detection is an under-sampling problem. The basic idea for

successful detection is to spread out the information over a larger sampling region.

Diffraction provides a natural way to spread out the information; however, conven-

tional digital holographic methods are not effective for extracting sub-pixel accuracy.

Here we show how to apply compressive reconstruction to the same problem effec-

tively.

Compressed sensing is a new framework to systematically find highly accurate

solutions to an under-sampled linear system. To guarantee the accuracy of recon-

struction result, compressed sensing requires that the unknown has to be sparse in

some predetermined basis. In our study, for the one dimensional sub-pixel movement

detection, we propose to use the derivative operator as the sparsifying basis. We im-

plemented the derivative operator to the hologram and applied a sparsity constraint

on the object derivative space for compressive holography. Together with spectrum

domain zero-padding, our compressive algorithm allows for sub-pixel accuracy edge

localization.
The extension to the 2D case is not trivial. It has been shown that the spiral

phase mask can serve as an approximate 2D derivative operator in the Fourier do-

main. In this case, we implemented spiral phase filtering in the hologram spectrum

domain. By applying cross-correlation between reconstructions for consecutive sub-

pixel movements, sub-pixel movement was successfully detected.
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Chapter 1

Introduction

Motion detection is an important practical problem. Intuitively, it can be achieved

by taking differences of consecutive images. The problem becomes complicated if the

displacement of an object is much less than the pixel size of a detector. In traditional

imaging, sub-pixel movement detection is difficult because the movement only affects

the pixels around the geometrical image point. In contrast, digital holography could

improve the ability to measure sub-pixel displacement because it records the diffrac-

tion pattern from the object, and the information of the movement spreads over the

entire detector area. This thesis aims to show how to combine compressive sensing

and digital holography to solve the sub-pixel movement detection problem.

1.1 Traditional point-to-point imaging

Figure 1-1 shows the schematic of traditional point-to-point imaging system. The

magnification of the object is decided by the focal length of the convex lens as well
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Object Ima

Figure 1-1: Traditional point-to-point imaging system.

as the distance between the object and the lens. However, no matter how the object

is magnified, when the range of motion is smaller than the pixel size (after taking

magnification not account), most of the information on the image will remain the

same except for that around the edges of the object. As a result, if we desire to

detect the sub-pixel movement of the object by capturing images of the object before

and after the displacement through this traditional method, most of the content on

the images are not useful for detecting the tiny movement. In other words, it is not

efficient to extract sub-pixel movement by using traditional imaging techniques.

1.2 Introduction to digital holography

Digital holography (DH) is a famous technique for reconstructing a 3D profile of the

object with only one single shot [1, 2, 3, 4, 5, 6, 7]. Digital holography and digital

holographic image processing have become more applicable due to advances in mega-

pixel electronic sensors, e.g. CCD and CMOS, with high spatial resolution and high

dynamic range. DH has been widely used in two-phase flow imaging, phase contrast

12
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Figure 1-2: Schematic of a lensless in-line DH setup.

imaging and particle image velocimetry (PIV) [5, 8, 9].

There are mainly two different kinds of DH setup, in-line and off-axis. In our

work, we only consider in-line lensless DH [10, 11, 5]. Figure 1-2 shows the schematic

of a typical lensless in-line DH setup. Here, by "lensless", we mean that there is no

lens between the object and the digital detector.

When the plane wave illumination propagates onto the object, some of the light

will be scattered by the object. In this simple in-line DH system, we assume that the

scattering is not severe; in other words, most of the illumination remains unscattered

after it propagates through the object. The light field propagates according to free-

space (Fresnel) propagation between the object and the detector. At the detector

plane, the unscattered part will serve as a reference wave, and interfere with the

propagating object field.

The intensity of the interference pattern I(mA, nA, zD) recorded on the 2D de-

13



tector array can be written as

I(mA, nA, zD) = Ar + a(mA, nA, zD) 2

= Ar2 ± Ia(mA, nA, zD1 2 + Ara*(mA, nA, zD) + Ara(mA, nA, zD),

(1.1)

where A is the pixel size on the digital detector, Ar is the amplitude of the illumination

plane wave, ZD is the distance between the object plane and detector plane, and

a(mA, nA, zD) is the field of the scattered light at the recording plane. In Equation

1.1, the term A2 is simply a constant and can be removed by eliminating the DC

term when conducting Fourier transforming the interference pattern I(mA, nA, zD).

