
MIT Open Access Articles

Network Coding Meets TCP: Theory and Implementation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sundararajan, Jay Kumar et al. “Network Coding Meets TCP: Theory and
Implementation.” Proceedings of the IEEE 99.3 (2011): 490–512.

As Published: http://dx.doi.org/10.1109/JPROC.2010.2093850

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/75026

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/75026
http://creativecommons.org/licenses/by-nc-sa/3.0/

Network coding meets TCP: theory and
implementation

Jay Kumar Sundararajan∗, Devavrat Shah†, Muriel Médard†,
Szymon Jakubczak†, Michael Mitzenmacher‡, Jõao Barros§

∗Qualcomm Inc.
San Diego,

CA 92126, USA
sjaykumar@gmail.com

†Department of EECS
Massachusetts Institute of

Technology,
Cambridge, MA 02139, USA
{devavrat, medard, szym}

@mit.edu

‡School of Eng. and Appl.
Sciences

Harvard University,
Cambridge, MA 02138, USA
michaelm@eecs.harvard.edu

§Instituto de Telecomunicações
Dept. de Engenharia Electrotécnica

e de Computadores
Faculdade de Engenharia da

Universidade do Porto, Portugal
jbarros@fe.up.pt

Abstract—The theory of network coding promises significant
benefits in network performance, especially in lossy networks and
in multicast and multipath scenarios. To realize these benefits
in practice, we need to understand how coding across packets
interacts with the acknowledgment-based flow control mechanism
that forms a central part of today’s Internet protocols such
as TCP. Current approaches such as rateless codes and batch-
based coding are not compatible with TCP’s retransmission and
sliding window mechanisms. In this paper, we propose a new
mechanism called TCP/NC that incorporates network coding into
TCP with only minor changes to the protocol stack, thereby
allowing incremental deployment. In our scheme, the source
transmits random linear combinations of packets currently in
the congestion window. At the heart of our scheme is a new
interpretation of ACKs – the sink acknowledges every degree
of freedom (i.e., a linear combination that reveals one unit of
new information) even if it does not reveal an original packet
immediately. Thus, our new TCP acknowledgment rule takes into
account the network coding operations in the lower layer and
enables a TCP-compatible sliding-window approach to network
coding. Coding essentially masks losses from the congestion
control algorithm and allows TCP/NC to react smoothly to losses,
resulting in a novel and effective approach for congestion control
over lossy networks such as wireless networks. An important
feature of our solution is that it allows intermediate nodes to
perform re-encoding of packets, which is known to provide
significant throughput gains in lossy networks and multicast
scenarios. Simulations show that our scheme, with or without re-
encoding inside the network, achieves much higher throughput
compared to TCP over lossy wireless links. We present a real-
world implementation of this protocol that addresses the practical
aspects of incorporating network coding and decoding with
TCP’s window management mechanism. We work with TCP-

This work was performed when the first author was a graduate student at the
Massachusetts Institute of Technology. Parts of this work have been presented
at IEEE INFOCOM 2009. The work was supported by NSF Grant Nos.
CNS-0627021, CNS-0721491, CCF-0915922, subcontract #18870740-37362-
C issued by Stanford University and supported by DARPA, subcontracts #
060786 and # 069145 issued by BAE Systems and supported by DARPA
and SPAWARSYSCEN under Contract Nos. N66001-06-C-2020 andN66001-
08-C-2013 respectively, subcontract # S0176938 issued by UC Santa Cruz,
supported by the United States Army under Award No. W911NF-05-1-0246,
and the DARPA Grant No. HR0011-08-1-0008.

Reno, which is a widespread and practical variant of TCP. Our
implementation significantly advances the goal of designing a
deployable, general, TCP-compatible protocol that provides the
benefits of network coding.

I. I NTRODUCTION

The concept of coding across data has been put to extensive
use in today’s communication systems at the link level, due to
practical coding schemes that are known to achieve data rates
very close to the fundamental limit, or capacity, of the additive
white Gaussian noise channel [1]. Although the fundamental
limits for many multi-user information theory problems have
yet to be established, it is well known that there are significant
benefits to coding beyond the link level.

For example, consider multicasting over a network of
broadcast-mode links in wireless systems. Due to the broadcast
nature of the medium, a transmitted packet is likely to be
received by several nodes. If one of the nodes experienced a
bad channel state and thereby lost the packet, then a simple
retransmission strategy may not be the best option, since
the retransmission is useless from the viewpoint of the other
receivers that have already received the packet. In Figure 1,
node A broadcasts 2 packets to nodes B and C. In the first
time-slot, only node B receives packetp1 and in the second
slot, only node C receives packetp2. At this point, if instead
of retransmittingp1 or p2, node A is allowed to mix the
information and send a single packet containing the bitwise
XOR of p1 andp2, then both B and C receive their missing
packet in just one additional time-slot. This example shows
that if we allow coding across packets, it is possible to convey
simultaneously, new information to all connected receivers.

Another scenario where coding across packets can make a
significant difference is in certain network topologies where
multiple flows have to traverse a bottleneck link. The now
standard example is the butterfly network from [2], which is
shown in Figure 2. Here, node A wants to multicast a stream

A

B C

A

B C

A

B C
p1 p2

p1 + p2

Time-slot 1 Time-slot 2 Time-slot 3

Fig. 1. Coding over a broadcast-mode link

A

B C

D

p1 p2

p1 p2

p1 p2p1+p2

F G

E

p1+p2p1+p2

Fig. 2. The butterfly network of [2]

of packets to nodes F and G. Assume the links are error-free
with a capacity of one packet per slot. If all nodes are only
allowed to forward packets, then node D can forward either
the packet from B (p1) or the one from C (p2). It can be
seen that alternating between these options gives a multicast
throughput of 1.5 packets per slot. However, if node D sends
a bitwise-XOR ofp1 andp2 as shown in the figure, then it
is possible to satisfy both receivers simultaneously, resulting
in a multicast throughput of 2 packets per time-slot. This is
the highest possible, since it meets the min-cut bound for each
receiver.

Through the butterfly network example, [2] introduced
the field of network coding. With network coding, a node
inside the network, instead of simply forwarding the incoming
packets onto outgoing links, is now allowed to send a coded
version of the incoming packets.

Although both the examples above use a bitwise-XOR
code, the coding operation could be much more general. For
instance, we could view groups of bits as elements of a finite
field, and a packet as a vector over this field. Coding could
then correspond to performing linear combinations of these
vectors, with coefficients chosen from the field of operation.
In order to decode, the receiver will have to collect as many
linear combinations as the number of packets that were mixed
in, and then solve the resulting system of linear equations by
Gaussian elimination.

Network coding achieves the min-cut bound for multicast
in any network as long as all the multicast sessions have
the same destination set [2], [3]. Reference [4] showed that
linear coding suffices for this purpose. An algebraic framework
for network coding was proposed by Koetter and Médard in

[3]. Reference [5] presented a random linear network coding
approach for this problem that is easy to implement and does
not compromise on throughput. The problem of multicast
using network coding with a cost criterion has been studied,
and distributed algorithms have been proposed to solve this
problem [6], [7]. Network coding also readily extends to
networks with broadcast-mode links or lossy links [8], [9],
[10]. Reference [11] highlights the need for coding for the
case of multicast traffic, even if feedback is present. In all
these situations, coding is indispensable from a throughput
perspective.

Besides improving throughput, network coding can also be
used to simplify network management. The work by Bhadra
and Shakkottai [12] proposed a scheme for large multi-hop
networks, where intermediate nodes in the network have no
queues. Only the source and destination nodes maintain buffers
to store packets. The packet losses that occur due to the
absence of buffers inside the network are compensated for
by random linear coding across packets at the source.

Network coding has emerged as an important potential ap-
proach to the operation of communication networks, especially
wireless networks. The major benefit of network coding stems
from its ability tomix data, across time and across flows. This
makes data transmission over lossy wireless networks robust
and effective. There has been a rapid growth in the theory and
potential applications of network coding. These developments
have been summarized in several survey papers and books
such as [13].

However, extending coding technologies to the network
setting in a practical way has been a challenging task. Indeed,
the most common way to implement a multicast connection
today, is to initiate multiple unicast connections, one foreach
receiver, even though coding can theoretically dramatically
improve multicast performance. To a large extent, this theory
has not yet been implemented in practical systems.

II. B RINGING NETWORK CODING TO PRACTICE

Despite the potential of network coding, we still seem far
from seeing widespread implementation of network coding
across networks. We believe a major reason for this is the in-
cremental deployment problem. It is not clear how to naturally
add network coding to existing systems, and to understand
ahead of time the actual effects of network coding in the wild.
There have been several important advances in bridging the
gap between theory and practice in this space. The distributed
random linear coding idea, introduced by Hoet al. [14],
is a significant step towards a robust implementation. The
work by Chouet al. [15] put forth the idea of embedding
the coefficients used in the linear combination in the packet
header, and also the notion of grouping packets into batches
for coding together. The work by Kattiet al. [16] used
the idea of local opportunistic coding to present a practical
implementation of a network coded system for unicast. The use
of network coding in combination with opportunistic routing
was presented in [17]. Despite these efforts, we believe that in-
cremental deployment remains a hurdle to increased adoption

of network coding in practical settings, and we therefore seek
a protocol that brings out the benefits of network coding while
requiring very little change in the existing protocol stack.

A. The incremental deployment problem

A common and important feature of today’s protocols is
the use of feedback in the form of acknowledgments (ACKs).
The simplest protocol that makes use of acknowledgments is
the Automatic Repeat reQuest (ARQ) protocol. It uses the
idea that the sender can interpret the absence of an ACK to
indicate the erasure of the corresponding packet within the
network, and in this case, the sender simply retransmits the
lost packet. Thus, ARQ ensures reliability. The ARQ scheme
can be generalized to situations that have imperfections in
the feedback link, in the form of either losses or delay in
the ACKs. Reference [18] contains a summary of various
protocols based on ARQ.

Besides ensuring reliability, the ACK mechanism forms the
basis of control algorithms in the network aimed at preventing
congestion and ensuring fair use of the network resources.
Compared to a point-to-point setting where reliability is the
main concern, the network setting leads to several new control
problems just to ensure that the network is up and running
and that all users get fair access to the resources. These
problems are usually tackled using feedback. Therefore, in
order to realize the theoretically proven benefits of network
coding, we have to find a way to incorporate coding into the
existing network protocols,without disrupting the feedback-
based control operations.

Flow control and congestion control in today’s Internet are
predominantly based on the Transmission Control Protocol
(TCP), which works using the idea of a sliding transmission
window of packets, whose size is controlled based on feedback
[19], [20]. The TCP paradigm has clearly proven successful.
We therefore see a need to find a sliding-window approach as
similar as possible to TCP for network coding that makes use
of acknowledgments for flow and congestion control. (This
problem was initially proposed in [21].)

B. Current approaches are not TCP-compatible

Current approaches that use coding across packets are not
readily compatible with TCP’s retransmission and sliding
window mechanism. The digital fountain codes ([22]–[24])
constitute a well-known solution to the problem of packet
transmission over lossy links. From a batch ofk packets, the
sender generates a stream of random linear combinations in
such a way that the receiver can, with high probability, decode
the batch once it receivesanyset of slightly more thank linear
combinations. Fountain codes have a low complexity and do
not use feedback, except to signal successful decoding of the
block. In contrast to fountain codes which are typically applied
end-to-end, the random linear network coding solution of [5]
and [9] allows an intermediate node to easily re-encode the
packets and generate new linear combinations without having
to decode the original packets.

