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CONVERGENCE OF THE RESTRICTED NELDER–MEAD
ALGORITHM IN TWO DIMENSIONS∗

JEFFREY C. LAGARIAS† , BJORN POONEN‡ , AND MARGARET H. WRIGHT§

Abstract. The Nelder–Mead algorithm, a longstanding direct search method for unconstrained
optimization published in 1965, is designed to minimize a scalar-valued function f of n real variables
using only function values, without any derivative information. Each Nelder–Mead iteration is asso-
ciated with a nondegenerate simplex defined by n + 1 vertices and their function values; a typical
iteration produces a new simplex by replacing the worst vertex by a new point. Despite the method’s
widespread use, theoretical results have been limited: for strictly convex objective functions of one
variable with bounded level sets, the algorithm always converges to the minimizer; for such func-
tions of two variables, the diameter of the simplex converges to zero but examples constructed by
McKinnon show that the algorithm may converge to a nonminimizing point. This paper considers
the restricted Nelder–Mead algorithm, a variant that does not allow expansion steps. In two dimen-
sions we show that for any nondegenerate starting simplex and any twice-continuously differentiable
function with positive definite Hessian and bounded level sets, the algorithm always converges to the
minimizer. The proof is based on treating the method as a discrete dynamical system and relies on
several techniques that are nonstandard in convergence proofs for unconstrained optimization.

Key words. direct search methods, nonderivative optimization, derivative-free optimization,
Nelder–Mead method
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1. Introduction. Since the mid 1980s, interest has steadily grown in derivative-
free methods (also called nonderivative methods) for solving optimization problems,
unconstrained and constrained. Derivative-free methods that adaptively construct
a local model of relevant nonlinear functions are often described as “model-based,”
and derivative-free methods that do not explicitly involve such a model tend to be
called “direct search” methods. See [4] for a recent survey of derivative-free methods;
discussions focusing on direct search methods include, for example, [30, 11, 15, 13, 21].

The Nelder–Mead (NM) simplex method [19] is a direct search method. Each
iteration of the NMmethod begins with a nondegenerate simplex (a geometric figure in
n dimensions of nonzero volume that is the convex hull of n+1 vertices), defined by its
vertices and the associated values of f . One or more trial points are computed, along
with their function values, and the iteration produces a new (different) simplex such
that the function values at its vertices typically satisfy a descent condition compared
to the previous simplex.

The NM method is appealingly simple to describe (see Figure 2) and has been
widely used (along with numerous variants) for more than 45 years in many scien-
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tific and engineering applications. But little mathematical analysis of any kind of the
method’s performance has appeared, with a few exceptions, such as [29, 9] (from more
than 20 years ago) and (more recently) [8]. As we discuss in more detail below, ob-
taining even limited convergence proofs for the original method has turned out to be
far from simple. The shortage of theory plus the discovery of low-dimensional coun-
terexamples (see (1.1)) have made the NM method an outlier among modern direct
search methods, which are deliberately based on a rigorous mathematical foundation.
(See, for example, [5, 2, 13, 1] as well as more recent publications about direct search
methods for constrained problems.) Nevertheless, the NM method retains importance
because of its continued use and availability in computer packages (see [22, 16, 6])
and its apparent usefulness in some situations.

In an effort to develop positive theory about the original NM algorithm, an anal-
ysis of its convergence behavior was initiated in [14] in 1998, along with resolution
of ambiguities in [19] about whether function comparisons involve “greater than” or
“greater than or equal” tests.1 In what follows we use the term NM algorithm to refer
generically to one of the precisely specified procedures in [14]; these contain a num-
ber of adjustable parameters (coefficients), and the standard coefficients represent an
often-used choice. For strictly convex objective functions with bounded level sets, [14]
showed convergence of the most general form of the NM algorithm to the minimizer
in one dimension. For the NM algorithm with standard coefficients in dimension two,
where the simplex is a triangle, it was shown that the function values at the simplex
vertices converge to a limiting value and furthermore that the diameter of the sim-
plices converges to zero. But it was not shown that the simplices always converge to
a limiting point, and up to now this question remains unresolved.

Taking the opposite perspective, McKinnon [17] devised a family of two-dimen-
sional counterexamples consisting of strictly convex functions with bounded level sets
and a specified initial simplex, for which the NM simplices converge to a nonminimiz-
ing point. In the smoothest McKinnon example, the objective function is

(1.1) fm(x, y) =

{
2400|x|3 + y + y2 if x ≤ 0,
6x3 + y + y2 if x ≥ 0,

when the vertices of the starting simplex are (0, 0), (1, 1), and ((1 +
√
33)/8, (1 −√

33)/8)). Note that fm is twice-continuously differentiable and that its Hessian is
positive definite except at the origin, where it is singular. As shown in Figure 1,
the NM algorithm converges to the origin (one of the initial vertices) rather than
to the minimizer (0,− 1

2 ), performing an infinite sequence of inside contractions (see
section 2) in which the best vertex of the initial triangle is never replaced.

Functions proposed by various authors on which the NM algorithm fails to con-
verge to a minimizer are surveyed in [17], but counterexamples in the McKinnon
family illustrated by (1.1) constitute the “nicest” functions for which the NM algo-
rithm converges to a nonstationary point.

An algorithmic flaw that has been observed is that the iterations “stagnate” or
“stall,” often because the simplex becomes increasingly close to degenerate (as de-
picted in Figure 1). Previously proposed corrective strategies include placing more
restrictions on moves that decrease the size of the simplex, imposing a “sufficient
decrease” condition (stronger than simple decrease) for accepting a new vertex, and
resetting the simplex to one that is “nice.” See, for example, [24, 29, 28, 10, 23, 18, 4],

1Resolution of these ambiguities can have a noticeable effect on the performance of the algorithm;
see [7].
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Fig. 1. The NM algorithm’s failure on the McKinnon counterexample (1.1).

a small selection of the many papers that include convergence results for modifications
of NM.

Our object in this paper is to fill in additional theory for the NM algorithm in
the two-dimensional case, which remains of interest in its own right. As noted by
McKinnon [17, p. 148], it is not even known whether the NM algorithm converges
for the prototypically nice function f(x, y) = x2 + y2. Here we answer this question
affirmatively for a simplified variant of the NM algorithm, where the simplification
reduces the number of allowable moves rather than attempting to “fix” the method.
In the original NM algorithm (see section 2), the allowable moves are reflection, ex-
pansion, outside contraction, inside contraction, and shrink; an expansion doubles the
volume of an NM simplex, while all other moves either leave the volume the same
or decrease it. An expansion is tried only after the reflection point produces a strict
improvement in the best value of f ; the motivation is to allow a longer step along
an apparently promising direction. The restricted Nelder–Mead (RNM) algorithm
defined in section 2 does not allow expansion steps. Thus we are in effect considering
a “small step” NM algorithm.

Our analysis applies to the following class of functions.
Definition 1.1. Let F denote the class of twice-continuously differentiable func-

tions f : R2 → R with bounded level sets and everywhere positive definite Hessian.
The class F is a subclass of those considered in [14], where there is no requirement

of differentiability.
The contribution of this paper is to prove convergence of the RNM algorithm for

functions in F .
Theorem 1.2 (appears again as Theorem 3.17). If the RNM algorithm is applied

to a function f ∈ F , starting from any nondegenerate triangle, then the algorithm
converges to the unique minimizer of f .

Remark 1.3. Theorem 1.2 immediately implies a generalization to a larger class
of functions. Namely, if f ∈ F and g : R → R is a strictly increasing function, then
the RNM algorithm applied to f̃ := g ◦ f converges because the RNM steps for f̃ are
identical to those for f .

Remark 1.4. Because the NM iterations in the McKinnon examples include no
expansion steps, the RNM algorithm also will fail to converge to a minimizer on these
examples. It follows that, in order to obtain a positive convergence result, additional
assumptions on the function over those in [14] must be imposed. In particular, the
positive-definiteness condition on the Hessian in Theorem 1.2 rules out the smoothest
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McKinnon example (1.1), in which the Hessian is singular at the origin (the nonmin-
imizing initial vertex to which the NM algorithm converges).

An interesting general property of the NM algorithm is the constantly changing
shape of the simplex as the algorithm progresses. Understanding the varying geometry
of the simplex seems crucial to explaining how the algorithm behaves. Our proof of
Theorem 1.2 analyzes the RNM algorithm as a discrete dynamical system, in which
the shapes of the relevant simplices (with a proper scaling) form a phase-space for the
algorithm’s behavior. The imposed hypothesis on the Hessian, which is stronger than
strict convexity, allows a crucial connection to be made between a (rescaled) local
geometry and the vertex function values. We analyze the algorithm’s behavior in a
transformed coordinate system that corrects for this rescaling.

The proof of Theorem 1.2 establishes convergence by contradiction, by showing
that the algorithm can find no way not to converge. We make, in effect, a “Sherlock
Holmes” argument: Once you have eliminated the impossible, whatever remains,
however improbable, must be the truth.2 We show that, in order not to converge to the
minimizer, the triangles would need to flatten out according to a particular geometric
scaling, but there is no set of RNM steps permitting this flattening to happen. This
result is confirmed through an auxiliary potential function measuring the deviation
from scaling. One can almost say that the RNM algorithm converges in spite of itself.

2. The restricted Nelder–Mead algorithm. Let f : Rn → R be a function
to be minimized, and let p1, . . . ,pn+1 be the vertices of a nondegenerate simplex in
R

n. One iteration of the RNM algorithm (with standard coefficients) replaces the
simplex by a new one according to the following procedure.

One iteration of the standard RNM algorithm.
1. Order. Order and label the n+ 1 vertices to satisfy f(p1) ≤ f(p2) ≤ · · · ≤
f(pn+1), using appropriate tie-breaking rules such as those in [14].

2. Reflect. Calculate p̄ =
∑n

i=1 pi/n, the average of the n best points (omitting
pn+1). Compute the reflection point pr, defined as pr = 2p̄ − pn+1, and
evaluate f r = f(pr). If f r < fn, accept the reflected point pr and terminate
the iteration.

3. Contract. If f r ≥ fn, perform a contraction between p̄ and the better of
pn+1 and pr.
a. Outside contract. If fn ≤ f r < fn+1 (i.e., pr is strictly better than
pn+1), perform an outside contraction: calculate the outside contraction point
pout =

1
2 (p̄+ pr) and evaluate fout = f(pout). If fout ≤ f r, accept pout and

terminate the iteration; otherwise, go to Step 4 (perform a shrink).
b. Inside contract. If f r ≥ fn+1, perform an inside contraction: calculate
the inside contraction point pin = 1

2 (p̄+ pn+1) and evaluate f in = f(pin). If
f in < fn+1, accept pin and terminate the iteration; otherwise, go to Step 4
(perform a shrink).

4. Perform a shrink step. Evaluate f at the n points vi =
1
2 (p1 +pi), i = 2,

. . . , n + 1. The (unordered) vertices of the simplex at the next iteration
consist of p1, v2, . . . , vn+1.

The result of an RNM iteration is either (1) a single new vertex—the accepted point—
that replaces the worst vertex pn+1 in the set of vertices for the next iteration, or
(2) if a shrink is performed, a set of n new points that, together with p1, form the
simplex at the next iteration.

