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ABSTRACT

We present a novel system for well-to-welliog correlation using knowledge-based systems
and dynamic depth warping techniques. This approach overcomes a major drawback in­
herent in previous methods, namely the difficulty in correlating missing or discontinuous
rock units.

The system has three components: (1) A Dynamic Programming algorithm to cor­
relate the logs and to find the minimum-cost or "best" match; (2) A set of "rules" to
guide the correlation; (3) A data base that contains the logs and other relevant geologic
and seismic information. The Dynamic Programming algorithm calculates the cost of
correlating each point in the first well with each of the points in the second well. The
resulting matrix of dissimilarity contains cost information about every possible opera­
tion which matches the well logs. The cost of matching the two wells is measured by
the difference in the log values. The dynamic programming approach allows correlation
across geologic structures, thinning beds, and missing or discontinuous units. A path
finding algorithm then traces through the matrix to define a function which maps the
first well onto the second. The minimum cost path is the optimal correlation between
the wells.

The system's database contains the well logs themselves and other relevant data
including information about the geologic setting, seismic ties, interpreted lithologies, and
dipmeter information. Rules operating on the data affect the dynamic programming and
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path finding algorithms in several ways: (1) Seismic ties or marker beds define a point in
the warping path, thereby removing calculations over large portions of the search space;
(2) Dipmeter results and knowledge of geologic structure further constrain the path to
certain global areas and save calculation time; (3) The system assigns weights to different
logs based on log quality and sensitivity; (4) Knowledge of the paleoenvironment allows
the program to choose a set of rules (model) which accounts for changes in sediment
type or thickness within a field. For example, when the program is operating in a deltaic
environment, it will correlate the shales before attempting to correlate the sands.

We demonstrate the method with synthetic examples in which the program success­
fully correlates across geologic structures and pinch-outs. We also applied the program
to field examples from two widely separated oil provinces. In both cases, the automated
correlation agreed very well with correlations provided by geologic experts.

INTRODUCTION

One of the primary uses of wireline logs is well-to-well correlation. Since the earth's
geologic record has been modified by tectonics and erosion, correlating even closely
spaced boreholes can be a complicated problem, requiring some rules that are not easily
programmed on a computer. As well data is continually increasing in volume, automated
correlation methods become more attractive to reduce the burden on the geologist and
allow consideration of more possible matches. Attempts at using automated correlation
methods date back to Testerman (1962). More recently, computer algorithms have
been proposed to work with Fourier transformed logs, performing the correlation in the
(spatial) frequency domain (Rudman and Lankston, 1973; Robinson, 1978). Although
these methods work well in some cases, they do not account for nonlinear correlations.
They determine a depth offset and a stretch factor which most closely match the test
well into a reference, but the offset and stretch are constant for the section analyzed.
Perhaps the greatest pitfall of these methods, therefore, is their inability to handle
correlation across missing or discontinuous rock units. This is such a common occurrence
in geological sequences that it must be handled by any automated technique that is to
be applied in a variety of areas.

We describe a new automated computer program for well-to-well correlation, using
ideas developed in computer science about expert systems. Expert systems are computer
programs that attempt to emulate the behavior of a human expert in a problem-solving
task (Startzman and Kuo, 1986). They are best at employing heuristic rules, com­
plementing conventional programming's use of mathematical functions. The program
(named COREX) has three components: (1) A dynamic programming algorithm to
correlate the logs and find the minimum-cost match; (2) A data base containing the
logs, and other geological and geophysical data relevant to the correlation problem; (3)

(
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A flexible set of rules and geologic models, which when applied to the data, serve to
constrain the correlatiOli within certain meaningful limits.

In the next section we describe the dynamic programming method used to perform
the correlation algorithm. Multiple logs are used from each well, and the resulting
matching costs calculated. We account for insertions and deletions of rock units by
considering nonlinear matches. Next we describe the rules used and their organization
in the knowledge base. The knowledge base in essence serves to make some correlations
more attractive and others less attractive, based on a model of the geologic setting. Then
we include a section on how we implemented the methods. Finally we demonstrate the
methods with examples in which the program successfully correlates across different
geologic structures and pinch-outs. We also applied the program to field examples from
two widely separated hydrocarbon provinces.

DYNAMIC DEPTH WARPING: THE CORRELATION
ALGORITHM

The mathematical algorithm used to determine the match between wells must be able
to model the geologic process and must allow for deletions and insertions of new rock
units in a sequence. For this purpose we use a method called dynamic depth warping.
This approach has been used in speech processing where problems similar to those in
geologic correlation occur. When comparing test and reference words, mismatches may
result from differences in the length of the word, as well as local variations when one
portion of the word is sped up relative to another. A successful approach to the speech
processing problem is the dynamic time warping method described by Anderson and
Gaby (1983). The dynamic depth warping we developed benefits from the studies in
speech.

