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A b s t r a c t  

In this thesis, we present a novel method to improve the finite element stress 

predictions in static, dynamic and nonlinear analyses of solids. We focus on the 

use of low-order displacement-based finite elements, 3-node and 4-node elements 

in two-dimensional (2D) solutions, and 4-node and 8-node elements in 3D 

solutions -- because these elements can be computationally efficient, provided 

good stress predictions are obtained. We give a variational basis of the new 

method and compare the procedure, and its performance, with other effective 

previously proposed stress improvement techniques. We observe that the stresses 

of the new method converge quadratically in 1D and 2D solutions, i.e. with the 

same order as the displacements, and conclude that the new stress improvement 

method shows much promise for the analysis of solids, structures and multiphysics 

problems, to calculate improved stress predictions and to establish error measures. 

 

H i g h l i g h t s  

► Novel stress improvement method is given for static, dynamic and nonlinear 

analysis of solids.  ► Focus is on the use of low-order elements.  ► Quadratic 

convergence is observed for the improved stresses.  ► Method is compared with 

existing techniques. 

 

Thesis Supervisor: Klaus-Jürgen Bathe 

Title: Professor of Mechanical Engineering 
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Introduction 

 

In finite element analysis, a continuum is idealised as an assemblage of discrete 

elements. The analysis is then performed using displacement-based and mixed 

methods, see refs. [ 1 ], [ 2 ]. In each case, nodal displacements are solved for and 

the element stress is determined from the assumptions used in establishing the 

element stiffness matrices. In the displacement-based method, the derivatives of 

the displacements are used to establish the strains and hence the stresses, while in 

mixed methods additional strain or stress assumptions are employed (with 

additional equations) to establish the stresses. We refer to these calculated stresses 

as the “directly-calculated finite element stresses”. 

 

It is well known that the accuracy of the directly-calculated finite element stresses 

is poor, as compared with the accuracy of the calculated displacements, and the 

reasons are well understood. The stresses are obtained from the derivatives of the 

displacements; hence, they involve a lower degree of interpolation and converge at 

a lower rate. Furthermore, differential equilibrium is, in general, not satisfied at 

every point in the finite element model, which results in stress discontinuities at 

the element boundaries and non-equilibrium with the externally applied surface 

tractions [ 1 ]. The lack of accuracy can be seen using stress band plots of 

unsmoothed stresses [ 1 ], [ 3 ], [ 4 ]. 
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During the last decades, many different stress improvement methods have been 

explored [ 3 ] to [ 37 ]. The aim is to reach enhanced stress predictions, as part of 

the solution of the mathematical models, and to establish solution error estimates [ 

7 ], [ 8 ]. If an effective scheme to enhance the stress predictions was available, the 

finite element method could be used with coarser meshes, reducing the expense of 

analysis; and an effective scheme to assess the error would be valuable to assure 

an adequate solution. Early procedures were based either on stress smoothing [ 11 

], [ 12 ] or 2L  projection techniques [ 13 ]; however, these approaches are not 

particularly effective, and they have hardly been used in practice. 

 

Considering inexpensive solution error indicators, the stress band plots proposed 

by Sussman and Bathe [ 1 ], [ 4 ], [ 14 ] have been used extensively, both for linear 

and nonlinear analyses, but of course these only give an indication of the solution 

accuracy -- they do not improve the stress predictions. 

 

The calculation of improved stress predictions is particularly important if low-

order elements are to be used. For example, considering three-dimensional (3D) 

solutions, the use of 4-node constant strain tetrahedral elements would frequently 

be computationally efficient if the stresses could be predicted to a higher accuracy 

than given directly by the displacements. That is, the constant stress assumption, 

implied by the assumed linear displacements, is not good in many analyses. 

 

A widely-recognised contribution towards a stress improvement method was 

published by Zienkiewicz and Zhu, when they proposed the ‘superconvergent 

patch recovery’ method [ 15 ]. This technique is based on the existence of 

superconvergent points, also referred to as Barlow points [ 16 ], where the stresses 

are of one order higher accuracy than at any other point in the element domain. 

Appropriate order polynomials approximating the stresses are smoothly fitted 
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through these points, sometimes in a least squares sense. Later, variants of the 

original method were developed to further enhance its performance [ 17 ] to [ 21 ]. 

 

Although the superconvergent patch recovery methods seemed to work relatively 

well for certain elements, superconvergent points do not always exist -- e.g. in 

triangular elements, distorted isoparametric elements, and in elements with 

varying material properties (hence nonlinear analyses) -- see the discussion by 

Hiller and Bathe [ 22 ]. Three widely used procedures that do not require the 

knowledge of superconvergent points are the ‘posterior equilibrium method’ 

(PEM), the ‘recovery by equilibrium in patches’ (REP) method, and the ‘recovery 

by compatibility in patches’ (RCP) method. 

 

The PEM was proposed by Stein and Ohnimus [ 23 ] and is based on the work 

published earlier by Stein and Ahmad [ 24 ], [ 25 ]. This method uses the principle 

of virtual work to calculate improved interelement tractions for the purposes of 

local error estimation [ 23 ], [ 26 ]. The REP method was proposed by Boroomand 

and Zienkiewicz [ 27 ], [ 28 ]. This method uses the principle of virtual work to 

calculate improved stresses within the finite element domain. The RCP method 

was proposed by Ubertini [ 29 ] and further developed by Benedetti et al. [ 30 ]. 

This method uses the principle of minimum complementary energy to calculate 

improved stresses that satisfy point-wise equilibrium. Later, Castellazzi et al. 

established a solution error estimate based on the RCP method to guide adaptive 

meshing [ 31 ]. 

 

All three stress calculation procedures yield impressive results that exceed the 

performance of the superconvergent patch recovery method. However, to ensure a 

well-posed problem for the solution of the unknown stress coefficients, several 

assumptions are employed, and these assumptions limit the accuracy of the results. 
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Specifically, the PEM assumes that the improved interelement tractions are 

approximately equal (by a difference minimization) to the tractions directly-

calculated from the displacement solution [ 23 ]; the REP method uses element 

nodal point forces that correspond to individual stress components [ 28 ]; and the 

RCP method imposes differential equilibrium for all points in the element [ 30 ], a 

constraint which is too severe, and as a result the RCP solution is not reliable for 

all classes of problems. 

 

Recently, we proposed the NPF-based method; see refs. [ 35 ], [ 36 ] and appendix 

A. This procedure also employs the principle of virtual work, but without the 

assumptions used in the earlier methods. While the numerical results in refs. [ 35 ], 

[ 36 ] are encouraging, the method still requires to consider specific element stress 

domains and some stress averaging. We concluded, see refs. [ 35 ], [ 36 ], that a 

variational basis was necessary to obtain further insight and possibly improve the 

schemes. 

 

For various problems in engineering and the sciences -- like in the analysis of 

(almost) incompressible media, thin structures, and multiphysics phenomena -- 

optimal finite element discretisations can only be obtained if mixed variational 

formulations are used [ 1 ], [ 38 ] to [ 47 ]. Indeed, in ref. [ 48 ], Mota and Abel 

show that the stress smoothing, 2L  projection and superconvergent patch recovery 

techniques are based on the use of the Hu-Washizu principle. 

 

Our objective in this thesis is to show that the PEM and the REP, RCP, and NPF-

based methods are also all based, with certain assumptions, on the Hu-Washizu 

variational principle, and then present a novel and significantly improved method 

for stress predictions. Throughout we focus on the use of low-order displacement-

based finite element discretisations of solids, that is, 2-node elements in 1D 
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solutions, 3-node triangular and 4-node quadrilateral elements in 2D solutions, and 

4-node tetrahedral and 8-node brick elements in 3D solutions. These elements are 

computationally efficient provided good stress convergence is obtained. 

 

We analyse the new stress improvement method in detail for 1D problems with 

arbitrary loading and material properties, but constant cross-sectional area (using 

2-node elements), and prove that the procedure is reliable, giving stresses that are, 

in fact, optimal stress predictions (in the norm used), with the order of 

convergence being quadratic, i.e. with the same order as the displacements. This 

order of stress convergence is also seen numerically in 1D and 2D solutions. In a 

study, we compare the performance of the new method with the performance of 

the other above-mentioned procedures. It is important to note that we consider 

static, dynamic and nonlinear solutions. 

 

Throughout the thesis we use the notation of ref. [ 1 ]. We note that most of the 

material presented herein is close -- sometimes even verbatim -- to that published 

in our papers; see refs. [ 35 ] to [ 37 ]. 
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Chapter 1 

1. Fundamental equations 

Fundamental equations  

 

Consider the equilibrium of a body of volume V  and surface area S , subjected to 

externally applied surface tractions 
S

f  on the area fS  and body forces 
B

f . The 

body is supported on the area uS  with prescribed displacements pu , and, for now, 

linear analysis conditions are assumed; see Fig. 1.1. We seek to calculate the 

unknown displacements, strains and stresses. 

 

 

 

 

 

 

 

 

Fig. 1.1: General 3D body, in linear static conditions, of volume V  and surface area S , 

where SSS fu   and 0 fu SS  

 

In the differential formulation of the problem, the unknown response is calculated 

by solving the governing differential equations of equilibrium and compatibility, 
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with the constitutive relationships, subject to the applied boundary conditions. 

That is, we solve 

 

 

 

 

subject to 

 

 

 

where exu , ex  and ex  are the exact displacements, strains and stresses, 

respectively,   is the differential operator on exu  to obtain the strain components 

ex , C  is the stress-strain matrix, and n  is the unit outward normal vector on the 

surface fS . 

 

A second (but entirely equivalent) approach to the solution of the problem is given 

by minimising the total potential energy  u , 

 

( 1.1 ) 

 

with the constraints 

 

( 1.2 ) 

 

 

where u  is any displacement field satisfying the boundary condition on uS , and   

and   are the strains and stresses corresponding to u . 
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For approximate solutions, a larger class of trial functions can be employed when 

we operate on the total potential energy rather than on the differential formulation 

of the problem; see refs. [ 1 ], [ 14 ]. This has important consequences, and much 

of the success of the finite element method hinges on this fact. 
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Chapter 2 

2. Finite element methods for stress predictions 

Finite element methods for stress 

predictions 

 

In this chapter, we first review the displacement-based finite element method; then 

we present a mixed formulation based on the Hu-Washizu principle. Thereafter, 

we specialise this mixed formulation to arrive at the basic equations of the PEM 

and the REP, RCP, and NPF-based methods. Finally, we use this mixed 

formulation -- and its properties -- to present our new stress improvement scheme. 

 

 

2.1 Displacement-based finite element method 

 

In the displacement-based finite element method, we assume a displacement 

pattern within each element m , that is, 
   

UHu
mm ˆ , where 

 m
H  is the 

displacement interpolation matrix, and Û  lists the nodal point displacements of 

the assemblage (including those at the supports). 
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With this assumption, the strains 
 m

  and stresses 
 m

h  of element m  follow 

directly from Eq. ( 1.2 ), 

 

( 2.1 ) 

 

( 2.2 ) 

 

Then, minimising   of Eq. ( 1.1 ) yields 

 

( 2.3 ) 

 

 

 

where 
 m

B , 
 m

C ,  mV , and  m

fS  are the strain-displacement matrix, the stress-

strain matrix, the volume, and the surface area with externally applied tractions of 

element m , respectively. We sum over all elements N  in the mesh and use Eq. ( 

2.3 ) to obtain Û ; see for example ref. [ 1 ]. Finally, 
 m

h  is calculated using Eq. ( 

2.2 ). 