2A. Conan Doyle, “The Sign of the Four,” Lippincott’s Monthly Magazine, Feb. 1890.
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p3

p̄

pr

Reflection

p3

p̄

pe

Expansion

p3

p̄

pout

Outside
contraction

p3

p̄

pin

Inside
contraction

p1

p3

p2

Shrink

Fig. 2. The five possible moves in the original NM algorithm in two dimensions. The original
simplex is surrounded by a dashed line, and its worst vertex is labeled p3. The point p̄ is the average
of the two best vertices. The shaded figures are NM simplices following reflection, expansion, outside
contraction, inside contraction, and shrink, respectively. (In the “shrink” figure, the best vertex is
labeled p1.) The “expansion” step is omitted in the RNM algorithm.

Starting from a given nondegenerate simplex, let p
(k)
1 , . . . , p

(k)
n+1 be the vertices

at the start of the kth iteration. Let z be a point in R
n. We say that the RNM

algorithm converges to z if limk→∞ p
(k)
i = z for every i ∈ {1, . . . , n+ 1}.

Remark 2.1. In two dimensions, the NM simplex is a triangle, and the reflect
step performs a 180◦ rotation of the triangle around p̄, so the resulting triangle is
congruent to the original one. But in higher dimensions, the reflected simplex is
usually not congruent to the original.

Remark 2.2. Shrink steps are irrelevant in this paper because we are con-
cerned only with strictly convex objective functions, for which shrinks cannot occur
(Lemma 3.5 of [14]). It follows that, at each NM iteration, the function value at the
new vertex is strictly less than the worst function value at the previous iteration.

Remark 2.3. The original NM algorithm differs from the above in Step 2. Namely,
if pr is better than all n+1 of the vertices, the original NM algorithm tries evaluating
f at the expansion point pe := p̄+χ(p̄−pn+1) for a fixed expansion coefficient χ > 1,
and the worst vertex pn+1 is then replaced by the better of pe and pr. In fact, Nelder
and Mead proposed a family of algorithms, depending on coefficients for reflection,
contraction, and shrinkage in addition to expansion. A complete, precise definition of
an NM iteration is given in [14], along with a set of tie-breaking rules. Instances of
the moves in the original NM algorithm in two dimensions are shown in Figure 2.

Remark 2.4. One feature of the RNM algorithm that makes it easier to analyze
than the original algorithm is that the volume of the simplex is nonincreasing at each
step. The volume thus serves as a Lyapunov function.3

We henceforth consider the RNM algorithm in dimension two and use Δk to
denote the RNM triangle at the beginning of iteration k for any k ≥ 1. It has
previously been shown that, for a class of functions that includes F , the simplex
diameter converges to 0.

Lemma 2.5. Suppose that the RNM algorithm is applied to a strictly convex 2-
variable function with bounded level sets. Then for any nondegenerate initial simplex,
the diameters of the RNM simplices (triangles) produced by the algorithm converge
to 0.

3See Definition 1.3.4 in [26, p. 23].
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Proof. The proof given in [14, Lemma 5.2] for the original NM algorithm applies
even when expansion steps are disabled.

A few properties of RNM triangles follow immediately.
Lemma 2.6. Assume that the RNM algorithm is applied to f ∈ F with a nonde-

generate initial triangle. Then the following hold:
(a) The diameter of Δk tends to 0.
(b) The RNM triangles have at least one limit point p†.
(c) The function values at the vertices of Δk are greater than or equal to f(p†),

and they tend to f(p†).
(d) If Q is any neighborhood of the contour line of p†, all the action of the algo-

rithm is eventually inside Q.
Proof.
(a) This follows from Lemma 2.5.
(b) Lemma 3.3 of [14] states that the best, next-worst, and worst function values

in each successive triangle cannot increase, and that at least one of them must
strictly decrease at each iteration. Because the level sets of f are bounded,
compactness guarantees that there is a limit point p†.

(c) This follows from the monotonic decrease in function values, the shrinking of
the diameter to zero, and the continuity of f .

(d) Since the level sets of f are compact, there is a compact neighborhood I of
f(p†) such that f−1(I) is a compact set contained in the interior of Q. By (c),
the triangles are eventually contained in f−1(I). By (a), eventually even the
rejected points tested in each iteration lie within f−1(I).

3. Convergence.

3.1. The big picture. Because the logic of the convergence proof is compli-
cated, we begin with an overview of the argument. A motivating principle through-
out is that once the RNM triangle is sufficiently small, the objective function may be
approximated by its degree-2 Taylor polynomial, and the outcomes of comparisons in
the algorithm can be predicted almost exactly by the positions of vertices relative to
the contours of that polynomial.

We know already from Lemma 2.6(a) that, for an objective function f in the class
F , the evolution of any RNM triangle has the diameter of the triangle converging to
zero. To prove Theorem 1.2, we need to show that the vertices of RNM triangles all
converge to the unique minimizer of f . Our proof proceeds by contradiction, making
an initial hypothesis (Hypothesis 1 in section 3.5) that this minimizer is not a limit
point of the RNM triangles. Starting in section 3.5, all the derived results are based
on this hypothesis (which is, of course, eventually shown to be false).

The first consequence of the contradiction hypothesis is that the three RNM
vertices will approach, but cannot cross, a contour corresponding to a function value
strictly higher than the optimal value. By our assumptions on f , this contour has a
continuously differentiable tangent vector and forms the boundary of a strictly convex,
bounded, and closed level set.

The RNM triangle must become small as its three vertices approach the bounding
contour. Therefore, from the viewpoint of the triangle, blown up to have (say) unit
diameter, the contour flattens out to a straight line. Our analysis of the function values
will show that in order for this to happen, the triangle must itself have its shape flatten
out, with its “width” (in the direction of the contour) becoming arbitrarily larger than
its “height” in the perpendicular direction. To analyze this phenomenon, we work in a
local coordinate frame chosen so that the Taylor polynomial approximation, expressed
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Fig. 3. Three (nonconsecutive) increasingly small, increasingly flat RNM triangles are repre-
sented, along with contours of ỹ + 1

2
x̃2, in a neighborhood of the origin. (Note the expanded scale

on the y axis.) Moving from left to right, the flatnesses are 0.043, 0.035, and 0.024.

in transformed coordinates (x̃, ỹ) near the (transformed) origin, becomes the simple
surrogate function ỹ + 1

2 x̃
2 (see section 3.3).

At the start of iteration k, we measure the transformed width w̃k, height h̃k, and
area Ãk of the RNM triangle Δk in such a local coordinate frame, and define a quantity
called “flatness” by Γk := Ãk/w̃

3
k (section 3.4). After establishing various properties

of the local coordinate frame, we show (Lemma 3.8) that, as the triangles become
smaller, the ratio of transformed height to transformed width necessarily converges to
zero. This process is illustrated in Figure 3 by three increasingly small, increasingly
flat triangles whose vertices are converging to a contour of the surrogate function. A
related result, Lemma 3.10, says that, starting at a sufficiently advanced iteration, an
RNM triangle that undergoes a sequence of consecutive reflections cannot move very
far from the starting triangle of the sequence.

If a reflection is taken during iteration k and the same coordinate frame is retained,
the transformed height and width of the RNM triangle at iteration k + 1 remain
the same (Lemma 3.5). Hence, in order for the diameter to converge to zero (as
guaranteed by Lemma 2.5), there must be infinitely many contraction steps. We show
in Lemma 3.11 that, at a sufficiently advanced iteration k of the RNM algorithm, a
necessary condition for a contraction to occur is that h̃k ≤ 10w̃2

k, which means that a
contraction can happen only when Γk ≤ 10.

A complicating factor in the argument is that each coordinate frame is, by defi-
nition, local and may change with every move. However, we are able to use symbolic
arithmetic to analyze sequences of advanced RNM iterations that begin with a con-
traction by exploiting properties of the local coordinate frame and the surrogate func-
tion ỹ + 1

2 x̃
2. In Proposition 3.15, using a specific coordinate frame associated with

the first RNM triangle in an advanced iteration sequence starting with a contraction,
we obtain the (initially surprising and nonintuitive) result that flatness must increase
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by a factor of 1.01 within 14 RNM moves. (Example 3.14 gives a one-move instance
of this outcome.)

Based on the fact that the triangles are becoming arbitrarily small, Lemma 3.16
then shows that, in an advanced move sequence that starts with a contraction, the
flatness measured in a second coordinate frame defined at the first triangle in the
sequence must increase by a factor of at least 1.001 after no more than 14 steps.

At this point, we invoke Lemma 3.10 to show that, in a sequence of advanced
RNM iterations that begins with a contraction, switching to a new coordinate system
defined at the next triangle that undergoes a contraction makes only a small change
in the flatness. This fact allows us to prove that, in any sequence of sufficiently
advanced iterations, the flatness Γk must be inflated by a factor of at least 1.0007
between one contraction and the next contraction; see (3.48). Since there are infinitely
many contractions, eventually a contraction is taken with Γk > 10, contradicting our
deduction above from Lemma 3.11. We conclude that our contradiction hypothesis
must have been false; i.e., the RNM method must converge. This completes the sketch
of the proof of Theorem 1.2.

3.2. Notation. Points in two dimensions are denoted by boldface lowercase let-
ters, but a generic point is often called p, which is treated as a column vector and
written as p = (x, y)T . We shall also often use an affinely transformed coordinate
system with generic point denoted by p̃ = (x̃, ỹ)T . To stress the (x, y) coordinates of
a specific point, say, b, we write b = (bx, by)

T .
For future reference, we explicitly give the formulas for the reflection and con-

traction points in two dimensions:

pr = p1 + p2 − p3 (two-dimensional reflection);(3.1)

pout =
3
4 (p1 + p2)− 1

2p3 (two-dimensional outside contraction);(3.2)

pin = 1
4 (p1 + p2) +

1
2p3 (two-dimensional inside contraction).(3.3)

Given the three vertices of a triangle, the reflection and contraction points depend
only on which (one) vertex is labeled as “worst.”

3.3. A changing local coordinate system. The type of move at each RNM
iteration is governed by a discrete decision, based on comparing values of f . Heuris-
tically, for a very small triangle near a point b, the result of the comparison is usually
unchanged if we replace f by its degree-2 Taylor polynomial centered at b. If b is a
nonminimizing point and the RNM triangle is flattening out (as it must, assuming
that the RNM method does not converge to the minimizer), then we can simplify the
function further by making an affine transformation into a new coordinate system
p̃ = (x̃, ỹ) (depending on b) in which the Taylor polynomial has the form

constant + ỹ + 1
2 x̃

2.

This motivates the following lemma, which is a version of Taylor’s theorem.
Lemma 3.1 (definition of local coordinate frame). Let f ∈ F . Given a point b

and a nonsingular 2× 2 matrix M , we may define an affine transformation

(3.4) p̃ =M−1(p− b)

(with inverse map p =M p̃+ b).
(i) For each point b that is not the minimizer of f , there exists a unique M with

detM > 0 such that when the function f of p = (x, y)T is re-expressed in the
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new coordinate system p̃ = (x̃, ỹ)T above, the result has the form

(3.5) f(p) = f(b) + ỹ + 1
2 x̃

2 + r(x̃, ỹ),

where r is an error term satisfying

(3.6) r(x̃, ỹ) = 1
2αỹ

2 + o(max(|x̃|2, |ỹ|2))

as (x̃, ỹ) → 0 (i.e., as (x, y)T → b) for some α > 0.
(ii) The function r in (i) satisfies dr/dx̃ = o(max(|x̃|, |ỹ|)) and dr/dỹ = o(|x̃|) +

O(|ỹ|), and the rate at which the o(·) terms approach zero and the bounds
implied by O(·) can be made uniform for b in any compact set not containing
the minimizer of f .

