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Abstract

In this thesis, we present a novel method to improve the finite element stress
predictions in static, dynamic and nonlinear analyses of solids. We focus on the
use of low-order displacement-based finite elements, 3-node and 4-node elements
in two-dimensional (2D) solutions, and 4-node and 8-node elements in 3D
solutions -- because these elements can be computationally efficient, provided
good stress predictions are obtained. We give a variational basis of the new
method and compare the procedure, and its performance, with other effective
previously proposed stress improvement techniques. We observe that the stresses
of the new method converge quadratically in 1D and 2D solutions, i.e. with the
same order as the displacements, and conclude that the new stress improvement
method shows much promise for the analysis of solids, structures and multiphysics
problems, to calculate improved stress predictions and to establish error measures.

Highlights

» Novel stress improvement method is given for static, dynamic and nonlinear
analysis of solids. » Focus is on the use of low-order elements. » Quadratic
convergence is observed for the improved stresses. » Method is compared with
existing techniques.
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Introduction

In finite element analysis, a continuum is idealised as an assemblage of discrete
elements. The analysis is then performed using displacement-based and mixed
methods, see refs. [ 1], [ 2 ]. In each case, nodal displacements are solved for and
the element stress is determined from the assumptions used in establishing the
element stiffness matrices. In the displacement-based method, the derivatives of
the displacements are used to establish the strains and hence the stresses, while in
mixed methods additional strain or stress assumptions are employed (with
additional equations) to establish the stresses. We refer to these calculated stresses

as the “directly-calculated finite element stresses”.

It is well known that the accuracy of the directly-calculated finite element stresses
is poor, as compared with the accuracy of the calculated displacements, and the
reasons are well understood. The stresses are obtained from the derivatives of the
displacements; hence, they involve a lower degree of interpolation and converge at
a lower rate. Furthermore, differential equilibrium is, in general, not satisfied at
every point in the finite element model, which results in stress discontinuities at
the element boundaries and non-equilibrium with the externally applied surface
tractions [ 1 ]. The lack of accuracy can be seen using stress band plots of

unsmoothed stresses[1],[3],[4].



During the last decades, many different stress improvement methods have been
explored [ 3] to [ 37 ]. The aim is to reach enhanced stress predictions, as part of
the solution of the mathematical models, and to establish solution error estimates [
7], [ 8]. If an effective scheme to enhance the stress predictions was available, the
finite element method could be used with coarser meshes, reducing the expense of
analysis; and an effective scheme to assess the error would be valuable to assure
an adequate solution. Early procedures were based either on stress smoothing [ 11

], [ 12 ] or L, projection techniques [ 13 ]; however, these approaches are not

particularly effective, and they have hardly been used in practice.

Considering inexpensive solution error indicators, the stress band plots proposed
by Sussman and Bathe [ 1], [ 4], [ 14 ] have been used extensively, both for linear
and nonlinear analyses, but of course these only give an indication of the solution

accuracy -- they do not improve the stress predictions.

The calculation of improved stress predictions is particularly important if low-
order elements are to be used. For example, considering three-dimensional (3D)
solutions, the use of 4-node constant strain tetrahedral elements would frequently
be computationally efficient if the stresses could be predicted to a higher accuracy
than given directly by the displacements. That is, the constant stress assumption,

implied by the assumed linear displacements, is not good in many analyses.

A widely-recognised contribution towards a stress improvement method was
published by Zienkiewicz and Zhu, when they proposed the ‘superconvergent
patch recovery’ method [ 15 ]. This technique is based on the existence of
superconvergent points, also referred to as Barlow points [ 16 ], where the stresses
are of one order higher accuracy than at any other point in the element domain.

Appropriate order polynomials approximating the stresses are smoothly fitted
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through these points, sometimes in a least squares sense. Later, variants of the

original method were developed to further enhance its performance [ 17 Jto [ 21 ].

Although the superconvergent patch recovery methods seemed to work relatively
well for certain elements, superconvergent points do not always exist -- e.g. in
triangular elements, distorted isoparametric elements, and in elements with
varying material properties (hence nonlinear analyses) -- see the discussion by
Hiller and Bathe [ 22 ]. Three widely used procedures that do not require the
knowledge of superconvergent points are the ‘posterior equilibrium method’
(PEM), the ‘recovery by equilibrium in patches’ (REP) method, and the ‘recovery
by compatibility in patches’ (RCP) method.

The PEM was proposed by Stein and Ohnimus [ 23 ] and is based on the work
published earlier by Stein and Ahmad [ 24 ], [ 25 ]. This method uses the principle
of virtual work to calculate improved interelement tractions for the purposes of
local error estimation [ 23 ], [ 26 ]. The REP method was proposed by Boroomand
and Zienkiewicz [ 27 ], [ 28 ]. This method uses the principle of virtual work to
calculate improved stresses within the finite element domain. The RCP method
was proposed by Ubertini [ 29 ] and further developed by Benedetti et al. [ 30 ].
This method uses the principle of minimum complementary energy to calculate
improved stresses that satisfy point-wise equilibrium. Later, Castellazzi et al.
established a solution error estimate based on the RCP method to guide adaptive

meshing [ 31 ].

All three stress calculation procedures yield impressive results that exceed the
performance of the superconvergent patch recovery method. However, to ensure a
well-posed problem for the solution of the unknown stress coefficients, several

assumptions are employed, and these assumptions limit the accuracy of the results.

11



Specifically, the PEM assumes that the improved interelement tractions are
approximately equal (by a difference minimization) to the tractions directly-
calculated from the displacement solution [ 23 ]; the REP method uses element
nodal point forces that correspond to individual stress components [ 28 ]; and the
RCP method imposes differential equilibrium for all points in the element [ 30 ], a
constraint which is too severe, and as a result the RCP solution is not reliable for

all classes of problems.

Recently, we proposed the NPF-based method; see refs. [ 35 ], [ 36 ] and appendix
A. This procedure also employs the principle of virtual work, but without the
assumptions used in the earlier methods. While the numerical results in refs. [ 35 ],
[ 36 ] are encouraging, the method still requires to consider specific element stress
domains and some stress averaging. We concluded, see refs. [ 35], [ 36 ], that a
variational basis was necessary to obtain further insight and possibly improve the

schemes.

For various problems in engineering and the sciences -- like in the analysis of
(almost) incompressible media, thin structures, and multiphysics phenomena --
optimal finite element discretisations can only be obtained if mixed variational
formulations are used [ 1], [ 38 ] to [ 47 ]. Indeed, in ref. [ 48 ], Mota and Abel

show that the stress smoothing, L, projection and superconvergent patch recovery

techniques are based on the use of the Hu-Washizu principle.

Our objective in this thesis is to show that the PEM and the REP, RCP, and NPF-
based methods are also all based, with certain assumptions, on the Hu-Washizu
variational principle, and then present a novel and significantly improved method
for stress predictions. Throughout we focus on the use of low-order displacement-

based finite element discretisations of solids, that is, 2-node elements in 1D

12



solutions, 3-node triangular and 4-node quadrilateral elements in 2D solutions, and
4-node tetrahedral and 8-node brick elements in 3D solutions. These elements are

computationally efficient provided good stress convergence is obtained.

We analyse the new stress improvement method in detail for 1D problems with
arbitrary loading and material properties, but constant cross-sectional area (using
2-node elements), and prove that the procedure is reliable, giving stresses that are,
in fact, optimal stress predictions (in the norm used), with the order of
convergence being quadratic, i.e. with the same order as the displacements. This
order of stress convergence is also seen numerically in 1D and 2D solutions. In a
study, we compare the performance of the new method with the performance of
the other above-mentioned procedures. It is important to note that we consider

static, dynamic and nonlinear solutions.
Throughout the thesis we use the notation of ref. [ 1 ]. We note that most of the

material presented herein is close -- sometimes even verbatim -- to that published

in our papers; see refs. [35]to [ 37 ].

13
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Chapter 1

Fundamental equations

Consider the equilibrium of a body of volume V and surface area S, subjected to
externally applied surface tractions is on the area S; and body forces iB. The
body is supported on the area S, with prescribed displacements u ,, and, for now,

linear analysis conditions are assumed; see Fig. 1.1. We seek to calculate the

unknown displacements, strains and stresses.

iB £5

Fig. 1.1: General 3D body, in linear static conditions, of volume V and surface area S ,
where S, US; =S and S, NS, =0

In the differential formulation of the problem, the unknown response is calculated

by solving the governing differential equations of equilibrium and compatibility,

15



with the constitutive relationships, subject to the applied boundary conditions.
That is, we solve

div[z, ]+ f5=0
gex = Q(: gex
Tex =C e
subject to
Uy =U p on Su
S
1 = Tex n on S f
where u,, &, and z, are the exact displacements, strains and stresses,
respectively,

0, Is the differential operator on u ., to obtain the strain components

£+, C Is the stress-strain matrix, and n is the unit outward normal vector on the
surface S, .

A second (but entirely equivalent) approach to the solution of the problem is given
by minimising the total potential energy TT(u ),

T S T B
celzdv-[ uTfrds— uTfPav (11)
with the constraints
£=0,U
r=Ce (1.2)
u=u, onS,

where u is any displacement field satisfying the boundary conditionon S, and ¢

and z are the strains and stresses corresponding to u .

16



For approximate solutions, a larger class of trial functions can be employed when
we operate on the total potential energy rather than on the differential formulation
of the problem; see refs. [ 1], [ 14 ]. This has important consequences, and much

of the success of the finite element method hinges on this fact.
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Chapter 2

Finite element methods for stress

predictions

In this chapter, we first review the displacement-based finite element method; then
we present a mixed formulation based on the Hu-Washizu principle. Thereafter,
we specialise this mixed formulation to arrive at the basic equations of the PEM
and the REP, RCP, and NPF-based methods. Finally, we use this mixed

formulation -- and its properties -- to present our new stress improvement scheme.

2.1 Displacement-based finite element method

In the displacement-based finite element method, we assume a displacement
pattern within each element m, that is, u™ =H™U, where H™ is the

displacement interpolation matrix, and U lists the nodal point displacements of

the assemblage (including those at the supports).

19



(m

With this assumption, the strains & ) and stresses zﬁm) of element m follow

directly from Eq. (1.2),
§(m):@ u(m):E(m)Q (2.1)

Z&m):C(m)g(m)zg(m)B(m)Q (2.2)

N A
{Z [Iv(m) E(m)T Q(m) E(m) dv ):|Q (2.3)

S (m)T ¢B
ds+f ., H"f dvj}

Il
—
L=
7\

('n—.
e

|T

3

=

| =~

where 5(”‘), C m v and Sﬁ”‘) are the strain-displacement matrix, the stress-
strain matrix, the volume, and the surface area with externally applied tractions of
element m, respectively. We sum over all elements N in the mesh and use Eq. (
2.3) to obtain U ; see for example ref. [ 1 ]. Finally, gﬁm) is calculated using Eq. (

2.2).

In the following, we focus on the use of low-order finite element discretisations
(the 2-node element in 1D solutions, the 3-node and 4-node elements in 2D

solutions, etc.). It is well known that the accuracy of ;ﬁm) is then poor, as

compared with the accuracy of the calculated displacements, and this deficiency
can be seen using stress band plots of unsmoothed stresses[1],[3]to [ 14 ]. We

refer to these stresses as the “directly-calculated finite element stresses”.