Moreover, without loss of generality we may assume Ar as 1. The second term may be

dropped as negligible when assuming Ia(mA, nA, zD) I «Ar. In line holography has

an inherent limitation caused by the generation of overlapping twin images. Here the

so-called twin image problem can be eliminated by using compressive reconstruction

method as proposed in [12], which will be introduced in Chapter 2. According to

the Huygens-Fresnel principle and the Fresnel approximation, the scattered field at

z = zc can be expressed in the form

a(mA, nA, zD) = g(mA, nA) * h(mA, nA), (1.2)

where * denotes the convolution operator and h(mA, nA) is the free-space propaga-

tion point-spread-function exp (ik /m 2A 2 + n 2A 2 + z) . Hence, by neglecting the

14



halo and twin-image terms in (1.1), the information encoded on the hologram has a

linear relationship with the field at the object plane as

I(mA, nA, ZD) = g(mA, nA) * h(mA, nA) + e, (1.3)

where e includes the halo, the twin image as well as other sources of noise that are

uncorrelated to the object. Since there is a convolution operator in Equation 1.3,

each measurement captured on the hologram contains the information of the whole

object. In other words, all the measurements in this single shot during the holography

experiment can contribute to detect sub-pixel movement, which means using digital

holography can greatly increase the chance to detect the sub-pixel motion, as opposed

to the traditional point-to-point imaging technique where the edge information is

localized.

1.3 Outline of the thesis

Optical real-time detection of small motions enables progress in diverse scientific

domains. Examples are observation of Brownian motion [13], tracking of a single

molecule [14, 15, 16], etc. Of particular interest in our group is the measurement of

small mechanical vibrations, which would allow the modeling of complex fluid-elastic

interactions in seal whiskers [17, 18]. Intuitively, the accuracy (smallest detectable

movement) is limited by the finite pixel size of the digital camera. Curve fitting

methods [14, 16, 3] or feature-based tracking methods such as digital image correla-
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tion [19, 20, 21] and gradient-based image registration [22, 23, 24] improve accuracy

beyond the pixel limit, subject to noise limitations. Alternatively, scanning yields

even more dramatic accuracy improvements [25, 26] at the cost of slower frame ac-

quisition.

In Chapter 2, compressive sensing is introduced. The basic concept and properties

of compressive sensing and the pre-requirement of compressive sensing are summa-

rized. The sparsity and the so-called "incoherence" of the linear sensing system

are very important in compressive sensing. Both of those two factors will affect the

required number of measurements for accurate compressive reconstruction.

In Chapter 3, the incoherence and sparsity of in-line digital holography are dis-

cussed. The derivative operator is applied to sparsify the object function and a linear

model is built for compressive holography. The number of measurements required

for accurate reconstruction is studied. Experimental setup and results for ID sub-

pixel movement detection using compressive holography are presented. 1/45 pixel

size movement can be successfully detected.

In Chapter 4, the spiral phase mask is introduced to sparsity a general 2D object.

Experimental setup and results for 2D sub-pixel movement detection are also shown.

In Chapter 5, conclusions of this thesis and directions for future research are

presented.
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Chapter 2

Introduction to compressive

sensing

2.1 Nyquist-Shannon sampling theorem

The Nyquist-Shannon sampling theorem, named after Harry Nyquist and Claude

Shannon, is a fundamental theorem in the field of information theory, especially in the

area of signal processing and data acquisition. Sampling is the process of converting a

continuous signal (for example, a function of continuous time or space) into a discrete

sequence signal (a function of discrete time or space).

To maintain the ability to reconstruct the original continuous-time signal, for

the sampled signal, the sampling strategy must meet certain criteria. For example,

considering the continuous-time signal sin(wrt), if we sample it when t is an integer,

the resulting sampled signal will be all zeros, which will lead to a failed reconstruction.

This is a phenomenon called under-sampling.

17



According to Nyquist-Shannon sampling theorem, if a function x(t) contains no

frequencies higher than B Hz, then x(t) may be entirely reconstructed from the

samples if the sampling spacing is 1/2B sec or less. Equivalently, a band-limited

analog signal with band-width of B can be perfectly reconstructed if we sample the

signal with 2B sampling rate.

The theorem assumes an idealization of any real-world situation, as it only ap-

plies to signals that are infinitely long in the time space; However, in the real world

all the signals are time-limited which cannot be perfectly band-limited. However,

many signals of practical interest approximately meet both specifications, i.e. no sig-

nificant amounts of energy are present either outside the frequency band B or the

time duration T.

Recently, it has been shown that for an under-determined linear sampling system,

the continuous analog signal can still be perfectly reconstructed if the input signal is

sparse or compressible. This result is known as the compressive sensing theorem.

2.2 Compressive sensing

The basic idea of compressive sensing is that sparse signals can be accurately recon-

structed from a small amount of linear measurements [27, 28, 29].

The acquisition of a signal x can be modeled as M linear measurements of x:

yk = (k, ), k 1, ... ,M. (2.1)

18



Here we assume that x is a N-dimensional vector, so the dimension of x is N x 1 and

that # is a M x N matrix. Solving for x from the measurements in y is a linear inverse

problem. If M = N and # is a full rank matrix, which means that the measurements

are all linearly independent, x can be obtained directly by x = #0-1 y. If M < N,

#-1 does not exist and this linear system becomes under-determined. However, if

the input signal is sparse in some pre-known basis and the measurements are taken

randomly, the reconstruction of x is possible even if with measurements much fewer

than N.

