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ABSTRACT

Spatial resolution of sonic logs is greatly affected by the minImum spacing
between receivers. Improvements can be made, however, when the spatial sampling
of the formation is less than the minimum spacing. This paper proposes a recursive
least squares inversion of travel times based on the Kalman filter. This formulation
emphasizes the noise.content of the data as a factor limiting resolution. Synthetic
data as well as real data processing is presented here.

INTRODUCTION

In full waveform acoustic logging, the general trend has been to increase the
source to receiver separation 'as well as the receiver spacing, in order to obtain a
deeper penetration of the unperturbed formation and to measure velocity more
accurately. The increases of the spacing between receivers and the length of the
receiver array have the undesirable effect of smoothing out the variation of
velocities over short depth increments. This could cause reduction in spatial
resolution, especially in cases where thinly layered stratigraphic units are present. In
this study we introduce a method to help resolve the velocities and thicknesses of
the thin beds.

Willis (1983) introduced a least squares inversion scheme to determine the
transit times and velocities for individual beds. This inversion m\!thod is relatively
slow and can become cumbersome when applied to large sections. We propose a
stochastic formulation that enables us to recursively solve for the transit times. This
procedure amounts to removing the effect of the tool length, which acts as a running
sum filter. It can also be viewed as a deconvolution process of the tool response. In
the following sections we describe the method and its applications to synthetic as
well as real data.

FORWARD PROBLEM

The arrival time of acoustic waves is a function of the borehole radius, the
velocity of compressional waves in the fluid and the formation body waves, as well as
the length of the tool.

/

227



228 Paternoster

Nevertheless, in a first order approximation such as we assume valid for this
paper, one can simply relate the ar.rival time of a given wave, its transit time as a
function of depth, and the length of the tool:

1 Z
T(Z) = Sp J t(z)dz (1)

Z-Sp

where Sp is the source receiver separation, t(z) is the formation transit time at
depth z, while T(Z) is the arrival time at depth Z per unit length, assuming that
source and receiver are located at depth Z and Z - Sp. With this formula, delays
due to propagation in the fluid are neglected. However, for clarity's sake the
formulation presented next is expressed in terms of travel times. Similar
developments could be made in terms of moveouts between common source or
common receiver paIrs.

As seen in Figure 1. a sharp interface would appear, basically, as a ramp of the
tool length, and a thin layer would be spatially "diluted" so that its exact location, as
well as Its "true" transit time, would be hard to resolve. There is a need for improving
the spacial resolution of acoustic logs.

Following Foster et al. (1952), we believe that a finer resolution can be gained
from logs where measurements are repeated at every fraction of the· source receiver
separation. In this case the problem can be set in a straightforward manner using the
discrete depth version of equation (1):

(

(2)

In this equation, discrete depth intervals are taken to be the fraction of the tool
length by which it is shifted between successive shots. N is the number of discrete
depth intervals over which the loop stretches. Again, ti is the transit time of the i tit

depth interval and Tj the arrival time scaied to one discrete depth interval when the
top of the tool is at depth j. Depth indices start downhole.

SINGLE SPACING TRAVEL TIME INVERSION

Straightforward least squares inversion

When the tool is run from depth 0 up to depth n, we can set a linear system of.
equations such as :
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N.Ta = t 1_N + t 2 _N + ...

N.T1 = t 2 _ N + t S _ N + .. ,

N.TN = t 1 + t 2 + ...

N. Tn =tn - N+1 + tn - N+2 + ...

. .. + t -2 + t -1 + t a

... + t -1 + t a + t 1

. .. + tN _2 + tN _ 1 + t N

. .. + tn - 2 + tn _1 + t n

The redundancy we want to use appears in this system of equations. Except
for the N first and N last tj's, each tj appears N times in the system. This system
has n+N unknowns and n equations. Inverse theory suggests a method for treating
such a problem using least squares. This would do well in noise corrupted situations
by finding the "best" fit of t/s for the observation 1j's. Inverting the whole system
is, basically, the solution proposed by Willis (1983).

If we are to invert for a large section of tile formation, this inversion scheme
requires, unfortunately, the handling of large matrices. Moreover, assuming that the
problem has been solved for the first n depths, the question is whether the whole
system should be inverted again if we add one extra observation?

