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Abstract

In this thesis, I consider the problem of collision avoidance between two vehicles

approaching an intersection. These vehicles are human driven and one or both are

equipped with an on-board driver assist system that provides warnings and can ap-

ply automatic braking/throttle when needed. This type of system will establish an

intermediary step in the progression towards fully autonomous vehicles. It will allow

human drivers to retain control of their vehicles while providing the guidance for

drivers to apply the necessary inputs to prevent collisions before autonomous control

becomes necessary. A formal approach to the design of the driver assist system is

taken, employing a hybrid automaton model. This model has hidden modes, which

arise from the driver making decisions about whether or not to follow the provided
warnings. As a consequence, the driver assist system design is formulated as a safety
control problem for a hybrid automaton with hidden modes. The solution approach
is based on a mode estimator that keeps track of the possible driver decisions and,
on their basis, provides warning and control inputs that ensure safety. The resulting

algorithm is computationally efficient as it leverages the order preserving properties
of the vehicle dynamics.
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Title: Associate Professor
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Chapter 1

Introduction

The invention of the modern automobile fundamentally changed the way humans

travel. It allowed people to effortlessly cover long distances in less time compared

to other available transportation methods. Because of this, the automobile has been

widely adopted as the standard form of transportation in nearly all developed coun-

tries, with approximately 250 million passenger cars in the United States alone (Bu-

reau of Transportation, number of vehicles and vehicle classification. Retrieved 2006-

06-08). With the utility that automobiles provide, however, come inherent dangers.

One such danger arises from the navigation of intersections. In order to mitigate

this danger and reduce the number of collisions between vehicles at intersections, an

active driver-assist system was developed.

Chapter two describes the hybrid automaton model used to represent the traffic

intersection, as well as the formulation of the safety problems for single vehicle and

two vehicle control systems.

Chapter three describes the strategy used to solve the control problems, and de-

velops the tools necessary to do so.

Chapter four describes the solution to the single vehicle problem, that is, the

design of a controller which will satisfy the desired safety specification. A proof of

the safety under the assumed dynamics as well and the system is implemented in a

simulated environment.

Chapter four describes the solution to the two vehicle problem, again providing
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the proof of safety and simulation results.

Chapter five describes the implementation of the driver assist system on dynam-

ically scaled vehicles. The purpose of this experimentation is to test the real world

practicality of the proposed algorithms as well as to discover any potential implemen-

tation issues. Possible continuations of the research and ways to utilize the design

strategies for other similar problems are also discussed.

1.1 Overview of Vehicle Safety Systems

Most modern day automobiles have the capability to travel at velocities in excess of

one hundred miles per hour and weigh more than a ton. While laws usually prevent

cars from traveling that fast, vehicles traveling on highways routinely reach speeds

of seventy or eighty miles per hour. Even at lower speeds, the amount of kinetic

energy stored in a moving vehicle is immense. Combining this with the fact imperfect

decision making ability of the human drivers controlling the vehicle, creates a potential

for dangerous crashes to occur. This becomes especially clear when considering the

fact that automobile crashes are the cause of 37.5% of all accidental deaths in the

United States (National Vital Statistics Report, Volume 50, Number 15, September

2002). Many technological advances have improved automobile safety, but there is

still potential for many more such improvements to be made.

Vehicle safety systems can be broken down into two main categories, passive and

active. Passive systems are those that improve the crash-worthiness of the vehicle, by

reducing injuries to passengers during collisions. Active safety systems, on the other

hand, focus on prevent collisions from ever occurring. The number of fatalities in the

U.S. due to automobile accidents declined from 1972 until 1992, a time period during

which many advancements were made to the passive safety systems in automobiles.

Notable examples of such improvements include collapsible structures built into the

vehicle to absorb energy, safety belts worn by passengers, airbags in various locations

around the vehicle, and car seats for smaller passengers. There was a notable lack

of reductions in crash related fatalities after the 1990's, which is evidence that there
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may be a limit to the effectiveness of such passive safety systems.

Recently, there has been a shift within the automotive manufacturing industry to-

wards focusing more on the development of active safety systems [19, 15]. Rather than

trying to minimize the damages caused by a collision, active safety systems attempt to

prevent collisions from happening altogether. Such systems may warn drivers about

potential crashes, and or provide ways to avoid them. In conjunction with these new

active safety efforts, fatality statistics have begun to drop again. Notable examples

of active safety systems that have recently become more widespread are lane depar-

ture warnings, forward crash warning, and blind spot monitoring. Additional efforts

have examined the use of fully autonomous vehicles, such as the automated highway

systems designed during the California PATH project, to increase traffic through-

put, safety, and fuel efficiency of highways [21, 27, 14, 13]. More recent studies have

investigated cooperative cruise control and semi-autonomous cruise control [20, 22].

However, none of these systems handle the issue of side impacts, a major problem

while navigating intersections.

1.2 The Problem of Navigating Intersections

Nearly forty percent of all vehicle accidents occur at traffic intersections (The National

Motor Vehicle Crash Causation Survey, US DOT, 2008), and very few active safety

systems currently assist drivers in negotiating their way through intersections. This

gap in technology provides an opportunity for innovative solutions to have a profound

impact on the overall safety of the driving experience. Traditionally, a set of laws,

along with traffic lights and stop signs have been used to provide drivers of a safe

procedure to pass through intersections. These fixed procedures are only guaranteed

to work if all drivers follow them, which is occasionally is not the case, such as when a

driver runs a red light. Other similar traffic flow situations such as roundabouts and

or mergings between roads depend solely on the human driver's ability to determine

the correct control action from his or her own evaluation of the situation.

Eventually, we may reach a point where vehicles include fully automated colli-
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sion avoidance systems at intersections, such as those considered in [12, 29] or even

transition to fully autonomous cars, such as those developed for the DARPA urban

challenge and by Google. Before either of these realities are realized, there is a closer

target, which is the development of active safety systems that interact with the human

driver, provide warnings, and only if necessary issue override commands.

As an alternative approach, this thesis focuses on the development of a driver assist

system that incorporates a driver model in the control strategy. Specifically, a warning

is applied to one or more vehicles such that the driver may act to prevent a collision

without the need for autonomous intervention. There is a rich literature in the human

factors that provide detailed models of how drivers respond to warnings and various

stimuli (see, for example, [10, 23, 5, 9]). In this thesis, we take a very simple model,

in which a driver is assumed to have a fixed time delay in responding to a warning

and makes a binary decision between following the warning or not. While not the

focus of this research, another important component of human machine interactions

is user interface design [16], which affects the way a driver responds to stimuli.

1.3 Hybrid Automata as a Framework for Solving

Safety Control Problems

Hybrid automata are used to formally model the semi-autonomous multi-vehicle sys-

tems of interest. This is because hybrid automata provide the ideal framework for

this modeling because they enable formal treatment of continuous vehicle dynamics as

well as discrete human and override decision making. This strategy is useful because

often times humans switch between a number of relatively simple control laws, rather

than using a single more complex law to accomplish complex tasks [17, 1, 4]. Also,

there are also a number of works, such as [26], [24] and [12], that develop modeling

and control techniques for hybrid systems which can be utilized. I formulate the

driver-assist system design as a safety control problem for hybrid automata in which

modes are hidden because of unobservable and uncontrollable human decisions. Our
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solution is based on constructing a mode estimator and on calculating a capture set,

complement of the maximal controlled invariant set [18, 25], for each mode estimate.

A dynamic feedback map is then constructed to prevent the flow of the system from

entering the current relevant capture set corresponding to the mode estimate.

Safety control problems for hybrid automata with hidden modes have been ad-

dressed before [29] and have been applied for collision avoidance at traffic intersections

between fully autonomous vehicles and completely human-driven vehicles [28]. Here,

different from [28], we consider semi-autonomous vehicles. Furthermore, we improve

on the theoretical results of [291, for the specific application under study, by providing

substantially less conservative ways to determine capture sets. Specifically, different

from [29], we exploit the fact that when the estimator cannot distinguish between two

modes, it means that the disturbance signal is playing to keep such a mode confusion.

This implicitly reveals information on the disturbance choices, which we directly ac-

count for in the calculation of the capture sets. In order to efficiently compute these

capture sets, we exploit the fact that the continuous systems dynamics are order pre-

serving [12, 3]. For such systems and when the bad set to be avoided is a box, the

capture sets can be efficiently computed by backward integrating the lower and upper

bounds of the bad set through minimal and maximal input (control and disturbance)

signals [6].

It is important to note that the control algorithms are developed under the as-

sumption that state information for the multi-vehicle system is available. This in-

formation could be obtained with differential GPS, from the on-board computer, or

other sensors located on-board the vehicle or at the intersection [8]. Dedicated short

range communications devices would be used to distribute the state information [2],

and the algorithms would be executed via on-board computers, taking advantage of

drive-by-wire capabilities to execute necessary override commands.
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1.4 Description of the Driver-Assist System

Three driver assist systems are developed for the following two vehicle cases: (1) one

vehicle contains the system and the second is human driven and (2) both vehicles con-

tain the system. Both of these systems utilize similar modeling and design techniques

and are provably safe.

Prom the perspective of the driver, the system works as follows. The driver ap-

proaches an intersection in the vicinity of another vehicle. If the system detects the

potential for a collision to occur, an audio, visual, or tactile warning is issued ad-

vising the driver to speed up or slow down to prevent said collision from occurring.

After the driver processes the warning, he or she makes a decision whether or not

to follow it. The system determines the driver's action and one of 3 scenarios may

occur. (i) The driver obeys the warning and safely passes through the intersection.

(ii) The driver disobeys the warning, but due to conservative assumptions made to

guarantee safety in all cases, they still pass through the intersection safely. (iii) The

driver disobeys the warning and approaches an unsafe condition, at this point, the

driver-assist system overrides unsafe driver input with an alternative safe input to

prevent the collision. Also, the driver may initially obey and disobey at a later point,

but this is treated identically to when the driver disobeys immediately and therefore

doesn't represent a novel case.
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Chapter 2

System Model and Problem

Formulation

2.1 General Framework

With the end goal of designing a driver assist system, I will first define the general

model employed. This will introduce the necessary notation for formulating and then

solving the safety control problem of interest. A hybrid automaton model is used

because of the inherent coupling of continuous dynamics from the physical plant, and

discrete dynamics resulting from human decisions.

Definition 1. A hybrid automaton is a tuple H = (Q, X, E, Ed, U, D, R, f) in which,

Q is a finite set of system modes, with q E Q; X c R" is a set of continuous states,

with the continuous state x E X; E. is a set of control events, with each event o, E E';

Ed is a set of disturbance events, with each event ad E Ed; U is a set of continuous

control inputs, with the control input u(t) E U; D is a set of continuous disturbance

inputs, with the continuous disturbance input d E D; R: X x Q x E. X Ed -+ Q is a

discrete state update map; f : X x Q x U x D -+ X is a piecewise continuous vector

field.

For a set P, we denote the set of signals with values in P by S(P). Signals will

also be denoted with bold symbols. Let {rj}iEN C R be the set of transition times
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for which (ad, u.) 5 (0,0) with rf ri'+1. Let ri+1 represent the time immediately

after the ith mode transition, that is, q(i+1 ) = R(x(r), q(r2 '),uou(r-1),od(-4r)). For

input event signals au and ad and initial mode g%, the discrete flow of H is de-

noted q(t, qo, o, ead) := q(supr<t) for t > 0. We will also denote #q(t, qo, au, 'd)

by q(t). For input signals u, d, 0 d, and au the continuous flow of H is denoted

#2(t, zO, qO, u, d, 0 d, ou) := x(t), where (t) = f(x(t), q(t), u(t), d(t)) unless executing

a mode transition in R. The state x(t) E X is measured, but the mode q is not mea-

sured. However, since q affects the evolution of x(t) through f, a filtering function

F : S(X) -+ X is used to determine the possible range of N(t). For a fixed T > 0, we

define the variable: 3(t) := F(x([t - T, t)), for any t > T. Based on the available sig-

nals, 3, au, and u, and the known initial condition qO, the discrete information state

q(t) c 2Q represents all of the possible modes which the system could occupy at time

t and is defined as q(t) := {q E Q | a Ud, d, s.t. q = q(t, go, au, ad) and F(x([r -

T, r])) = 1(T), V T < r t}. In order to control the system, a feedback map

13: 2Q x X -+ U x Eu is introduced. Applying this feedback map to the system pro-

duces the closed loop continuous flow #'(t, xO, qO, d, O'd) = #2(t, xO, qO, u, d, Ud, oe),

with (u(t), o(t)) = 13(q(t), x(t)).