An important problem with both these approaches is that
although they are rateless, the encoding operation is typically
performed on a batch of packets. Several other works also
focus on such a batch-based solution [15], [17], [25], [26].
With a batch-based approach, there is no guarantee that the
receiver will be able to extract and pass on to higher layers,
any of the original packets until the entire batch has been
received and decoded. Therefore, packets are acknowledged
only at the end of a batch. This leads to a decoding delay
that interferes with TCP’s own retransmission mechanism for
correcting losses. TCP would either timeout, or learn a very
large value of round-trip time, causing low throughput. Thus,
TCP cannot readily run on a batch-based rateless coding
module.

Reference [27] proposed an on-the-fly coding scheme with
acknowledgments, but there again, the packets are acknowl-
edged only upon decoding. Chenet al. [28] proposed dis-
tributed rate control algorithms for network coding in a utility
maximization framework, and pointed out its similarity to
TCP. However, to implement such algorithms in practice, we
need to create a clean interface between network coding and
TCP. Thus, none of these works allows an ACK-based sliding-
window network coding approach that is compatible with TCP.
This is the problem we address in our current work.

C. Our solution

In this paper, we show how to incorporate network coding
into TCP, allowing its use with minimal changes to the
protocol stack, and in such a way that incremental deployment
is possible.

The main idea behind TCP is to use acknowledgments of
newly received packets as they arrivein correct sequence order
in order to guarantee reliable transport and also as a feedback
signal for the congestion control loop. This mechanism re-
quires some modification for systems using network coding.
The key difference to be dealt with is that under network
coding the receiver does not obtain original packets of the
message, but linear combinations of the packets that are then
decoded to obtain the original message once enough such
combinations have arrived. Hence, the notion of an ordered
sequence of packets as used by TCP is missing, and further, a
linear combination may bring in new information to a receiver
even though it may not reveal an original packet immediately.
The current ACK mechanism does not allow the receiver to
acknowledge a packet before it has been decoded. For network
coding, we need a modification of the standard TCP mecha-
nism that acknowledges every unit of information received.
A new unit of information corresponds mathematically to a
degree of freedom; essentially, oncen degrees of freedom
have been obtained, a message that would have requiredn
unencoded packets can be decoded. We present a mechanism
that performs the functions of TCP, namely reliable transport
and congestion control, based on acknowledging every degree
of freedom received, whether or not it reveals a new packet.

Our solution, known as TCP/NC, introduces a new network
coding layer between the transport layer and the network layer

of the protocol stack. Thus, we recycle the congestion control
principle of TCP, namely that the number of packets involved
in transmissions cannot exceed the number of acknowledg-
ments received by more than the congestion window size.
However, we introduce two main changes. First, whenever
the source is allowed to transmit, it sends a random linear
combination of all packets in the congestion window. Second,
the receiver acknowledges degrees of freedom and not original
packets. (This idea was previously introduced in [29] in the
context of a single hop erasure broadcast link.) An appropriate
interpretation of the degree of freedom allows us to order the
receiver degrees of freedom in a manner consistent with the
packet order of the source. This lets us utilize the standardTCP
protocol with the minimal change. Since the receiver does not
have to wait to decode a packet, but can send a TCP ACK
for every degree of freedom received, the problems of using
batchwise ACKs is eliminated.

We use the TCP-Vegas protocol in the initial description,
as it is more compatible with our modifications. In a later
part of the paper, we also demonstrate the compatibility of
our protocol with the more commonly used TCP-Reno. We
do not consider bidirectional TCP in this work.

It is important to note that the introduction of the new
network coding layer does not cause any change in the
interface to TCP, as seen by an application. Moreover, the
interface seen by TCP looking downwards in the protocol stack
is also unchanged – the network coding layer accepts regular
TCP packets from the TCP sender and delivers regular TCP
ACKs back to the sender. Similarly, it delivers regular TCP
packets to the receiver and accepts the ACKs generated by the
receiver. This means that the basic features of the TCP layer
implementation do not need to be changed. Further details
about this interface are discussed in Section VI-C5.

III. I MPLICATIONS FOR WIRELESS NETWORKING

In considering the potential benefits of our TCP-compatible
network coding solution, we focus on the area of wireless
links. We now explain the implications of this new protocol
for improving throughput in wireless networks.

TCP was originally developed for wired networks and was
designed to interpret each packet loss as a congestion signal.
Since wired networks have very little packet loss on the links
and the predominant source of loss is buffer overflow due to
congestion, TCP’s approach works well. In contrast, wireless
networks are characterized by packet loss on the link and
intermittent connectivity due to fading. It is well known that
TCP is not well suited for such lossy links. The primary
reason is that it wrongly assumes the cause of link losses to
be congestion, and reduces its transmission rate unnecessarily,
leading to low throughput.

Adapting TCP for wireless scenarios is a very well-studied
problem (see [30] and references therein for a survey). The
general approach has been to mask losses from TCP using
link layer retransmission [31]. However, it has been noted in
the literature ([32], [33]) that the interaction between link layer
retransmission and TCP’s retransmission can be complicated

and that performance may suffer due to independent retrans-
mission protocols at different layers. More importantly, if we
want to exploit the broadcast nature of the wireless medium,
link layer retransmission may not be the best approach.

A. Intermediate node re-encoding

Our scheme does not rely on the link layer for recovering
losses. Instead, we use an erasure correction scheme based
on random linear codes across packets. Coding across packets
is a natural way to handle losses. The interface of TCP with
network coding that we propose in this paper can be viewed
as a generalization of previous work combining TCP with
Forward Erasure Correction (FEC) schemes [34]. As opposed
to fountain codes and FEC that are typically used for end-
to-end coding, our protocol also allows intermediate nodesin
the network to perform re-encoding of data. It is thus more
general than end-to-end erasure correction over a single path.

Intermediate node re-encoding is an important feature. If
nodes are allowed to re-encode data, then we can obtain
significant benefits in throughput in multipath and multicast
scenarios, and also in a single path unicast scenario with
multiple lossy hops. Besides, it gives us the flexibility to add
redundancy for erasure correction only where necessary,i.e.,
before the lossy link. An end-to-end coding approach would
congest other parts of the network where the redundancy is
not needed.

It is important to note that our scheme respects the end-
to-end philosophy of TCP – it would work even if coding
operations are performed only at the end hosts. Having said
that, if some nodes inside the network also perform network
coding, our solution naturally generalizes to such scenarios as
well. The queuing analysis in Section V-D considers such a
situation.

B. Opportunistic routing and TCP

There has been a growing interest in approaches that make
active use of the intrinsic broadcast nature of the wireless
medium. In the technique known as opportunistic routing [35],
a node broadcasts its packet, and if one of its neighbors
receives the packet, that node will forward the packet down-
stream, thereby obtaining a diversity benefit. If more than
one of the neighbors receive the packet, they will have to
coordinate and decide who will forward the packet.

The MORE protocol [17] proposed the use of intra-flow
network coding in combination with opportunistic routing.
The random linear mixing (coding) of incoming packets at
a node before forwarding them downstream was shown to
reduce the coordination overhead associated with opportunistic
routing. Another advantage is that the coding operation canbe
easily tuned to add redundancy to the packet stream to combat
erasures. Such schemes can potentially achieve capacity for a
multicast connection [5].

However, if we allow a TCP flow to run over an oppor-
tunistic routing based system like ExOR [35] or MORE, two
issues arise – batching and reordering. Typical implementa-
tions use batches of packets instead of sliding windows. ExOR

uses batching to reduce the coordination overhead, but as
mentioned in [35], this interacts badly with TCP’s window
mechanism. MORE uses batching to perform the coding
operation. As discussed earlier, if the receiver acknowledges
packets only when an entire batch has been successfully
decoded, then the decoding delay will interfere with TCP.
Since TCP performance heavily relies on the timely return of
ACKs, such a delay in the ACKs would affect the round-trip
time calculation and thereby reduce the throughput.

The second issue with opportunistic routing is that it could
lead to reordering of packets, since different packets could
take different paths to the destination. Reordering is known to
interact badly with TCP, as it can cause duplicate ACKs, and
TCP interprets duplicate ACKs as a sign of congestion.

Our work addresses both these issues. Since the receiver
does not have to wait to decode a packet, but can send a
TCP ACK for every degree of freedom received, the batching
problem is solved.

As for the reordering issue, it is shown later (Lemma 1)
that in our scheme, if the linear combination happens over
a large enough finite field, then any incoming random linear
combination will, with high probability, generate a TCP ACK
for the very next unacknowledged packet in order. This is
because the random combinations do not have any inherent
ordering. The argument holds true even when multiple paths
deliver the random linear combinations. Hence the use of
random linear coding with the acknowledgment of degrees of
freedom can potentiallyaddress the TCP reordering problem
for multipath opportunistic routing schemes.

Our interface enhancing TCP with network coding yields a
new approach to implementing TCP over wireless networks,
and it is here where the benefits of our solution are most
dramatic.

The first part of the paper explains the details of our new
protocol along with its theoretical basis and a queuing analysis
in an idealized setting. Following this, we present a real-
life implementation of the protocol and discuss the practical
issues that need to be addressed. Finally, we analyze the
algorithm’s performance based on simulations as well as real-
world experiments.

IV. PRELIMINARIES

Consider a single source that has a message to transmit. We
view the message as being split into a stream of packetsp1,
p2, The kth packet in the source message is said to
have anindex k. We treat a packet as a vector over a finite
field Fq of size q, by grouping the bits of the packet into
groups of size⌊log2 q⌋ bits each. In the system we propose,
a node, in addition to forwarding incoming packets, is also
allowed to perform linear network coding. This means, the
node may transmit a packet obtained by linearly combining
the vectors corresponding to the incoming packets, with coef-
ficients chosen from the fieldFq. For example, it may transmit
q1 = αp1+βp2 andq2 = γp1+δp2, whereα, β, γ, δ ∈ Fq.
Assuming the packets haveℓ symbols, the encoding process

may be written in matrix form as:
(

q11 q12 . . . q1ℓ

q21 q22 . . . q2ℓ

)

= C ·

(

p11 p12 . . . p1ℓ

p21 p22 . . . p2ℓ

)

where C =

(

α β
γ δ

)

is called the coefficient matrix.

Note that even if an intermediate node performs re-encoding
on these linear combinations, the net effect may still be
represented using such a linear relation, withC being replaced
by the overall transfer matrix.

Upon receiving the packetsq1 andq2, the receiver simply
needs to invert the matrixC using Gaussian elimination, and
apply the corresponding linear operations on the received
packets to obtain the original message packetsp1 and p2.
In matrix form, the decoding process is given by:
(

p11 p12 . . . p1ℓ

p21 p22 . . . p2ℓ

)

= C−1 ·

(

q11 q12 . . . q1ℓ

q21 q22 . . . q2ℓ

)

In general, the receiver will need to receive as many linear
combinations as the number of original packets involved, in
order to be able to decode.

In this setting, we introduce some definitions that will be
useful throughout the paper (see [29] for more details).

Definition 1 (Seeing a packet). A node is said to haveseen
a packetpk if it has enough information to compute a linear
combination of the form(pk + q), whereq =

∑

ℓ>k αℓpℓ,
with αℓ ∈ Fq for all ℓ > k. Thus,q is a linear combination
involving packets with indices larger thank.