20



2.2 Mixed formulation

To arrive at accurate stress predictions, a mixed interpolation approach -- which
can be thought of as a special use of the Hu-Washizu principle -- can be more
effective. In this formulation, rather than applying the stress-strain relationship
point-wise, we relax this relationship and apply it over the element volumes using
Lagrange multipliers. The primary solution variables are then the unknown
displacements, Lagrange multipliers and stresses. Hence, the equivalent of the

minimisation of IT in Eq. (1.1)is

H*<u(m)’ &(m)’ Z(m) ):i (J‘v(m) lé‘(m)T z(m) av _.[s(m> g(m)Tis ds _.[v(m) g(m)TiB dv

i 2
(m)T } _(m) (m) _(m) (2.4)
~Jym 2 {Z -Ce }de
= stationary
with the constraints
g™=0u" (25)
g(m) — gp on Su

As in the displacement-based finite element method, the displacements u ™ of
element m are defined by nodal point variables that pertain to adjacent elements

in the assemblage, u™ =H ™ U , and the strains ¢™ follow directly from Eq. (

25), £™ =B™U . However, the Lagrange multipliers 2™ and the stresses 7™

of element m are defined by internal degrees of freedom that pertain only to the

specific element m considered.

21



In order to furnish improved stress predictions, we must assume a richer space for
g(m) than that implicitly assumed for gf{“). Also, we want to enhance the fulfilment

of equilibrium. Hence, we now assume

dim( z™) > dim( A™) > dim( ¢™) (26)
and

[ 8¢ div|z™]+ £° Jav =0 (27)

where dim (. ) denotes the dimension of the space of the variable considered, &

(m

denotes, as usual, “variation of”, ¢ ) is defined by degrees of freedom, and the

square parentheses indicate that the stress vector has been arranged into matrix

form.

With this assumption, invoking the stationarity of IT" with respect to u™, 2™

and z™ yields

ZU e {lz(mhg‘m)fm)}dv}j L ou™T S ds (2.8)
v 2 s(m -

N
m=1
oo M(’”)T{z(’“)—c_:(”“)«;:('“)}dvzo vom (29)

4<m>=%§<m> v m (2.10)

22



Since Eq. (2.9 ) holds for all variations of 4™, including when 5 4™ = % se™

Eq. (2.8) contains as a special case

\VJ (m) - J—
m=1

N
ZU oo™ {lg(m)g(mug(m@(m)}dv o SuT TS [ U™ " de:O
v (m 2 s(m -

(m)

Then, using the solution 2™ = g(m) from Eq. (2.10 ) we obtain

N

N
Z“ g e g V-, SumTES as-[ . SuT g e dvjzo (241)
~ v im St — v m —
Of course, when inserting the element interpolations, Eq. ( 2.11 ) gives Eq. ( 2.3 ).
Here Eq. ( 2.11 ) (and hence Eq. ( 2.3 )) would give -- at this stage -- a specific

) )

solution of the stresses in the stress space of ™, namely gﬁm . However, to

complete the calculation of the improved stresses we also use Egs. (2.7 ) and ( 2.9

).

An important practical feature of this ‘mixed formulation’ is that the displacement
problem in Eqg. ( 2.11 ) is decoupled from the additional calculations of the

)

stresses. Therefore, in a general analysis, we first solve for u ™ as is standard, and

then -- rather than applying the stress-strain relationship -- we obtain z_'(m) from

g(m) by applying Egs. (2.7 ) and ( 2.9 ) to each element m in the assemblage.

This element-based approach works well in 1D solutions; however, in 2D and 3D
solutions, better results are obtained when the stresses are defined over a

predetermined patch of N, elements, known as the stress calculation domain. In

(m

this case, 7 )'is obtained from g(m) by applying Egs. ( 2.7 ) and ( 2.9 ) either to

23



each element m in the stress calculation domain, or to the entire stress calculation

domain,

Np
Z{jv(m) 5/_1<m>r{ Z<m>_9<m>§(m>}d\/j:o (2.12)

ZU\,(m) 5£(m)T {diV[Z(m)]JriB }de:O (2.13)

m=1

(m

since ™ is obtained from u™, the accuracy of ™ is limited by that of u™:

hence, the highest order of convergence of the stresses that we can expect is O (hz)

-- one order higher than that observed for zﬁm). To obtain O(hz) convergence, we

(

must interpolate ¢ ™ with complete polynomials of at least degree 1.

The key question for the formulation is now: What interpolations should be used

for 4(”") and & ™ to ensure a well-posed problem with stresses that converge at

order O(hz)? Indeed, the choice of interpolation determines the number of

equations available and the accuracy of the results. Examples are given below.

2.3 The PEM and the REP method

In the PEM and the REP method, 4(”") is interpolated in the same way as the
strains g(m), and & ™ s interpolated in the same way as the displacements u )

With this assumption, we obtain from Egs. (2.12 ) and ( 2.13)

24



Np A
Z(Lm) 5™ ™ dV)zZ(&L_JTE(m)J (2.14)

Z(Lm 59(m)T{diV[l(m)]+18 }de=0 (2.15)

(m)

where SU are the virtual nodal point displacements that correspond to 5™, and

E(m) are the element nodal point forces, in fact already used in Eq. (2.3),

E(m):IHE(mﬁﬂm)dV:D‘ gMTcmgn dV}L_j (2.16)
yvim y(m
Using the mathematical identity,

Su (m)T diV[Z(m)J: div(é‘g(m)T [Z(m)J)_é‘g(m)T Z(m)

the Gauss divergence theorem and Eq. ( 2.14 ), we can write Eq. (2.15) as

Np

Z Usgm) 5Q(m)T [Z(m)]ﬂ(m) ds + J.V(m) 5Q(m)T iB dV) (2.17)

m=1

where Q(m) is the unit normal to the boundary surface Sﬁ"‘) of element m.

Eq. (2.17) is the basic equation of the PEM, and Eq. ( 2.14 ) is the basic equation
of the REP method. That is, for any virtual displacement pattern contained in the
interpolation functions, the PEM balances the virtual work of the boundary
tractions (adjusted for body force effects) with the virtual work of the nodal point
forces; whereas, the REP method balances the internal virtual work of the stresses

with the virtual work of the nodal point forces.

25



Since each method uses only one principle of virtual work statement (of the two
possible statements given by the mixed formulation), the governing matrices
corresponding to the basic equations of the PEM and the REP method may be
singular; hence, several assumptions are employed to add extra constraints (and

these assumptions limit the accuracy of the results) -- see refs. [ 23], [ 28 ].

2.4 The RCP method

Let V* be the assumed stress space for g(m), and let V* be the subspace of the

self-equilibrated stresses in V*. Then, let z(’“) be any element in that subspace

vf:{zm>

In the RCP method, ™ is interpolated in the same way as C™~ 7™ and g(m)

tMevr, div[z(m)]zg} (218)

is any element in LZ(Vp ) where LZ(Vp) is the space of square integrable

functions in the volume, v,, of the stress calculation domain. With this

assumption, we obtain from Egs. (2.12 ) and ( 2.13)

Np
Z( . 52__'(m)T{ g(m)lz(m)_é(m)}dvjzo (2.19)

div[z™]+ £° =0 (220)

26



Egs. (2.19) and ( 2.20 ) are basic equations of the RCP method. To satisfy Eq. (

(m)

2.20 ), an a priori particular solution z ¢

to the differential equations of

equilibrium is embedded in ;(m) [ 29 ], [ 30 ]. However, establishing Z(,Ts). for

distorted isoparametric elements in dynamic analysis is difficult and an
outstanding issue to be solved. Moreover, the differential equilibrium constraint in
Eqg. (2.20 ) is too severe, and as a result the RCP solution is not reliable for all

classes of problems; see chapter 4.

Considering nonlinear analysis, a complication with the RCP method is that the
basic equations involve the use of the constitutive relationships; hence, in
problems with path-dependent nonlinear material conditions, an incremental
solution procedure may have to be used to solve for the unknown stress

coefficients in Eq. (2.19).

2.5 The NPF-based method

In the NPF-based method, /_1(m) is interpolated in the same way as the strains g(m),

and g(m) is interpolated in the same way as the displacements g(m). With this

assumption we obtain from Eqgs. (2.9 ) and (2.7)

Iv(m) 5§(m)T Z(m) dv = 5L_jTE(m) (2.21)

J'V(m) 5Q(m)T{div[z(m)]+iB }dV =0 (2.22)

27



where E(m) is defined in Eq. ( 2.16 ), and we can write Eq. (2.22) as

J' " 5u(m)T [Z(m)]n(m) dS+J. . 5g(m)T £ 8 gV =5L_jTE(m) (2.23)
s v —

using similar steps as those used to obtain Eq. ( 2.17 ).

Egs. (12.21 ) and ( 2.23 ) are the basic equations of the NPF-based method. In
contrast to the PEM and the REP method, the NPF-based method uses both
principle of virtual work statements, Egs. ( 2.21 ) and ( 2.23 ), and applies them to
each element m in the stress calculation domain. Consequently, the problem
solution for the unknown NPF-based stress coefficients is well-posed, without the

(limiting) assumptions used in the earlier methods.

However, a drawback of the NPF-based method is that the number of equations

available -- and hence the dimension of the interpolation functions assumed in V*

-- is dependent on the number (and type) of elements in the stress calculation
domain. Therefore, to get close to O(hz) convergence for the stresses, a large

stress domain is needed, and a domain stress averaging procedure has been

employed; see refs. [ 35], [ 36 ] and appendix A.

2.6 The new stress improvement method

In this section, we present a novel and significantly improved method for stress
predictions. We first develop the method for linear static and dynamic analysis;
then, we extend the method to nonlinear solutions; finally, we consider the

computational cost of the technique.
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2.6.1 Linear static and dynamic analysis

The new stress improvement method assumes &(m) is interpolated in the same way
as the self-equilibrated stresses 7™, and ¢™ is any element in P,(V, ), where
R, ( v, ) is the space of complete polynomials of degree k in the volume of the

stress calculation domain V. With this assumption, we obtain from Egs. ( 2.12 )

and (2.13)

Z(I\/(m) 52(”“”{ z(”‘)—z(h”‘)}dV}O (224)

Z(J‘V(m) 5£(m)T {diV[Z(m)]+iB }dV):O (2.25)

(m)

where the stresses 7z~ are assumed to be continuous and quadratically

interpolated across the stress calculation domain, z™ e P, (Vp ) and the subspace

of self-equilibrated stresses, V*, is given by

Vf:{z(m)

Egs. ( 2.24 ) and ( 2.25 ) are the basic equations used. These correspond to

™ ep,(v, ) div[z™]=0 } (2.26)

projecting the differences in the assumed and directly-calculated stresses onto the

space V°, and to projecting the divergence of the error between the assumed and

exact stresses onto Pl .
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To obtain the corresponding finite element equations, we introduce the

interpolations

19>
(1]
3
Il
Imi

¢m=g. ¢ (2.27)

19>

where the interpolation matrices E_, E., and E, are given in Eq. (3.1 ) for 1D

analysis, and in Eqgs. (4.1) to ( 4.3), respectively, for 2D analysis. Note that in

these matrices, locally based coordinate origins are used to avoid ill-conditioning,

and div[ET]:Q, as is required by Eq. (2.26).