Dynamic Warping

As an example of dynamic warping, consider the transformation of the test word
"MILLER" into the reference word "HILLIER". There are many possible ways to make
the transformation by changing, inserting, or deleting individual characters, but each
of these edit operations has an implied cost. Several possible matchings are shown below:
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MILLE R : T(M)
H I 1 1 I E R : R(N)

d eM cI - cL - - D=4

MILLE R : T(M)
H I 1 1 I E R : R(N)

eM d cI - cL - - D=4

MILL E R : T(M)
H I 1 1 I E R : R(N)

Operation
d
eX
iX

Description
Delete the character
Change the character to X
Insert character to the
right of this character.
No Change

Edit Cost
1
1

1
o

cM---d-- D=2 (After Anderson and Gaby, 1983)

Figure 1 summarizes the cost information for every possible match of the test and
reference words. This display, called a dissimilarity matrix, is calculated recursively by
the dynamic warping algorithm. Finding the optimal correlation is now readily done
by tracing the minimum cost path through the dissimilarity matrix. This path is called
the warping function; it shows the least costly correlation at each point in the sequence
(Delcoigne and Hansen, 1975; Sankoff et aI., 1983). Further details of dynamic warping
are also provided in the first appendix.

The Cost Function for Dynamic Depth Warping

An assumption in the dynamic warping approach is that at any point in the match all
of the relevant differences between the objects being matched can be summarized by
a single measure of pairwise dissimilarity (Gordon and Reyment, 1979). In correlating
well logs, the cost of matching corresponding points is set equal to the absolute value
of the difference in log values at any point. For example, the cost of matching a gamma
ray log value of 100 in the test well to a gamma ray log value of 100 in the reference
well is zero, while matching the same point in the test well to a gamma ray value of 20
in the reference well has a cost of 80. In practice any log sensitive to lithologic change
can be used, and all logs are normalized to a scale of 0 - 100. For a pair of logs (SUCh
as gamma ray) we define the cost function as a difference metric d(n,m) of matching
the nth point in Well A with the mth point in Well B as IA(n) - B(m)l. Figure 2
shows the correlation of two well log sequences by the dynamic depth warping method.
The dissimilarity matrix shows running costs for all possible matches; the warping path
follows the least costly path through the matrix.
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An important feature of the dynamic depth warping cost function is it can be ex­
tended to correlate multiple logs from each well. This allows more reliable results for
two reasons. First, redundant information sometimes carried by multiple logs may di­
minish random errors of measurement. Second, some lithologic changes are not equally
manifested on all logs. For multiple logs, the cost function is defined as the square root
of the sum of the squared differences in corresponding log values. If we are matching
two wells A and B, each with ;=1, ... , k logs, then the local cost is given by:

V'£'::lIAi(n) - Bi (m)1 2 W(k)
d(n, m) = k (1)

where d(n, m) is the cost of matching depth point n in well A with depth point m in
well B, and W(k) is a weighting coefficient for the k-th log. Weightings can be used
to adjust the confidence level assigned to a log based on the log's quality or on local
knowledge. Weighting coefficients in COREX are determined by querying the user or
by inferences from information stored in the data base.

KNOWLEDGE-BASED SYSTEM: INTERACTION OF RULES
AND DATA

In well-to-well correlation of logs, one would generally incorporate available geologi­
cal and geophysical information into the process. The "Expert System" described in
this paper incorporates the information (complementary data and knowledge) into the
correlation process. The expert system consists of a knowledge base and a data base.
The knowledge base is an executable section of the program containing a number of
conditional statements which may effect the numerical calculations in various ways.
There are presently about thirty-five rules implemented in the knowledge base. The
data base is flexible and need only contain the well logs themselves. It may also contain
other relevant data such as seismic ties, lithologies (from log interpretation or from mud
logging), interpreted dipmeter results, and local geologic information (e.g., a regional
marker bed).

Before discussing how we incorporate geologic knowledge, we show first how some
common geologic situations are manifested in the warping paths described in the last
section. Figure 3 shows four schematic structures and the corresponding warping path
for each case. Notice in each case that deletion of a section in Well 1 relative to Well 2
corresponds to purely horizontal motion in the warping path, while a deletion in Well
2 corresponds to vertical motion in the warping path. A diagonal motion corresponds
to simple stretching of 1 relative to 2. A 45 degree diagonal corresponds to a perfect
match between the wells, and a curved path results from non-linear stretching between
sections. In Figure 3a, for example, correlation across a normal fault with a throw of
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200 meters would result in a simple shift of WeIll relative to Well 2. To accommodate
this shift, the correlation will effectively delete all of the section in Well 1 that is not in
Well 2. Thus, the warping path proceeds along the edge of the matrix perpendicular to
the section being deleted, until it reaches the point where the wells begin to match. At
this point the path is a 45 degree diagonal, proceeding to the lower edge of the matrix.
In Figure 3b, when a growth fault separates the two wells, the amount of stretch and
shift is no longer constant, but instead increases as a function of depth. In this case the
warping path will be a curved line, concave toward the upthrown block. Figures 3c and
3d show respectively the warping paths for insertion or deletion (pinchouts or lenses)
and for the flank of a salt diapir.