(iii) As b varies over a compact set not containing the minimizer of f , the matrices
M and M−1 are bounded in norm and uniformly continuous.

Proof. Let g = ∇f(b) and H = ∇2f(b) denote, respectively, the gradient and
Hessian matrix of f at b. Since f is strictly convex, its gradient can vanish only at
the unique minimizer, so g 	= 0. Because f is twice-continuously differentiable, we
can expand it in Taylor series around b:

f(p) = f(b) + gT (p− b) + 1
2 (p− b)TH(p− b) + o(‖p− b‖2)(3.7)

= f(b) + gTM p̃+ 1
2 p̃

TMTHM p̃+ o(‖p− b‖2).(3.8)

The Taylor expansion (3.8) has the desired form if

gTM = (0 1) and MTHM =

(
1 0

0 α

)

for some α > 0. In terms of the columns m1 and m2 of M , these conditions say

gTm1 = 0, gTm2 = 1, mT
1Hm1 = 1, mT

1Hm2 = 0,

and then we may set α := mT
2Hm2, which will be positive since H is positive definite

and since the conditions above force m2 to be nonzero.
Since g 	= 0, the condition gTm1 = 0 says that m1 is a multiple of the vector

ĝ obtained by rotating g by 90◦ clockwise: m1 = ξ1ĝ for some ξ1. The condition
mT

1Hm1 = 1 implies that m1 	= 0. The condition mT
1Hm2 = 0 says that Hm2

is a multiple of g. Since H is positive definite, H is nonsingular, so the equation
Hw = g has the unique solution w = H−1g, and then m2 = ξ2w for some ξ2. The
normalizations gTm2 = 1 and mT

1Hm1 = 1 are equivalent to

(3.9) ξ2 =
1

gTw
=

1

wTHw
and ξ21 =

1

ĝTH ĝ
;

the denominators are positive since H is positive definite and w and ĝ are nonzero.
These conditions determine M uniquely up to the choice of sign of its first column,
i.e., the sign of ξ1, but we have not yet imposed the condition detM > 0. We claim
that it is the positive choice of ξ1 that makes detM > 0: since m1 and m2 are then
positive multiples of ĝ and w, respectively, the condition detM > 0 is equivalent to
gTw > 0, or equivalently, wTHTw > 0, which is true since the matrix HT = H is
positive definite. This proves (i).
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0
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0.2
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2
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−3

−2

−1

0

1

Fig. 4. The contours of −6x− y+30x2 + y2 − 10xy+ 2(y+ 1)2 exp(x2) are shown on the left,
in the region 0 ≤ x ≤ 0.25, −0.3 ≤ y ≤ 0.2. After applying the affine transformation defined in
Lemma 3.1, where the base point b = (0.1875,−.15)T is marked with an X, the contours of ỹ+ 1

2
x̃2

are shown on the right in transformed coordinates (x̃, ỹ). Note that the transformed base point is
the origin.

Since f is twice-continuously differentiable, g and H vary continuously as b varies
within a compact set not containing the minimizer of f . Hence M and M−1 vary
continuously as well. This proves (ii) and (iii).

Remark 3.2. If H is positive semidefinite and singular, then the equation Hw =
g continues to have a solution provided that g ∈ range(H), as in the McKinnon
example (1.1). But in this case, H ĝ = 0, so Hm1 = 0, which contradicts mT

1Hm1 =
1, and no matrix M exists.

Remark 3.3. As b approaches the minimizer of f , we have g → 0, and the
formulas obtained in the proof of Lemma 3.1 show thatm1 remains bounded whilem2

and the value of α “blow up,” so M becomes unbounded in norm with an increasing
condition number.

The local coordinate frame defined in Lemma 3.1 depends on the base point b, the
gradient vector g, and the Hessian matrix H . In the rest of this section, we use F(b)
(with a nonminimizing point b as argument) to denote the local coordinate frame with
base point b. In the context of a sequence of RNM iterations, Fk (or F(Δk), with a
subscripted RNM triangle as argument) will mean the coordinate frame defined with
a specified base point in RNM triangle Δk.

An example of the effect of Lemma 3.1 is depicted in Figure 4.

3.4. Width, height, area, and flatness. This section collects some results
about transformed RNM triangles.

Definition 3.4 (width, height, and flatness). Let f ∈ F , and let Δ denote a
nondegenerate triangle that lies in a compact set Q not containing the minimizer of
f . Assume that we are given a base point b in Q, along with the coordinate frame
defined at b as in Lemma 3.1.

• The (transformed) width of Δ, denoted by w̃(Δ), is the maximum absolute
value of the difference in x̃-coordinates of any two vertices of Δ.

• The (transformed) height, denoted by h̃(Δ), is the maximum absolute value
of the difference of ỹ-coordinates of any two vertices of Δ.

• The flatness of Δ, denoted by Γ(Δ), is

(3.10) Γ(Δ) :=
Ã(Δ)

w̃(Δ)3
,
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where Ã(Δ) is the (positive) area of Δ measured in the transformed coordi-
nates.

The argument Δ may be omitted when it is obvious.
Lemma 3.5 (effects of a reflection). The (transformed) height and width of an

RNM triangle are the same as those of its reflection if the same base point is used to
define the local coordinate frame for both triangles.

Proof. The new triangle is a 180◦ rotation of the old triangle.
The next lemma bounds the change in three quantities arising from small changes

in the base point used for the local coordinate frames. In (iii), we need a hypothesis
on the width and height since for a tall, thin triangle, a slight rotation can affect its
flatness dramatically.

Lemma 3.6 (consequences of close base points). Assume that f ∈ F and that Q
is a compact set that does not contain the minimizer of f . Let b1 and b2 denote two
points in Q and Δ denote an RNM triangle contained in Q. For i ∈ {1, 2}, let w̃i,

h̃i, and Γi be the transformed width, height, and flatness of Δ measured in the local
coordinate frame F(bi) associated with bi, and let Mi be the matrix of Lemma 3.1
associated with F(bi).

(i) Given ε > 0, there exists δ > 0 (independent of b1 and b2) such that if
‖b2 − b1‖ < δ, then

‖M2M
−1
1 − I‖ < ε.

(ii) Given ε > 0, there exists δ > 0 (independent of b1, b2, and Δ) such that if
‖b1 − b2‖ < δ, then

(3.11) (1− ε)Ã1 < Ã2 < (1 + ε)Ã1.

(iii) Given C, ε > 0, there is δ > 0 (independent of b1, b2, and Δ) such that if

‖b1 − b2‖ < δ and w̃1 > Ch̃1, then

(3.12) (1 − ε)Γ1 < Γ2 < (1 + ε)Γ1.

Proof.
(i) We have

‖M2M
−1
1 − I‖ = ‖M2(M

−1
1 −M−1

2 )‖ ≤ ‖M2‖ ‖M−1
1 −M−1

2 ‖.
By Lemma 3.1(iii), the first factor ‖M2‖ is uniformly bounded, and M−1 is
uniformly continuous as a function of b ∈ Q, so the second factor ‖M−1

1 −M−1
2 ‖

can be made as small as desired by requiring ‖b2 − b1‖ to be small.
(ii) Letting p̃2 and p̃1 denote the transformed versions of a point p in Q using

F(b1) and F(b2), we have

(3.13) p̃2 =M−1
2 M1p̃1 +M−1

2 (b1 − b2),

so that p̃2 and p̃1 are related by an affine transformation with matrixM−1
2 M1.

When an affine transformation with nonsingular matrix B is applied to the
vertices of a triangle, the area of the transformed triangle is equal to the area
of the original triangle multiplied by | det(B)| [12, p. 144]. Applying this
result to Δ gives

(3.14) Ã2 = Ã1 | det(M−1
2 M1)|.

Since | detB| is a continuous function of B, the result follows from (i).
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(iii) Because of (ii), it suffices to prove the analogous inequalities for width instead
of flatness. Fixing two vertices of Δ, we let vi denote the vector from one
to the other measured in F(bi) and let x(vi) denote the corresponding x-

component. Then |vi| ≤ w̃1 + h̃1 = O(w̃1), since w̃1 > Ch̃1. By (3.13),
v2 =M−1

2 M1v1, so

|x(v2)− x(v1)| ≤ |v2 − v1| = |(M−1
2 M1 − I)v1| = O(‖M−1

2 M1 − I‖ · |w̃1|).
This bounds the change in x-component of each vector of the triangle in
passing from F(b1) to F(b2), and it follows that

|w̃2 − w̃1| = O(‖M−1
2 M1 − I‖ · |w̃1|).

Finally, by (i), ‖M−1
2 M1 − I‖ can be made arbitrarily small.

3.5. The contradiction hypothesis and the limiting contour line. Our
proof of Theorem 1.2 is by contradiction. Therefore we assume the following hypoth-
esis for the rest of section 3 and hope to obtain a contradiction.

Hypothesis 1. Assume that the RNM algorithm is applied to f ∈ F and a
nondegenerate initial triangle and that it does not converge to the minimizer of f .

We begin with a few easy consequences of Hypothesis 1. Let Δk be the RNM
triangle at the start of the kth iteration. Let Δ̃k be that triangle in the coordinate
frame determined by any one of its vertices, and define its width w̃k, height h̃k, and
flatness Γk as in Definition 3.4.

Lemma 3.7. Assume Hypothesis 1.
(a) The neighborhood Q in which all the action of the algorithm eventually takes

place (see Lemma 2.6(d)) can be taken as a compact neighborhood not contain-
ing the minimizer of f ; then there is a positive lower bound on the smallest
eigenvalue of the Hessian in Q.

(b) The diameter of Δ̃k tends to zero.

(c) We have w̃k → 0 and h̃k → 0.
Proof.
(a) The first statement follows since the minimizer is not on the contour line of

p†. The second statement follows from uniform continuity of the Hessian.
(b) By Lemma 3.1(iii), the distortion of the triangles is uniformly bounded.
(c) This follows from (b).
For the rest of section 3, we may assume that all our RNM triangles and test

points lie in a compact set Q not containing the minimizer, as in Lemma 3.7(a). In
particular, the implied bounds in Lemma 3.1 are uniform.

3.6. Flattening of the RNM triangles. Under Hypothesis 1, we now show
that the transformed RNM triangles “flatten out” in the sense that the height becomes
arbitrarily small relative to the width. The proof is again a proof by contradiction,
showing that, unless the triangles flatten out, there must be a sequence of consecutive
reflections in which the value of f at the reflection point is eventually less than f(p†),
contradicting Lemma 2.6(c).

Lemma 3.8 (flattening of RNM triangles). Assume Hypothesis 1. Then limk→∞
h̃k/w̃k = 0.

Proof. Assume that the result of the lemma does not hold. In other words, within
the rest of this proof, the following hypothesis is assumed.

