
Failure-Oblivious Computing and Boundless
Memory Blocks

Martin Rinard
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139

Abstract— Memory errors are a common cause of incorrect
software execution and security vulnerabilities. We have de-
veloped two new techniques that help software continue to
execute successfully through memory errors: failure-oblivious
computing and boundless memory blocks. The foundation of
both techniques is a compiler that generates code that checks
accesses via pointers to detect out of bounds accesses. Instead of
terminating or throwing an exception, the generated code takes
another action that keeps the program executing without memory
corruption. Failure-oblivious code simply discards invalid writes
and manufactures values to return for invalid reads, enabling
the program to continue its normal execution path. Code that
implements boundless memory blocks stores invalid writes away
in a hash table to return as the values for corresponding out
of bounds reads. The net effect is to (conceptually) give each
allocated memory block unbounded size and to eliminate out of
bounds accesses as a programming error.

We have implemented both techniques and acquired several
widely used open source servers (Apache, Sendmail, Pine, Mutt,
and Midnight Commander). With standard compilers, all of these
servers are vulnerable to buffer overflow attacks as documented
at security tracking web sites. Both failure-oblivious computing
and boundless memory blocks eliminate these security vulner-
abilities (as well as other memory errors). Our results show
that our compiler enables the servers to execute successfully
through buffer overflow attacks to continue to correctly service
user requests without security vulnerabilities.
Key Words: Memory Errors, Buffer Overflow Attacks, Failure-
Oblivious Computing, Acceptability-Oriented Computing

I. I NTRODUCTION

Memory errors such as out of bounds array accesses and
invalid pointer accesses are a common source of program
failures. Safe languages such as ML and Java use dynamic
checks to eliminate such errors — if, for example, the program
attempts to access an out of bounds array element, the im-
plementation intercepts the attempt and throws an exception.
The rationale is that an invalid memory access indicates an
unanticipated programming error and it is unsafe to continue
the execution without first taking some action to recover from
the error.

Recently, several research groups have developed compilers
that augment programs written in unsafe languages such as
C with dynamic checks that intercept out of bounds array
accesses and accesses via invalid pointers (we call such a
compiler asafe-Ccompiler) [15], [38], [28], [23], [33], [24].
These checks use additional information about the layout of
the address space to distinguish illegal accesses from legal
accesses. If the program fails a check, it terminates after
printing an error message.

A. Failure-Oblivious Computing

Note that it is possible for the compiler to automatically
transform the program so that, instead of throwing an excep-
tion or terminating, it simply ignores any memory errors and
continues to execute normally [31]. Specifically, if the program
attempts to read an out of bounds array element or use an
invalid pointer to read a memory location, the implementation
can simply (via any number of mechanisms) manufacture a
value to supply to the program as the result of the read, and the
program can continue to execute with that value. Similarly, if
the program attempts to write a value to an out of bounds array
element or use an invalid pointer to write a memory location,
the implementation can simply discard the value and continue.
We call a computation that uses this strategy afailure-oblivious
computation, since it is oblivious to its failure to correctly
access memory.

It is not immediately clear what will happen when a
program uses this strategy to execute through a memory error.
When we started this project, our hypothesis was that, for at
least some programs, this continued execution would produce
acceptable results. To test this hypothesis, we implemented
a C compiler that generates failure-oblivious code, obtained
some C programs with known memory errors, and observed
the execution of failure-oblivious versions of these programs.
We targeted memory errors in servers that correspond to
security vulnerabilities as documented at vulnerability tracking
web sites [11], [10]. For all of our tested servers, failure-
oblivious computing 1) eliminates the security vulnerability
and 2) enables the server to successfully execute through the
error to continue to serve the needs of its users.

B. Boundless Memory Blocks

It is also possible to generate code that checks all accesses,
but instead of allowing out of bounds accesses to corrupt other
data structures or responding to out of bounds accesses by
throwing an exception, the generated code takes actions that
allow the program to continue to execute without interruption.
Specifically, it stores the values of out of bounds writes in a
hash table indexed under the written address (expressed as an
offset relative to an identifier for the written block) [30]. It
can then return the stored value as the result of out of bounds
reads to that address. It simply returns a default value for out
of bounds reads that access uninitialized addresses.

Conceptually, our technique gives each memory block un-
bounded size. The initial memory block size can therefore be

seen not as a hard boundary that the programmer must get right
for the program to execute correctly, but rather as a flexible
hint to the implementation of the amount of memory that the
programmer may expect the program to use in common cases.

