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Abstract—The theory of network coding promises significant Reno, which is a widespread and practical variant of TCP. Our
benefits in network performance, especially in lossy networks and implementation significantly advances the goal of designing a
in multicast and multipath scenarios. To realize these benefits deployable, general, TCP-compatible protocol that provides the
in practice, we need to understand how coding across packets benefits of network coding.
interacts with the acknowledgment-based flow control mechanism
that forms a central part of today’s Internet protocols such . INTRODUCTION
as TCP. Current approaches such as rateless codes and batch-
based coding are not compatible with TCP’s retransmission and ~ The concept of coding across data has been put to extensive

S"dirr]? v_vindovxiI n;eTcgg?’i\ISén;sH ltn this pa;:;eﬁ W*:"Wpfﬁposd‘? a_“fw use in today’s communication systems at the link level, due t
mechanism calle atincorporates newwork coding INto 4 ctical coding schemes that are known to achieve data rate

TCP with only minor changes to the protocol stack, thereby - . e
allowing incremental deployment. In our scheme, the source VErY close to the fundamental limit, or capacity, of the &ueli

transmits random linear combinations of packets currently in white Gaussian noise channel [1]. Although the fundamental
the congestion window. At the heart of our scheme is a new limits for many multi-user information theory problems kav

interpretation of ACKs — the sink acknowledges every degree yet to be established, it is well known that there are sigaific
of freedom (.e, a linear combination that reveals one unit of benefits to coding beyond the link level

new information) even if it does not reveal an original packet ) . i
immediately. Thus, our new TCP acknowledgment rule takes into ~ FOr example, consider multicasting over a network of
account the network coding operations in the lower layer and broadcast-mode links in wireless systems. Due to the bestdc
enables a TCP-compatible sliding-window approach to network nature of the medium, a transmitted packet is likely to be
coding. Coding essentially masks losses from the congestionrecejved by several nodes. If one of the nodes experienced a

control algorithm and allows TCP/NC to react smoothly to losses, .
resulting in a novel and effective approach for congestion contl bad channel state and thereby lost the packet, then a simple

over lossy networks such as wireless networks. An important fe€transmission strategy may not be the best option, since
feature of our solution is that it allows intermediate nodes to the retransmission is useless from the viewpoint of therothe
perform re-encoding of packets, which is known to provide receivers that have already received the packet. In Figure 1
significant throughput gains in lossy networks and multicast 5de A broadcasts 2 packets to nodes B and C. In the first

scenarios. Simulations show that our scheme, with or without re- .. . .
encoding inside the network, achieves much higher throughput time-slot, only node B receives packei and in the second

compared to TCP over lossy wireless links. We present a real- Sot, only node C receives packgt. At this point, if instead
world implementation of this protocol that addresses the practich  Of retransmittingp; or ps, node A is allowed to mix the
aspects of incorporating network coding and decoding with information and send a single packet containing the bitwise
TCP's window management mechanism. We work with TCP- xoR of p1 andpa, then both B and C receive their missing

This work was performed when the first author was a graduatiestuat the packet in just one additional time-slot. This example shows
Massachusetts Institute of Technology. Parts of this wanketbeen presented that if we allow coding across packets, it is possible to egnv
at IEEE INFOCOM 2009. The work was supported by NSF Grant Nogimuyltaneously, new information to all connected receaiver

CNS-0627021, CNS-0721491, CCF-0915922, subcontractZa/em-37362- . .
C issued by Stanford University and supported by DARPA, sobects # Ar.“?ther sgenarlo W.he_re COd”?g across packets (':an make a
060786 and # 069145 issued by BAE Systems and supported by MARBignificant difference is in certain network topologies whe

and SPAWARSYSCEN under Contract Nos. N66001-06-C-2020N68001- - myjjtiple flows have to traverse a bottleneck link. The now
08-C-2013 respectively, subcontract # S0176938 issued ®ySdnta Cruz, . . .
supported by the United States Army under Award No. WoliNR-ar4s, Standard example is the butterfly network from [2], which is

and the DARPA Grant No. HR0011-08-1-0008. shown in Figurd 2. Here, node A wants to multicast a stream



A A A

[3]. Reference [5] presented a random linear network coding
j&@ d/&\b approach for this problem that is easy to implement and does
O p; B P1*P; . not compromise on throughput. The problem of multicast

< B ¢ using network coding with a cost criterion has been studied,
Time-slot 1 Time-slot 2 Time-slot 3 and distributed algorithms have been proposed to solve this
problem [6], [7]. Network coding also readily extends to
networks with broadcast-mode links or lossy links [8], [9],
[10]. Reference [11] highlights the need for coding for the
case of multicast traffic, even if feedback is present. In all
these situations, coding is indispensable from a throughpu
perspective.

Besides improving throughput, network coding can also be
used to simplify network management. The work by Bhadra
and Shakkottai [12] proposed a scheme for large multi-hop
networks, where intermediate nodes in the network have no
gueues. Only the source and destination nodes maintaierbuff
to store packets. The packet losses that occur due to the
absence of buffers inside the network are compensated for
by random linear coding across packets at the source.

Network coding has emerged as an important potential ap-
proach to the operation of communication networks, espiecia
wireless networks. The major benefit of network coding stems
from its ability tomix data, across time and across flows. This

Fig. 2. The butterfly network of [2] makes data transmission over lossy wireless networks robus

and effective. There has been a rapid growth in the theory and

of packets to nodes F and G. Assume the links are error-figgtential applications of network coding. These developisie
with a capacity of one packet per slot. If all nodes are onlyave been summarized in several survey papers and books
allowed to forward packets, then node D can forward eithguch as [13].
the packet from B ;) or the one from Cg2). It can be  However, extending coding technologies to the network
seen that alternating between these options gives a meilticgetting in a practical way has been a challenging task. thdee
throughput of 1.5 packets per slot. However, if node D sengige most common way to implement a multicast connection
a bitwise-XOR ofp; and p2 as shown in the figure, then ittoday, is to initiate multiple unicast connections, onedach
is possible to satisfy both receivers simultaneously, It@gL receiver, even though coding can theoretically dramagical
in a multicast throughput of 2 packets per time-slot. This ignprove multicast performance. To a large extent, this mpneo

the highest possible, since it meets the min-cut bound fein ezhas not yet been implemented in practical systems.
receiver.

Through the butterfly network example, [2] introduced Il. BRINGING NETWORK CODING TO PRACTICE
the field of network coding. With network coding, a node Despite the potential of network coding, we still seem far
inside the network, instead of simply forwarding the incogi from seeing widespread implementation of network coding
packets onto outgoing links, is now allowed to send a codedross networks. We believe a major reason for this is the in-
version of the incoming packets. cremental deployment problem. It is not clear how to nalyral

Although both the examples above use a bitwise-XO&dd network coding to existing systems, and to understand
code, the coding operation could be much more general. Fadread of time the actual effects of network coding in the wild
instance, we could view groups of bits as elements of a finitdhere have been several important advances in bridging the
field, and a packet as a vector over this field. Coding coutghp between theory and practice in this space. The distdbut
then correspond to performing linear combinations of thesandom linear coding idea, introduced by H al. [14],
vectors, with coefficients chosen from the field of operatiofis a significant step towards a robust implementation. The
In order to decode, the receiver will have to collect as manyork by Chouet al. [15] put forth the idea of embedding
linear combinations as the number of packets that were mixge coefficients used in the linear combination in the packet
in, and then solve the resulting system of linear equations header, and also the notion of grouping packets into batches
Gaussian elimination. for coding together. The work by Kattet al. [16] used

Network coding achieves the min-cut bound for multicashe idea of local opportunistic coding to present a prattica
in any network as long as all the multicast sessions haweplementation of a network coded system for unicast. Tlee us
the same destination set [2], [3]. Reference [4] showed thaft network coding in combination with opportunistic rowgin
linear coding suffices for this purpose. An algebraic framegw was presented in [17]. Despite these efforts, we believartha
for network coding was proposed by Koetter an@ddrd in cremental deployment remains a hurdle to increased adoptio

Fig. 1. Coding over a broadcast-mode link




of network coding in practical settings, and we thereforekse An important problem with both these approaches is that
a protocol that brings out the benefits of network coding &hillthough they are rateless, the encoding operation isaipic
requiring very little change in the existing protocol stack performed on a batch of packets. Several other works also
focus on such a batch-based solution [15], [17], [25], [26].
A. The incremental deployment problem With a batch-based approach, there is no guarantee that the

; : receiver will be able to extract and pass on to higher layers
A common and important feature of today’s protocols is . . . '
P ys P ny of the original packets until the entire batch has been

the use of feedback in the form of acknowledgments (ACKSS. .
. oceived and decoded. Therefore, packets are acknowledged
The simplest protocol that makes use of acknowledgments ?Scly at the end of a batch. This leads fo a decoding delay

the Automatic Repeat reQuest (AR rotocol. It uses tHe"Y . L -
idea that the sendF()ar can (i?'lterprét th(g)a%sence of an ACKt t interferes with TCP’s own retransmission mechanism fo
8rrecting losses. TCP would either timeout, or learn a very

indicate the erasure of the corresponding packet within t e value of round-trip time. causing low throughput. 3h
network, and in this case, the sender simply retransmits ge valu und-trip ime, causing low ughput. $u.
P cannot readily run on a batch-based rateless coding

lost packet. Thus, ARQ ensures reliability. The ARQ scheme dul
can be generalized to situations that have imperfections mpaute. . .
Reference [27] proposed an on-the-fly coding scheme with

the feedback link, in the form of either losses or delay in K led s but th in th ket K |
the ACKs. Reference [18] contains a summary of VaI’iOL?Sg nc&we lgmen S,d u d.ere g?g:]’ | ezgac ets ared a(;:. nowl-
protocols based on ARQ. edged only upon decoding. al. [28] proposed dis-

Besides ensuring reliability, the ACK mechanism forms thtéIbUted rate control algorithms for network coding in ity

. . . ; . maximization framework, and pointed out its similarity to
basis of control algorithms in the network aimed at preventi . . . .
. . . TCP. However, to implement such algorithms in practice, we
congestion and ensuring fair use of the network resources. . .
: ) i o need to create a clean interface between network coding and
Compared to a point-to-point setting where reliability e t

main concern, the network setting leads to several newmjont-rrCP' Thus, none of these works allows an ACK-based sliding-

problems just to ensure that the network is up and runniWlndow network coding approach that is compatible with TCP.

and that all users get fair access to the resources. Thlie]%('as is the problem we address in our current work,

problems are usually tackled using feedback. Therefore, ih Our solution
order to realize the theoretically proven benefits of nekwor . . .