 

In the following, we focus on the use of low-order finite element discretisations 

(the 2-node element in 1D solutions, the 3-node and 4-node elements in 2D 

solutions, etc.). It is well known that the accuracy of 
 m

h  is then poor, as 

compared with the accuracy of the calculated displacements, and this deficiency 

can be seen using stress band plots of unsmoothed stresses [ 1 ], [ 3 ] to [ 14 ]. We 

refer to these stresses as the “directly-calculated finite element stresses”. 
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2.2 Mixed formulation 

 

To arrive at accurate stress predictions, a mixed interpolation approach -- which 

can be thought of as a special use of the Hu-Washizu principle -- can be more 

effective. In this formulation, rather than applying the stress-strain relationship 

point-wise, we relax this relationship and apply it over the element volumes using 

Lagrange multipliers. The primary solution variables are then the unknown 

displacements, Lagrange multipliers and stresses. Hence, the equivalent of the 

minimisation of   in Eq. ( 1.1 ) is 

 

 

( 2.4 ) 

 

 

with the constraints 

 

( 2.5 ) 

 

 

As in the displacement-based finite element method, the displacements 
 m

u  of 

element m  are defined by nodal point variables that pertain to adjacent elements 

in the assemblage, 
   

UHu
mm ˆ , and the strains 

 m
  follow directly from Eq. ( 

2.5 ), 
   

UB
mm ˆ . However, the Lagrange multipliers 

 m
  and the stresses 

 m
  

of element m  are defined by internal degrees of freedom that pertain only to the 

specific element m considered. 
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In order to furnish improved stress predictions, we must assume a richer space for 

 m
  than that implicitly assumed for 

 m

h . Also, we want to enhance the fulfilment 

of equilibrium. Hence, we now assume 

 

( 2.6 ) 

 

and 

 

( 2.7 ) 

 

where dim ( . ) denotes the dimension of the space of the variable considered,   

denotes, as usual, “variation of”, 
 m

  is defined by degrees of freedom, and the 

square parentheses indicate that the stress vector has been arranged into matrix 

form. 

 

With this assumption, invoking the stationarity of *  with respect to 
 m

u , 
 m

  

and 
 m

  yields 

 

( 2.8 ) 

 

 

 

( 2.9 ) 

 

 

( 2.10 ) 

 

dim( 
 m

 )   dim( 
 m

 )   dim( 
 m

 ) 
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 m

 , including when 
   mm
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2

1
 , 

Eq. ( 2.8 ) contains as a special case 

 

 

 

Then, using the solution 
   mm


2

1
  from Eq. ( 2.10 ) we obtain 

 

( 2.11 ) 

 

Of course, when inserting the element interpolations, Eq. ( 2.11 ) gives Eq. ( 2.3 ). 

Here Eq. ( 2.11 ) (and hence Eq. ( 2.3 )) would give -- at this stage -- a specific 

solution of the stresses in the stress space of 
( )m

 , namely 
 m

h . However, to 

complete the calculation of the improved stresses we also use Eqs. ( 2.7 ) and ( 2.9 

). 

 

An important practical feature of this ‘mixed formulation’ is that the displacement 

problem in Eq. ( 2.11 ) is decoupled from the additional calculations of the 

stresses. Therefore, in a general analysis, we first solve for 
 m

u  as is standard, and 

then -- rather than applying the stress-strain relationship -- we obtain 
 m

  from 

 m
u  by applying Eqs. ( 2.7 ) and ( 2.9 ) to each element m  in the assemblage. 

 

This element-based approach works well in 1D solutions; however, in 2D and 3D 

solutions, better results are obtained when the stresses are defined over a 

predetermined patch of PN  elements, known as the stress calculation domain. In 

this case, 
 m

  is obtained from 
 m

u  by applying Eqs. ( 2.7 ) and ( 2.9 ) either to 
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each element m  in the stress calculation domain, or to the entire stress calculation 

domain, 

 

( 2.12 ) 

 

 

( 2.13 ) 

 

Since 
 m

  is obtained from 
 m

u , the accuracy of 
 m

  is limited by that of 
 m

u ; 

hence, the highest order of convergence of the stresses that we can expect is  2hO  

-- one order higher than that observed for 
 m

h . To obtain  2hO  convergence, we 

must interpolate 
 m

  with complete polynomials of at least degree 1. 

 

The key question for the formulation is now: What interpolations should be used 

for 
 m

  and 
 m

  to ensure a well-posed problem with stresses that converge at 

order  2hO ? Indeed, the choice of interpolation determines the number of 

equations available and the accuracy of the results. Examples are given below. 

 

 

2.3 The PEM and the REP method 

 

In the PEM and the REP method, 
 m

  is interpolated in the same way as the 

strains 
 m

 , and 
 m

  is interpolated in the same way as the displacements 
 m

u . 

With this assumption, we obtain from Eqs. ( 2.12 ) and ( 2.13 ) 
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( 2.14 ) 

 

 

( 2.15 ) 

 

where Û  are the virtual nodal point displacements that correspond to 
 m

 , and 

 m
F  are the element nodal point forces, in fact already used in Eq. ( 2.3 ), 

 

( 2.16 ) 

 

Using the mathematical identity, 

 

 

 

the Gauss divergence theorem and Eq. ( 2.14 ), we can write Eq. ( 2.15 ) as 

 

( 2.17 ) 

 

 

where 
 m

n  is the unit normal to the boundary surface  m

fS  of element m . 

 

Eq. ( 2.17 ) is the basic equation of the PEM, and Eq. ( 2.14 ) is the basic equation 

of the REP method. That is, for any virtual displacement pattern contained in the 

interpolation functions, the PEM balances the virtual work of the boundary 

tractions (adjusted for body force effects) with the virtual work of the nodal point 

forces; whereas, the REP method balances the internal virtual work of the stresses 

with the virtual work of the nodal point forces. 
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Since each method uses only one principle of virtual work statement (of the two 

possible statements given by the mixed formulation), the governing matrices 

corresponding to the basic equations of the PEM and the REP method may be 

singular; hence, several assumptions are employed to add extra constraints (and 

these assumptions limit the accuracy of the results) -- see refs. [ 23 ], [ 28 ]. 

 

 

2.4 The RCP method 

 

Let ν   be the assumed stress space for 
 m

 , and let ν  be the subspace of the 

self-equilibrated stresses in ν . Then, let 
 m

  be any element in that subspace 

 

( 2.18 ) 

 

In the RCP method, 
 m

  is interpolated in the same way as 
   mm

C 
1

, and 
 m

  

is any element in  
pVL2 , where  

pVL2  is the space of square integrable 

functions in the volume, pV , of the stress calculation domain. With this 

assumption, we obtain from Eqs. ( 2.12 ) and ( 2.13 ) 

 

( 2.19 ) 

 

 

( 2.20 ) 
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Eqs. ( 2.19 ) and ( 2.20 ) are basic equations of the RCP method. To satisfy Eq. ( 

2.20 ), an a priori particular solution 
 m

sp ..  to the differential equations of 

equilibrium is embedded in 
 m

  [ 29 ], [ 30 ]. However, establishing 
 m

sp ..  for 

distorted isoparametric elements in dynamic analysis is difficult and an 

outstanding issue to be solved. Moreover, the differential equilibrium constraint in 

Eq. ( 2.20 ) is too severe, and as a result the RCP solution is not reliable for all 

classes of problems; see chapter 4. 

 

Considering nonlinear analysis, a complication with the RCP method is that the 

basic equations involve the use of the constitutive relationships; hence, in 

problems with path-dependent nonlinear material conditions, an incremental 

solution procedure may have to be used to solve for the unknown stress 

coefficients in Eq. ( 2.19 ). 

 

 

2.5 The NPF-based method 

 

In the NPF-based method, 
 m

  is interpolated in the same way as the strains 
 m

 , 

and 
 m

  is interpolated in the same way as the displacements 
 m

u . With this 

assumption we obtain from Eqs. ( 2.9 ) and ( 2.7 ) 

 

( 2.21 ) 

 

 

( 2.22 ) 
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where 
 m

F  is defined in Eq. ( 2.16 ), and we can write Eq. ( 2.22 ) as 

 

( 2.23 ) 

 

using similar steps as those used to obtain Eq. ( 2.17 ). 

 

Eqs. ( 2.21 ) and ( 2.23 ) are the basic equations of the NPF-based method. In 

contrast to the PEM and the REP method, the NPF-based method uses both 

principle of virtual work statements, Eqs. ( 2.21 ) and ( 2.23 ), and applies them to 

each element m  in the stress calculation domain. Consequently, the problem 

solution for the unknown NPF-based stress coefficients is well-posed, without the 

(limiting) assumptions used in the earlier methods. 

 

However, a drawback of the NPF-based method is that the number of equations 

available -- and hence the dimension of the interpolation functions assumed in ν   

-- is dependent on the number (and type) of elements in the stress calculation 

domain. Therefore, to get close to  2hO  convergence for the stresses, a large 

stress domain is needed, and a domain stress averaging procedure has been 

employed; see refs. [ 35 ], [ 36 ] and appendix A. 

 

 

2.6 The new stress improvement method 

 

In this section, we present a novel and significantly improved method for stress 

predictions. We first develop the method for linear static and dynamic analysis; 

then, we extend the method to nonlinear solutions; finally, we consider the 

computational cost of the technique. 
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2.6.1 Linear static and dynamic analysis 

 

The new stress improvement method assumes 
 m

  is interpolated in the same way 

as the self-equilibrated stresses 
 m

 , and 
 m

  is any element in  pVP1 , where 

 k pP V  is the space of complete polynomials of degree k in the volume of the 

stress calculation domain pV . With this assumption, we obtain from Eqs. ( 2.12 ) 

and ( 2.13 ) 

 

( 2.24 ) 

 

 

( 2.25 ) 

 

where the stresses 
 m

  are assumed to be continuous and quadratically 

interpolated across the stress calculation domain, 
   p

m
VP2 , and the subspace 

of self-equilibrated stresses, ν , is given by 

 

( 2.26 ) 

 

Eqs. ( 2.24 ) and ( 2.25 ) are the basic equations used. These correspond to 

projecting the differences in the assumed and directly-calculated stresses onto the 

space ν , and to projecting the divergence of the error between the assumed and 

exact stresses onto 1P . 
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To obtain the corresponding finite element equations, we introduce the 

interpolations 

 

( 2.27 ) 

 

where the interpolation matrices E , E , and E  are given in Eq. ( 3.1 ) for 1D 

analysis, and in Eqs. ( 4.1 ) to ( 4.3 ), respectively, for 2D analysis. Note that in 

these matrices, locally based coordinate origins are used to avoid ill-conditioning, 

and   0Ediv , as is required by Eq. ( 2.26 ). 

