Approach a wall, stopping a desired distance d_i in front of it.

What causes these different types of responses? Is there a systematic way to optimize K?

Response of system is concisely represented with difference equation.

```
X ----------> Y
```

proportional controller: $v[n] = Ke[n] = K(d_i[n] - d_o[n])$

locomotion: $d_o[n] = d_o[n-1] - Tv[n-1]$

sensor with no delay: $d_i[n] = d_i[n]$

The difference equations provide a concise description of behavior.

$\begin{align*}
 d_i[n] &= d_i[n-1] - Tv[n-1] = d_i[n-1] - TK(d_i[n-1] - d_o[n-1]) \\
 \text{However it provides little insight into how to choose the gain} \ K.
\end{align*}$
Analysis of wallFinder System: Block Diagram

A block diagram for this system reveals two feedback paths.

\[d_i = \text{desiredFront} \quad d_o = \text{distanceFront} \]

proportional controller: \(v[n] = K_e[n] = K (d_i[n] - d_o[n]) \)

locomotion: \(d_o[n] = d_o[n-1] - T v[n-1] \)

sensor with no delay: \(d_s[n] = d_o[n] \)

\[D_i \quad - \quad K \quad -T \quad + \quad R \quad D_o \]

Analysis of wallFinder System: System Functions

Simplify block diagram with \(R \) operator and system functions. Start with accumulator.

\[D_i \quad + \quad K \quad -T \quad + \quad R \quad D_o \]

What is the input/output relation for an accumulator?

\[Y = RW = R(X + Y) \]

\[Y = \frac{R}{1 - R} \]

This is an example of a recurring pattern: Black's equation.

Black's Equation

The system function for a feedback system is given by Black's equation.

\[X \quad + \quad F \quad G \quad Y \]

Check Yourself

Determine the system function \(H = \frac{Y}{X} \).

\[X \quad + \quad F \quad G \quad Y \]

1. \(\frac{F}{1 - FG} \)
2. \(\frac{F}{1 + FG} \)
3. \(F + \frac{1}{1 - G} \)
4. \(F \times \frac{1}{1 - G} \)

Black's Equation

Black's equation has two common forms.

\[X \quad + \quad W \quad F \quad G \quad Y \quad X \quad + \quad W \quad F \quad G \quad Y \]

Difference: equivalent to changing sign of \(G \).

Right form is useful in most control applications where the goal is to make \(Y \) converge to \(X \).

Analyzing wallFinder: System Functions

Simplify block diagram with \(R \) operator and system functions.

\[D_i \quad + \quad K \quad -T \quad + \quad R \quad D_o \]

Replace accumulator with equivalent block diagram.

\[D_i \quad + \quad K \quad -T \quad + \quad R \quad D_o \]

Now apply Black's equation a second time:

\[\frac{D_o}{D_i} = \frac{1 - R}{1 + \frac{-KTR}{1 - R}} = \frac{-KTR}{1 - R - KTR} = \frac{-KTR}{1 - (1 + KT)R} \]
Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

\[D_i \rightarrow -K \rightarrow T \rightarrow R \rightarrow D_o \]

Replace accumulator with equivalent block diagram.

\[D_i \rightarrow -K \rightarrow T \rightarrow \frac{R}{1-R} \rightarrow D_o \]

Equivalent system with a single block:

\[D_i \rightarrow -\frac{KTR}{1-(1+KT)R} \rightarrow D_o \]

Modular! But we still need a way to choose \(K \).

Analyzing wallFinder: Poles

The system function contains a single pole at \(z = 1 + KT \).

\[\frac{D_o}{D_i} = \frac{-KTR}{1-(1+KT)R} \]

The numerator is just a gain and a delay.

The whole system is equivalent to the following:

\[D_i \rightarrow \frac{1-p_0}{p_0} \rightarrow \frac{R}{1-R} \rightarrow D_o \]

where \(p_0 = 1 + KT \). Here is the unit sample response for \(KT = -0.2 \):

\[h[n] \]

0.2

0

\(n \)

Analyzing wallFinder

We are often interested in the step response of a control system.

\[d_i = \text{desiredFront} \rightarrow d_o = \text{distanceFront} \]

Start the output \(D_o \) at zero while the input is held constant at one.

Step Response

The response of a system (represented by \(H \)) to the unit step signal is equal to the accumulated responses to the unit sample signal.

\[x[n] = \delta[n] \rightarrow u[n] \rightarrow H \rightarrow y_1[n] = s[n] \]

\[x[n] = \delta[n] \rightarrow h[n] \rightarrow y_2[n] = s[n] \]

\(y_1[n] = y_2[n] \) because these systems are commutative (provided each starts at rest).

Analyzing wallFinder

The step response of the wallFinder system is slow because the unit sample response is slow.