. . . o In this paper, we show how to incorporate network coding
coding, we have to find a way to incorporate coding into the

- . . . into TCP, allowing its use with minimal changes to the
existing network protocolswithout disrupting the feedback- . .
) protocol stack, and in such a way that incremental deploymen
based control operations

Fi trol and ti irol in todav's Internet ars POSSIPIE.
OW Controt and congesion controt In today’s INEINEt &€ The main idea behind TCP is to use acknowledgments of

predominantly based on the Transmission Control Pmto%)éwly received packets as they arrimecorrect sequence order

(TC(jF’), W?'Ch \Iivotrks ijlsmg t.he !dea c;f aﬁ séuz)mg gansfmsds,tljolrﬁ order to guarantee reliable transport and also as a fekdba
window of packets, whose siz€ IS controtied based on fe gnal for the congestion control loop. This mechanism re-

{/%/9]&][20]]; The TCP pargi'g;n gas (I:_Ig_arly pr(()jven success;: uires some modification for systems using network coding.
€ therelore see a heed 1o find a sliding-window approac e key difference to be dealt with is that under network

similar as possible to TCP for network C°d".‘9 that makes uE‘Sding the receiver does not obtain original packets of the
of acknowledgm_ents for flow "%”d congestion control. (Th'r%essage, but linear combinations of the packets that are the
problem was initially proposed in [21].) decoded to obtain the original message once enough such
combinations have arrived. Hence, the notion of an ordered
sequence of packets as used by TCP is missing, and further, a

Current approaches that use coding across packets arelimear combination may bring in new information to a receive
readily compatible with TCP’s retransmission and slidingven though it may not reveal an original packet immediately
window mechanism. The digital fountain codes ([22]-[24]The current ACK mechanism does not allow the receiver to
constitute a well-known solution to the problem of packeicknowledge a packet before it has been decoded. For network
transmission over lossy links. From a batchkopackets, the coding, we need a modification of the standard TCP mecha-
sender generates a stream of random linear combinationsiism that acknowledges every unit of information received.
such a way that the receiver can, with high probability, dieco A new unit of information corresponds mathematically to a
the batch once it receivesy set of slightly more that linear degree of freedomessentially, once: degrees of freedom
combinations. Fountain codes have a low complexity and @iave been obtained, a message that would have required
not use feedback, except to signal successful decodingeof tinencoded packets can be decoded. We present a mechanism
block. In contrast to fountain codes which are typicallylgggp that performs the functions of TCP, namely reliable tramspo
end-to-end, the random linear network coding solution ¢f [nd congestion control, based on acknowledging every degre
and [9] allows an intermediate node to easily re-encode th&freedom received, whether or not it reveals a new packet.
packets and generate new linear combinations without gavin Our solution, known as TCP/NC, introduces a new network
to decode the original packets. coding layer between the transport layer and the networslay

B. Current approaches are not TCP-compatible



of the protocol stack. Thus, we recycle the congestion cbntand that performance may suffer due to independent retrans-
principle of TCP, namely that the number of packets involveaiission protocols at different layers. More importantfywie
in transmissions cannot exceed the number of acknowledgant to exploit the broadcast nature of the wireless medium,
ments received by more than the congestion window sidik layer retransmission may not be the best approach.
However, we introduce two main changes. First, whenever
the source is allowed to transmit, it sends a random lineAr
combination of all packets in the congestion window. Segond Our scheme does not rely on the link layer for recovering
the receiver acknowledges degrees of freedom and not afigitosses. Instead, we use an erasure correction scheme based
packets. (This idea was previously introduced in [29] in then random linear codes across packets. Coding across packet
context of a single hop erasure broadcast link.) An appatgri is a natural way to handle losses. The interface of TCP with
interpretation of the degree of freedom allows us to order timetwork coding that we propose in this paper can be viewed
receiver degrees of freedom in a manner consistent with the a generalization of previous work combining TCP with
packet order of the source. This lets us utilize the stand@fd Forward Erasure Correction (FEC) schemes [34]. As opposed
protocol with the minimal change. Since the receiver dods o fountain codes and FEC that are typically used for end-
have to wait to decode a packet, but can send a TCP AG#end coding, our protocol also allows intermediate nddes
for every degree of freedom received, the problems of usitlge network to perform re-encoding of data. It is thus more
batchwise ACKs is eliminated. general than end-to-end erasure correction over a singfe pa

We use the TCP-Vegas protocol in the initial description, Intermediate node re-encoding is an important feature. If
as it is more compatible with our modifications. In a latenodes are allowed to re-encode data, then we can obtain
part of the paper, we also demonstrate the compatibility sifgnificant benefits in throughput in multipath and multicas
our protocol with the more commonly used TCP-Reno. W&cenarios, and also in a single path unicast scenario with
do not consider bidirectional TCP in this work. multiple lossy hops. Besides, it gives us the flexibility tida

It is important to note that the introduction of the newedundancy for erasure correction only where necesgaty,
network coding layer does not cause any change in thefore the lossy link. An end-to-end coding approach would
interface to TCP, as seen by an application. Moreover, thengest other parts of the network where the redundancy is
interface seen by TCP looking downwards in the protocokstaoot needed.
is also unchanged — the network coding layer accepts regulait is important to note that our scheme respects the end-
TCP packets from the TCP sender and delivers regular T@Rend philosophy of TCP — it would work even if coding
ACKs back to the sender. Similarly, it delivers regular TCBperations are performed only at the end hosts. Having said
packets to the receiver and accepts the ACKs generated bytte, if some nodes inside the network also perform network
receiver. This means that the basic features of the TCP lageding, our solution naturally generalizes to such scesaas
implementation do not need to be changed. Further detailgll. The queuing analysis in SectiGn \-D considers such a
about this interface are discussed in Secfion VI-C5. situation.

Intermediate node re-encoding

[1I. I MPLICATIONS FOR WIRELESS NETWORKING B. Opportunistic routing and TCP

In considering the potential benefits of our TCP-compatible There has been a growing interest in approaches that make
network coding solution, we focus on the area of wirelestive use of the intrinsic broadcast nature of the wireless
links. We now explain the implications of this new protocomedium. In the technique known as opportunistic routind,[35
for improving throughput in wireless networks. a node broadcasts its packet, and if one of its neighbors

TCP was originally developed for wired networks and wa®ceives the packet, that node will forward the packet down-
designed to interpret each packet loss as a congestionl.sigaieam, thereby obtaining a diversity benefit. If more than
Since wired networks have very little packet loss on thedinlone of the neighbors receive the packet, they will have to
and the predominant source of loss is buffer overflow due toordinate and decide who will forward the packet.
congestion, TCP’s approach works well. In contrast, wggle The MORE protocol [17] proposed the use of intra-flow
networks are characterized by packet loss on the link andtwork coding in combination with opportunistic routing.
intermittent connectivity due to fading. It is well knownath The random linear mixing (coding) of incoming packets at
TCP is not well suited for such lossy links. The primarya node before forwarding them downstream was shown to
reason is that it wrongly assumes the cause of link lossesrémluce the coordination overhead associated with oppstitin
be congestion, and reduces its transmission rate unnedgssaouting. Another advantage is that the coding operationbean
leading to low throughput. easily tuned to add redundancy to the packet stream to combat

Adapting TCP for wireless scenarios is a very well-studiegrasures. Such schemes can potentially achieve capacity fo
problem (see [30] and references therein for a survey). Thaulticast connection [5].
general approach has been to mask losses from TCP usinglowever, if we allow a TCP flow to run over an oppor-
link layer retransmission [31]. However, it has been noted tunistic routing based system like ExOR [35] or MORE, two
the literature ([32], [33]) that the interaction betwearkliayer issues arise — batching and reordering. Typical implementa
retransmission and TCP’s retransmission can be complicat®ns use batches of packets instead of sliding windows.HExO



uses batching to reduce the coordination overhead, butragy be written in matrix form as:
mentioned in [35], this interacts badly with TCP’s window
mechanism. MORE uses batching to perform the coding< d e e ) = ~<p” P12 P1e )
operation. As discussed earlier, if the receiver acknogdsd
packets only when an entire batch has been successfullX a [ . - .
decoded, then the decoding delay will interfere with Tc¥here ¢ = | 5 | is called the coefficient matrix.
Since TCP performance heavily relies on the timely return &fote that even if an intermediate node performs re-encoding
ACKs, such a delay in the ACKs would affect the round-trign these linear combinations, the net effect may still be
time calculation and thereby reduce the throughput. represented using such a linear relation, witheing replaced

The second issue with opportunistic routing is that it couldy the overall transfer matrix.
lead to reordering of packets, since different packetsctcoul Upon receiving the packetg; andqz, the receiver simply
take different paths to the destination. Reordering is kntov needs to invert the matri€’ using Gaussian elimination, and
interact badly with TCP, as it can cause duplicate ACKs, ampply the corresponding linear operations on the received
TCP interprets duplicate ACKs as a sign of congestion.  packets to obtain the original message packstsand p,.

Our work addresses both these issues. Since the recelfefatrix form, the decoding process is given by:
does not have to wait to decode a packet, but can send a0 P Iy

6 ): —1.<Q11 qi2 - qw)

g21 Q22 ... Q2 P21 P22 ... D2

TCP ACK for every degree of freedom received, the batchin
problem is solved.