 

Substituting from Eq. ( 2.27 ) into Eqs. ( 2.24 ) and ( 2.25 ) we arrive at 

 

( 2.28 ) 

 

 

where   is the differential operator on 
 m

  to obtain the divergence of the stress 

field (see Eqs. ( 3.2 ) and ( 4.4 )), ̂  lists the unknown stress coefficients to be 

found, and, in dynamic analysis, we must include the d’Alembert inertia forces in 

B
f ; see chapter 4.5. 

 

Since 
   

p

m
VP2 , and 

   νm
, 

   p

m
VP1 , it follows that Eq. ( 2.28 ) 

represents a determined system of equations in terms of ̂  -- irrespective of the 

number (and type) of elements used in the stress calculation domain -- such that a 

unique solution for ̂  always exists, even if only one element is used in the stress 

calculation domain. 
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To summarise, the important attributes of the new method are: 

  

1. The assumed stresses 
 m

  are interpolated with complete polynomials of 

degree 2 ; hence, the order of convergence of 
 m

  is expected to be  2hO . 

2. The number of equations available is independent of the number (and type) 

of elements used in the stress calculation domain. 

3. The system of equations is always determined. 

4. The equations do not involve the use of the constitutive relationships (other 

than in the calculation of 
 m

h ). 

5. The stress calculations can be performed for the entire assemblage, or just 

in localised regions of concern. 

6. The fulfilment of differential equilibrium is enhanced, and differential 

equilibrium is fulfilled at every point in the element if 1Pf
B
 . 

7. The method does not use an a priori particular solution (like used in the 

RCP method). 

8. The solution will not be afflicted with a spurious checkerboard mode of 

constant element stresses. 

 

Spurious checkerboard modes of constant element stresses can be found in some 

displacement-stress solutions -- see Fig. 2.1 and ref. [ 1 ]. To prove that the 

improved stresses 
 m

  are not afflicted we use that 

 

( 2.29 ) 

 

which follows directly from Eq. ( 2.24 ), and note that the directly-calculated 

stresses 
 m

h  are not afflicted. 
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Fig. 2.1: Checkerboard mode of constant element stress. Here   and   mean 
 m

ij  

and 
 m

ij , where 
 m

ij  is an arbitrary value [ 1 ] 

 

Also, because the exact stresses satisfy the differential equations of equilibrium, 

we can write Eq. ( 2.25 ) as 

 

( 2.30 ) 

 

such that 

 

( 2.31 ) 

 

Eqs. ( 2.30 ) and ( 2.31 ) are important since they relate the calculated and exact 

stresses in the volume of the stress calculation domain. Indeed, we shall use these 

relationships when we consider an error bound on the calculated stresses. 

 

Finally, we note that the PEM, and the REP and NPF-based methods satisfy the 

condition on 
 m

  given in Eq. ( 2.6 ), irrespective of PN . However, the RCP 

method and the new method only satisfy this condition when 1PN  (because 
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these two methods assume 
 m

  to be continuous across element boundaries 

whereas 
 m

  does not show that continuity). 

 

2.6.2 Nonlinear analysis 

 

In nonlinear analyses, all theory presented is applicable, but of course the current 

volumes and current Cauchy stresses must be used; see ref. [ 1 ]. That is, if t  

denotes “in the current configuration”, the stress coefficients ̂
t

 are obtained using 

 

( 2.32 ) 

 

 

where  mtV  is the current volume of element m  (obtained using the displacement 

solution U
t

ˆ ), 
 m

h

t
  lists the directly-calculated Cauchy stresses at time t , and U

t
ˆ  

is established using a step-by-step incremental solution procedure [ 1 ]. 

 

Therefore, once U
t

ˆ  has been established, the enhanced stress predictions are 

obtained using Eq. ( 2.32 ), as in linear analysis. 

 

2.6.3 Computational expense 

 

The computational expense to furnish improved stress predictions is given by the 

numerical effort involved in solving for 18 unknown stress coefficients in 2D 

solutions (and the 60 unknown stress coefficients in 3D solutions), for each 

element m  where stresses are to be improved. 
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This expense is small, as compared with factorising the global stiffness matrix. 

Indeed, in a typical 2D linear static analysis problem (with 510  degrees of 

freedom, meshed using 4-node elements), the expense to enhance the stresses for 

the entire assemblage is about %1  of the total solution cost; see Table 2.1. In 

nonlinear analyses the expense is, relatively, even lower, because a step-by-step 

solution procedure is needed to obtain U
t

ˆ . 

 

4-node quadrilateral 2D elements 

No. of degrees of 
freedom 

No. of elements Half-bandwidth of K Cost of enhancing 
the stresses 

1.0E+05 5.0E+04 454 1.4% 

1.0E+06 5.0E+05 1,418 0.14% 

1.0E+07 5.0E+06 4,532 0.014% 

 

8-node hexahedral (brick) 3D elements 

No. of degrees of 
freedom 

No. of elements Half-bandwidth of K Cost of enhancing 
the stresses 

1.0E+05 3.3E+04 3,372 0.63% 

1.0E+06 3.3E+05 14,916 0.032% 

1.0E+07 3.3E+06 67,956 0.0015% 

 

Table 2.1: Estimate of the computational cost to establish the enhanced stresses for the 

entire assemblage, as compared with the total solution cost, for typical: (a) 2D and (b) 3D 

linear static analysis problems. The estimate does not include the cost of the element 

computations, and this would make the comparison more favourable 

 

Of course, in practice, the stress calculations need not be performed for the entire 

assemblage, but instead might be performed only for those elements where stresses 

should be improved. 
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Chapter 3 

3. Insight into the new method in 1D solutions 

Insight into the new method in 

1D solutions 

 

In this chapter, we first present the solution procedure of the new stress 

improvement method in 1D settings, then we analyse the method in detail. 

Thereafter, we compare the performance of the new method with that of the PEM 

and the REP method. 

 

 

3.1 Matrices used in 1D solutions 

 

In the following, we consider the 1D case with only one stress component, for 

arbitrary loading and material properties, and assume that the cross-sectional area 

of the 1D structure is constant. In this case, an element-based approach is adopted. 

Hence, to solve for the unknown stress coefficients ̂  for a general element m , we 

apply Eq. ( 2.28 ) with 1PN , 
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( 3.1 ) 

 

and 

 

( 3.2 ) 

 

where  T

321
ˆ   , and x  is the element m local coordinate system. 

 

 

3.2 Reliability and improvement in stress 

prediction 

 

The fundamental objective of the new procedure is to enhance the accuracy of the 

stresses. Mathematically, therefore, our goal is to find stresses 
 m

  such that 

 

( 3.3 ) 

 

with a constant c  1 , dependent on the problem, and ideally c 1 . 

 

Here we use the 1H  semi-norm  mV
 , which, when the function in the norm is 

zero on some part of the boundary, is equivalent to the 1H  norm (by the Poincaré-

Friedrichs inequality [ 1 ], [ 2 ]). The semi-norm is appropriate for the stresses 

because of Eq. ( 2.29 ). We analyse the 1D case considered in chapter 3.1. 

 

In this case, the distance between the calculated and the exact solution is 
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Because 1PN , Eq. ( 2.30 ) gives 

 

 

 

for all variations of  
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d m
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and hence we obtain from Eq. ( 3.4 ) the result 

 

( 3.5 ) 

 

Using the Cauchy-Schwarz inequality [ 1 ], [ 2 ] 
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( 3.6 ) 

 

 

 

 

In light of Eqs. ( 3.5 ) and ( 3.6 ), we obtain 

 

 

( 3.7 ) 

 

 

 

Finally, because the displacements vary linearly 

 

 

 

and hence we obtain from Eq. ( 3.7 ) the required result 

 

( 3.8 ) 

 

with 
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where 1c . It is interesting to note that if 1Pex  , we have 0c , such that the 

calculated stresses are exact (when measured in the 1H  semi-norm), irrespective 

of the coarseness of mesh used. 

 

Eq. ( 3.8 ) proves the new method satisfies the fundamental requirement in Eq. ( 

3.3 ) for each element, as well as for the entire domain. Also, because  m

h  is 

stable and converging in the norm [ 1 ], [ 14 ], Eq. ( 3.8 ) proves the method is 

reliable in 1D solutions and the stresses (within each element) are always more 

accurate than  m

h  when measured in the norm used. 

 

 

3.3 Optimality of stress prediction 

 

Let  me  be the point-wise error between the calculated and the exact solution, 

 

 

 

Hence, we have from Eq. ( 2.30 ) 

 

( 3.9 ) 

 

for all variations of 
 

1Pm  . 
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Next consider 

 

( 3.10 ) 

 

 

where 
 





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

dx

dw m

 is any element in 1P . 

 

Using the orthogonality condition given in Eq. ( 3.9 ), we find 

 

 

 

such that 

 

 

 

Therefore, using      mmmw  ~ , we obtain the result 

 

( 3.11 ) 

 

This gives valuable insight into how the method chooses the stress from the 

possible patterns contained in the interpolation functions. Indeed, Eq. ( 3.11 ) tells 

that  m  is chosen so as to minimise the error within the volume of each element 

m , i.e. the stress is, in fact, the optimal stress prediction. 
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3.4 Convergence of stress prediction 

 

An important result of interpolation theory is that there exists an interpolation 

function  
2Pm

I   such that 

 

( 3.12 ) 

 

where h  is the mesh size parameter, ĉ  is a constant independent of h , and 
k

  is 

the Sobolev norm of order k  in the volume, V , of the body being considered [ 1 ], 

[ 2 ]. 

 

Using Eq. ( 3.11 ) with the case    m

I

m  ~ , we have 

 

( 3.13 ) 

 

Since  
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m
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m

Iex m
 



, we can write Eq. ( 3.13 ) as 

 

( 3.14 ) 

 

and hence we obtain from Eqs. ( 3.12 ) and ( 3.14 ) the final result 

 

( 3.15 ) 

 

where the constant c  used here is independent of h  but depends on the exact 

solution ex . 
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Fig. 3.1: Ad-hoc test problem to assess the performance of the proposed scheme in 1D 

solutions (
910110E ,

4101 A ): (a) the test problem and (b) stress convergence 

curves measured in the Sobolev norm 
k
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Fig. 3.2: Stress solutions to the 1D problem defined in Fig. 3.1a for various different 

densities of mesh, where n  denotes the number of elements used 

 

Therefore,  m  converges to the exact theory of elasticity solution with order 

 2hO  in the 1H  norm. In problems where the nodal point displacements are the 

exact displacements, it follows from Eq. ( 3.15 ) that  m  converges at  3hO  in 

the 0H  norm. However, if the nodal point displacements are not the exact 

displacements, the accuracy of  m  is limited by that of  mu ; hence, the highest 
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order of convergence of  m  that we can expect is  2hO  when measured in the 

0H  norm. 

 

Of course, these derivations represent theoretical results; however, experience 

shows this indeed closely represents the actual behaviour of the discretisations. 