Hypothesis 2. There exists ρ > 0 such that there are arbitrarily large k for
which h̃k/w̃k > ρ.
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(0 )

ỹ = −

ỹ = − (ρ/10)x̃ỹ = + (ρ/10)x̃

ỹ = 0

x̃ = 0

Fig. 5. The downward-pointing sector lies between the two finely dashed lines. The truncated
sector (3.16) consists of the shaded area for ρ = 8 and ε = 0.5.

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−1

−0.5

0

0.5

1

x 10
−3

Fig. 6. The blue straight lines bound the truncated sector (3.16) for ρ = 0.09 and ε = 0.001.
(Note the expanded scale on the ỹ axis.) An initial RNM triangle inside the sector, with a vertex at

the origin, is shown for which ˜h/w̃ > ρ; contours of the surrogate function ỹ + 1
2
x̃2, treated as the

objective, are also shown. It is easy to see that the three subsequent RNM moves are reflections and
that, as long as the RNM triangle remains in the sector, it will continue to reflect downward until
exiting at the bottom of the sector.

We may assume also that p† is a limit point of the triangles Δk for which
h̃k/w̃k > ρ.

Given ε > 0, we define a downward-pointing sector of points (x̃, ỹ) satisfying

(3.15) ỹ ≤ ε− ρ|x̃|
10

and a truncated sector of points that satisfy

(3.16) ỹ ≤ ε− ρ|x̃|
10

and ỹ ≥ −ε.

(See Figures 5 and 6.)
We now show that there exists ε > 0 (depending on f and ρ) such that, for any

sufficiently advanced iteration k0 for which h̃k0/w̃k0 > ρ, the following hold:

(a) Δ̃k0 is contained in the truncated sector.
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(b) If Δ̃ is any RNM triangle in the coordinates (x̃, ỹ) of Fk0 such that Δ̃ is
contained in the truncated sector and has (transformed) width w̃ and height

h̃ satisfying h̃/w̃ > ρ, then

(i) one RNM iteration reflects Δ̃ to a new triangle Δ̃′ (and Δ̃′ has the same

width and height as Δ̃, by Lemma 3.5);

(ii) the ỹ-coordinate of the centroid of Δ̃′ is at least 88h̃/300 below that of

Δ̃;
(iii) Δ̃′ is contained in the downward-pointing sector;

(iv) if Δ̃′ is not contained in the truncated sector, then the function value at
the new vertex is less than f(p†).

Starting from (a), applying (b) repeatedly shows that the triangle in the (x̃, ỹ) co-
ordinates reflects downward until it exits the truncated sector through the bottom,
at which point the function value at the exiting vertex is less than f(p†), which
contradicts Lemma 2.6(c). Thus it remains to prove (a) and (b).

Proof of (a). By definition of Fk0 , the point (0, 0) is a vertex of Δ̃k0 . For any
given ε > 0, if k0 is sufficiently large, then Lemma 3.7(b) shows that the diameter of

Δ̃k0 is less than the distance from (0, 0) to the boundary of the truncated sector, so

Δ̃k0 is entirely contained in the truncated sector.

Proof of (b). Suppose that Δ̃ is contained in the truncated sector and satisfies

h̃/w̃ > ρ. Its vertices p̃i = (x̃i, ỹi) are the transforms of vertices pi of some Δ. We
will use the notation fi = f(pi) for any subscript i and use similar abbreviations for
other functions and coordinates.

We show first that the difference in f values at any two vertices pi and pj is

within 3h̃/100 of the differences of their ỹ-coordinates. Using (3.5), we find that

(3.17) fi − fj = ỹi − ỹj +
1
2 (x̃

2
i − x̃2j) + ri − rj .

The quantity |x̃2i − x̃2j | is bounded by 2w̃|x̃i| + w̃2. If ε < ρ2/4000, then |x̃| < ρ/200
for any point in the truncated sector. By Lemma 3.7(b), if k0 is large enough, then
w̃ < ρ/100. It follows that

(3.18) w̃|x̃| < w̃ρ

200
<

h̃

200
and w̃2 <

ρw̃

100
<

h̃

100
,

so |x̃2i−x̃2j | < h̃/50. On the other hand, ri−rj is the line integral of (dr/dx̃, dr/dỹ) over
a path of length at most w̃ + h̃ = O(h̃). Since dr/dx̃ and dr/dỹ are O(max(|x̃|, |ỹ|)),
the derivatives can be made arbitrarily small on the truncated sector by choosing ε
small enough, and we may assume that |ri − rj | < h̃/100. Now (3.17) yields

(3.19) fi − fj = ỹi − ỹj + ζ with |ζ| < 3h̃

100
.

(i) Let pbest,pnext,pworst be the vertices of Δ ordered so that fbest ≤ fnext ≤
fworst. Let plow,pmid,phigh be the same vertices ordered so that ỹlow ≤
ỹmid ≤ ỹhigh. Recall that the reflection point pr = pbest + pnext − pworst is
accepted only if f r < fnext. Equation (3.19) implies that ỹbest, ỹnext, ỹworst

are within 3h̃/100 of ỹlow, ỹmid, ỹhigh, respectively. Hence the difference

ỹnext − ỹr = ỹworst − ỹbest

is within 6h̃/100 of ỹhigh− ỹlow = h̃. Applying (3.19) to the reflected triangle
shows that fnext > f r, and the reflection point is accepted.
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(ii) The reflection decreases the ỹ coordinate of the reflected vertex by

ỹworst − ỹr = 2ỹworst − ỹbest − ỹnext,

which is within 4(3h̃/100) of

2ỹhigh − ỹlow − ỹmid ≥ ỹhigh − ỹlow = h̃.

Consequently, ỹworst− ỹr ≥ 88h̃/100, and the centroid of the reflected triangle

is at least 88h̃/300 lower than the centroid of the immediately preceding
triangle.

(iii) Furthermore, x̃r differs from x̃worst by no more than 2w̃, i.e., |x̃r| ≤ |x̃worst|+
2w̃. Since pworst lies in the truncated sector and ρw̃ < h̃, it follows that

ỹr +
ρ

10
|x̃r| ≤ ỹworst − 88h̃

100
+

ρ

10
(|x̃worst|+ 2w̃)

< ỹworst − 88h̃

100
+

ρ

10
|x̃worst|+ 2h̃

10

< ỹworst +
ρ

10
|x̃worst| < ε.

Thus, using the local coordinate frame Fk0 , the reflection point pr lies in
the downward-pointing sector and also lies in the truncated sector as long as
ỹr ≥ −ε.

(iv) Let b denote the base point of Fk0 , so b̃ = (0, 0). For p̃ on the bottom edge
of the truncated sector, we have ỹ = −ε and x̃ = O(ε) as ε → 0 (similar
triangles). Relation (3.5) then implies

(3.20) f(p) = f(b)− ε+O(ε2).

Fixing ε to be small enough that f(p)− f(b) < 0 everywhere on the bottom
edge, we can also fix a neighborhoodU of the bottom edge and a neighborhood

V of b̃ = (0, 0) such that f(p) < f(b′) holds whenever p̃ ∈ U and b̃
′ ∈ V .

If Δ̃′ is not in the truncated sector, its new vertex p̃r is within w̃ + h̃ of the
bottom edge. If k0 is sufficiently large to make w̃+ h̃ small enough, it follows
that p̃r ∈ U .
By choice of p† (defined immediately following Hypothesis 2), k0 can be taken
large enough that p† is arbitrarily close to b in untransformed coordinates.
By Lemma 3.1(iii), the matrix defining the local coordinate transformation

is bounded and nonsingular. Hence we can make p̃† arbitrarily close to (0, 0)

in transformed coordinates, and in particular we can guarantee that p̃† lies
in V .
Thus f(pr) < f(p†).

Remark 3.9. An important consequence of Lemma 3.8 is that w̃ > h̃ for Δk mea-
sured in a coordinate frame associated to any one of its vertices once k is sufficiently
large, so Lemma 3.6(iii) can be applied with C = 1.

3.7. The distance travelled during a sequence of reflections. We now
show that a sequence of valid reflections, starting from a sufficiently advanced iter-
ation, does not move the triangle far. This result plays a crucial role in our main
theorem. The key to its proof is the fact that, under our contradiction hypothesis,
the RNM triangles must become both arbitrarily small and arbitrarily flat.
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Lemma 3.10. Assume Hypothesis 1. Given κ > 0, the following is true for any
sufficiently large k0 and any k ≥ k0: if all steps taken by the RNM algorithm from
Δk0 to Δk are reflections, then the distance between the transformed centroids of Δk0

and Δk is less than κ (where we use a coordinate frame whose base point is a vertex
of Δk0).

Proof. We work in the transformed coordinates of Fk0 , assuming that k0 is suffi-

ciently large and that ε satisfying 0 < ε < κ/2 is sufficiently small. Let Δ̃ denote an
RNM triangle produced by a sequence of consecutive reflections beginning at iteration
k0 such that the (transformed) centroid (X̃, Ỹ ) of Δ̃ is contained in the box defined
by

(3.21) |X̃| ≤ ε and |Ỹ | ≤ ε.

It then suffices to show that the RNM move taken by Δ̃ cannot be a reflection such
that the centroid of the reflected triangle leaves the box (3.21).

More precisely, for suitable ε and k0, the idea is to prove the following:
(a) The centroid of the reflected triangle cannot escape out the top of the box

(i.e., the Ỹ -coordinate cannot increase beyond ε) because the function value of
the reflection point would exceed the function values of Δk0 (i.e., the function
values near the center of the box).

(b) The centroid of the reflected triangle cannot escape out the bottom because
the function value there would be less than the limiting value f(p†).

(c) The centroid of the reflected triangle cannot escape out either side of the

box, because the triangle Δ̃ will be flat enough that the function values there
are controlled mainly by the x̃-coordinates, which force the triangle to reflect
inward toward the line x̃ = 0.

The conditions on ε and k0 will be specified in the course of the proof.
Proof of (a). We copy the argument used in proving (b)(iv) of Lemma 3.8. Let b

be the base point used to define Fk0 . For p along the top edge of the box, by definition
ỹ = ε. Thus the same argument that proved (3.20) shows that

f(p) = f(b) + ε+O(ε2)

and that if ε is sufficiently small, then there are neighborhoods U of the top edge

and V of (0, 0) such that f(p) > f(b′) holds whenever p̃ ∈ U and b̃
′ ∈ V . If k0 is

sufficiently large, and Δ̃ is the later triangle whose centroid is about to exit the box

through the top, then by Lemma 3.7(b), Δ̃k0 and Δ̃ are small enough that Δ̃k0 ⊂ V

and Δ̃ ⊂ U , so the function values at vertices of Δ are greater than those for Δk0 ,
which is impossible since function values at vertices of successive RNM triangles are
nonincreasing.

Proof of (b). This case is even closer to the proof of (b)(iv) in Lemma 3.8. That
argument shows that if ε is sufficiently small and k0 is sufficiently large, then the
function values at the vertices of a triangle Δ whose transformed centroid is about
to exit through the bottom are strictly less than the value f(p†) (which is made
arbitrarily close to f(b) by taking k0 large). This contradicts Lemma 2.6(c).