As for the reordering issue, it is shown later (Lemfja 1) general, the receiver will need to receive as many linear
that in our scheme, if the linear combination happens ovepmbinations as the number of original packets involved, in
a large enough finite field, then any incoming random line&fder to be able to decode. o _
combination will, with high probability, generate a TCP ACK In this setting, we introduce some definitions tha.t will be
for the very next unacknowledged packet in order. This Kseful throughout the paper (see [29] for more details).

becagse the random combinations do not have any inhergyfinition 1 (Seeing a packet)A node is said to haveeen
ordering. The argument holds true even when multiple patisyacketp, if it has enough information to compute a linear
deliver the random linear combinations. Hence the use @§mpination of the form{pk + q), whereq = 3, arpe,
random linear coding with the acknowledgment of degrees @fih ,, « F, for all ¢ > k. Thus,q is a linear combination
freedom can potentiallgddress the TCP reordering problem involving packets with indices larger than

for multipath opportunistic routing schemes. _ ) i )

Our interface enhancing TCP with network coding yields a The notion of "seeing” a packet is a natural extension of the
new approach to implementing TCP over wireless networkaotion of “decoding” a packet, or more specifically, receg/a
and it is here where the benefits of our solution are modgcketin the context of classical TCP. For example, if a pack
dramatic. Pk is decoded then it is indeed also seen, wjtk- 0. A node

The first part of the paper explains the details of our nefin COMPpute any linear combination whose coefficient vector
protocol along with its theoretical basis and a queuingyaigl 'S IN the span of the coefficient vectors of previously reegiv
in an idealized setting. Following this, we present a redinear combinations. This leads to the following definition
life implementation of the protocol and discuss the pratticDefinition 2 (Knowledge of a node)Theknowledge of a node
issues that need to be addressed. Finally, we analyze ihehe set of all linear combinations of original packets ttha
algorithm’s performance based on simulations as well s reg can compute, based on the information it has received so
world experiments. far. The coefficient vectors of these linear combinatiomanfo

a vector space called thkenowledge spacef the node.

P21 P22 ... P q21 Q422 ... Q2

V. PRELIMINARIES . ,
We state a useful proposition without proof (see Corollary

Consider a single source that has a message to transmit. W§29] for details).

view the message as being split into a stream of pagkets i, .
. X P 1. 1f h k hen it k
p2, .... The kt" packet in the source message is said toroposmon a node has seen packp, then it knows

. .. exactly one linear combination of the fonpy + q such thatq
Egl\éeﬁ m(r)];ji)i(zke. q\,/v%;rg?(t)u?oiﬁzdt(ﬁé T)Sit: (\)/fef:g sgglie? Tlnr'][g% itself a linear combination involving onlynseenpackets.
groups of size|log, ¢| bits each. In the system we propose, The above proposition inspires the following definition.
a node, in addition t.o forwarding incoming pe}ckets, IS aISBeﬁnition 3 (Witness) We call the unique linear combination
allowed to perform linear network coding. This means, the . : )

node may transmit a packet obtained by linearly combinir%uarameed by Propositid 1 theitness for seeingi.

the vectors corresponding to the incoming packets, witli-coe A compact representation of the knowledge space is the
ficients chosen from the fieltl,. For example, it may transmit basis matrix. This is a matrix in row-reduced echelon form
qi1 = ap1 +Fp2 andqz = yp1 +Ip2, Wherew, 3,v,0 € F,. (RREF) such that its rows form a basis of the knowledge
Assuming the packets havesymbols, the encoding processspace. It is obtained by performing Gaussian elimination on



Seen Unseen

| L contribution is the solution to this problem. The notion of
l;ew ded ' ' seen packets defines an ordering of the degrees of freedom
that is consistent with the packet sequence numbers, and can
therefore be used to acknowledge degrees of freedom.

Pi P2 P3s Ps Ps Ps P7 Ps

! L g fs;‘;"i;k;;;'edge Upon receiving a linear combination, the sink finds out
1 | - which packet, if any, has been newly seen because of the new
( L ——= J |« Witnessforp, arrival and acknowledges that packet. The sink thus prstend
to have received the packet even if it cannot be decoded yet.
Number of seen packets = Rankof matrix = Dim of knowledge space We will show in SeCtiOm that at the end this is not a

Fig. 3. Seen packets and witnesses in terms of the basis matrix problem because if all the packets in a file have been seen,
then they can all be decoded as well.
the coefficient matrix. Figurgl 3 explains the notion of a seenThe idea of transmitting random linear combinations and
packet in terms of the basis matrix. Essentially, the se@@knowledging seen packets achieves our goal of masking
packets are the ones that correspond to the pivot columihe of fosses from TCP as follows. As mentioned in Seclich 1V, with
basis matrix. Given a seen packet, the corresponding pwvot ra |arge field size, every random linear combination is very
gives the coefficient vector for the witness linear comborat |ikely to cause the next unseen packet to be seen. Hence, even
An important observation is thahe number of seen packetsf a transmitted linear combination is lost, the next sustids
is always equal to the dimension of the knowledge space reception of a (possibly) different random linear combiat
the number of degrees of freedom that have been receivedygp cause the next unseen packet to be seen and ACKed.
far. A newly received linear combination that increases thgom the TCP sender's perspective, this appears as though
dimension is said to bmnovative We assume throughout thethe transmitted packet waits in a fictitious queue until the
paper that the field size is very large. As a consequence, egfinnel stops erasing packets and allows it through. Thus,
reception will be innovative with high probability, and Wil there will never be any duplicate ACKs. Every ACK will cause
cause the next unseen packet to be seen (see Léima 1). the congestion window to advance. In shte lossiness of the
Example:Suppose a node knows the following linear comink is presented to TCP as an additional queuing delay that
binations:x = (p1 + p2) andy = (p1 + ps). Since |eads to a larger effective round-trip tim@he term round-
these are linearly independent, the knowledge space hagig time thus has a new interpretation. It is the effective
dimension of 2. Hence, the number of seen packets mustiiiie the network takes teeliably deliver a degree of freedom
2. It is clear that packep; has been seen, sincesatisfies (including the delay for the coded redundancy, if necegsary
the requirement of Definitioh] 1. Now, the node can compugllowed by the return of the ACK. This is larger than the
z = x —y = (pz — p3). Thus, it has also seepz. That true network delay it takes for a lossless transmission and
meansps is unseen. Hencey, is the witness foipy, andz is  the return of the ACK. The more lossy the link is, the larger
the witness forp.. will be the effective RTT. Presenting TCP with a larger value
for RTT may seem counterintuitive as TCP’s rate is inversely
related to RTT. However, if done correctly, it improves the
In this section, we present the logical description of ow nerate by preventing loss-induced window closing, as it gites
protocol, followed by a way to implement these ideas with astwork more time to deliver the data in spite of losses, teefo
little disturbance as possible to the existing protocotista  TCP times out. Therefore, losses are effectively masked.
) o The natural question that arises is — how does this affect
A. Logical description congestion control? Since we mask losses from the congestio
The main aim of our algorithm is to mask losses frorgontrol algorithm, the TCP-Reno style approach to congesti
TCP using random linear coding. We make some importacntrol using packet loss as a congestion indicator is net im
modifications in order to incorporate coding. First, inst@ mediately applicable to this situation. However, the catiga
the original packets, we transmit random linear combimatiorelated losses are made to appear as a longer RTT. Therefore,
of packets in the congestion window. While such codinge can use an approach that infers congestion from an ircreas
helps with erasure correction, it also leads to a problem im RTT. The natural choice is TCP-Vegas. The discussion in
acknowledging data. TCP operates with units of paﬁketshis section is presented in terms of TCP-Vegas. The algurit
which have a well-defined ordering. Thus, the packet seqermowever, can be extended to make it compatible with TCP-
number can be used for acknowledging the received data. TReno as well. This is discussed in detail in Secfich VI, where
unit in our protocol is a degree of freedom. However, whea real-world implementation with TCP-Reno is presented.
packets are coded together, there is no clear ordering of th& CP-Vegas uses a proactive approach to congestion control
degrees of freedom that can be used for ACKs. Our maiy inferring the size of the network buffers even before they
start dropping packets. The crux of the algorithm is to estém
‘Actually, TCP operates in terms of bytes. For simplicity ofgmetation, the round-trip time (RTT) and use this information to find the
the present section uses packets of fixed length as the basicAll the discrepancy between the expected and actual transmissn r

discussion in this section extends to the case of bytes ds agebxplained 4 ] -
in Sectioi V] As congestion arises, buffers start to fill up and the RTTistar

V. THE NEW PROTOCOL
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coding windoWd, until they are ACKed by the receiver. The
sender then generates and sends random linear combinations
of the packets in the coding window. The coefficients used in
Fig. 4. Example of coding and ACKs the linear combination are also conveyed in the header.

. L , , .. _For every packet that arrives from TCR linear com-
to rise, and this is used as the congestion signal. This Isig ?nations are sent to the IP laver on averace. whirés
is used to adjust the congestion window and hence the r%%a Y ge,

For further details, the reader is referred to [36].

€ redundancy parameter. The average rate at which linear
) i ) combinations are sent into the network is thus a constant
In order to use TCP-Vegas correctly in this setting, We\cior more than the rate at which TCP's congestion window
need to ensure that it uses the effective RTT of a degree gf,;esses. This is necessary in order to compensate for the
freedom, including the fictitious queuing delay. In otherd&)  |osq'vate of the channel and to match TCP's sending rate to the
the RTT should be measured from the point when a packetige 4t which data is actually sent to the receiver. If theted
first sent out from TCP, to the point when the ACK retumgy e requndancy, then the data rate reaching the receiiler
saying that this packet has been seen. This is indeed the GaS€match the sending rate because of the losses. This keads t
if we simply use the default RTT measurement mechanismgit ation where the losses are not effectively masked from
of TCP-Vegas. The TCP sender notes down the transmiss{gR +cp |ayer. Hence, there are frequent timeouts leadirag to
time of every packet. When an ACK arrives, it is matched @, throughput. On the other extreme, too much redundancy
the corresponding transmit timestamp in order to compwe iy 556 had, since then the transmission rate becomes dimite
RTT. Thus, no modification is required. by the rate of the code itself. Besides, sending too many
Consider the example shown in Figué 4. Suppose thigear combinations can congest the network. The ideal leve
congestion window’s length is 4. Assume TCP sends 4 packefsredundancy is to keef equal to the reciprocal of the
to the network coding layer dt= 0. All 4 transmissions are probability of successful reception. Thus, in practiceakie
linear combinations of these 4 packets. THé transmission of R should be dynamically adjusted by estimating the loss
causes the* packet to be seen. The'? and 3" transmis- rate, possibly using the RTT estimates.
sions are lost, and th#" transmission causes the? packet  Upon receiving a linear combination, the receiver module
to be seen (the discrepancy is because of losses). As fafigg retrieves the coding coefficients from the header and
the RTT estimation is concerned, transmissions 2, 3 and 4 afhends it to the basis matrix of its knowledge space. Then,
treated as attempts to convey ti&' degree of freedom. The it performs a Gaussian elimination to find out which packet is
RTT for the 2" packet must include the final attempt thahewly seen so that this packet can be ACKed. The receiver
successfully delivers the"? degree of freedom, namely themodule also maintains a buffer of linear combinations of
4th’ transmission. In other WordS, the RTT is the time frorbackets that have not been decoded yet Upon decoding the
¢t = 0 until the time of reception of ACK=3. packets, the receiver module delivers them to the TCP sink.
The algorithm is specified below using pseudo-code. This
specification assumes a one-way TCP flow.
B. Implementation strategy 1) Source side:The source side algorithm has to respond
to two types of events — the arrival of a packet from the source
The implementation of all these ideas in the existing pre-cp, and the arrival of an ACK from the receiver via IP.
tocol stack needs to be done in as non-intrusive a manner as
possible. We present a solution which embeds the networkWhenever a new packet enters the TCP congestion window, E®Brits

coding operations in a separate layer below TCP and abdﬁlﬂg the network coding module, which then adds it to the cgdiindow.
e