Note that boundless memory blocks have the potential to
introduce a new denial of service security vulnerability: the
possibility that an attacker may be able to produce an input
that will cause the program to generate a very large number of
out of bounds writes and therefore consume all of the available
memory. We address this problem by treating the hash table
that stores out of bounds writes as a fixed-size least recently
used (LRU) cache. This bounds the amount of memory that
an attacker can cause out of bounds writes to consume. In
effect, boundless memory blocks fall back on failure-oblivious
computing to avoid the possibility of unbounded memory
consumption.

C. Issues

The primary difference between failure-oblivious computing
and boundless memory blocks is that boundless memory
blocks adhere more closely to a standard program semantics in
that reads to previously written out-of-bounds locations return
the previously written value. If the only error was that the
programmer calculated the maximum size incorrectly, bound-
less memory blocks can keep the program executing with
no possibility of anomalous behavior. With failure-oblivious
computing, of course, the manufactured read values may cause
the program to generate some unexpected results.

II. EXAMPLE

We next present a simple example that illustrates how
failure-oblivious computing and boundless memory blocks
operate. Figure 1 presents a (somewhat simplified) version of a
procedure from the Mutt mail client discussed in Section IV-D.
This procedure takes as input a string encoded in the UTF-
8 format and returns as output the same string encoded in
modified UTF-7 format. This conversion may increase the
size of the string; the problem is that the procedure fails to
allocate sufficient space in the return string for the worst-case
size increase. Specifically, the procedure assumes a worst-case
increase ratio of 2; the actual worst-case ratio is 7/3. When
passed (the very rare) inputs with large increase ratios, the
procedure attempts to write beyond the end of its output array.

With standard compilers, these writes succeed, corrupt the
address space, and the program terminates with a segmentation
violation. With safe-C compilers, Mutt exits with a memory
error and does not even start the user interface.

A. Failure-Oblivious Computing

With our compiler that generates failure-oblivious code, the
program discards all writes beyond the end of the array and the
procedure returns with an incompletely translated (truncated)
version of the string. Mutt then uses the return value to tell
the mail server which mail folder it wants to open. The mail
server responds with an error code indicating that the folder
does not exist. Mutt correctly handles this error and continues

static char *
utf8_to_utf7 (const char *u8, size_t u8len) {

char *buf, *p;
int ch, int n, i, b = 0, k = 0, base64 = 0;

/* The following line allocates the return
string. The allocated string is too small;
instead of u8len*2+1, a safe length would
be u8len*4+1.

*/
p = buf = safe_malloc (u8len * 2 + 1);

while (u8len) {
unsigned char c = *u8;
if (c < 0x80) ch = c, n = 0;
else if (c < 0xc2) goto bail;
else if (c < 0xe0) ch = c & 0x1f, n = 1;
else if (c < 0xf0) ch = c & 0x0f, n = 2;
else if (c < 0xf8) ch = c & 0x07, n = 3;
else if (c < 0xfc) ch = c & 0x03, n = 4;
else if (c < 0xfe) ch = c & 0x01, n = 5;
else goto bail;

u8++, u8len--;
if (n > u8len) goto bail;
for (i = 0; i < n; i++) {

if ((u8[i] & 0xc0) != 0x80) goto bail;
ch = (ch << 6) | (u8[i] & 0x3f);

}
if (n>1 && !(ch >> (n*5+1))) goto bail;
u8 += n, u8len -= n;

if (ch < 0x20 || ch >= 0x7f) {
if (!base64) {

*p++ = ’&’;
base64 = 1;
b = 0;
k = 10;

}
if (ch & ˜0xffff) ch = 0xfffe;
*p++ = B64Chars[b | ch >> k];
k -= 6;
for (; k >= 0; k -= 6)

*p++ = B64Chars[(ch >> k) & 0x3f];
b = (ch << (-k)) & 0x3f;
k += 16;

} else {
if (base64) {

if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;
base64 = 0;

}
*p++ = ch;
if (ch == ’&’) *p++ = ’-’;

}
}

if (base64) {
if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;

}

*p++ = ’\0’;
safe_realloc ((void **) &buf, p - buf);
return buf;

bail:
safe_free ((void **) &buf);
return 0;

}

Fig. 1. String Encoding Conversion Procedure

to execute, enabling the user to process email from other,
legitimate, folders.