Fig. 3.1 and Fig. 3.2 shows the results of an application in which the nodal point 

displacements are the exact displacements; see ref. [ 1 ]. In Fig. 3.1, we see that 

the order of convergence of the enhanced stress is 2.99 in the 0H  norm and 1.99 

in the 1H  norm, which compares well with the theoretical result. We further 

observe in Fig. 3.2 that when 3n , the directly-calculated stress is zero at every 

point in the domain (as discussed by Grätsch and Bathe [ 8 ] and Hiller and Bathe [ 

22 ]), but the enhanced stress is still quite reasonable. 

 

Fig. 3.3 shows the results of an application in which the nodal point displacements 

are not the exact displacements. As expected, in this case,  m  converges at  2hO  

in the 0H  norm, the same as for  mu , but one order higher than that observed for 

 m

h . 
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Fig. 3.3: Stress convergence curves measured in the Sobolev norm 
k

  of order k  to the 

1D problem defined in Fig. 3.1a, where, in this case, the Young’s modulus varies as 

   91020sin64.01110  xE   

 

 

3.5 Numerical example: a rotor blade problem 

 

To illustrate the effectiveness of the new method, the response of a rotor blade is 

studied. Fig. 3.4 defines the problem. The inboard end of the rotor blade is driven 

at a constant angular velocity  ; the outboard end is either left free or is welded to 
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a rigid hoop. The rotor blade is idealised as an assemblage of two 2-node truss 

elements, and the problem is solved using both the usual displacement-based 

method and the proposed scheme. 

 

 

 

 

 

 

 

 

Fig. 3.4: Rotor blade problem (
910110E , 4400 , and 10 ). The rotor blade 

spins at a sufficiently high rate that gravitational forces are negligible as compared with 

the centrifugal forces which act on the blade. The blade is either pinned at node 1 and is 

free at node 3 ( 0ˆ
1 U  and 0ˆ

3 U ), or is pinned at node 1 and is welded to a rigid hoop 

at node 3 ( 0ˆˆ
31 UU ) 

 

In this problem, one element has a constant cross-sectional area and the other 

element has a varying area, as shown in Fig. 3.4. We note that the varying area 

enters in the equilibrium equation, so that Eq. ( 2.13 ) becomes 

 

 

 

where  mL  is the length and  xA  is the cross-sectional area of element m , of 

which the latter is a function of x . 

 

Fig. 3.5 shows the stress results. In Fig. 3.5 (and all other figures), “exact” refers 

to the exact analytical (or a very accurate numerical) solution of the mathematical 
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model, “directly-calc” refers to the directly-calculated finite element stresses, and 

“prop. scheme” refers to the finite element stresses predicted using the proposed 

stress improvement scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5: Stress results for the rotor blade problem defined in Fig. 3.4: (a) the statically 

determinate pinned-free case ( 0ˆ
1 U  and 0ˆ

3 U ), and (b) the statically indeterminate 

pinned-pinned case ( 0ˆˆ
31 UU ) 
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Considering the results, we see that the enhanced solution for the stress is 

significantly more accurate than given directly by the displacements. We further 

observe that the gradient of the enhanced stress is exact at every point in element 

1. Indeed, this will always be the case when the exact stress varies quadratically 

across the element domain; see Eq. ( 3.11 ). 

 

Next, the rotor blade problem is solved using the PEM [ 23 ] and the improved 

REP method [ 28 ]. Typically, the PEM is used to calculate improved interelement 

tractions for the purposes of error estimation; however, in our comparison the 

governing equations of the PEM are used to calculate improved stresses. 

 

Fig. 3.6 shows the stress results, where, for consistency, all methods use only one 

element in the stress calculation domain. We see that the new procedure performs 

best. This is expected because the new procedure uses a stress with a higher degree 

of interpolation than can be used with the other methods, and (most importantly) 

the solution of the new procedure satisfies the properties discussed in section 

2.6.1. Also, the assumptions employed in the PEM and the REP method limits the 

accuracy of the results; see refs. [ 23 ], [ 28 ] and the earlier discussion in the 

introduction of the thesis. 
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Fig. 3.6: Stress results for the rotor blade problem defined in Fig. 3.4: (a) the statically 

determinate pinned-free case ( 0ˆ
1 U  and 0ˆ

3 U ), and (b) the statically indeterminate 

pinned-pinned case ( 0ˆˆ
31 UU ). The PEM assumes a linear stress, the REP method 

assumes a constant stress, and the proposed scheme assumes a quadratic stress in each 

element domain 

 

Lastly, we note that when  VPf
B

1 , the solution obtained using the RCP 

method is similar to that obtained using the new method (see section 4.4.1); hence, 

for clarity, we do not consider the RCP results here. 
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Chapter 4 

4. Insight into the new method in 2D solutions 

Insight into the new method in 

2D solutions 

 

In this chapter, we first present the solution procedure of the new stress 

improvement method in 2D settings for a general element m . Then, we discuss 

how to establish enhanced stresses at a specific node i , and how to deal with 

discontinuous solutions. Thereafter, we assess the performance of the method in 

static, dynamic and nonlinear solutions. 

 

Since the performance of the RCP methods exceeds that of the REP method (by a 

considerable margin) [ 29 ], we only compare the stresses of the new procedure 

with the RCP stresses here. 

 

 

4.1 Matrices used in 2D solutions 

 

In 2D (and 3D) problems, better results are obtained when multiple elements are 

used in the stress calculation domain. Hence, to solve for the unknown stress 

coefficients ̂  for a general element m , we use the union of elements that 
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surrounds (and includes) element m  as the stress calculation domain; see Fig. 4.1. 

Then, we apply Eq. ( 2.28 ) with 

 

( 4.1 ) 

 

 

 

( 4.2 ) 

 

 

 

( 4.3 ) 

 

and 

 

( 4.4 ) 

 

 

where  Tyzyzzzzzyyyy

616161
ˆ   , and  zy,  are the 

locally based coordinates of the stress calculation domain. 

 

The above description completely defines the stress calculation domain for all 

types of element and mesh patterns, and no special procedures are needed near the 

boundaries (nor at the corners) of the mesh. Note that because there is only one 

possible configuration of stress domain for each element m , the averaging 

procedure required in refs. [ 35 ], [ 36 ] is no longer needed. 

 

The RCP method uses the same definition of stress calculation domain [ 30 ]. 
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Fig. 4.1: Stress calculation domain used to solve for the unknown stress coefficients ̂  for 

a general 4-node 2D element m  

 

 

4.2 Solution procedure for a specific node i 

 

For certain problems, we are interested in the stresses at a specific node i , rather 

than within the element domain. In this situation, we use the union of elements 

connected to node i  as the stress calculation domain. Then, we apply Eq. ( 2.28 ) 

to solve for the unknown stress coefficients, with the interpolation matrices given 

in Eqs. ( 4.1 ) to ( 4.3 ). 

 

(a) Interior element 

(b) Corner element 

(m) 

(m) 
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In the exceptional case where only one element m  is connected to node i  (e.g. in 

a corner of the meshed geometry), the elements properly connected to element m  

should also be included in the stress domain; see Fig. 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2: Stress calculation domain used to solve for the unknown stress coefficients ̂  at 

a specific node i  for a 4-node 2D element mesh 

 

 

(a) Interior node 

(b) Boundary node 

(c) Corner node 
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4.3 Dealing with discontinuous solutions 

 

In an actual implementation, the stress calculation domain only contains elements 

with equal settings. Boundaries between the element groups are treated as free 

boundaries; see for example Fig. 4.3. This prevents the scheme from smoothing 

discontinuities present in the exact solution. 

 

 

 

 

 

 

 

 

Fig. 4.3: Stress calculation domain for a general 4-node 2D element m  between a 

titanium housing and a steel Keensert. Element m  belongs to the titanium housing group 

of elements. Since the steel Keensert elements are not included in the stress domain, there 

is no smoothing across the material discontinuity 

 

 

4.4 Static analysis problems 

 

Two classes of problems are considered: the first where 1Pf
B
 , and the second 

where 1Pf
B
 . We show that the new stress improvement method gives good 

results for both classes of problems, whereas the RCP method only performs well 

when 1Pf
B
 . 

 

Steel Keensert 
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4.4.1 The actuator problem: a case when f
 B

 ∈ P1 

 

The first problem solution involves an actuator subjected to pressure loading. Fig. 

4.4 defines the problem. The problem is statically indeterminate and is solved 

using both the new method and the RCP method. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4: Actuator subjected to pressure loading problem (
31072E , 3.0 , 

thickness 1 , plane stress conditions). The pressure loading is produced by passing 

current through the armature in the presence of a magnetic field. The armature is flexible 

as compared to the actuator 

 

Fig. 4.5 shows the stress convergence curves when a sequence of 3- and 4-node 

element meshes are used for the solutions. The sequence of meshes is constructed 

by starting with a mesh of uniform elements of (approximately) equal size, then 

subdividing each element into four equal new elements to obtain the next (refined) 

mesh in the sequence, and so on; see Fig. 4.6. The mesh size parameter h  is 

calculated by averaging the size of all elements in the assemblage (where the size 

2 
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is taken to be the diameter of a circle which encompasses that element), and the 

starting meshes to the convergence curves given in Fig. 4.5 are shown in Fig. 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: Stress convergence curves for the actuator problem defined in Fig. 4.4, 

measured in the 
0H  norm for: (a) the 3-node triangular and (b) the 4-node quadrilateral 

element 
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Considering the results in Fig. 4.5, we see that the RCP solution is similar to the 

solution obtained using the proposed scheme. This will always be the case when 

1Pf
B
 , because the quadratically varying stresses are sufficiently rich to satisfy 

equilibrium point-wise -- that is, Eq. ( 2.25 ) reduces to Eq. ( 2.20 ) when 1Pf
B
 . 

However, the solutions are not identical due to the Poisson coupling effects in Eq. 

( 2.19 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6: Refinement sequence used in stress convergence studies. The thick lines depict 

the initial mesh, and the thinner lines depict the next (refined) mesh in the sequence for: 

(a) the 3-node triangular and (b) the 4-node quadrilateral element 
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(b) 
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Fig. 4.7: Starting meshes for the stress convergence curves given in Fig. 4.5: (a) the 3-

node triangular and (b) the 4-node quadrilateral element 

 

The new procedure can also be used to furnish improved stress predictions for the 

incompatible modes formulation [ 1 ]; see Fig. 4.8. In these calculations, the 

unknown stress coefficients are obtained using Eq. ( 2.28 ), where 
 m

h  is 

established from the incompatible modes solution. This enriches the space 

implicitly assumed for 
 m

h ; however, since 
 m

  is assumed quadratically 

interpolated, the solution is similar, both with and without incompatible modes. 

 

(a) 

(b) 
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Fig. 4.8: Stress convergence curves for the actuator problem defined in Fig. 4.4, 

measured in the 
0H  norm, for the 4-node quadrilateral element with (dashed line) and 

without incompatible modes (solid line) 
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Mesh 1 (h=0.96) 

 

 

 

 

 

 

 

Mesh 2 (h=0.45) 

 

 

 

 

 

 

 

Mesh 3 (h=0.23) 

 

 

 

 

 

 

 

Fig. 4.9: von Mises stress band plots for the actuator problem defined in Fig. 4.4, where 

the forward leg rollers are removed and the material stiffness is reduced by a factor 10. 