The safety property, OF(#2), which a controller must guarantee is defined for

some bad set, B c X, as:

OF(#2) := true if Vt. # (t, xO, qO, u, d, ad, o) B

false otherwise,

in which the period is a short-hand notation for "we have that".

2.2 Problem Formulation

Based on this safety property, it is possible to define the two-part safety control

problem for system H as:

Determine S := {xo|Vir 3 / and (d, ud) with F(x([r - T, r])) = /(r), T < T

t s.t. OF(#i) = false}.

18



Determine ir(q, x) s.t. x, ( S => Vt. OF(OqW) = true.

S represents the set of all points in the state space for which, if no warning is

issued, there is a some disturbance input sequence that will cause a collision. By

finding S, and using that set to determine when a warning is needed, the system

avoids applying control too soon. The solution to Problem 1 and Problem 2 for a

collision avoidance problem at a traffic intersection will provide the control map for

the driver assist system of interest. Specifically, we consider the two-vehicle system

at an intersection depicted in Figure 2-1 and consider the safety control problem of

preventing collisions in the intersection. Two cases are considered:

1) Vehicle 1 is completely human controlled, while vehicle 2 is outfitted with the

driver assist system.

2) Both vehicles are outfitted with the driver assist system.

Figure 2-1: Pictorial representation of the problem of interest. Two vehicles ap-
proach an intersection along predetermined paths. A represents the intersection and

B represents the "bad set" (a collision).

2.2.1 Case 1

We model this system as a hybrid automaton H = (Q, X, EV, E, U, D, R, f) as fol-

lows. Let Q := {h, w1 , w2, hoi, hd1 , ho2, hd2, hai, ha2} be the set of modes containing

various combinations of the vehicles while human controlled and autonomously con-

trolled. The vehicles are initially both human driven, corresponding to o = h. After

one of two warnings (brake or accelerate - denoted by superscript 1 and 2, respec-
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tively) is issued to vehicle 2, the mode progresses to q E {w1 lw 2 }. After a reaction

time raR > 0 has elapsed, the driver chooses to obey or disobey the warning and the

mode shifts to q E {hol, hd', hol, hd2} with the "o" indicating driver obedience and

the "d" indicating driver disobedience. If necessary, vehicle 2 will be overridden and

controlled autonomously. If this occurs, the mode will enter q E {ha', ha 2 } where hal

will have automated braking and ha2 will have automated acceleration. X := R' is the

set of continuous states of the system with x E X given by x = (pi, vi, p2 , v 2 , r)T, in-

cluding the position and velocities of each vehicle, and a counter variable r, necessary

to implement the -RT dwell time after a warning is issued. When referring to a single

vehicle, the notation xi = (pi, vi, -r)T will be used. The initial state of the system is

denoted x = (pio, vio, p 2o, v 20 , To)T, with ro 0 : 0 E := {a1, aW2 , 1, ,o2} is the set of

control events. af' and o, 2 correspond to issuing a warning for vehicle 2 to brake and

accelerate, respectively. a.' is an autonomous override of a vehicle disobeying warning

1, and o is an autonomous override of a vehicle disobeying warning 2. Ed := {4o, o-}l

is the set of disturbance events. o indicates that the driver has obeyed the provided

warning. o indicates that the driver has disobeyed the provided warning. The con-

tinuous control input ranges within the set U := [-, U], U > 0. The continuous

disturbance input ranges within the set D := (D1 x D 2 ), Di = [-, d], d > 0 with

d C D given by (di, d2). Physically, d, and d2 represent the drivers' input via the gas

and brake pedals of the vehicle.

Figure 2-2 provides a visual representation of the discrete update map, R(rq, a,, a).

Each mode is represented by a circle and the transitions between modes are repre-

sented by blue and red arrows. The blue arrows are control events, while the red

arrows are disturbance events. As stated, the system is initialized with qO = h and

progresses through the automaton as necessary. The left and right sides of the au-

tomaton correspond to two different warnings, which specify that vehicle 2 should

brake or accelerate to maintain safety. Let raR > 0 represent the "reaction time"

of the drivers, that is, the length of time required to acknowledge and act upon an

issued warning.

Define two maps p : Q -+ R and y Q -+ R2, with y = (-y,7u). The value of

20



Figure 2-2: Automaton representation of system H for Case 1.

these maps modulate the effect of d and u on the system dynamics with [dmin, dmax]

as the range of possible driver-applied accelerations and [Umin, Umax] as the range of

possible control-applied accelerations. Let e be some positive value, then:

p(q)

'yd(q) :=

dmax+dnin
2

dmin

dmax

Unnn +dmn
2

umax +dmax
2

drnax-dmin
2d

d

0

if

if

if

if

if

q 6

q =

q =

q =

q =

{h, hw1 , hw2, hd', hd2 1

hol

h0
2

ha'

ha2

if q E {h, hw', hW2 , hd1, hd 2 1

if q E {ho',ho2

otherwise,
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u {(q) :=

U~mnindmin

U\axdmx

0

if q = ha1

if q = ha2

otherwise.

Vector field fi provides vehicle i longitudinal dynamics along its path. Both vehicles

exhibit double integrator dynamics with velocity saturation such that the velocity

for vehicle i remains within [Vin. Vjimax]. It also contains the dynamics for a counter

variable T, which is initialized at T = 0 when the warning is issued, and tracks the

elapsed time afterwards. We define c := dmax-min di and a2 :=p(q) + -yd(q)d2 +

yu(q)u, then f (fi, f2) with:

fi(zi, q, u,dj) :

vi

ac if vi E (Vi., Vimax) V (vi = Vimax A ac ; 0) V (vi = Vimjn A ai > 0)

0 otherwise

0 if q=h

1 otherwise

In an effort to maintain driver confidence in the system, the choice of range for yu was

made such that the acceleration produced by the control input is always in [Umin, dmin]

for warning 1 and [dmax, Umax] for warning 2. Because the controller can only apply

accelerations of the same sign and of greater or equal magnitude than the specified

accelerations, the drivers should not be surprised by the control actions.

The safety control problem is as defined in Section 2.2, with the bad set B equal

to the set of all points in the state space such that the position of both vehicles are

simultaneously in the intersection, as indicated by Figure 2-1, and the initial mode is

given by q = g, = h.
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2.2.2 Case 2

Case 2 uses a similar hybrid automaton to that of Case 1, but it is complicated

by the fact that both cars include the discrete decision dynamics associated with the

warning system, expanding the number of possible modes. Incorporating this change,

Q becomes {h, w 1, W2 , oo1, oo2, od', od 2, dol, do2, oal, oa 2, aol, ao2, ddl,

dd2 , da', da2, ad', ad2, al, a2 }. Each driver assist system will progress through the

same sequence or events: one of two warnings is issued, the driver obeys or not, and

the system overrides if necessary. In Case 3, both cars require control and disturbance

inputs, so the continuous control input ranges within the set U := (Ui x U2 ), Ui =

[-l u], u > 0 with u E U given by (ui, u2), and the disturbance ranges the set

D := (Di x D 2 ), Di = [-dd ], d> 0 with d E D given by (di, d2 ).

Figure 2-3 provides a visual representation of the discrete update map, R(Tq, Uu, o0d)

for Case 2, accounting for the changes in Q. Again, each mode is represented by a

circle and the transitions between modes are represented by blue and red arrows. The

blue arrows are control events, while the red arrows are disturbance events. p(q) and

-y(q) need to be adjusted to account for the changes in Q. Since the two cars will be

issued opposite warning, these maps need to be individualized for each car.

pi(q)

p2 (g):=

dmax +dmin
2

dmin

dmax

Umin ±dmin
2

Umax dmax
2

dax +drn
2

dmin

dmax

umin +dmn
2

Umax +dmax
2

if

if

if

if

if

if

if

if

if

if

qE

qE

qE

qE

qE

q

q

q

q

q

C

C

C

C

C

{h, w', w2 , dd', dd2 , do', do2 , dal, da2}

{oo2 od 2, oa 2 1

{ool, od', oal}

{ao2, ad 2 , a 2}

{aol, ad', al},

{h, w', w2 , dd', dd 2, odl, od2 , ad', ad2 }

{ oo, do', ao'}

foo, 2 , do2 ao 2

{oal, da', a'}

{oa2, da2, a2 1,
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Figure 2-3: Automaton representation of system H for Case 2.
warning oaj is used in the interest of legibility.

d ax "d"n
2d

'Yd1(q) I
'Yd2() := {

0

dwax -dmn
2d

0
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The generalized

if q E {h, w', w2, dd', dd2 , do', do2 , dal, da2}

if q E {oo, oo2, oa , oa 2 od', od2 }

otherwise,

if q E {h, w 1 , W2 I ddl, dd 2 , do', do 2 , da, da 2

if q E {0oo, oo2 , ao , ao2 do', do 2}

otherwise,



f min 2 dmin if q E {a 2, ao2 ad2 }

Yu (q) : m= | dma 2 if q E {a', aol, ad'}

0 otherwise.

JUmin"2dminl if q E {a, oal, dal}

72(q) umax-dmax if q E la 2 , oa2 , da2}

0 otherwise.

With these new definitions, ai := p1(q) + -ydl(q)dl + -yui(q)ui and a2 :# 2 (q) +

yd2(q)d2 + Y 2 (q)u 2 , while f remains identical to Cases 1. So, for case 2, the safety

control problem is as defined in Section 2.2, with the bad set B equal to the set of all

points in the state space such that the position of both vehicles are simultaneously

in the intersection, as indicated by Figure 2-1, and the initial mode is given by

gO = go = h.

With the hybrid automaton model defined for each of the 2 cases of interest, a

solution to each case will be proposed, along with a proof of its safety, and simulation

results for various system evolutions.
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Chapter 3

Design Strategy for Solving Safety

Control Problem

Chapter two formalized the safety control problems of interest. This chapter develops

the general strategy to solve both of these problems. By employing this strategy, I

was able to develop suitable control maps which guarantee the safety of the system

for Cases 1 and 2.

3.1 Designing an Estimator System

In order to solve the safety control problems introduced in Section 2.2, we must

construct an update law for q(t). We construct such an update law in the form of a

mode estimator. Here, we introduce a hybrid estimator system, H, based on system

H. For H we can define equivalent safety control problems, but with perfect state

information, which will also guarantee safety of the original system H.

Definition 2. A hybrid estimator system is a tuple H = (Q, X, E,, I, U, D, A, F, R, f),

in which X, E., U, D are as defined for system H, with the continuous state now de-

noted by i E X; Q Q 2Q is the set of discrete system modes and we denote a

mode by i E Q; I C R U 0 is a set of continuous inputs and 4(t) E I; i(t) = 0
when no mode transition occurs, otherwise i(t) = 0(t). A : Q -+ 21 is a map that

establishes for every mode 4 E Q the domain where F(^([r - T, r])) is restricted
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while the mode at time T is 0; R : X x Q x E, x I -+ Q is the mode update map;

f: Q x X x U x D -+ 21 is a set-valued map establishing the continuous dynamics:

E f(4, 2, u, D) := {f(q, i, u, D)q E 4} and F(:([t - T, t])) c A(q(t)).