Proof of (c). To show that the centroid cannot escape out either side of the box,

by symmetry we need to consider only the case when a reflection by Δ̃, whose centroid
lies in the box (3.21), would produce a triangle whose centroid exits the box on the
right side. As noted at the beginning of the proof, ε > 0 can be taken as arbitrarily
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small, with ε < κ/2 for any given κ > 0. By Lemma 3.7(c) and Lemma 3.8, we may

take k0 large enough that the centroid of Δ̃k0 satisfies (3.21), with

(3.22) w̃k0 < 0.01ε and h̃k0 < 0.01εw̃k0 .

The width w̃ and height h̃ of Δ̃ are the same as that of Δ̃k0 . Given our assumption

that the centroid of Δ̃ is contained in the box (3.21) but a reflection might exit on

the right, 0.99ε < x̃ < 1.01ε holds at every transformed vertex of Δ̃. Let ṽ = (x̃, ỹ)
and ṽ′ = (x̃ + δx, ỹ + δy) be two such vertices. We now show that if δx > w̃/10, i.e.,
if ṽ′ lies more than w̃/10 to the right of ṽ, then f(ṽ′) > f(ṽ). By (3.5),

f(v′)− f(v) = x̃δx + 1
2δ

2
x + δy + (r(x̃ + δx, ỹ + δy)− r(x̃, ỹ))

≥ (0.99ε)(w̃/10) + 0− h̃− (o(ε)w̃ +O(ε)h̃)

(by integrating Lemma 3.1(ii))

≥ 0.099εw̃+ 0− h̃− 0.001εw̃− h̃ (if ε is sufficiently small)

= 0.098εw̃− 2h̃

> 0 (by the second inequality in (3.22)).

Now we can mimic part of the proof of (b) in Lemma 3.8, but in the horizontal
rather than the vertical direction. Denoting the x̃-coordinate of the leftmost vertex
in Δ̃ by x̃left (with analogous notation for the other two vertices), we have x̃left ≤
x̃mid ≤ x̃right, with x̃left + w̃ = x̃right. Similarly, let x̃best, x̃next, and x̃worst denote the
x̃-coordinates of the vertices ordered by increasing objective function value. It follows
from the previous paragraph that the leftmost vertex cannot be the worst and also
that

(3.23) x̃best ≤ x̃left +
w̃

10
, x̃next ≤ x̃mid +

w̃

10
, and x̃worst ≥ x̃right − w̃

10
.

If Δ̃ undergoes a reflection, the x̃ coordinate of the centroid changes by 1
3 (x̃best +

x̃next − 2x̃worst). The inequalities in (3.23) then imply that this change is negative:

x̃best + x̃next − 2x̃worst ≤ x̃left − x̃right + x̃mid − x̃right +
4w̃

10

≤ −w̃ +
4w̃

10
< 0.

Thus the centroid will not move beyond the right side of the box.

3.8. Conditions at an advanced contraction. Assuming Hypothesis 1, we
next show that, whenever a contraction step is taken at a sufficiently advanced iter-
ation k, we have h̃k = O(w̃2

k). We stress the assumption that the base of the local
coordinate frame at iteration k lies inside Δk.

Lemma 3.11. Assume Hypothesis 1. If k is sufficiently large and a contraction
step is taken at iteration k (meaning that the reflection point was not accepted), then

the transformed height h̃ and width w̃ of Δk in a coordinate frame with base point
inside Δk must satisfy h̃ ≤ 10w̃2.

Proof. Given a base point of the local coordinate frame in Δk, Lemma 3.1 shows
that the difference in values of f at any two points p and v is

(3.24) f(p)− f(v) = ỹp − ỹv + 1
2 (x̃

2
p − x̃2v) + r(x̃p, ỹp)− r(x̃v, ỹv).
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For i ∈ {1, 2, 3}, let pi be the ith vertex of Δk, and let p̃i be its transform in the
local coordinate frame. We assume throughout the proof that p3 is the worst vertex.
Let pr := p1 + p2 − p3 be the reflect point, and let p̃r be its transform.

The origin of the coordinate frame is inside Δk, so |x̃i| ≤ w̃ for i = 1, 2, 3. The
RNM triangles are flattening out (Lemma 3.8), and the flatness does not change
very much when measured using the coordinate frame with a nearby base point
(Lemma 3.6(iii)). Hence, if k is large enough, h̃ ≤ w̃, so |ỹi| ≤ w̃ for i = 1, 2, 3.
Since p3 is the worst vertex, f(p3)− f(p1) ≥ 0. Substituting (3.24) and rearranging
yields

(3.25) ỹ3 − ỹ1 ≥ 1
2 (x̃

2
1 − x̃23) + r(x̃1, ỹ1)− r(x̃3, ỹ3).

Because |x̃i| ≤ w̃ and |x̃j | ≤ w̃, we obtain |x̃2i − x̃2j | ≤ w̃2, so the inequality (3.25)
implies

(3.26) ỹ3 − ỹ1 ≥ − 1
2 w̃

2 + r(x̃1, ỹ1)− r(x̃3, ỹ3).

Next we use the definition of the reflection point to obtain bounds in the other di-
rection. A contraction occurs only when the reflection point is not accepted (see step 3
of Algorithm RNM in section 2), which implies that f(pr)− f(p2) ≥ 0. Substituting
(3.24) and rearranging yields

(3.27) ỹr − ỹ2 ≥ 1
2 (x̃

2
2 − x̃2r ) + r(x̃2, ỹ2)− r(x̃r, ỹr).

By definition of pr, we have ỹr − ỹ2 = ỹ1 − ỹ3. Substituting into the left-hand side of
(3.27) yields

(3.28) ỹ1 − ỹ3 ≥ 1
2 (x̃

2
2 − x̃2r ) + r(x̃2, ỹ2)− r(x̃r, ỹr).

We have |x̃2| ≤ w̃ and |x̃r − x̃2| = |x̃1 − x̃3| ≤ w̃, so

|x̃22 − x̃2r | = |x̃2 + x̃r| · |x̃2 − x̃r| ≤ 3w̃2,

and substituting into (3.28) yields

(3.29) ỹ1 − ỹ3 ≥ − 3
2 w̃

2 + r(x̃2, ỹ2)− r(x̃r, ỹr).

If k is sufficiently large, we know from Lemmas 2.5 and 3.1 that, in the smallest box
containing a transformed advanced RNM triangle and its reflection point, |dr/dx̃| ≤ w̃
and |dr/dỹ| ≤ 1

2 . Consequently,

|r(x̃1, ỹ1)− r(x̃3, ỹ3)| ≤ w̃|x̃1 − x̃3|+ 1
2 |ỹ1 − ỹ3| ≤ w̃2 + 1

2 |ỹ1 − ỹ3|,(3.30)

|r(x̃2, ỹ2)− r(x̃r, ỹr)| ≤ w̃|x̃1 − x̃3|+ 1
2 |ỹ1 − ỹ3| ≤ w̃2 + 1

2 |ỹ1 − ỹ3|.
Substituting (3.30) into (3.26) and (3.29), respectively, we obtain

(3.31) ỹ3 − ỹ1 ≥ − 3
2 w̃

2 − 1
2 |ỹ1 − ỹ3| and ỹ1 − ỹ3 ≥ − 5

2 w̃
2 − 1

2 |ỹ1 − ỹ3|.
These imply ỹ3− ỹ1 ≥ −3w̃2 and ỹ1− ỹ3 ≥ −5w̃2, so |ỹ1− ỹ3| ≤ 5w̃2. Our numbering
of p1 and p2 was arbitrary, so |ỹ2 − ỹ3| ≤ 5w̃2 too. These two inequalities imply

h̃ ≤ 10w̃2.
Remark 3.12. The lemma just proved applies to an RNM triangle not at an

arbitrary iteration but only at a sufficiently advanced iteration k. Even for large k,
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0 1 2 3

x 10
−4

−2.5

−2

−1.5

−1

−0.5

0
x 10

−6

Fig. 7. The contours of ỹ+ 1
2
x̃2+ 1

2
ỹ2 are shown along with an RNM triangle with ˜h/w̃2 = 30.

The reflection is accepted.

0 1 2 3

x 10
−4

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−8

Fig. 8. The contours of ỹ+ 1
2
x̃2+ 1

2
ỹ2, are shown along with an RNM triangle with ˜h/w̃2 = 3

4
.

The reflection step is not accepted, and an outside contraction is performed. Note the difference, by
four orders of magnitude, between the horizontal and vertical scales.

the condition h̃ ≤ 10w̃2 is necessary but not sufficient to characterize an RNM triangle
for which a contraction occurs.

Figures 7 and 8 illustrate two cases for the function 1
2 x̃

2 + ỹ + 1
2 ỹ

2. The worst

vertex is at the origin in each figure. In Figure 7, we have h̃ = 1.2 × 10−6 and
w̃ = 2× 10−4, so h̃/w̃2 = 30; as Lemma 3.11 would predict at an advanced iteration,

the triangle reflects instead of contracting. In Figure 8, by contrast, h̃ = 3×10−8 and
w̃ = 2× 10−4, so h̃/w̃2 = 3

4 and an outside contraction is taken. The vertical scale in
each figure is greatly expanded compared to the horizontal, and the vertical scale in
Figure 7 differs from that in Figure 8 by two orders of magnitude.

Lemma 3.13. Under the assumptions of Lemma 3.11, if k is sufficiently large
and a contraction step is taken at iteration k, then Γk ≤ 10, where Γk is the flatness
of Δ̃k as in Definition 3.4.

Proof. Let w̃, h̃, Ã be the width, height, and area of Δk with respect to the
coordinate frame associated by Lemma 3.1 to a vertex of Δk. If k is sufficiently large,
then Lemma 3.11 implies h̃ ≤ 10w̃2. Hence

Γk =
Ã

w̃3
≤ h̃w̃

w̃3
≤ (10w̃2)w̃

w̃3
= 10.
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3.9. The nature of postcontraction moves. The final piece of the proof of
Theorem 1.2 (in section 3.11) will show that, for sufficiently advanced iterations, the
flatness of the RNM triangles must increase by a factor of at least 1.001 within a
specified number of iterations following a contraction. To obtain this result, we begin
by characterizing the structure of RNM vertices at sufficiently advanced iterations
following a contraction and then defining a related but simpler triangle.

3.9.1. A simpler triangle. Assume that (i) there is a limit point p† of the
RNM triangles that is not the minimizer of f , (ii) k0 is sufficiently large, and (iii)
iteration k0 is a contraction. For the RNM triangle Δk0 , let F1 denote the coordinate
frame whose base point is the vertex of Δk0 with the worst value of f :

(3.32) base(F1) = (pworst)k0 .

This first coordinate frame is used to identify p̃left and p̃right, the transformed vertices
of Δk0 with leftmost and rightmost x̃ coordinates.

A second coordinate frame, F2, is defined next whose base point (measured in
frame F1) is the midpoint of [p̃left, p̃right]:

(3.33) base(F2) =
1
2 (p̃left + p̃right).

Unless otherwise specified, the coordinate frame F2 is used throughout the remainder
of this proof. The base points of F1 and F2 will be arbitrarily close if k0 is sufficiently
large.