The plate is idealised as an assemblage of 3-node triangular elements. The stress in the 

band plots is un-averaged (and is shown on the deformed geometry), while the numerical 
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stress values are the averaged nodal point stresses with the solution error given in 

parentheses 

 

Next, consider the situation where the rollers supporting the forward leg are 

removed and the material stiffness is reduced by a factor of ten. This requires a 

large deformation solution. Fig. 4.9 shows the von Mises stress results for three 

different meshes (plotted on the deformed geometry). As is clear from this figure, 

the procedure performs well in the large displacement analysis, and significantly 

enhances the stress prediction. Indeed, we see the enhanced stresses 
 m

  are more 

accurate than the directly-calculated stresses 
 m

h , even when four times more 

elements are used to calculate 
 m

h  (i.e. 
 m

  of Mesh 1 is more accurate than 
 m

h  

of Mesh 2, etc.). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10: Large displacement, large strain, rubber plate problem, stretched to 100% of 

its original length (Ogden material law: 7.01  , 3.02  , 01.03  , 8.11  , 

6.12  , 5.73  , 1000 , thickness 5.0 , plane stress conditions). Because of 

symmetry, only one-quarter of the plate is modelled 
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Finally, we solve a large displacement, large strain problem, which includes 

nonlinear material effects. Fig. 4.10 defines the problem. The rubber plate is 

stretched to 100% of its original length by imposing a uniform horizontal 

displacement at the right end. Fig. 4.11 and Fig. 4.12 show the von Mises stress 

results. As expected, the stresses are considerably improved, especially in those 

regions of high stress gradients, which, of course, is due to the fact that the 

directly-calculated stresses are constant for the 3-node finite element. Indeed, in 

Fig. 4.12, we show that the stresses of the new scheme (calculated using 3-node 

elements) are comparable to those given directly by the displacements of a 6-node 

element mesh. 
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Fig. 4.11: von Mises stress band plots to the rubber plate problem defined in Fig. 4.10. 

The plate is idealised as an assemblage of 3-node triangular elements, and the results are 

shown in the same format as in Fig. 4.9 
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Fig. 4.12: von Mises stress results to the rubber plate problem defined in Fig. 4.10, along 

section A-A. The coordinate z  references the deformed geometry 
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4.4.2 The armature problem: a case when f
 B

 ∉ P1 

 

In this problem solution, the static response of an armature in a magnetic field is 

studied. Fig. 4.13 defines the problem. We wish to establish the stresses in the 

armature due to the Lorentz force. The problem is solved using both the new 

method and the RCP method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13: Armature in a magnetic field problem (
31072E , 0 , thickness 1 , 

plane stress conditions). A battery drives constant (direct) current through the armature, 

and the moving charges experience a Lorentz force in the presence of the magnetic field. 

The Lorentz force is modelled as a body force 
B

Yf . We use 0  to avoid stress 

singularities at the four corners 

 

Fig. 4.14 shows the stress convergence curves when a 1005  starting mesh is 

used. We see that the new method performs well, but the RCP method gives 

stresses that are less accurate than 
 m

h  for coarse meshes. 
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Fig. 4.14: Stress convergence curves for the armature problem defined in Fig. 4.13, 

measured in the 
0H  norm for: (a) the 3-node triangular and (b) the 4-node quadrilateral 

element 
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The reason that the RCP method gives inaccurate results is that the equilibrium 

constraint in Eq. ( 2.20 ) is too severe when 1Pf
B
 . Indeed, to satisfy differential 

equilibrium, the RCP method uses the following additive decomposition: 

 

( 4.5 ) 

 

where 
 m

sh ..  is the unknown homogenous solution of Eq. ( 2.20 ), and 
 m

sp ..  is a 

particular solution of the same equation, to be established a priori [ 29 ], [ 30 ]. 

 

The homogenous solution 
 m

sh ..  is assumed to be an element in the subspace of 

self-equilibrated stresses in 2P  -- that is, 
   ν.. 
m

sh , where ν  is defined in Eq. ( 

2.26 ) -- and the unknown stress coefficients in 
 m

sh ..  are obtained using Eq. ( 2.19 

), 

 

( 4.6 ) 

 

 

with the particular solution 
 m

sp ..  taken as: 

 

 

 

 

Therefore, the dimension of 
 m

sp ..  depends on 
B

f , and the components in Eq. ( 4.5 

) are mismatched when 1Pf
B
 . As a result, the RCP method is unreliable when 
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1Pf
B
  -- e.g. in problems with electromagnetic forces, piezoelectric forces [ 49 

], etc. -- and gives inaccurate results. 

 

 

4.5 Dynamic analysis problems 

 

Our objective in this section is to assess the performance of the new method and 

the RCP method in solving dynamic analysis problems. We show that the new 

method performs well in dynamic analysis and can be used for distorted 

isoparametric elements, whereas the RCP method can only be used if the elements 

in the assemblage are un-distorted. 

 

4.5.1 Solution procedure 

 

Stress calculations in dynamics are performed as those in statics, except now the 

d’Alembert inertia forces are included in 
B

f . That is, to obtain the stress 

coefficients ̂
t

 of the new method at time t , we use 

 

( 4.7 ) 
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where  m  is the mass density of element m , U
t ̂

 lists the nodal point 

accelerations (i.e. the second time derivative of U
t

ˆ ), and the nodal solutions are 

established using a time integration scheme [ 1 ]. In our examples, we use the 

Bathe implicit time integration procedure because spurious oscillations are very 

small [ 51 ] to [ 53 ]. Fig. 4.15 gives an example solution where, for the mesh 

used, we give the best results obtained by the Newmark method (trapezoidal rule) 

and the Bathe method when changing for each method the time step size (i.e. the 

CFL number). 
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Fig. 4.15: Impact of an elastic bar (
910200E , 8000 , 1A ). The bar is 

initially at rest, and the response at time 
3101 t  is sought. During this time the wave 

propagates to 5x , there are no reflections. The bar is idealised as an assemblage of 1D 

2-node elements of size 025.0h  ( 400  elements). We give the best results obtained 

using the Newmark method and the Bathe method when changing for each method the 

time step size (i.e. the CFL number) 

 

To obtain the RCP stresses, we use Eqs. ( 4.5 ) and ( 4.6 ), with the particular 

solution taken as: 
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 ˆ,  ; however, establishing this particular 

solution for distorted isoparametric elements is difficult and an outstanding issue 

to be solved. 
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4.5.2 Numerical examples 

 

The first problem solution involves the propagation response of a wave in an 

elastic bar. Fig. 4.16 defines the problem. While solved using 2D meshes, due to 

the geometry and the material definition, this is effectively a 1D wave solution. 

The problem is solved using both the new method and the RCP method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16: Propagation of a wave in an elastic bar problem (
910200E , 7800 , 

0 , thickness 2.0 , plane stress conditions). The bar is initially at rest, and is 

subjected to a sudden pressure load at one end. The response at time 001284.0t  is 

sought. During this time the wave propagates to 5.6x , there are no reflections 

 

Fig. 4.17 shows the stress results at time 001284.0t ; as is clear from this figure, 

both the new method and the RCP method gives good results. 
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Fig. 4.17: Longitudinal stress results at 001284.0t  to the wave propagation problem 

defined in Fig. 4.16, using 40  time steps. The bar is idealised as an assemblage of 

regular 4-node quadrilateral elements, where h  denotes the element size and t  is the 

time step used. In each case, the CFL number =1 
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equilibrium constraint in Eq. ( 2.20 ) is too severe when the calculated 

accelerations vary significantly over the stress calculation domain. 

 

In the second problem solution, a lightweight cantilevered plate subjected to base 

excitation is studied. Fig. 4.18 defines the problem. The problem is solved using 

the new procedure. The RCP method cannot be used, since the elements in the 

assemblage are distorted. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18: Lightweight cantilevered plate subjected to base excitation problem 

(
910200E , 7800 , 0 , thickness 1 , plane stress conditions). The plate is 

initially at rest, and the response at 0.01902t  is sought. No physical damping is 

introduced in the model. The base of the plate is rigid, and the enforced displacement 

dynamically excites the first eight natural modes of the plate. We use 0  to avoid 

stress singularities at the two corners of the built-in end 

 

Fig. 4.19 and Fig. 4.20, respectively, show the von Mises band plots and the stress 

convergence curves at time 0.01902t . We see that the enhanced stresses are 

significantly more accurate than the directly-calculated values, both for the 3-node 

triangular and the 4-node quadrilateral element, and converge at order  2hO . 
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Fig. 4.19: von Mises stress band plots at 0.01902t  to the lightweight cantilevered 

plate problem defined in Fig. 4.18, using 152  time steps. The plate is idealised as an 

assemblage of 3-node triangular elements. The results are shown in the same format as in 

Fig. 4.9 
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Fig. 4.20: Stress convergence curves at 0.01902t  for the lightweight cantilevered 

plate problem defined in Fig. 4.18, using 152  time steps, measured in the 
0H  norm for: 

(a) the 3-node triangular and (b) the 4-node quadrilateral element 
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Concluding remarks 

 

The objective of this thesis was to present a general stress improvement method 

that can be used in static, dynamic and nonlinear solutions. We focused the 

development on the use of low-order displacement-based elements. 

 

First, we showed that the PEM and the REP, RCP and the NPF-based methods [ 

23 ] to [ 36 ] can all be derived from (or be related to) a mixed formulation, based 

on the Hu-Washizu principle, where the stress-strain relationship is point-wise 

relaxed but the fulfilment of equilibrium is enhanced. 

 

This mixed variational formulation gives insight, which we used to develop a new 

stress improvement scheme. 

 

For 1D problems with arbitrary loading and material properties, but constant cross-

sectional area, we proved that the new stress improvement scheme is reliable, 

giving stresses that are, in fact, optimal stress predictions (in the norm used), with 

the order of convergence being quadratic, i.e. with the same order as the 

displacements. This convergence behaviour was also seen numerically in 1D and 

2D solutions. Indeed, we obtained excellent numerical results for the 1D and 2D 

problems solved, with the predicted stresses converging quadratically and with a 

significant downward shift. 
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While only 1D and 2D solutions are considered here, in linear and nonlinear 

analyses, the proposed method is directly applicable to 3D solutions in an 

analogous way, and similar results can be expected. 

 

Regarding future research, the possibilities to establish solution error estimates [ 7 

], [ 8 ], and to apply the procedure in shell analyses [ 2 ] and in the solution of 

multiphysics problems [ 54 ] might be explored. 
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Appendix A 

A. The NPF-based method 

The NPF-based method 

 

When considering the finite element solution, two important facts hold, namely, 

(1) at each node, the sum of the element nodal point forces are in equilibrium with 

the externally applied nodal point loads, and (2) each element is in force and 

moment equilibrium under the action of its own nodal point forces -- and, most 

importantly, these two properties hold for any coarseness of mesh -- just as in the 

analysis of truss and beam structures, see refs. [ 1 ] and [ 14 ]. For this reason, it 

seems somewhat natural to use these forces to calculate improved stress 

predictions, but the details of establishing a general and effective algorithm are far 

from apparent. 