Let {fj}iEN C R be the set of transition times for which Z(t) = 0 with Nj <; fj+1-

Let fi+1 represent the time immediately after the ith mode transition, such that,

Ti+) = R(.(r), i o%(r), 2(rj)). For input signals o-, i and initial condition

q, the discrete flow of f is denoted #4 (t, do, a,, ):= 4(sup t-i), for t > 0. We

also use the notation d(t) = #4(t, do, a-,i). The continuous flow of f is denoted

# 4 ,U := (t), where f(t) E f(q(t), i(t),u(t),d(t)) unless executing

a mode transition in R. The "silent" input i(t) = 0 denotes no mode transition taking

place at time t. This is equivalent to requiring N(i, q, oa, 0) = q. Consider a feedback

map 13: Q x X -+ U x Eu. The continuous flow of the system with this control map

applied is # (t, o, do, ) = # (t, , 0,, u, d, o-2, i), with (u(t), o-,(t)) = fr(Q(t), if(t)).

We denote by #*(t, so, do, d, 0) the flow when 4(t) = qo for all t.

Definition 3. We say that system H is an exact estimator if it has the following

properties:

(a) q(t) = q(t) for all t (it keeps track of all and only those modes compatible with

the system dynamics and the measurements);

(b) Given 4(t) and q(t), we have that B(t) E A(g(t));

(c) For any x(-) trajectory of H and the resulting 3, there is a trajectory i(-) of f

such that -i(t) = x(t) for all t;

(d) Given 3 generated by H and a resulting :(-) trajectory in ft, there is a trajec-

tory x(-) of H such that F(x([t - T, t])) = 3(t) for all t > T and x(t) = i(t) for

all t > 0.

The new safety control problem with perfect information for system H is:

Problem 1. (Problem 1') Determine the set S := {so | V fr - i and d s.t. OF(#t) =

false}.
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Problem 2. (Problem 2') Determine a feedback map fr such that So $ $ -

OF(#*) = true.

The following theorem ensures that solving Problems 1' and 2' is equivalent to

solving the original Problems 1 and 2.

Theorem 1. If system H is an exact estimator, then S = S.

Proof. We first show that S C S. Let x, E $, then for all fr there is i and d with F(&([r-

T, r])) E A(d (t)) V r < t such that i(t) = #(t, xO, qO, d, i) E B. By property (d), for

such a i and s(-) trajectory there is a trajectory x(-) in H such that x(t) = :(t) for

all t and F(x([t - T, t])) = /3(t) for all t > T. Hence, there are 39, d, and ad such

that x(t) = #*(t, xo, qo, d, ad) E B and F(x([t - T, t])) = (t). By property (a), this

implies xo E S.

We show that S C 5. Let xo E S, then for all maps -r, there are 3 and (Cd, d)

with F(x([r - T, r])) = /(T) V T < -r < t such that #'(t, xO, qO, d, ad) E B. By

properties (a)-(b), we have that such a trajectory x(.) is also such that F(x([t -

T, t])) E A(d(t)) V T < r t. Using property (c), we obtain that for such a 3 and

x(-) there is a trajectory i(-) of Ht such that -(t) = x(t) for all t. It follows that

xo -

With the structure of a hybrid estimator system defined, it is now possible to

develop the appropriate systems for both cases of interest.

3.1.1 Case 1 Estimator System

Here I re-examine Case 1, this time with the intent of designing a hybrid esti-

mator, H = (Q, X, Eu, I, U, D, A, F, R?, f) as introduced by Definition 2. Specif-

ically, X, E., U, and D are as defined for H in Section 2.2.1. We define Q

{h, w1 , w2, {ho, hd}', {ho, hd} 2, hd', hd2, hal, ha2} as the set of mode estimates. These

are subsets of the modes of system H. For example, q = {ho, hd}' indicates that the

estimator does not have enough information to determine whether the true mode of
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the system is q = hol or q = hd', so the system H could be in either of them. The

input )3 E S(I) is given by 3(t):- v2 (-o(-T) for t > T.T

It provides information regarding the true mode of H. Note that while t < rRT+T,

0(t) cannot be used for estimation because for t < rRT the driver has not made any

obedience decision, and it takes time T for 3 to output a value once the driver has

decided. This is accounted for by the structure of . Define the map F(±([t -T, t])

0 2 (t)-0 2 (t-T) for t > T the domain of which is restricted by the map:T

[dmin, dmin + E] if q = {ho, hd}'

A() := [dmax - C, dmax] if q = {ho, hd}2

anything otherwise.

A(d) is defined as a small range about the specified warning acceleration for two

reasons. The first is that as the time parameter T approaches 0, A restricts a 2 directly

because /(t) approaches a 2 (t). This corresponds to having an "instant" estimator,

and the range of A ensures that the disturbance is producing an acceleration a 2 close

to the acceleration specified by the warning. The second reason is to ensure that the

estimator has no "false negatives" in which it incorrectly estimates that the driver of

vehicle 2 has disobeyed.

Figure 3-2 provides a visual representation of the discrete update map, (r, 4, o-,

Each mode estimate is represented by a circle and the transitions between modes are

represented by blue and red arrows. The blue arrows are control events, while the

red arrows are estimator observance events. The system is initialized with 4 = h and

progresses through the other modes as necessary. Again, the left and right sides of

the automaton correspond to the two different warnings, brake and accelerate.

Define three maps A : O - R and j : Q -+ R2 , with ' = ('5 ,diu). The value of

these maps modulates the effect of d and u in the system dynamics.

"min+dmin if 4 = ha'

A(M := maxd'" if = ha2

dmax+dmin otherwise.
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t) g2*

Figure 3-1: Automaton representation of system ft for Case 1.

0 if 4 E {ha', ha2}

dmax dmin otherwise.
2d

|Umin-dmin if q = ha'

Umaxdmax if 4 = ha2

0 otherwise.

Define &, = dmaxdmin d and a 2 = p(4) + d(q)d2 + u(q)u. Define f 0 if = h

and ? := 1 otherwise. Then f = (fi, 2) with fi(si, q, u, di) := (vi, aj, #)T if '0; E

(Vmin, vimax)V(0ij = VimaxA&i < 0)V( i = ViminA d ;> 0) and fi(fi, 4, u, di) := (vi, 0, f)T

otherwise. By construction, fi(si, , u, Dj) = Uqefi(fi, q, u, Di). That is, the set of

vector fields fj provides the union of all of the possible vehicle dynamics for vehicle i

based on the current mode estimate. The safety control problem for f is as defined,

in Problem 1, with the bad set defined as both vehicles simultaneously occupying the

intersection and with the initial mode q = h. As shown in Theorem 1, these two

problems are equivalent to the safety control problems for system H if f is an exact

estimator. It is possible to show that f is an exact estimator and it follows by its
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construction.

3.1.2 Case 2 Estimator System

We re-examine Case 2, this time with the intent of designing a hybrid estimator, H =

(Q, X, E, I, U, D, A, F, R, f) as introduced by Definition 2. Specifically, X, E, U,

and D are as defined for H in Section 2.2.2. We define : {h, w1 w2 , {oo, do, od, dd}1.

{oo, do, od, dd}2, {od, dd}1, {od, dd}2}, {do, dd}1, {do, dd} 2, {oa, da}1, {oa, da}2, dd1,

dd2, {ao, ad}1, {ao, ad}2 , da', da2 , ad', ad2 , a', a2} as the set of mode estimates. These

are subsets of the modes of system H. For example, 4 = {od, dd} 1 indicates that the

estimator does not have enough information to determine whether the true mode of

the system is q = od1 or q = dd', so the system H could be in either of them. The

input /3 C S(I) is given by /3 (t) := vj(t)-v,(t-T) for t > T.i T

It provides information regarding the true mode of H. Note that while t < TRT+T,

Aj(t) cannot be used for estimation because for t < TRT the driver has not made any

obedience decision, and it takes time T for 3j to output a value once the driver has

decided. This is accounted for by the structure of N. Define the map F(f([t -T, t])
(t) -(t - T) for t > T ,the domain of which is restricted by the maps:T I

[dmax - , dmax] if 4 E {{oo, do, od, dd}1, {od, dd}1, {oa, da}}

[dmin, dmin + E] if 4 E {{oo, do, od, dd}2, {od,dd} 2, {oa, da}2}

anything otherwise.

[dmin, dmin + El if 4 E {{oo, do, od, dd}, {do, dd}, {ao, ad}1 }

A2(q) := [dmax - E, dmaxl if 4 C {{oo, do, od, dd} 2, {do,dd}2 , {ao, ad}2 }

anything otherwise.

A, (4) is defined as a small range about the specified warning acceleration for two rea-

sons. The first is that as the time parameter T approaches 0, A, restricts aj directly

because (t) approaches ay(t). This corresponds to having an "instant" estimator,

and the range of A, ensures that the disturbance is producing an acceleration a3 close
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to the acceleration specified by the warning. The second reason is to ensure that the

estimator has no "false negatives" in which it incorrectly estimates that a driver has

disobeyed.

Figure 3-2: Automaton representation of system Ht for Case 2.

Figure 3-2 provides a visual representation of the discrete update map, R?(-,, qo), i

Each mode estimate is represented by a circle and the transitions between modes are

represented by blue and red arrows. The blue arrows are control events, while the

red arrows are estimator observance events. The system is initialized with q = h and

progresses through the other modes as necessary. The two sides have been condensed

in the interest of legibility. Warning 1 corresponds to telling driver 1 to accelerate

and driver 2 to brake, while warning 2 corresponds to telling driver 1 to brake and
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driver 2 to accelerate. There are actually four different possible warnings, based on

the combinations of the brake and accelerate for each car, but the pairs (gas, gas) and

(brake, brake) are never used because they never end up being the optimal choice.

Define three maps R : Q - R and Q : -+ R2, with

these maps modulates the effect of d and u in the system

Umindmn
2

Umax±dmax
2

drnax +dmin

2

Umn+dmr,,n

2

Umax +dmpx
2

dmax ±dmin

2

if 4 E {{ao,ad}2,

if 4E {{ao, ad}1 ,

otherwise.

i = (id, iu). The value of

dynamics.

ad 2, a 2}

ad', al}

if 4 E {{oa, da}, da', al}

if 4 E {{oa, da}2 , da2 , a 2

otherwise.

II :
dmax -dmin

2d

drnax -dmin

2d

U in-d "in

2 f" 2 "

0

Umin-dmin

Umax-dmax

0

if e E {{ao, ad}2, ad2 , a2

if 4 C {{ao, ad}1 , ad', a'}

otherwise.

if 4 C {{oa, da}1 , dal, a'}

if 4 E {{oa, da}2, da2, a2}

otherwise.

Define di := A1(4) +dl(4)dl + 5uil(4)ui and 6 2 := A2(4) +d2(4)d2+ u 2 (4)U 2. Define

:= 0 if 4 = h and i := 1 otherwise. Then j = (fi,f 2) with fi(si, 4, u, di) :=

(vi, ai, )T if bi C (Viin I V (= _d) V (i = Va A&j < 0) V (fi =vimi A dj > 0) and
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if 4 =c {{ao, ad}1 , {ao, ad}2 , ad', ad2, a', a2}

otherwise.

if 4 =E {{oa, da}, {oa, da}2, dal, da2 , a', a2

otherwise.

7dl

7d2(q)

i ():=

iu2() {



Xi, 4, u, di) := (vi, 0, )T otherwise.

By construction, fi(si, 4, u, Di) = Uqgfi(si, q, u, Di). That is, the set of vector

fields fi provides the union of all of the possible vehicle dynamics for vehicle i based

on the current mode estimate. The safety control problem for H is as defined, in

Problem 1, with the bad set defined as both vehicles simultaneously occupying the

intersection and with the initial mode 4 = h. As shown in Theorem 1, these two

problems are equivalent to the safety control problems for system H if H is an exact

estimator. It is possible to show that H is an exact estimator and it follows by its

construction.

3.2 Determining the Maximal and Minimal Sig-

nals

In order to efficiently calculate the unsafe region of the state space, it will be necessary

to calculated the maximal and minimal control and disturbance signals for each mode

estimate. These signals maximize or minimize the displacement of a given vehicle for

a given set of initial conditions. Such signals are necessary in order to apply the results

of [12] and [7]. These results hold for order preserving systems, that is, systems in

which the flow preserves the ordering (usually component-wise) with respect to the

initial conditions and input (disturbance and control) signals.