Recursive least squares inversion formulation

[1] Up to this point, we have kept the discussion general. Let us take our problem a
step further.

A simple look at any section of sonic logs, or at any section of real earth
material, will convince us of the vertical sequentiality of the physical characteristics
in the earth. More sophisticated evidence of this important geological feature is
given by O'Doherty and Anstey (1971). The fact that auto-correlations of reflection
coefficient series do not reduce a single spike clearly demonstrates that:

"the earth stratification is the result of natural laws, that these provide some
predictable constraints, and that, consequently, the outcome is not completely
random".

How shall we transform this piece of knOWledge into analytical constraints for
our inversion problem?

First of all, we recast the whole problem In the light of a stochastic process.
From now on, the transit times and the arrival times will be considered as random
variables. Their depth series can be viewed as stochastic processes. We chose an
independent increment process to represent the behavior of the depth sequence of
the t/s. That is,

(3)
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In this equation, Wj is assumed to be a zero mean white noise process independent
of t j • Testing on real and synthetic data has shown that acceptable results can be
obtained with equation (3). The "noise" denomination should not mislead the reader.
Wj represents the "innovation" of the formation or its departure from a homogeneous
formation. It is characterized by a variance qj' This variance is a measure of the
variability of the formation or of the confidence we have in equation (3). Large
variances (several orders of magnitude larger than the measurement error variance)
will denote that there is very little confidence in the equation. On the other hand,
small variances denote that little variation is expected in the formation. Finally, we
understand that qj represents an "a priori" knowiedge we may have of the formation
and how it can be weighted gradually.

[2] At this point, let us perform some formal changes which will not affect the
generality of our discussion :

f t· 1
1/~

f 1 0 0 0 1

tj-~J F = l.~.
0 0 0

Let lj= h= 1/ and 1
1/ 0 0

0 1 0

(
Then, our transit time depth sequence is ruled by :

t·=Ft· 1 +w. (4)1 1- 1

The original system of equations can be re-created by successive:

(5)

where h T is the transpose of matrix h. Here, we allowed each travel time
observation to be corrupted by a white noise of covariance Rj , representative of the

reading error. The covariance matrix, Qj = E[wjwJ] characterizes Wj. Its only non
zero entry is the first one in the first row: qj'

Our present specific problem is to estimate, or invert, for n successive values
of lj given n successive measurements or observations Tj related to the lj's
through equation (5), under the n linear constraints of consecutive equations (4). In
addition to its better constrained nature, the structure of this problem yields
estimate computations that can be organized conveniently in a recursive algorithm.
This is the Kalman filter.

[3] The remainder of this section will be devoted to the Kalman model formulation.
The adequacy of that model for our present purposes can be easily checked. We
shall use similar notations.

Two equations define the model:
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(6)

Equation (6) represents the time dependent behavior of a linear dynamic
system. The system is completely characterized by its state vector lj. It is also
driven by the input Wj which, in this application, is a white noise of covariance Qj ,
This matrix expresses the confidence we have in this finite difference equation.
Following Control Theory terminology, this equation, as well as its counterpart in our
present problem, equation (4), will be referred to as the State equation.

We perceive the dynamic system only through periodic measurements. The
vector of observations, 71, is related to the state vector via the linear equation (7).
Moreover, the measurement is corrupted by a white noise Vj of covariance Rj . Rj is
related to the confidence we have in those measurements. This equation will be
referred to as the Measurement or observation equation.

As for any linear system described by a recursive equation, the initial state has
to be known. Here, it is specified through the mean and covariance of fa. Additional
assumptions r€garding the independence of the various stochastic processes are to
be made. Namely, the noises Vj and Wj are to be independent of fa. Moreover, at a
given time both noises are uncorrelated and each, taken at two different times,
presents values that are uncorrelated. Figure 2 summarizes the different filter
inputs.

[4] _ Th= _esti~ate of !;, _ tj ~hich minimiZeS the error co~ariance

E[Uj -tj)(tj - tj)T], is E[tj IT;, "', To], the conditional expectation of t j given
all past and present observations. This estimate is a linear function of the
observations when all random variables are Gaussian. However, when this is not valid
(probably our case), the linear function obtained in the Gaussian case still yields the
minimum of the error covariance in the set of all possible linear estimators. This is the
linear least squares estimator. In the following, E[XI Y] is used as the linear least
squares estimator of X given Y.