The notion of “seeing” a packet is a natural extension of the
notion of “decoding” a packet, or more specifically, receiving a
packet in the context of classical TCP. For example, if a packet
pk is decoded then it is indeed also seen, withq = 0. A node
can compute any linear combination whose coefficient vector
is in the span of the coefficient vectors of previously received
linear combinations. This leads to the following definition.

Definition 2 (Knowledge of a node). Theknowledge of a node
is the set of all linear combinations of original packets that
it can compute, based on the information it has received so
far. The coefficient vectors of these linear combinations form
a vector space called theknowledge spaceof the node.

We state a useful proposition without proof (see Corollary
1, [29] for details).

Proposition 1. If a node has seen packetpk, then it knows
exactly one linear combination of the formpk +q such thatq
is itself a linear combination involving onlyunseenpackets.

The above proposition inspires the following definition.

Definition 3 (Witness). We call the unique linear combination
guaranteed by Proposition 1 thewitness for seeingpk.

A compact representation of the knowledge space is the
basis matrix. This is a matrix in row-reduced echelon form
(RREF) such that its rows form a basis of the knowledge
space. It is obtained by performing Gaussian elimination on

1 0

1 0

1 - - - - - - -

1 - - - - - - -

1 - - - - - - -

p1 p2 p3 p4 p5 p6 p7 p8

Decoded

Seen Unseen

Basis of knowledge

space in RREF

Witness for p4

Number of seen packets = Rank of matrix = Dim of knowledge space

Fig. 3. Seen packets and witnesses in terms of the basis matrix

the coefficient matrix. Figure 3 explains the notion of a seen
packet in terms of the basis matrix. Essentially, the seen
packets are the ones that correspond to the pivot columns of the
basis matrix. Given a seen packet, the corresponding pivot row
gives the coefficient vector for the witness linear combination.
An important observation is thatthe number of seen packets
is always equal to the dimension of the knowledge space, or
the number of degrees of freedom that have been received so
far. A newly received linear combination that increases the
dimension is said to beinnovative. We assume throughout the
paper that the field size is very large. As a consequence, each
reception will be innovative with high probability, and will
cause the next unseen packet to be seen (see Lemma 1).

Example:Suppose a node knows the following linear com-
binations: x = (p1 + p2) and y = (p1 + p3). Since
these are linearly independent, the knowledge space has a
dimension of 2. Hence, the number of seen packets must be
2. It is clear that packetp1 has been seen, sincex satisfies
the requirement of Definition 1. Now, the node can compute
z , x − y = (p2 − p3). Thus, it has also seenp2. That
meansp3 is unseen. Hence,y is the witness forp1, andz is
the witness forp2.

V. THE NEW PROTOCOL

In this section, we present the logical description of our new
protocol, followed by a way to implement these ideas with as
little disturbance as possible to the existing protocol stack.

A. Logical description

The main aim of our algorithm is to mask losses from
TCP using random linear coding. We make some important
modifications in order to incorporate coding. First, instead of
the original packets, we transmit random linear combinations
of packets in the congestion window. While such coding
helps with erasure correction, it also leads to a problem in
acknowledging data. TCP operates with units of packets1,
which have a well-defined ordering. Thus, the packet sequence
number can be used for acknowledging the received data. The
unit in our protocol is a degree of freedom. However, when
packets are coded together, there is no clear ordering of the
degrees of freedom that can be used for ACKs. Our main

1Actually, TCP operates in terms of bytes. For simplicity of presentation,
the present section uses packets of fixed length as the basic unit. All the
discussion in this section extends to the case of bytes as well, as explained
in Section VI

contribution is the solution to this problem. The notion of
seen packets defines an ordering of the degrees of freedom
that is consistent with the packet sequence numbers, and can
therefore be used to acknowledge degrees of freedom.

Upon receiving a linear combination, the sink finds out
which packet, if any, has been newly seen because of the new
arrival and acknowledges that packet. The sink thus pretends
to have received the packet even if it cannot be decoded yet.
We will show in Section V-C that at the end this is not a
problem because if all the packets in a file have been seen,
then they can all be decoded as well.

The idea of transmitting random linear combinations and
acknowledging seen packets achieves our goal of masking
losses from TCP as follows. As mentioned in Section IV, with
a large field size, every random linear combination is very
likely to cause the next unseen packet to be seen. Hence, even
if a transmitted linear combination is lost, the next successful
reception of a (possibly) different random linear combination
will cause the next unseen packet to be seen and ACKed.
From the TCP sender’s perspective, this appears as though
the transmitted packet waits in a fictitious queue until the
channel stops erasing packets and allows it through. Thus,
there will never be any duplicate ACKs. Every ACK will cause
the congestion window to advance. In short,the lossiness of the
link is presented to TCP as an additional queuing delay that
leads to a larger effective round-trip time. The term round-
trip time thus has a new interpretation. It is the effective
time the network takes toreliably deliver a degree of freedom
(including the delay for the coded redundancy, if necessary),
followed by the return of the ACK. This is larger than the
true network delay it takes for a lossless transmission and
the return of the ACK. The more lossy the link is, the larger
will be the effective RTT. Presenting TCP with a larger value
for RTT may seem counterintuitive as TCP’s rate is inversely
related to RTT. However, if done correctly, it improves the
rate by preventing loss-induced window closing, as it givesthe
network more time to deliver the data in spite of losses, before
TCP times out. Therefore, losses are effectively masked.

The natural question that arises is – how does this affect
congestion control? Since we mask losses from the congestion
control algorithm, the TCP-Reno style approach to congestion
control using packet loss as a congestion indicator is not im-
mediately applicable to this situation. However, the congestion
related losses are made to appear as a longer RTT. Therefore,
we can use an approach that infers congestion from an increase
in RTT. The natural choice is TCP-Vegas. The discussion in
this section is presented in terms of TCP-Vegas. The algorithm
however, can be extended to make it compatible with TCP-
Reno as well. This is discussed in detail in Section VI, where
a real-world implementation with TCP-Reno is presented.

TCP-Vegas uses a proactive approach to congestion control
by inferring the size of the network buffers even before they
start dropping packets. The crux of the algorithm is to estimate
the round-trip time (RTT) and use this information to find the
discrepancy between the expected and actual transmission rate.
As congestion arises, buffers start to fill up and the RTT starts

4321 pppp +++

4321 pppp +++ 22

4321 pppp 43 +++

4321 pppp 624 +++

Lost

Lost

seen 1p

seen 2p

RTT
1

RTT

t=0

RTT
2

Fig. 4. Example of coding and ACKs

to rise, and this is used as the congestion signal. This signal
is used to adjust the congestion window and hence the rate.
For further details, the reader is referred to [36].

In order to use TCP-Vegas correctly in this setting, we
need to ensure that it uses the effective RTT of a degree of
freedom, including the fictitious queuing delay. In other words,
the RTT should be measured from the point when a packet is
first sent out from TCP, to the point when the ACK returns
saying that this packet has been seen. This is indeed the case
if we simply use the default RTT measurement mechanism
of TCP-Vegas. The TCP sender notes down the transmission
time of every packet. When an ACK arrives, it is matched to
the corresponding transmit timestamp in order to compute the
RTT. Thus, no modification is required.

Consider the example shown in Figure 4. Suppose the
congestion window’s length is 4. Assume TCP sends 4 packets
to the network coding layer att = 0. All 4 transmissions are
linear combinations of these 4 packets. The1st transmission
causes the1st packet to be seen. The2nd and 3rd transmis-
sions are lost, and the4th transmission causes the2nd packet
to be seen (the discrepancy is because of losses). As far as
the RTT estimation is concerned, transmissions 2, 3 and 4 are
treated as attempts to convey the2nd degree of freedom. The
RTT for the 2nd packet must include the final attempt that
successfully delivers the2nd degree of freedom, namely the
4th transmission. In other words, the RTT is the time from
t = 0 until the time of reception of ACK=3.

B. Implementation strategy

The implementation of all these ideas in the existing pro-
tocol stack needs to be done in as non-intrusive a manner as
possible. We present a solution which embeds the network
coding operations in a separate layer below TCP and above
IP on the source and receiver side, as shown in Figure 5. The
exact operation of these modules is described next.

The sender module accepts packets from the TCP source
and buffers them into an encoding buffer which represents the

ApplicationApplication

TCPTCP

Network Coding LayerNetwork Coding Layer

Internet ProtocolInternet Protocol

ApplicationApplication

TCPTCP

Network Coding LayerNetwork Coding Layer

Internet ProtocolInternet Protocol

SOURCE SIDE RECEIVER SIDE

Data

ACK

Internet ProtocolInternet Protocol Internet ProtocolInternet Protocol

Lower layers

Fig. 5. New network coding layer in the protocol stack

coding window2, until they are ACKed by the receiver. The
sender then generates and sends random linear combinations
of the packets in the coding window. The coefficients used in
the linear combination are also conveyed in the header.

For every packet that arrives from TCP,R linear com-
binations are sent to the IP layer on average, whereR is
the redundancy parameter. The average rate at which linear
combinations are sent into the network is thus a constant
factor more than the rate at which TCP’s congestion window
progresses. This is necessary in order to compensate for the
loss rate of the channel and to match TCP’s sending rate to the
rate at which data is actually sent to the receiver. If there is too
little redundancy, then the data rate reaching the receiverwill
not match the sending rate because of the losses. This leads to
a situation where the losses are not effectively masked from
the TCP layer. Hence, there are frequent timeouts leading toa
low throughput. On the other extreme, too much redundancy
is also bad, since then the transmission rate becomes limited
by the rate of the code itself. Besides, sending too many
linear combinations can congest the network. The ideal level
of redundancy is to keepR equal to the reciprocal of the
probability of successful reception. Thus, in practice thevalue
of R should be dynamically adjusted by estimating the loss
rate, possibly using the RTT estimates.

Upon receiving a linear combination, the receiver module
first retrieves the coding coefficients from the header and
appends it to the basis matrix of its knowledge space. Then,
it performs a Gaussian elimination to find out which packet is
newly seen so that this packet can be ACKed. The receiver
module also maintains a buffer of linear combinations of
packets that have not been decoded yet. Upon decoding the
packets, the receiver module delivers them to the TCP sink.

The algorithm is specified below using pseudo-code. This
specification assumes a one-way TCP flow.

1) Source side:The source side algorithm has to respond
to two types of events – the arrival of a packet from the source
TCP, and the arrival of an ACK from the receiver via IP.

2Whenever a new packet enters the TCP congestion window, TCP transmits
it to the network coding module, which then adds it to the coding window.
Thus, the coding window is related to the TCP layer’s congestion window
but generally not identical to it. For example, the coding window will still
hold packets that were transmitted earlier by TCP, but are no longer in
the congestion window because of a reduction of the window size by TCP.
However, this is not a problem because involving more packetsin the linear
combination will only increase its chances of being innovative.

1. SetNUM to 0.
2. Wait state:If any of the following events occurs, respond

as follows; else, wait.
3. Packet arrives from TCP sender:

a) If the packet is a control packet used for connection
management, deliver it to the IP layer and return
to wait state.

b) If packet is not already in the coding window, add
it to the coding window.

c) SetNUM = NUM+R. (R = redundancy factor)
d) Repeat the following⌊NUM⌋ times:

i) Generate a random linear combination of the
packets in the coding window.
ii) Add the network coding header specifying the
set of packets in the coding window and the coef-
ficients used for the random linear combination.
iii) Deliver the packet to the IP layer.

e) SetNUM := fractional part ofNUM .
f) Return to the wait state.