The longitudinal dynamics of the vehicles considered in this paper are order pre-

serving, in which ordering in the state space is taken component-wise [11]. That is,

X a < Xz if pi 5 p and o0 < v. Furthermore, let pi(t) and pi'(t) denote the dis-

placement of vehicle i corresponding to input signals u!, d! and ut, dl, respectively.

Let dl' = d, then we say that u! < uP if p?(t) K p (t) for all t > 0. Similarly,

let u3 = uP, then we say that d < dP if p?(t) K p(t) for all t > 0. Basically,

partial ordering on the set of input signals is defined based on displacements. The

maximal input signals are those that maximize the displacement, while the minimal

input signals are those that minimize the displacement, fixed the initial conditions. If
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the input signals are allowed to take constant maximal and minimal values, we have

that u =_ and d J will be the maximal signals, while u = -u and d = -d will be

the minimal signals.

When the disturbance input d is restricted by F, determining the maximal and

minimal signals is no longer trivial. The disturbance ranges in [-d, ], but it must be

compatible with F(X([t - T, t])) E A({ho, hd}') for all t > T. In order to determine

the maximal and minimal disturbance profiles compatible with this restriction, we

solve the optimization problems:

maxd (ft 01 a 2 (T)drdo , t > T, and (3.1)

mind (ft a 2 (T)drdo, t > T, with (3.2)

FT a2(a)do C A({ho, hd}) for all T < r < t.

For A({ho, hd}1 ), (3.2) is trivial, with solution d -d, but (3.1) is non-trivial.

For A({ho, hd} 2) (3.1) is trivial, with solution d = d, but (3.2) is non-trivial. Let

6 = _T and let n E {O, 1, 2, 3.. .}. The solution to the maximization problem
dmax -dmmn

for A({ho, hd} 1 ), is a "bang-bang" solution, with the optimal disturbance input for

-jt -nT <6
t E [nT, (n + 1)T) given by dm(t) = ~ . The solution to the min-

i t -nT >

imization problem for A({ho, hd} 2 ) is the opposite of the previous solution, for all

time t > 0, that is, dm(t) = -dM(t). Intuitively, 6 is the maximum length of time

the disturbance can remain outside of A({ho, hd}2 ) with enough time to bring the

average acceleration back into the A({ho, hd} 2) at time T. While the optimization

was shown for case 1, the structure of A1 and A 2 is such that the solution may be

applied to case 2 as well.

Figure 3-3 shows the result of minimization of the disturbance signal. The green

shows the nominal "obey" signal, while the red is the minimized signal. The dis-

placement plot shows that the resultant displacement of the minimized signal remains
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behind the nominal signal for all time.

1 Nominal "Obey" Case

1.5-

0*

.5 -

i I
0

3
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0.5 1
time (s)

1.5

Resultant Velocity For Both Inputs

0.5 1.5

.3 0.
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Minimized Solution with Same 3
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0 0.5 1 1.5
time (s)

Resultant Displacement For Both Inputs

0.51
time (s)

1 1.5
time (s)

Figure 3-3: Minimized disturbance signal compared with a nominal signal. The
minimized signal produces a displacement which is always behind the nominal signal.

3.3 Uncontrollable Predecessor Operator and Mode

Dependent Capture Set

Two tools that will be useful for solving the proposed control problems called the

uncontrollable predecessor operator and the mode dependent capture set, will be

defined here. They provide convenient notation for expressing the various sets that

will be utilized to solve those problems.

Definition 4. For a set P C X, modes qj, 4j, and time TM

uncontrollable predecessor operator:

> T, we define the

Pre(i,q, rM, P) (3.3)

{iol~Vr 3 d, t < TM with F( ([t - T, t])) E A (q) s.t. <fr(t, o,, di, d, 0) E P}.
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If no TM is specified, it is assumed to be equal to oc. If no qj is specified, there is

no additional restriction on F. Also, TM > T. The Pre operator provides a compact

way to represent the set of all points for which no control will prevent the flow from

entering a given set P before Tm under the restricted dynamics allowing for a future

transition to qj.

Definition 5. A mode dependent capture set for mode 40 E Q is defined:

C(do) := {solw^r 3Z, d, t s.t. #*(t, so, 4o, d, ) EB.(3.4)

This general definition will be applied to each mode within the hybrid estimator

system, the results of which will be analyzed to determine the solution to the proposed

safety control problems.
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Chapter 4

Solution to Safety Control

Problems for Case 1

In this chapter, I utilize the estimator system for Case 1 to solve the modified safety

control problems 1' and 2'.

4.0.1 Solution of Problem 1'

Problem 1' will be solved by constructing a mode dependent capture set, C(d) as

defined in Definition 5 for each mode 4 E Q. By definition, this capture set will

be the solution to Problem 1' when 4, = h, but the solution relies on being able

to calculate this set. To do so, C(h) will be constructed iteratively, starting with

4 E {hal, ha2 } and working backwards towards 4o = h. As seen in the following

theorem, this technique is possible because there are no loops in N.

Theorem 2. Let i E {1, 2}. Then S = C(h) where:

(i) C(h) = C(w') n C(w2)

(ii) C(w) = Pre(w', {ho, hd}, T*, C({ho, hd}i)) U Pre(w', hdi, T*, C(ha))

(iii) C({ho, hd}t) = Pre({ho, hd}', C(hai))

(iv) C(ha') = Pre(ha', B).
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Proof. First, apply (3.4) for q0 = ha, producing C(ha) = {&oIVfr.2i, d, t. s.t.

#$i(t, O, hat, d, i) E B}. Because there are no discrete mode transitions from 4 = ha',

this can be written C(ha') = Pre(ha', B).

Next, apply (3.4) for 4^ = hd, producing C(h) = { 0ojVfr3, d, t. s.t.

#(t, xo, h&, d, i) E B}. Because the control event of is allowable when 4 = hd,

and R(r, he, o', z) = ha', we can write this as C(hd) = {±|VAr.3i, d, t. s.t.

(t, o, ha', d, i) E B} = C(hat ).

Now, apply (3.4) for do = {ho, hd}t , producing C({ho, hd}t) = {50IVfr.3i, d, t. s.t.

#r(t, x., {ho, hd}i, d, i) E B}. From the definition of R(r, {ho, hd} 1, o, i), one can

enter B either by flowing directly into it or by first switching modes and then flowing

into it. Hence while 4 = {ho, hd}t , it is necessary to remain outside of C(ha') U B.

Because C(hai) D B, we can write C({ho, hd}') = Pre({ho, hd}t, C(ha')).

Moving backwards to 4 = wi and applying (3.4) again produces C(wi)

{Io|Vfr.3, d, t. s.t. #1(t, xo, w d, %) E B}. Writing C(w') using the Pre operator re-

quires the use of the TM argument because the mode estimate necessarily transitions to

either 4 = {ho, hd}t or 4 = hd at T = rT+T based on the value of i. From the defini-

tion of N(r, w1, or, Z), one can enter B either by flowing directly into it or by switching

modes before flowing into it. Hence, while F(.([Tr, r'r + T]) E A({ho, hd}'), it is

necessary to remain outside of C({ho, hd}') U B = C({ho, hd}t). If instead the dy-

namics are restricted by F(.i([TRT, rRr + T]) V A({ho, hd}t), it is necessary to remain

outside of C(hat) U B = C(hat). It is important to note that there are no restrictions

on T during T C [0, 1RT)-

Using these requirements, C(w') can be written C(wt) = Pre(w', {ho, hd}t, rar +

T, C({ho, hd}t))UPre(wt , hd, Trr+T, C(hd) = C(hat)). We can then step back to the

initial mode 4 = h and apply (3.4) to produce C(h) = {±oIVfri, d, t. s.t. #*(t, x, 4" =

h, d, i) E B}. From R, there are two allowable control events o E {0.w1, aI2} when

4 = h and they lead to unconnected branches of the automaton. The flow could enter

B either directly, or by executing one of these transitions first. Hence, while 4 = h,

it is necessary to avoid (C(wl) n C(w 2)) U B = C(wl) n 0(w 2). Using this, we can

write C(h) = C(w') n C(w2 ).
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4.0.2 Computational Tools

Theorem 4 provides an iterative formulation for 5, and for the mode dependent

capture sets, C(q), but each set is still expressed as the uncontrollable predecessor of

other capture sets, which makes it difficult to calculate them. In order to make their

computation efficient, we can express them as the uncontrollable predecessor of B

under restricted disturbance signals. This will allow each capture set to be calculated

as a back integration of the much simpler set, B.

Proposition 1. C({ho, hd}i) = Pre({ho, hd}?, B).

Proof. We first show C({ho, hd}1 ) 9 Pre(q = {ho, hd}', B). Let E E C({ho, hd}').

Then, from Theorem 1(iv), this is true if and only if i E Pre({ho, hd}1 , C(hal)).

From Theorem 1(v) this is true if and only if E E Pre({ho, hd} 1, Pre(hal, B)). Let

A1 :={ol, d. with u -i, s.t. #r(t, i, ha1 , d,0) E S}. Then i E A1 because

the control input is restricted. This implies E E Pre({ho, hd}', Pre({ho, hd} 1, B))

because 3d 2 s.t. F = dmin. This is true if and only if ± E Pre({ho, hd}', B) by the

definition of Pre.

We show C({ho, hd} 2 ) 9 Pre(q = {ho, hd} 2 , B). Let i E C({ho, hd} 2 ). Then,

from Theorem 1(iv), this is true if and only if - E Pre({ho, hd} 2, C(ha2)). From

Theorem 1(v) this is true if and only if X^ E Pre({ho, hd} 2, Pre(ha2 , B)). Let A2

{Boli, d. with u = U, s.t. #xt, ix, ha2, d, 0) E S}. Then i E A2 because the con-

trol input is restricted. This implies i E Pre({ho, hd} 2, Pre({ho, hd}2 , B)) because

3d 2 s.t. F = dmax. This is true if and only if s E Pre({ho, hd}2 , B) by the definition

of Pre.

We show, Pre({ho, hd}1 , B) 9 C({ho, hdp'). Let E C Pre({ho, hd}i, B). Then,

E Pre({ho, hd}2 , C(hal)) because C(hat) D B. From Theorem 4(iii), this is true if

and only if E C C({ho, hd}i).

41



Proposition 2.

Pre(wi, {ho, hd}2 , T*, C({ho, hd}t )) = Pre(w, {ho, hd}i, T*, Pre({ho, hd}i, B)).

Proof. Follows directly from Proposition 1. 0

Proposition 3. Pre(wi, hde, T*, C(ha)) = Pre(w, hd, T*, Pre(ha, B)).

Proof. Follows directly from Theorem 4(iv). E

Propositions 1, 2, and 3 are useful because they allow for application of the results

of [12] and [7] to efficiently calculate the capture sets. In order to do this we will utilize

the maximal and minimal control signals determined in Section 3.2, to back propagate

the bad set for each mode dependent capture set.

To compute C(ha), we first examine the input for vehicle 2 because it is assumed

that the "control plays first" such that the disturbance will have chance to base its

choice on that decision. The control input ranges in [-U, ii], and to maximize the

displacement, the controller simply applies the maximum input u(t) = U for all t. To

minimize the displacement, the controller applies the minimum input u(t) = -U for

all t. We can then write, according to [12], [7],

C(ha') = C(ha')H fC(hai)L (4.1)

with C(hai)H = {ojld,t s.t. #5i(t,., hai ,,d, 0,0) E B}, and C(hai)L =

{:ol3d, t s.t. #5(t, s, hai, -IU, d, 0, 0) E B}. Since the input is fixed, these sets can be

computed by plain back integration of the set B when the disturbance ranges in its

full range [-d, ]. Since the dynamics are order preserving, this back integration can

be achieved by back integrating the lower bound of B, (L 1, L2), through the minimal

disturbance d = -j and the upper bound of B, U1, U2), through the maximal distur-

bance d =_ [12]. In this way, the worst case in which the disturbance plays against

the control input is always accounted for.

As an example of these inputs, Figure 4-1 shows a plot of the disturbance signal

used to back propagate the (L1, U2) corner of B for C(ha2)H and the resulting set

boundary. The control input for vehicle 2 is fixed to U producing a2 Umax, while
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the disturbance input for vehicle 1 is fixed to d(t) = d producing ai = dmax. The

back propagation is started with the current velocity of the vehicles, and eventually

saturates, which is clear from the fact that the boundary straightens out after the

initial curvature.