. . . . us, the coding window is related to the TCP layer's corigestvindow
IP on the source and receiver side, as shown in Figure 5. T, generally not identical to it. For example, the coding daw will still

exact operation of these modules is described next. hold packets that were transmitted earlier by TCP, but are omgdr in
Th d dul t kets f the TCP the congestion window because of a reduction of the windae by TCP.
€ senaer module accepts packets from the SOUHdvever, this is not a problem because involving more padketse linear

and buffers them into an encoding buffer which represergs tébmbination will only increase its chances of being innaxeti
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SetNUM to 0. Theorem 1. From a file ofn packets, if every packet has been
2. Wait state:lf any of the following events occurs, respondseen, then every packet can also be decoded.

3 I?’chlﬁgfgrsr’iveelzi’rovgr?#CP sender: Proof: If the sender knows a file of packets, then the
, . sender’s knowledge space is of dimensiofEvery seen packet
a) Ifthe packet is a control packet used for connectiqfyresponds to a new dimension. Hence, ifrappackets have
management, deliver it to the IP layer and returjeen seen, then the receiver's knowledge space is also of
to wait state. _ o dimensionn, in which case it must be the same as the sender’s
b) If packet is not already in the coding window, add, 4 4| packets can be decoded. -
It to the coding window. In other words, seeing: different packets corresponds
€) SetNUM = NUM+R. (R = redundancy factor) 4, nhayingy, linearly independent equations in unknowns.
d) .Repeat the fOIIOW'nqNU_MJ times: o Hence, the unknowns can be found by solving the system
) Generate a random linear combination of thg¢ oquations. At this point, the file can be delivered to the
packets in the coding window. . TCP sink. In practice, one does not have to necessarily wait
li) Add the network coding header specifying the, i the end of the file to decode all packets. Some of the
set of packets in the coding vwndow and ,the,coet]nknowns can be found even along the way. In particular,
ficients used for the random linear combination. \;henever the number of equations received catches up with
lii) Deliver the pac_ket to the IP layer. the number of unknowns involved, the unknowns can be found.
€) SetNUM := fractional part ofNUM. Now, for every new equation received, the receiver sends an
f) Retum to the wait state. ACK. The congestion control algorithm uses the ACKs to
4. ACK arrives from receiverRemove the ACKed packet control the injection of new unknowns into the coding window
from the coding buffer and hand over the ACK to therhus, the discrepancy between the number of equations and
TCP sender. number of unknowns does not tend to grow with time, and
2) Receiver sideOn the receiver side, the algorithm agairiherefore will hit zero often based on the channel condition
has to respond to two types of events: the arrival of a packss a consequence, the decoding buffer will tend to be stable.
from the source, and the arrival of ACKs from the TCP sink. An interesting observation is that the arguments used to
1. Wait state: If any of the following events occurs, show the soundness of our approach.are quite general anq can
respond as follows; else, wait. be extended to more general scenarios such as random linear

2. ACK arrives from TCP sinkif the ACK is a control ¢oding based multicast over arbitrary topologies.

packet for connection management, deliver it to the IP . vsis f idealized
layer and return to the wait state; else, ignore the AcP- Queuing analysis for an idealized case

3. Packet arrives from source side: In this section, we focus on an idealized scenario in order
a) Remove the network coding header and retrieve tf provide a first order analysis of our new protocol. We aim
coding vector. to explain the key ideas of our protocol with emphasis on the

b) Add the coding vector as a new row to the existinjiteraction between the coding operation and the feedback.
coding coefficient matrix, and perform Gaussiadhe model used in this section will also serve as a platform
elimination to update the set of seen packets. Which we can build on to incorporate more practical situzio

c) Add the payload to the decoding buffer. Perform We abstract out the congestion control aspect of the problem
the operations corresponding to the Gaussian elifly assuming that the capacity of the system is fixed in time
ination, on the buffer contents. If any packet getand known at the source, and hence the arrival rate is always
decoded in the process, deliver it to the TCP sinkaintained below the capacity. We also assume that nodes

and remove it from the buffer. have infinite capacity buffers to store packets. We focus on

d) Generate a new TCP ACK with sequence numbé@r topology that consists of a chain of erasure-prone links

equal to that of the oldest unseen packet. in tandem, with perfect end-to-end feedback from the sink

directly to the source. In such a system, we investigate the
C. Soundness of the protocol behavior of the queue sizes at various nodes. We show that

r scheme stabilizes the queues for all rates below cgpacit
1) System modelThe network we study in this section is
gddaisy chain ofN nodes, each node being connected to the

generated by the application at the source will be deliver b K h | lotted ti
eventually to the application at the sink. We observe that tR€Xt 0ne by a packet erasure channel. We assume a slotted time
tem. The source generates packets according to a Biernoul

acknowledgment mechanism ensures that the coding modul&¥t . Co
the sender does not remove a packet from the coding windBj?ceSS Of raté packets per slot. The point of transmission is
unless it has been ACKede., unless it has been seen by thét the very beginning of a slot. Just after this point, evergten

sink. Thus, we only need to argue that if all packets in a ﬁféansmits one random linear combination of the packetssin it
havé been’ seen. then the file can be decoded at the sink. dU€ue. The relation between the transmitted linear cortibma

and the original packet stream is conveyed in the packet

We argue that our protocol guarantees reliable transfer o
information. In other words, every packet in the packetsstre



network coding. If some node simply forwards the incoming
packets, then we can incorporate this in the following way. A
erasure event on either the link entering this node or tHe lin
leaving this node will cause a packet erasure. Hence, these
Fig. 6. Topology: Daisy chain with perfect end-to-end festib two links can be replaced by a single link whose probability
of being ON is simply the product of the ON probabilities of
header. We ignore this overhead for the analysis in thissect the two links being replaced. Thus, all non-coding nodes can
We ignore propagation delay. Thus, the transmission, if nbé removed from the model, which brings us back to the same
erased by the channel, reaches the next node in the chaitoation as in the above model.

almost immediately. However, the node may use the newly3) Queuing analysis:We now analyze the size of the

received packet only in the next slot’s transmission. Weliags . . .
perfect, delay-free feedback from the sink to the source ueues at the nodes under the queuing policy described .above
' " .Jhe following theorem shows that if we allow coding at inter-

every slot, the sink generates the feedback signal after the”,. L . )
instant of reception of the previous node’s transmissidme Tmed|ate nodes, then it is possible to achieve the capacityeof

erasure event happens with a probability — ;) on the network, namelyminy, p. In addition, it also shows that the

channel connecting nodeand (i + 1), and is assumed to expected queue size in the heavy-traffic limit£ miny, i)

be independent across different channels and over timEB,ThTIaS an asymptotically opUmaI linear scallng]m(l_ = Pr). .
If we only allow forwarding at some of the intermediate

the system has a capacityin; u; packets per slot. We assume . . )
that \ < min, /i, and define the load factr, — A/, nodes, then we can still achieve the capacity of a new network

. . derived by collapsing the links across the non-coding nodes
2) Queue update mechanisrEach node transmits a ran-

) - _ as described in Remalk 1.
dom linear combination of the current contents of its queue

and hence, it is important to specify how the queue conterfifeorem 2. As long asA < py for all 0 < k£ < N, the

are updated at the different nodes. Queue updates at theesogrieues at all the nodes will be stable. The expected queue
are relatively simple because in every slot, the sink israssli size in steady state at node(0 < k£ < N) is given by:

to send an ACK directly to the source, containing the index N_1 o1

of the oldest packet not yet seen by the sink. Upon receiving E[Q)] = Z pi(1 — ;) + Zpi

the ACK, the source simply drops all packets from its queue s (1—pi) Pt

with an index lower than the sink’s request. o .
Whenever an intermediate node receives an innovativeAn implication:Consider a case wh_ere ‘.”1” thes are equr_:ll .
somep. Then, the above relation implies that in the limit

packet, this causes the node to see a previously unseert.paé e o
The node performs a Gaussian elimination to compute t heavy traffic,i.e, p — 1, the queues are exp_ected to be
witness of the newly seen packet, and adds this to the que Dger at nodes near the source than hear the sink.