4. ACK arrives from receiver:Remove the ACKed packet
from the coding buffer and hand over the ACK to the
TCP sender.

2) Receiver side:On the receiver side, the algorithm again
has to respond to two types of events: the arrival of a packet
from the source, and the arrival of ACKs from the TCP sink.

1. Wait state: If any of the following events occurs,
respond as follows; else, wait.

2. ACK arrives from TCP sink:If the ACK is a control
packet for connection management, deliver it to the IP
layer and return to the wait state; else, ignore the ACK.

3. Packet arrives from source side:

a) Remove the network coding header and retrieve the
coding vector.

b) Add the coding vector as a new row to the existing
coding coefficient matrix, and perform Gaussian
elimination to update the set of seen packets.

c) Add the payload to the decoding buffer. Perform
the operations corresponding to the Gaussian elim-
ination, on the buffer contents. If any packet gets
decoded in the process, deliver it to the TCP sink
and remove it from the buffer.

d) Generate a new TCP ACK with sequence number
equal to that of the oldest unseen packet.

C. Soundness of the protocol

We argue that our protocol guarantees reliable transfer of
information. In other words, every packet in the packet stream
generated by the application at the source will be delivered
eventually to the application at the sink. We observe that the
acknowledgment mechanism ensures that the coding module at
the sender does not remove a packet from the coding window
unless it has been ACKed,i.e., unless it has been seen by the
sink. Thus, we only need to argue that if all packets in a file
have been seen, then the file can be decoded at the sink.

Theorem 1. From a file ofn packets, if every packet has been
seen, then every packet can also be decoded.

Proof: If the sender knows a file ofn packets, then the
sender’s knowledge space is of dimensionn. Every seen packet
corresponds to a new dimension. Hence, if alln packets have
been seen, then the receiver’s knowledge space is also of
dimensionn, in which case it must be the same as the sender’s
and all packets can be decoded.

In other words, seeingn different packets corresponds
to having n linearly independent equations inn unknowns.
Hence, the unknowns can be found by solving the system
of equations. At this point, the file can be delivered to the
TCP sink. In practice, one does not have to necessarily wait
until the end of the file to decode all packets. Some of the
unknowns can be found even along the way. In particular,
whenever the number of equations received catches up with
the number of unknowns involved, the unknowns can be found.
Now, for every new equation received, the receiver sends an
ACK. The congestion control algorithm uses the ACKs to
control the injection of new unknowns into the coding window.
Thus, the discrepancy between the number of equations and
number of unknowns does not tend to grow with time, and
therefore will hit zero often based on the channel conditions.
As a consequence, the decoding buffer will tend to be stable.

An interesting observation is that the arguments used to
show the soundness of our approach are quite general and can
be extended to more general scenarios such as random linear
coding based multicast over arbitrary topologies.

D. Queuing analysis for an idealized case

In this section, we focus on an idealized scenario in order
to provide a first order analysis of our new protocol. We aim
to explain the key ideas of our protocol with emphasis on the
interaction between the coding operation and the feedback.
The model used in this section will also serve as a platform
which we can build on to incorporate more practical situations.

We abstract out the congestion control aspect of the problem
by assuming that the capacity of the system is fixed in time
and known at the source, and hence the arrival rate is always
maintained below the capacity. We also assume that nodes
have infinite capacity buffers to store packets. We focus on
a topology that consists of a chain of erasure-prone links
in tandem, with perfect end-to-end feedback from the sink
directly to the source. In such a system, we investigate the
behavior of the queue sizes at various nodes. We show that
our scheme stabilizes the queues for all rates below capacity.

1) System model:The network we study in this section is
a daisy chain ofN nodes, each node being connected to the
next one by a packet erasure channel. We assume a slotted time
system. The source generates packets according to a Bernoulli
process of rateλ packets per slot. The point of transmission is
at the very beginning of a slot. Just after this point, every node
transmits one random linear combination of the packets in its
queue. The relation between the transmitted linear combination
and the original packet stream is conveyed in the packet

11 22 NN

Fig. 6. Topology: Daisy chain with perfect end-to-end feedback

header. We ignore this overhead for the analysis in this section.
We ignore propagation delay. Thus, the transmission, if not
erased by the channel, reaches the next node in the chain
almost immediately. However, the node may use the newly
received packet only in the next slot’s transmission. We assume
perfect, delay-free feedback from the sink to the source. In
every slot, the sink generates the feedback signal after the
instant of reception of the previous node’s transmission. The
erasure event happens with a probability(1 − µi) on the
channel connecting nodei and (i + 1), and is assumed to
be independent across different channels and over time. Thus,
the system has a capacitymini µi packets per slot. We assume
that λ < mini µi, and define the load factorρi = λ/µi.

2) Queue update mechanism:Each node transmits a ran-
dom linear combination of the current contents of its queue
and hence, it is important to specify how the queue contents
are updated at the different nodes. Queue updates at the source
are relatively simple because in every slot, the sink is assumed
to send an ACK directly to the source, containing the index
of the oldest packet not yet seen by the sink. Upon receiving
the ACK, the source simply drops all packets from its queue
with an index lower than the sink’s request.

Whenever an intermediate node receives an innovative
packet, this causes the node to see a previously unseen packet.
The node performs a Gaussian elimination to compute the
witness of the newly seen packet, and adds this to the queue.
Thus, intermediate nodes store the witnesses of the packets
that they have seen. The idea behind the packet drop rule is
similar to that at the source – an intermediate node may drop
the witnesses of packets up to but excluding what it believes
to be the sink’s first unseen packet, based on its knowledge of
the sink’s status at that point of time.

However, the intermediate nodes, in general, may only know
an outdated version of the sink’s status because we assume that
the intermediate nodes do not have direct feedback from the
sink (see Figure 6). Instead, the source has to inform them
about the sink’s ACK through the same erasure channel used
for the regular forward transmission. This feed-forward ofthe
sink’s status is modeled as follows. Whenever the channel
entering an intermediate node is in the ON state (i.e., no
erasure), the node’s version of the sink’s status is updated
to that of the previous node. In practice, the source need not
transmit the sink’s status explicitly. The intermediate nodes
can infer it from the set of packets that have been involved
in the linear combination – if a packet is no longer involved,
that means the source must have dropped it, implying that the
sink must have ACKed it already.

Remark 1. This model and the following analysis also work
for the case when not all intermediate nodes are involved in the

network coding. If some node simply forwards the incoming
packets, then we can incorporate this in the following way. An
erasure event on either the link entering this node or the link
leaving this node will cause a packet erasure. Hence, these
two links can be replaced by a single link whose probability
of being ON is simply the product of the ON probabilities of
the two links being replaced. Thus, all non-coding nodes can
be removed from the model, which brings us back to the same
situation as in the above model.

3) Queuing analysis:We now analyze the size of the
queues at the nodes under the queuing policy described above.
The following theorem shows that if we allow coding at inter-
mediate nodes, then it is possible to achieve the capacity ofthe
network, namelymink µk. In addition, it also shows that the
expected queue size in the heavy-traffic limit (λ → mink µk)
has an asymptotically optimal linear scaling in1/(1 − ρk).

If we only allow forwarding at some of the intermediate
nodes, then we can still achieve the capacity of a new network
derived by collapsing the links across the non-coding nodes,
as described in Remark 1.

Theorem 2. As long asλ < µk for all 0 ≤ k < N , the
queues at all the nodes will be stable. The expected queue
size in steady state at nodek (0 ≤ k < N) is given by:

E[Qk] =
N−1
∑

i=k

ρi(1 − µi)

(1 − ρi)
+

k−1
∑

i=1

ρi

An implication:Consider a case where all theρi’s are equal
to someρ. Then, the above relation implies that in the limit
of heavy traffic, i.e., ρ → 1, the queues are expected to be
longer at nodes near the source than near the sink.

A useful lemma:The above theorem will be proved after
the following lemma. The lemma shows that the random linear
coding scheme has the property that every successful reception
at a node causes the node to see the next unseen packet with
high probability, provided the field is large enough. This fact
will prove useful while analyzing the evolution of the queues.

Lemma 1. Let SA and SB be the set of packets seen by
two nodes A and B respectively. AssumeSA\SB is non-empty.
Suppose A sends a random linear combination of its witnesses
of packets inSA and B receives it successfully. The probability
that this transmission causes B to see the oldest packet in
SA\SB is (1 − 1/q), whereq is the field size.

Proof: Let MA be the RREF basis matrix for A. Then,
the coefficient vector of the linear combination sent by A is
t = uMA, whereu is a vector of length|SA| whose entries
are independent and uniformly distributed over the finite field
Fq. Let d∗ denote the index of the oldest packet inSA\SB .

Let MB be the RREF basis matrix for B before the new
reception. Supposet is successfully received by B. Then, B
will append t as a new row toMB and perform Gaussian
elimination. The first step involves subtracting fromt, suitably
scaled versions of the pivot rows such that all entries oft

corresponding to pivot columns ofMB become 0. We need to

find the probability that after this step, the leading non-zero
entry occurs in columnd∗, which corresponds to the event that
B sees packetd∗. Subsequent steps in the Gaussian elimination
will not affect this event. Hence, we focus on the first step.

Let PB denote the set of indices of pivot columns ofMB .
In the first step, the entry in columnd∗ of t becomes

t′(d∗) = t(d∗) −
∑

i∈PB ,i<d∗

t(i) · MB(rB(i), d∗)

where rB(i) is the index of the pivot row corresponding to
pivot columni in MB . Now, due to the way RREF is defined,
t(d∗) = u(rA(d∗)), whererA(i) denotes the index of the pivot
row corresponding to pivot columni in MA. Thus, t(d∗) is
uniformly distributed. Also, fori < d∗, t(i) is a function
of only thoseu(j)’s such thatj < rA(d∗). Hence,t(d∗) is
independent oft(i) for i < d∗. From these observations and
the above expression fort′(d∗), it follows that for any given
MA andMB , t′(d∗) has a uniform distribution overFq, and

the probability that it is not zero is therefore
(

1 − 1
q

)

.
Computing the expected queue size:For the queuing

analysis, we assume that a successful reception always causes
the receiver to see its next unseen packet, as long as the
transmitter has already seen it. The above lemma argues that
this assumption becomes increasingly valid as the field size
increases. In reality, some packets may be seen out of order,
resulting in larger queue sizes. However, we believe that this
effect is minor and can be neglected for a first order analysis.

With this assumption in place, the queue update policy
described earlier implies that the size of the physical queue
at each node is simply the difference between the number of
packets the node has seen and the number of packets it believes
the sink has seen.

To study the queue size, we define a virtual queue at each
node that keeps track of the degrees of freedom backlog
between that node and the next one in the chain. The arrival
and departure of the virtual queues are defined as follows.
A packet is said to arrive at a node’s virtual queue when
the node sees the packet for the first time. A packet is said
to depart from the virtual queue when the next node in the
chain sees the packet for the first time. A consequence of the
assumption stated above is that the set of packets seen by a
node is always a contiguous set. This allows us to view the
virtual queue maintained by a node as though it were a first-in-
first-out (FIFO) queue. The size of the virtual queue is simply
the difference between the number of packets seen by the node
and the number of packets seen by the next node downstream

We are now ready to prove Theorem 2. For each interme-
diate node, we study the expected time spent by an arbitrary
packet in the physical queue at that node, as this is related to
the expected physical queue size at the node, by Little’s law.