This example illustrates two key aspects of applying failure-
oblivious computing:

• Subtle Errors: Real-world programs can contain subtle
memory errors that can be very difficult to detect by
either testing or code inspection, and these errors can
have significant negative consequences for the program
and its users.

• Mostly Correct Programs: Testing usually ensures that
the program is mostly correct and works well except
for exceptional operating conditions or inputs. Failure-
oblivious computing can therefore be seen as a way
to enable the program to proceed past such exceptional
situations to return back within its normal operating en-
velope. And as this example illustrates, failure-oblivious
computing can actually facilitate this return by converting
unanticipated memory corruption errors into anticipated
error cases that the program handles correctly.

B. Boundless Memory Blocks

With boundless memory blocks, the program stores the
additional writes away in a hash table, enabling the mail
server to correctly translate the string and continue to execute
correctly.

This example illustrates two key aspects of using boundless
memory blocks:

• Subtle Errors: To successfully specify a hard limit for
each memory block, the programmer must reason about
how all executions of the program can possibly access
memory. The difficulty of performing this reasoning
means that, in practice, real-world programs often contain
subtle memory errors that can be very difficult to detect
by either testing or code inspection, and these errors can
have significant negative consequences for the program
and its users.

• Different Aspects of Correctness:The fact that the pro-
grammer has failed to correctly compute the maximum
possible size of the memory block does not mean that the
program as a whole is incorrect. In fact, as this example
illustrates, the rest of the computation can be completely
correct once it is provided with conceptually unbounded
memory blocks.

III. I MPLEMENTATION

We have implemented both failure-oblivious computing
and boundless memory blocks for legacy C programs. Our
implementation builds on an existing safe-C compiler [33].
Such compilers maintain enough information to perform (a
combination of dynamic and static) checks to recognize out
of bounds memory accesses. When the program attempts to
perform such an access, the generated code flags the error
and terminates the program. The basic idea is to modify the
generated code so that, instead of terminating the execution, it
generates either failure-oblivious code or uses boundless mem-
ory blocks. The two primary issues are information content and
memory layout. To implement boundless memory blocks, the

safe-C compiler must preserve the out of bounds offsets for
the accessed memory blocks. Some safe-C compilers change
the size of pointers, which can change the memory layout of
the C program.

Any safe-C compiler generates two kinds of code: checking
code and continuation code. The checking code detects out of
bounds accesses. The continuation code executes when an out
of bounds access occurs. For failure-oblivious computing, the
out of bounds access simply discards out of bounds writes and
manufactures values for out of bounds reads. For boundless
memory blocks, it stores written values in the hash table and
retrieves the values for corresponding reads.

A. Checking Code

Our implementation uses a checking scheme originally
developed by Jones and Kelly [24] and then significantly
enhanced by Ruwase and Lam [33]. The scheme is currently
implemented as a modification to the GNU C compiler (gcc).
Jones and Kelly’s scheme maintains a table that maps locations
to data units (each struct, array, and variable is a data unit).
It uses this table to track intended data units and distinguish
in-bounds from out-of-bounds pointers as follows:

• Base Case:A base pointer is the address of an array,
struct or variable allocated on the stack or heap, or the
value returned bymalloc . All base pointers are in
bounds. Theintended data unitof the base pointer is the
corresponding array, struct, variable, or allocated block
of memory to which it refers.

• Pointer Arithmetic: All pointer arithmetic expressions
contain a starting pointer (for example, a pointer variable
or the name of a statically allocated array) and an offset.
We say that the value of the expression isderived from
the starting pointer. A derived pointer is in bounds if and
only if the corresponding starting pointer is in bounds
and the derived pointer points into the same data unit as
the starting pointer. Regardless of where the starting and
derived pointers point, they have the same intended data
unit.

• Pointer Variables: A pointer variable is in bounds if and
only if it was assigned to an in-bounds pointer. It has the
same intended data unit as the pointer to which it was
assigned.

Jones and Kelly distinguish a valid out-of-bounds pointer,
which points to the next byte after its intended data unit, from
an invalid out-of-bounds pointer, which points to some other
address not in its intended data unit. They implement this
distinction by padding each data item with an extra byte. A
valid out-of-bounds pointer points to this extra byte; all invalid
out-of-bounds pointers have the value ILLEGAL (-2). This
distinction supports code that uses valid out-of-bounds pointers
in the termination condition of loops that use pointer arithmetic
to scan arrays. Finally, Jones and Kelly instrument the code
to check the status of each pointer before it dereferences it;
attempting to dereference an out-of-bounds pointer causes the
program to halt with an error.