We assume that k0 is sufficiently large so that the RNM triangles have become
tiny in diameter and flattened out (Lemma 3.8). The reason for defining F2 is that we
can choose a small η > 0 such that the transformed three vertices of Δk0 , measured
in coordinate frame F2, may be expressed as

(3.34) a0 =

(
−η

−uη2
)
, b0 =

(
sη

tη2

)
, and c0 =

(
η

uη2

)
,

where vertex a0 corresponds to pleft and vertex c0 to pright.
Without loss of generality the value of s in (3.34) can be taken as nonnegative. The

vertices a0 and c0 were leftmost and rightmost when measured in F1; by Lemma 3.6(i),
the s in (3.34) cannot be too much larger than 1. We assume that k0 is large enough
so that 0 ≤ s ≤ 1.00001.

Because of the form of the vertices in (3.34) and the bounds on s, the transformed
width w̃ of Δk0 (measured using coordinate frame F2) can be no larger than 2.00001η.
Iteration k0 is, by assumption, a contraction, so it follows from Lemma 3.11 that the
transformed height of Δk0 satisfies h̃ ≤ 10w̃2, and hence h̃ ≤ 40.0005η2. Since h̃
is equal to the larger of 2|u|η2 or (|u| + |t|)η2, it follows that |u| ≤ 40.0005 and
|t| ≤ 40.0005 in (3.34).

If Δ and Δ′ are any two consecutive RNM triangles in which the same coordinate
frame is used, the new vertex of Δ′ is a linear combination of the vertices of Δ, with
rational coefficients defined by the choice of worst vertex and the nature of the move.
(See (3.1)–(3.3).) Furthermore, the values of w̃ and h̃ in Δ and Δ′ remain the same or
decrease, and, if v is any vertex of Δ and v′ is any vertex of Δ′, then |x̃v′ − x̃v | ≤ 2w̃

and |ỹv′ − ỹv| ≤ 2h̃. Thus, after � ≥ 0 moves, we reach a triangle Δk0+� for which
each transformed vertex ṽ has the form

(3.35) ṽ =

(
λη

μη2

)
, where |λ| ≤ 1.00001+4.00002� and |μ| ≤ 40.0005(1+2�).
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3.9.2. Rescaled inequalities associated with RNM moves. The next step
is to make a rescaling of coordinates to define a triangle Δ� that is related to Δ̃k0+�

by the diagonal affine transformation diag(η, η2). Let p̃ = (λη, μη2) be a point in

Δ̃k0+� measured in F2. Then

(3.36) p̃ =

(
λη

μη2

)
corresponds to P =

(
λ

μ

)
(a point in Δ�),

where λ and μ satisfy the bounds (3.35). The flatness of Δ�, defined as area(Δ�)/
(width(Δ�))

3, is equal to the flatness of Δk0+� measured in coordinate frame F2.
Assume now that � ≤ 20; the reason for this limit on � will emerge later in

Proposition 3.15. For vertex i of Δk0+�, equation (3.35) shows that the coefficients
in its transformed coordinates satisfy |λi| < 82 and |μi| < 3000. By (3.5), (3.6), and
(3.35), once k0 is large enough to make o(η2) sufficiently small, the difference in f
values between vertices i and j is

f(vi)− f(vj) = η2[(12λ
2
i + μi)− (12λ

2
j + μj)] + r(ημi, η

2λi)− r(ημj , η
2λ2j )

= η2[(12λ
2
i + μi)− (12λ

2
j + μj)] + o(η2).(3.37)

Let ψ denote the simple quadratic function

(3.38) ψ(λ, μ) := 1
2λ

2 + μ.

Then (3.37) shows that, if k0 is large enough, the following relationships hold between
f at vertices of Δk0+� and ψ at vertices of Δ�:

(3.39) f(vi) ≥ f(vj) implies ψ(λi, μi) > ψ(λj , μj)− 10−6,

where 10−6 is not magical but simply a number small enough so our subsequent results
follow.

Example 3.14. For illustration, let � = 0. Based on (3.34), the vertices of Δ0 are
given by

(3.40) A0 =

(
−1

−u

)
, B0 =

(
s

t

)
, and C0 =

(
1

u

)
,

and suppose that a0 is the worst transformed vertex of Δk0 , i.e., that

f(a0) ≥ f(b0) and f(a0) ≥ f(c0).

Application of (3.39) gives ψ(−1,−u) > ψ(s, t)−10−6 and ψ(−1,−u) > ψ(1, u)−10−6,
i.e.,

1
2 −u > 1

2s
2+ t−10−6 and 10−6 > 2u (a simplification of 1

2 − u > 1
2 + u− 10−6).

In this way, inequalities characterizing the transformed vertices (3.35) of Δk0+�

when applying the RNM algorithm with function f can be derived in terms of vertices
of the simpler triangle Δ� when applying the RNM algorithm to the function ψ(λ, μ),
except that both possible outcomes of a comparison must be allowed if the two values
of ψ are within 10−6. The importance of (3.39) is that, for � ≤ 20, a possible sequence
of RNM moves specifying the move type and worst vertex leads to a set of algebraic
inequalities in s, t, and u.
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3.10. Eliminating the impossible: Increasing flatness is unavoidable.
We need notation that specifies both an RNM triangle being measured and an in-

dependent local coordinate frame. The value Γ
(1)
k will denote the flatness of RNM

triangle Δk measured in F1 of (3.32), and Γ
(2)
k will denote the flatness of Δk measured

in F2 of (3.33). We use similar notation for w̃ and Ã. An essential point is that the
base points of coordinate frames F1 and F2 are in Δk0 , so when k > k0, the triangle
containing the base point of the coordinate frame is different from the triangle being
measured.

The result in the following proposition was found using symbolic computation
software.

Proposition 3.15. Assume Hypothesis 1. If k0 is sufficiently large and a con-
traction step is taken at iteration k0, then there exists � with 1 ≤ � ≤ 14 such that

Γ
(2)
k0+� > 1.01 Γ

(2)
k0

.
Before giving the proof, we sketch the basic idea. As just described in section 3.9.2,

we are in a situation where two properties apply: (1) the transformed objective func-
tion at the scaled point (λ, μ)T can be very well approximated by the quadratic func-
tion ψ(λ, μ) := 1

2λ
2 + μ in (3.38), and (2) the RNM move sequences of interest can

be analyzed by beginning with an initial simplified (scaled) triangle whose vertices
(see (3.40)) involve bounded scalars (s, t, u) that lie in a compact set. Under these
conditions, the proof explains how algebraic constraints can be derived that char-
acterize geometrically valid sequences of RNM moves. Further algebraic constraints
involving s can also be defined that must be satisfied when the flatness increases by
a factor of no more than 1.01.

In principle, one could establish the result of the proposition by numerically check-
ing flatness for all geometrically valid RNM move sequences beginning with the simpli-
fied triangle, but this approach is complicated, structureless, and too time-consuming
for numerical calculation. Instead, we used Mathematica 7.0 to construct symbolic
inequalities representing RNM move sequences such that

• s, t, and u are suitably bounded,
• the geometric condition (3.39) for a valid RNM move applies, and
• the flatness increases by a factor of less than or equal to 1.01.

Proof of Proposition 3.15. The flatness is not changed by a reflection step as long
as the same coordinate frame is retained. Assuming that k0 is sufficiently large and
that the move taken during iteration k0 is a contraction, we wish to show that there is
an index � satisfying 1 < � ≤ 14 such that the flatness Γ of the RNM triangle Δk0+�,
measured in coordinate frame F2, must be a factor of at least 1.01 larger than the
flatness of Δk0 , i.e., that

(3.41)
Γ
(2)
k0+�

Γ
(2)
k0

=
Ã

(2)
k0+�

Ã
(2)
k0

(
w̃

(2)
k0

w̃
(2)
k0+�

)3
> 1.01.

Let us prove (3.41) directly for � = 1 when A0 of (3.40) is the worst vertex of Δ0

and an inside contraction occurs. In this case, the next triangle Δ1 has vertices

(3.42) A1 =

(
1
4s− 1

4
1
4 t− 1

4u

)
, B1 =

(
s

t

)
, and C1 =

(
1

u

)
,

where the first vertex A0 has been replaced. We have two cases:
• If 0 ≤ s ≤ 1, then w̃(Δ0) = 2 and w̃(Δ1) =

5
4 − 1

4s ≤ 5
4 , which implies that

w̃(Δ0)/w̃(Δ1) ≥ 8
5 .
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• If 1 < s ≤ 1.00001, then w̃(Δ0) ≥ 2 and w̃(Δ1) =
3
4s+

1
4 , so that w̃(Δ1) ≤

1.0000075 and w̃(Δ0)/w̃(Δ1) ≥ 1.9999.
For all s satisfying 0 ≤ s ≤ 1.00001, it follows that w̃(Δ0)/w̃(Δ1) ≥ 8

5 and hence that

(
w̃(Δ0)

w̃(Δ1)

)3
≥
(
8

5

)3
= 4.096.

The area of Δ1 is half the area of Δ0. Hence the ratio of the flatnesses of Δ1 and
Δ0 satisfies

Γ(Δ1)

Γ(Δ0)
=
Ã(Δ1)

Ã(Δ0)

(
w̃(Δ0)

w̃(Δ1)

)3
≥ 1

2 (4.096) > 1.01.

The same argument applies when Δ1 is the result of an outside contraction in which
vertex A0 is the worst.

But when the sequence of moves begins with a contraction in which vertex B0

or C0 is worst, we must break into further cases, and the analysis becomes too com-
plicated to do by hand. To examine such sequences of RNM moves, we use a Mathe-
matica program that generates inequalities involving vertices of Δ� and the function
ψ of (3.38), as described in section 3.9.2.

Any sequence of RNM moves (where a move is specified by the worst vertex
and the type of move) starting with triangle Δk0 gives rise to a set of algebraic
inequalities in s, t, and u. The ith of these latter inequalities has one of the forms
φi(s) + νit+ωiu > θi or φi(s) + νit+ωiu ≥ θi, where φi(s) is a quadratic polynomial
in s with rational coefficients, and νi, ωi, and θi are rational constants.

The next step is to determine whether there are acceptable values of s, t, and u
for which these inequalities are satisfied. To do so, we begin by treating s as constant
(temporarily) and considering the feasibility of a system of linear inequalities in t and
u, namely, the system Nz ≥ d, where z = (t u)T , the ith row of N is (νi ωi), and
di = θi−φi(s). A variant of Farkas’ lemma [25, p. 89] states that the system of linear
inequalities Nz ≥ d is feasible if and only if γTd ≤ 0 for every vector γ satisfying
γ ≥ 0 and NTγ = 0. If the only nonnegative vector γ satisfying NTγ = 0 is γ = 0,
then Nz ≥ d is feasible for any d.

We can determine symbolically whether there is a nonnegative nonzero γ in the
null space of NT by noting that the system Nz ≥ d is feasible if and only if it is
solvable for every subset of three rows of N . Let N̂ denote the 3×2 matrix consisting
of three specified rows of N , with a similar meaning for d̂. To determine the feasibility
of N̂z ≥ d̂, we first find a vector γ̂ such that N̂T γ̂ = 0.