Back Propagated Signals Resulting Boundary
Umax

dmax

* a1' . ..

o 50 100 150 P2
Time Step

Figure 4-1: Accelerations used to back propagate the lower bound of the bad set for
C(ha2 )H and the resulting curve.

By the definition of the restricted capture sets C(hai)H and C(hai)L, if the re-

stricted control input used in their definition is applied to the system when the state

is outside of either set, the state will remain outside of that set.

C({ho, hd}), given Proposition 1, can be calculated similarly, but now the restric-

tions on F must be taken into account. Since there is no control input applied in the

definition of Pre({ ho, hd}z, B), this set can be obtained by backward integration of B

through all possible disturbances compatible with F E A{ho, hd}. By virtue of the

order preserving dynamics, this backward integration can be accomplished by simply

back integrating the lower bound of B through the maximal disturbance dm and the

upper bound of B through the minimal disturbance dm,, as calculated in Section 3.2.

As an example of these inputs, Figure 4-2 shows a plot of the signals used to back

propagate the (L 1, U2 ) corner of B for C({ho, hd} 2) and the resulting set boundary.

The disturbance input for vehicle 2 is utilizes the optimized disturbance signal d(t) =

dm, producing a 2 (t) which switches between dmin and dwax, while the disturbance

input for vehicle 1 is fixed to d producing a2=- dmax. The back propagation is started
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with the current velocity of the vehicles, and eventually saturates, which is clear from

the fact that the boundary straightens out after the initial curvature. This saturation

takes longer due to the fact that the acceleration of vehicle 2 is slower.

Back Propagated Signals Resulting Boundary

dmax

dmin

e al
' a

'-I

0 so 100 150 P2
Time Step

Figure 4-2: Accelerations used to back propagate the lower bound of the bad set for
C({ho, hd}2 ) and the resulting curve.

C(w'), given Theorem 4, Proposition 2, and Proposition 3, can be computed

similarly by finding the maximal and minimal disturbance profiles. Specifically, we

first compute Pre(wi, {ho, hd}i, TRT + T, Pre({ ho, hd}i, B)), by breaking up its def-

inition into two time intervals: t <TR and t TrT. During the first time interval,

there are no restrictions on the disturbance signal. For the second time interval the

disturbance signal follows the same restrictions as when q = {ho, hd}1 and there-

fore we can use dm and dm as the maximal and minimal disturbances. To compute

Pre(wi, hdi, rRT + T, Pre(ha&, B)) we write it using the restricted capture sets from

(5.1) as Pre(wi, hdi, TRT + T, C(hai)L n C(hai)H), and again split it into two time

intervals. For t < T*, there are no restrictions on the disturbance input. For t > T*,

we calculate a set C(wi)H, with u(t) = a and C(wi)L with u(t) = -U. Using the

order preserving properties of the system, C(wi) = C(wi)Ln C(Wi)H using again the

results of [7, 11, 12]. As shown in Theorem 4, all of the mode dependent capture

sets can be expressed as combinations of C(ha)', C({ho, hd}'), and C(w'), and as a

consequence, it is possible to efficiently calculate all of the mode dependent capture

sets.
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As an example of the inputs used to calculate C(w'), Figure 4-3 shows a plot of the

disturbance signal used to back propagate the (L 1, U2) corner of B for Pre(w2 , hd2 , TRT+

T, C(ha2 )H) and the resulting set boundary. For the first 1 timesteps, the distur-

bance input for vehicle 2 is fixed to -d producing a 2 -= dmin, and for the remainder

of the time steps, a control input of ii is applied. The disturbance input for ve-

hicle 1 is again fixed to d2 (t) = d producing ai = dmax. The reaction time and

estimator time delays are apparent from fact that the curvature of the boundary is

initially in one direction before switching. The vehicle 1 signal used for calculating

Pre(wi, {ho, hd} 2, TRT+T, Pre({ ho, hd} 2 , B)) is similar to the a 2 signal shown in Fig-

ure 4-3, with the disturbance d2 (t) = -d for t < rRT before switching to d 2 (t)= dM

for t ;> TRT-

Back Propagated Signals Resulting Boundary

Umax

dmax

dmin

o a1

* a2

0 50 100 150 P2
Time Step

Figure 4-3: Accelerations used to back propagate the lower bound of the bad set for
Pre(w2, hd2 , TRT + T, C(ha2 )H) and the resulting curve.

4.0.3 Solution to Problem 2'

Problem 2' is solved by constructing a control map, fr( 2), using the known proper-

ties of the mode dependent capture set C(d). For a set S, let BS denote the boundary

of S. Using the known properties of the mode dependent capture set, C(d), we con-
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struct -r as follows:

-U if qE {ha'} Ax E C(n)H (L

U = 6 if qE {ha'} A xE C(4)L nC()H

(0,0) else

o) if 4 = hd n C(hal)

U if d=hd2 n C(ha2 )

-u= owl if = h A x E C(w 2) A x E C(wl)

Uw 2 if 4 = h A x E C(wl) A x E C(w 2 )

0 else.

This map checks the membership of the current state with respect to the mode de-

pendent capture set C(d), and uses this information to determine if control event

or continuous control is required to maintain safety. It utilizes the decomposition of

the capture sets into restricted capture sets in order to determine what the specified

control action should be. In order for fr(4, &) to be safe, two conditions must hold

for all 4 E Q. First, while in any mode 4j, the flow must not enter the bad set. Sec-

ond, no discrete transition from mode 4i to mode 4j can cause the continuous flow to

enter the mode dependent capture set C(%) after the transition. Let r4 denote the

transition time to the mode estimate 4 = 4j, and r. denote the transition time from

that estimate. Condition 1: C( ) ( C =, = Vd, t E [Tq, T ). #(t, ±(rg ), d, d, 0) ( B.

Condition 2: -(Tq,) ( Cqj =UR V ,,o-,i). x( ) 0(QZ).

Lemma 1. Condition 1 holds for all 4 E Q.

Proof. (by cases): For 4 = h, if u, = 0, then W ( 8C(wl) n C(w 2 ) by the defi-

nition of fr and so J B. If oa E {o0l, oI 2 }, for t > -rq(t) -f h. Hence, Vt E

[Th, T), we have that #$ ( B.

For 4 = wi, by the definition of C(w'), j(T) V C(w') => #(r < r = Ti +

TRT + T) V C({ho, hd}) n C(hai). C({ho, hd}) n C(ha) D B. Hence, Vt E

[Ti, rj), we have that #fI ( B.

For 4 = {ho, hd}, there is no control while 4 = {ho, hd}z, so the definition
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of C({ho, hd}) implies that Q(i) ( C({ho, hd}2) => # C(ha'). Hence, Vt E

[7{h0,h}, -r6o,hdi), we have that # x B.

For 4 = hd, if o = 0, then i ( C(ha) by the definition of r and so 2 B. If

O-, = ou, for t > ri4q(t) # hd'. Hence, Vt E [rmdi, Thai), we have that #* 0 B.

For 4 = hai, as discussed in Section 5.0.6, the application of u = -i (for 4 = hal)

or u = iii (for 4 = ha2 ) when & E &C(ha') renders the relation 2 ( C(ha') invariant.

Hence, Vt E [Thai, 7ai), we have that #b(t) ( B.
hal

Lemma 2. Condition 2 holds for all 4 E Q.

Proof. (by cases): Let qj be the mode being transitioned to. For qi = h and

4i = wi, fR(7, h, oel, 3) = w'. By the definition of fr, o-u = oel when i(ri-) 0 C(w').

Hence, ^(r,) 0 C(w'). For qi = w' and j = {ho, hd}', F(.([RT, rRT + T]) E

A({ho, hd}t. By the definition of C(wO), X(rwi) ( C(w') and F(x([-rRr, rpr + T]) E

A({ho, hd}t) implies 0() ( C({ho, hd}). Hence, x(T,) 0 C({ho, hd}2). For di =

wz and 4j = hd, the definition of C(w') implies s.(Ti) 0 C(w') and .F(x([rT, rRT +

T]) V A({ho, hd}). This implies -(-rwi) ( C(ha&). Hence, x(r',) V C(ha). For

= {ho, hd}i and dj = {hd}i, the definition of C({ho, hd}') implies s(Tho,,hdi) 0

C({ho, hd}') and /([jho,hd}1, T1hohd})) E ({ho, hd}) implies Z(Tfhohd}i) i

C({ho, hd}t). Hence, (rgho,hdi) 0 C(ha). For qi = hd' and 4j = ha', the defi-

nition of fr implies a- = ou' when x ( C(ha'). Hence, ,(Td) 0 C(ha'). For di = hal,

i(t) = 0,Vt so Condition 2 holds trivially. E

Theorem 3. r, 2) defined in (5.2) implies so O $ - GF(#*) = true.

Proof. r 2) = (0, 0) for 4 = h and s ( S. Also, from Lemma 3 and Lemma 4,

r( 2) maintains safety for all modes in Q. Hence, r 2) solves Problem 2'. E

4.0.4 Simulation

Here, the results of a simulation for the driver assist system are shown. Because the

capture sets are 4 dimensional objects, a 2 dimensional slice of the capture sets in
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the position space of the vehicles is shown in Figure 4-4 for the current state in each

snapshot. Let the coordinates of B be represented by (L 1 , U1) x (L 2 , U2), where Li and

Uj are the lower and upper coordinates of the intersection for vehicle i, respectively.

To calculate the boundaries of the mode dependent capture set slices, the points

(L 1, U2) and (U1 , L 2 ) were back propagated as described in Section 5.0.6. C(h) is

shown in Figure 4-4(a) as the union of the sets bounded by the green and blue lines.

The upper green and blue lines are the upper boundaries of Pre(w', {ho, hd}', rar +

T, C({ho, hd}')) and Pre(w', hd', Tpr + T, C(hal)), respectively. The lower green

and blue lines are the lower boundaries of Pre(w2 , {ho, hd} 2 ,Trr + T, C({ho, hd} 2))

and Pre(w2 , hd2 , -rr + T, C(ha2 )), respectively. The region between these lines forms

their intersection, which from Theorem 4(ii), is equal to C(h).

In Figure 4-4(b), C(w 2 ) is the union of the region bounded by the solid green and

blue lines, with the green corresponding to Pre(w2 , {ho, hd} 2 , rRr + T, C({ho, hd} 2))

and the blue corresponding to Pre(w2, hd2 , T*, C(ha2 )). Also, C({ho, hd} 2 ) is rep-

resented by the region bounded by the dotted green lines, and C(ha2 ) is the dotted

blue set. As r approaches TrrT in Fig. 4-4(c), Pre(w2 , {ho, hd}2 , TRT+T, C({ho, hd} 2 ))

collapses onto C({ho, hd} 2) because the rM argument of the Pre has elapsed. As r

approaches T* in Fig. 4-4d, Pre(w2, hd2 , T*, C(ha2 )) collapses onto C(ha2 ) because

the rM argument of the Pre has elapsed.

The vehicle acceleration inputs, (a 1 (t), a 2 (t)), and the estimator input 0(t) are

shown in Figure 4-4(g). Until the warning is issued, d(t) = (0, 0), which results in

a = (0, 0). Once the warning is issued at t = 0.45, d = (-jd ). At t = 1.07 vehicle

2 is overridden with u(t) = U. The 3 plot shows that at /(1.06) A({ho, hd} 2 ), the

range denoted by the horizontal dashed lines. At this point, q = hd and enables the

autonomous override of vehicle 2.
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P2
(a) 4 = h, r = 0, and &
C(h). The vehicles are ini-
tially human driven with
the state outside of C(h).

P2
(b) 4 = w2 , r = 0,
and W E 00(h) The state
reaches the boundary of
C(h) and warning 2 is is-
sued.