Proof of Theorem 2:Consider thekth node, for1 ≤ k < N .
The time a packet spends in this node’s queue has two parts:

1) Time until the packet is seen by the sink:
The virtual queue at a node behaves like a FIFO

Geom/Geom/1 queue. The Markov chain governing its evo-
lution is identical to that of the virtual queues studied in [29].

Given that nodek has just seen the packet in question, the
additional time it takes for the next node to see that packet
corresponds to the waiting time in the virtual queue at node
k. For a load factor ofρ and a channel ON probability ofµ,
the expected waiting time was derived in [29] to be(1−µ)

µ(1−ρ) ,
using results from [37]. Now, the expected time until the sink
sees the packet is the sum of(N −k) such terms, which gives
∑N−1

i=k
(1−µi)

µi(1−ρi)
.

2) Time until sink’s ACK reaches intermediate node:
The ACK informs the source that the sink has seen the

packet. This information needs to reach nodek by the feed-
forward mechanism. The expected time for this information
to move from nodei to nodei + 1 is the expected time until
the next slot when the channel is ON, which is just1

µi

(since
the ith channel is ON with probabilityµi). Thus, the time it
takes for the sink’s ACK to reach nodek is given by

k−1
∑

i=1

1

µi

.

The total expected timeTk a packet spends in the queue at
the kth node (1 ≤ k < N) can thus be computed by adding
the above two terms. Now, assuming the system is stable (i.e.,
λ < mini µi), we can use Little’s law to derive the expected
queue size at thekth node, by multiplyingTk by λ:

E[Qk] =

N−1
∑

i=k

ρi(1 − µi)

(1 − ρi)
+

k−1
∑

i=1

ρi

VI. T HE REAL-WORLD IMPLEMENTATION

In this section, we discuss some of the practical issues
that arise in designing an implementation of the TCP/NC
protocol compatible with real TCP/IP stacks. These issues
were not considered in the idealized setting discussed up
to this point. We present a real-world implementation of
TCP/NC and thereby show that it is possible to overcome these
issues and implement a TCP-aware network-coding layer that
has the property of a clean interface with TCP. In addition,
although our initial description used TCP-Vegas, our real-
world implementation demonstrates the compatibility of our
protocol with the more commonly used TCP variant – TCP-
Reno. The rest of this section pertains to TCP-Reno.

A. Sender side module

1) Forming the coding buffer:The description of the proto-
col in Section V assumes a fixed packet length, which allows
all coding and decoding operations to be performed symbol-
wise on the whole packet. That is, an entire packet serves
as the basic unit of data (i.e., as a single unknown), with
the implicit understanding that the exact same operation is
being performed on every symbol within the packet. The main
advantage of this view is that the decoding matrix operations
(i.e., Gaussian elimination) can be performed at the granularity
of packets instead of individual symbols. Also, the ACKs are
then able to be represented in terms of packet numbers. Finally,

the coding vectors then have one coefficient for every packet,
not every symbol. Note that the same protocol and analysis
of Section V holds even if we fix the basic unit of data as a
symbol instead of a packet. The problem is that the complexity
will be very high as the size of the coding matrix will be
related to the number of symbols in the coding buffer, which
is much more than the number of packets (typically, a symbol
is one byte long).

In practice, TCP is a byte-stream oriented protocol in which
ACKs are in terms of byte sequence numbers. If all packets are
of fixed length, we can still apply the packet-level approach,
since we have a clear and consistent map between packet
sequence numbers and byte sequence numbers. In reality,
however, TCP might generate segments of different sizes. The
choice of how many bytes to group into a segment is usually
made based on the Maximum Transmission Unit (MTU) of
the network, which could vary with time. A more common
occurrence is that applications may use the PUSH flag option
asking TCP to packetize the currently outstanding bytes into a
segment, even if it does not form a segment of the maximum
allowed size. In short, it is important to ensure that our
protocol works correctly in spite of variable packet sizes.

A closely related problem is that of repacketization. Repack-
etization, as described in Chapter 21 of [19], refers to the
situation where a set of bytes that were assigned to two
different segments earlier by TCP may later be reassigned
to the same segment during retransmission. As a result, the
grouping of bytes into packets may not be fixed over time.

Both variable packet lengths and repacketization need to be
addressed when implementing the coding protocol. To solve
the first problem, if we have packets of different lengths, we
could elongate the shorter packets by appending sufficiently
many dummy zero symbols until all packets have the same
length. This will work correctly as long as the receiver
is somehow informed how many zeros were appended to
each packet. While transmitting these extra dummy symbols
will decrease the throughput, generally this loss will not be
significant, as packet lengths are usually consistent.

However, if we have repacketization, then we have another
problem, namely it is no longer possible to view a packet
as a single unknown. This is because we would not have a
one-to-one mapping between packets sequence numbers and
byte sequence numbers; the same bytes may now occur in
more than one packet. Repacketization appears to destroy the
convenience of performing coding and decoding at the packet
level.

To counter these problems, we propose the following so-
lution. The coding operation described in Section V involves
the sender storing the packets generated by the TCP source in
a coding buffer. We pre-process any incoming TCP segment
before adding it to the coding buffer as follows:

1) First, any part of the incoming segment that is already
in the buffer is removed from the segment.

2) Next, a separate TCP packet is created out of each
remaining contiguous part of the segment.

3) The source and destination port information is removed.

TCP SubHeader Data

TCP SubHeader Data

TCP SubHeader

TCP SubHeader Data

TCP SubHeader Data

p1

p2

p3

p4

p5

Data

Fig. 7. The coding buffer

It will be added later in the network coding header.
4) The packets are appended with sufficiently many dummy

zero bytes, to make them as long as the longest packet
currently in the buffer.

Every resulting packet is then added to the buffer. This pro-
cessing ensures that the packets in the buffer will correspond
to disjoint and contiguous sets of bytes from the byte stream,
thereby restoring the one-to-one correspondence between the
packet numbers and the byte sequence numbers. The reason
the port information is excluded from the coding is because
port information is necessary for the receiver to identify which
TCP connection a coded packet corresponds to. Hence, the
port information should not be involved in the coding. We
refer to the remaining part of the header as the TCP subheader.

Upon decoding the packet, the receiver can identify the
dummy symbols using theStarti andEndi header fields in
the network coding header (described below). With these fixes
in place, we are ready to use the packet-level algorithm of
Section V. All operations are performed on the packets in
the coding buffer. Figure VI-A1 shows a typical state of the
buffer after this pre-processing. The gaps at the end of the
packets correspond to the appended zeros. It is important to
note that the TCP control packets such as SYN packet and
reset packet are allowed to bypass the coding buffer and are
directly delivered to the receiver without any coding.

2) The coding header:A coded packet is created by
forming a random linear combination of a subset of the packets
in the coding buffer. The coding operations are done over a
field of size 256 in our implementation. In this case, a field
symbol corresponds to one byte. The header of a coded packet
should contain information that the receiver can use to identify
what is the linear combination corresponding to the packet.We
now discuss the header structure in more detail.

We assume that the network coding header has the structure
shown in Figure 8. The typical sizes (in bytes) of the various
fields are written above them. The meaning of the various
fields are described next:

• Source and destination port:The port information is
needed for the receiver to identify the coded packet’s
session. It must not be included in the coding operation.
It is taken out of the TCP header and included in the
network coding header.

• Base:The TCP byte sequence number of the first byte
that has not been ACKed. The field is used by interme-

Base n End1 α1 Start2 End2 α2 …

n times

14 2 1 2 2 1

Source

Port

Dest

Port

22

TCP SubHeader Data

TCP SubHeader

TCP SubHeader Data

p1

pk

pn

Data

Base = first un-ACKed byte

Startk

Endk

RLC = α1p1+α2p2+α3p3+α4p4+α5p5

4

Start1

n times
Obtained from TCP header Coding coefficient

Fig. 8. The network coding header

diate nodes or the decoder to decide which packets can
be safely dropped from their buffers without affecting
reliability.

• n: The number of packets involved in the linear combi-
nation.

• Starti: The starting byte of theith packet involved in
the linear combination.

• Endi: The last byte of theith packet involved in the
linear combination.

• αi: The coefficient used for theith packet involved in
the linear combination.

TheStarti (exceptStart1) andEndi are expressed relative
to the previous packet’sEnd andStart respectively, to save
header space. As shown in the figure, this header format
will add 5n + 7 bytes of overhead for the network coding
header in addition to the TCP header, wheren is the number
of packets involved in a linear combination. (Note that the
port information is not counted in this overhead, since it
has been removed from the TCP header.) We believe it is
possible to reduce this overhead by further optimizing the
header structure.

3) The coding window:In the theoretical version of the
algorithm, the sender transmits a random linear combination
of all packets in the coding buffer. However, as noted above,
the size of the header scales with the number of packets
involved in the linear combination. Therefore, mixing all
packets currently in the buffer will lead to a large coding
header.

To solve this problem, we propose mixing only a constant-
sized subset of the packets chosen from within the coding
buffer. We call this subset thecoding window. The coding
window evolves as follows. The algorithm uses a fixed pa-
rameter for the maximum coding window sizeW . The coding
window contains the packet that arrived most recently from
TCP (which could be a retransmission), and the(W − 1)
packets before it in sequence number, if possible. However,
if some of the(W − 1) preceding packets have already been
dropped, then the window is allowed to extend beyond the
most recently arrived packet until it includesW packets.

Note that this limit on the coding window implies that the

code is now restricted in its power to correct erasures and to
combat reordering-related issues. The choice ofW will thus
play an important role in the performance of the scheme. The
correct value forW will depend on the length of burst errors
that the channel is expected to produce. Other factors to be
considered while choosingW are discussed in Section VI-C.

4) Buffer management:A packet is removed from the
coding buffer if a TCP ACK has arrived requesting a byte
beyond the last byte of that packet. If a new TCP segment
arrives when the coding buffer is full, then the segment with
the newest set of bytes must be dropped. This may not always
be the newly arrived segment, for instance, in the case of a
TCP retransmission of a previously dropped segment.

B. Receiver side module

The decoder module’s operations are outlined below. The
main data structure involved is the decoding matrix, which
stores the coefficient vectors corresponding to the linear com-
binations currently in the decoding buffer.

1) Acknowledgment:The receiver side module stores the
incoming linear combination in the decoding buffer. Then
it unwraps the coding header and appends the new coeffi-
cient vector to the decoding matrix. Gaussian elimination is
performed and the packet is dropped if it is not innovative
(i.e. if it is not linearly independent of previously received
linear combinations). After Gaussian elimination, the oldest
unseen packet is identified. Instead of acknowledging the
packet number as in Section V, the decoder acknowledges
the last seen packet byrequesting the byte sequence number
of the first byte of the first unseen packet, using a regular TCP
ACK. Note that this could happen before the packet is decoded
and delivered to the receiver TCP. The port and IP address
information for sending this ACK may be obtained from the
SYN packet at the beginning of the connection. Any ACKs
generated by the receiver TCP are not sent to the sender. They
are instead used to update the receive window field that is used
in the TCP ACKs generated by the decoder (see subsection
below). They are also used to keep track of which bytes have
been delivered, for buffer management.

2) Decoding and delivery:The Gaussian elimination oper-
ations are performed not only on the decoding coefficient ma-
trix, but correspondingly also on the coded packets themselves.
When a new packet is decoded, any dummy zero symbols that
were added by the encoder are pruned using the coding header
information. A new TCP packet is created with the newly
decoded data and the appropriate TCP header fields and this
is then delivered to the receiver TCP.