Notice from Figure 3 that a wide variety of structural situations can be accounted for
by only a few different restrictions on the warping path- namely, horizontal or vertical
motion, diagonal motion with some slope, and curved paths restricted to one half of the
global space. Thus, it becomes possible to program very general structural rules into
the dynamic depth warping algorithm. Figure 4a shows the correlations using synthetic
logs generated to represent two examples of the geologic structures shown in Figure
3. Correlations were performed on wells separated by a normal fault, and on wells
with sandstone pinchouts. We deliberately added random noise to the synthetic logs.
Figure 4b shows the warping paths that resulted from the match. As the figure shows,
the paths are very similar to those discussed in Figure 3. Departures of the synthetic
examples from the theoretical paths can be accounted for by noise present in the logs.
By removing the noise from the logs, we can effectively smooth the warping function .to
the straight lines shown in Figure 3. Noise reduction is discussed later in the section on
distance metric rules.

We can thus impose restrictions on the warping path using a priori knowledge of the
local geology. To do this, the knowledge base interacts with the dynamic programming
through a set of rules. These rules fall into three categories: (1) Lithologic or Deposi­
tional Environment Rules; (2) Geologic Structure Rules; and (3) Local Distance Rules,
discussed in turn below.

Lithologic Rules

In correlation problems, one proceeds by first matching the most prominent units such
as thick-continuous beds or highly distinct marker beds. This has the advantage of
breaking the large problem down into several smaller ones. The COREX program
approaches the problem in a similar way by initially performing a coarse matching
of the lithologies present in each well. For this, the knowledge base stores information
about common depositional models, and how correlation strategies should change based
on the particular environment. An example of a lithologic rule might state:
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If we are correlating in a meandering stream environment,
Then shales will be more continuous units than sands,

and we should correlate shales first, and then the sands.
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Another factor the program considers is the strike of the correlati~n line relative to
the paleoshoreline direction, if known. In this way the program can account for changes
in thickness and lithology that may occur down a paleoslope, or changes in the lateral
bed continuity as we change the orientation with respect to the shoreline. For example,
one rule states:

If we are correlating in a continental shelf environment,
and the strike of the wells is perpendicular to the shoreline,

Then allow shaly-sands to correlate with sandy-shales down the slope,
and let thin units correlate with thick units of the same lithology.

The results of this initial lithologic match are a series of tie points (Figure 5). In
dynamic depth warping, this is equivalent to forcing the warping path through one point
in the dissimilarity matrix, thus eliminating large sections of the global area as possi­
ble. paths. Next, if any seismic interpretation is stored in the data base, the program
creates tie points based on these. (Because there is some uncertainty in converting seis­
mic information into depth, tie points can be specified inexactly as tie 'regions'.) The
correlation thus breaks down into a number of smaller correlations, and at the same
time eliminates the need to consider a large number of correlations which are no longer
possible.

Structural Rules

Once the initial tie points are determined, the problem is further limited by applying
rules that relate the depth warping algorithm to geologic structures. As Figure 3 showed,
certain geologic features can define the warping path. These structures can either be
input by the user or inferred from the seismic and or dipmeter information. For example,
if we expect insertions and deletions of rock units, then we could weight our path finding
algorithm to favor horizontal and vertical motions in the warping path. In a second
example, we might want to limit the amount of shift that is allowed between the wells.
Then a structural rule would state:



428 Lineman et al.

If we are in a deep basin,
and the dip between the wells is nearly flat,

Then impose a maximum shift of d sin 8 between the wells
(where d is the horizontal well spacing and 8 the dip angle.

The program handles such a shift constraint by automatically assigning very high
matching costs to points separated by a depth greater than the maximum shift. This
shows up in the dissimilarity matrix as a possible match band whose width is equal to
the range distance (Figure 6).

Distance Metric Rules

Rules also impose knowledge on the dynamic depth warping algorithm through the local
cost calculations. Equation 1 showed that a family of weighting coefficients can be used
to alter the influence of a particular log on the correlation. For example, if one log is not
diagnostic in a particular formation, or is determined to be too noisy, it can be weighted
accordingly. If the program expects to correlate down a paleoslope where shaliness would
increase away from the shoreline, then a sandy-shale can be made to correlate with a
shaly-sand of the same dimension. Before the matching process begins, the COREX
program runs through rules concerning the lithologies and the noise analysis of the logs
to adjust the local distance measure between points. Figure 7 shows how the correlation
can be improved by modifying the local distance measure because of noisy logs. Here
is a sample rule that alters the local distance measure between two points:

If the caliper log shows a large positive deflection,

Then we expect the density and neutron log responses
to be altered by a washout,

and their weighting coefficients should be reduced.

A complete list of the rules presently implemented in COREX is given in Appendix
B.

IMPLEMENTATION OF THE METHOD

This section describes how the expert system interacts with the dynamic programming
algorithm to solve a correlation problem. As described in the previous section, the
knowledge base contains information about common depositional models, simple geo­
logic structures, and rules which allow this knowledge to affect the data. The database
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of the program contains the digitized well logs, and information about seismic ties,
structural dip, and lithology. The program must run through the rules in the knowledge
base, and by combining the data with geologic knowledge, translate this information into
meaningful constraints on the depth warping algorithm. The end result is a constrained
least-cost match which the knowledge base has forced to be geologically meaningful.

The program attempts to emulate a human expert by breaking the problem into
smaller, more manageable parts. It accomplishes this by first performing a large-scale
match of the lithologies present in each well. Gross lithologies come from drilling records
or from well logging data. With a knowledge of the depositional environment, the
program assigns continuity to specific lithologies. Information supplied by the user
at the start of a session determines an appropriate geologic model. In particular, the
program wants to know the horizontal distance between the wells, the depositional
environment, and the strike of the correlation relative to the paleoshoreline.