When saying x is sparse, we mean that in some known orthogonal basis ?P, x can

be represented by a N-dimensional vector a with only s non-zero coefficients, where

s is much smaller than N. In this way, x and y can be expressed as

x = - a, (2.2)

y = # -a. (2.3)

In order to recover the signal x, we can take advantage of the sparsity property and

first reconstruct the sparse signal a. If the sparsifying basis ' is known, it is straight-

forward to obtain x from a. Several papers have proved that by solving the |aal11

minimization problem, a can be perfectly reconstructed as long as the measurements

are noise-free. Given this system and all the m measurements in y, a can be recovered

19



by solving the f 1 minimization problem

d = argmin||al|,|, such that y = # -b a. (2.4)
a

Compressive sensing can be highly successful in solving the under-determined

problem; however, to guarantee accurate stable reconstruction, there must be some

constraint (or lower limit) on the number of measurements. The constraint here

depends on the degree of sparsity of the input signal and an "incoherence" parameter

p, which measures the incoherence between the sensing matrix # and the sparsifying

basis 0. We discuss the two constraints briefly in the next two sections.

2.2.1 Sparsity

If the signal has a sparse representation under the orthogonal basis 0, one can dis-

card some of the small coefficients without significant loss in reconstruction fidelity.

Some image compression techniques also take advantage of this kind of eliminating

small coefficients for compression. For example, in JPEG 2000 format, the image

is transformed into a wavelet basis where the representation is sparser. Comparing

to the JPEG technique which discards the high frequency content, the JPEG 2000

can keep the smooth regions on the original image with good fidelity while the edges

become much sharper. Furthermore, the sparser the original signal a is, the fewer

measurements are required to obtain accurate reconstruction.

20



2.2.2 Incoherence

The "incoherence" term measures how the information of the input signal, which has

a sparse representation in V), spreads out in the sensing matrix 4. In other words,

incoherence measures how the input signals mix in the measurements. The input

signal is local, while the measurements are global as each of the measurements should

contain some information about each component in the input signal. Let us take the

Dirac function as an example. In the space domain, the Dirac function is just a spike,

which is a very sparse signal, while in the Fourier domain, the signal turns to a very

flat function with "1"s everywhere. This means that the information of the Dirac

function spreads out onto the whole domain of the Fourier space.

With a sampling matrix that has been properly normalized by A - At = NI or

4) - . (4 - P)t = NI where I = diag(1) is the unit matrix, the coherence parameter

can be computed by [27]

P(4, V) = Max |(4Ok,@j)I. (2.5)
1<k,j<N

If we define A = ) 4/ and y = A -a, the coherence parameter can be also expressed

as

p(A) = max Akjl. (2.6)
1 k,j N

From (2.5), we can see that the coherence parameter measures the correlation between

the columns in 4 and @. If some of columns in 4 and @ are correlated or dependent,

the coherence parameter will be large. On the contrary, if the columns in 4 and 4 are

21



totally independent, as is the case with Fourier sampling, the coherence parameter

will reach its minimum value. Typically, y is in the range of [1, V ].

2.2.3 Examples of incoherent measurements

" Discrete Fourier Transform (DFT)

For N-dimensional DFT matrix W, the transformation matrix w is of the form

1 1 1 1 ... 1

1 m 2 3 WN-1

1 w 2  4 6 W2(N-1)
W=

1 3 6 9 W3(N-1)

1 N-1 W2 (N-1) W 3 (N- 1 ) W(N-1)(N-1)

i2r
where w = e N . It is clear that the discrete Fourier transform matrix W

satisfies the normalization rule W-Wt = NI. Then we can randomly sample the

Fourier coefficients of the input signal. By calculating the coherence parameter

for this sensing matrix W, it is easy to see that max |Wk| is 1. So for the
1<k,j<N

complex Fourier sampling matrix, its coherence parameter yt is 1 the lowest

limit the coherence parameter may attain.

" Identity Matrix

When the sensing matrix is just a magnified identity matrix Nv I, we can

predict that this sensing system has the largest coherence parameter. Consid-

22



ering a signal x in the space domain, if we randomly sample x directly, then

y = vfI - x. As identity matrix is the same as the space domain coordinate,

in this case, <5 is the same as 0, which means these two matrices are coherent

to the maximum extent. In the language of compressive sensing, this kind of

sampling is the least efficient sampling. By calculating the coherence parameter

from (2.6), we can also obtaine p as v7, which matches with our prediction.

* Random convolution

Convolution is the general implementation of a linear shift-invariant system.

Suppose y = h * x, using Fourier-domain multiplication instead of direct con-

volution, we obtain in matrix form

y = Wt W -x, (2.7)

where W and Wt denote the Fourier transform and inverse Fourier transform

respectively, and h is the Fourier transform of h. In (2.7), the h matrix is

diagonal and its entries along the diagonal are the Fourier coefficients of the

convolution kernel h.