 

Our objective in this appendix is to present a novel approach to calculate the 

element stresses using the element nodal point forces. That is, the solution for the 

element nodal point displacements is performed as usual, the element nodal point 

forces are calculated as usual, and then a simple procedure is employed to 

calculate the element stresses from the nodal point forces using the principle of 

virtual work. Accordingly, we call this procedure the “nodal point force based 

stress calculation method” or the “NPF-based method” giving “NPF-based 

stresses”, for short. 
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To demonstrate the effectiveness of the nodal point force based stress calculation 

method, we first apply the procedure to the 3- and 4-node two-dimensional 

continuum solid elements, and solve a number of problems. As expected, we see a 

significant improvement in the accuracy of the stresses for all problems 

considered. Then, we apply the procedure to the 4-node three-dimensional 

tetrahedral elements and solve the same set of problems considered before, but of 

course this time in three-dimensional settings. Once again, we see a significant 

improvement for all problems considered. These results are of particular interest, 

since reliable improvements in stresses for the 4-node tetrahedral element, using 

incompatible modes or enhanced strains, are difficult to reach in general analyses [ 

41 ] to [ 43 ]. 

 

 

A.1 Using the principle of virtual work 

 

The nodal point force based stress calculation method (referred to later as the 

NPF-based method) uses, as its ingredients, what we shall call the principles of 

virtual work in the form of boundary tractions and in the form of internal stresses. 

We review these general and well-known principles in this section, and summarize 

and focus on some of their powerful properties, see also ref. [ 1 ]. In sections A.2 

and A.3, we apply these principles -- and their properties -- to establish our simple 

and effective algorithm for the improved stress predictions, in two- and three-

dimensional settings, respectively. 
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A.1.1 The principle of virtual work in the form of 

boundary tractions 

 

Consider the equilibrium of a general three-dimensional body of volume V  and 

surface area S . The body is supported on the area uS  with prescribed 

displacements û , and is subjected to surface tractions 
S

f  on the area fS . In 

addition, the body is subjected to externally applied body forces 
B

f  per unit 

volume. We assume linear analysis conditions. 

 

In the differential formulation of the problem we seek to calculate the response of 

the body from the governing differential equations of equilibrium and 

compatibility, with the constitutive relationships, subject to the applied boundary 

conditions. That is, we want to solve 

 

 

 

 

subject to 

 

 

 

where exu , ex  and ex  are the exact displacements, strains and stresses, 

respectively,   is the differential operator on exu  to obtain the strain components 

ex , C  is the stress-strain matrix, and n  is the unit outward normal vector to the 

surface fS . 
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:

A second, but entirely equivalent approach to the solution of the problem is given 

by the variational formulation, that is, the principle of virtual work [ 1 ], [ 2 ], [ 38 

]. This formulation states that for any continuous virtual displacement field u  , 

zero on uS , imposed onto the body in its state of equilibrium, the total internal 

virtual work is equal to the total external virtual work; that is: 

 

( A.1 ) 

 

Of course, closed-form analytical solutions to these equations can only be found 

when relatively simple problems are considered, and so the objective of the finite 

element method is to establish for complex problems a numerical solution which 

satisfies the above governing equations as closely as possible. To this end, we 

assume in the displacement-based finite element method a displacement field 

within each element m , that is, 
   

UHu
mm

  where 
 m

H  is the displacement 

interpolation matrix, and U  contains the nodal point displacements of the 

assemblage. With this assumption, Eq. ( A.1 ) becomes: 

 

( A.2 ) 

 

 

 

where 
 m

B ,  mV , and 
 m

fS  are the strain-displacement matrix, the volume, and 

the surface area with externally applied tractions of element m , respectively, and 

we sum over all elements in the mesh, see for example ref. [ 1 ]. 

 

If the body is adequately constrained, the stiffness matrix established from Eq. ( 

A.2 ) can be factorised to solve for U , from which the directly-calculated finite 
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element stress 
 m

h  is determined using the derivatives of the displacement 

solution  

 

( A.3 ) 

 

An important fact is that -- for the continuum considered -- the principle of virtual 

work holds, of course, for the entire body and when applied to any arbitrary 

segment of the body. Therefore, let us consider this segment to be a single finite 

element and define the element nodal point forces, in fact already used in Eq. ( A.2 

), 

 

( A.4 ) 

 

where U  is the displacement vector calculated in Eq. ( A.2 ). Now making the 

fundamental assumption that there exists and we can calculate an improved finite 

element stress 
 m

  that results into element surface tractions equivalent in the 

virtual work sense to these nodal point forces (including the effect of the body 

forces), we obtain from Eq. ( A.2 ) 

 

( A.5 ) 

 

where 
 m

n  is the unit normal to the element boundary, and, of course, the element 

nodal point forces 
 m

F correspond to the directly-calculated stresses 
 m

h : 

 

( A.6 ) 

 

In the absence of body forces, Eq. ( A.5 ) reduces to: 
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( A.7 ) 

 

This equation states that for any virtual displacement field contained in the 

element interpolation functions of 
 m

H , the virtual work by the element boundary 

tractions is equal to the virtual work by the element nodal point forces, and hence 

we call this equation “the principle of virtual work in the form of boundary 

tractions”. 

 

We use this relation to establish the finite element stresses without differentiation 

of another field, and use interpolation functions that correspond to a larger stress 

space than implicitly used for 
 m

h . As a result 
 m

  should be closer to the exact 

stresses than 
 m

h . Furthermore, if the finite element stresses are calculated using 

the principle of virtual work in traction form, we have 

 

Property 1: Every element in the assemblage is in force and moment 

equilibrium under the action of its boundary tractions. 

Property 2: An averaged equilibrium is satisfied over the finite element domain. 

Property 3: The patch test [ 1 ] is satisfied. 

 

Property 1 holds since the element nodal point forces satisfy this property, see ref. 

[ 1 ]. Note that therefore, no work is done under any imposed rigid body motion. 

Therefore, also 

 

( A.8 ) 
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and hence Property 2 follows 

 

( A.9 ) 

 

Therefore, rather than imposing equilibrium on the differential level, the principle 

of virtual work in traction form imposes an averaged equilibrium over the finite 

element domain. 

 

Finally, if the finite element solution U  is exact, the element nodal point forces 

correspond to the exact element boundary tractions and Property 3 follows. 

 

A.1.2 The principle of virtual work in the form of 

internal stresses 

 

Although the finite element solution obtained in Eq. ( A.2 ) does not satisfy 

differential equilibrium at every point in the continuum, as already mentioned, two 

important properties always hold for any coarseness of mesh [ 1 ], [ 14 ]. 

 

Nodal Point Equilibrium:  At any node the sum of the element nodal point forces 

is in equilibrium with the externally applied nodal 

loads. 

Element Equilibrium: Each element m  is in force and moment equilibrium 

under the action of its nodal point forces, 
 m

F . 

 

Hence, we also require in our procedure that the improved finite element stress 

must correspond to the element nodal point forces given in Eq. ( A.6 ); that is, we 

require 
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( A.10 ) 

 

Equation ( A.10 ) states that for any virtual displacement field contained in the 

element interpolation functions, the element internal virtual work is equal to the 

virtual work of the element nodal point forces, and hence we call this equation 

“the principle of virtual work in the form of internal stresses”. 

 

Unlike for Eq. ( A.5 ), not all the equations in Eq. ( A.10 ) are linearly independent 

of each other. Specifically, in two-dimensional analysis, the displacement 

interpolation functions contain the three rigid body modes, and hence only 3N  

equations are linearly independent when N  is the number of nodal point element 

displacement degrees of freedom. Additionally, the two forms of the principle of 

virtual work are not necessarily independent of each other. Expressing Eq. ( A.5 ) 

in index notation, we have 

 

( A.11 ) 

 

and hence we obtain 

 

 

 

Thus 

 

( A.12 ) 

 

As a consequence of Eq. ( A.10 ), the right hand side of Eq. ( A.12 ) is zero and we 

have 
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( A.13 ) 

 

Therefore, the benefit of imposing the principle in both forms is that differential 

equilibrium over the element is satisfied more closely than if the principle were 

only imposed in traction form. 

 

Finally, from Eqs. ( A.9 ) and ( A.13 ) it is evident that the two principle of virtual 

work statements are only independent of each other if the assumed space for 
 m

  

contains functions of high enough order. 

 

 

A.2 A scheme for two-dimensional problems 

 

The basis of the nodal point force based stress calculation method is the fact that 

the element nodal point forces are of higher quality than the directly-calculated 

finite element stresses, and so we use the two principle of virtual work statements 

discussed above to calculate the finite element stresses. 

 

However, we need to recognize that for low interpolation orders of element 

displacements, the element nodal point forces are not unique to a particular stress 

state since they result from tractions acting on either face that the node connects 

to. Consequently, we use the nodal point forces acting on a predetermined patch of 

elements and call this patch of elements “the stress calculation domain”. The basic 

steps employed by the procedure are: 
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1. Idealise the structure or continuum as an assemblage of discrete finite 

elements, and perform the usual finite element analysis to solve for the 

element nodal point displacements U , and the element nodal point forces 

 m
F . 

2. Assume appropriate functions for 
 m

  for each displacement-based element 

contained within the stress calculation domain. 

3. Use the two principle of virtual work statements -- Eqs. ( A.5 ) and ( A.10 ) -

- to solve for the unknown stress coefficients in 
 m

 . 

4. Finally, to establish the improved stresses for a general displacement-based 

element m , in two-dimensional analysis, the stress coefficients 

corresponding to all possible combinations of stress calculation domains that 

contain element m  are calculated using the above steps, and the results are 

averaged. By averaging the stress coefficients, the solution is independent of 

the specific application of stress calculation domain for the element, and the 

maximum amount of element nodal point force information is utilised. 

 

An important decision is to choose appropriate functions for 
 m

 . The functions 

must be symmetric for all stress components so as to ensure invariance, and the 

dimension must be such that the application of the principle of virtual work in both 

forms generates either a determined or an over-determined system of equations. 

There are many possibilities for choosing the stress space; however, evidently, the 

larger the size, the more accurate the solution, and so the largest space which 

results in a well-posed problem for all patch geometries, that is, stress calculation 

domains, which might be used. 
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The numerical effort to calculate the element stresses using the above algorithm is 

small but, also, these stress calculations need of course not be performed for each 

element in the entire finite element assemblage. Instead, the procedure could only 

be used for certain regions of the analysis domain, namely those regions where 

improved stresses are of interest. 

 

In the following we consider two cases: the first case leads to a determined system 

of equations, and the second case leads to an over-determined system of equations 

for the improved element stresses. In both cases, we find that the stress prediction 

is greatly improved. 