Substituting from Eq. ( 2.27 ) into Eqgs. (2.24 ) and ( 2.25) we arrive at

—_T =T (m

Ne jv(m) E.E dV LS fvw E.zy"dv (2.28)
Z T d £= Z TfPd

m=t J.v(m) E§ 9.E, dv m=1 _Iv(m) Eg_ v

™ to obtain the divergence of the stress

where 0, is the differential operator on
field (see Egs. ( 3.2 ) and ( 4.4)), 7 lists the unknown stress coefficients to be
found, and, in dynamic analysis, we must include the d’Alembert inertia forces in

f ®: see chapter 4.5.

since 7™ eP, (Vp ), and z™eV", g(m) eP, (Vp ), it follows that Eq. ( 2.28 )

represents a determined system of equations in terms of 7 -- irrespective of the
number (and type) of elements used in the stress calculation domain -- such that a
unique solution for 7 always exists, even if only one element is used in the stress

calculation domain.
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To summarise, the important attributes of the new method are:

(m)

1. The assumed stresses 7' are interpolated with complete polynomials of

degree 2; hence, the order of convergence of g(m) IS expected to be O(hz).

2. The number of equations available is independent of the number (and type)
of elements used in the stress calculation domain.

3. The system of equations is always determined.

4. The equations do not involve the use of the constitutive relationships (other
than in the calculation of z.™).

5. The stress calculations can be performed for the entire assemblage, or just
in localised regions of concern.

6. The fulfilment of differential equilibrium is enhanced, and differential
equilibrium is fulfilled at every point in the element if iB eP,.

7. The method does not use an a priori particular solution (like used in the
RCP method).

8. The solution will not be afflicted with a spurious checkerboard mode of
constant element stresses.

Spurious checkerboard modes of constant element stresses can be found in some

displacement-stress solutions -- see Fig. 2.1 and ref. [ 1 ]. To prove that the

(m)

improved stresses 7' are not afflicted we use that

NZPUV oV )= i(fv oo av) (2.29)

m=1 m=1

which follows directly from Eq. ( 2.24 ), and note that the directly-calculated

stresses 7™ are not afflicted.
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Fig. 2.1: Checkerboard mode of constant element stress. Here + and — mean +Ari(jm)

and —Ariﬂm) , where Ari(jm) is an arbitrary value [ 1]

Also, because the exact stresses satisfy the differential equations of equilibrium,

we can write Eq. (2.25) as

i[JV(m) 5£(m)TdiV[z(m)]de:i(.“v(m) 5£(m)TdiV[Zex]dV) (2.30)
such that
i(j\/(m) div [f(m)]dV)Zgme diV[Zex]dV) (2.31)

Egs. (2.30 ) and ( 2.31 ) are important since they relate the calculated and exact
stresses in the volume of the stress calculation domain. Indeed, we shall use these

relationships when we consider an error bound on the calculated stresses.

Finally, we note that the PEM, and the REP and NPF-based methods satisfy the
condition on 4(”’) given in Eq. ( 2.6 ), irrespective of N,. However, the RCP

method and the new method only satisfy this condition when N, =1 (because
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these two methods assume /_1('") to be continuous across element boundaries

whereas ¢ ™ does not show that continuity).

2.6.2 Nonlinear analysis

In nonlinear analyses, all theory presented is applicable, but of course the current

volumes and current Cauchy stresses must be used; see ref. [ 1 ]. That is, if t

denotes “in the current configuration”, the stress coefficients ‘7 are obtained using

Tt

E ETt_(m
v (o EEAV | el [ BTV
T T teB
m=1 J‘tv(m) E§ QTET dV m=1 _J“V(m) E§ i dV

where 'V ™ is the current volume of element m (obtained using the displacement

solution tL_j), tgfm) lists the directly-calculated Cauchy stresses at time t, and tQ

is established using a step-by-step incremental solution procedure [ 1 ].

Therefore, once tlj has been established, the enhanced stress predictions are

obtained using Eq. (2.32), as in linear analysis.

2.6.3 Computational expense

The computational expense to furnish improved stress predictions is given by the
numerical effort involved in solving for 18 unknown stress coefficients in 2D
solutions (and the 60 unknown stress coefficients in 3D solutions), for each

element m where stresses are to be improved.

33



This expense is small, as compared with factorising the global stiffness matrix.

Indeed, in a typical 2D linear static analysis problem (with 10° degrees of
freedom, meshed using 4-node elements), the expense to enhance the stresses for

the entire assemblage is about 1% of the total solution cost; see Table 2.1. In

nonlinear analyses the expense is, relatively, even lower, because a step-by-step

. . .otoa
solution procedure is needed to obtain U .

4-node quadrilateral 2D elements

No. of degrees of No. of elements  Half-bandwidth of K Cost of enhancing
freedom the stresses
1.0E+05 5.0E+04 454 1.4%

1.0E+06 5.0E+05 1,418 0.14%

1.0E+07 5.0E+06 4,532 0.014%

8-node hexahedral (brick) 3D elements

No. of degrees of No. of elements  Half-bandwidth of K Cost of enhancing
freedom the stresses
1.0E+05 3.3E+04 3,372 0.63%

1.0E+06 3.3E+05 14,916 0.032%

1.0E+07 3.3E+06 67,956 0.0015%

Table 2.1: Estimate of the computational cost to establish the enhanced stresses for the
entire assemblage, as compared with the total solution cost, for typical: (a) 2D and (b) 3D
linear static analysis problems. The estimate does not include the cost of the element
computations, and this would make the comparison more favourable

Of course, in practice, the stress calculations need not be performed for the entire
assemblage, but instead might be performed only for those elements where stresses

should be improved.
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Chapter 3

Insight into the new method In

1D solutions

In this chapter, we first present the solution procedure of the new stress
improvement method in 1D settings, then we analyse the method in detail.
Thereafter, we compare the performance of the new method with that of the PEM

and the REP method.

3.1 Matrices used in 1D solutions

In the following, we consider the 1D case with only one stress component, for
arbitrary loading and material properties, and assume that the cross-sectional area
of the 1D structure is constant. In this case, an element-based approach is adopted.

Hence, to solve for the unknown stress coefficients 7 for a general element m, we

apply Eq. (2.28 ) with N, =1,
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E.=[1 x ¥] E.=[1], E.=[1 x] (31)
and

d
QT—[&} (3.2)

where f:{al o, o, }T ,and x is the element m local coordinate system.

3.2 Reliability and improvement in stress

prediction

The fundamental objective of the new procedure is to enhance the accuracy of the

stresses. Mathematically, therefore, our goal is to find stresses z_'(m) such that

(3.3)

Zex_z_-(m) Zex_2£1m)

> |
m=1

N
v = sz;‘

V(m)

with a constant ¢ <1, dependent on the problem, and ideally c<<1.

Here we use the H* semi-norm |-|

oy which, when the function in the norm is

zero on some part of the boundary, is equivalent to the H* norm (by the Poincaré-
Friedrichs inequality [ 1 ], [ 2 ]). The semi-norm is appropriate for the stresses

because of Eq. ( 2.29 ). We analyse the 1D case considered in chapter 3.1.

In this case, the distance between the calculated and the exact solution is
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v (34)

Because N, =1, Eq. (2.30) gives
dz ™
[ 5g<m> av=| ., & dv
Cdx

dzm
X

for all variations of ¢™ e P,, including when & ™ =(

(m) dz’
j(m) o - dV=‘r
v dx dx
and hence we obtain from Eq. ( 3.4 ) the result

e |7 =™
V(m) V(

Using the Cauchy-Schwarz inequality [1],[ 2]

2 1 dz™ i
v (m) 2 vy M [J‘v(m)( dx jdVJ
o=l

j . Therefore

(3.5)

Tex

(m) ‘

|-

and the property I ( Jdv which follows from Eg. (

2.31), we have
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(3.6)
dr,, ’
1 .[V(m) dX dV
2
= V(m) dz- 2 ex ||y (m)
]2 av
v dx
In light of Egs. (3.5) and ( 3.6 ), we obtain
dr,, ’
. v | gy dv
m 2 2
Ty —T )Hv(m> < ™ 4 V2 Tex ||y (m (3.7)
TEX dV
V(m’( dx
Finally, because the displacements vary linearly
m 2 2
Tex _Tr(1 )Hv(m) =1 Tex v (m
and hence we obtain from Eq. ( 3.7 ) the required result
(m) (m)
T — T H\ﬂm) S C|| Ty —Th Hv(m) (3.8)

with
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where ¢ <1. It is interesting to note that if 7z, € P,, we have ¢=0, such that the

calculated stresses are exact (when measured in the H' semi-norm), irrespective

of the coarseness of mesh used.

Eq. ( 3.8 ) proves the new method satisfies the fundamental requirement in Eq. (

(M) g

3.3 ) for each element, as well as for the entire domain. Also, because 7z,

stable and converging in the norm [ 1 ], [ 14 ], Eq. ( 3.8 ) proves the method is

reliable in 1D solutions and the stresses (within each element) are always more

accurate than 7™ when measured in the norm used.

3.3 Optimality of stress prediction

Let e™ be the point-wise error between the calculated and the exact solution,

N p—)

Hence, we have from Eq. (2.30)

m de(m)
Iv<m)5§()( 5 jdV:O (3.9)

for all variations of £ ™ e P,.
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Next consider

2 2

) +H w™ Hv("‘) (3.10)

o [

e w L =]

[dw(”‘)
where
dx

j is any elementin P,.
Using the orthogonality condition given in Eq. ( 3.9 ), we find
e +w ij =[e™ ij +w ij

such that

ey < e +w™ ]
v (m) — v (m)

Therefore, using w™ =z™ —7™ e obtain the result

This gives valuable insight into how the method chooses the stress from the

v TWep, (3.11)

(m) =~ (m)
T — T v ST —T

\Yj (m)

possible patterns contained in the interpolation functions. Indeed, Eq. ( 3.11) tells

that 7™ is chosen so as to minimise the error within the volume of each element

m, i.e. the stress is, in fact, the optimal stress prediction.
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3.4 Convergence of stress prediction

An important result of interpolation theory is that there exists an interpolation

function 7™ e P, such that

ra—fpwlﬁéhﬂ

T (3.12)

3

where h is the mesh size parameter, ¢ is a constant independent of h, and |-|, is

the Sobolev norm of order k in the volume, V , of the body being considered [ 1 ],

[2].