If the magnitude of all the entries along the diagonal of h are the same, h can

be normalized by a scalar factor so that the sensing matrix in the Equation 2.7

satisfies the normalization rule A -At = NI. In this case, A is just Wt - h - W. If

the magnitudes are not the same, it does not quite satisfy the pre-requirement

of compressive sensing. This case is beyond the scope of this work.
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2.2.4 Number of required measurements for compressive re-

construction

Suppose that the fixed sparse representation of the signal x in the orthogonal basis

40 is s-sparse. Select M uniformly random measurements from the # domain. It is

shown that if [27]

M < C-p2 -S - log(N), (2.8)

where C is a small positive constant, the signal x can be reconstructed exactly with

high probability. It has been shown that the probability of successful reconstruction

will exceed 1 - 6 when M < C - p2 . S - log(N/6).

From (2.8), it is clear that the number of measurements should be proportional

to the coherence parameter and the degree of sparsity. As mentioned above, the

more incoherent the sensing matrix is with respect to the orthogonal sparsifying

matrix, the more mixing of the input signal the measurements will incur, which

equivalently means fewer measurements are required to guarantee exact recovery.

Another important point is that the more sparse the signal is, the fewer measurements

it requires to reconstruct the signal x. These are the reasons why coherence and

sparsity are two important factors for judging whether the sensing system and input

signal are good to use compressive reconstruction.
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2.2.5 Why fi minimization?

For a N-dimensional vector u, its e, norm can be expressed as

j=N

||uI|, = E luj. (2.9)
j=1

In most works on signal recovery or signal denoising, e2 minimization, also known as

minimum square error approach is widely used. The 12 norm corresponds to the total

energy of a signal. It has been popular for denoising, in the sense of minimizing the

energy in the difference between the recovered signal and the actual input signal. But

why in compressive sensing do we choose fi norm, rather than e2 norm?

Before thinking about this question in a mathematical way, let us solve a simple

problem first 1 . In a farm, the farmer raised some chickens and sheep. The farmer

told us that the total number of the animals' legs is 16. Now the question becomes

how many chickens and sheep respectively are in the farm. This is definitely an

under-determined problem as we are supposed to solve two unknowns with only one

equation:

2x + 4y = 16, (2.10)

where x denotes the number of chickens and y denotes that of sheep. If the farmer

tells us another constraint on the solution that the fi norm of the solution should be

minimized, the solution can be immediately obtained as x = 0, y = 4, which is also

a so-called sparse solution (only one entry of the solution is non-zero). However, if

'This example was constructed by Justin W. Lee
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the solution's f2 norm of the solution should be minimized, the answer will change to

x = 2, y = 3. We can see that the solution that minimizes the 02 norm are not sparse

at all, instead, it decreases the value of y at the cost of sparsity.

From the perspective of maths, in a three-dimensional Cartesian coordinate, all

the sparse signals fall mostly on the axes. Points with the same f1 norm form a

diamond-shape surface with the diamond corner located on the axes, while those

with the same 02 norm form an ellipsoidal surface. When the size of the diamond

or ellipsoid expands, the 4l norm or the f2 norm respectively become large. The

minimum error solution is found on the point of intersection of the error surface

with the surface expressing the solution constraint (e.g. 2x + 4y = 16 in the farmer's

example above). If the error surface is ellipse (f2 case), it can intersect the solution

constraint; whereas if the error surface is diamond-shape (f1 case) then it is more

directly to intersect the solution constraint on one of the axes, thus yielding a "sparse"

solution. 2 Thus, by solving the f1 norm minimization problem, we are inclined to

get a sparse solution.

Here we only compare the two methods, 01 norm minimization and 02 norm min-

imization. However, 01 norm minimization is not the only way to reconstruct sparse

signals; some other methods have also been proposed.

2This geometrical explanation was provided by Lei Tian
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Chapter 3

One dimensional (1D) sub-pixel

movement detection using

compressive holography

In our work, we investigate the problem of scanning-free small motion detection from

a sampling perspective.

As shown in Chapter 1, in the DH setup, the hologram is captured on a digital

camera with finite pixel size, which limits the rate at which the intensity signal is

sampled. In the real word, all objects are finite, which means that the frequency

response of a object is infinite. In this way, it is impossible to apply Nyquist theorem

to sample the signal and then perfectly reconstruct the input signal. Nyquist the-

orem, however, does not take into account any prior information about the object.

It has been shown in Chapter 2 that using compressive sensing, a sparsity-based
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Figure 3-1: (a) Vector representation of the ID object; (b) The sparse derivative of
the object.

sampling theory, highly accurate solutions of an under-sampled linear system can be

obtained [30, 29]. In addition, the solution is robust to noise [31].

3.1 Incoherence and sparsity in digital holography

As mentioned in Chapter 2, successful implementation of compressive reconstruction

is conditioned upon two requirements: sparsity and incoherence [28]. To enforce

sparsity of the object signal, we consider a one-dimensional (ID) signal, as illustrated

in Figure 3-1(a).

Let us define a coordinate vector

x = o, 0X1,- . .. ,j -y ... , XN-1 , (3-1)

where xn = nd; n = 0,1,... , N - 1; and d denotes the desired motion accuracy.