Thus, intermediate nodes store the witnesses of the packets USeful lemmaThe above theorem will be proved after
that they have seen. The idea behind the packet drop ruldl€ following lemma. The lemma shows that the random linear
similar to that at the source — an intermediate node may drbpding scheme has the property that every successful reaept
the witnesses of packets up to but excluding what it believ8k @ N0de causes the node to see the next unseen packet with

to be the sink’s first unseen packet, based on its knowledgehbqh probability, proyided the.field Is Iarge.enough. Thistfa
the sink's status at that point of time. will prove useful while analyzing the evolution of the quesue

However, the intermediate nodes, in general, may only knavemma 1. Let S, and Sp be the set of packets seen by
an outdated version of the sink’s status because we assamnetfyo nodes A and B respectively. Assushg Sz is non-empty.
the intermediate nodes do not have direct feedback from tBappose A sends a random linear combination of its witnesses
sink (see Figurgl6). Instead, the source has to inform theshpackets inS, and B receives it successfully. The probability
about the sink’s ACK through the same erasure channel ushdt this transmission causes B to see the oldest packet in
for the regular forward transmission. This feed-forwardr® S4\Sp is (1 — 1/q), whereq is the field size.
sink’s status is modeled as follows. Whenever the channel Proof: Let M4 be the RREF basis matrix for A. Then,

entering an intermediate node is in the ON state. (no ficient tor of the li binati fby A
erasure), the node’s version of the sink’s status is updattg'(‘f coetficient vector ot the finear compinafion sent by A 1S
uM 4, whereu is a vector of lengthS4| whose entries

to that of the previous node. In practice, the source need ﬁoT_’_ . L L
transmit the sFi)nk’s status explic?tly The intermediatedes '€ independent and uniformly distributed over the finitilfie

can infer it from the set of packets that have been involvéFdl' Let d* c:)eno;e the mdix O.f the ol_defs t pacgeftﬂm\ig '
in the linear combination — if a packet is no longer involved, Let Mp be the RREF basis matrix for B before the new

that means the source must have dropped it, implying that figeeption. Suppose is successfully received by B. Then, B
sink must have ACKed it already. W'_I _app_endt as a new row toM and p_erform Ggussnan
elimination. The first step involves subtracting fragrsuitably
Remark 1. This model and the following analysis also workscaled versions of the pivot rows such that all entriest of
for the case when not all intermediate nodes are involvelan tcorresponding to pivot columns dffg become 0. We need to




find the probability that after this step, the leading noreze Given that nodek has just seen the packet in question, the
entry occurs in columa*, which corresponds to the event thaadditional time it takes for the next node to see that packet
B sees packet*. Subsequent steps in the Gaussian eliminati@orresponds to the waiting time in the virtual queue at node
will not affect this event. Hence, we focus on the first step.k. For a load factor ofp and a channel ON probability ?t

Let Pg denote the set of indices of pivot columns . the expected waiting time was derived in [29] to B _“p),

In the first step, the entry in columdi of t becomes using results from [37]. Now, the expected time until theksin
. . . N sees the packet is the sum(@¥ — k) such terms, which gives
P =td) — S t) Mp(rs(i),d") es the pacl (@ — k) 9
i€ Pp,i<d* i=k p;(1—

2) Time u‘r?t%l sink’'s ACK reaches intermediate node:
w_here rp (1) is_ the index of the pivot row CorrESpondir_lg 10 The ACK informs the source that the sink has seen the
pivot columni in M. Now, due to the way RREF is definedpacket. This information needs to reach nddey the feed-
#(d*) = u(ra(d”)), wherer (i) denotes the index of the pivot forward mechanism. The expected time for this information
row corresponding to pivot columfin M. Thus,i(d") i to move from node to nodei + 1 is the expected time until
uniformly distributed. Also, fori < d”, I(i) is @ function the next slot when the channel is ON, which is jst(since
of only thoseu(j)'s such thatj < ra(d*). Hence,t(d") is e ;th channel is ON with probability;). Thus, the time it

independent of(i) for i < d*. From these observations and,, s for the sink’s ACK to reach nodeis given by
the above expression faf(d*), it follows that for any given

My and Mg, t'(d*) has a uniform distribution ovef,, and k=1
the probability that it is not zero is therefo(d — é) ] Z; w
Computing the expected queue sizeFor the queuing ;

analysis, we assume that a successful reception aIwayes:ausTthtOtag expicted t'g;@k a pr;cke:)spends n t(;“;‘; quzL('f at
the receiver to see its next unseen packet, as long as @~ " node ( <k < N) can thus be computed by adding

transmitter has already seen it. The above lemma argues gtabgve two terms. NOW:LQSISl:Imllng thedsy_stemhls stable (Ol
this assumption becomes increasingly valid as the field si2e~ il H4). Wﬁ can u;e bltteslgv;/ to erg/e the expecte
increases. In reality, some packets may be seen out of ord&feue Sizé at the™ node, by multiplyingT;; by A:

resulting in larger queue sizes. However, we believe that th N-1 il — i) k-1
effect is minor and can be neglected for a first order analysis E[Qrx] = Z % + Zpi
With this assumption in place, the queue update policy i=k (L =pi) i=1
described earlier implies that the size of the physical gueu "]
at each node is simply the difference between the number of
packets the node has seen and the number of packets it Iselieve VI. THE REAL-WORLD IMPLEMENTATION
the sink has seen. In this section, we discuss some of the practical issues

To study the queue size, we define a virtual queue at eablat arise in designing an implementation of the TCP/NC
node that keeps track of the degrees of freedom backlpmtocol compatible with real TCP/IP stacks. These issues
between that node and the next one in the chain. The arrivedre not considered in the idealized setting discussed up
and departure of the virtual queues are defined as followis. this point. We present a real-world implementation of
A packet is said to arrive at a node’s virtual queue whenCP/NC and thereby show that it is possible to overcome these
the node sees the packet for the first time. A packet is sadues and implement a TCP-aware network-coding layer that
to depart from the virtual queue when the next node in thes the property of a clean interface with TCP. In addition,
chain sees the packet for the first time. A consequence of @ilthough our initial description used TCP-Vegas, our real-
assumption stated above is that the set of packets seen hyoald implementation demonstrates the compatibility of ou
node is always a contiguous set. This allows us to view tipeotocol with the more commonly used TCP variant — TCP-
virtual queue maintained by a node as though it were a first-iReno. The rest of this section pertains to TCP-Reno.
first-out (FIFO) queue. The size of the virtual queue is simpl
the difference between the number of packets seen by the n6Y
and the number of packets seen by the next node downstrearh) Forming the coding bufferThe description of the proto-

We are now ready to prove Theorém 2. For each intermesl in Sectior 'Y assumes a fixed packet length, which allows
diate node, we study the expected time spent by an arbitrafy coding and decoding operations to be performed symbol-
packet in the physical queue at that node, as this is relatedaise on the whole packet. That is, an entire packet serves
the expected physical queue size at the node, by Little’s laas the basic unit of data.¢., as a single unknown), with

Proof of Theoreril2Consider the:' node, forl < k < N. the implicit understanding that the exact same operation is
The time a packet spends in this node’s queue has two pahsing performed on every symbol within the packet. The main

1) Time until the packet is seen by the sink: advantage of this view is that the decoding matrix operation

The virtual queue at a node behaves like a FIFQ.e, Gaussian elimination) can be performed at the granularity
Geom/Geom/1 queue. The Markov chain governing its evoeof packets instead of individual symbols. Also, the ACKs are
lution is identical to that of the virtual queues studied29]. then able to be represented in terms of packet numberslyinal

eSender side module



the coding vectors then have one coefficient for every packet TCP SubHeader Data
not every symbol. Note that the same protocol and analysis

of Section[Y holds even if we fix the basic unit of data as a s
symbol instead of a packet. The problem is that the complexit

will be very high as the size of the coding matrix will be P; TCP SubHeader

Data

related to the number of symbols in the coding buffer, which
is much more than the number of packets (typically, a symbol  p, TCP SubHeader
is one byte long).
In practice, TCP is a byte-stream oriented protocol in which Ps TCP SubHeader Data
ACKs are in terms of byte sequence numbers. If all packets are
of fixed length, we can still apply the packet-level apprgach Fig. 7.
since we have a clear and consistent map between packet
sequence numbers and byte sequence numbers. In reality, It will be added later in the network coding header.
however, TCP might generate segments of different sizes. Th4) The packets are appended with sufficiently many dummy
choice of how many bytes to group into a segment is usually ~ zero bytes, to make them as long as the longest packet
made based on the Maximum Transmission Unit (MTU) of  currently in the buffer.
the network, which could vary with time. A more commorEvery resulting packet is then added to the buffer. This pro-
occurrence is that applications may use the PUSH flag opticassing ensures that the packets in the buffer will corme$po
asking TCP to packetize the currently outstanding bytesant to disjoint and contiguous sets of bytes from the byte stream
segment, even if it does not form a segment of the maximuimereby restoring the one-to-one correspondence betvieen t
allowed size. In short, it is important to ensure that oysacket numbers and the byte sequence numbers. The reason
protocol works correctly in spite of variable packet sizes. the port information is excluded from the coding is because
A closely related problem is that of repacketization. R&pacport information is necessary for the receiver to identityieh
etization, as described in Chapter 21 of [19], refers to tA&CP connection a coded packet corresponds to. Hence, the
situation where a set of bytes that were assigned to twort information should not be involved in the coding. We
different segments earlier by TCP may later be reassigneler to the remaining part of the header as the TCP subheader
to the same segment during retransmission. As a result, th&Jpon decoding the packet, the receiver can identify the
grouping of bytes into packets may not be fixed over time. dummy symbols using th&tart; and End; header fields in
Both variable packet lengths and repacketization need to the network coding header (described below). With these fixe
addressed when implementing the coding protocol. To solire place, we are ready to use the packet-level algorithm of
the first problem, if we have packets of different lengths, wection[. All operations are performed on the packets in
could elongate the shorter packets by appending suffigienthe coding buffer. FigurE_VI-Al shows a typical state of the
many dummy zero symbols until all packets have the sarbaffer after this pre-processing. The gaps at the end of the
length. This will work correctly as long as the receivepackets correspond to the appended zeros. It is important to
is somehow informed how many zeros were appended riote that the TCP control packets such as SYN packet and
each packet. While transmitting these extra dummy symbakset packet are allowed to bypass the coding buffer and are
will decrease the throughput, generally this loss will net bdirectly delivered to the receiver without any coding.
significant, as packet lengths are usually consistent. 2) The coding header:A coded packet is created by
However, if we have repacketization, then we have anothferming a random linear combination of a subset of the packet
problem, namely it is no longer possible to view a packét the coding buffer. The coding operations are done over a
as a single unknown. This is because we would not haveield of size 256 in our implementation. In this case, a field
one-to-one mapping between packets sequence numbers symdbol corresponds to one byte. The header of a coded packet
byte sequence numbers; the same bytes may now occusshiould contain information that the receiver can use totiflen
more than one packet. Repacketization appears to destoy\ilinat is the linear combination corresponding to the padket.
convenience of performing coding and decoding at the packeiw discuss the header structure in more detail.
level. We assume that the network coding header has the structure
To counter these problems, we propose the following sehown in Figurd18. The typical sizes (in bytes) of the various
lution. The coding operation described in Secfign V invelvefields are written above them. The meaning of the various
the sender storing the packets generated by the TCP sourcéelis are described next:
a coding buffer We pre-process any incoming TCP segment s Source and destination portThe port information is
before adding it to the coding buffer as follows: needed for the receiver to identify the coded packet's
1) First, any part of the incoming segment that is already session. It must not be included in the coding operation.
in the buffer is removed from the segment. It is taken out of the TCP header and included in the
2) Next, a separate TCP packet is created out of each network coding header.
remaining contiguous part of the segment. o Base:The TCP byte sequence number of the first byte
3) The source and destination port information is removed. that has not been ACKed. The field is used by interme-