(c) 4 = w2 , r TRT, and
SE OC (w 2). During the

reaction time, the state re-
mains outside of C(w2).

p2
(d) 4 = hd2 r > T*,
and C ( C(ha2 ). The
state entered 0(w 2 ), but
at -r = T* the estima-
tor indicated vehicle 2 dis-
obeyed the warning.
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P2  P2
(e) =ha 2 , and ( (f) 4 = ha2 , and (
C(ha2). Control event U C(ha2 ). The control keeps
triggered. the state outside of B.

a(t) vs Time for Vehides 1 and 2
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t

0(t) vs. Time
6-
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2
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2

4

1.5 2

(g) ai(t), a2(t), /(t), shows the acceleration inputs to the ve-
hicles and the estimator input value

Figure 4-4: Simulation results for the two vehicle system with 0 < V2 ,in < Vin
and V 2 max > Vmax. All the bounded regions shown are slices of the mode dependent
capture sets, corresponding to the capture sets for the current vehicle speeds (v1 , v 2 ).
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Chapter 5

Solution to Safety Control

Problems for Case 2

In this chapter, I utilize the estimator system for Case 2 to solve the modified safety

control problems 1' and 2'.

5.0.5 Solution of Problem 1'

Problem 1' will be solved by constructing a mode dependent capture set, C(d) as

defined in Definition 5 for each mode 4 E Q. By definition, this capture set will

be the solution to Problem 1' when 4, = h, but again, this is only useful if there is

a way to calculate this set. To do so, C(h) will be constructed iteratively, starting

with 4 E {al, a2 } and working backwards towards qo = h. As seen in the following

theorem, this technique is possible because there are no loops in N.

Theorem 4. Let i E {1, 2}. Then S = C(h) where:

(i) C(h) = C(wl) n C(w2)

(ii) C(w) = Pre(w, {oo, do, od, dd}, T*, C({oo, do, od, dd}')) U Pre(w, {od, dd}',

T*, C({od, dd}z)) U Pre(w', {do, dd}i, T*, C({do, dd} t )) U Pre(w', dd, T*, C(a'))

(iii) C({oo, do, od, dd}i) = Pre({oo, do, od, dd} t , C({oa, da}') U C({ao, ad}4))
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(iv) C({oa, da}) = Pre({oa, da}', C(a'))

(v) C({ao, ad}i) = Pre({ao, ad}', C(a'))

(vi) C(a') = Pre(a', B).

Proof. First, apply (3.4) for do0 = a', producing C(a') = {oVfr.31, d, t. s.t.

(t, o, a', d, i) E B}. Because there are no discrete mode transitions from q- = a',

this can be written C(a') = Pre(a, B).

Next, apply (3.4) for d^ = dd, producing C(d) = {|Vijr.3Z, d, t. s.t.

#(t, IOx, dd, d, i) E B}. Because the control event o' is allowable when 4 = d, and

R(r, dctd, o012', i) = a', we can write this as C(dd) = {ojVr.31, d, t. s.t.

(t, x, ai, d, i) C B} = C(a'). The exact same procedure can be applied for

E E {da', ad} to show that C(da') = C(ad) = C(a). This procedure can be summa-

rized as follows. Whenever a control event exists from from a given mode estimate

q, the mode dependent capture set is equal to that of the mode which that control

event transitions too, that is, C(q) = C(N(R(T, d, o, ).

Now, apply (3.4) for do = {oa, da}, producing C({oa, da}t ) = {oIVfr.3Z, d, t. s.t.

#* (tx, {oa, da}', d, Z) E B}. From the definition of R(T, {oa, da}1 , o, i), one can

enter B either by flowing directly into it or by first switching modes and then flowing

into it. Hence while = {oa, da}, it is necessary to remain outside of C(a) U B.

Because C(at) D B, we can write C({oa, da}') = Pre({oa, da}, C(a')). C({ao, ad}')

can be written using the same logic as C({ao, ad}) = Pre({ao, ad}, C(a')).

Because control events exist for both = {od, dd} and = {do, dd}1, their

mode dependent capture sets can be expressed as C({od, dd}) = C({oa, da}) and

C({do, dd}2) = C({ao, ad}i) respectively.

Applying (3.4) to 4 = {oo, do, od, dd}, produces C({oo, do, od, dd}) = {IO|VIr.3i,

d, t. s.t. #(t, xo, {oo, do, od, dd}', d, Z) E B}. From the definition of

R(r, {oo, do, od, dd}', orn, i), one can enter B either by flowing directly into it or by

first switching modes and then flowing into it. Hence while 4 = {oo, do, od, dd}2 ,

it is necessary to remain outside of C({oa, da}') U C({ao, ad}i) U C(a') U B. Be-

cause (C({oa, da}2) U C({ao, ad}')) D C(ai) D B, we can write C({oo, do, od, dd}') =
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Pre({oo, do, od, dd}, C({oa, da}) U C({ao, ad})).

Moving backwards to 4 = wi and applying (3.4) once again produces C(wi)

{s0olVr.3i, d, t. s.t. #I(t,x 0, w2, d,i) E B}. Writing C(w') using the Pre operator

requires the use of the rM argument because the mode estimate necessarily transitions

to one of the modes 4 E {{oo, do, od, dd}, {do, dd}, {od, dd}, ddi} at T = TRT +

T based on the value of Z. From the definition of N(r, w', a, ), one can enter B

either by flowing directly into it or by switching modes before flowing into it. Hence,

while F(.([rRr, r7R + T]) E A({oo, do, od, dd}'), it is necessary to remain outside of

C({oo, do, od, dd}2) U B = C({oo, do, od, dd}2).

If instead the dynamics are restricted by F(i([rRr, rRT+T]) Aj ({oo, do, od, dd}),

it is necessary to remain outside of the union of B with the mode dependent cap-

ture set of whichever observance transition event those dynamics would cause. It is

important to note that there are no restrictions on F during r E [0, TRT).

Using these requirements, C(wl) can be written C(w') = Pre(w', {oo, do, od, dd}1,

Trr + T, C({oo, do, od, dd})) U Pre(w', {do, dd}, mrr + T, C({do, dd}2 )) U Pre(w,

{od, dd}, Tra + T, C({od, dd}t)) U Pre(w, dd,TRr + T, C(dd) = C(a')). We can

then step back to the initial mode 4 = h and apply (3.4) to produce C(h) =

{-oIjVr.3ijd,t. s.t. #j*(txo,,oj = hd,i) E B}. From N?, there are two allow-

able control events a. E {E , 1o '} when q = h and they lead to unconnected

branches of the automaton. The flow could enter B either directly, or by execut-

ing one of these transitions first. Hence, while 4 = h, it is necessary to avoid

(C(wl)nC(w2))UB = C(wl)nC(w2 ). Using this, we can write C(h) = C(w')fnC(w2).

El

5.0.6 Computational Tools

Theorem 4 provides an iterative formulation for S, and for the mode dependent

capture sets, C(4), but each set is still expressed as the uncontrollable predecessor of

other capture sets, which makes it difficult to calculate them. In order to make their

computation efficient, we can express them as the uncontrollable predecessor of B

under restricted disturbance signals. This will allow each capture set to be calculated
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as a back integration of the much simpler set, B.

Proposition 4. C({oa, da}') = Pre({oa, da}, B).

Proof. We first show C({oa, da}') 9 Pre(q = {oa, da}', B). Let X E C({oa, da}).

Then, from Theorem 1(iv), this is true if and only if i e Pre({oa, da}1 , C(al)).

From Theorem 1(v) this is true if and only if : E Pre({oa, da}1 , Pre(al, B)). Let

A1 {&olaid. with ui = -U, s.t. #*(t, &,, a', d, 0) E S}. Then X E A1 because

the control input is restricted. This implies ^ E Pre(({oa, da}', Pre({oa, da}', B))

because Bdi s.t. F = dmin. This is true if and only if i E Pre({oa, da}1 , B) by the

definition of Pre.

We show C({oa, da}2) 9 Pre(q = {oa, da} 2, B). Let i E C({oa, da}2). Then,

from Theorem 1(iv), this is true if and only if - E Pre({oa, da}2, C(a 2)). From

Theorem 1(v) this is true if and only if 2 E Pre({oa, da}2, Pre(a2 , B)). Let A2

{solli, d. with u1 = U, s.t. #i(t, &,, a2, d, 0) c S}. Then & E A2 because the control

input is restricted. This implies & E Pre(({oa, da}2, Pre(({oa, da}2, B)) because

3d1 s.t. F = dm,. This is true if and only if i E Pre(({oa, da}2, B) by the definition

of Pre.

We show, Pre({oa, da}, B) 9 C({oa, da}'). Let i E Pre({oa, da}, B). Then,

x E Pre({oa, da}, C(al)) because C(a') D B. From Theorem 4(iv), this is true if

and only if E C({oa, da}).

Proposition 5. C({ao, ad}') = Pre({ao, ad}, B).

Proof. We first show C({ao, ad}') 9 Pre(q = {ao, ad}1, B). Let & E C({ao, ad}').

Then, from Theorem 1(iv), this is true if and only if X E Pre({ao, ad}1 , C(al)).

From Theorem 1(v) this is true if and only if 2 E Pre({ao, ad}1 , Pre(al, B)). Let

A1  {flli, d. with u2  ii, s.t. #51(tso,al,d,0) E S}. Then x E A1 because

the control input is restricted. This implies & E Pre(({ao, ad}', Pre({ao, ad}', B))

because 3d 2 s.t. F = dm. This is true if and only if - E Pre({ao, ad}1 , B) by the

definition of Pre.

We show C({ao, ad}2) 9 Pre(q = {ao, ad}2 , B). Let & E C({ao, ad}2 ). Then,

from Theorem 1(iv), this is true if and only if i E Pre({ao, ad}2 , C(a2)). From
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Theorem 1(v) this is true if and only if E Pre({ao, ad}2 , Pre(a2 , B)). Let A 2

{2|3i, d. with u 2  -il, s.t. #t(t, o, a 2 , d,0) E S}. Then ^ E A 2 because the con-

trol input is restricted. This implies E Pre(({ao, ad}2, Pre(({ao, ad}2, B)) because

3d 2 s.t. F = dmin. This is true if and only if Z E Pre(({ao, ad}2, B) by the definition

of Pre.

We show, Pre({ao, ad}2 , B) G C({ao, ad}i). Let i E Pre({ao, ad}', B). Then,

x E Pre({ao, ad}, C(al)) because C(a') D B. From Theorem 4(v), this is true if and

only if X E C({ao, ad}t ).

Proposition 6. C({oo, do, od, dd}) = Pre({oo, do, od, dd} t , B).

Proof. We first show C({oo, do, od, dd}') g Pre(q = {oo, do, od, dd}', B). Let X E

C({oo, do, od, dd} 1). Then, from Theorem 1(iii), this is true if and only if E

Pre({oo, do, od, dd} 1 , C({oa, da}) U C({ao, ad}t)).

From Propositions 4 and 5 this is true if and only if Z E Pre({oo, do, od, dd}',

Pre({oa, da}1 , B) U Pre({ao, ad}1)). Let A1 := {lol3i, d. with u = (-, U), s.t.

#4(t, o, al, d, 0) E S}. Then i E A1 because the control input is restricted. This im-

plies , E Pre(({oo, do, od, dd}', Pre({oo, do, od, dd}', B)) because 3d s.t. F =

(dmin, dmax). This is true if and only if X E Pre({oo, do, od, dd}1, B) by the defi-

nition of Pre.

We show C({oo, do, od, dd} 2) G Pre(q = {oo, do, od, dd} 2, B). Let i E

C({oo, do, od, dd}2). Then, from Theorem 1(iv), this is true if and only if X^

Pre({oo, do, od, dd} 2, C(a2)). From Theorem 1(v) this is true if and only if i E

Pre({oo, do, od, dd}2 , Pre(a2 , B)). Let A 2 := {io31, d. with u (ii, -ii), s.t.

#5r(t, O, a2, d, 0) E S}. Then : E A 2 because the control input is restricted. This

implies X E Pre(({oo, do, od, dd} 2, Pre(({oo, do, od, dd} 2, B)) because 3d s.t. F =

(dmax, dmin). This is true if and only if E C Pre(({oo, do, od, dd} 2, B) by the defi-

nition of Pre.