Jones and Kelly’s scheme does not support programs that
first use pointer arithmetic to obtain a pointer to a location past

the end of the intended data unit, then use pointer arithmetic
again to jump back into the intended data unit and access data
stored in this data unit. While the behavior of programs that
do this is undefined according to the ANSI C standard, in
practice many C programs use this technique [33]. Ruwase
and Lam’s extension uses anout-of-bounds objects(OOBs) to
support such behavior [33].

As in standard C compilation, in-bounds pointers refer
directly into their intended data unit. Whenever the program
computes an out-of-bounds pointer, Ruwase and Lam’s en-
hancement generates an OOB object that contains the starting
address of the intended data unit and the offset from the start
of that data unit. Instead of pointing off to some arbitrary
memory location outside of the intended data unit or contain-
ing the value ILLEGAL (-2), the pointer points to the OOB
object. The generated code checks pointer dereferences for
the presence of OOB objects and uses this mechanism to halt
the program if it attempts to dereference an out-of-bounds
pointer. The generated code also uses OOB objects to precisely
track data unit offsets and appropriately translate pointers
derived from out-of-bounds pointers back into the in-bounds
pointer representation if the new pointer jumps back inside the
intended data unit. In practice, this enhancement significantly
increases the range of programs that can execute without
terminating because of a failed memory error check [33].
This extension also has the crucial property that, unlike the
Jones and Kelly scheme, it maintains enough information to
determine the memory block and offset for each out of bounds
pointer.

B. Continuation Code for Failure-Oblivious Computing

Our implementation of the write continuation code discards
the written value. The read continuation code manufactures a
new value using the sequence 0, 1, 2, 0, 1, 3, 0, 1, 4, ...,
wrapping around after given bound. The idea is to iterate
through all small integers while returning 0 and 1 more
frequently than other values since they are more frequently
used in most programs. Iterating through all small integers
helps programs exit loops that are looking for a given value
and would otherwise loop forever.

C. Continuation Code for Boundless Memory Blocks

Our implementation of the write continuation code stores
the written value in a hash table indexed under the memory
block and offset of the write. For out of bounds reads it looks
up the accessed memory block and offset and returns the stored
value if it is present in the hash table. If there is no indexed
value, it returns a default value.

To avoid memory leaks, it is necessary to manage the
memory used to store out of bounds writes in the hash table.
Our implementation devotes a fixed amount of memory to the
hash table, in effect turning the hash table into a cache of out of
bounds writes. We use a least recently used replacement policy.
It is possible for this policy to lead to a situation in which an
out of bounds read attempts to access a discarded write entry.
Our experimental results show that the distance (measured in
out of bounds memory accesses) between successive accesses

to the same entry in the hash table is relatively small and that
our set of applications never attempts to access a discarded
write entry. We chose to use a fixed size cache (instead of
some other data structure that attempts to store all out of
bounds writes until the program deallocates the corresponding
memory blocks) to eliminate the possibility of denial of service
attacks that cause the program to exhaust the available memory
by generating and storing a very large number of out of bounds
writes.

Our basic philosophy views out of bounds accesses not
as errors but as normal, although uncommon, events in the
execution of the program. We acknowledge, however, that
programmers may wish to be informed of out of bounds
accesses so that they can increase the size of the accessed
memory block or change the program to eliminate the out
of bounds accesses. Our compiler can therefore optionally
augment the generated code to produce a log that identifies
each out of bounds access. Programmers can use this log to
locate and eliminate out of bounds accesses.

IV. EXPERIENCE

We implemented a compiler that generates, according to an
input compiler flag, either code for failure-oblivious comput-
ing or code for boundless memory blocks. We also obtained
several widely-used open-source programs with out of bounds
memory accesses. Many of these programs are key compo-
nents of the Linux-based open-source interactive computing
environment; many of the out of bounds accesses in these
programs correspond to exploitable buffer overflow security
vulnerabilities.

A. Methodology

We evaluate the behavior of three different versions of
each program: theStandardversion compiled with a stan-
dard C compiler (this version is vulnerable to any out of
bounds accesses that the program may contain), theFailure-
Oblivious Version, which uses failure-oblivious computing,
and theBoundless Version, which uses boundless memory
blocks. We evaluate three aspects of each program’s behavior:

• Security and Resilience:We chose a workload with an
input that triggers known out of bounds memory accesses;
this input typically exploits a security vulnerability as
documented by vulnerability-tracking organizations such
as Security Focus [11] and SecuriTeam [10]. We observe
the behavior of the different versions on this workload,
focusing on how the different programs execute after the
out of bounds accesses.