3) Buffer management:The decoding buffer needs to store
packets that have not yet been decoded and delivered to the
TCP receiver. Delivery can be confirmed using the receiver
TCP’s ACKs. In addition, the buffer also needs to store those
packets that have been delivered but have not yet been dropped
by the encoder from the coding buffer. This is because, such
packets may still be involved in incoming linear combinations.
TheBase field in the coding header addresses this issue.Base
is the oldest byte in the coding buffer. Therefore, the decoder
can drop a packet if its last byte is smaller thanBase, and
in addition, has been delivered to and ACKed by the receiver
TCP. Whenever a new linear combination arrives, the value of
Base is updated from the header, and any packets that can be
dropped are dropped.

The buffer management can be understood using Fig. 9.
It shows the receiver side windows in a typical situation. In
this case,Base is less than the last delivered byte. Hence,
some delivered packets have not yet been dropped. There could
also be a case whereBase is beyond the last delivered byte,
possibly because nothing has been decoded in a while.

4) Modifying the receive window:The TCP receive window
header field is used by the receiver to inform the sender how
many bytes it can accept. Since the receiver TCP’s ACKs
are suppressed, the decoder must copy this information in
the ACKs that it sends to the sender. However, to ensure
correctness, we may have to modify the value of the TCP
receive window based on the decoding buffer size. The last
acceptable byte should thus be the minimum of the receiver
TCP’s last acceptable byte and the last byte that the decoding
buffer can accommodate. Note that while calculating the space
left in the decoding buffer, we can include the space occupied
by data that has already been delivered to the receiver because
such data will get dropped whenBase is updated. If window
scaling option is used by TCP, this needs to be noted from the
SYN packet, so that the modified value of the receive window
can be correctly reported. Ideally, we would like to choose a
large enough decoding buffer size so that the decoding buffer
would not be the bottleneck and this modification would never
be needed.

C. Discussion of the practicalities

1) Redundancy factor:The choice of redundancy factor is
based on the effective loss probability on the links. For a loss
rate ofpe, with an infinite windowW and using TCP-Vegas,
the theoretically optimal value ofR is 1/(1 − pe). The basic
idea is that of the coded packets that are sent into the network,
only a fraction (1 − pe) of them are delivered on average.
Hence, the value ofR must be chosen so that in spite of

Base

Dropped

Receive window

ACKed

(First unseen byte)

Seen

ACKed by

Receiver TCP

Delivered

Seen

Fig. 9. Receiver side window management

these losses, the receiver is able to collect linear equations at
the same rate as the rate at which the unknown packets are
mixed in them by the encoder. As discussed below, in practice,
the value ofR may depend on the coding window sizeW .
As W decreases, the erasure correction capability of the code
goes down. Hence, we may need a largerR to compensate
and ensure that the losses are still masked from TCP. Another
factor that affects the choice ofR is the use of TCP-Reno. The
TCP-Reno mechanism causes the transmission rate to fluctuate
around the link capacity, and this leads to some additional
losses over and above the link losses. Therefore, the optimal
choice ofR may be higher than1/(1 − pe).

2) Coding Window Size:There are several considerations
to keep in mind while choosingW , the coding window size
The main idea behind coding is to mask the losses on the
channel from TCP. In other words, we wish to correct losses
without relying on the ACKs. Consider a case whereW is
just 1. Then, this is a simple repetition code. Every packet is
repeatedR times on average. Now, such a repetition would be
useful only for recovering one packet, if it was lost. Instead, if
W was say 3, then every linear combination would be useful
to recover any of the three packets involved. Ideally, the linear
combinations generated should be able to correct the loss of
any of the packets that have not yet been ACKed. For this,
we needW to be large. This may be difficult, since a large
W would lead to a large coding header. Another penalty of
choosing a large value ofW is related to the interaction with
TCP-Reno. This is discussed in the next subsection.

The penalty of keepingW small on the other hand, is that
it reduces the error correction capability of the code. For a
loss probability of 10%, the theoretical value ofR is around
1.1. However, this assumes that all linear combinations are
useful to correct any packet’s loss. The restriction onW means
that a coded packet can be used only for recovering thoseW
packets that have been mixed to form that coded packet. In
particular, if there is a contiguous burst of losses that result in a
situation where the receiver has received no linear combination
involving a particular original packet, then that packet will
show up as a loss to TCP. This could happen even if the
value of R is chosen according to the theoretical value. To
compensate, we may have to choose a largerR.

The connection betweenW , R and the losses that are
visible to TCP can be visualized as follows. Imagine a process

in which whenever the receiver receives an innovative linear
combination, one imaginary token is generated, and whenever
the sender slides the coding window forward by one packet,
one token is used up. If the sender slides the coding window
forward when there are no tokens left, then this leads to a
packet loss that will be visible to TCP. The reason is, when
this happens, the decoder will not be able to see the very next
unseen packet in order. Instead, it will skip one packet in the
sequence. This will make the decoder generate duplicate ACKs
requesting that lost (i.e., unseen) packet, thereby causing the
sender to notice the loss.

In this process,W corresponds to the initial number of
tokens available at the sender. Thus, when the difference
between the number of redundant packets (linear equations)
received and the number of original packets (unknowns) in-
volved in the coding up to that point is less thanW , the losses
will be masked from TCP. However, if this difference exceeds
W , the losses will no longer be masked. The theoretically
optimal value ofW is not known. However, we expect that
the value should be a function of the loss probability of the
link. For the experiment, we chose values ofW based on trial
and error. Further research is needed in the future to fully
understand the tradeoffs involved in the choice ofR andW .

3) Working with TCP-Reno:By adding enough redundancy,
the coding operation essentially converts the lossiness of
the channel into an extension of the round-trip time (RTT).
This is why our initial discussion in Section V proposed the
use of the idea with TCP-Vegas, since TCP-Vegas controls
the congestion window in a smoother manner using RTT,
compared to the more abrupt loss-based variations of TCP-
Reno. However, the coding mechanism is also compatible
with TCP-Reno. The choice ofW plays an important role
in ensuring this compatibility. The choice ofW controls the
power of the underlying code, and hence determines when
losses are visible to TCP. As explained above, losses will be
masked from TCP as long as the number of received equations
is no more thanW short of the number of unknowns involved
in them. For compatibility with Reno, we need to make sure
that whenever the sending rate exceeds the link capacity, the
resulting queue drops are visible to TCP as losses. A very
large value ofW is likely to mask even these congestion
losses, thereby temporarily giving TCP a large estimate of
capacity. This will eventually lead to a timeout, and will affect
throughput. The value ofW should therefore be large enough
to mask the link losses and small enough to allow TCP to see
the queue drops due to congestion.

4) Computational overhead:It is important to implement
the encoding and decoding operations efficiently, since any
time spent in these operations will affect the round-trip time
perceived by TCP. The finite field operations over GF(256)
have been optimized using the approach of [38], which
proposes the use of logarithms to multiply elements. Over
GF(256), each symbol is one byte long. Addition in GF(256)
can be implemented easily as a bitwise XOR of the two bytes.

The main computational overhead on the encoder side is the
formation of the random linear combinations of the buffered

packets. The management of the buffer also requires some
computation, but this is small compared to the random linear
coding, since the coding has to be done on every byte of the
packets. Typically, packets have a lengthL of around 1500
bytes. For every linear combination that is created, the coding
operation involvesLW multiplications andL(W−1) additions
over GF (256), where W is the coding window size. Note
that this has to be doneR times on average for every packet
generated by TCP. Since the coded packets are newly created,
allocating memory for them could also take time.

On the decoder side, the main operation is the Gaussian
elimination. To identify whether an incoming linear combi-
nation is innovative or not, we need to perform Gaussian
elimination only on the decoding matrix, and not on the coded
packet. If it is innovative, then we perform the row transforma-
tion operations of Gaussian elimination on the coded packet
as well. This requiresO(LW) multiplications and additions
to zero out the pivot columns in the newly added row. The
complexity of the next step of zeroing out the newly formed
pivot column in the existing rows of the decoding matrix varies
depending on the current size and structure of the matrix.
Upon decoding a new packet, it needs to be packaged as a
TCP packet and delivered to the receiver. Since this requires
allocating space for a new packet, this could also be expensive
in terms of time.

As we will see in the next section, the benefits brought by
the erasure correction begin to outweigh the overhead of the
computation and coding header for loss rates of about 3%. This
could be improved further by more efficient implementation
of the encoding and decoding operations.

5) Interface with TCP:An important point to note is that
the introduction of the new network coding layer does
not require any change in the basic features of TCP.
As described above, the network coding layer accepts TCP
packets from the sender TCP and in return delivers regular
TCP ACKs back to the sender TCP. On the receiver side, the
decoder delivers regular TCP packets to the receiver TCP and
accepts regular TCP ACKs. Therefore, neither the TCP sender
nor the TCP receiver sees any difference looking downwards in
the protocol stack. The main change introduced by the protocol
is that the TCP packets from the sender are transformed by the
encoder by the network coding process. This transformation
is removed by the decoder, making it invisible to the TCP
receiver. On the return path, the TCP receiver’s ACKs are
suppressed, and instead the decoder generates regular TCP
ACKs that are delivered to the sender. This interface allows
the possibility that regular TCP sender and receiver end hosts
can communicate through a wireless network even if they are
located beyond the wireless hosts.

While the basic features of the TCP protocol see no change,
other special features of TCP that make use of the ACKs in
ways other than to report the next required byte sequence
number, will need to be handled carefully. For instance,
implementing the timestamp option in the presence of net-
work coding across packets may require some thought. With
TCP/NC, the receiver may send an ACK for a packet even

1 2 53 4

1 Mbps ,

100 ms

SINK

2

SRC

1

SRC

2

SINK

1

22

Fig. 10. Simulation topology

before it is decoded. Thus, the receiver may not have access to
the timestamp of the packet when it sends the ACK. Similarly,
the TCP checksum field has to be dealt with carefully. Since a
TCP packet is ACKed even before it is decoded, its checksum
cannot be tested before ACKing. One solution is to implement
a separate checksum at the network coding layer to detect
errors. In the same way, the various other TCP options that
are available have to be implemented with care to ensure that
they are not affected by the premature ACKs.

VII. PERFORMANCE RESULTS

In this section, we present simulation results and experimen-
tal results aimed at establishing the fairness properties and the
throughput benefits of our new protocol. The simulations are
based on TCP-Vegas. The experimental results use the TCP-
Reno based implementation described in Section VI.

A. Fairness of the protocol

First, we study the fairness property of our algorithm
through simulations.

1) Simulation setup:The protocol described above is sim-
ulated using the Network Simulator (ns-2) [39]. The topology
for the simulations is a tandem network consisting of 4 hops
(hence 5 nodes), shown in Figure 10. The source and sink
nodes are at opposite ends of the chain. Two FTP applications
want to communicate from the source to the sink. There is
no limit on the file size. They emit packets continuously
till the end of the simulation. They either use TCP without
coding or TCP with network coding (denoted TCP/NC). In
this simulation, intermediate nodes do not re-encode packets.
All the links have a bandwidth of 1 Mbps, and a propagation
delay of 100ms. The buffer size on the links is set at 200.
The TCP receive window size is set at 100 packets, and the
packet size is 1000 bytes. The Vegas parameters are chosen
to beα = 28, β = 30, γ = 2 (see [36] for details of Vegas).