If N̂ has rank 2, then γ̂ is unique (up to a scale factor) and we can write N̂T (or
a column permutation) so that the leftmost 2× 2 submatrix B is nonsingular. Then,
with

N̂T =

(
ν1 ν2 ν3

ω1 ω2 ω3

)
=
(
B h

)
, γ̂ is a multiple of

(
−B−1h

1

)
,

where the components of B−1 and h are rational numbers. If (with appropriate

scaling) γ̂ ≥ 0 with at least one positive component, then N̂T z ≥ d̂ is solvable if and

only if γ̂T d̂ ≤ 0. If the components of γ̂ do not have the same sign, N̂T z ≥ d̂ is
solvable for any d̂.
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If N̂ has rank one, its three rows must be scalar multiples of the same vector,
i.e., the ith row is (βiν1 βiω1), and the null vectors of N̂T are linear combinations of
(β2,−β1, 0)T , (0, β3,−β2)T , and (β3, 0,−β1)T .

Since the components of d are quadratic polynomials in s and the components of
each γ̂ are rational numbers, the conditions for feasibility of Nz ≥ d (e.g., the con-

junction of conditions that γ̂T d̂ ≤ 0 for each set of three rows of N) can be expressed
as a Boolean combination of quadratic inequalities in s with rational coefficients that,
for a given value of s, evaluates to “True” if and only if there exist t and u such that
these inequalities are satisfied.

To verify the result of the proposition for a given sequence of � RNM moves
applied to Δ0, we need to compute the flatness of Δ�, which is, by construction,
equal to the flatness of Δk0+� measured in coordinate frame F2; see (3.36). We can
directly calculate the ratio of the area of Δ� to the area of Δ0 by using the number
of contractions in the move sequence, since each contraction multiplies the area by 1

2 .
The width of Δ� can be obtained using inequalities and linear polynomials in s, since
the width is determined by the largest and smallest x̃ coordinates, which are linear
polynomials in s. Consequently, the condition that the flatness for each triangle in
the sequence is less than 1.01 times the original flatness can be expressed as a Boolean
combination of (at most cubic) polynomial inequalities in s, where s is constrained to
satisfy 0 ≤ s ≤ 1.00001.

To determine whether there are allowable values of s for which a specified se-
quence of RNM moves is possible, observe that a Boolean combination of polynomial
inequalities in s will evaluate to “True” for s in a certain union of intervals that can
be computed as follows. We first find the values of s that are solutions of the poly-
nomial equations obtained by replacing any inequalities by equalities. Then, between
each adjacent pair of solutions, we choose a test value (e.g., the midpoint) and check
whether the associated inequality evaluates to “True” on that interval.

The computation time can be cut in half by considering only sequences that begin
with an inside contraction, for the following reason. The outside contraction point for
an original triangle Δ with vertices p1, p2, and p3 is equal to the inside contraction
point for a triangle, denoted by Δ′, whose worst vertex p3 is the reflection point pr

of Δ. With exact computation, the conditions for an outside contraction of Δ differ
from those for an inside contraction of Δ′ if equality holds in some of the comparisons.
In particular, if f(p3) > f(pr) ≥ f(p2), then Δ will undergo an outside contraction
and Δ′ will undergo an inside contraction; but if f(p3) = f(pr), then both Δ′ and
Δ will undergo inside contractions. Since our inequalities allow for a small error in
comparisons, this difference will not change the result, and we may assume that the
RNM move at Δk0 is an inside contraction.

Finally, the definition of the RNM algorithm imposes further constraints on valid
move patterns. For example, if a reflection occurs, the reflection point must be strictly
better than the second-worst vertex, so this reflection point cannot be the worst
point in the new triangle. Such sequences (impossible in the RNM algorithm) would
be permitted by the small error allowed in the inequalities, so they are explicitly
disallowed in the Mathematica code.

Putting all this together, a program can test each sequence of valid operations that
begins with an inside contraction to determine whether there exists an initial triangle
for which ratio of the flatnesses, measured in F2, is less than 1.01. The results of this
computation show that, within no more than 14 RNM moves following a contraction,
a triangle is always reached for which the ratio of the flatnesses, measured in the
second coordinate frame F2, is at least 1.01. We stress that the count of 14 moves
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includes a mixture of reflections and both forms of contraction. Details of these move
sequences can be found in the appendix. There we list the s-values and the associated
sequences of 14 or fewer RNM moves for which the ratio of the flatnesses remains less
than 1.01.

Proposition 3.15 used coordinate frame F2, but its analogue for F1 follows almost
immediately with a slightly smaller constant in place of 1.01.

Lemma 3.16. Under the assumptions of Proposition 3.15, there exists � with
1 ≤ � ≤ 14 such that

Γ
(1)
k0+� > 1.001 Γ

(1)
k0
.

Proof. The base point of F1 is the worst point of Δk0 ; the base point of F2 is the
midpoint of the edge of Δk0 joining the two vertices whose x̃ coordinates are leftmost
and rightmost when measured in F1. By choosing k0 to be large enough, the two base
points can be made arbitrarily close. Lemma 3.6(iii) with ε = 0.0001 shows that for
large enough k0, the flatnesses of triangles Δk0 and Δk0+� measured in coordinate
frames F1 and F2 satisfy

(3.43) 0.9999 Γ
(1)
k0

≤ Γ
(2)
k0

≤ 1.0001 Γ
(1)
k0

and 0.9999 Γ
(2)
k0+� ≤ Γ

(1)
k0+� ≤ 1.0001 Γ

(2)
k0+�.

Now, for � as in Proposition 3.15,

Γ
(1)
k0+� ≥ 0.9999 Γ

(2)
k0+�

> 0.9999(1.01)Γ
(2)
k0

(by Proposition 3.15)

≥ 0.9999(1.01)(0.9999)Γ
(1)
k0

> 1.001 Γ
(1)
k0
.

3.11. Completion of the proof. The main result of this paper is the follow-
ing theorem (called Theorem 1.2 in section 1). One crucial ingredient in the proof
is Lemma 3.10, which limits the possible change in flatness caused by moving the
base point of the local coordinate system from the first to last triangle in a series of
consecutive reflections.

Theorem 3.17. If the RNM algorithm is applied to a function f ∈ F , starting
from any nondegenerate triangle, then the algorithm converges to the unique minimizer
of f .

Proof. In this proof, Γj(Δi) denotes the flatness of RNM triangle Δi measured
in a coordinate frame Fj whose base point is the worst vertex of triangle Δj .

Given a small positive number κ, let k0 be sufficiently large (we will specify how
small and how large as we go along). As mentioned in section 3.1, the RNM triangle
must contract infinitely often, so we may increase k0 to assume that Δk0 contracts.
Lemma 3.16 shows that the flatness measured in Fk0 increases by a factor of 1.001 in
at most 14 RNM moves; i.e., there exists k1 with k0 < k1 ≤ k0 + 14 such that

(3.44) Γk0(Δk1) > 1.001 Γk0(Δk0).

We now switch coordinate frames on the left-hand side: Lemma 3.6(iii) and Re-
mark 3.9 show that the flatness of Δk1 in Fk1 is close to its flatness in Fk0 . In
particular, if k0 is sufficiently large, then

(3.45) Γk1(Δk1) ≥ 0.9999 Γk0(Δk1).
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Let k2 ≥ k1 be the first iteration after (or equal to) k1 such that Δk2 contracts.
Lemma 3.10 shows that if k0 is sufficiently large, then from iteration k1 to the begin-
ning of iteration k2, the distance travelled by the centroid, measured in Fk1 , is less
than κ. During those iterations, the RNM triangle retains its shape and hence its
flatness, as measured in Fk1 ; that is,

(3.46) Γk1(Δk2) = Γk1(Δk1).

If κ was small enough, Lemma 3.6(iii) and Remark 3.9 again imply

(3.47) Γk2(Δk2) ≥ 0.9999 Γk1(Δk2).

Combining (3.44), (3.45), (3.46), and (3.47) yields

(3.48) Γk2(Δk2) > (0.9999)2(1.001)Γk0(Δk0 ) > 1.0007 Γk0(Δk0).

If k0 is sufficiently large, then repeating the process that led from k0 to k2 defines
k0 < k2 < k4 < · · · such that

Γk2n(Δk2n) > (1.0007)nΓk0(Δk0 )

for all n. To know that the same lower bound on k0 works at every stage, we use
that in Lemma 3.6(iii) the number δ is independent of b1, b2, and Δ. Now, if n is
sufficiently large, then

Γk2n(Δk2n) > 10.

But Δk2n contracts, so this contradicts Lemma 3.13.
Hence the assumption made at the beginning of our long chain of results, Hy-

pothesis 1, must be wrong. In other words, the RNM algorithm does converge to the
minimizer of f .

4. Concluding remarks.

4.1. Why do the McKinnon examples fail? For general interest, we briefly
revisit the smoothest McKinnon counterexample (1.1), which consists of a twice-
continuously differentiable function f and a specific starting triangle for which the
RNM algorithm converges to a nonminimizing point (with nonzero gradient). The
Hessian matrix is positive semidefinite and singular at the limit point, but positive
definite everywhere else. Thus all the assumptions in our convergence theorem are
satisfied except for positive-definiteness of the Hessian, which fails at one point. Hy-
pothesis 1 is valid for this example, and it is enlightening to examine where the proof
by contradiction fails.

The McKinnon iterates do satisfy several of the intermediate lemmas in our proof:
the RNM triangles not only flatten out (Lemma 3.8), but they do so more rapidly than
the rate proved in Lemma 3.11.4 However, an essential reduction step, Lemma 3.6,
fails to hold for the McKinnon example, as discussed below.

4As k → ∞, the McKinnon triangles satisfy ˜hk ≈ w̃θ
k for θ = |λ2|(1 + |λ2|)/λ1 ≈ 3, where

λ1,2 = (1 ±√
33)/8.
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Fig. 9. Convergence of the RNM algorithm on a strictly convex quadratic function.

Positive-definiteness of the Hessian plays a crucial role in our proof by contra-
diction because it allows us to uniformly approximate the objective function close to
the limit point p† by its degree-2 Taylor polynomial. Applying a well-defined change
of variables, the function 1

2x
2 + y for a simple triangle can then be taken as a surro-

gate, and we can essentially reduce the problem to studying the RNM algorithm for
the objective function 1

2x
2 + y near the nonoptimal point (0, 0). In the McKinnon

example (1.1), however, the objective function near the limit point (0, 0) cannot be
(uniformly) well approximated by 1

2x
2 + y, even after a change of variable. Although

the Hessian of the McKinnon function f remains positive definite at base points in
Δk as k → ∞, it becomes increasingly close to singular, in such a way that ever-
smaller changes in the base point will eventually not satisfy the closeness conditions
of Lemma 3.6. In fact, the actual shape of the McKinnon objective function allows
a sequence of RNM moves that are forbidden for 1

2x
2 + y near the nonoptimal point

(0, 0), namely an infinite sequence of inside contractions with the best vertex never
replaced. In dynamical terms, the McKinnon objective function allows symbolic dy-
namics forbidden for 1

2x
2 + y near (0, 0), and these symbolic dynamics evade the

contradiction in our argument.