Using Eq. ( 3.11 ) with the case 7™ =z we have

N N
;‘Tex_’[(m)‘v(m}S ;‘Tex_’[fm)‘v(m) (3.13)
Since ZN: |ze=7™ |, < | 7o —7i™ |, we can write Eq. (3.13 ) as
m=1
y (m) )
;‘Tex_r ‘V(m)S ‘Tex_z-l Hl (3.14)
and hence we obtain from Egs. ( 3.12 ) and ( 3.14 ) the final result
y (m) )
;‘Tex_r \VWS ch (3.15)

where the constant ¢ used here is independent of h but depends on the exact

solution 7, .
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(b)

Fig. 3.1: Ad-hoc test problem to assess the performance of the proposed scheme in 1D
solutions (E =110x10°, A=1x10""): (a) the test problem and (b) stress convergence

curves measured in the Sobolev norm || : ||k of order k
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Fig. 3.2: Stress solutions to the 1D problem defined in Fig. 3.1a for various different
densities of mesh, where n denotes the number of elements used

Therefore, 7™ converges to the exact theory of elasticity solution with order

O(hz) in the H' norm. In problems where the nodal point displacements are the
exact displacements, it follows from Eq. ( 3.15 ) that ™ converges at O(h?) in

the H° norm. However, if the nodal point displacements are not the exact

displacements, the accuracy of 7™ s limited by that of u™: hence, the highest
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order of convergence of 7™ that we can expect is O(hz) when measured in the

H° norm.

Of course, these derivations represent theoretical results; however, experience
shows this indeed closely represents the actual behaviour of the discretisations.
Fig. 3.1 and Fig. 3.2 shows the results of an application in which the nodal point
displacements are the exact displacements; see ref. [ 1 ]. In Fig. 3.1, we see that
the order of convergence of the enhanced stress is 2.99 in the H° norm and 1.99
in the H' norm, which compares well with the theoretical result. We further
observe in Fig. 3.2 that when n =3, the directly-calculated stress is zero at every
point in the domain (as discussed by Gratsch and Bathe [ 8 ] and Hiller and Bathe [

22 ]), but the enhanced stress is still quite reasonable.

Fig. 3.3 shows the results of an application in which the nodal point displacements
are not the exact displacements. As expected, in this case, rm converges at O(hz)
in the H° norm, the same as for u™, but one order higher than that observed for

rm.
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Fig. 3.3: Stress convergence curves measured in the Sobolev norm | - | of order k to the

1D problem defined in Fig. 3.1a, where, in this case, the Young’s modulus varies as
E =110(1+0.64sin(207x) )x10°

3.5 Numerical example: a rotor blade problem
To illustrate the effectiveness of the new method, the response of a rotor blade is
studied. Fig. 3.4 defines the problem. The inboard end of the rotor blade is driven

at a constant angular velocity o ; the outboard end is either left free or is welded to
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a rigid hoop. The rotor blade is idealised as an assemblage of two 2-node truss
elements, and the problem is solved using both the usual displacement-based

method and the proposed scheme.

4 Y
|

L1 =10 I |_2 =10 I
I I
w/‘\ i . v
e e
>
TAl 5 N A=2[1-(n/12)’]

Fig. 3.4: Rotor blade problem (E =110x10°, p=4400, and @ =10). The rotor blade

spins at a sufficiently high rate that gravitational forces are negligible as compared with
the centrifugal forces which act on the blade. The blade is either pinned at node 1 and is

free at node 3 (le =0 and Us #0), or is pinned at node 1 and is welded to a rigid hoop

atnodeS(Ul=U3:O)
In this problem, one element has a constant cross-sectional area and the other

element has a varying area, as shown in Fig. 3.4. We note that the varying area

enters in the equilibrium equation, so that Eq. ( 2.13 ) becomes

Jow ™" {%(A(X)T("‘) )+ A(x) £ .2 }dx -0

where L™ is the length and A(x) is the cross-sectional area of element m, of

which the latter is a function of x.

Fig. 3.5 shows the stress results. In Fig. 3.5 (and all other figures), “exact” refers

to the exact analytical (or a very accurate numerical) solution of the mathematical
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model, “directly-calc” refers to the directly-calculated finite element stresses, and

“prop. scheme” refers to the finite element stresses predicted using the proposed

stress improvement scheme.

75
60 - \
‘S 454
-
X
g 30 - A
17
15
0 . T .
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X
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\
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n —50
%)
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17
—-1004 —©&— exact
—A— directly-calc
—B— prop. scheme
—150 . T T
0 5 10 15 20

X

Fig. 3.5: Stress results for the rotor blade problem defined in Fig. 3.4: (a) the statically

determinate pinned-free case (U ., =0 and U 3 7 0), and (b) the statically indeterminate

pinned-pinned case (U, =U, =0)
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Considering the results, we see that the enhanced solution for the stress is
significantly more accurate than given directly by the displacements. We further
observe that the gradient of the enhanced stress is exact at every point in element
1. Indeed, this will always be the case when the exact stress varies quadratically

across the element domain; see Eq. (3.11).

Next, the rotor blade problem is solved using the PEM [ 23 ] and the improved
REP method [ 28 ]. Typically, the PEM is used to calculate improved interelement
tractions for the purposes of error estimation; however, in our comparison the

governing equations of the PEM are used to calculate improved stresses.

Fig. 3.6 shows the stress results, where, for consistency, all methods use only one
element in the stress calculation domain. We see that the new procedure performs
best. This is expected because the new procedure uses a stress with a higher degree
of interpolation than can be used with the other methods, and (most importantly)
the solution of the new procedure satisfies the properties discussed in section
2.6.1. Also, the assumptions employed in the PEM and the REP method limits the
accuracy of the results; see refs. [ 23 ], [ 28 ] and the earlier discussion in the

introduction of the thesis.

75
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45 |

30

stress (x10°)

15 -
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Fig. 3.6: Stress results for the rotor blade problem defined in Fig. 3.4: (a) the statically

determinate pinned-free case (Ul =0and U ; = 0), and (b) the statically indeterminate

pinned-pinned case (Ul = 03 =0). The PEM assumes a linear stress, the REP method

assumes a constant stress, and the proposed scheme assumes a quadratic stress in each
element domain

Lastly, we note that when f° <P, (V ), the solution obtained using the RCP

method is similar to that obtained using the new method (see section 4.4.1); hence,

for clarity, we do not consider the RCP results here.
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Chapter 4

Insight into the new method In

2D solutions

In this chapter, we first present the solution procedure of the new stress
improvement method in 2D settings for a general element m. Then, we discuss
how to establish enhanced stresses at a specific node i, and how to deal with
discontinuous solutions. Thereafter, we assess the performance of the method in

static, dynamic and nonlinear solutions.
Since the performance of the RCP methods exceeds that of the REP method (by a

considerable margin) [ 29 ], we only compare the stresses of the new procedure

with the RCP stresses here.

4.1 Matrices used in 2D solutions

In 2D (and 3D) problems, better results are obtained when multiple elements are
used in the stress calculation domain. Hence, to solve for the unknown stress

coefficients 7 for a general element m, we use the union of elements that
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surrounds (and includes) element m as the stress calculation domain; see Fig. 4.1.

Then, we apply Eq. (2.28 ) with

1 yzyzy> 220000 0 0O00O0O0 0 O (41)
E.=</0 00 0 O 0 1y zyzy>z2000 0 0 '
000 0O O 00O0OOTU O 0 O 1y z yz y z2°

100 y z2yz:0 0 0 22 0 (42)
E =010 0 0 0 :y z 2yz 0 y* 2 '
001 -z0 -z20 -y —-y> 0 0 -2yz
1y z:000
Egz (4.3)
0 0 0:1 vy z
and
9 4 9
_| oy 0z (4.4)
=7 0 g i
oz oy
where fz{alw cal af e af el o al }T,and (y,z) are the

locally based coordinates of the stress calculation domain.

The above description completely defines the stress calculation domain for all
types of element and mesh patterns, and no special procedures are needed near the
boundaries (nor at the corners) of the mesh. Note that because there is only one
possible configuration of stress domain for each element m, the averaging

procedure required in refs. [ 35 ], [ 36 ] is no longer needed.

The RCP method uses the same definition of stress calculation domain [ 30 ].
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(m)

(a) Interior element

(m)

(b) Corner element

Fig. 4.1: Stress calculation domain used to solve for the unknown stress coefficients 7 for

a general 4-node 2D element m

4.2 Solution procedure for a specific node i

For certain problems, we are interested in the stresses at a specific node i, rather
than within the element domain. In this situation, we use the union of elements
connected to node i as the stress calculation domain. Then, we apply Eq. ( 2.28)
to solve for the unknown stress coefficients, with the interpolation matrices given

inEgs. (4.1)to (4.3).
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In the exceptional case where only one element m is connected to node i (e.g. in
a corner of the meshed geometry), the elements properly connected to element m

should also be included in the stress domain; see Fig. 4.2.

|
|

(a) Interior node

]

(b) Boundary node

\ g A ® |

(c) Corner node

Fig. 4.2: Stress calculation domain used to solve for the unknown stress coefficients 7 at

a specific node 1 for a 4-node 2D element mesh
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4.3 Dealing with discontinuous solutions

In an actual implementation, the stress calculation domain only contains elements
with equal settings. Boundaries between the element groups are treated as free
boundaries; see for example Fig. 4.3. This prevents the scheme from smoothing

discontinuities present in the exact solution.

\ Titanium Housing

R

L

Divvmsanssonissst,

Fig. 4.3: Stress calculation domain for a general 4-node 2D element m between a
titanium housing and a steel Keensert. Element m belongs to the titanium housing group
of elements. Since the steel Keensert elements are not included in the stress domain, there

is no smoothing across the material discontinuity

4.4 Static analysis problems

Two classes of problems are considered: the first where f ® e P,, and the second

where f ° g P,. We show that the new stress improvement method gives good
results for both classes of problems, whereas the RCP method only performs well

when f®eP,.
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4.4.1 The actuator problem: a case when f® € P

The first problem solution involves an actuator subjected to pressure loading. Fig.
4.4 defines the problem. The problem is statically indeterminate and is solved

using both the new method and the RCP method.

Flexible armature

p =-60sin(2ntx/5)

3 17 3 4 3

Fig. 4.4: Actuator subjected to pressure loading problem (E =72x10%, v=0.3,

thickness=1, plane stress conditions). The pressure loading is produced by passing
current through the armature in the presence of a magnetic field. The armature is flexible
as compared to the actuator

Fig. 4.5 shows the stress convergence curves when a sequence of 3- and 4-node
element meshes are used for the solutions. The sequence of meshes is constructed
by starting with a mesh of uniform elements of (approximately) equal size, then
subdividing each element into four equal new elements to obtain the next (refined)
mesh in the sequence, and so on; see Fig. 4.6. The mesh size parameter h is

calculated by averaging the size of all elements in the assemblage (where the size
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is taken to be the diameter of a circle which encompasses that element), and the

starting meshes to the convergence curves given in Fig. 4.5 are shown in Fig. 4.7.

2.33 2.33
(a) TRI-3 (b) QUAD-4
1.73 1 1.73 1
0.9
TN -
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[ ] ksl
| 1134 I 113
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0.53 18 053 |
—A— directly-calc
—o— RCP
—B~ prop. scheme
-0.07 - -0.07 -
-15 -05 0.5 -15 -05 0.5
log,(h)

log,o(h)

Fig. 4.5: Stress convergence curves for the actuator problem defined in Fig. 4.4,

measured in the H ° norm for: (a) the 3-node triangular and (b) the 4-node quadrilateral
element
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Considering the results in Fig. 4.5, we see that the RCP solution is similar to the

solution obtained using the proposed scheme. This will always be the case when
f ®e P,, because the quadratically varying stresses are sufficiently rich to satisfy
equilibrium point-wise -- that is, Eq. ( 2.25) reduces to Eq. ( 2.20 ) when LB eP,.