Analyzing wallFinder

The step response is faster if \(KT = -0.8 \) (i.e., \(p_0 = 0.2 \)).
Analyzing wallFinder: Poles

The poles of the system function provide insight for choosing K.

$$\frac{D_0}{D_1} = \frac{-KTR}{1 - (1 + KT)R} = \frac{(1 - p_0)R}{1 - p_0R} : p_0 = 1 + KT$$

- $0 < p_0 < 1$: monotonic converging
- $-1 < KT < 0$: alternating converging
- $-2 < KT < -1$: alternating diverging
- $p_0 < -1$: $KT < -2$

Check Yourself

Find KT for fastest convergence of unit sample response.

1. $KT = -2$
2. $KT = -1$
3. $KT = 0$
4. $KT = 1$
5. $KT = 2$
6. none of the above

Analyzing wallFinder

The optimum gain K moves robot to desired position in one step.

$$d_i = \text{desiredFront} = 1 \text{ m}$$
$$d_o = \text{distanceFront} = 2 \text{ m}$$

$$KT = -1$$

$$K = \frac{1}{T} = -1 \times \frac{1}{10} = -10$$

$$v[n] = K(d_i[n] - d_o[n]) = -10(1 - 2) = 10 \text{ m/s}$$

exactly the right speed to get there in one step!

Analyzing wallFinder: Space-Time Diagram

The optimum gain K moves robot to desired position in one step.

Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

Locomotion: $d_o[n] = d_o[n - 1] - Tv[n - 1]$

Sensor with delay: $d_s[n] = d_o[n - 1]$
Analysis of wallFinder System: Block Diagram

Incorporating sensor delay in block diagram.

proportional controller: \(v[n] = K e[n] = K (d_i[n] - d_s[n]) \)
locomotion: \(d_o[n] = d_o[n - 1] - T v[n - 1] \)
sensor with no delay: \(d_s[n] = d_o[n - 1] \)

Check Yourself

Find the system function \(H = \frac{D_o}{D_i} \).

1. \(\frac{KTR}{1 - R} \)
2. \(\frac{-KTR}{1 + R - KTR^2} \)
3. \(\frac{KTR}{1 - R} - KTR \)
4. \(\frac{-KTR}{1 - R - KTR^2} \)
5. none of the above

Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

Analyzing wallFinder: Poles

Substitute \(R = \frac{1}{2} \) in the system functional to find the poles.

The poles are then the roots of the denominator.

\[
z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + KT}
\]

Feedback and Control: Poles

If \(KT \) is small, the poles are at \(z \approx 0 \) and \(z \approx 1 \).

\[
z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + KT} \approx \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2} = 0.1
\]

Pole near 0 generates fast response.
Pole near 1 generates slow response.
Slow mode (pole near 1) dominates the response.
Feedback and Control: Poles

As KT becomes more negative, the poles move toward each other and collide at $z = \frac{1}{2}$ when $KT = -\frac{1}{4}$.

$$z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2} + KT = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2} - \frac{1}{4} = \frac{1}{2}$$

Persistent responses decay. The system is stable.

Feedback and Control: Poles

If $KT < -\frac{1}{4}$, the poles are complex.

$$z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2} + KT = \frac{1}{2} \pm j\sqrt{-KT - \left(\frac{1}{2}\right)^2}$$

Complex poles → oscillations.

Check Yourself

What is the period of the oscillation?

1. 1 2. 2 3. 3 4. 4 5. 6 0. none of above

Feedback and Control: Poles

The closed loop poles depend on the gain.

If $KT: 0 \to -\infty$: then $z_1, z_2: 0, 1 \to \frac{1}{2}, \frac{1}{2} \to \frac{1}{2} \pm j\infty$

Check Yourself

Find KT for fastest response.

1. 0 2. $-\frac{1}{4}$ 3. $-\frac{1}{4}$ 4. -1 5. $-\infty$ 0. none of above
Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.

Ideal sensor: \(d_s[n] = d_o[n] \)

More realistic sensor (with delay): \(d_s[n] = d_o[n - 1] \)

Fastest response without delay: single pole at \(z = 0 \).
Fastest response with delay: double pole at \(z = \frac{1}{2} \) much slower!

Designing Control Systems: Summary

System Functions provide a convenient summary of information that is important for designing control systems.

The long-term response of a system is determined by its dominant pole — i.e., the pole with the largest magnitude.

A system is unstable if the magnitude of its dominant pole is > 1.
A system is stable if the magnitude of its dominant pole is < 1.

Delays tend to decrease the stability of a feedback system.

Check Yourself

How many of the following statements are true?

1. This system has 3 poles.
2. Unit sample response is the sum of 3 geometric sequences.
3. Unit-sample response is \(y[n] : 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 \ldots \)
4. Unit-sample response is \(y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 \ldots \)
5. One of the poles is at \(z = 1 \).