• Performance: We chose a workload that both the Stan-
dard and Boundless versions can execute successfully. We
use this workload to measure therequest processing time,
or the time required for each version to process represen-
tative requests. We obtain this time by instrumenting the
program to record the time when it starts processing the
request and the time when it stops processing the request,
then subtracting the start time from the stop time.

• Standard Usage: When possible, we use the Failure-
Oblivious and Boundless versions of each program as

part of our normal computational environment. During
this deployment we present the program with a workload
intended to simulate standard usage; we also ensure that
the workload contains attacks that trigger out of bounds
accesses in each program. We focus on the acceptability
of the continued execution of the Boundless version of
the deployed program.

We ran all the programs on a Dell workstation with two 2.8
GHz Pentium 4 processors, 2 GBytes of RAM, and running
Red Hat 8.0 Linux.

B. Sendmail

Sendmail is the standard mail transfer agent for Linux and
other Unix systems [13]. It is typically configured to run as a
daemon which creates a new process to service each new mail
transfer connection. This process executes a simple command
language that allows the remote agent to transfer email mes-
sages to the Sendmail server, which may deliver the messages
to local users or (if necessary) forward some or all of the
messages on to other Sendmail servers. Versions of Sendmail
earlier than 8.11.7 and 8.12.9 (8.11 and 8.12 are separate
development threads) have a memory error vulnerability which
is triggered when a remote attacker sends a carefully crafted
email message through the Sendmail daemon [12]. When
Sendmail processes the message, the memory error causes it to
execute the injected code in the message. The injected code
executes with the same permissions as the Sendmail server
(typically root).

We worked with Sendmail version 8.11.6. The Standard
version of Sendmail executes the out of bounds writes and
corrupts its call stack. Neither the Failure-Oblivious nor the
Boundless version is vulnerable to the attack — they both
execute through the memory error triggered by the attack to
continue to successfully process subsequent Sendmail com-
mands. We also used both versions to process a large set of
email messages, including messages that trigger the memory
error. Both versions executed through the error to process
subsequent messages correctly. Both the Failure-Oblivious and
Boundless versions execute roughly four times slower than the
Standard version [31], [30].

C. Pine

Pine is a widely used mail user agent (MUA) that is
distributed with the Linux operating system [9]. Pine allows
users to read mail, fetch mail from an IMAP server, compose
and forward mail messages, and perform other email-related
tasks. We use Pine 4.44, which is distributed with Red Hat
Linux version 8.0. This version of Pine has out of bounds
accesses associated with a failure to correctly parse certain
legal From fields [8].

Our security and resilience workload contains an email
message with a From field that triggers this memory error.
This workload causes the Standard version to corrupt its heap
and abort. The user is unable to use Pine to read mail because
Pine aborts or terminates during initialization as the mail file
is loaded and before the user has a chance to interact with
the program. The user must manually eliminate the From

field from the mail file (using some other mail reader or file
editor) before he or she can use Pine. While the Check version
protects the user against injected code attacks, it prevents the
user from using Pine to read mail as long as the mail file
contains the problematic From field.

Both the Failure-Oblivious and Boundless versions, on the
other hand, continued to execute through the out of bounds
accesses to enable the user to process their mail. This version
processed all of our workloads without errors, including a
standard use workload that contained multiple mail messages
that triggered the memory error. Our results indicate that the
Failure-Oblivious and Boundless Memory Blocks version of
Pine can execute up to nine times slower than the Standard
version [31], [30].

D. Mutt

Mutt is a customizable, text-based mail user agent that is
widely used in the Unix system administration community [6].
It is descended from ELM [2] and supports a variety of
features including email threading and correct NFS mail spool
locking. We used Mutt version 1.4. As described at [5] and
discussed in Section II, this version is vulnerable to an attack
that exploits a memory error in the conversion from UTF-8 to
UTF-7 string formats. We were able to develop an attack that
exploited this vulnerability. It is possible for a remote IMAP
server to use this attack to crash Mutt; it may also be possible
for the IMAP server to exploit the vulnerability to inject and
execute arbitrary code.