Data
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Fig. 8. The network coding header

diate nodes or the decoder to decide which packets cawde is now restricted in its power to correct erasures and to
be safely dropped from their buffers without affectingombat reordering-related issues. The choicélofwill thus

reliability. play an important role in the performance of the scheme. The
« n: The number of packets involved in the linear combieorrect value ford will depend on the length of burst errors
nation. that the channel is expected to produce. Other factors to be
« Start;: The starting byte of theé!” packet involved in considered while choosing’ are discussed in Sectign VI-C.
the linear combination. 4) Buffer managementA packet is removed from the
o End;: The last byte of the™ packet involved in the coding buffer if a TCP ACK has arrived requesting a byte
linear combination. beyond the last byte of that packet. If a new TCP segment
o «;: The coefficient used for thé" packet involved in arrives when the coding buffer is full, then the segment with
the linear combination. the newest set of bytes must be dropped. This may not always

The Start; (exceptStart;) and End; are expressed relativebe the newly arrived segment, for instance, in the case of a
to the previous packet'&nd and Start respectively, to save TCP retransmission of a previously dropped segment.
header space. As shown in the figure, this header format
will add 5n + 7 bytes of overhead for the network codings Receiver side module
header in addition to the TCP header, where the number
of packets involved in a linear combination. (Note that the The decoder module’s operations are outlined below. The
port information is not counted in this overhead, since fain data structure involved is the decoding matrix, which
has been removed from the TCP header.) We believe itStores the coefficient vectors corresponding to the linear-c
possible to reduce this overhead by further optimizing tH@nations currently in the decoding buffer.
header structure. 1) AcknowledgmentThe receiver side module stores the
3) The coding window:In the theoretical version of theincoming linear combination in the decoding buffer. Then
algorithm, the sender transmits a random linear combinatid unwraps the coding header and appends the new coeffi-
of all packets in the coding buffer. However, as noted aboveignt vector to the decoding matrix. Gaussian eliminati®n i
the size of the header scales with the number of packetsrformed and the packet is dropped if it is not innovative
involved in the linear combination. Therefore, mixing all(i.e. if it is not linearly independent of previously reced/
packets currently in the buffer will lead to a large codindgjnear combinations). After Gaussian elimination, theesid
header. unseen packet is identified. Instead of acknowledging the
To solve this problem, we propose mixing only a constanpacket number as in Sectidn] V, the decoder acknowledges
sized subset of the packets chosen from within the coditite last seen packet bgquesting the byte sequence number
buffer. We call this subset theoding window The coding of the first byte of the first unseen packeging a regular TCP
window evolves as follows. The algorithm uses a fixed p#CK. Note that this could happen before the packet is decoded
rameter for the maximum coding window si#é. The coding and delivered to the receiver TCP. The port and IP address
window contains the packet that arrived most recently fromformation for sending this ACK may be obtained from the
TCP (which could be a retransmission), and & — 1) SYN packet at the beginning of the connection. Any ACKs
packets before it in sequence number, if possible. Howevgenerated by the receiver TCP are not sent to the sender. They
if some of the(W — 1) preceding packets have already beeare instead used to update the receive window field that & use
dropped, then the window is allowed to extend beyond the the TCP ACKs generated by the decoder (see subsection
most recently arrived packet until it includég packets. below). They are also used to keep track of which bytes have
Note that this limit on the coding window implies that thébeen delivered, for buffer management.
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2) Decoding and deliveryThe Gaussian elimination ope Base Recaiver TCP  (First unseen byte]

ations are performed not only on the decoding coefficient
trix, but correspondingly also on the coded packets theras¢
When a new packet is decoded, any dummy zero symbol: Receive window
were added by the encoder are pruned using the coding t
information. A new TCP packet is created with the ne —
decoded data and the appropriate TCP header fields an Dropped

is then delivered to the receiver TCP.

3) Buffer managementThe decoding buffer needs to st
packets that have not yet been decoded and delivered - Seen
TCP receiver. Delivery can be confirmed using the rece
TCP’s ACKs. In addition, the buffer also needs to store tt
packets that have been delivered but have not yet been dt
by the encoder from the coding buffer. This is because,
packets may still be involved in incoming linear combinasc
The Base field in the coding header addresses this isétiese
is the oldest byte in the coding buffer. Therefore, the dec

Delivered

Fig. 9. Receiver side window management

these losses, the receiver is able to collect linear equatid
the same rate as the rate at which the unknown packets are
mixed in them by the encoder. As discussed below, in practice
the value of R may depend on the coding window si¥E.
s : As W decreases, the erasure correction capability of the code
can drop a packet if its last byte is smaller thBase, and
. o . goes down. Hence, we may need a largeto compensate
in addition, has been delivered to and ACKed by the rect i
: s . and ensure that the losses are still masked from TCP. Another
TCP. Whenever a new linear combination arrives, the valuc g . .
: factor that affects the choice & is the use of TCP-Reno. The
Base is updated from the header, and any packets that can 8 . .
P-Reno mechanism causes the transmission rate to flectuat

dr(_)rapee(éue;frsrdr;o;?aege.ment can be understood using IHig_aggpunol the link capacity, and this leads to some additio_nal
It shows the receiver side windows in a typical situation. llr%)hss_es 0}/]6{ and Sbor:/_er;[hetlr:nknmfs_es. Therefore, the aptima
this case,Base is less than the last delivered byte. Hencé, "0'%€ © i may e nig .er an /(1= pe). . .
some delivered packets have not yet been dropped. Ther coui?) €0ding Window SizeThere are several considerations
also be a case whetBase is beyond the last delivered byte !0 keep in mind while choosingV’, the coding window size
possibly because nothing has been decoded in a while. The main idea behind coding is to mas_k the losses on the
4) Modifying the receive windowThe TCP receive window channel from TCP. In other words, we wish to correct I_osses
header field is used by the receiver to inform the sender hd(@f1out relying on the ACKs. Consider a case whéteis
many bytes it can accept. Since the receiver TCP's ACK4St 1. Then, this is a simple repetition code. Every pacget i
are suppressed, the decoder must copy this informationfpeated? times on average. Now, such a repetition would be
the ACKs that it sends to the sender. However, to ensufgeful only for recovering one packet, if it was lost. Instei
correctness, we may have to modify the value of the TGP Was say 3, then every linear combination would be u_seful
receive window based on the decoding buffer size. The 148trecover any of the three packets involved. Ideally, thedr
acceptable byte should thus be the minimum of the receigmbinations generated should be able to correct the Ioss' of
TCP's last acceptable byte and the last byte that the degodfif’y Of the packets that have not yet been ACKed. For this,
buffer can accommodate. Note that while calculating thespaVe NeedV” to be large. This may be difficult, since a large
left in the decoding buffer, we can include the space ocelipi&’” Would lead to a large coding header. Another penalty of
by data that has already been delivered to the receiver becat100Sing a large value 61’ is related to the interaction with
such data will get dropped wheBase is updated. If window TCP-Reno. This is discussed in the next subsection.
scaling option is used by TCP, this needs to be noted from thelhe penalty of keepingl” small on the other hand, is that
SYN packet, so that the modified value of the receive windolly reduces the error correction capability of the code. For a
can be correctly reported. Ideally, we would like to choosel@ss probability of 10%, the theoretical value Bfis around
large enough decoding buffer size so that the decoding buffel. However, this assumes that all linear combinations are
would not be the bottleneck and this modification would nevéiseful to correct any packet's loss. The restrictioirmeans

be needed. that a coded packet can be used only for recovering thidse
) ) o packets that have been mixed to form that coded packet. In
C. Discussion of the practicalities particular, if there is a contiguous burst of losses thatltés a

1) Redundancy factorThe choice of redundancy factor issituation where the receiver has received no linear cortibima
based on the effective loss probability on the links. Forss loinvolving a particular original packet, then that packetl wi
rate ofp., with an infinite windowlV and using TCP-Vegas, Show up as a loss to TCP. This could happen even if the
the theoretically optimal value aR is 1/(1 — p.). The basic Vvalue of R is chosen according to the theoretical value. To
idea is that of the coded packets that are sent into the nlefwdtompensate, we may have to choose a larger
only a fraction(1 — p.) of them are delivered on average. The connection betweef/, R and the losses that are
Hence, the value of? must be chosen so that in spite oWisible to TCP can be visualized as follows. Imagine a prsces