The pixel size is A = Gd, where G is our intended sub-pixel accuracy gain of mo-
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tion detection. We will consider only a single opaque object surrounded by uniform

intensity within the field of view; the intensity at the object plane may therefore be

represented as a vector Iobj of length N corresponding to the coordinate vector x,

where

Iobj = [0,.. .,0,1,. .. ,1,0,... 70 . (3.2)

Fig. 3-1(a) shows IoNb from one such possible object. The vector Iobi is unknown in

the sense that we do not know where the transitions between value 1 and value 0

occur. This vector is not sparse, but we can easily sparsify it by taking the spatial

derivative along x, which will produce two impulses at the edges of the object. Then,

the new sparse derivative vector is in the form of

Aob = 0,...,,1,o0,..., ,-1,0 ... ,o0 , (3.3)

and what is unknown is the locations of the impulses.

The second requirement about "incoherence" does not use the term according

to the typical sense we assign in Statistical Optics; rather, it means that the in-

formation of the unknown vector AIob must be evenly spread over the set of basis

vectors that describe it [28]. We utilize diffraction for that purpose, which is what

motivated our use of Fresnel holography [12, 32]. The spreading produced by the

Fresnel propagator is not provably optimal, but it is extremely easy to attain by sim-

ple free-space propagation in the lab. To implement the optimal operator, one would

require special-purpose phase masks placed at certain locations along the path; that
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is beyond the scope of the present work.

3.2 Compressive holography

3.2.1 Theoretical model for compressive holography

On-axis plane Object Detector
wave illumination

X/
z Stepping motion direction

z=0 Z=ZD

Figure 3-2: In-line DH geometry. The object was moved along y direction with a
uniform step size of 267nm(1/45-pixel) by a piezo-driven motion stage.

Figure 4-2 is a schematic of a typical in-line digital holography setup. A linear

model has been obtained in Equation 1.3 as

I(mA, nA, zD) = g(mA, nA) * h(mA, nA) ± e, (3.4)

where A is the pixel pitch on the digital detector and e includes the halo, the twin

image as well as other sources of noise that are uncorrelated to the object.

We multiply the Fourier transform of the intensity by iu, where u is the spatial

frequency variable, to obtain the derivative in the spatial domain. To upsample so
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that we can measure sub-pixel movement, the spectrum of the hologram is then zero-

padded at both sides. Finally, a linear model relating the derivative of the object g'

and the hologram I expressed in the Fourier domain can be obtained in the form of

iu -T - I = Q - (H -F - g'+ iu -e'), (3.5)

where F denotes the discrete Fourier transform matrix, H is a diagonal matrix with

the Fourier transform of h at the diagonals, and e' is the Fourier-transformed noise.

The mask Q in Equation 3.5 is a diagonal matrix with [0,... , 0, 1,1, ... , 1, 0,...,0]

along its diagonal and the total number of 1 in Q's diagonal is M, which is also the

number of pixels in the recorded hologram. Since the edges of the object are sparse,

(3.5) can be inverted by enforcing the sparsity constraint using fi-minimization. The

edges (derivative) g' of the object can be estimated by solving

= argmin||g'IjIe, such that

iu -T - I = Q -H -F -g', (3.6)

where I lti denotes the fi-norm of a vector. We implemented fi-minimization by

adapting the Two-step Iterative Shrinkage/Thresholding (TwIST) algorithm [33].

3.2.2 Sparsity recovery from partial measurements

Let s denote the "sparsity" of the problem, i.e. the number of non-zero entries in the

input signal. To accurately reconstruct an s-sparse vector x of length N, the number
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of samples M should satisfy [271

M > Cp12s log N, (3.7)

where C is a small positive constant, and y is the coherence parameter, which mea-

sures the correlation between the measurement matrix and the sparsifying basis. In

our compressive holography model in (3.6), M is the number of pixels in the recorded

hologram; N is the number of pixels after the compressive reconstruction, increased

from M by zero-padding in the Fourier domain.

Intuitively in (3.7), the relationship between M and the other parameters yL, s, N,

makes sense as it is straight-forward that the less sparse the input signal is, the more

measurements the system requires to get the same probability of accurate recovery.

As to y and N, when the dimension of the input signal increases or when the sensing

matrix is more coherent with respect to the sparsifying basis, both of these two

cases will lead to smaller probability of accurate reconstruction if the number of

measurements is kept the same.

Next, let us calculate the coherence parameter in our compressive holography

model. As a digital camera is used in recording hologram, the sensing system in our

system can be equivalently written in the form of:

Ig,=S . F-1-H.F-g', (3.8)

where I is the hologram of the object's edges g'. The dimension of Ig, is the same as
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the number of pixels on the detector (in our case, it is M), while g' is a N dimensional

vector. S, in the form of

0 0 ... ...

1... 1

... ... ... 0

.. 0

0 ... ... 0

0 1 ... 1

denotes the way the CCD converts the incoming photons into electron charges and

then into intensity values on the hologram. The number of l's in each row of S is

G, corresponding to the gain factor in our sub-pixel motion detection system. As a

result, the dimension of S is M x N.