Given the model and the assumptions described in section [3], the problem
solved by Kalm~n is to pro~ide 7:;, the linear least square~ estimate of f; given the
measurements To through 7';. Basically both the estimate tj and its error covariance
are propagated in time through a two step recursion. We first define some notations
to differentiate between the two steps:

t(j Ij -1) = E[t;,1 T;'-1' .. , ,To]

and P(j Ij-1) =E[ (f;-7:(j /1-1» (lj-7:(j Ij-1»T]

fj = t(j It) = E[f; ITj ,Tj-1, , .. ,To]

and P(j It) =E[ ( lj-t(j Ij) ) ( tj-t(j It)T]
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The state equation is fruitfully employed to propagate the estimate from time
j -1 to the next time increment using the same set of observations. Thus a
prediction of~. is made: [(j I j -1). The estimate of tj is based ont (j -1). The
measurement at time j then adds a new piece of information that is decomposed into
a predictable part and an innovative part, which helps correct the prediction through
a gain factor K(j). For the sake of clarity we omitted the possible time dependence
for the matrices F, G and H. The recursion is as follows:

Step (0) : initialization

[(01-1) : guess of the initial "true" transit times

P(O 1-1) : confidence we have in that guess.

Step (l) : correction

'[(j Ij) = 't(j I j -1) + [«j)1/(j);

P(j Ij) =P(j Jj-1) -K(j) H P(j Jj-1);

[«j) =P(j Ij -1) HT[H P(j Ij -1) HT + Rj r1;

v(j) =1j - H '[(j Jj -1).

Step (2) : prediction

'[(j 11-1) =F '[(j-1Ij-1);

P(j 11-1) =F P(j-1Ij-1) FT + G Qj GT.

These equations can be directly programmed with the matrices defined in [2] to
solve our problem, since our main interest lies in multiple source/receiver
combinations.

MULTIPLE SPACINGS TRAVEL TIME INVERSION FORMULATION

Extension to multiple spacings

Sections [1] and [2] of the previous part showed how we could bring our
Inversion problem in the case of a single spacing tool to a somewhat improved
constrained problem. Sections [3] and [4] presented the formulation in a more
general situation, in particular that of multiple observations. This showed that our
inversion could easily be extended to multi-source, multi-receiver tools. To do that
we only have to arrange equation (5) of section [2] where the T/s become column
vectors with as many entries as off-sets to be considered, and h has to be turned
into a matrix according to the tool configuration. Assuming it has an integrai value, N
will be equal to the length of the largest source receiver separation divided by the
change in depth of the tool between two completed firing sequences.

10-6
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Although formation variability and noise covariances can be depth dependent,
we kept them at a constant value throughout subsequent applications, in order to
simplify the problem and aid in the understanding of the process.

To use this inversion scheme we had to choose a tool configuration. We
modelled the case of a two source/two receiver tool such as the one shown in Figure
3. Two sources are placed 2 ft apart at the bottom of the sonde, and two receivers
are placed 2 ft apart at the top of the sonde. The distance between the lower
receiver and the upper source is 8 ft. This configuration provides source-receiver
separations of 8, 10, 10 and 12 ft for each firing sequence. We also assumed in all
examples that a complete sequence of shots was fired at 1/2 ft intervals.

Least squares processing

With these specifications our state vector t; has 24 entries. H Is a 4 by 24
matrix to accommodate four measurements at every depth increment. The
observation equation (5) becomes:

233

[1/20 1/20

H -l 0 0- 1/24 1/24
o 0

1/20
o

1/24
o

1/20
o

1/24
o

1/20 ..
1/16 ..
1/24 ..
1/20 ..

1/20
1/16
1/24
1/20

o
o

1/24
1/20

o
o

1/24
1/20

o
o

1/24
1/20

We remember that our Kalman filter provides us with vector estimates Of~. The
scalar function of depth estimates presented next will be the last entry of each
state vector estimate. This means that we "wait" until the tool has been completely
pulled above the corresponding depth before keeping the estimate. In other words, in
order to estimate the formation's "true" transit times, we use the maximum of
observations this formulation permits. Formally, the selected estimate will be :

Conventional processing

A conventional processing of the arrival times from all four source-receiver
combinations could:

(1) Consider all four possible common source and common receiver combinations and
compute the !::.t's corresponding to 2 ft intervals.
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(2) Refer each M to the middle 1/2 ft layers in the 2 ft interval.