in which whenever the receiver receives an innovative linepackets. The management of the buffer also requires some
combination, one imaginary token is generated, and wheneeemputation, but this is small compared to the random linear
the sender slides the coding window forward by one packetding, since the coding has to be done on every byte of the
one token is used up. If the sender slides the coding windg@ackets. Typically, packets have a lendgthof around 1500
forward when there are no tokens left, then this leads tobgtes. For every linear combination that is created, thengpd
packet loss that will be visible to TCP. The reason is, whesperation involved W multiplications and. (W —1) additions
this happens, the decoder will not be able to see the very nexer GF'(256), where W is the coding window size. Note
unseen packet in order. Instead, it will skip one packet @ thhat this has to be don& times on average for every packet
sequence. This will make the decoder generate duplicatesAC#fenerated by TCP. Since the coded packets are newly created,
requesting that lost (i.e., unseen) packet, thereby cgubkie allocating memory for them could also take time.
sender to notice the loss. On the decoder side, the main operation is the Gaussian
In this process, W corresponds to the initial number ofelimination. To identify whether an incoming linear combi-
tokens available at the sender. Thus, when the differencation is innovative or not, we need to perform Gaussian
between the number of redundant packets (linear equatioeBjnination only on the decoding matrix, and not on the coded
received and the number of original packets (unknowns) ipacket. If it is innovative, then we perform the row transfier
volved in the coding up to that point is less thidf the losses tion operations of Gaussian elimination on the coded packet
will be masked from TCP. However, if this difference exceedss well. This require$)(LW) multiplications and additions
W, the losses will no longer be masked. The theoreticaltp zero out the pivot columns in the newly added row. The
optimal value ofW is not known. However, we expect thatcomplexity of the next step of zeroing out the newly formed
the value should be a function of the loss probability of thgivot column in the existing rows of the decoding matrix eari
link. For the experiment, we chose valuesl@fbased on trial depending on the current size and structure of the matrix.
and error. Further research is needed in the future to fulljpon decoding a new packet, it needs to be packaged as a
understand the tradeoffs involved in the choicefbandW. TCP packet and delivered to the receiver. Since this regjuire
3) Working with TCP-RenoBy adding enough redundancy,allocating space for a new packet, this could also be expensi
the coding operation essentially converts the lossiness infterms of time.
the channel into an extension of the round-trip time (RTT). As we will see in the next section, the benefits brought by
This is why our initial discussion in Sectidnl V proposed théhe erasure correction begin to outweigh the overhead of the
use of the idea with TCP-Vegas, since TCP-Vegas contrasmputation and coding header for loss rates of about 3%. Thi
the congestion window in a smoother manner using RT@ould be improved further by more efficient implementation
compared to the more abrupt loss-based variations of TG#H-the encoding and decoding operations.
Reno. However, the coding mechanism is also compatible5) Interface with TCP:An important point to note is that
with TCP-Reno. The choice off’ plays an important role the introduction of the new network coding layer does
in ensuring this compatibility. The choice & controls the not require any change in the basic features of TCP
power of the underlying code, and hence determines whAs described above, the network coding layer accepts TCP
losses are visible to TCP. As explained above, losses will packets from the sender TCP and in return delivers regular
masked from TCP as long as the number of received equatidrGP ACKs back to the sender TCP. On the receiver side, the
is no more thariV short of the number of unknowns involveddecoder delivers regular TCP packets to the receiver TCP and
in them. For compatibility with Reno, we need to make suraccepts regular TCP ACKs. Therefore, neither the TCP sender
that whenever the sending rate exceeds the link capacdy, ttor the TCP receiver sees any difference looking downwards i
resulting queue drops are visible to TCP as losses. A vdhe protocol stack. The main change introduced by the pobtoc
large value of W is likely to mask even these congestioris that the TCP packets from the sender are transformed by the
losses, thereby temporarily giving TCP a large estimate ehcoder by the network coding process. This transformation
capacity. This will eventually lead to a timeout, and willeaft is removed by the decoder, making it invisible to the TCP
throughput. The value dft” should therefore be large enoughreceiver. On the return path, the TCP receiver's ACKs are
to mask the link losses and small enough to allow TCP to sseppressed, and instead the decoder generates regular TCP
the queue drops due to congestion. ACKs that are delivered to the sender. This interface allows
4) Computational overheadlt is important to implement the possibility that regular TCP sender and receiver entshos
the encoding and decoding operations efficiently, since aogn communicate through a wireless network even if they are
time spent in these operations will affect the round-tripei located beyond the wireless hosts.
perceived by TCP. The finite field operations over GF(256) While the basic features of the TCP protocol see no change,
have been optimized using the approach of [38], whiabther special features of TCP that make use of the ACKs in
proposes the use of logarithms to multiply elements. Overays other than to report the next required byte sequence
GF(256), each symbol is one byte long. Addition in GF(256)umber, will need to be handled carefully. For instance,
can be implemented easily as a bitwise XOR of the two bytdmplementing the timestamp option in the presence of net-
The main computational overhead on the encoder side is therk coding across packets may require some thought. With
formation of the random linear combinations of the bufferedCP/NC, the receiver may send an ACK for a packet even
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before it is decoded. Thus, the receiver may not have access
the timestamp of the packet when it sends the ACK. Similarly,
the TCP checksum field has to be dealt with carefully. Since ¢
TCP packet is ACKed even before it is decoded, its checksun
cannot be tested before ACKing. One solution is to implemen o
a separate checksum at the network coding layer to dete O a0 a0 o0 @p 000 T 1o 160 100 2000

errors. In the same way, the various other TCP options tharig. 11. Fairness and compatibility - one TCP/NC and one TOR flo
are available have to be implemented with care to ensure that
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they are not affected by the premature ACKSs. Case 1:The situation where a network coded TCP flow
competes with another flow running TCP without coding.
VII. PERFORMANCE RESULTS Case 2:The situation where two coded TCP flows compete

In this section, we present simulation results and experimewith each other.
tal results aimed at establishing the fairness propertiestize ~ In both cases, the loss rate is set to 0% and the redundancy
throughput benefits of our new protocol. The simulations apg&irameter is set to 1 for a fair comparison. In the first came, t
based on TCP-Vegas. The experimental results use the TGRP flow starts first at = 0.5s and the TCP/NC flow starts
Reno based implementation described in Sedfidn VI. at 1000s. The system is simulated for 2000 The current
throughput is calculated at intervals 26s. The evolution of
the throughput over time is shown in Figdrel 11. The figure
First, we study the fairness property of our algorithmhows that the effect of introducing the coding layer does no
through simulations. affect fairness. We see that after the second flow starts, the
1) Simulation setupThe protocol described above is simhandwidth gets redistributed fairly.
ulated using the Network Simulator (ns-2) [39]. The topglog For case 2, the simulation is repeated with the same starting
for the simulations is a tandem network consisting of 4 hopitnes, but this time both flows are TCP/NC flows. The plot
(hence 5 nodes), shown in Figurel 10. The source and siigk this case is essentially identical to Figlrd 11 (and kenc
nodes are at opposite ends of the chain. Two FTP applicatiggsiot shown here) because in the absence of losses, TCP/NC
want to communicate from the source to the sink. There fghaves identically to TCP if we ignore the effects of field

no limit on the file size. They emit packets continuouslgize. Thus, coding can coexist with TCP in the absence of
till the end of the simulation. They either use TCP withoubsses, without affecting fairness.

coding or TCP with network coding (denoted TCP/NC). In )
this simulation, intermediate nodes do not re-encode packd- Effectiveness of the protocol
All the links have a bandwidth of 1 Mbps, and a propagation We now show that the new protocol indeed achieves a high
delay of 100ms The buffer size on the links is set at 200throughput, especially in the presence of losses. We first de
The TCP receive window size is set at 100 packets, and theribe simulation results comparing the protocol’s perfance
packet size is 1000 bytes. The Vegas parameters are chosih that of TCP in Sectiof VII-Bl1.
to bea = 28,3 = 30,y = 2 (see [36] for details of Vegas). 1) Throughput of the new protocol — simulation results:
2) Fairness and compatibility — simulation resuly fair- The simulation setup is identical to that used in the faisnes
ness, we mean that if two similar flows compete for the sams@nulations (see Sectidn VII-A1).
link, they must receive an approximately equal share of theWe first study the effect of the redundancy parameter on
link bandwidth. In addition, this must not depend on the ord¢he throughput of TCP/NC for a fixed loss rate of 5%. By
in which the flows join the network. As mentioned earlier, wéoss rate, we mean the probability of a packet getting lost on
use TCP-Vegas for the simulations. The fairness of TCP&/egeach link. Both packets in the forward direction as well as
is a well-studied problem. It is known that depending on th&CKs in the reverse direction are subject to these losses. No
values chosen for the and 5 parameters, TCP-Vegas coulde-encoding is allowed at the intermediate nodes. Henee, th
be unfair to an existing connection when a new connecti@verall probability of packet loss across 4 hops is given by
enters the bottleneck link ([40], [41]). Several solutidrae 1 — (1 — 0.05)* which is roughly 19%. Hence the capacity is
been presented to this problem in the literature (for examptoughly 0.81 Mbps, which when split fairly gives 0.405 Mbps
see [42] and references therein). In our simulations, we figger flow. The simulation time i$0000s.
pick values ofa and 5 that allow fair sharing of bandwidth We allow two TCP/NC flows to compete on this network,
when two TCP flows without our modification compete witlboth starting at0.5s. Their redundancy parameter is varied
each other, in order to evaluate the effect of our modificatidoetween 1 and 1.5. The theoretically optimum value is ap-
on fairness. With the same and 3, we consider two cases: proximately1/(1 — 0.19) ~ 1.23. Figure[I2 shows the plot

A. Fairness of the protocol
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Fig. 12. Throughput vs redundancy for TCP/NC Fig. 13. Throughput vs loss rate for TCP and TCP/NC

of the throughput for the two flows, as a function of the 07 : _ Theeflectofrerencodng

redundancy parametét. It is clear from the plot thak plays _.;fjnid(’ codng
an important role in TCP/NC. We can see that the throughpu

peaks aroundR = 1.25. The peak throughput achieved is
0.397 Mbps, which is indeed close to the capacity that we
calculated above. In the same situation, when two TCP flow:
compete for the network, the two flows see a throughput of
0.0062 and 0.0072 Mbps respectively. Thus, with the correc
choice of R, the throughput for the flows in the TCP/NC case
is very high compared to the TCP case. In fact, even with
R = 1, TCP/NC achieves about 0.011 Mbps for each flow A P, A ‘
improving on TCP by almost a factor of 2. 0 e msecond o0 0T

o o o o
N w kN @
T T

Throughput (as a fraction of link bandwidth)

o
i

o

L
Next, we study the variation of throughput with loss rate — o endeod - y o
. . nd-to-end coding e-encoding at node 3 only

for both TCP and TCP/NC. The simulation parameters are 0.0042 Mbps 0.1420 Mbps 02448 Mbps

all the same as above. The loss rate of all links is kept at the
same value, and this is varied from 0 to 20%. We compare twoFig. 14. Throughput with and without intermediate node reeeling
scenarios — two TCP flows competing with each other, and tw?u