However, the solutions are not identical due to the Poisson coupling effects in Eq.

(2.19).

(a)

(b)
Fig. 4.6: Refinement sequence used in stress convergence studies. The thick lines depict

the initial mesh, and the thinner lines depict the next (refined) mesh in the sequence for:
(a) the 3-node triangular and (b) the 4-node quadrilateral element
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(a)

J
g
JEesas

(b)

Fig. 4.7: Starting meshes for the stress convergence curves given in Fig. 4.5: (a) the 3-
node triangular and (b) the 4-node quadrilateral element

The new procedure can also be used to furnish improved stress predictions for the
incompatible modes formulation [ 1 ]; see Fig. 4.8. In these calculations, the

unknown stress coefficients are obtained using Eq. ( 2.28 ), where gﬂ“) is

established from the incompatible modes solution. This enriches the space
implicitly assumed for ;ﬁm); however, since z(m) is assumed quadratically

interpolated, the solution is similar, both with and without incompatible modes.
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Fig. 4.8: Stress convergence curves for the actuator problem defined in Fig. 4.4,

measured in the H ° norm, for the 4-node quadrilateral element with (dashed line) and
without incompatible modes (solid line)
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Fig. 4.9: von Mises stress band plots for the actuator problem defined in Fig. 4.4, where

the forward leg rollers are removed and the material stiffness is reduced by a factor 10.
The plate is idealised as an assemblage of 3-node triangular elements. The stress in the

band plots is un-averaged (and is shown on the deformed geometry), while the numerical
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stress values are the averaged nodal point stresses with the solution error given in
parentheses

Next, consider the situation where the rollers supporting the forward leg are
removed and the material stiffness is reduced by a factor of ten. This requires a
large deformation solution. Fig. 4.9 shows the von Mises stress results for three
different meshes (plotted on the deformed geometry). As is clear from this figure,

the procedure performs well in the large displacement analysis, and significantly

enhances the stress prediction. Indeed, we see the enhanced stresses g(”‘) are more

accurate than the directly-calculated stresses g(hm), even when four times more

elements are used to calculate g(hm) (i.e. z(m) of Mesh 1 is more accurate than g(hm)

of Mesh 2, etc.).

18 | _
| —= Prescribed

A displacement
— to 36

10

10

oo valioNie)
P Ay e 5P AR

36

Fig. 4.10: Large displacement, large strain, rubber plate problem, stretched to 100% of
its original length (Ogden material law: g, =0.7, u, =-0.3, y;=0.01, o, =1.8,

a,=-16, a; =75, k=1000, thickness= 0.5, plane stress conditions). Because of

symmetry, only one-quarter of the plate is modelled
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Finally, we solve a large displacement, large strain problem, which includes
nonlinear material effects. Fig. 4.10 defines the problem. The rubber plate is
stretched to 100% of its original length by imposing a uniform horizontal
displacement at the right end. Fig. 4.11 and Fig. 4.12 show the von Mises stress
results. As expected, the stresses are considerably improved, especially in those
regions of high stress gradients, which, of course, is due to the fact that the
directly-calculated stresses are constant for the 3-node finite element. Indeed, in
Fig. 4.12, we show that the stresses of the new scheme (calculated using 3-node
elements) are comparable to those given directly by the displacements of a 6-node

element mesh.
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Fig. 4.11: von Mises stress band plots to the rubber plate problem defined in Fig. 4.10.
The plate is idealised as an assemblage of 3-node triangular elements, and the results are
shown in the same format as in Fig. 4.9
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Fig. 4.12: von Mises stress results to the rubber plate problem defined in Fig. 4.10, along
section A-A. The coordinate z references the deformed geometry
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4.4.2 The armature problem: a case when f° & P,

In this problem solution, the static response of an armature in a magnetic field is
studied. Fig. 4.13 defines the problem. We wish to establish the stresses in the
armature due to the Lorentz force. The problem is solved using both the new

method and the RCP method.

I
)

f,® = 0.01 sin(3n2)

—_—

20

Fig. 4.13: Armature in a magnetic field problem (E = 72x10°, v =0, thickness=1,
plane stress conditions). A battery drives constant (direct) current through the armature,
and the moving charges experience a Lorentz force in the presence of the magnetic field.

The Lorentz force is modelled as a body force f.*. We use v =0 to avoid stress

singularities at the four corners

Fig. 4.14 shows the stress convergence curves when a 5x100 starting mesh is

used. We see that the new method performs well, but the RCP method gives

stresses that are less accurate than ¢ ﬁm) for coarse meshes.
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Fig. 4.14: Stress convergence curves for the armature problem defined in Fig. 4.13,

measured in the H ® norm for: (a) the 3-node triangular and (b) the 4-node quadrilateral
element
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The reason that the RCP method gives inaccurate results is that the equilibrium
constraint in Eq. ( 2.20 ) is too severe when iB ¢ P, . Indeed, to satisfy differential

equilibrium, the RCP method uses the following additive decomposition:

(m) (m). £ (45)
where zﬁ”l) is the unknown homogenous solution of Eq. ( 2.20 ), and Z(FTS). is a

particular solution of the same equation, to be established a priori [ 29],[ 30 ].

The homogenous solution gﬁms) is assumed to be an element in the subspace of

self-equilibrated stresses in P, -- that is, zﬂ“s) €V©, where V° is defined in Eq. (

2.26 ) -- and the unknown stress coefficients in zﬁ'“s) are obtained using Eq. ( 2.19

(4.6)

with the particular solution Z(;Ts)_ taken as:

=1z

m y zz(m z Z\m
e T A E WIS

(m) 2z(m) (m) T
g%/s. Tp.s. Tg.zs. }

p.s. p.s.

Therefore, the dimension of z(;_’s)_ depends on iB , and the components in Eq. (4.5

) are mismatched when iB ¢ P,. As a result, the RCP method is unreliable when
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fPe P, -- e.g. in problems with electromagnetic forces, piezoelectric forces [ 49

], etc. -- and gives inaccurate results.

4.5 Dynamic analysis problems

Our objective in this section is to assess the performance of the new method and
the RCP method in solving dynamic analysis problems. We show that the new
method performs well in dynamic analysis and can be used for distorted
isoparametric elements, whereas the RCP method can only be used if the elements

in the assemblage are un-distorted.

4.5.1 Solution procedure

Stress calculations in dynamics are performed as those in statics, except now the

d’Alembert inertia forces are included in iB. That is, to obtain the stress

coefficients ‘7 of the new method at time t, we use

Np J-V(m) EI Er dV t A (47)
2 , 4
w3\ [ EFO.E, dV
Np Iv(m) E: tzfgm) dv
= ¢
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tose
where p(’“) is the mass density of element m, U lists the nodal point

accelerations (i.e. the second time derivative of tLj), and the nodal solutions are
established using a time integration scheme [ 1 ]. In our examples, we use the
Bathe implicit time integration procedure because spurious oscillations are very
small [ 51 ] to [ 53 ]. Fig. 4.15 gives an example solution where, for the mesh
used, we give the best results obtained by the Newmark method (trapezoidal rule)
and the Bathe method when changing for each method the time step size (i.e. the
CFL number).

v(t)=7.5

10

71

(a) Problem solved

| pe)

2+
Spurious /

oscillations

velocity

0.0 25 5.0 7.5 10.0
X

(b) Velocity
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Fig. 4.15: Impact of an elastic bar (E = 200x10°, p =8000, A=1). The bar is

initially at rest, and the response at time t =1x10 * is sought. During this time the wave
propagates to X =5, there are no reflections. The bar is idealised as an assemblage of 1D
2-node elements of size h=0.025 (400 elements). We give the best results obtained
using the Newmark method and the Bathe method when changing for each method the
time step size (i.e. the CFL number)

To obtain the RCP stresses, we use Eqgs. ( 4.5 ) and ( 4.6 ), with the particular

solution taken as:

where ‘U

..Zm) ]T =ﬂ(m)

t

L_]; however, establishing this particular

solution for distorted isoparametric elements is difficult and an outstanding issue

to be solved.
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4.5.2 Numerical examples

The first problem solution involves the propagation response of a wave in an
elastic bar. Fig. 4.16 defines the problem. While solved using 2D meshes, due to
the geometry and the material definition, this is effectively a 1D wave solution.

The problem is solved using both the new method and the RCP method.

o (t) l 0.2
1 |
| 1
> 10
X
(a) Physical structure
p(t) (x10°)
600
450 |
300 |

150 | _
Time (x107®)

0 1 1 1
0.0 0.3 0.6 0.9 1.2

(b) Time variation of pressure

Fig. 4.16: Propagation of a wave in an elastic bar problem (E = 200x10°, p=7800,

v =0, thickness= 0.2, plane stress conditions). The bar is initially at rest, and is
subjected to a sudden pressure load at one end. The response at time t =0.001284 is
sought. During this time the wave propagates to X =6.5, there are no reflections

Fig. 4.17 shows the stress results at time t =0.001284 ; as is clear from this figure,

both the new method and the RCP method gives good results.
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Fig. 4.17: Longitudinal stress results at t =0.001284 to the wave propagation problem
defined in Fig. 4.16, using 40 time steps. The bar is idealised as an assemblage of
regular 4-node quadrilateral elements, where h denotes the element size and At is the

time step used. In each case, the CFL number =1

We note that if spurious oscillations are present in the calculated response, the new

method outperforms the RCP method. The reason is that the differential
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equilibrium constraint in Eg. ( 2.20 ) is too severe when the calculated

accelerations vary significantly over the stress calculation domain.

In the second problem solution, a lightweight cantilevered plate subjected to base
excitation is studied. Fig. 4.18 defines the problem. The problem is solved using
the new procedure. The RCP method cannot be used, since the elements in the

assemblage are distorted.

u(t) = 0.001 (cos (400mtt) — 1)
T
P
{0000
/

Rigid base ' 0.5
on rollers

<>
o
(N

«—>
©
(e)]

<
o
N

Fig. 4.18: Lightweight cantilevered plate subjected to base excitation problem
(E= 200x10°, p=17800, v=0, thickness=1, plane stress conditions). The plate is

initially at rest, and the response at t =0.01902 is sought. No physical damping is
introduced in the model. The base of the plate is rigid, and the enforced displacement
dynamically excites the first eight natural modes of the plate. We use v =0 to avoid
stress singularities at the two corners of the built-in end

Fig. 4.19 and Fig. 4.20, respectively, show the von Mises band plots and the stress
convergence curves at time t=0.01902. We see that the enhanced stresses are

significantly more accurate than the directly-calculated values, both for the 3-node

triangular and the 4-node quadrilateral element, and converge at order O(hz).