For example, in a fluvial meandering stream environment, shale units will be more
continuous (in lateral directions) than sands, and thick shales will be more continuous
than thin ones. Using these rules, and the others outlined in Appendix B, the system
assigns a similarity measure or matching cost for matching lithologic units in two differ­
ent wells. An ordinal rank such as 'good' might describe the match between two thick
evaporite units in a shallow shelf environment. Once these local costs have been deter­
mined, the program uses a simple string matching algorithm as described in Appendix
B to match corresponding lithologies. The result of this initial match is a series of tie
points limiting the search space for the optimal warping path.

Once the program performs the initial match, it has a series of tie points which
separate the correlation into a number of smaller problems, represented in the global
search space as a number of rectangular regions connected at the corners (see Figure 5).
Next the program runs through rules concerning the geologic structure of the particular
section. Seismic and dipmeter information further reduce the search space. For example,
if the structural dip between the wells is known, and corresponding sections to correlate
are of roughly the same thickness, then a maximum shift constraint can be imposed.
Another rule may force the warping path to travel only in the lower half of the global
area, or to travel along edges of the area, as seen in Figure 3. After these rules are
applied, the dynamic depth warping algorithm is ready for the final correlation with
all of the imposed constraints. At this point the program has reduced significantly the
amount of calculation from the original, unconstrained problem, and enhanced greatly
the chances of a geologically meaningful result.

The final correlation is performed on a point-to-point scale using dynamic pro­
gramming. During the calculations, distance metric rules are sometimes fired by the
program, since these rules are generally applicable over sub-sections of the in terval. The
caliper rule changes the weighting coefficients of density and neutron logs over sections
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of washed out hole. Other log quality curves can be used to alter the weightings of other
logs. The amount of noise present in any log can be estimated by statistical variance
methods, where noise amplitude would be expressed in terms of standard deviations
from the norm. By assigning some noise "threshold" to the logs, the program can de­
cide which deflections are likely due to noise and which ones are likely due to formation
boundaries. As mentioned before, the use of multiple logs further enhances this reso­
lution. This local distance measure may also be adjusted by noting that some logs are
not as sensitive as others to bed boundaries, and their influence on the correlation can
be weighted accordingly.

The depth warping algorithm calculates all possible matching costs between each
point in the first well, and all other points in the second well. Dynamic programming
then recursively fills the global cost matrix, each point in the matrix representing the
total cost of matching the two sets of logs to that point. The total cost at the end of
the warping is a measure of the quality of the match (analogous to the peak in the cross
correlation function). If two curves are identical, then the total cost to match them will
be zero. If one or both of the curves is noisy, then the matching cost will be very high.

When the calculation is complete, the program uses a separate routine to trace back
the minimum distance path through the matrix. The program can then draw tie lines
between all points which correspond in the match. We should point out that not all
points will be matched, but only those which required a minimum matching cost in the
original calculation. In other words, points may be connected by the warping path, but
unless the matching cost between them was above some value (the noise threshold) no
tie lines will be drawn. This helps to prevent the program from correlating noise, as
opposed to geologic "signals".

One of the advantages of knowledge-based programming is that the program provides
commentary on how it reached a conclusion. Although not implemented in our system,
a sample output for a typical correlation is as follows:

Correlated in a barrier beach environment, well separation was
2 kilometers, strike of correlation line was parallel with the pa­
leoshoreline, structural dip was 2 degrees, a maximum shift con­
straint of 40 meters was applied, the density log was eliminated
due to excessive noise (interval 2000-2050 ml, and final correla­
tion proceeded with 4 logs.
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Field Example from West Africa
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Figures 8-11 show an example of correlation using log data from two offshore wells in
the Western margin of Africa. In this study, WeIll contains 250 depth points and spans
250 feet (150 m) of section, and Well 2 contains 225 depth points and spans 225 feet
(135 m) of section. Each well had five logs available for correlation- gamma ray, sonic,
density, neutron, and resistivity. The depositional environment is a small deep marine
basin along the continental shelf of the passive East Atlantic margin. Figure 8 shows the
results of the initial lithologic match between the two wells. A section of sandy-shales
in Well 1 correlates with a section of shaly-sands in Well 2. This is allowed by the
program since the environment is a shelf and the strike of the well correlation line is
roughly perpendicular to the shoreline. In this case, it is likely for a sand sequence to
increase in shaliness away from shore, and hence the matching cost between the units
was reduced.

Figures 9-11 show the resulting correlation, the final warping path, and the con­
strained global cost matrix for the West African wells. Also displayed are the rules
'fired' by the program in the correlation process. Figure 9 shows that the program does
very well matching the particular sand and shale units across the wells, even though
the section contains both thinning and thickening units. We can also see from Figure 9
the advantage of using multiple logs in the correlation. Looking at the gamma ray log,
it appears that the program is making meaningless correlations over the depth range of
8300 - 8400 feet. Looking at the density log correlation, however, we see that changes
in rock properties are occurring, even though they are not reflected in the gamma ray
log. This evidence supports the use of multiple logs in the correlation.