TCP/NC flows competing with each other. For the TCPING dy of our algorithm’s performance. Specifically, thdduok

case, we set the redundancy parameter at the optimum vallg points must be noted:

corresponding to each loss rate. Figlré 13 shows that Tcﬁ’é'ink layer retransmission is not considered for either TCP
throughput falls rapidly as losses increase. However, TNCP/ or TCP/NC. If allowed, this _COUId imp_rove the performz_anc_e
is very robust to losses and reaches a throughput that ie cl8£ TCP. However, as mentioned earlier, the refransmission

to capacity. (Ifp is the loss rate on each link, then the capaci ppr(_)ach does not extgnd.to more ggneral multipath roqtlng
is (1— p)4, which must then be split equally.) olutions, whereas coding is better suited to such scenario

Figure[I4 shows the instantaneous throughput in a 642The throughput values in th_e S|mu!at|0n results do not
. . . account for the overhead associated with the network coding
second long simulation of a tandem network with 3 hops . o . ; ;
. - .. .. headers. The main overhead is in conveying the coding coeffi-
(i.e, 4 nodes), where erasure probabilities vary with time . :
. . : : ients and the contents of the coding window. If the sourck an
in some specified manner. The third hop is on average, the

most erasure-prone link. The plots are shown for tradition%’lmk share a pseudorandom number generator, then the coding

TCP, TCPINC with coding only at the source, and TCP/Neoeffluents can be conveyed succmc_tly by_sendlng the otrre
) . . : State of the generator. Also, the coding window contents can
with re-encoding at node 3 (just before the worst link). Th . .
. . . - e conveyed in an incremental manner to reduce the overhead.
operation of the re-encoding node is very similar to thathef t . . .
— The loss in throughput due to the finiteness of the field has

source — it collects incoming finear combinations in a bl"ﬁenot been modeled in the simulations. A small field might cause
and transmits, on averag&,;,, random linear combinations . . -~ ) . ' mig .
received linear combinations to be non-innovative, or rhigh

of the buffer contents for every incoming packet. TReof o .
the sender is set at 1.8, and thg,, of node 3 is set at 1.5 cause packets to be seen out of order, resulting in duplicate

for the case when it re-encodes. The average throughpu EKS' How_ever, the prqbabiIiFy that $UCh problems p(_ersist
shown in the table. A considerable improvement is seen d a long “”_‘e falls _rap|dly V.V'th the field size. we bglleve
to the coding, that is further enhanced by allowing interiaed that for pra(?tlcal choices of f|§ld size, these Ssues W|!yon
node re-encoding. This plot thus shows that our schemeas apguse transient effects that will not have a 3'9”'“‘?‘?‘“ hpa
suited to systems with coding inside the network. on performance. Thefse effects remain to be q_uantlfled gxactl
— Finally, the decoding delay associated with the network
Remark 2. These simulations are meant to be a preliminagoding operation has not been studied. We intend to focus



on this aspect in experiments in the future. A thorough 6001
experimental evaluation of all these aspects of the alyworit
on a more general topology, is part of future work. 5001
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C. Experimental results
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We test the protocol on a TCP-Reno flow running over
a single-hop wireless link. The transmitter and receiver ar
Linux machines equipped with a wireless antenna. The exper-
iment is performed over 802.11a with a bit-rate of 6 Mbps and
a maximum of 5 link layer retransmission attempts. RTS-CTS 100-
is disabled.

Our implementation uses the Click modular router [43]. o5 5 10 1 20 %
In order to control the parameters of the setup, we use the Fi Packet Loss Rate (%)

X X i . ia. 15. Goodnut versus loss rate
predefined elements of Click. Since the two machines are Loss rate = 10%, Coding window size (W) = 3
physically close to each other, there are very few losses on 0 ‘ ‘ ‘ ‘ ‘ ‘
the wireless link. Instead, we artificially induce packetdes
using the RandomSample element. Note that these packet
losses are introduced before the wireless link. Hence, they
will not be recovered by the link layer retransmissions, and
have to be corrected by the layer above IP. The round-trip
delay is empirically observed to be in the range of a few tens
of milliseconds. The encoder and decoder queue sizes are set
to 100 packets, and the size of the bottleneck queue just in 250/
front of the wireless link is set to 5 packets. In our setup, th
loss inducing element is placed before the bottleneck queue 209 | ‘ ‘ ‘ ‘ ‘

. . . . 1 1.15 1.2 1.25 13 1.35 1.4 1.45

The quantity measured during the experiment is the goodput Redundancy factor (R)
over a 20 second long TCP session. The goodput is measurdg) 16. Goodput versus redundancy factor for a 10% lossaateW=3
using iperf [44]. Each point in the plots shown is averaged
over 4 or more iterations of such sessions, depending on thkimdow code withi¥' = 2 brings a big gain in throughput by
variability. Occasionally, when the iteration does nonhtgrate making the added redundancy more useful. However, going
and the connection times out, the corresponding iteratibeyond 2 reduces the goodput because a large valu& of
is neglected in the average, for both TCP and TCP/NCan mislead TCP by masking too many losses, which prevents
This happens around 2% of the time, and is observed to BEP from reacting to congestion in a timely manner and leads
because of an unusually long burst of losses in the forwardtortimeouts. We find that the best valueldf for our setup is
return path. In the comparison, neither TCP nor TCP/NC usesually 2 for a loss rate up to around 5%, and is 3 for higher
selective ACKs. TCP uses delayed ACKs. However, we hal@ss rates up to 25%. Besides the loss rate, the valué’ of
not implemented delayed ACKs in TCP/NC at this point. could also depend on other factors such as the round-trig tim

Fig.[18 shows the variation of the goodput with the redurof the path.
dancy factorR for a loss rate of 10%, with a fixed coding Fig.[I3 shows the goodput as a function of the packet loss
window size ofiV = 3. The theoretically optimal value dR rate. For each loss rate, the values ®fand W have been
for this loss rate is close to 1.11 (1/0.9 to be exact). Howevehosen by trial and error, to be the one that maximizes the
from the experiment, we find that the best goodput is achievgdodput. We see that in the lossless case, TCP performs bette
for an R of around 1.25. The discrepancy is possibly becautisan TCP/NC. This could be because of the computational
of the type of coding scheme employed. Our coding schermeerhead that is introduced by the coding and decoding
transmits a linear combination of only thHé most recent operations, and also the coding header overhead. Howeser, a
arrivals, in order to save packet header space. This résiric the loss rate increases, the benefits of coding begin to dghwe
reduces the strength of the code for the same valuB.dh the overhead. The goodput of TCP/NC is therefore higher than
general, the value ak andW must be chosen carefully to getTCP. Coding allows losses to be masked from TCP, and hence
the best benefit of the coding operation. As mentioned earlithe fall in goodput is more gradual with coding than without.
another reason for the discrepancy is the use of TCP Rend.he performance can be improved further by improving the

Fig.[I7 plots the variation of goodput with the size of thefficiency of the computation.
coding window sizéV. The loss rate for this plot is 5%, with
the redundancy factor fixed at 1.06. We see that the bestgodin
window size is 2. Note that a coding window sizeldf = 1 In this work, we propose a new approach to congestion
corresponds to a repetition code that simply transmitsyevazontrol on lossy links based on the idea of random linear
packet 1.06 times on average. In comparison, a simple glidinetwork coding. We introduce a new acknowledgment mech-
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point connection, the ability to re-encode at an interntedia
node offers the flexibility of adding redundancy where it is
needed,.e, just before the lossy link. The practical aspects
of implementing re-encoding need to be studied further.

3) Automatic tuning of TCP/NC parametenstore work is
needed in the future for fully understanding the role played
by the various parameters of the new protocol, such as the
redundancy factorR and the coding window sizéV. To
achieve high throughputs in a fair manner, the value®g aihd
W have to be carefully adapted based on the characteristics

2 3 4
Coding window size (W)

Fig. 17. Goodput versus coding window size for a 5% loss rateR=1.06 be

of the underlying link. Ideally, the choice of these parasnet
0 1 5 should be automated. For instance, the correct values could

learnt dynamically based on measurement of the link

characteristics such as the link loss rate, bandwidth atay.de

anism that plays a key role in incorporating coding into thi addition, the parameters have to be extended to cover the

sliding window mechanism of TCP. From an implementatiogase of multipath and multicast scenarios as well.

perspective, we introduce a new network coding layer betwee
the transport and network layers on both the source and
receiver sides. This means, our changes can be easily Mpl%
in an existing system. Our simulations show that the prapos N
changes lead to large throughput gains over TCP in los
links, even with coding only at the source. We demonstrate
the practicality of our proposal by implementing it in a real
world experimental setup with TCP-Reno. Significant gaims i
goodput are seen in the experiments.

We view this work as a first step in taking the theory of
network coding to practice. The ideas proposed in this paper
give rise to several open questions for future research: [2]

1) Extensions to multipath and multicasthe scheme has
implications for running TCP over wireless networks, in-par 3
ticular in the context of lossy multipath opportunistic tiog
scenarios. It is also of interest to extend this approach t4!
other settings such as network coding based multipath-bEP f
point-to-point connections, as well as network coding Hasejs]
multicast connections over a general network. The goal is to
present the application layer with the familiar TCP integfa
while still exploiting the multipath or multicast capalidis [6]
of the network. We believe that the proposed ideas and the
implementation will lead to the practical realization ofsth
goal and will bring out the theoretically promised benefits o
network coding in such scenarios. The idea of coding across
packets, combined with our new ACK mechanism will allow

(1]

However, further work is needed to ensure that the different
characteristics of the paths to the receiver (in case ofipaih) o]
or to multiple receivers (in case of multicast) are takem int
account correctly by the congestion control algorithm. [10]

2) Re-encoding packets at intermediate nodéssalient [11]
feature of our proposal is that it is simultaneously conipati
with the case where only end hosts perform coding (thereby
preserving the end-to-end philosophy of TCP), and the cddd
where intermediate nodes perform network coding. Theopy
suggests that a lot can be gained by allowing intermediate
nodes to code as well. Our scheme naturally generaliZ&4
to such situations. The ability to code inside the networks,
is important for multicast connections. Even for a point-to
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