74



Mesh 1 (h=0.105)
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Mesh 3 (h=0.037)
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Fig. 4.19: von Mises stress band plots at t =0.01902 to the lightweight cantilevered
plate problem defined in Fig. 4.18, using 152 time steps. The plate is idealised as an

assemblage of 3-node triangular elements. The results are shown in the same format as in
Fig. 4.9
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Fig. 4.20: Stress convergence curves at t =0.01902 for the lightweight cantilevered
plate problem defined in Fig. 4.18, using 152 time steps, measured in the H ° norm for
(a) the 3-node triangular and (b) the 4-node quadrilateral element
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Concluding remarks

The objective of this thesis was to present a general stress improvement method
that can be used in static, dynamic and nonlinear solutions. We focused the

development on the use of low-order displacement-based elements.

First, we showed that the PEM and the REP, RCP and the NPF-based methods [
23 ]to [ 36 ] can all be derived from (or be related to) a mixed formulation, based
on the Hu-Washizu principle, where the stress-strain relationship is point-wise

relaxed but the fulfilment of equilibrium is enhanced.

This mixed variational formulation gives insight, which we used to develop a new

stress improvement scheme.

For 1D problems with arbitrary loading and material properties, but constant cross-
sectional area, we proved that the new stress improvement scheme is reliable,
giving stresses that are, in fact, optimal stress predictions (in the norm used), with
the order of convergence being quadratic, i.e. with the same order as the
displacements. This convergence behaviour was also seen numerically in 1D and
2D solutions. Indeed, we obtained excellent numerical results for the 1D and 2D
problems solved, with the predicted stresses converging quadratically and with a

significant downward shift.
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While only 1D and 2D solutions are considered here, in linear and nonlinear
analyses, the proposed method is directly applicable to 3D solutions in an

analogous way, and similar results can be expected.
Regarding future research, the possibilities to establish solution error estimates [ 7

], [ 8 ], and to apply the procedure in shell analyses [ 2 ] and in the solution of

multiphysics problems [ 54 ] might be explored.
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Appendix A

The NPF-based method

When considering the finite element solution, two important facts hold, namely,
(1) at each node, the sum of the element nodal point forces are in equilibrium with
the externally applied nodal point loads, and (2) each element is in force and
moment equilibrium under the action of its own nodal point forces -- and, most
importantly, these two properties hold for any coarseness of mesh -- just as in the
analysis of truss and beam structures, see refs. [ 1 ] and [ 14 ]. For this reason, it
seems somewhat natural to use these forces to calculate improved stress
predictions, but the details of establishing a general and effective algorithm are far

from apparent.

Our objective in this appendix is to present a novel approach to calculate the
element stresses using the element nodal point forces. That is, the solution for the
element nodal point displacements is performed as usual, the element nodal point
forces are calculated as usual, and then a simple procedure is employed to
calculate the element stresses from the nodal point forces using the principle of
virtual work. Accordingly, we call this procedure the “nodal point force based
stress calculation method” or the “NPF-based method” giving “NPF-based

stresses”, for short.
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To demonstrate the effectiveness of the nodal point force based stress calculation
method, we first apply the procedure to the 3- and 4-node two-dimensional
continuum solid elements, and solve a number of problems. As expected, we see a
significant improvement in the accuracy of the stresses for all problems
considered. Then, we apply the procedure to the 4-node three-dimensional
tetrahedral elements and solve the same set of problems considered before, but of
course this time in three-dimensional settings. Once again, we see a significant
improvement for all problems considered. These results are of particular interest,
since reliable improvements in stresses for the 4-node tetrahedral element, using
incompatible modes or enhanced strains, are difficult to reach in general analyses [
417to[43].

A.1l Using the principle of virtual work

The nodal point force based stress calculation method (referred to later as the
NPF-based method) uses, as its ingredients, what we shall call the principles of
virtual work in the form of boundary tractions and in the form of internal stresses.
We review these general and well-known principles in this section, and summarize
and focus on some of their powerful properties, see also ref. [ 1 ]. In sections A.2
and A.3, we apply these principles -- and their properties -- to establish our simple
and effective algorithm for the improved stress predictions, in two- and three-

dimensional settings, respectively.
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A.l.l The principle of virtual work in the form of

boundary tractions

Consider the equilibrium of a general three-dimensional body of volume V and

surface area S. The body is supported on the area S, with prescribed

~

displacements U, and is subjected to surface tractions is on the area S, . In

addition, the body is subjected to externally applied body forces iB per unit

volume. We assume linear analysis conditions.

In the differential formulation of the problem we seek to calculate the response of
the body from the governing differential equations of equilibrium and
compatibility, with the constitutive relationships, subject to the applied boundary

conditions. That is, we want to solve

subject to

where u,, &, and z, are the exact displacements, strains and stresses,

ex
respectively, 0, is the differential operator on u,, to obtain the strain components
£+, C Is the stress-strain matrix, and n is the unit outward normal vector to the

surface S, .
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A second, but entirely equivalent approach to the solution of the problem is given

by the variational formulation, that is, the principle of virtual work [ 1],[ 2], [ 38
]. This formulation states that for any continuous virtual displacement field Q :
zero on S, imposed onto the body in its state of equilibrium, the total internal

virtual work is equal to the total external virtual work; that is:

<

IV Vg:zex dV=I

St

Q.fd5+j

\Y

.inv (A1)

Of course, closed-form analytical solutions to these equations can only be found
when relatively simple problems are considered, and so the objective of the finite
element method is to establish for complex problems a numerical solution which
satisfies the above governing equations as closely as possible. To this end, we
assume in the displacement-based finite element method a displacement field

(m)

within each element m, that is, u™ =H™U where H™ is the displacement

interpolation matrix, and U contains the nodal point displacements of the

assemblage. With this assumption, Eq. ( A.1 ) becomes:

{Z J‘v(m) B(m)T g(m)B(m) dV}Q _ (A2)

> o T £5ds 43 [, HOT £ av

where 5('"), V™ and Sﬁm) are the strain-displacement matrix, the volume, and

the surface area with externally applied tractions of element m, respectively, and

we sum over all elements in the mesh, see for example ref. [ 1 ].

If the body is adequately constrained, the stiffness matrix established from Eq. (

A.2) can be factorised to solve for U, from which the directly-calculated finite
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element stress zﬁm) is determined using the derivatives of the displacement

solution

Zﬁm)zg(m)g(m):g(m)B(m)u (A.3)

An important fact is that -- for the continuum considered -- the principle of virtual
work holds, of course, for the entire body and when applied to any arbitrary
segment of the body. Therefore, let us consider this segment to be a single finite

element and define the element nodal point forces, in fact already used in Eq. ( A.2

),
E(m):U . E(m)T Q(m)g(m) dV}Q (A4)
\Y

where U is the displacement vector calculated in Eq. ( A.2 ). Now making the
fundamental assumption that there exists and we can calculate an improved finite
element stress 'g(m) that results into element surface tractions equivalent in the

virtual work sense to these nodal point forces (including the effect of the body
forces), we obtain from Eq. (A.2)

c"n™jds=E™-[  H -
[, HO e as =E™ [ H™Tfeav  (AS)

(m

where n ) is the unit normal to the element boundary, and, of course, the element

(m).

(m)correspond to the directly-calculated stresses 7, ':

nodal point forces F

EM=f., B el jav (AS)

In the absence of body forces, Eq. ( A.5) reduces to:
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J o B {e s = (A7)

This equation states that for any virtual displacement field contained in the
element interpolation functions of ﬂ(m), the virtual work by the element boundary

tractions is equal to the virtual work by the element nodal point forces, and hence
we call this equation “the principle of virtual work in the form of boundary

tractions”.

We use this relation to establish the finite element stresses without differentiation

of another field, and use interpolation functions that correspond to a larger stress

m

space than implicitly used for zﬁ ). As a result z_'(m) should be closer to the exact

stresses than 7 f]m). Furthermore, if the finite element stresses are calculated using

the principle of virtual work in traction form, we have

Property 1:  Every element in the assemblage is in force and moment

equilibrium under the action of its boundary tractions.
Property 2:  An averaged equilibrium is satisfied over the finite element domain.

Property 3:  The patch test [ 1] is satisfied.

Property 1 holds since the element nodal point forces satisfy this property, see ref.
[ 1]. Note that therefore, no work is done under any imposed rigid body motion.

Therefore, also

.[s(m) {Z(m)n(m)}ds+jv(m) iB dv =0 (A.8)
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and hence Property 2 follows

Iv(m) {div(?(m))+ £° }dV =0 (A9)

Therefore, rather than imposing equilibrium on the differential level, the principle
of virtual work in traction form imposes an averaged equilibrium over the finite

element domain.

Finally, if the finite element solution U is exact, the element nodal point forces

correspond to the exact element boundary tractions and Property 3 follows.

A.l.2 The principle of virtual work in the form of

internal stresses

Although the finite element solution obtained in Eqg. ( A.2 ) does not satisfy
differential equilibrium at every point in the continuum, as already mentioned, two

important properties always hold for any coarseness of mesh [ 1], [ 14 ].

Nodal Point Equilibrium: At any node the sum of the element nodal point forces
is in equilibrium with the externally applied nodal

loads.
Element Equilibrium: Each element m is in force and moment equilibrium

under the action of its nodal point forces, E(m).

Hence, we also require in our procedure that the improved finite element stress
must correspond to the element nodal point forces given in Eq. ( A.6 ); that is, we

require
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va ™" {g(m)} dv =™ (A.10)

Equation ( A.10 ) states that for any virtual displacement field contained in the
element interpolation functions, the element internal virtual work is equal to the
virtual work of the element nodal point forces, and hence we call this equation

“the principle of virtual work in the form of internal stresses”.

Unlike for Eq. ( A.5), not all the equations in Eq. ( A.10) are linearly independent
of each other. Specifically, in two-dimensional analysis, the displacement
interpolation functions contain the three rigid body modes, and hence only N —3
equations are linearly independent when N is the number of nodal point element
displacement degrees of freedom. Additionally, the two forms of the principle of
virtual work are not necessarily independent of each other. Expressing Eq. ( A.5)

in index notation, we have
| " h{mzmMn(™ ds = FFm - jv(m) h™ 8 dv (A11)
and hence we obtain
Iwm) (hi(,T)TIEjm) +hi(m)T|£jnjj) )dV =Fxm _.[v<m> hm £ 8 dv
Thus
Jo BT taiv(z™)+ 1% fav ™[ B {z™}dv (A12)

As a consequence of Eq. ( A.10), the right hand side of Eg. ( A.12) is zero and we

have
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.[V(m) ﬂ(m)T {diV(Z(m))-l- £8 } dV =0 (A13)

Therefore, the benefit of imposing the principle in both forms is that differential
equilibrium over the element is satisfied more closely than if the principle were

only imposed in traction form.

Finally, from Eqgs. ( A.9) and ( A.13) it is evident that the two principle of virtual

work statements are only independent of each other if the assumed space for g(m)

contains functions of high enough order.

A.2 A scheme for two-dimensional problems

The basis of the nodal point force based stress calculation method is the fact that
the element nodal point forces are of higher quality than the directly-calculated
finite element stresses, and so we use the two principle of virtual work statements

discussed above to calculate the finite element stresses.