In Figure 10 we can see how information about the geologic structure between the
wells is represented in the warping path. First, referring back to Figure 3, we can see the
superposition of different geologic factors on the warping path. Over the entire depth
section, the beginning and ending regions match quite well in depth, which accounts
for the general 45 degree diagonal trend in the warping path. Notice, however, that
in a number of sections non-linear expansions and contractions occur between Wells 1
and 2, and that this imposes a curved section on the warping path. Most notably, the
strongly radioactive zone near 8250 feet is expanded in Well 2 relative to Well 1, which
shows up as vertical motion in the path. At 8500 feet, however, we have expansion of
a sand body from Well 2 relative to Well 1, which shows up as horizontal motion in
the path. Finally, the entire shale section at 8550-8600 in Weill, which is expanded to
the section 8825-8925 in Well 2, shows up as a significant curve in the warping path.
Referring back to Figure 3, we see the features displayed in parts (a) and (c) of that
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figure, normal faulting and pinching out.

Figure 11 shows the global cost matrix that resulted from the. constraints imposed
by the initial match. Maximum shift constraints were also imposed by the system for
each section in the initial match. The original, unconstrained correlation required over
168,000 distance calculations, and took about 7 minutes of computer time. The final
problem, after initial matching and shift constraints, required only 20,500 calculations,
and took only 127 seconds.

Field Example from Thrace Basin, Turkey

The dynamic depth warping algorithm is efficient because it can detect complex patterns
in many wells simultaneously. As a test of the fine scale matching ability of the system,
we used a pair of wells located in the Thrace Basin of Turkey. These wells are in
a trough filled by a turbidite sand shale sequence and capped by reefal limestones.
Little character is displayed in the logs (Figure 12). Lithology changes show up as only
small deflections and are very difficult to observe. Obvious, however, are the top of
the formation coming in early in each well, and a more subtle area of volcanic tuffs,
considered to be reliable time surfaces in each well. Both of these sections are shown in
the lithology log on either side of the wells (Figure 12).

No initial lithologic match was performed. The program imposed a maximum shift
constraint of 80 meters based on seismic results. The results of the correlation are shown
in Figures 12-14, along with the warping path and the global cost matrix. As Figure 12
shows, the top of the sandy-shale sequence is clearly reflected in the correlation. Close
scrutiny of the correlation also reveals three individual volcanic beds which are traced
from well to well. Another feature seen from the correlation is a general thickening
of corresponding sections with depth from Well 1 to Well 2, consistent with the well
locations in the trough. This shows up in the warping path (Figure 13) as a diagonal
line through the matrix, with a non-linear trend toward the bottom sections. Looking
at the warping path, we see two of the basic kinds of motions superimposed on the
path. First, the depth difference between the logs shows up as horizontal motion at
the bottom portion of the path. Stretching of Well 1 relative to Well 2 shows up as
a diagonal line through the matrix, as we saw in Figure 3. The non-linear increase in
bed thickness with depth that is reflected by the tie lines, however, curves the warping
path from the upper left corner to the bottom of the match. Once again, the separate
geological features show up as basic motions in the warping path. A comparison with
Figure 3 will show the similarity with parts (b) and (d) of that figure, listric faulting
and folding.
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We presented a new approach to well-to-well correlation which combines dynamic pro­
gramming and expert systems techniques. Combining these two methods overcomes
some of the fundamental problems that have hindered automated correlation in the
past. The dynamic depth warping technique has two advantages over older techniques.
First, it permits correlations across missing or discontinuous units. Second, because
it can be calculated recursively, it is extremely efficient and runs faster than even the
spectral methods. Multiple logs from each well are used for correlation, and we have
seen evidence that this can produce superior results.

The ability to apply rules from a geologic knowledge base to the matching algorithm
provides another set of advantages. Correlation strategies must change from basin to
basin and even from field to field. COREX bases its choice of correlation strategy
on encoded information about depositional models and the geometry of the wells in a
given environment. This information allows the program to make decisions about the
continuity of specific rock units, and how this continuity can change within a depositional
model. The program performs a coarse initial lithologic match, and uses this match
to constrain the dynamic depth warping. Other rules consider dipmeter and seismic
information, and respond to changes in log quality.

We applied the program to field examples from two widely separated hydrocarbon
provinces. In both cases, the automated correlation agreed very well with correlations
provided by geologic experts.

APPENDIX A: Dynamic Waveform Matching

An Example With String Matching

The following is a detailed description of dynamic programming for dynamic waveform
matching. For further information the reader is referred to Sankoff and Kruskal (1983),
Myers (1980), or Anderson and Gaby (1983). To illustrate the principles behind dynamic
waveform matching, we will consider the simple problem of matching some reference
word R with characters R(n), 1 > n > N with a test word T with characters T(m),
1 > m > M (Anderson and Gaby, 1983). The word matching will be performed by
editing some of the letters of the input test word T(m) until it matches the reference
word R(n). For alphabetical characters, these edit operations are defined as:
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Operation
d
eX
iX

Description
Delete the character
Change the character to X
Insert character to the
right of this character.
No Change

Edit Cost
1
1

1
o

Associated with each edit operation is a cost, listed on the right. We will assume for
simplicity that each operation has a cost of 1 except for the "no change" option, which
has no cost. For example, below are several possible edit sequences that transform the
word HILLIER into the word MILLER, and the total edit cost of each operation:

MIL L E R : T(M)
H ILL I E R : R(N)

d eM cI - cL - - D=4

MIL L E R : T(M)
H ILL I E R : R(N)

eM d cI - cL - - D=4

MIL L E R : T(M)
H ILL I E R : R(N)

eM - - - d - - D=2

From the example we see that of the three possible edit sequences, one is less costly
than the others. This match represents the "minimum distance" edit sequence, where
here the "distance" that we are concerned with is the total cost of matching the words.
Since there are at most N' = max(N, M) edit operations required to transform T,
into R and there are 4 possible edit operations, there are 4N possible edit sequences.
Dynamic Programming1 is used to efficiently explore this space of possible solutions and
determine the minimum distance (or least costly) match.

Let D (n, m) be the minimum distance (or cost) required to match the first n charac­
ters of R to the first m characters of T. D(n, m) will depend at any point in the match
on the choices of edit operations used 80 far in the match as follows:

1Dynamic Programming was first introduced by Bellmen in 1962 as a. method of optimizing by linear
programming.
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Edit d(n,m)
D(n I,m 1)

c D(n-I,m-I)+I
, D(n,m-I)+I
d D(n-I,m)+1

435

The creed of dynamic programming is to minimize the total cost of the match by
always choosing the minimum distance operation (cheapest local cost) at each point in
the matching process. In other words:

The total cost of matching two words up to the letters T(m) and
R(n), [D(n, m)], is equal to the total cost up to the previous move
[D(n - 1, m - 1) or D(n - 1, m) or D(n, m - 1)], plus the cost of the
next move [Either 1 or 0].

Thus, as the matching process continues, our total matching cost increases every time we
perform an operation besides a perfect match. Thus'our cost function is a monotonically
increasing function. For each costly operation (i.e., an insertion, deletion, or no change),
we will choose the least costly one. Therefore, our matching costs are continuously
increasing, but increasing by a locally minimal amount.

We can now recursively define the running total cost of the match D(n, m) in terms
of the previous total cost as:

{

D(n-I,m-I)+d(n,m),}
D(n,m) = min D(n, m - 1) + 1,

D(n -I,m) + 1

with the boundary condition D(n,m) = 0 whenever n = 0 or m = 0, and

d( ) . { 0 if R(n) = T(m),
n m =mln .

, 1 otherwise.

where den, m) is the local cost and is referred to as the "d;"stance metric".

(A - 1)

(A - 2)

Figure 1 shows a graphical representation of this matching process, with the dis­
tances computed for the MILLER and HILLIER example. Referring to Figure 1, the
running total matching costs D(n, m) are computed on an N by M grid, starting from
the point D(I,I) and proceeding to the point D(N, M) column by column. The mini­
mum total edit cost at the end of the match [the point D(N ,M)] is D (6,7) = 2, as was
shown above. The path drawn from D(N,M) to D(I,I) for which the value of D(n,m) is
monotonically decreasing corresponds to the optimum edit sequence.
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Figure 1 shows how the individual moves through the grid correspond to the edit
operations described above. Horizontal motions in the grid correspond to deleting por­
tions of the reference pattern, and always have a cost associated with them. Likewise,
vertical motions correspond to deletion of the test pattern with the associated costs.
Motions along a diagonal can either result in no cost, if the corresponding features
match (R(n) = T(m)), or a cost of 1, if they are different.

Since D(n,m) (the running total cost) depends only on d(n,m) (the cheapest next
move) and the D(n, m) values to its left (the total matching cost so far), the path is
locally constrained to follow one of the three paths shown in Figure 1. Since these mo­
tions correspond to the edit operations, the matching problem becomes equivalent to a
pathfinding problem. If we can find the path through the grid that minimizes the total
distance D(N,M), we have found our optimal match. Notice that this path is exactly
the warping function W(n) described earlier. Dynamic programming can efficiently de­
termine the optimal path whenever the dynamic programming principle applies:

Whenever the path from a starting point S [D(l,l) here] to an in­
termediate point I does not influence the optimum choice of paths
for traveling from I to a goal point G [D(N,M) here], then the min­
imum distance from S to G is the sum of the minimum distance
from S to I and the distance from I to G

Dynamic programming is efficient because it ignores all paths from S to lather than
the minimum distance one. This feature will prove vital when we wish to reduce some
of the grid calculations in matchings that involve hundreds or thousands of points.

Dynamic Depth Warping

Now that we have outlined the properties for dynamic matching of patterns that consist
of alphabetical characters, we would like to generalize this to the matching of discrete
curves. Figure 2 shows an example of a warping path that matches two discrete curves.
Each point in the curve has a value associated with it, which for well logs will be the
readings from the tool responses. These values now take the place of the alphabetical
characters in the word matching problem. Each point in the grid will have a value
associated with it that represents the total cost of the match to that pain t. As in the
word matching problem, the program must trace its way back through the grid, touching
the points which represent the now monotonically decreasing minimum distance path.
As the program traces through the matrix, it saves the discrete local motions in memory,
and then uses these motions to draw the corresponding tie lines and reproduce the
warping path. Note that in other applications the warping function is interpolated
as a continuous curve, whereas in the dynamic depth warping algorithm the path is

(
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always saved as discrete moves. In this way, the user can retrieve information about the
correlation from point to point in the global path.