We show, Pre({oo, do, od, dd}2, B) G C({oo, do, od, dd}t ). Let & E

Pre({oo, do, od, dd}i, B). Then, i E Pre({oo, do, od, dd}, Pre({oa, da}', B) U

Pre({ao, ad}') because (Pre({oa, da}, B)UPre({ao, ad}i) D B. From Theorem 4(iv),
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this is true if and only if 2 E C({oo, do, od, dd}i).

Proposition 7. Pre(wi, dd', T*, C(a)) = Pre(w, dd, T*, Pre(ai, B)).

Proof. Follows directly from Theorem 4(vi). 0

Proposition 8.

Pre(wi, {do, dd}', T*, C(a')) = Pre(wi, {do, dd}, T*, Pre({do, dd}, B)).

Proof. Follows directly from Proposition 1. l

Proposition 9.

Pre(wi, {od, dd}', T*, C(a')) = Pre(wi, {od, dd}', T*, Pre({od, dd}, B)).

Proof. Follows directly from Proposition 2. E

Proposition 10.

Pre(wi, {oo, do, od, dd}, T*, C({oo, do, od, dd})) = Pre(w', {ho, hd}{oo, do, od, dd}',

T*, Pre({oo, do, od, dd}2 , B)).

Proof. Follows directly from Proposition 3.

Propositions 4 - 10 are useful because they allow for application of the results

of [12] and [7] to efficiently calculate the capture sets. In order to do this we will

utilize the maximal and minimal control signals determined in Section 3.2, to back

propagate the bad set for each mode dependent capture set.

To compute C(a), we know the control input ranges in [-i, a], and the goal is

to maximize/minimize the trajectory in the X1 - x2 plane. In order to maximize

positive curvature, the controller simply applies the minimum input for vehicle 1 and

the maximum input for vehicle 2, that is, u(t) = (--U, U) for all t. To minimize the

trajectory, the controller applies the opposite input u(t) = (U, -U) for all t. We can

then write, according to [12], [7],

C(ha') = C(hai)H nf C(hai)L (5.1)

with C(hai)H = {o0Ild, t s.t. #$(t, so, has, (-U, 'a), d, 0, 0) E B}, and C(hai)L =

{Jold, t s.t. #.(t, 0̂, has, (', -), d, 0, 0) E B}. Since the input is fixed, these sets can
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be computed by plain back integration of the set B under these inputs according

to [12]. By the definition of the restricted capture sets C(hai)H and C(hai)L, if the

restricted control input used in their definition is applied to the system when the

state is outside of either set, the state will remain outside of that set.

C({oa, da}'), given Proposition 4, can be calculated similarly, but now the restric-

tions on F must be taken into account. For vehicle 2, the control input is again fixed

to the maximum value for C({oa, da}t)H, and to the minimum value for C({oa, da}i)L.

Each of these sets can be obtained by backward integration of B through all possi-

ble disturbances compatible with T E A{oa, da}. By virtue of the order preserving

dynamics, this backward integration can be accomplished by simply back integrating

the lower bound of B through the maximal disturbance dM and the upper bound of

B through the minimal disturbance din, as calculated in section 3.2. Figures 4-1-4-3

show these signals for Case 1, and for Case 2 they can be build similarly, following

the structure used for vehicle 2 in the Case 1 calculations.

C({ao, ad}2 ), given Proposition 5, can also be calculated by taking into account

the restrictions on F. For vehicle 1, the control input is fixed to the minimum value for

C({ao, ad}i)', and to the maximum value for C({ao, ad}i)L. Each of these sets can be

obtained by backward integration of B through all possible disturbances compatible

with F E A{ao, ad}i. By virtue of the order preserving dynamics, this backward

integration can be accomplished by simply back integrating the lower bound of B

through the maximal disturbance dM and the upper bound of B through the minimal

disturbance dmn, as calculated in Section 3.2.

C({oo, do, od, dd}2 ), given Proposition 6, again utilizes the restrictions on F. Since

there is no control input applied in the definition of Pre({oo, do, od, dd}, B), this

set can be obtained by backward integration of B through all possible disturbances

compatible with F E A{oo, do, od, ddle. By virtue of the order preserving dynamics,

this backward integration can be accomplished by simply back integrating the lower

bound of B through the maximal disturbance dM and the upper bound of B through

the minimal disturbance dm for each vehicle, as calculated in Section 3.2.

C(w), given Theorem 4, Propositions 7-10, can be computed similarly by find-
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ing the maximal and minimal disturbance profiles. Specifically, we first compute

Pre(wi, {oo, do, od, dd}Z, rmr + T, Pre({oo, do, od, dd}i, B)), by breaking up its defini-

tion into two time intervals: t < rT and t > -rRT. During the first time interval, there

are no restrictions on the disturbance signal. For the second time interval the dis-

turbance signal follows the same restrictions as when 4 = {oo, do, od, dd}1 and there-

fore we can use dM and dm as the maximal and minimal disturbances. To compute

Pre(wi, dd, -rR+T, Pre(ai , B)) we write it using the restricted capture sets from (5.1)

as Pre(wi, ddz, TRT+T, C(ai)LflC(ai )H), and again split it into two time intervals. For

t < T*, there are no restrictions on the disturbance input. For t > T*, we caculate a

set C(wi)H, with u(t) = (-, U) and C(w)L with u(t) = (u, -1). Using the order pre-

serving properties of the system, C(wi) = C(wi)L n C(wi)H using again the results of

[7, 11, 12]. The remaining two sets, Pre(w', C({ao, ad}2), -r + T, Pre({do, dd}, B))

and Pre(wi, C({oa, da}'), -rar + T, Pre({od, dd}, B)) are calculated using a similar

strategy, with the autonomous vehicle utilizing the same control input as C(a'), and

the human driven car using the same disturbance input as C({oo, do, od, dd}).

As shown in Theorem 4, all of the mode dependent capture sets can be expressed

as combinations of C(a)', C({oo, od, do, dd}2), C({ao, ad}i), C({oa, da}'), and C(w'),

and as a consequence, it is possible to efficiently calculate all of the mode dependent

capture sets.

5.0.7 Solution to Problem 2'

Problem 2' is solved by constructing a control map, r ±), using the known proper-

ties of the mode dependent capture set C(q). For a set S, let OS denote the boundary

of S. Using the known properties of the mode dependent capture set, C(q), we con-

58



struct fr as follows:

,= (5.2)

(-, ft) if q E {a t} A x E C(n) q

(u, - n) if q E {a'} A x E C(q)L n aCQ4)H

(0, u) if q E {{oa, da}} A x E C(1 )H f 6 0 (4)L

u = (0, -n) if q E {{oa, da}t } A x E C(4)L n OC(q)H

(-L, 0) if q E {{ao, ad}} A x E C()H C(q)L

(ii, 0) if q E {{ao, ad}z} A x E C(4)L n aC(4)H

(0,0) else

u1, 1 2 if 4 = ddi A x E OC(a)

oi if (q = {do, dd}2 A x e &C({ao, ad}')) V (4 = da' A x E OC(a'))

ou2 if (q = {od, dd} t A x E 9C({oa, da} )) V (4 = ad' A x E OC(a'))

o ifq=hAxEC(w 2 )AxC (wi)

ow2 if =hA xGC(wl)AxEOC(w2 )

0 else.

This map checks the membership of the current state with respect to the mode de-

pendent capture set C(4), and uses this information to determine if control event

or continuous control is required to maintain safety. It utilizes the decomposition of

the capture sets into restricted capture sets in order to determine what the specified

control action should be. In order for fr(,2 ) to be safe, two conditions must hold

for all 4 E Q. First, while in any mode di, the flow must not enter the bad set.

Second, no discrete transition from mode dj to mode 4j can cause the continuous flow

to enter the mode dependent capture set C(dj) after the transition. Let rd, denote

the transition time to the mode estimate 4 = qj, and r' denote the transition time

from that estimate.

Condition 1: i(rd) $ => Vd, t E [rTq,r). #i(t, f(-r) 74, d, 0) $ B.

Condition 2: 2(T4) $ CQ' - C u hRs,4i, os,i). xri ) $ C().

Lemma 3. Condition 1 holds for all 4 E Q.
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Proof. (by cases): For d = h, if og = 0, then , ( 0C(w') n C(w 2 ) by the defi-

nition of fr and so 0 B. If o- E ({,"w, , 2}, for t > Trhq(t) # h. Hence, Vt E

[rh, r'), we have that #x ( B.

For = i, by the definition of C(w), (rei) ( C(w) =t #(ir < r = rwi +

TrRT + T) ( C({ho, hd}i) n C(ha). C({ho, hd}2 ) n C(ha') -D B. Hence, Vt E

[-r , 'j), we have that #5 ( B.

For 4 = {oo, do, od, dd}t, there is no control while 4 = {oo, do, od, dd}t, so the

definition of C({oo, do, od, dd}2 ) implies that i(ri) V C({oo, do, od, dd}2 ) #- #x

C(a). Hence, Vt E [r , p, 'o,, ), we have that #$i ( B.

For = {od, dd}, if o- = 0, then ^ 0 C({oa, da}) by the definition of fr and so

2 B. If o, = u, for > r ,q(t) $ {od, dd}2. Hence, Vt E [Trod,qi, r ), we

have that # ( B.

For = {do, dd}, if o- = 0, then 0 ( C({ao, ad}i) by the definition of r and so

SB. If og = of, for t > r'o,}q(t) $ {do, dd}. Hence, Vt E [T{go,d}i, T 7dO' ), we

have that # ( B.

For 4 = dd, if o = 0, then i ( C(a) by the definition of fr and so 2 ( B. If

or = o, for t > r'q(t) # dd. Hence, Vt E [rdi, -rd'), we have that #fr V B.

For q = {oa, da}, as discussed in Section 5.0.6, the application of u = (0, -ii) (for

= {oa, da}) or u = (0, i (for 4 = {oa, da}2 ) when & E C({oa, da}) renders the re-

lation 1 V C({oa, da}) invariant. Hence, Vt E [r{day, r we have that #(t) 7

B.

For = {ao, ad}i, as discussed in Section 5.0.6, the application of u = (;a-, 0) (for

q = {ao, ad}1 ) or u = (-ii, 0) (for = {ao, ad}2 ) when & C OC({ao, ad}') renders

the relation ,i 0 C({ao, ad}i) invariant. Hence, Vt E [r{ao,ad}t, r{aoad}t), we have that

#r(t ) V B.

For 4 = da , if ou = 0, then x ( C(a') by the definition of fr and so 2 ( B. If

ou = ou, for t > r' q(t) $ da'. Hence, Vt E [rdai, ri), we have that #* ( B.

For 4 = ads, if o, = 0, then x 0 C(a&) by the definition of fr and so 2 ( B. If

oru = a, for t > Taaq(t) $ ads. Hence, Vt E [radtrsi), we have that #5 ( B.

For 4 = ai, as discussed in Section 5.0.6, the application of u = (', -i) (for

60



4 = ha') or u = (-ii, U (for 4 = ha2) when . E OC(a') renders the relation . ( C(a)

invariant. Hence, Vt E [rai, r'), we have that #5(t) B.

Lemma 4. Condition 2 holds for all 4 E Q.

Proof. (by cases): Let qj be the mode being transitioned to. For dj = h and j =

wi,$(r,h,o",3) = W. By the definition of fr, or = ouwl when ±(rwi) ( C(w ).

Hence, .14r') ( C~W).

For di = wi and 4j = {oo, do, od, dd} t , F1 (([TRT, -rrT + T]) E A1({oo, do, od, dd}t,

and F2(i,([Tr, T-r + T]) E A 2 ({oo, do, od, dd}I. By the definition of C(w t ), (rwi) (

C(wI) and F1(x([rRr, -rr + T]) E A 1 ({oo, do, od, dd} t ) A Y2( ([-rr, Tr + T]) E

A 2 ({oo, do, od, dd}i and implies i(-rw) 0 C({oo, do, od, dd}I). Hence, x(ri) (

C({oo, do, od, dd}').