We configured our security and resilience workload to
exploit the security vulnerability described above. On this
workload, the Standard version of Mutt exits with a segmen-
tation fault before the user interface comes up. The memory
error is triggered by a carefully crafted mail folder name;
when the Failure-Oblivious and Boundless versions execute,
they generate an error message indicating that the mail folder
does not exist, then continue to execute to allow the user to
successfully process mail from other folders. We used both
versions of Mutt for an extended user session and they both
performed successfully even when presented with problematic
user inputs. Our results show that the Failure-Oblivious and
Boundless versions of Mutt execute approximately four times
slower than the Standard version [31], [30].

E. Midnight Commander

Midnight Commander is an open source file management
tool that allows users to browse files and archives, copy files
from one folder to another, and delete files [4]. Midnight Com-
mander is vulnerable to a memory-error attack associated with
accessing an uninitialized buffer when processing symbolic
links in tgz archives [3]. We used Midnight Commander
version 4.5.55 for our experiments.

Our security and resilience workload contains atgz
archive designed to exploit this vulnerability. Both the Failure-
Oblivious and Boundless versions execute through the memory
errors to correctly display the names of the two symbolic
links in the archive. It continues on to correctly execute
additional user commands; in particular, the user can continue

to use Midnight Commander to browse, copy, or delete other
files even after processing the problematictgz archive. We
also used the Failure-Oblivious and Boundless versions of
Midnight Commander for an extended session as part of our
standard computing environment; we observed no problem
with either version during this session. Our results show that
the Failure-Oblivious and Boundless versions of Midnight
Commander can run approximately two times slower than the
Standard version [31], [30].

F. Apache

The Apache HTTP server is the most widely used web
server in the world; a recent survey found that 64% of the
web sites on the Internet use Apache [7]. The Apache 2.0.47
mod alias implementation contains a vulnerability that, under
certain circumstances, allows a remote attacker to trigger a
memory error [1].

Our security and resilience workload contains a request
that exploits the security vulnerability described above. The
Apache server maintains a pool of child processes; each
request is handled by a child process assigned to service the
connection carrying the request [29].

With Standard compilation, the child process terminates
with a segmentation violation when presented with the attack.
The Apache parent process then creates a new child process to
take its place. In the both the Failure-Oblivious and Boundless
versions, the child process executes successfully through the
attack to correctly process subsequent requests. We used both
versions for extended periods of time, periodically presenting
it with the attack input, and both versions executed without
problems during this time. Our results show that the Failure-
Oblivious and Boundless versions execute less than 10 percent
slower than the Standard Version [31], [30].

G. Discussion

Our results show that both failure-oblivious computing and
boundless memory blocks enable our programs to execute
through memory-error based attacks to successfully process
subsequent requests. Even under very intensive workloads
the both versions provided completely acceptable results. We
stress that we chose the programs in our study largely based on
several factors: the availability of source code, the popularity
of the application, the presence of known memory errors
as documented on vulnerability-tracking web sites such as
Security Focus [11] and SecuriTeam [10], and our ability
to reproduce the documented memory errors. In all of the
programs that we tested, both versions successfully eliminated
the negative consequences of the error — the programs were,
without exception, invulnerable to known security attacks and
able to execute through the corresponding memory errors to
continue to successfully process their normal workload. These
results provide encouraging evidence that the use of failure-
oblivious computing or boundless memory blocks can go a
long way towards eliminating out of bounds accesses as a
source of security vulnerabilities and fatal programming errors.

One interesting aspect of our results is that although our
programs generated out of bounds read accesses, in only one

of these programs did any of these accesses read uninitialized
values that were not previously written by a corresponding
out of bounds write. This result indicates that developers
are apparently more likely to incorrectly calculate a correct
size for an accessed memory block (or fail to include a
required bounds check) than they are to produce a program
that incorrectly reads an uninitialized out of bounds memory
location.

V. RELATED WORK

We discuss related work in the areas of continued execution
in the face of memory errors, memory-safe programming
language implementations, traditional error recovery, and data
structure repair.

A. Memory Errors and Continued Execution

Boundless memory blocks enable the program to continue
to execute through memory errors. Another approach responds
to memory errors by terminating the enclosing function and
continuing on to execute the code immediately following the
corresponding function call [35]. The results indicate that, in
many cases, the program can continue on to execute acceptably
after the premature function termination.

B. Extensible Arrays

Extensible array data structures, which dynamically grow to
accommodate elements stored at arbitrary offsets, are a known
technique in computer science. Boundless memory blocks
are, in effect, an implementation of extensible arrays. They
differ from standard extensible arrays in their tight integration
with the C programming language (especially the preservation
of the address space from the original legacy implemen-
tation). This integration forces the compiler to make large
scale changes to the generated code to perform the required
checks and integrate effectively with the low-level packages
that maintain information about out of bounds pointers and
accesses.