From Equation 3.8, the sensing matrix in the compressive holography system can

be expressed as

A=S- F--1-H-F. (3.9)

As described in [27], for an orthogonal matrix A with AtA = NI where t denotes

the conjugate transpose of A, the coherence parameter p(A) is simply the largest

magnitude among the entries in A :

p(A) = maxJAkJI I. (3.10)
kJ

To normalize the sensing matrix A so that A satisfies AtA = NI, S should be
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magnified by a scaling factor of v/iATf. After normalization, S becomes

1 ... 1 1 0 0

0 ... 0 0 1 ...

0 0

... ... ... ... ... 0 0

1 0 0 0

0 0 1 ... 11

Recall that the Fourier transform F is expressed in matrix form as

1 1 1

1

1

W w2 3

1 w2 4 6

1 w 3  6 9

1 wN-1 w 2 (N- 1 ) W3(N-1)

. .1

WN-1

W2(N-1)

W 3(N-1)

... W(N-1)(N-1)

i2r
where w = e-N . Equivalently, F, can be written as

= e -N -1)(q-1)
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where p, q = 1, ... , N. H, the Fourier Transform of Fresnel kernel, is

1 0 0

0

0. e()2(N-2)2

0

0

0

0

e*( 
* 

A ) (N -1)2

Usually, there is a scaling factor involved. However, in our case, we can get rid of it

when normalizing the sensing matrix A.

Define B F 1 - H - F. From Einstein notation [34], the entries in B can be

calculated as

N

Bj,k k e!(-1)(r1) .PeiTC A 2) e- _

r=1
N-1 AZ .2 ir
Ee( A)7' . e- r(k-j)

Nr=0

MA _(M)
2 (k-j)

2

Ny/~AzDe

A .(MA)
2 (k-j)

2

Gy/XzDe 
z

where j, k = 1, ... , N. As a result,

N

Ae= ( Sv,rBr, t
r=1
(v+1)G

r=vG+1

(3.12)

(3.13)
As/TT -(MA)

2 
(t-r)

2

e D AD
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Combining with (3.10), the coherence of the compressive holography system can fi-

nally be computed as

p(A) = maxIA,,t| = A ----. (3.14)
Vt AzD

According to (3.7) and (3.14), the sampling gain G has an upper bound:

N 1/ Azn
G = - < exp CsA2}. (3.15)

The smallest detectable sub-pixel movement dmin is then limited by the smallest pixel

size after compressive reconstruction (corresponding to the maximum sampling gain

Gmax)

A _ MA (.6dmiin = = .Z (3.16)
Gmax exp ( A)

3.3 1D sub-pixel motion detection experimental

setup

Our lensless experimental setup for the 1D sub-pixel motion detection is shown in

Figure 3-3. Here, "lensless" means there is no lens between the pin object and the dig-

ital camera. A collimated He-Ne laser of wavelength 632.8nm was used to illuminate

the object. The input laser beam was expanded by a spatial filter, and collimated by

a plano-convex lens. After propagating through the object, the resultant hologram
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Figure 3-3: Experimental in-line DH setup. The pin object was moved along y
direction with a uniform step size of 267nm(1/45-pixel) by a piezo-driven motion
stage.

was recorded by a Basler A504k camera with 1024 x 1024 pixels and 12pm pixel pitch.

The object, a pin with an average diameter of 900pm, was placed 151.6mm away

from the detector. A piezo-driven motion stage (Model number: Thorlabs Nanomax

312) with 20nm resolution was used to move the pin laterally along the y direction

step by step.

In the experiment, the pin object was modeled as a ID rectangular function.

This is well justified since the width of most part of the pin is uniform. Using our

simulation, we found that C ~ 30 guarantees the reconstructed object position to

be correct more than 50% of the time under our experiment conditions. Using this

value of C in Equation (3.15), the maximum sampling gain Gmax is found to be 60,

which implies that the theoretically smallest detectable movement in our experimental
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arrangement is 1/60-pixel size (200nm).

We verified our theory by moving the pin object along the y-axis with a step size

of 267nm (equivalently 1/45-pixel size or gain of G = 45). The pin was moved by

45 steps (1 pixel) in total. A hologram was captured after each step of movement;

a sample hologram is shown in Figure 3-4. A row vector of length 1024 can be

extracted from the 2D hologram in Figure 3-4 to form a ID hologram, as shown in

Figure 3-5.

0 2000 4000 6000 8000 10000 12000
y [Am]

Figure 3-4: A sample 2D hologram.

3.4 Experimental results for 1D sub-pixel motion

detection

The compressive reconstruction result of the ID hologram in Figure 3-5 is shown in

Figure 3-6. The edges of the original pin object were successfully reconstructed, free
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Figure 3-5: A sample row vector from the 2D hologram in Figure 3-4.

from artifacts due to twin image and other sources of noise.