For di = wi and qj = {od,dd}i, F1(:([hrr,-rrT + T]) E A1({od,dd}2, and

F2(,([rRr, -rr + T]) V A 2({od, dd}'. By the definition of C(w'), s(T.) 0 C(w') and

F1(x([-rRT, Rr + T]) E AI({od, dd}2) A F2(Z(['rr, Tr1T + T]) 0 A 2({od, dd}2 implies

i(-rwI) C({od, dd}I). Hence, x(r',i) C({od, dd}I).

For di = wi and qj = {do, dd}1 , F1(([TRr, TRT + T]) 0 A 1 ({do, dd}2 , and

.F2(x([TRT, TRT + T]) E A2({do, dd}'. By the definition of C(w), f(r,<) ( C(w') and

Fl(x([TRT, T~r + T]) 0 A 1 ({do, dd}) A F2(:([Tir, TR7 + T]) E A 2 ({do, dd}2 implies

i(rwi) 0 C({do, dd}I). Hence, x(T . 1 ) 0 C({do, dd}1).

For t4 = w and qj = dd1 , the definition of C(wI) implies x(rWi) V C(w') and

F(z([rRT, Trr + T]) 0 A({ho, hd}1). This implies s(Tji) ( C(hal). Hence, x(rTi)

C(hal).

For 4 = {oo, do, od, dd} t and qj E {{dd} t , {od, dd} t , {do, dd}2}, the definition of

C({oo, do, od, dd} t ) implies s(Tjo,o,,,ddji) 0 C({oo, do, od, dd}) and ^1([rf.,gdy,

)) E A 1 ({oo, do, od, dd}') A 02([rjo gyo roodoy)) E

A 2 ({oo, do, od, dd}2 ) implies i(rgOO'dO'Od'ddj) 0 C({oo, do, od, dd}t ). Hence,

(-' 00, O'Ody) 0 C(a') U C({oa, da}) U C({ao, ad}I).

For di = dd and di = a', the definition of fr implies o = o 12 when x V C(ai).

Hence, :2(r') 0 C(a').
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For di = {od, dd}2 and 4j = {oa, da}, the definition of fr implies oa,, = O 2 when

x ( C({od, da}2). Hence, ,(r' ,dd) V C({oa, da}).

For = {do, dd}2 and 4j = {ao, ad}', the definition of fr implies au = o4li when

x ( C({do, ad}'). Hence, 2(r',dd) V C({ao, ad}).

For qi = {oa, da} and qj = da2}, the definition of C({oa, da}) and Lemma 3

implies (rjoa,daji) V C({oa, da}) and 31([Tf,Tay, , E A1({oa, da}2) implies

i(rI/o,daly) V C({ oa, dal'). Hence, X^(rIoa,dayi) 0 C(ai).

For di = {ao, ad} and dj = ad2}, the definition of C({ao, ad}) and Lemma 3

implies ,i(r{ao,adji) 0 C({ao, ad}t ) and 3 2([rtaoadY, Tao,adi)) Ad({ao, ad}2) implies

1 (Tjao,adl) V C({ao, ad}2). Hence, X(Trao,.d}i) 0 C(a').

For di = da and Qj = at , the definition of fr implies a-, = ai when x V C(a).

Hence, z~i) V C(a').

For di = ad' and 4j = a', the definition of fr implies a-, = a1 2 when x V C(at).

Hence, X(r'd) ( C(at).

For d, = a, i(t) = 0, Vt so Condition 2 holds trivially. E

Theorem 5. r(q, i) defined in (5.2) implies i ( $ --+ EF(<pf) = true.

Proof. r 2) = (0, 0) for 4 = h and s ( S. Also, from Lemma 3 and Lemma 4,

r4, ) maintains safety for all modes in Q. Hence, r(4, 2) solves Problem 2'. L

5.0.8 Simulation

Here, the results of a simulation for the driver assist system are shown. Because

the capture sets are 4 dimensional objects, a 2 dimensional slice of the capture sets

in the position space of the vehicles is shown in Figure 5-1 for the current state

in each snapshot. Let the coordinates of B be represented by (L 1, U1) x (L 2 , U2 ),

where Li and Ui are the lower and upper coordinates of the intersection for vehi-

cle i, respectively. To calculate the boundaries of the mode dependent capture set

slices, the points (L 1, U2 ) and (U1 , L 2) were back propagated as described in Sec-

tion 5.0.6. C(h) is shown in Figure 5-1(a) as the union of the sets bounded by

the red, green, blue, and black lines. The upper lines are the upper boundaries of
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Pre(w, {oo, od, do, dd}1 , T*, C({oo, od, do, dd}')), Pre(w', {do, dd}1 , T*, C({ao, ad}1 )),

Pre(w1 , {do, dd} 1 , T*, C({oa, da}I)), and Pre(w', a', T*, C(a')). The lower lines rep-

resent the lower boundaries of the equivalent capture sets corresponding to warning

2. The region between these lines forms their intersection, which from Theorem 4(ii),

is equal to C(h).

In Figure 5-1(b), warning 2 has been issued and T = TRT. C(w 2 ) is the union

of the region bounded by the various colored lines, with the red corresponding to

Pre(w2 , {oo, od, do, dd} 2, T*, C({oo, od, do, dd} 2 )), the green corresponding to Pre(w2,

{do, dd} 2 , T*, C({ao, ad}2 )), the black corresponding to Pre(w2 , {od, dd} 2 , T*,

C({oa, da} 2 )), and the blue corresponding to Pre(w2, dd2 , T*, C(a2 )). In Fig. 4-

4(c), T = T*. The red set represents C({oo, od, do, dd} 2), the green set represents

C({ao, ad}2), the black set represents C({oa, da}2), and the blue set represents C(a2).

The vehicle acceleration inputs, (ai(t), a2 (t)), and the estimator input 0(t) are

shown in Figure 5-1(g). Until the warning is issued, d(t) = (0, 0), which results in

a = (0, 0). Once the warning is issued at t = 0.7, d = (-d, d). At t = 1.4 vehicle 2

is overridden with u(t) = -&. The / plot shows that at 3(1.06) 0 A({od, dd} 2 ), the

range denoted by the red horizontal dashed line. At this point, q = {od, dd} 2 and

enables the autonomous override of vehicle 2.

The other cases of obedience produce a similar system evolution, all resulting

in safe passage through the intersection. If both cars obey, the state will always

remain outside of C({oo, od, do, dd}i) for the specified warning o' and no overrides

will be necessary. If both cars disobey, the state will remain outside of C({a}) for

the specified warning u at least until T = T*, at which point autonomous override

is allowed if necessary.
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Pi PI PA
(a) h, r = 0, ands& (b) 4 W 2, T = rRT, and (c) 4 {od, dd} 2, T

0C(h). The state reaches i E 0C(w2). The reaction T*, and J C({oa, da}2).
the boundary of C(h) and time has passed and the The estimator determines
warning 2 is issued. estimator is initialized. that vehicle 2 has dis-

obeyed.

B B B

(d) = {oa, da}2 , r > T*, (e) 4 = {oa, da}2 , and V ( (f) 4 {oa, da}2 , and i
and i E OC({oa, da}2). C({oa, da}2 ). The state C({oa, da}2). The control
of occurs, that is, vehicle keeps the state outside of
2 is overriden to gaurantee B.
safety.

a(t) vs. Time for Vehicles 1 and 2
0.5-

0 -

0 -

0 0.5 1 1.5 2
t

/(t) vs. Time
0.5 I dh* 1-eps)

dII1-eps)

0 0.5 1 1.5 2
t

(g) ai(t), a2(t), (t), shows the acceleration inputs to the ve-
hicles and the estimator input value

Figure 5-1: Simulation results for the two vehicle system with 0 < vlmin = V2 min

and vma = V 2 max All the bounded regions shown are slices of the mode dependent
capture sets, corresponding to the capture sets for the current vehicle speeds (v1 , v 2 ).
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Chapter 6

Experimental Validation of

Algorithms

With the theory and simulations for the driver assist systems complete, the next step

in the design process was experimental validation. The Multi-Vehicle Laboratory at

MIT provided a platform for performing such tests. By implementing the algorithms

on dynamically scaled vehicles and testing with actual human subject will expose any

possible limitations or implementation issues not present in the ideal environment of

a simulation code. At the time of completion of this thesis, full experimental trials

have not been carried out, but the algorithm has been implemented as a proof of

concept for future testing.

6.1 Lab Setup

The Multi-Vehicle Laboratory contains 6 dynamically scaled vehicles for testing con-

trol algorithms. Real time tracking of the vehicles is performed using an overhead

camera system and computer vision algorithms. This positioning data from this sys-

tem is then sent to the vehicles via wireless internet. A photo of the lab space can be

seen in Figure 6-1. The vehicles are built on a Tamiya scaled RC car chassis. Each

vehicle is contains a VIA EPIA TC6000 Mini ITX motherboard, equipped with a

600 MHz processor, 512 DDR400 RAM, and a D-Link WUA-1340 Wireless G USB
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Figure 6-1: Photo of Multi-Vehicle Laboratory.

Adapter. Each on-board computer is running Fedora Core 5 Linux, and the control

algorithms are executed as programs written in C. For human driven vehicles, a Log-

itech PlayStation 3 Driving Force GT Racing Wheel, is used to obtain the driver's

steering and accelerations inputs. The Brainstem MOTO 1.0 Module is used for mo-

tor control, converting the specified control inputs output from the motherboard into

PWM signals sent to the motors.

6.2 Status of Experiment

The driver assist system for the two car system for Case 1 has been implemented as

a proof of concept. The paths used can be seen in Figure 6-1 with the intersection

defined as the zone marked by the red tape towards the right of the image. To reduce

the number of test subjects required, the car without the driver assist system is

driven autonomously and programmed such that it behaves adversarially, attempting
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to cause a collision. This simulates the worst case scenario if that vehicle were actually

driven by a human. The warning is issued via audio signal, with a buzz representing

the "slow down" warning and a ding representing the "speed up" signal.

A few additional steps remain before full experimental trials with human drivers

can be carried out. Testing needs to be done to figure out what values to use for the

time delay, TrrT, and time parameter, T. Also, testing to find how drivers respond to

each warning will be necessary to determine dmin and dmx. Once these parameters

have been determined, five different drivers will be tested, each performing a minimum

of ten successful intersection passes for which a warning is issued. This experiment

will hopefully validate the effectiveness of the algorithms in preventing collisions while

allowing drivers to maintain control of their vehicles if possible. Potential difficulties

could arise from additional time delays due to latency in the data transfer between

the tracking system and warning system, or due to inconsistent state information

between cars if some packets are lost during transfer.
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Chapter 7

Conclusions and Future Work

In this thesis, I have developed a driver assist system design that provides warn-

ings and applies overrides if the driver does not comply to the warnings, to prevent

collisions at traffic intersection. I have formulated this problem as a safety control

problem for hybrid automata with hidden modes, in which the hidden modes model

driver's decisions. This solution approach constructs a mode estimator and deter-

mines an unsafe region in the state space, called the mode dependent capture set, for

a given system mode estimate. If the system continuous state given the current mode

estimate is found in the corresponding mode dependent capture set, the vehicles are

bound to collide. We found the smallest unsafe set and then developed a dynamic

control map which guarantees safety for all initial states outside of that set. The

solution has been validated through simulation, and has been implemented on scaled

vehicles in the laboratory. Work in the laboratory is still in progress, with the goal of

completing human trials to gain insight into the practical implications of the designed

system.

7.1 Future Work

As stated, immediate future efforts will focus on finalizing the implementation of

the described algorithms experimentally and testing them with a sampling of human

subjects. Another logical progression for further efforts is to adapt the algorithm
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to work cooperatively for vehicle systems containing more than two vehicles. This

may require adapting the techniques used to improve their computational efficiency,

because the current methods scale exponentially with then number of vehicles. More

advanced models of human behavior, including a stochastic element to the reaction

time and decision components of the modeling might provide further interesting in-

sights into the problem. Additionally, there is the potential to combine the safety

control techniques proposed here with optimal control techniques. This would allow

for additional criteria, such as fuel efficiency, to be optimized while maintaining a

given safety specification.
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