 

A.2.1 Improving the stresses of the 4-node 

quadrilateral element: a case where the system 

of equations is determined 

 

Consider an undistorted 4-node quadrilateral element. The displacement trial 

functions are 0C  continuous and take the form: 

 

 

 

Upon differentiating, the strains are found to be: 

 

( A.14 ) 
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Equation ( A.14 ) shows that the stresses do not admit zero shear strain when the 

element is subjected to bending. It follows that the element is much too stiff in 

bending, and this phenomenon is known as shear locking [ 1 ]. 

 

 

 

 

 

Fig. A.1: The stress calculation domain for the 4-node quadrilateral element, two 4-node 

adjacent finite elements; element m would one of the two elements 

 

In order to improve the predictive capabilities, the element stress space must be 

increased, and we use a stress calculation domain corresponding to two adjacent 

displacement-based elements, see Fig. A.1. The stresses within each displacement-

based element m  are bilinearly interpolated, and hence each stress calculation 

domain requires twenty-four coefficients 

 

 

 

 

where the  m

i ,  m

i ,  m

i  are the twenty-four stress coefficients to be found. 

 

These unknown stress coefficients are determined by imposing Eq. ( A.5 ) to all 

possible closed contour boundaries contained within the domain and Equation ( 

A.10 ) to the complete domain. 

 

Finally, the stresses for each displacement-based element m  are obtained by 

averaging the stress coefficients corresponding to the possible stress calculation 

(1) (2) 
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domains that contain element m . Of course, for this stress calculation domain 

there can be no more than four domains that contain element m . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.2: Four plane stress test problems for the 4-node quadrilateral element (E = 72E9, 

ν = 0.0, t =1, p = 100, F = 1,500): (a) the beam in pure bending problem, (b) the finite 

plate with a central hole under tensile loading problem, (c) the square cantilevered plate 

under shear loading problem, and (d) the tool jig problem 
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In this case, the stresses have been assumed to be discontinuous and bilinear; 

however, it can be shown that the application of the two principle of virtual work 

statements in essence reduces the assumption on the stresses to be simply linear, 

and ensures that the mutual forces of action and reaction are continuous across the 

internal boundary. 
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Fig. A.3: von Mises stress results for the beam problem. The solution error is given in 

parentheses. The incompatible modes directly-calculated stress results are given 

underneath the displacement-based directly-calculated stress 

 

The effectiveness of the stress calculation procedure for the 4-node quadrilateral 

element is illustrated using the following four plane stress test problems: a beam in 

pure bending, a finite plate with a central hole under tensile loading, a square 

cantilevered plate under shear loading, and a tool jig problem (like considered in 

ref. [ 14 ]). These test problems are defined in Fig. A.2, and the results (rounded to 
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full digits) are given in Fig. A.3 to Fig. A.6 respectively, where the NPF-based 

stress refers to the stresses calculated using the proposed nodal point force based 

stress calculation method. 
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Fig. A.4: von Mises stress results for the finite plate with a central hole problem. These 

results are presented in the same form as those shown in Fig. A.3 
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Considering the results, the values given in the contour plots are un-averaged, 

while the actual stress values are the averaged nodal point values with the solution 

error shown in parentheses. This error is measured with respect to the solution 

obtained with a very fine mesh of 9-node elements. Also, for reference, the 

directly-calculated stresses using incompatible modes are reported, since these 

values can be more accurate than the stresses obtained without the use of 

incompatible modes [ 1 ]. 

 

As expected, we see a significant improvement in the accuracy of the predicted 

stresses for all problems considered. The beam problems are statically determinate 

problems and hence a large improvement in the stress accuracy should be 

expected, but, also, in the analysis of the plate with a hole and the tool jig problem 

a good improvement in accuracy is seen. 
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Fig. A.5: In-plane shear stress results for the square cantilevered plate problem  
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Fig. A.6: von Mises stress results for the tool jig problem. These results are presented in 

the same form as those shown in Fig. A.3  
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A.2.2 Improving the stresses of the 3-node 

triangular element: a case where the system of 

equations is over-determined 

 

The displacement functions for the 3-node triangular element are linear; therefore, 

the strains (and hence the stresses) are constant over the element in plane stress 

analysis. The element is of particular interest because it is inexpensive to calculate, 

and the use of incompatible modes (or enhanced strains) for this element is not 

effective. 

 

 

 

 

 

 

Fig. A.7: Stress calculation domain for the constant strain triangle; element m would be 

the middle element or a side element 

 

In our procedure, we use a stress calculation domain of any three adjacent constant 

strain triangles, such as shown in Fig. A.7. As for the quadrilateral element, the 

stresses are interpolated bilinearly but now stress inter-element continuity is 

assumed throughout the domain. Hence, each domain leads to  

 

 

 

 

where the i , i , i  are the twelve stress coefficients to be found. 
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Fig. A.8: In-plane shear stress results for the square cantilevered plate problem of Fig. 

A.2c. The directly-calculated stress is compared to the improved stress calculated using 

the discontinuous and continuous stress assumptions 
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Fig. A.9: Five plane stress test problems for the constant strain triangular element (E = 

72E9, ν = 0.0, t =1, p = 100, F = 1,500): (a) the beam in pure bending problem, (b) the 

finite plate with a central hole under tensile loading problem, (c) the square cantilevered 

plate under shear loading problem, (d) the curved structure under pure bending problem, 

and (e) the tool jig problem 
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These unknown stress coefficients are determined by imposing Equation ( A.5 ) to 

all possible closed contour boundaries contained within the domain and Equation ( 

A.10 ) to the complete domain. 
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Fig. A.10: Longitudinal stress results for the beam problem. The solution error is given in 

the parentheses 

 

Finally, the stresses for each constant strain triangle m  are calculated by averaging 

the stress coefficients corresponding to all possible stress calculation domains that 

contain element m , and for the chosen geometry there can be no more than nine 
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different domains that contain element m , three and six for the element taking the 

position of the middle and side elements, respectively. 
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Fig. A.11: von Mises stress results for the finite plate with a central hole problem. These 

results are presented in the same format as those shown in Fig. A.10 

 

In this case, inter-element stress continuity has been assumed. Hence, Eq. ( A.5 ) 
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the equation to the three displacement-based element boundaries. Furthermore, 

since the functional stress space corresponds to only twelve coefficients, the 

problem is over-determined, and so, in general, a solution which exactly satisfies 

the two principle of virtual work statements does not exist; hence we use the least 

squares method to evaluate the stress coefficients. 

 

Mesh 1 

 

 

 

 

 

 

 

 

Mesh 2 

 

 

 

 

 

 

 

 

A 

A 

A 

A 



103 

Mesh 3 

 

 

 

 

 

 

 

 

Fig. A.12: In-plane shear stress results for the square cantilevered plate problem 

 

It is interesting to note that this continuous bilinear stress space could also have 

been used to calculate the stresses for the 4-node quadrilateral element. However, 

since this stress space is smaller than the discontinuous field assumed in appendix 

A.2.2, this assumption will produce less accurate stresses than those given earlier, 

for a comparison see Fig. A.8. 

 

The effectiveness of our procedure for the constant strain element is illustrated 

using the following five plane stress test problems: a beam in pure bending, a 

finite plate with a central hole under tensile loading, a square cantilevered plate in 

shear loading, a curved structure in pure bending, and a tool jig problem. These 

test problems are defined in Fig. A.9, and the results are given in Fig. A.10 to Fig. 

A.14, respectively. 

 

The results are presented in the same form as those given in appendix A.2. We 

note that in this case, the improvement in the accuracy of the predicted stresses is 

even more pronounced than seen for the 4-node quadrilateral element, which of 

course is due to the fact that 
 m

h  is constant in the 3-node finite element. 
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Fig. A.13: Longitudinal normal stress results for the curved structure problem 
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Fig. A.14: von Mises stress results for the tool jig problem. These results are presented in 

the same format as those shown in Fig. A.10 
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A.3 A scheme for three-dimensional problems 

 

Most engineering problems in solids and structures are three-dimensional in 

nature. Since the geometry and other data of the problem are then usually 

complex, the structure is best analysed using finite element methods. The crucial 

step in any finite element analysis is to choose an appropriate mathematical model 

for the physical structure (or more generally the physical phenomenon), since a 

finite element solution solves only this model, see ref. [ 1 ]. For example, if the 

structure is thin in one direction and long in the other two directions a shell 

mathematical model is appropriate, and the problem is solved efficiently using the 

MITC shell elements, see refs. [ 2 ], [ 45 ] to [ 47 ]. However, if the length scales 

of the structure are similar in all directions, and the loading is general, then there is 

no option other than to solve the problem using an assemblage of discrete three-

dimensional solid elements, see refs. [ 1 ] and [ 14 ]. 

 

The simplest three-dimensional solid element available to the finite element 

analyst is the 4-node constant strain tetrahedral element. This element is used 

abundantly in practice because the analyst is able to mesh almost any volume 

regardless of complexity, the element is robust in contact analysis, the element 

matrices are inexpensive to calculate, and the resulting global stiffness matrix has 

a relatively small bandwidth. In a typical approach, the analyst would use a mesh 

of 4-node tetrahedral elements, in a first analysis, to identify the locations of high 

stress concentrations, and then based upon these results, the analyst would refine 

the mesh -- or, if possible, convert the mesh to 10-node or 11-node tetrahedral 

elements -- in the localised regions of concern, see ref. [ 14 ]. This is necessary, 

simply because the stresses predicted using the 4-node tetrahedral element are 

known to be poor, and the lack of accuracy can be seen using stress band plots of 

unsmoothed stresses, see refs. [ 1 ], [ 4 ], [ 14 ]. 
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The NPF-based method uses, as its ingredients, two fundamental virtual work 

statements -- Eqs. ( A.5 ) and ( A.10 ) -- to obtain finite element stresses that we 

can expect to be more accurate than those given by Eq. ( A.3 ). We expect that, in 

general, more accurate stresses are predicted because, firstly, the method allows us 

to assume a richer functional space for the stresses than that implicitly assumed in 

establishing the stiffness matrix, and, secondly, the nodal point forces are used 

which always satisfy the above-mentioned important equilibrium requirements, 

irrespective of the coarseness of the mesh. 

 

Our objective in this section is to apply the NPF-based method to the 4-node three-

dimensional tetrahedral element, and show that by using a simple algorithm, we 

are able to enhance the stresses in localised regions of concern, without having to 

refine the mesh or re-analyse the model. 

 

We showed that the NPF-based method can be used effectively to significantly 

improve the accuracy of the finite element stress predictions obtained using the 3- 

and 4- node displacement-based elements in two-dimensional analyses. It is 

reasonable to expect similar improvements for the 4-node three-dimensional 

tetrahedral element. We solve the same set of problems previously considered, but 

of course this time in three-dimensional settings. As expected, we see a significant 

improvement in the accuracy of the stress predictions for all problems considered. 

These results are of particular interest, since reliable improvements in stresses for 

the 4-node tetrahedral element, using incompatible modes or enhanced strains, are 

difficult to reach in general analyses [ 41 ] to [ 43 ]. 
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A.3.1 Improving the stresses of the 4-node 

tetrahedral element 

 

In order to establish improved stress predictions for a general finite element m , 

the NPF-based stress calculation algorithm employs four basic steps: 

 

1. Solve, in the usual manner, for the element nodal point displacements U , 

and the element nodal point forces 
 m

F , in accordance with Eq. ( A.6 ). 