C. Safe-C Compilers

Our work builds on previous research into implementing
memory-safe versions of C [15], [38], [28], [23], [33], [24].
As described in Section III, our implementation uses tech-
niques originally developed by Jones and Kelly [24], then
significantly refined by Ruwase and Lam [33]. Memory-safe
C compilers can use a variety of techniques for detecting
out of bounds memory accesses via pointers; all of these
techniques modify the representation of pointers in some way
as compared to standard C compilers. To implement boundless
memory blocks it is essential that the pointer representation
preserve the memory block and offset information for out of
bounds pointers.

It is also feasible to implement boundless memory blocks
for safe languages such as Java or ML by simply replacing
the generated code that throws an exception in response to an
out of bounds access. The generated code would store out of
bounds writes in the hash table and appropriately retrieve the
stored value for out of bounds reads.

D. Traditional Error Recovery

The traditional error recovery mechanism is to reboot the
system, with repair applied during the reboot if necessary
to bring the system back up successfully [21]. Mechanisms
such as fast reboots [34], checkpointing [26], [27], and partial
system restarts [17] can improve the performance of the reboot
process. Hardware redundancy is the standard solution for
increased availability.

Boundless memory blocks differ in that they are designed
to convert erroneous executions into correct executions. The
advantages include better availability because of the elimina-
tion of down time and the elimination of vulnerabilities to
persistent errors — restarting Pine as described in Section IV-
C, for example, does not enable the user to read mail if the
mail file still contains a problematic mail message.

E. Static Analysis and Program Annotations

It is also possible to attack the memory error problem
directly at its source: a combination of static analysis and
program annotations should, in principle, enable programmers
to deliver programs that are completely free of memory
errors [20], [19], [37], [32]. All of these techniques share
the same advantage (a static guarantee that the program will
not exhibit a specific kind of memory error) and drawbacks
(the need for programmer annotations or the possibility of
conservatively rejecting safe programs). Even if the analysis
is not able to verify that the entire program is free of memory
errors, it may be able to statically recognize some accesses that
will never cause a memory error, remove the dynamic checks
for those accesses, and thereby reduce the dynamic checking
overhead.

Researchers have also developed unsound, incomplete anal-
yses that heuristically identify potential errors [36], [16]. The
advantage is that such approaches typically require no annota-
tions and scale better to larger programs; the disadvantage is
that (because they are unsound) they may miss some genuine
memory errors.

F. Buffer Overflow Detection Tools

Researchers have developed techniques that are designed
to detect buffer overflow attacks after they have occurred,
then halt the execution of the program before the attack can
take effect. StackGuard [18] and StackShield [14] modify the
compiler to generate code to detect attacks that overwrite the
return address on the stack; StackShield also performs range
checks to detect overwritten function pointers.

It is also possible to apply buffer overflow detection directly
to binaries. Purify instruments the binary to detect a range of
memory errors, including out of bounds memory accesses [22].
Program shepherding uses an efficient binary interpreter to
prevent an attacker from executing injected code [25].

A key difference between these techniques and boundless
memory blocks is that boundless memory blocks prevent the
attack from performing out of bounds writes that corrupt the
address space. These writes instead are redirected into the
hash table that holds the out of bounds writes. Of course, our

implementation of boundless memory blocks also generates a
log file that identifies all out of bounds accesses, enabling the
programmer to go back and update the code to eliminate such
accesses if desired.

VI. CONCLUSION

Memory errors are a serious problem in software systems
today, leading to unanticipated and undesirable program ex-
ecution and potentially even causing security violations. We
have presented two techniques, Failure-Oblivous Computing
and Boundless Memory Blocks, that have the potential to
ameliorate many of the negative effects of memory errors.
Both techniques use bounds checks to prevent data corruption.
They both continue through the memory error to allow the
program to continue to execute. We have implemented both
techniques; our results show that they can enable programs to
continue to execute successfully and continue to service their
legitimate users even after the programs are presented with
inputs that trigger memory errors.

Acknowledgements

The research presented in this paper was performed with
Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee, Jr. It was supported in part
by the Singapore-MIT alliance, DARPA Cooperative Agree-
ment FA 8750-04-2-0254, DARPA Contract 33615-00-C-
1692, and NSF Grants CCR-0341620, CCR-0325283, and
CCR-0086154.