4.2. An instance of RNM convergence. Most of this paper has been devoted
to analysis of situations that we subsequently show cannot occur; this is the nature
of arguments by contradiction. For contrast, we present one example where the RNM
algorithm will converge, as we have proved, on the strictly convex quadratic function

f(x, y) = 2x2 + 3y2 + xy − 3x+ 5y,

whose minimizer is x∗ = (1,−1)T . Using starting vertices (0, 0.5)T, (0.25,−0.75)T,
and (−0.8, 0)T, after 20 RNM iterations the best vertex is (0.997986,−1.00128)T, and
the RNM triangles are obviously converging to the solution. The first nine iterations
are depicted in Figure 9.

4.3. Significance of the results in this paper. This paper began by noting
that very little is known about the theoretical properties of the original NM method,
despite 45 years of practice. It is fair to say that proving convergence for an RNM
algorithm in two dimensions on a restricted class of functions adds only a little more
to this knowledge. This contribution seems of interest, however, because of the lack
of other results despite determined efforts, and the introduction of dynamical systems
methods to the analysis.
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Our analysis applies only to a simplified (“small step”) version of the original
NM method which excludes expansion steps. We have observed that in thousands
of computational experiments with functions defined in R

n (n ≥ 2) in which the
NM method converges to a minimizer, expansion steps are almost never taken in the
neighborhood of the optimum. Expansion steps are typically taken early on, forming
part of the “adaptation to the local contours” that constituted the motivation for
Nelder and Mead when they originally conceived the algorithm [19]. Thus the RNM
algorithm appears to represent, to a large extent, the behavior of the original method
near the solution. In this direction, it would be valuable if these empirical observations
could be rigorously justified under a well-defined set of conditions. The observed good
performance of the NM method on many real-world problems remains a puzzle.

This paper applies dynamical systems methods to the analysis of the RNM al-
gorithm. The use of such ideas in the proofs, particularly that of a (rescaled) local
coordinate frame in section 3.9.2, may also be useful in other contexts where it is valu-
able to connect the geometry of a simplex with the contours of the objective function.
The evolving geometric figures of the algorithm remain one of the intuitive appeals of
the original NM method, leading to the nickname of “amoeba method” [22]. There
may well be other applications, but the latest direct search methods tend to exhibit
a less clear connection with geometry.

Finally, our analysis for the RNM algorithm relies in part on the fact that the
volume of the RNM simplex is nonincreasing at every iteration, thereby avoiding
the difficulties associated with expansion steps. Consequently, McKinnon’s question
remains open: does the original NM algorithm, including expansion steps, always
converge for the function x2 + y2, or more generally for a class of functions like those
treated in Theorem 1.2? We hope that further development of the dynamical systems
approach could lead to progress on this question.

Appendix: Computation for Proposition 3.15. This appendix provides
details of the symbolic computation performed to prove Proposition 3.15. We regard
the coding of moves as a form of symbolic dynamics for the RNM iteration. Moves
are represented as follows: 1, 2, and 3 denote reflections with, respectively, vertex A,
B, or C of (3.40) taken as the worst vertex, i.e., replaced during the move. Similarly,
4, 5, and 6 denote inside contractions, and 7, 8, 9 denote outside contractions with
worst vertex A,B,C, respectively.

We describe a sequence of move numbers as possible for a given s ∈ [0, 1.00001]
if there exist t, u ∈ [−40.0005, 40.0005] such that for the triangle (3.40) described by
(s, t, u),

(i) the variables s, t, u satisfy the inequality implied by (3.39) for each RNM
move,

(ii) the flatness after each step is less than or equal to 1.01 times the original
flatness, and

(iii) no reflection undoes an immediately preceding reflection.
Remark 4.1. Because (3.39) involves a relaxation of 10−6, a sequence character-

ized as “possible” using the first two properties listed above could be impossible for
the RNM algorithm in exact arithmetic. This is why the third condition explicitly
prohibits sequences in which a reflection undoes the previous move, something that
can never happen in the RNM algorithm.

In the proof of Proposition 3.15, we described a symbolic algorithm for computing
all possible sequences beginning with an inside contraction. The Mathematica output
below lists all these sequences.
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{5} possible for s in {{0.999999, 1.00001}}

{5, 6} possible for s in {{0.999999, 1.00001}}

{6} possible for s in {{0.582145, 1.}}

{6, 2} possible for s in {{0.582145, 0.737035}}

{6, 2, 1} possible for s in {{0.582145, 0.695708}}

{6, 2, 1, 3} possible for s in {{0.582145, 0.654949}}

{6, 2, 1, 3, 2} possible for s in {{0.582145, 0.654949}}

{6, 2, 1, 3, 6} possible for s in {{0.582145, 0.654949}}

{6, 2, 1, 3, 6, 2} possible for s in {{0.616769, 0.654949}}

{6, 2, 1, 3, 6, 2, 5} possible for s in {{0.616769, 0.64706}}

{6, 2, 1, 3, 6, 8} possible for s in {{0.582145, 0.64706}}

{6, 2, 1, 3, 6, 8, 4} possible for s in {{0.582145, 0.623495}}

{6, 2, 1, 3, 9} possible for s in {{0.582145, 0.644579}}

{6, 2, 1, 6} possible for s in {{0.582145, 0.695708}}

{6, 2, 1, 9} possible for s in {{0.582145, 0.673138}}

{6, 2, 1, 9, 2} possible for s in {{0.616769, 0.673138}}

{6, 2, 1, 9, 2, 5} possible for s in {{0.616769, 0.64706}}

{6, 2, 1, 9, 8} possible for s in {{0.582145, 0.64706}}

{6, 2, 1, 9, 8, 4} possible for s in {{0.582145, 0.623495}}

{6, 2, 5} possible for s in {{0.582145, 0.737035}}

{6, 2, 5, 4} possible for s in {{0.582145, 0.695708}}

{6, 2, 5, 7} possible for s in {{0.582145, 0.681931}}

{6, 2, 5, 7, 6} possible for s in {{0.582145, 0.635866}}

{6, 2, 5, 7, 9} possible for s in {{0.582145, 0.681931}}

{6, 2, 5, 7, 9, 5} possible for s in {{0.582145, 0.679967}}

{6, 2, 5, 7, 9, 8} possible for s in {{0.582145, 0.663254}}

{6, 2, 5, 7, 9, 8, 4} possible for s in {{0.582145, 0.646912}}

{6, 2, 5, 7, 9, 8, 7} possible for s in {{0.582145, 0.663254}}

{6, 2, 5, 7, 9, 8, 7, 6} possible for s in {{0.582145, 0.663254}}

{6, 2, 5, 7, 9, 8, 7, 6, 5} possible for s in {{0.589537, 0.663254}}

{6, 2, 5, 7, 9, 8, 7, 6, 5, 1} possible for s in {{0.589537, 0.635373}}

{6, 2, 5, 7, 9, 8, 7, 9} possible for s in {{0.582145, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 5} possible for s in {{0.582145, 0.651784}}

{6, 2, 5, 7, 9, 8, 7, 9, 5, 4} possible for s in {{0.582145, 0.651784}}

{6, 2, 5, 7, 9, 8, 7, 9, 5, 4, 3} possible for s in {{0.582145, 0.651784}}

{6, 2, 5, 7, 9, 8, 7, 9, 8} possible for s in {{0.597869, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4} possible for s in {{0.597869, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6} possible for s in {{0.597869, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6, 2} possible for s in {{0.597869, 0.654004}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6, 2, 5} possible for s in {{0.64094, 0.654004}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6, 8} possible for s in {{0.64094, 0.65445}}

{6, 2, 8} possible for s in {{0.582145, 0.614711}}

{6, 5} possible for s in {{0.582145, 1.}}

{6, 8} possible for s in {{0.582145, 0.853944}}

{6, 8, 4} possible for s in {{0.582145, 0.810502}}

{6, 8, 7} possible for s in {{0.582145, 0.853944}}

{6, 8, 7, 6} possible for s in {{0.582145, 0.853944}}

{6, 8, 7, 9} possible for s in {{0.582145, 0.818183}}

{6, 8, 7, 9, 5} possible for s in {{0.582145, 0.811611}}

{6, 8, 7, 9, 8} possible for s in {{0.582145, 0.818183}}

{6, 8, 7, 9, 8, 4} possible for s in {{0.582145, 0.818183}}

{6, 8, 7, 9, 8, 4, 6} possible for s in {{0.763168, 0.818183}}

{6, 8, 7, 9, 8, 4, 6, 2} possible for s in {{0.763168, 0.817831}}

{6, 8, 7, 9, 8, 7} possible for s in {{0.582145, 0.777853}}

{6, 8, 7, 9, 8, 7, 6} possible for s in {{0.582145, 0.777853}}
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{6, 8, 7, 9, 8, 7, 6, 5} possible for s in {{0.589537, 0.777853}}

{6, 8, 7, 9, 8, 7, 6, 5, 1} possible for s in {{0.589537, 0.777853}}

{6, 8, 7, 9, 8, 7, 9} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 5} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 5, 4} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 5, 4, 3} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 8} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6, 2} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6, 2, 5} possible for s in {{0.64094, 0.663616}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6, 8} possible for s in {{0.64094, 0.663616}}

All we need from this computation is that there is no possible sequence of 14 steps
or more. In other words, following an inside contraction, the flatness will be greater
than 1.01 times the original flatness after no more than 14 steps (including the initial
contraction).

Remarks about the list of possible sequences. The remarks in this section
are not needed for the proof, but they may give further insight into the behavior of
the RNM algorithm as well as clear up some potential ambiguity about the computer
output above.

• That the sequence {4} is not possible (i.e., that an inside contraction with
A0 as worst vertex immediately increases the flatness by at least a factor of
1.01) was shown already near the beginning of the proof of Proposition 3.15.

• The bound 40.0005 on |t| and |u| need not be fed into the program, because
the program automatically calculates stronger inequalities that are necessary
for a contraction to occur.

• Move sequences that do not appear in the list may still occur in actual runs of
the RNM algorithm, but then the flatness must grow by more than a factor
of 1.01. Similarly, a move sequence appearing in the list may occur while
running the RNM algorithm even if s lies outside the given interval. For
example, one can show that there exist triangles with 0 ≤ s < 0.582145 on
which the RNM algorithm takes move {6}.

• One cannot predict from the list which step causes the flatness to grow beyond
the factor of 1.01. For example, using our definition the sequence {6, 2, 1, 3, 2}
is possible (for a certain range of s), but the extended sequence {6, 2, 1, 3, 2, 1}
is not. This should not be taken to mean that the last reflection {1} caused
the increase in flatness, since reflections do not change the flatness (measured
in the same coordinate frame). Rather, there may exist a triangle in the given
range that for the objective function f(λ, μ) = 1

2λ
2+μ will take the sequence

of steps {6, 2, 1, 3, 2, 1}. What must be the case, however, is that for any
such triangle the initial inside contraction {6} will have already increased the
invariant by a factor at least 1.01.

• One cannot deduce that in every run of the RNM algorithm, every sufficiently
advanced sequence of 14 steps involves a contraction. Experiments show
that, when omitting any test for flatness, a sequence beginning with {6} can
legitimately be followed by a very large number of reflect steps during which
the flatness does not change. Thus we truly needed Lemma 3.10 in addition
to Proposition 3.15 to complete our proof.

• The entire computation took about 11 minutes on an Intel Xeon 3.0 GHz
processor.
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