To quantify the accuracy of our approach, we randomly chose seven rows (away

from the pin's tapered portion) from the first hologram (which defines the origin of

pin's movement), and then tracked the left edges of those seven rows for the following

45 steps. The compressive reconstruction was repeated for the same seven rows on the

consecutive 45 holograms. Figure 3-7 shows the measured left edge positions of those

seven rows from the total 46 holograms, compared with the "true" positions specified

by the piezo stage. From the histogram shown on the bottom right in Figure 3-7, the

average step size and precision (standard deviation) were calculated as 269nm and

12nm, respectively. The fraction of correct position reconstructions, i.e. those falling

precisely on the 267nm mark, is 58%. It is also encouraging that less than 7% of the

data are off by more than 1 step compared to the "true" position.
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Figure 3-6: Real part of
3-5.

12

10F

the compressive reconstruction of the ID hologram in Figure

20 25
Step index

Figure 3-7: Compressive reconstructed positions of seven randomly chosen rows (in
blue circles) and the "true" position (in red stair curve) at each step. The histogram
on the bottom right combines the data of total 45 steps taken by the seven rows
(45 x 7 = 315 data points total.)
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Figure 3-8: The comparison between the average position (purple points) of each step

and the "true" positions.
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Chapter 4

2D sub-pixel movement detection

using spiral phase filtering and

compressive holography

With the success of implementing compressive holography into detecting ID sub-

pixel movements, developing an algorithm to detect the sub-pixel movement in 2D is

the natural next topic. However, it is not trivial to extend the ID algorithm to 2D

case, because the method we used to estimate the 1D derivative does not generalize

to higher dimensions. Alternatively, we can think of the derivative as a Hilbert

transform; which does not exist in 2D either.

Consider for example a square object (shown in Figure 4-1(a)). Its 1D derivative

along the horizontal direction is a two-stripe function and the 2D derivative will be

four points, corresponding to the four corners of the square. Apparently the four
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points extracted from the square by taking its 2D derivative are not the edges of

the square, thus we are deprived of much valuable information about the object,

completely missing its edges and being left with information about its corners only.

Clearly, that ought not to be enough to localize sub-pixel motion for this square

object.

(a)

* 0

(b) (c)

Figure 4-1: (a) A square object; (b) the derivative of the square along the horizontal
direction; (c) the 2D derivative of the square.
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4.1 Spiral phase mask

4.1.1 Introduction to spiral phase mask

Spiral phase masks have been widely used in phase contrast microscopy [35, 36, 37, 38].

Usually under the microscope, biologists use them to observe some delicate structures

in cells. The mask is a vortex filter, in the form of exp(i#), implemented in the

Fourier domain of the image field. Here # stands for the polar angular coordinate in

the Fourier domain. The "stair-case" phase distribution on the spiral phase mask is

shown in Figure 4-2.

6

Figure 4-2: The phase distribution on the spiral phase mask.

Unlike the dark field microscope, where the zeroth order of the illumination beam

is blocked such that most of the intensity is lost, the spiral phase mask acts by

redistributing while preserving the edges of the structures in the specimen. As a
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result, spiral phase mask is very useful for edge detection.

4.1.2 Edge detection via spiral phase mask

In the earlier experiments [39], spiral phase mask was introduced as an approximation

to a two-dimensional Hilbert transform. When implementing such a spiral phase in

the Fourier domain, equivalently the object is convolved with the Fourier transform of

the phase mask function in the spatial domain. The Fourier transform of spiral phase

mask can be expressed as y exp(ip) [38], where r and cp are the polar coordinates in

the object plane.

Figure 4-3 shows the convolution between a general 2D object function f(x) with

the Fourier transform. If all the points on the red ring denoted on the object, as in

Figure 4-3(a), have the same values, in the convolution integral their total contribution

to the original point on the convolution result, f'(x), is zero, because all the points

in the ring, their "r" s are the same and the <p of those points evenly distribute in

the range of [0, 27r]. As a result, the value of point A on f'(x) is zero. On the

contrary, when the red ring overlaps the object's edge, as shown in Figure 4-3(b), the

values of some points on the rings are different from other points and thus, their total

contribution to point B on f'(x) will be non-zero.
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Figure 4-3: Edge detection function of spiral phase mask.

By comparing the two cases in Figure 4-3(a) and (b), the edge detection function

of the spiral phase mask can be clearly understood. Another important point is that

since the Fourier transform of the spiral phase mask function is inversely proportional

to the distance r, the mask is good for detecting local edges. In other words, spiral

phase mask can be applied to edge detection, even for detecting the edges of a phase
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object.

4.2 Implementing the spiral phase mask to 2D com-

pressive holography model

In typical implementation of the spiral phase microscope, the Fourier filter is displayed

at a high-resolution spatial light modulator (SLM) as a blazed phase hologram. In

some other cases, researchers use a static phase hologram or a physical spiral phase

plate instead of the spatial light modulator. In our work, we applied the spiral

phase mask digitally to the spectrum of the hologram recorded by the CCD in the

experimental digital holography setup. Ideally, via this multiplication, the spectrum

of object's hologram can be directly converted to the spectrum of the object's edges'

hologram.