(3) Average all M's corresponding to the same 1/2 ft layer.

Note that in this case, each transit time determination will involve only 8 travel
time measurements. We also expect the resolution of such processing to be limited
to the smallest spacing, no matter how densely the formation is sampled. We are now
ready to try both processes on synthetic travel time data.

SYNTHETIC RESULTS

Noise free situation

Figure 4· displays synthetic arrival time curves versus depth for the four
source-receiver combinations in a sharp interface case. The time scale is arbitrary
since all arrival times have been scaled to a unique reference length. All transit time
estimations will be scaled to that same reference length in order to ease
comparisons. A number of discrete depth intervals of 1/2 ft have been plotted on
the horizontal axis.

The four curves have been processed by both the conventional and recursive
least squares methods. Outputs from both methods are shown in Figure 5.

The conventional processing has an effective resolution equal to the smallest
source or receiver separation while the least squares processing inverts exactly for
the transit time model discretized every 1/2 ft when input parameters Q and R
specify that very little noise is expected in the data.

Noise corrupted situation

We corrupted the arrival time data of Figure 4 with a random additive
perturbation having a maximum amplitude of 20 arbitrary units. In the resulting data
set, shown in Rgure 6, arrival time curves are indistinguishable one from another.

The least squares inversion scheme was tried first. In Figure 7A we kept the
input parameter R at a constant value of 20, and increased parameter Q, which
describes the formation variability, from a value of 0.1 up to a value of 300, ending
with the dashed curve. The filter response to the step change in transit times varies
from a slow and smooth change to a quick but noisy rise. Next, in Figure 78, we
started from the last Q and R specifications that yielded the dashed curve and
progressively increased R, the observation noise variance, from a value of 20 up to
1000. The filtered output deformed back to a slow rising and smooth curve.

From Figure 7 it appears that the result of the least squares inversion depends
greatly on the ratio of expected formation variability to expected noise variance in
the data (Q / R ratio). This factor Is very similar to that of a damping factor In a
damped least squares inversion.

For a high Q/Rratio, the result is mainly affected by the noise content of the
data. No "a priori" knowledge of the formation is input and there is even some
expectation of large variability. The filter gives more weight to the data and merely
uses the state equation. It responds quickly to the step input but shows a high noise

10-8
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content. This is the quick KalmanfUter case.

Fbr a small Q/R ratio, the result is a very smoothed version of the original
model. One does input the "a priori" knowledge. Given that the formation velocity is
V at depth i, it is very unlikely that a much smaller or greater velocity than V comes
up at depth i+1. The filter gives more weight to the state equation and smoothes
out the noise. The noise content is small, the resolution poor. This is the slow
Kalman filter case.

These considerations suggest a trade-off between noise reduction and
resolution. The filter will determine a real variation in the transit times we invert for
only if the variations in the data set are more likely to be due to formation variability
(given specification of Q) than to noise corruption (given R).

Figure 8 compares results of the conventional processing for that same noise
corrupted data set with those of a quick Kalman filter case (note the slight change of
scale from previous figures). The two are very similar. In other words, they depend
greatly on the noise content of the data set. This suggests that, in terms of noise
reduction, it is possible to do better with the heip of some "a priori" knowledge than
one can with conventional processing. Both cases have good spatial resolution of
the sharp interface, but include variations that do not exist. A slower Kalman filter
would not show any variation, unless given likely state/noise variance specifications.

In all results presented here, we have kept Rand Q constant. Nevertheless, it
must be remembered that this was not a limitation of the method, only a choice made
for the sake of greater simplicity. We could have varied Rand Q values in the
course of the algorithm without any other changes. For example, we could adapt the
filter response each time the filter detects a rapid change of the formation transit
time via an increase in the error covariance or via a large discrepancy between
prediction and measurement. In that case the filter would weight the data a little
more for some time, until the discrepancies vanish. As a result, we expect an even
better resolution of sharp interfaces without increasing the noise content
everywhere on the log. In other words, once we have decided on a given
resolution/noise-reduction trade-off, we do not have to stick with it until the
inversion is done, as we would in the case of a damped least squares inversion of the
whoie system.