However, we need to recognize that for low interpolation orders of element
displacements, the element nodal point forces are not unique to a particular stress
state since they result from tractions acting on either face that the node connects
to. Consequently, we use the nodal point forces acting on a predetermined patch of
elements and call this patch of elements “the stress calculation domain”. The basic

steps employed by the procedure are:
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1. ldealise the structure or continuum as an assemblage of discrete finite
elements, and perform the usual finite element analysis to solve for the

element nodal point displacements U , and the element nodal point forces

E(m)

2. Assume appropriate functions for ¢ ™ for each displacement-based element

contained within the stress calculation domain.

3. Use the two principle of virtual work statements -- Egs. (A.5) and (A.10) -

- to solve for the unknown stress coefficients in g(m).

4. Finally, to establish the improved stresses for a general displacement-based
element m, in two-dimensional analysis, the stress coefficients
corresponding to all possible combinations of stress calculation domains that
contain element m are calculated using the above steps, and the results are
averaged. By averaging the stress coefficients, the solution is independent of
the specific application of stress calculation domain for the element, and the

maximum amount of element nodal point force information is utilised.

An important decision is to choose appropriate functions for z(m). The functions

must be symmetric for all stress components so as to ensure invariance, and the
dimension must be such that the application of the principle of virtual work in both
forms generates either a determined or an over-determined system of equations.
There are many possibilities for choosing the stress space; however, evidently, the
larger the size, the more accurate the solution, and so the largest space which
results in a well-posed problem for all patch geometries, that is, stress calculation

domains, which might be used.
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The numerical effort to calculate the element stresses using the above algorithm is
small but, also, these stress calculations need of course not be performed for each
element in the entire finite element assemblage. Instead, the procedure could only
be used for certain regions of the analysis domain, namely those regions where

improved stresses are of interest.

In the following we consider two cases: the first case leads to a determined system
of equations, and the second case leads to an over-determined system of equations
for the improved element stresses. In both cases, we find that the stress prediction

is greatly improved.

A.2.1 Improving the stresses of the 4-node
quadrilateral element: a case where the system

of equations is determined

Consider an undistorted 4-node quadrilateral element. The displacement trial

functions are C° continuous and take the form:

o {VW}_ o ey a2 4alyz
N w(™ By gz g™y

Upon differentiating, the strains are found to be:

85,;“) agm)+aﬁm)z s
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Equation ( A.14 ) shows that the stresses do not admit zero shear strain when the
element is subjected to bending. It follows that the element is much too stiff in

bending, and this phenomenon is known as shear locking [ 1 ].

Fig. A.1: The stress calculation domain for the 4-node quadrilateral element, two 4-node
adjacent finite elements; element m would one of the two elements

In order to improve the predictive capabilities, the element stress space must be
increased, and we use a stress calculation domain corresponding to two adjacent
displacement-based elements, see Fig. A.1. The stresses within each displacement-
based element m are bilinearly interpolated, and hence each stress calculation

domain requires twenty-four coefficients

zim am+alMy+almz+alMyz

(MMt gim gy gy gy L form=1, 2

Zz

e MMy gMyz

where the ™, g™, ¢ ™ are the twenty-four stress coefficients to be found.

These unknown stress coefficients are determined by imposing Eq. ( A.5) to all
possible closed contour boundaries contained within the domain and Equation (

A.10) to the complete domain.

Finally, the stresses for each displacement-based element m are obtained by

averaging the stress coefficients corresponding to the possible stress calculation
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domains that contain element m. Of course, for this stress calculation domain

there can be no more than four domains that contain element m.
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Fig. A.2: Four plane stress test problems for the 4-node quadrilateral element (E = 72E9,
v=0.0,t=1,p=100 F=1500): (a) the beam in pure bending problem, (b) the finite
plate with a central hole under tensile loading problem, (c) the square cantilevered plate
under shear loading problem, and (d) the tool jig problem
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In this case, the stresses have been assumed to be discontinuous and bilinear;

however, it can be shown that the application of the two principle of virtual work

statements in essence reduces the assumption on the stresses to be simply linear,

and ensures that the mutual forces of action and reaction are continuous across the

internal boundary.
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Fig. A.3: von Mises stress results for the beam problem. The solution error is given in
parentheses. The incompatible modes directly-calculated stress results are given
underneath the displacement-based directly-calculated stress

The effectiveness of the stress calculation procedure for the 4-node quadrilateral

element is illustrated using the following four plane stress test problems: a beam in

pure bending, a finite plate with a central hole under tensile loading, a square

cantilevered plate under shear loading, and a tool jig problem (like considered in

ref. [ 14 ]). These test problems are defined in Fig. A.2, and the results (rounded to
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full digits) are given in Fig. A.3 to Fig. A.6 respectively, where the NPF-based
stress refers to the stresses calculated using the proposed nodal point force based

stress calculation method.
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Fig. A.4: von Mises stress results for the finite plate with a central hole problem. These
results are presented in the same form as those shown in Fig. A.3
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Considering the results, the values given in the contour plots are un-averaged,
while the actual stress values are the averaged nodal point values with the solution
error shown in parentheses. This error is measured with respect to the solution
obtained with a very fine mesh of 9-node elements. Also, for reference, the
directly-calculated stresses using incompatible modes are reported, since these
values can be more accurate than the stresses obtained without the use of

incompatible modes [ 1 ].

As expected, we see a significant improvement in the accuracy of the predicted
stresses for all problems considered. The beam problems are statically determinate
problems and hence a large improvement in the stress accuracy should be
expected, but, also, in the analysis of the plate with a hole and the tool jig problem

a good improvement in accuracy is seen.
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Fig. A.5: In-plane shear stress results for the square cantilevered plate problem
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Fig. A.6: von Mises stress results for the tool jig problem. These results are presented in
the same form as those shown in Fig. A.3
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A.2.2 Improving the stresses of the 3-node
triangular element: a case where the system of

equations is over-determined

The displacement functions for the 3-node triangular element are linear; therefore,
the strains (and hence the stresses) are constant over the element in plane stress
analysis. The element is of particular interest because it is inexpensive to calculate,

and the use of incompatible modes (or enhanced strains) for this element is not

effective.

Fig. A.7: Stress calculation domain for the constant strain triangle; element m would be

the middle element or a side element

In our procedure, we use a stress calculation domain of any three adjacent constant
strain triangles, such as shown in Fig. A.7. As for the quadrilateral element, the
stresses are interpolated bilinearly but now stress inter-element continuity is
assumed throughout the domain. Hence, each domain leads to

153‘) a+a,y+a,2+a,yz
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zz
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where the «;, f5;, ¢, are the twelve stress coefficients to be found.
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Fig. A.8: In-plane shear stress results for the square cantilevered plate problem of Fig.
A.2c. The directly-calculated stress is compared to the improved stress calculated using
the discontinuous and continuous stress assumptions
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Fig. A.9: Five plane stress test problems for the constant strain triangular element (E =
72E9,v=10.0,t=1,p =100, F = 1,500): (a) the beam in pure bending problem, (b) the
finite plate with a central hole under tensile loading problem, (c) the square cantilevered
plate under shear loading problem, (d) the curved structure under pure bending problem,
and (e) the tool jig problem
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These unknown stress coefficients are determined by imposing Equation ( A.5) to
all possible closed contour boundaries contained within the domain and Equation (

A.10) to the complete domain.
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Fig. A.10: Longitudinal stress results for the beam problem. The solution error is given in
the parentheses

Finally, the stresses for each constant strain triangle m are calculated by averaging
the stress coefficients corresponding to all possible stress calculation domains that

contain element m, and for the chosen geometry there can be no more than nine
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different domains that contain element m, three and six for the element taking the

position of the middle and side elements, respectively.
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Fig. A.11: von Mises stress results for the finite plate with a central hole problem. These
results are presented in the same format as those shown in Fig. A.10

In this case, inter-element stress continuity has been assumed. Hence, Eq. ( A.5)

can be imposed to every possible closed contour boundary, simply by imposing
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the equation to the three displacement-based element boundaries. Furthermore,
since the functional stress space corresponds to only twelve coefficients, the
problem is over-determined, and so, in general, a solution which exactly satisfies
the two principle of virtual work statements does not exist; hence we use the least

squares method to evaluate the stress coefficients.
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Fig. A.12: In-plane shear stress results for the square cantilevered plate problem

It is interesting to note that this continuous bilinear stress space could also have
been used to calculate the stresses for the 4-node quadrilateral element. However,
since this stress space is smaller than the discontinuous field assumed in appendix
A.2.2, this assumption will produce less accurate stresses than those given earlier,

for a comparison see Fig. A.8.

The effectiveness of our procedure for the constant strain element is illustrated
using the following five plane stress test problems: a beam in pure bending, a
finite plate with a central hole under tensile loading, a square cantilevered plate in
shear loading, a curved structure in pure bending, and a tool jig problem. These
test problems are defined in Fig. A.9, and the results are given in Fig. A.10 to Fig.
A.14, respectively.

The results are presented in the same form as those given in appendix A.2. We
note that in this case, the improvement in the accuracy of the predicted stresses is

even more pronounced than seen for the 4-node quadrilateral element, which of

course is due to the fact that g(h’“) IS constant in the 3-node finite element.
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Fig. A.13: Longitudinal normal stress results for the curved structure problem
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Fig. A.14: von Mises stress results for the tool jig problem. These results are presented in
the same format as those shown in Fig. A.10
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A.3 A scheme for three-dimensional problems

Most engineering problems in solids and structures are three-dimensional in
nature. Since the geometry and other data of the problem are then usually
complex, the structure is best analysed using finite element methods. The crucial
step in any finite element analysis is to choose an appropriate mathematical model
for the physical structure (or more generally the physical phenomenon), since a
finite element solution solves only this model, see ref. [ 1 ]. For example, if the
structure is thin in one direction and long in the other two directions a shell
mathematical model is appropriate, and the problem is solved efficiently using the
MITC shell elements, see refs. [ 2], [ 45] to [ 47 ]. However, if the length scales
of the structure are similar in all directions, and the loading is general, then there is
no option other than to solve the problem using an assemblage of discrete three-

dimensional solid elements, see refs. [ 1] and [ 14 ].

The simplest three-dimensional solid element available to the finite element
analyst is the 4-node constant strain tetrahedral element. This element is used
abundantly in practice because the analyst is able to mesh almost any volume
regardless of complexity, the element is robust in contact analysis, the element
matrices are inexpensive to calculate, and the resulting global stiffness matrix has
a relatively small bandwidth. In a typical approach, the analyst would use a mesh
of 4-node tetrahedral elements, in a first analysis, to identify the locations of high
stress concentrations, and then based upon these results, the analyst would refine
the mesh -- or, if possible, convert the mesh to 10-node or 11-node tetrahedral
elements -- in the localised regions of concern, see ref. [ 14 ]. This is necessary,
simply because the stresses predicted using the 4-node tetrahedral element are
known to be poor, and the lack of accuracy can be seen using stress band plots of

unsmoothed stresses, seerefs. [1],[4],[14].
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The NPF-based method uses, as its ingredients, two fundamental virtual work
statements -- Egs. ( A.5) and ( A.10 ) -- to obtain finite element stresses that we
can expect to be more accurate than those given by Eq. ( A.3 ). We expect that, in
general, more accurate stresses are predicted because, firstly, the method allows us
to assume a richer functional space for the stresses than that implicitly assumed in
establishing the stiffness matrix, and, secondly, the nodal point forces are used
which always satisfy the above-mentioned important equilibrium requirements,

irrespective of the coarseness of the mesh.