2) Fairness and compatibility – simulation results:By fair-
ness, we mean that if two similar flows compete for the same
link, they must receive an approximately equal share of the
link bandwidth. In addition, this must not depend on the order
in which the flows join the network. As mentioned earlier, we
use TCP-Vegas for the simulations. The fairness of TCP-Vegas
is a well-studied problem. It is known that depending on the
values chosen for theα and β parameters, TCP-Vegas could
be unfair to an existing connection when a new connection
enters the bottleneck link ([40], [41]). Several solutionshave
been presented to this problem in the literature (for example,
see [42] and references therein). In our simulations, we first
pick values ofα and β that allow fair sharing of bandwidth
when two TCP flows without our modification compete with
each other, in order to evaluate the effect of our modification
on fairness. With the sameα andβ, we consider two cases:

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

Time (in seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP/NC vs TCP

TCP
TCP/NC

Fig. 11. Fairness and compatibility - one TCP/NC and one TCP flow

Case 1:The situation where a network coded TCP flow
competes with another flow running TCP without coding.

Case 2:The situation where two coded TCP flows compete
with each other.

In both cases, the loss rate is set to 0% and the redundancy
parameter is set to 1 for a fair comparison. In the first case, the
TCP flow starts first att = 0.5s and the TCP/NC flow starts
at 1000s. The system is simulated for 2000s. The current
throughput is calculated at intervals of2.5s. The evolution of
the throughput over time is shown in Figure 11. The figure
shows that the effect of introducing the coding layer does not
affect fairness. We see that after the second flow starts, the
bandwidth gets redistributed fairly.

For case 2, the simulation is repeated with the same starting
times, but this time both flows are TCP/NC flows. The plot
for this case is essentially identical to Figure 11 (and hence
is not shown here) because in the absence of losses, TCP/NC
behaves identically to TCP if we ignore the effects of field
size. Thus, coding can coexist with TCP in the absence of
losses, without affecting fairness.

B. Effectiveness of the protocol

We now show that the new protocol indeed achieves a high
throughput, especially in the presence of losses. We first de-
scribe simulation results comparing the protocol’s performance
with that of TCP in Section VII-B1.

1) Throughput of the new protocol – simulation results:
The simulation setup is identical to that used in the fairness
simulations (see Section VII-A1).

We first study the effect of the redundancy parameter on
the throughput of TCP/NC for a fixed loss rate of 5%. By
loss rate, we mean the probability of a packet getting lost on
each link. Both packets in the forward direction as well as
ACKs in the reverse direction are subject to these losses. No
re-encoding is allowed at the intermediate nodes. Hence, the
overall probability of packet loss across 4 hops is given by
1− (1− 0.05)4 which is roughly 19%. Hence the capacity is
roughly 0.81 Mbps, which when split fairly gives 0.405 Mbps
per flow. The simulation time is10000s.

We allow two TCP/NC flows to compete on this network,
both starting at0.5s. Their redundancy parameter is varied
between 1 and 1.5. The theoretically optimum value is ap-
proximately1/(1 − 0.19) ≃ 1.23. Figure 12 shows the plot

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Redundancy Factor (R)

T
hr

ou
gh

pu
t (

M
bp

s)

Session 1
Session 2

Fig. 12. Throughput vs redundancy for TCP/NC

of the throughput for the two flows, as a function of the
redundancy parameterR. It is clear from the plot thatR plays
an important role in TCP/NC. We can see that the throughput
peaks aroundR = 1.25. The peak throughput achieved is
0.397 Mbps, which is indeed close to the capacity that we
calculated above. In the same situation, when two TCP flows
compete for the network, the two flows see a throughput of
0.0062 and 0.0072 Mbps respectively. Thus, with the correct
choice ofR, the throughput for the flows in the TCP/NC case
is very high compared to the TCP case. In fact, even with
R = 1, TCP/NC achieves about 0.011 Mbps for each flow
improving on TCP by almost a factor of 2.

Next, we study the variation of throughput with loss rate
for both TCP and TCP/NC. The simulation parameters are
all the same as above. The loss rate of all links is kept at the
same value, and this is varied from 0 to 20%. We compare two
scenarios – two TCP flows competing with each other, and two
TCP/NC flows competing with each other. For the TCP/NC
case, we set the redundancy parameter at the optimum value
corresponding to each loss rate. Figure 13 shows that TCP’s
throughput falls rapidly as losses increase. However, TCP/NC
is very robust to losses and reaches a throughput that is close
to capacity. (Ifp is the loss rate on each link, then the capacity
is (1 − p)4, which must then be split equally.)

Figure 14 shows the instantaneous throughput in a 642
second long simulation of a tandem network with 3 hops
(i.e., 4 nodes), where erasure probabilities vary with time
in some specified manner. The third hop is on average, the
most erasure-prone link. The plots are shown for traditional
TCP, TCP/NC with coding only at the source, and TCP/NC
with re-encoding at node 3 (just before the worst link). The
operation of the re-encoding node is very similar to that of the
source – it collects incoming linear combinations in a buffer,
and transmits, on average,Rint random linear combinations
of the buffer contents for every incoming packet. TheR of
the sender is set at 1.8, and theRint of node 3 is set at 1.5
for the case when it re-encodes. The average throughput is
shown in the table. A considerable improvement is seen due
to the coding, that is further enhanced by allowing intermediate
node re-encoding. This plot thus shows that our scheme is also
suited to systems with coding inside the network.

Remark 2. These simulations are meant to be a preliminary

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Loss rate on each link (%)

T
hr

ou
gh

pu
t (

M
bp

s)

Throughput vs Loss Rate

TCP/NC − Session 1
TCP/NC − Session 2
TCP − Session 1
TCP − Session 2
Link capacity (split equally)

Fig. 13. Throughput vs loss rate for TCP and TCP/NC

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (in seconds)

T
hr

ou
gh

pu
t (

as
 a

 fr
ac

tio
n

of
 li

nk
 b

an
dw

id
th

)

The effect of re−encoding

TCP
End−to−end coding
Intermediate re−encoding

TCP End-to-end coding Re-encoding at node 3 only

0.0042 Mbps 0.1420 Mbps 0.2448 Mbps

Fig. 14. Throughput with and without intermediate node re-encoding

study of our algorithm’s performance. Specifically, the follow-
ing points must be noted:
– Link layer retransmission is not considered for either TCP
or TCP/NC. If allowed, this could improve the performance
of TCP. However, as mentioned earlier, the retransmission
approach does not extend to more general multipath routing
solutions, whereas coding is better suited to such scenarios.
– The throughput values in the simulation results do not
account for the overhead associated with the network coding
headers. The main overhead is in conveying the coding coeffi-
cients and the contents of the coding window. If the source and
sink share a pseudorandom number generator, then the coding
coefficients can be conveyed succinctly by sending the current
state of the generator. Also, the coding window contents can
be conveyed in an incremental manner to reduce the overhead.
– The loss in throughput due to the finiteness of the field has
not been modeled in the simulations. A small field might cause
received linear combinations to be non-innovative, or might
cause packets to be seen out of order, resulting in duplicate
ACKs. However, the probability that such problems persist
for a long time falls rapidly with the field size. We believe
that for practical choices of field size, these issues will only
cause transient effects that will not have a significant impact
on performance. These effects remain to be quantified exactly.
– Finally, the decoding delay associated with the network
coding operation has not been studied. We intend to focus

on this aspect in experiments in the future. A thorough
experimental evaluation of all these aspects of the algorithm,
on a more general topology, is part of future work.

C. Experimental results

We test the protocol on a TCP-Reno flow running over
a single-hop wireless link. The transmitter and receiver are
Linux machines equipped with a wireless antenna. The exper-
iment is performed over 802.11a with a bit-rate of 6 Mbps and
a maximum of 5 link layer retransmission attempts. RTS-CTS
is disabled.

Our implementation uses the Click modular router [43].
In order to control the parameters of the setup, we use the
predefined elements of Click. Since the two machines are
physically close to each other, there are very few losses on
the wireless link. Instead, we artificially induce packet losses
using theRandomSample element. Note that these packet
losses are introduced before the wireless link. Hence, they
will not be recovered by the link layer retransmissions, and
have to be corrected by the layer above IP. The round-trip
delay is empirically observed to be in the range of a few tens
of milliseconds. The encoder and decoder queue sizes are set
to 100 packets, and the size of the bottleneck queue just in
front of the wireless link is set to 5 packets. In our setup, the
loss inducing element is placed before the bottleneck queue.

The quantity measured during the experiment is the goodput
over a 20 second long TCP session. The goodput is measured
using iperf [44]. Each point in the plots shown is averaged
over 4 or more iterations of such sessions, depending on the
variability. Occasionally, when the iteration does not terminate
and the connection times out, the corresponding iteration
is neglected in the average, for both TCP and TCP/NC.
This happens around 2% of the time, and is observed to be
because of an unusually long burst of losses in the forward or
return path. In the comparison, neither TCP nor TCP/NC uses
selective ACKs. TCP uses delayed ACKs. However, we have
not implemented delayed ACKs in TCP/NC at this point.

Fig. 16 shows the variation of the goodput with the redun-
dancy factorR for a loss rate of 10%, with a fixed coding
window size ofW = 3. The theoretically optimal value ofR
for this loss rate is close to 1.11 (1/0.9 to be exact). However,
from the experiment, we find that the best goodput is achieved
for an R of around 1.25. The discrepancy is possibly because
of the type of coding scheme employed. Our coding scheme
transmits a linear combination of only theW most recent
arrivals, in order to save packet header space. This restriction
reduces the strength of the code for the same value ofR. In
general, the value ofR andW must be chosen carefully to get
the best benefit of the coding operation. As mentioned earlier,
another reason for the discrepancy is the use of TCP Reno.

Fig. 17 plots the variation of goodput with the size of the
coding window sizeW . The loss rate for this plot is 5%, with
the redundancy factor fixed at 1.06. We see that the best coding
window size is 2. Note that a coding window size ofW = 1
corresponds to a repetition code that simply transmits every
packet 1.06 times on average. In comparison, a simple sliding

0 5 10 15 20 25
0

100

200

300

400

500

600

Packet Loss Rate (%)

G
oo

dp
ut

 (
in

 k
ilo

by
te

s/
s)

TCP
TCP/NC

Fig. 15. Goodput versus loss rate

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
200

250

300

350

400

450

Redundancy factor (R)

G
oo

dp
ut

 (
in

 k
ilo

by
te

s/
s)

Loss rate = 10%, Coding window size (W) = 3

Fig. 16. Goodput versus redundancy factor for a 10% loss rateand W=3

window code withW = 2 brings a big gain in throughput by
making the added redundancy more useful. However, going
beyond 2 reduces the goodput because a large value ofW
can mislead TCP by masking too many losses, which prevents
TCP from reacting to congestion in a timely manner and leads
to timeouts. We find that the best value ofW for our setup is
usually 2 for a loss rate up to around 5%, and is 3 for higher
loss rates up to 25%. Besides the loss rate, the value ofW
could also depend on other factors such as the round-trip time
of the path.

Fig. 15 shows the goodput as a function of the packet loss
rate. For each loss rate, the values ofR and W have been
chosen by trial and error, to be the one that maximizes the
goodput. We see that in the lossless case, TCP performs better
than TCP/NC. This could be because of the computational
overhead that is introduced by the coding and decoding
operations, and also the coding header overhead. However, as
the loss rate increases, the benefits of coding begin to outweigh
the overhead. The goodput of TCP/NC is therefore higher than
TCP. Coding allows losses to be masked from TCP, and hence
the fall in goodput is more gradual with coding than without.
The performance can be improved further by improving the
efficiency of the computation.