Role of initial guesses: Steady-state filter

Figures 9A and 96 investigate the consequences of starting the recursion with
erroneous guesses In the case of a noise free data set and in a noise corrupted
situation respectively. In both situations the filter corrects the error. The only
difference is the time it takes to do so. This suggests that, in the long run, the
output is totally independent of initial state specifications. In others words, it
reaches a steady state. This has very important implications with respect to all
practical applications.

Kalman filtering is computationally time consuming. In any case, one could
compute and store the gains K(j) and error covariances P(j I j) ahead of time.

A steady state would enable the user to apply a constant gain K. The resulting
process would no longer be optimal in terms of minimizing the error covariance, but,
after some time, it would be very near optimality. The steady state approximation

10-9

235



236 Paternoster

would be a more computationally efficient process to apply and just as quick as any
finite response filtering. It would, however, lose the great fleXibility and adaptability
to data of that type of formulation. Nevertheless, depending on the application
sought, one might want to apply a non depth-dependent filter. In this case, the
Kalman filter formulation provides us with theoretical results. Based upon the
properties of the linear system under consideration, namely its Obseruability and
Controllability. it is possible to conclude the existence of a steady-state filter.
Intuitively, observability means that, when the state equation is taken without input
noise, one can retrieve the initial state from an exact observation of the system over
a finite period of time. Controllability means that it takes a finite period of time to
bring the system to any given state through chosen deterministic inputs. Both
properties were verified by the single spacing as well as the multiple spacing
systems. Given our choice of a state equation, controllability was always verified.
Assuming that the observation Is made in such a way as to involve all entries of the
state vector at least once, observability is always guaranteed. (This last condition is
sufficient but not necessary.) Therefore, we may conclude the existence of a
steady-state filter.

Other examples

Figures 10 and 11 display results for three and four layer models respectively,
involving thin layers of 5 ft and 2.5 ft thicknesses (note the change of depth scale
in Figure 11). In all the cases presented, least squares inverses show a better noise
reduction than their conventional counterparts.

It appears that recursive least squares inverses tend to under estimate transit
time variations. Moreover, even in the case of a symmetric contrast such as in Figure
10, the inversion does not keep that feature. This is related to the causal nature of
the Kalman filter. However, better estimates could be obtained by combining both
forward and backward Kalman filters (Smith, 1975).

REAL DATA EXAMPLE

We processed a 150 foot limestone section of arrival time data. The tool
configuration is that of Figure 3. Firing rate and logging speed are the same. Figure
12 displays one 10ft offset arrival time data scaled in fLS I It. (We had only one of
the two 10ft offset arrival time determination available and we duplicated it with the
correct shift of 2 ft).

Figure 13 shows results of the "conventional" processing. Outputs of least
squares processings for various statistical specifications are presented in Figures
14, 15 and 16. Each one of these needs about 10 sec of cpu time to complete 50
depth increments on a VAX 11 /780 with a non-optimized program. Statistical
specifications are kept constant throughout the inversion. The expected formation
variability, Q, is 100 for all three figures. The noise variance, R, is 1, 10 and 100 for
Figures 14, 15 and 16 respectively.

As for inversions conducted on synthetic data, outputs of conventional and
least squares processings are similar for a small value of R (quick Kalman filter case)
except for differences in the sharpness and magnitude of some of the picks. The
three least squares processings further illustrate the resolution/noise reduction
trade off discussed earlier and the need for an adaptive processing. In particular,
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the moderate resolutions obtained show that resolution is critically limited by the
noise content of the data. Each one of these output curves corresponds to different
hypotheses concerning the relative importance of the noise content versus the
formation variability. Obviously, knowledge of the actual noise content prevents
exaggerated smoothing out of the results. Still, even knowing its actual
characteristics will not help the filter to discriminate between real formation changes
and noise corruption.

CONCLUSIONS

As one can see from these examples, there is a need for a better definition of
resolution. Resolving power is usually taken to be the smallest layer thickness one
can distinguish in a homogeneous fonmation. This is also the ability of the output to
rise promptly when a step function is input. This is true in noise-free situations.
Nevertheless, resolution through noise corrupted data is a more complicated matter
as underlined by the few examples presented in this study. Resolving a thin layer is
important, but not showing a layer when there is none is also important. This is part
of a well known trade-off that occurs in any estimation problem.