REFERENCES

[1] Apache HTTP Server exploit.www.securityfocus.com/bid/8911/discussion/.
[2] ELM. www.instinct.org/elm/.
[3] Midnight Commander exploit.www.securityfocus.com/bid/8658/discussion/.
[4] Midnight Commander website.www.ibiblio.org/mc/.
[5] Mutt exploit. www.securiteam.com/unixfocus/5FP0T0U9FU.html.
[6] Mutt website. www.mutt.org.
[7] Netcraft website.http://news.netcraft.com/archives/web server survey.html.
[8] Pine exploit. www.securityfocus.com/bid/6120/discussion.
[9] Pine website.www.washington.edu/pine/.

[10] SecuriTeam website.www.securiteam.com.
[11] Security Focus website.www.securityfocus.com.
[12] Sendmail exploit.www.securityfocus.com/bid/7230/discussion/.
[13] Sendmail website.www.sendmail.org.
[14] Stackshield.www.angelfire.com/sk/stackshield.
[15] T. Austin, S. Breach, and G. Sohi. Efficient detection of all pointer

and array access errors. InProceedings of the ACM SIGPLAN ’94
Conference on Programming Language Design and Implementation,
June 2004.

[16] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic,
programming errors.Software - Practice and Experience, 2000.

[17] George Candea and Armando Fox. Recursive restartability: Turning
the reboot sledgehammer into a scalpel. InProceedings of the 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII), pages 110–
115, Schloss Elmau, Germany, May 2001.

[18] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather
Hinton. StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. InProceedings of the 7th USENIX Security
Conference, January 1998.

[19] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. InProceedings of the 2003
Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), June 2003.

[20] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for
statically detecting all buffer overflows in C. InProceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, 2003.

[21] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[22] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. InProceedings of the Winter USENIX Conference, 1992.

[23] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. InUSENIX Annual Technical Conference,
June 2002.

[24] R. Jones and P. Kelly. Backwards-compatible bounds checking for arrays
and pointers in C programs. InProceedings of Third International
Workshop On Automatic Debugging, May 1997.

[25] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure
Execution Via Program Shepherding. InProceedings of 11th USENIX
Security Symposium, August 2002.

[26] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle
Workstations. InProceedings of the 8th International Conference of
Distributed Computing Systems, 1988.

[27] M. Litzkow and M. Solomon. The Evolution of Condor Checkpointing.
[28] George C. Necula, Scott McPeak, and Westley Weimer. CCured:

type-safe retrofitting of legacy code. InSymposium on Principles of
Programming Languages, 2002.

[29] Vivek S. Pai, Peter Druschel, and Willy Zwanenepoel. Flash: An efficient
and portable Web server. InUSENIX Annual Technical Conference,
General Track, 1999.

[30] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, ,
and Tudor Leu. A dynamic technique for eliminating buffer overflow
vulnerabilities (and other memory errors). InProceedings of the 2004
Annual Computer Security Applications Conference, December 2004.

[31] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, , and Jr. William S. Beebee. Enhancing server availability and
security through failure-oblivious computing. InProceedings of the
6th Symposium on Operating Systems Design and Implementation,
December 2004.

[32] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. InProceedings of the
ACM SIGPLAN ’00 Conference on Programming Language Design and
Implementation, June 2000.

[33] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow
Detector. InProceedings of the 11th Annual Network and Distributed
System Security Symposium, February 2004.

[34] M. I. Seltzer and C. Small. Self-monitoring and self-adapting operating
systems. InProceedings of the Sixth workshop on Hot Topics in
Operating Systems, 1997.

[35] S. Sidiroglou, G. Giovanidis, and A. Keromytis. Using execution
transactions to recover from buffer overflow attacks. Technical Report
CUCS-031-04, Columbia University Computer Science Department,
September 2004.

[36] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken.
A First Step towards Automated Detection of Buffer Overrun Vulner-
abilities. In Proceedings of the Year 2000 Network and Distributed
System Security Symposium, 2000.

[37] Hongwei Xi and Frank Pfenning. Eliminating Array Bound Checking
Through Dependent Types. InProceedings of ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, June
1998.

[38] Suan Hsi Yong and Susan Horwitz. Protecting C Programs from Attacks
via Invalid Pointer Dereferences. InProceedings of the 9th European
software engineering conference held jointly with 10th ACM SIGSOFT
international symposium on Foundations of software engineering, 2003.