2. Assume appropriate functions for 
 m

  across a predetermined patch of 

elements; we call this patch of elements “the stress calculation domain”. 

3. Use the two principle of virtual work statements -- Eqs. ( A.5 ) and ( A.10 ) 

-- to solve for the unknown stress coefficients in 
 m

 . 

4. Finally, to establish the improved stresses for an individual element m , the 

stress coefficients corresponding to all possible element combinations to 

obtain stress calculation domains that contain element m  are calculated 

using the above steps, and the results are averaged for element m . 

 

Of course, it is important to select appropriate functions for the stress fields in 

 m
 , since we aim to have a sufficiently rich assumed stress space for the stress 

calculation domain. Clearly, the dimension of the assumed stress space must 

depend on the number of elements used within the stress calculation domain. That 

is, for a given dimension of assumed stress space, we must have that the domain 

contains a sufficient number of elements, such that the problem solution for the 
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  5,4,3,2,14321  mforzyx ijijijijm

ij 

unknown stress coefficients is well-posed for all possible domain geometries that 

might be used. 

 

In the specific case of the 4-node tetrahedral three-dimensional element, we 

assume the stresses to be linearly interpolated and continuous across the entire 

stress calculation domain, 

 

( A.15 ) 

 

where the  ji,  refer to the coordinate directions, and the ij

k  are the twenty-four 

unknown stress coefficients to be found. As an aside, we note that for the 3-node 

constant strain triangle considered in section A.2 we instead assumed bilinear 

interpolations across its stress calculation domain. 

 

 

 

 

 

 

 

 

Fig. A.15: The stress calculation domain for the 4-node tetrahedral element; element m 

would be the central element or a peripheral element 

 

With the assumption in Eq. ( A.15 ), each stress calculation domain for the 4-node 

tetrahedral element shall contain at least five elements, this way we ensure a well-

posed problem for the solution of the coefficients. Although any five adjacent 

elements could be used, we define a stress calculation domain in a quite natural 
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manner as the unique combination corresponding to a central element surrounded 

by four peripheral elements, where each peripheral element shares a face with the 

central element, as shown in Fig. A.15. This stress calculation domain allows us 

also to maximise the accuracy of the stress prediction, since the averaging in step 4 

is used, see above and the further comments below. 

 

In general, the algorithm solves for the unknown stress coefficients in 
 m

  by 

imposing Eq. ( A.5 ) to all possible closed contour boundaries contained within the 

stress calculation domain, and in addition Eq. ( A.10 ) to the complete domain. 

However, in this case, we have assumed the stresses to be linearly interpolated, 

and hence we need to only apply Eq. ( A.5 ) in order to solve for the stress 

coefficients. The reason is that in the absence of body forces, Eq. ( A.5 ) is not 

independent of Eq. ( A.10 ), see section A.1. Furthermore, we assume inter-

element stress continuity, and hence Eq. ( A.5 ) can be imposed to every possible 

closed contour boundary by simply imposing the equation to the five tetrahedral 

element boundaries. 
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Fig. A.16: Five test problems for the 4-node tetrahedral three-dimensional element (E = 

72E9, ν = 0.0, p = 100, F = 6,000, t = thickness): (a) the beam in pure bending problem, 

(b) the finite plate with a central hole under tensile loading problem, (c) the square 

cantilevered plate under shear loading problem, (d) the curved structure in pure bending, 

and (e) the tool jig problem 

 

In this way, we generate sixty equations, of which, for the configuration 

considered in Fig. A.15, only thirty-three are linearly independent. Since there are 

twenty-four unknown stress coefficients, the system of equations is over-

determined, and so, in general, a solution which exactly satisfies Eq. ( A.5 ) does 
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not exist. Hence we use the least squares method to solve for the unknown stress 

coefficients, with the consequence that the element nodal point forces calculated 

from the NPF-stresses (see Eq. ( A.10 )) will only satisfy the individual element 

and nodal equilibrium properties mentioned earlier, in a least squares sense. 
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Fig. A.17: Longitudinal stress results for the beam in pure bending problem. The solution 

error is given in the parentheses 
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Finally, to obtain the improved stresses for each tetrahedral element m , we 

average the stress coefficients corresponding to the possible stress calculation 

domains that contain element m . Of course, for the chosen geometry there can be 

no more than five domains that contain element m , that is, respectively, one and 

four domains for the element taking the position of the central element and the 

peripheral elements. In the exceptional case that no domain, as described above, 

exists which contains element m  (e.g. in a corner of a meshed geometry), we 

simply construct the stress domain using four elements that are properly connected 

to element m , and no averaging is applied. 

 

Since we assume the stresses to be linearly interpolated, the numerical effort 

involved in improving the stress predictions for each tetrahedral element is given 

by the effort required to solve for twenty-four unknown stress coefficients at most 

five times (that is, we must calculate the stress coefficients corresponding to every 

possible domain which contains element m ).  

 

This computational effort is relatively small, but, also, an important feature of the 

algorithm is that there is no need to apply these stress calculations to all elements 

in the assemblage, instead only to those elements where improved stresses should 

be calculated. Indeed, in practice, the finite element analyst is not always able to 

perform -- due to stringent constraints on time and computational resources -- a 

detailed mesh refinement stress convergence study, especially for complex 

problems that are expensive to solve. Instead, in many cases, the analyst will solve 

the problem only once, using the finest mesh possible that for the available 

computational resources still results in a reasonable solution time. Given this 

solution and the above rather simple algorithm, it is then possible to enhance the 

stress prediction with relatively little computational effort in only the specific 

areas of concern. 
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Fig. A.18: von Mises stress results for the finite plate with a central hole problem. The 

solution error is given in the parentheses 
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In addition to enhancing the stress prediction, the results obtained with the 

algorithm give, of course, also insight into the accuracy of the directly-calculated 

stresses. Namely, if the two stress values are far apart, in important areas of the 

model, the mesh used is too coarse for the directly-calculated stresses to be 

sufficiently accurate. 

 

We recognise that we have not mathematically proven stability of the algorithm 

for all possible geometries of the stress calculation domains. Therefore, it is 

possible, that for certain meshes with grossly distorted elements the algorithm 

establishes ill-conditioned matrices in which case the solution would have to be 

abandoned for that particular domain (where the elements are too distorted). 

However, we have tested the procedure in a large number of domains containing 

highly distorted elements and have not encountered this difficulty. Hence our 

experience is that as long as the mesh is reasonable (which is anyways required for 

the original displacement solution) the algorithm seems to be quite robust and 

stable. 

 

The effectiveness of the algorithm for the 4-node tetrahedral element is illustrated 

using the same five test problems as considered in section A.2: a beam in pure 

bending, a finite plate with a central hole under tensile loading, a square 

cantilevered plate under shear loading, a curved structure in pure bending, and a 

tool jig problem (like considered in ref. [ 14 ]). We define these test problems in  

Fig. A.16, and show the results (rounded to full digits) in Fig. A.17 to Fig. A.22 

respectively, where the NPF-based stress refers to the stresses calculated using the 

proposed nodal point force based stress calculation method. 
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Fig. A.19: In-plane shear stress results for the square cantilevered plate problem across 

section A 
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Fig. A.20: Longitudinal stress results for the curved structure problem across section A 
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Considering these results, the values given in the band plots are un-averaged, 

while the given numerical stress values are the averaged nodal point values with 

the solution error shown in parentheses. This error is measured with respect to the 

solution (called "exact" in figures) obtained using a very fine mesh of 27-node 

hexahedral elements. 

 

Note that a given numerical stress value may be outside the scale of the band plot 

because we selected the scale to reasonably indicate the stress variation over the 

complete domain. 

 

As expected, we see a significant improvement in the accuracy of the predicted 

stresses for all problems solved. However, the improvement in stresses is 

somewhat less than what we have seen for the 3-node constant strain triangle in 

section A.2.2, which is partly due to the fact that, for the three-dimensional 

analyses, we are using linear, and not bilinear, stress interpolations, see Eq. ( A.15 

). 

 

It is interesting to note that, for the problems considered in Fig. A.18 and Fig. 

A.14, the percentage improvement in stresses increases as the mesh is refined. 

Naturally, the improvement is most important in the regions of high stress 

gradients, which, of course, is due to the fact that the stresses 
 m

h  are constant for 

the 4-node tetrahedral finite element. 

 

In these problems, we have set the Poisson ratio to zero, to ensure consistency 

with section A.2; however, the same level of improvement is also observed for 

non-zero values of Poisson ratio, for example, when 3.0 , as long as the 

material is not almost or fully incompressible. When the medium is 

incompressible, as well-known, the four-node displacement-based tetrahedral 
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element is not effective because it does not satisfy the inf-sup condition [ 2 ], [ 43 

], [ 44 ] and is better not used. 
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Fig. A.21: von Mises stress results for the tool jig problem. The solution error is given in 

the parentheses 

directly-calculated stress NPF-based stress 

 

188 (-69%) 

139 (-75%) 
351 (-42%) 

387 (-31%) 

directly-calculated stress NPF-based stress 

 

283 (-54%) 

217 (-61%) 

475 (-22%) 

453 (-20%) 

directly-calculated stress NPF-based stress 

 

401 (-34%) 

331 (-41%) 

595 (-2%) 

579 (+3%) 



120 

Mesh 1 

 

 

 

 

 

 

 

Mesh 2 

 

 

 

 

 

 

 

Mesh 3 

 

 

 

 

 

 

 

 

Fig. A.22: von Mises stress results for the tool jig problem. Radius A and radius B are 

defined in Fig. A.9, and the mesh densities corresponding to Mesh 1, Mesh 2 and Mesh 3 

are shown in Fig. A.14. The figures on the left show the von Mises stress along radius A, 

whereas the figures on the right show the von Mises stress along radius B 



121 

A.4 Concluding remarks 

 

In this appendix we developed a simple procedure of using the element nodal point 

forces to obtain finite element stresses that we can expect to be more accurate than 

the stresses given by the stress assumption implicitly used in the stiffness 

calculation. We expect more accurate stresses because the assumption for the 

stresses is of higher order and the nodal point forces are used which always satisfy 

important equilibrium requirements irrespective of how coarse a mesh is used. 

 

We have applied the procedure to the 3- and 4-node two-dimensional elements, 

and to the 4-node three-dimensional element, in linear static analysis conditions. 

As expected, when we applied the procedure, we have indeed seen a significant 

improvement in the stress predictions for all problems solved. 

 

While the numerical results are encouraging, the method still requires to consider 

specific element stress domains. Indeed, a drawback of the NPF-based method is 

that the number of equations available -- and hence the dimension of the 

interpolation functions assumed in ν   -- is dependent on the number (and type) of 

elements in the stress calculation domain. Therefore, to get close to  2hO  

convergence for the stresses, a large stress domain is needed, and a domain stress 

averaging procedure has been employed. 

 

After developing the NPF-based method, it was realised a more comprehensive 

procedure can be devised to improve the stress predictions in static, dynamic and 

nonlinear solutions. This method is presented in the main body of the thesis. 
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