Least squares inversion provides us with a reliable way of obtaining reasonable
answers to this problem using probabilistic constraints. It takes into account a very
general piece of geological information -- the vertical sequentiaiity of physical
parameters. It uses the best of the statistical redundancy that is not used normally
in the case of a single spacing tool, and is poorly used in the case of multi-spacing
tools.

. The Kalman filter formulation makes processing affordable from the standpoint of
storage size, and its great flexibility makes it a very powerful and promising
approach. However, further work is needed to design an inversion process which
would include borehole radius and would also be adaptable to large formation
changes.

ACKNOWLEDGEMENTS

I would like to thank Dr. Gilles Garcia for many discussions on this subject as
well as for his careful review of this paper. I am indebted to the ELF AQUITAINE
company for providing me with the fellowship at M.I.T.

10-11

237



238 Paternoster

REFERENCES

Foster, M., Hicks, W., and Nipper, J., 1962, Optimum inverse filters which shorten the
spacing of velocity logs: Geophysics, 27,317-326.

O'Doherty, R.F. and Anstey, N.A., 1971, Reflections on Amplitudes: Geophysical
Prospecting, 19, 430-458

Sandell Jr., N.R. and Shapiro, J.H., 1976, Stochastic processes and applications, notes
for subject 6.432, Department of EECS, Massachusetts Institute of Technology,
Cambridge, Massachusetts.

Smith, P.L, 1975, Backward-Forward Smoothing Interpretation of the A Posteriori
Process Noise Estimate, IEEE Trans. on Automatic Control.

Willis, M.E., 1983, Inversion of travel time for velocity : Annual Report of the Full
Waveform Acoustic Logging Consortium, Earth Resources Laboratory, Department
of EAPS, Massachusetts Institute of Technology, Cambridge, Massachusetts.

10-12



Kalman Filtering of Velocities

depth

Tl
=

239

its'~ L
1·----:--1

Sf>
tool

response

-k _[ 1____

t: transit times

=
T: arrival times

Figure 1 : Smoothing effect of the source-receiver separation on travel times in the
cases of a sharp interface and a thin layer.
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Figure 4 : Synthetic arrival-time curves for the tool of Figure 3 in the case of a sharp
interface. Scale units are explained in the text.
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Figure 5 : Outputs of conventional and recursive least squares processing in the
case of the noise-free data set of Figure 4.
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Figure 6 : Synthetic arrival-time curves of Figure 4 have been corrupted by an addi
tive random noise of maximum amplitude 20.

10-18



Kalman Filtering of Velocities 245

200

. Q increases

"

I
I

50

200

50

Cal

5

Cb)

5

Constant noise variance = 20
Variable state variance =0.1-1-10-100-300

45

-,
I •

I \ ,

R increases

Constant state variance. =300
Variable noise variance =20-100-300-1000

45

Figure 7A and 78 : Outputs of the recursive least squares processing for various
noise specifications ( Q and R ). A correct initial guess has been assumed.
(A) R, the observation noise variance is -kept·constant, Q increases
(8) Q, the "expected" formation variability is kept constant, R increases
In both figures, the dashed curve is obtained with the same Rand Q.
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Figure 9A and 9B : Output of recursive least squares processing in the case of er-

roneous initial guesses. ..
(A) with the noise-free data set. (B) with the noise-corrupted data set.
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Figure 1a : Results of both conventional and recursive-least squares processing for a
three layer model. The medium layer is 5' thick.
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Figure 11 : Results of both conventional and recursive least squares processing for a
four layer model. The thinner layer is 2.5' thick.
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Figure 12 : Arrival time determinations for a 10 foot spacing used as part of the input
for the next real data processing examples.
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Figure 13 (top) : Conventional processing example on real data

Figure 14 (bottom) : Least squares processing of the real data of Figure 12. Q= 100
and R=1.
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Rgure 15 (top) : Least squares processing of the real data of Figure 12. Q=1 00 and
R=10.

Rgure 16 (bottom) : Least squares processing of the real data of Figure 12. Q= 100
and R=100.

10-26