APPENDIX B: Rules in the Geologic Knowledge Base

The following section contains a list of all the rules presently implemented in the COREX
knowledge base. The rules do not appear as they do in LISP code, but instead as their
English language translations. The rules are divided into three categories:

1. Lithologic Rules: Rules fired as COREX performs the initial match of lithologies
between the wells. These have three sub-classes: general lithologic rules, scale
rules, and shoreline rules.

2. Structural Rules: Rules that translate structural information from seismic and
dipmeter into dynamic programming constraints.

3. Distance Metric Rules: A miscellaneous category of general correlation rules which
concentrate mostly on modifying the local distance metric.

Lithologic Rules

If there is no other information about the depositional environment,
Then shales are the most continuous units, and sands are the next most continuous,
and limestones the next.

If there is no other information about the depositional environment,
Then "thick" units are more continuous than "thin" units.

If a lithology is designated as a marker bed,
Then it will be the most continuous unit in the area, and it will be assigned a "conti­
nuity" ranking of 1, and be assigned a matching cost of zero.

If a unit is known to cover a large geographical area, and it is present in both of
the wells,
Then it will be ranked high in continuity.

If two units are the equal in lithology and thickness,
Then their matching distance is proportional to their ranking of continuity In the
environment.
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If two units match in lithology, but not in thickness,
Then their matching distance is proportional to .7 times their continuity.

If two units do not match in thickness or lithology,
Then their matching distance is the maximum of 100.

If we are in a braided stream environment,
Then thick-sands are the most continuous units, and set the thin-shale matching dis­
tance to 100.

Scale Rules

If a particular unit is less than an arbitrary thickness,
Then it is designated a "thin" bed.

If a particular unit is greater than an arbitrary thickness,
Then it is designated a "thick" bed.

If we are in a braided stream environment, and the section is greater than an
arbitrary thickness,
Then thick-shales cap vertical sequences, and thick-shales should be marker beds.

If we are in a meandering stream environment, and the vertical section is greater
than an arbitrary thickness,
Then we should expect insertions and deletions of units.

Shoreline Rules

If correlation is in a braided stream, meandering stream, beach, delta, slope, or
shelf environment,
Then ask the user for shoreline trends and invoke the shoreline rules.

If we are in a meandering stream environment, and the strike of correlation IS

perpendicular to shoreline, and the well spacing is less than 10 km,
Then make sands the most continuous units.

If the well spacing is greater than 10 km, and the paleostrike is parallel,
Then assign sand-sand matching distance to 100.

(
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If we are in a beach environment, and the strike of the wells is parallel,
Then sands are the most continuous units. Else if the well spacing is greater than 2
km, Then sands are the least continuous units.

If we are in a reef environment, and the strike of the wells is parallel to shoreline,
Then limestones are the most continuous units. Else if the strike is perpendicular and
the well spacing is greater than 10 km, Then limestones are the least continuous units.

If we are in a continental shelf environment, and the strike of the wells is perpen­
dicular,
Then allow sandy-shales to correlate with shaly-sands of the same dimension, and
allow conglomerates to correlate with sands of the same dimension.

If we are in a continental slope environment, and the strike of the wells is perpen­
dicular,
Then allow thin units to correlate with thick units of the same lithology down the slope,
and allow sandy-shales to correlate with shaly-sands down the slope.

If we are in a deltaic environment, and the strike of the wells is parallel, and the
well spacing is less than 15 km,
Then sands are the most continuous units. Else if the well spacing is greater than 20
km, Then set sand-sand matching distance to 100.

If we are in a deltaic environment, and the strike of the wells is perpendicular to
shore,
Then allow thin units to correlate with thick units of the same lithology down the slope,
and allow sandy-shales to correlate with shaly-sands down the slope.

If we are in a deltaic environment, and there is coal in both wells,
Then designate coal as a marker bed.

Structural Rules

If the section in well 1 is at least 1.5 times as thick as the section in well 2,
Then limit the warping path to the lower section of the global path.

If two regions are forced to match by the interpreter,
Then force the warping path to go through the region.

If two points are tied from the lithologic match,
Then impose a tie point with an error on each side equal to twice the minimum resolv-
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able bed thickness.

Lineman et al.

If there is a normal fault between the two wells, and it has an offset of x meters,
Then start the warping (x - an arbitrary number) meters in the downthrown well.

If there is structural dip between the wells of S degrees, and the well separation is
d meters,
Then start the warping path (dsinS) meters in the down-dip well.

If we expect insertions and deletions of rock units,
Then use a weighted type I continuity constraint.

Distance Metric Rules

If the two points are separated by a distance greater than the maximum allowable
shift,
Then assign a maximum matching cost of 100.

If the matching cost is below the threshold of the smoothing operator,
Then assign the points a matching cost of zero.

If log A is determined to be beyond the noise threshold,
Then weight it by zero in the local distance measure.