Our objective in this section is to apply the NPF-based method to the 4-node three-
dimensional tetrahedral element, and show that by using a simple algorithm, we
are able to enhance the stresses in localised regions of concern, without having to

refine the mesh or re-analyse the model.

We showed that the NPF-based method can be used effectively to significantly
improve the accuracy of the finite element stress predictions obtained using the 3-
and 4- node displacement-based elements in two-dimensional analyses. It is
reasonable to expect similar improvements for the 4-node three-dimensional
tetrahedral element. We solve the same set of problems previously considered, but
of course this time in three-dimensional settings. As expected, we see a significant
improvement in the accuracy of the stress predictions for all problems considered.
These results are of particular interest, since reliable improvements in stresses for
the 4-node tetrahedral element, using incompatible modes or enhanced strains, are

difficult to reach in general analyses [ 41 ] to [ 43].
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A.3.1 Improving the stresses of the 4-node

tetrahedral element

In order to establish improved stress predictions for a general finite element m,

the NPF-based stress calculation algorithm employs four basic steps:

1. Solve, in the usual manner, for the element nodal point displacements U ,

(m)

and the element nodal point forces F ", in accordance with Eq. ( A.6).

(m)

2. Assume appropriate functions for ¢ across a predetermined patch of

elements; we call this patch of elements “the stress calculation domain”.

3. Use the two principle of virtual work statements -- Egs. ( A.5) and ( A.10)

-- to solve for the unknown stress coefficients in ;(m).

4. Finally, to establish the improved stresses for an individual element m, the
stress coefficients corresponding to all possible element combinations to
obtain stress calculation domains that contain element m are calculated

using the above steps, and the results are averaged for element m.

Of course, it is important to select appropriate functions for the stress fields in
g(m), since we aim to have a sufficiently rich assumed stress space for the stress

calculation domain. Clearly, the dimension of the assumed stress space must
depend on the number of elements used within the stress calculation domain. That
is, for a given dimension of assumed stress space, we must have that the domain

contains a sufficient number of elements, such that the problem solution for the
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unknown stress coefficients is well-posed for all possible domain geometries that

might be used.

In the specific case of the 4-node tetrahedral three-dimensional element, we
assume the stresses to be linearly interpolated and continuous across the entire

stress calculation domain,
tWoglvalx+alyralz  for  m=12345 (Al5)

where the (i, j) refer to the coordinate directions, and the «;' are the twenty-four

unknown stress coefficients to be found. As an aside, we note that for the 3-node
constant strain triangle considered in section A.2 we instead assumed bilinear

interpolations across its stress calculation domain.

Fig. A.15: The stress calculation domain for the 4-node tetrahedral element; element m
would be the central element or a peripheral element

With the assumption in Eqg. ( A.15 ), each stress calculation domain for the 4-node
tetrahedral element shall contain at least five elements, this way we ensure a well-
posed problem for the solution of the coefficients. Although any five adjacent

elements could be used, we define a stress calculation domain in a quite natural
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manner as the unique combination corresponding to a central element surrounded
by four peripheral elements, where each peripheral element shares a face with the
central element, as shown in Fig. A.15. This stress calculation domain allows us
also to maximise the accuracy of the stress prediction, since the averaging in step 4

is used, see above and the further comments below.

In general, the algorithm solves for the unknown stress coefficients in g(m) by

imposing Eq. ( A.5) to all possible closed contour boundaries contained within the
stress calculation domain, and in addition Eq. ( A.10 ) to the complete domain.
However, in this case, we have assumed the stresses to be linearly interpolated,
and hence we need to only apply Eg. ( A.5 ) in order to solve for the stress
coefficients. The reason is that in the absence of body forces, Eq. ( A.5) is not
independent of Eqg. ( A.10 ), see section A.l. Furthermore, we assume inter-
element stress continuity, and hence Eq. ( A.5) can be imposed to every possible
closed contour boundary by simply imposing the equation to the five tetrahedral

element boundaries.
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Fig. A.16: Five test problems for the 4-node tetrahedral three-dimensional element (E =
72E9, v = 0.0, p = 100, F = 6,000, t = thickness): (a) the beam in pure bending problem,
(b) the finite plate with a central hole under tensile loading problem, (c) the square
cantilevered plate under shear loading problem, (d) the curved structure in pure bending,
and (e) the tool jig problem

In this way, we generate sixty equations, of which, for the configuration
considered in Fig. A.15, only thirty-three are linearly independent. Since there are
twenty-four unknown stress coefficients, the system of equations is over-

determined, and so, in general, a solution which exactly satisfies Eq. ( A.5) does
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not exist. Hence we use the least squares method to solve for the unknown stress
coefficients, with the consequence that the element nodal point forces calculated
from the NPF-stresses (see Eq. ( A.10 )) will only satisfy the individual element

and nodal equilibrium properties mentioned earlier, in a least squares sense.
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Fig. A.17: Longitudinal stress results for the beam in pure bending problem. The solution
error is given in the parentheses
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Finally, to obtain the improved stresses for each tetrahedral element m, we
average the stress coefficients corresponding to the possible stress calculation
domains that contain element m. Of course, for the chosen geometry there can be
no more than five domains that contain element m, that is, respectively, one and
four domains for the element taking the position of the central element and the
peripheral elements. In the exceptional case that no domain, as described above,
exists which contains element m (e.g. in a corner of a meshed geometry), we
simply construct the stress domain using four elements that are properly connected

to element m, and no averaging is applied.

Since we assume the stresses to be linearly interpolated, the numerical effort
involved in improving the stress predictions for each tetrahedral element is given
by the effort required to solve for twenty-four unknown stress coefficients at most
five times (that is, we must calculate the stress coefficients corresponding to every

possible domain which contains element m).

This computational effort is relatively small, but, also, an important feature of the
algorithm is that there is no need to apply these stress calculations to all elements
in the assemblage, instead only to those elements where improved stresses should
be calculated. Indeed, in practice, the finite element analyst is not always able to
perform -- due to stringent constraints on time and computational resources -- a
detailed mesh refinement stress convergence study, especially for complex
problems that are expensive to solve. Instead, in many cases, the analyst will solve
the problem only once, using the finest mesh possible that for the available
computational resources still results in a reasonable solution time. Given this
solution and the above rather simple algorithm, it is then possible to enhance the
stress prediction with relatively little computational effort in only the specific

areas of concern.
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Fig. A.18: von Mises stress results for the finite plate with a central hole problem. The
solution error is given in the parentheses
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In addition to enhancing the stress prediction, the results obtained with the
algorithm give, of course, also insight into the accuracy of the directly-calculated
stresses. Namely, if the two stress values are far apart, in important areas of the
model, the mesh used is too coarse for the directly-calculated stresses to be

sufficiently accurate.

We recognise that we have not mathematically proven stability of the algorithm
for all possible geometries of the stress calculation domains. Therefore, it is
possible, that for certain meshes with grossly distorted elements the algorithm
establishes ill-conditioned matrices in which case the solution would have to be
abandoned for that particular domain (where the elements are too distorted).
However, we have tested the procedure in a large number of domains containing
highly distorted elements and have not encountered this difficulty. Hence our
experience is that as long as the mesh is reasonable (which is anyways required for
the original displacement solution) the algorithm seems to be quite robust and

stable.

The effectiveness of the algorithm for the 4-node tetrahedral element is illustrated
using the same five test problems as considered in section A.2: a beam in pure
bending, a finite plate with a central hole under tensile loading, a square
cantilevered plate under shear loading, a curved structure in pure bending, and a
tool jig problem (like considered in ref. [ 14 ]). We define these test problems in

Fig. A.16, and show the results (rounded to full digits) in Fig. A.17 to Fig. A.22
respectively, where the NPF-based stress refers to the stresses calculated using the

proposed nodal point force based stress calculation method.
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Fig. A.19: In-plane shear stress results for the square cantilevered plate problem across
section A
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Considering these results, the values given in the band plots are un-averaged,
while the given numerical stress values are the averaged nodal point values with
the solution error shown in parentheses. This error is measured with respect to the
solution (called "exact™ in figures) obtained using a very fine mesh of 27-node

hexahedral elements.

Note that a given numerical stress value may be outside the scale of the band plot
because we selected the scale to reasonably indicate the stress variation over the

complete domain.

As expected, we see a significant improvement in the accuracy of the predicted
stresses for all problems solved. However, the improvement in stresses is
somewhat less than what we have seen for the 3-node constant strain triangle in
section A.2.2, which is partly due to the fact that, for the three-dimensional

analyses, we are using linear, and not bilinear, stress interpolations, see Eq. ( A.15

)-

It is interesting to note that, for the problems considered in Fig. A.18 and Fig.
A.14, the percentage improvement in stresses increases as the mesh is refined.
Naturally, the improvement is most important in the regions of high stress

gradients, which, of course, is due to the fact that the stresses ;ﬁm) are constant for

the 4-node tetrahedral finite element.

In these problems, we have set the Poisson ratio to zero, to ensure consistency
with section A.2; however, the same level of improvement is also observed for
non-zero values of Poisson ratio, for example, when 0=0.3, as long as the
material is not almost or fully incompressible. When the medium is

incompressible, as well-known, the four-node displacement-based tetrahedral
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element is not effective because it does not satisfy the inf-sup condition [ 2 ], [ 43

1, [ 44 ] and is better not used.
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Fig. A.21: von Mises stress results for the tool jig problem. The solution error is given in
the parentheses
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Fig. A.22: von Mises stress results for the tool jig problem. Radius A and radius B are
defined in Fig. A.9, and the mesh densities corresponding to Mesh 1, Mesh 2 and Mesh 3
are shown in Fig. A.14. The figures on the left show the von Mises stress along radius A,

whereas the figures on the right show the von Mises stress along radius B
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A.4 Concluding remarks

In this appendix we developed a simple procedure of using the element nodal point
forces to obtain finite element stresses that we can expect to be more accurate than
the stresses given by the stress assumption implicitly used in the stiffness
calculation. We expect more accurate stresses because the assumption for the
stresses is of higher order and the nodal point forces are used which always satisfy

important equilibrium requirements irrespective of how coarse a mesh is used.

We have applied the procedure to the 3- and 4-node two-dimensional elements,
and to the 4-node three-dimensional element, in linear static analysis conditions.
As expected, when we applied the procedure, we have indeed seen a significant

improvement in the stress predictions for all problems solved.

While the numerical results are encouraging, the method still requires to consider
specific element stress domains. Indeed, a drawback of the NPF-based method is

that the number of equations available -- and hence the dimension of the
interpolation functions assumed in V* -- is dependent on the number (and type) of
elements in the stress calculation domain. Therefore, to get close to O(hz)

convergence for the stresses, a large stress domain is needed, and a domain stress

averaging procedure has been employed.
After developing the NPF-based method, it was realised a more comprehensive

procedure can be devised to improve the stress predictions in static, dynamic and

nonlinear solutions. This method is presented in the main body of the thesis.
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