VIII. C ONCLUSIONS AND FUTURE WORK

In this work, we propose a new approach to congestion
control on lossy links based on the idea of random linear
network coding. We introduce a new acknowledgment mech-

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

Coding window size (W)

G
oo

dp
ut

 (
in

 k
ilo

by
te

s/
s)

Loss rate = 5%, Redundancy factor (R) = 1.06

Fig. 17. Goodput versus coding window size for a 5% loss rate and R=1.06

anism that plays a key role in incorporating coding into the
sliding window mechanism of TCP. From an implementation
perspective, we introduce a new network coding layer between
the transport and network layers on both the source and
receiver sides. This means, our changes can be easily deployed
in an existing system. Our simulations show that the proposed
changes lead to large throughput gains over TCP in lossy
links, even with coding only at the source. We demonstrate
the practicality of our proposal by implementing it in a real-
world experimental setup with TCP-Reno. Significant gains in
goodput are seen in the experiments.

We view this work as a first step in taking the theory of
network coding to practice. The ideas proposed in this paper
give rise to several open questions for future research:

1) Extensions to multipath and multicast:The scheme has
implications for running TCP over wireless networks, in par-
ticular in the context of lossy multipath opportunistic routing
scenarios. It is also of interest to extend this approach to
other settings such as network coding based multipath-TCP for
point-to-point connections, as well as network coding based
multicast connections over a general network. The goal is to
present the application layer with the familiar TCP interface
while still exploiting the multipath or multicast capabilities
of the network. We believe that the proposed ideas and the
implementation will lead to the practical realization of this
goal and will bring out the theoretically promised benefits of
network coding in such scenarios. The idea of coding across
packets, combined with our new ACK mechanism will allow a
single TCP state machine to manage the use of several paths.
However, further work is needed to ensure that the different
characteristics of the paths to the receiver (in case of multipath)
or to multiple receivers (in case of multicast) are taken into
account correctly by the congestion control algorithm.

2) Re-encoding packets at intermediate nodes:A salient
feature of our proposal is that it is simultaneously compatible
with the case where only end hosts perform coding (thereby
preserving the end-to-end philosophy of TCP), and the case
where intermediate nodes perform network coding. Theory
suggests that a lot can be gained by allowing intermediate
nodes to code as well. Our scheme naturally generalizes
to such situations. The ability to code inside the network
is important for multicast connections. Even for a point-to-

point connection, the ability to re-encode at an intermediate
node offers the flexibility of adding redundancy where it is
needed,i.e., just before the lossy link. The practical aspects
of implementing re-encoding need to be studied further.

3) Automatic tuning of TCP/NC parameters:More work is
needed in the future for fully understanding the role played
by the various parameters of the new protocol, such as the
redundancy factorR and the coding window sizeW . To
achieve high throughputs in a fair manner, the values ofR and
W have to be carefully adapted based on the characteristics
of the underlying link. Ideally, the choice of these parameters
should be automated. For instance, the correct values could
be learnt dynamically based on measurement of the link
characteristics such as the link loss rate, bandwidth and delay.
In addition, the parameters have to be extended to cover the
case of multipath and multicast scenarios as well.

ACKNOWLEDGMENTS

We would like to thank Prof. Dina Katabi for several use-
ful discussions. We also thank Mythili Vutukuru and Rahul
Hariharan for their advice and help with the implementation.

REFERENCES

[1] S.-Y. Chung, G. D. Forney, T. Richardson, and R. Urbanke,“On the
design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,”IEEE Communication Letters, vol. 5, no. 2, pp. 58–60,
February 2001.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Networkinforma-
tion flow,” IEEE Trans. on Information Theory, vol. 46, pp. 1204–1216,
2000.

[3] R. Koetter and M. Ḿedard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, 2003.

[4] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,”IEEE Trans-
actions on Information Theory, vol. 49, no. 2, pp. 371–381, February
2003.

[5] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. on Information Theory, vol. 52, no. 10, pp. 4413–4430,
October 2006.

[6] Y. Xi and E. M. Yeh, “Distributed algorithms for minimum cost
multicast with network coding,” inAllerton Annual Conference on
Communication, Control and Computing, 2005.

[7] D. Lun, N. Ratnakar, R. Koetter, M. Ḿedard, E. Ahmed, and H. Lee,
“Achieving minimum-cost multicast: a decentralized approach based on
network coding,” inProceedings of IEEE INFOCOM, vol. 3, March
2005, pp. 1607–1617.

[8] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Ca-
pacity of wireless erasure networks,”IEEE Transactions on Information
Theory, vol. 52, no. 3, pp. 789–804, March 2006.

[9] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable
communication over packet networks,”Physical Communication, vol. 1,
no. 1, pp. 3 – 20, 2008.

[10] D. S. Lun, “Efficient operation of coded packet networks,” PhD Thesis,
Massachusetts Institute of Technology, Dept. of EECS, June2006.

[11] C. Jiang, B. Smith, B. Hassibi, and S. Vishwanath, “Multicast in wireless
erasure networks with feedback,” inIEEE Symposium on Computers and
Communications, 2008 (ISCC 2008), July 2008, pp. 562–565.

[12] S. Bhadra and S. Shakkottai, “Looking at large networks: Coding vs.
queueing,” inProceedings of IEEE INFOCOM, April 2006.

[13] D. S. Lun and T. Ho,Network Coding: An Introduction. Cambridge
University Press, 2008.

[14] T. Ho, “Networking from a network coding perspective,”PhD Thesis,
Massachusetts Institute of Technology, Dept. of EECS, May 2004.

[15] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. of
Allerton Conference on Communication, Control, and Computing, 2003.

[16] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the Air: Practical Wireless Network Coding,”IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 497–510, June 2008.

[17] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” inProc. of ACM
SIGCOMM 2007, August 2007.

[18] D. Bertsekas and R. G. Gallager,Data Networks, 2nd ed. Prentice
Hall, 1991.

[19] W. R. Stevens,TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley, 1994.

[20] G. R. Wright and W. R. Stevens,TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley, 1994.

[21] C. Fragouli, D. S. Lun, M. Ḿedard, and P. Pakzad, “On feedback for
network coding,” inProc. of 2007 Conference on Information Sciences
and Systems (CISS 2007), March 2007.

[22] M. Luby, “LT codes,” in Proceedings of IEEE Symposium on Founda-
tions of Computer Science (FOCS), November 2002, pp. 271–282.

[23] A. Shokrollahi, “Raptor codes,” inProceedings of IEEE International
Symposium on Information Theory (ISIT), July 2004.

[24] J. W. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain
approach to asynchronous reliable multicast,”IEEE Journal on Selected
Areas in Communications, vol. 20, no. 8, pp. 1528–1540, October 2002.

[25] B. Shrader and A. Ephremides, “On the queueing delay of a multicast
erasure channel,” inIEEE Information Theory Workshop (ITW), October
2006.

[26] ——, “A queueing model for random linear coding,” inIEEE Military
Communications Conference (MILCOM), October 2007.

[27] J. Lacan and E. Lochin, “On-the-fly coding to enable fullreliability
without retransmission,” ISAE, LAAS-CNRS, France, Tech. Rep.,
2008. [Online]. Available: http://arxiv.org/pdf/0809.4576

[28] L. Clien, T. Ho, S. Low, M. Chiang, and J. Doyle, “Optimization based
rate control for multicast with network coding,” inProceedings of IEEE
INFOCOM, May 2007, pp. 1163–1171.

[29] J. K. Sundararajan, D. Shah, and M. Médard, “ARQ for network coding,”
in Proceedings of IEEE ISIT, July 2008.

[30] S. Rangwala, A. Jindal, K.-Y. Jang, K. Psounis, and R. Govindan, “Un-
derstanding congestion control in multi-hop wireless mesh networks,”
in Proc. of ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), 2008.

[31] S. Paul, E. Ayanoglu, T. F. L. Porta, K.-W. H. Chen, K. E. Sabnani, and
R. D. Gitlin, “An asymmetric protocol for digital cellular communica-
tions,” in Proceedings of INFOCOM ’95, 1995.

[32] A. DeSimone, M. C. Chuah, and O.-C. Yue, “Throughput performance
of transport-layer protocols over wireless LANs,”IEEE Global Telecom-
munications Conference (GLOBECOM ’93), pp. 542–549 Vol. 1, 1993.

[33] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable
transport and handoff performance in cellular wireless networks,” ACM
Wireless Networks, vol. 1, no. 4, pp. 469–481, December 1995.

[34] F. Brockners, “The case for FEC-fueled TCP-like congestion control,” in
Kommunikation in Verteilten Systemen, ser. Informatik Aktuell, R. Stein-
metz, Ed. Springer, 1999, pp. 250–263.

[35] S. Biswas and R. Morris, “ExOR: opportunistic multi-hoprouting for
wireless networks,” inProceedings of ACM SIGCOMM 2005. ACM,
2005, pp. 133–144.

[36] L. S. Bramko, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” inProceedings of
the SIGCOMM ’94 Symposium, August 1994.

[37] J. J. Hunter,Mathematical Techniques of Applied Probability, Vol. 2,
Discrete Time Models: Techniques and Applications. NY: Academic
Press, 1983.

[38] N. R. Wagner,The Laws of Cryptography with Java Code. [Online].
Available: http://www.cs.utsa.edu/∼wagner/lawsbookcolor/laws.pdf

[39] “Network Simulator (ns-2),” in http://www.isi.edu/nsnam/ns/.
[40] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas revisited,” in

Proceedings of INFOCOM ’00, 2000.
[41] C. Boutremans and J.-Y. Le Boudec, “A note on fairness of TCP Vegas,”

in Proceedings of Broadband Communications, 2000.
[42] J. Mo, R. La, V. Anantharam, and J. Walrand, “Analysis andcomparison

of TCP Reno and Vegas,” inProceedings of INFOCOM ’99, 1999.
[43] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The

Click modular router,” inACM Transactions on Computer Systems,
vol. 18, no. 3, August 2000, pp. 263–297.

[44] NLANR Distributed Applications Support Team, “Iperf - the
TCP/UDP bandwidth measurement tool.” [Online]. Available:
http://dast.nlanr.net/Projects/Iperf/

http://arxiv.org/pdf/0809.4576
http://www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf
http://dast.nlanr.net/Projects/Iperf/

	Introduction
	Bringing network coding to practice
	The incremental deployment problem
	Current approaches are not TCP-compatible
	Our solution

	Implications for wireless networking
	Intermediate node re-encoding
	Opportunistic routing and TCP

	Preliminaries
	The new protocol
	Logical description
	Implementation strategy
	Source side
	Receiver side

	Soundness of the protocol
	Queuing analysis for an idealized case
	System model
	Queue update mechanism
	Queuing analysis

	The real-world implementation
	Sender side module
	Forming the coding buffer
	The coding header
	The coding window
	Buffer management

	Receiver side module
	Acknowledgment
	Decoding and delivery
	Buffer management
	Modifying the receive window

	Discussion of the practicalities
	Redundancy factor
	Coding Window Size
	Working with TCP-Reno
	Computational overhead
	Interface with TCP

	Performance results
	Fairness of the protocol
	Simulation setup
	Fairness and compatibility -- simulation results

	Effectiveness of the protocol
	Throughput of the new protocol -- simulation results

	Experimental results

	Conclusions and future work
	Extensions to multipath and multicast
	Re-encoding packets at intermediate nodes
	Automatic tuning of TCP/NC parameters

	References