If the caliper log at depth D shows a spike,
Then assign a very high matching distance at that depth.
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Figure 1: String matching as a path finding problem. Matching two character sets is
equivalent to finding the minimum-cost path through a matrix. (a) Each value in the
griq represents the total cost of matching the words to that point. At any point in the
match, the warping path is restricted to one of the three motions shown in (b). Each
of the three possible motions - horizontal, vertical, or diagonal - corresponds to the
three possible edit operations - insertion, deletion, or substitution. (Mter Anderson
and Gaby, 1983)
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Figure 2: Discrete warping as path finding. The same dynamic programming principles
apply as in the string matching problem, but the characters are replaced by discrete
values from a digitized well log. The same path restrictions apply, representing insertion,
deletion, and substitution, as shown in Figure 1.
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SOME GEOLOGIC SITUATIONS AND
THEIR CORRESPONDING WARPING PATHS

WeU 2

WeU 2

WeU I

W.ll 1
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Salt Dome Flank
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"ell I
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Normal Faull

Figure 3: Geological expression in the warping path. Some common geological settings
and the corresponding depth warping paths that would result from a correct correlation
across the feature. (a) Simple offset, resulting from a normal fault. (b) Non-linear
stretching with depth, from a growth fault. (C) Pinch-outs, from isolated sand lenses.
(d) Linear stretching, from flanks of a salt dome.
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Figure 4: Results of COREX correlation on synthetic examples of geologic structure.
The upper right shows correlations across a normal fault with simple depth shift be­
tween corresponding points, and the upper left shows correlation where sandstone units
pinch-out between wells, and must be deleted or inserted from one well for a correct
correlation. The correct warping paths are shown beneath each correlation. Note the
correspondence to the theoretical diagrams of Figure 3, in the presence of noise which
we deliberately added to the synthetic logs.
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Figure 5: Output from the COREX program after the initial match between two wells
shows how tie points input from the knowledge base effectively limit the scope of the
warping calculations.
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Figure 6: Limiting the global area with maximum shift constraints. Two points sepa­
rated by a distance greater than the maximum shift (R) are automatically assigned high
matching costs, eliminating them as possible points for the warping path. The lower
half of the figure shows the result of superimposing range constraints with the tie point
constraints of Figure 5.
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Figure 7: Improved correlation from noise analysis. In part (a), correlation proceeded
using all logs giving poor results. After noise analysis, the density and neutron logs
were omitted from the calculation, resulting in the improved correlation shown in part
(b).
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WARPING FUNCTION FOR WELLS:
Well 1 Well 2
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Figure 8: Results of the initial lithologic match for the West African wells. Notice
in the correlation and also in the cost matrix that a sandy-shale section is correlated
with a shaly-sand section. This was allowed because the orientation of the wells was
perpendicular to the shoreline, and shaliness is expected to increase down the paleoslope.
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CORRELATION: WEST AFRICA
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Figure 9: Final correlation for West African wells displaying gamma ray and bulk density
logs, with lithology inversion displayed next to the logs. Note the successful matching of
the lithologic boundaries, and the expansion and contraction of various sands and shales
in the lower section of the wells. The advantage of a multiple-log correlation shows in
the display of the various logs. There appears to be correlation of meaningless features
in the thick upper shale section of the gamma ray log, but the density log reveals that
lithology changes are taking place, even though they are not reflected in the gamma ray
log.
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Figure 10: The warping path which matched the West African wells. Note the reflection
of the geologic features in the warping path: 1) Slight expansion of the highly radioactive
zone (around 8260 feet) from weill relative to well 2 shows up as a vertical line in the
path; (2) Expansion of a sandy-zone at 8525 from well 2 relative to well 1 shows up as
a horizontal section in the warping path; (3) The superposition of a curved section onto
a rough 45 degree diagonal, representing the fact that the sections correlate well with
depth at the beginning and end points (a diagonal line), but that non-linear stretching
is required in a few areas (the curved sections). Note the similarity with parts (a) and
(c) of Figure 3.
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Figure 11: The global cost matrix that resulted from the correlation of the West African
wells. Darker regions mean higher cost values. Black areas represent portions of the
global area that were eliminated by tie lines and maximum shift constraints. Notice the
"propagation" of the lower cost values through the diagonal of the matrix, and how this
corresponds with the warping path of Figure 10.
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CORRELATION: THRACE BASIN, TURKEY
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Figure 12: Final correlation from wells in the Thrace Basin, Turkey. No lithologic
correlation was performed. Notice the successful match of the formation onset and the
section of volcanic tuffs in each well. The tie lines display some non-linear stretching of
weill relative to well 2, which may represent a thickening of section down the correlation
line.
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Figure 13: Warping path which matched the wells in the Thrace Basin. Notice the
superposition of the different geometric properties on the warping path, and how these
correspond to the theoretical paths discussed in Figure 3. (1) A diagonal path toward
the bottom of the matrix represents the constant stretching of section in well 1 relative
to well 2; and (2) a curved portion is superimposed on this general trend to account for
the non-linear stretching with depth that occurs from well 1 to well 2, as is shown in
the tie lines of Figure 12. Note the similarity with parts (b) and (d) of Figure 3.
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Figure 14: Global cost matrix for Thrace Basin correlation. Darker areas represent
high matching costs. Black areas are sections that were eliminated from calculation by
a maximum shift constraint. Compare the minimum distance areas with the warping
path seen in Figure 13.