After applying the spiral phase mask, the linear model relating the edge of the

object g' and the measured hologram I expressed in the Fourier domain is

S -F - I = Q -H - _F -g', (4.1)

where S denotes the spiral phase mask function exp(i#). Since the edge is a sparse

representation of the original object, (4.1) can be inverted by minimizing the 41-

norm of g'. We implemented f1 minimization by adapting the Two-step Iterative

Shrinkage/Thresholding (TwIST) algorithm [33]. (Details about this linear model

were shown in Chapter 3.)
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4.3 Experimental setup for 2D sub-pixel move-

ment detection

We used an in-line digital holography arrangement to test the proposed method. A

He-Ne laser of wavelength 632.8nm was used to illuminate the object. Holograms

were taken by a Basler A504k camera. The object chosen for 2D sub-pixel motion

detection was a stainless steel shim of inner diameter 2.24mm and outer diameter

3.88mm. The shim was attached to a three-axis piezo motion stage by a pin of

diameter 250pim. The object was moved by six steps, and the step size was 3pim

(equivalently 1/4 pixel size) in both horizontal and vertical directions. A hologram

was captured after each step of movement. A sample hologram is shown in Figure

4-4.

Figure 4-4: A sample hologram of the shim object.
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4.4 Experimental result for detecting 2D sub-pixel

displacements

To process the hologram at each step, the spectrum of the hologram was first zero-

padded to four times its original size. After spiral phase mask filtering, Equation

4.1 was inverted using the TwIST algorithm. The compressive reconstruction result

of the sample hologram is shown in Figure 4-5(a). By comparing the compressive

reconstruction result with the traditional back-propagation reconstruction method

shown in Figure 4-5(b), we can clearly see that the edges of the original object were

successfully reconstructed, free from artifacts due to twin image and other sources of

noise.

The compressive reconstruction was repeated for holograms after each movement.

To extract the amount of movement, we computed the cross-correlation between the

two consecutive reconstructions, identifying the relative movement of the object as

equal to the displacement of the correlation peak. A sample cross-correlation is shown

in Figure 4-6(a). The peak position indicates that in this single step, the object was

moved by 3pm along the negative x direction and positive y direction respectively.

The detected amount of movements for all the six steps are shown in Figure 4-6(b).

The reconstructed location match perfectly with a straight line, proving the success

of our model.
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Figure 4-5: Reconstruction results of the shim's edges via the compressive method
(a) and traditional back-propagation method (b).
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Figure 4-6: (a) Normalized cross-correlation result between
structions; (b) Detected positions of the shim object at each

two consecutive recon-
step.
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Chapter 5

Conclusions and Future work

With the fast development in semiconductor fabrication field, CCD and CMOS cam-

eras with high sampling rate, high frame rate and large dynamic range become avail-

able. Furthermore, advances in computing apparatus made the implementation of

complex algorithm clear and efficient. By combining these technologies with classical

optics, computational imaging becomes the trend of optics for the next generation.

One of the most important computational imaging techniques, digital holography,

has been studied in this thesis. Digital holography has been widely used to reconstruct

3D profiles of objects from a single intensity frame. During the free space propagation

of the object field in holography, the information of the object is spread out onto the

entire digital sensor. Compared to the traditional point-to-point imaging technique,

taking advantage of information spreading in holography can greatly increase the

chance to detect small motions of objects. In this thesis, we studied how to use

digital holography to detection object's sub-pixel movement.

In the case of detecting sub-pixel movement or locating object with sub-pixel
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accuracy, the information is under-sampled. To tackle this problem, compressive

sensing theorem has been implemented here together with digital holography. Com-

pressive sensing says that if a signal is sparse, it can be accurately reconstructed even

from a small amount of linear measurements. Surely, the number of measurements

has a lower bound, which is inversely proportional to the sparsity of the signal as well

as the "incoherence" parameter that measures how incoherent the sensing matrix and

the sparsifying basis are relative to each other. The solution of compressive sensing

is also robust to noise.

Considering that most of the general objects are not sparse, here we chose different

sparsifying bases to convert general signals to sparse signals. For a 1D object signal,

the derivative operator is a good choice. However, since the 2D equivalent would con-

stitute a Hilbert transform that does not exist, so a different sparsifying basis, namely

the spiral phase mask, was implemented to sparsify a general 2D object. By imple-

menting the sparsifying bases, compressive reconstruction can successfully reconstruct

the edges of the object directly from the hologram captured in the experiment, free

from artifacts due to twin image and other sources of noise. The experimental results

also show that 1/45 sub-pixel movement can be successfully detected in the ID case

through compressive holography and 12nm accuracy can be achieved. In the 2D case,

our success so far was equipment-limited to a sub-pixel gain of only 4; this is due to

memory limitation in zero-padding of the 2D Fourier transform. This can be easily

overcome in the future versions.

An additional natural direction for the future work, how to implement compressive

holography in super-localization along the optical axis will be an interesting topic.
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