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ABSTRACT

A new approach to the processing of sequences of full waveform acoustic logs is in
vestigated. The rationale for this approach is primarily based on the observation that
processing and interpretation tasks strongly depend on each other. Hence, a system
that incorporates geologic knowledge in data processing naturally and uses processing
results for petrophysical evaluation can improve the overall geological interpretation.
The implementation of such ideas requires the use of a versatile computer environ
ment, allowing numeric and symbolic processing. The new generation of Lisp machines
satisfies these characteristics.

An interactive environment for the processing of sequences of acoustic signals was
designed using object-oriented programming. The package includes a novel method for
acoustic full waveform signal matching that uses dynamic time warping. The system is
tested on synthetic data and field data are processed.

INTRODUCTION

The motivation for the !MIst system is twofold: first,to provide an interactive processing
environment for sequences of full waveforms (as well as single waveforms)' and second,

1 Acronym for A Modern Interactive System
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to enable the operator to combine numeric and symbolic operations on signals. These
two goals are complementary, since achieving these tasks requires a flexible structure
oriented toward the easy manipulation of arrays of signals, elementary signals, and
segments of signals. The general philosophy of the system is to make few assumptions
about the specific methodologies of processing. The implementation on the Lisp machine
uses object-oriented programming and takes advantage of the powerful programming
environment - especially for graphical applications.

A determinant design choice was to define the concept of sequence of waveforms
as the elementary object, as opposed to more general-purpose data processing systems
that represent isolated signals (see for instance Kopec, 1984; Dove et aI., 1984). This
choice is essential in fuIl wave acoustic data processing where the principal processing
operations concern arrays of waveforms. It would be awkward to implement a velocity
analysis or a controIled threshold detection technique if the elementary concept were
a single signal. User interaction is an important facet of the system; Appendix A in
Larrere (1987) illustrates the "style" of interaction and demonstrates the use of some
operators and the geophysical applications of the AMIS system.

Since the system's philosophy and performance are strongly influenced by LISP
programming and, more specificaIly, object-oriented programming, the main charac
teristics of these programming techniques are briefly discussed before describing the
system's structure, the processing operators, and presenting applications to fuIl wave
form acoustic data.

LISP AND OBJECT-ORIENTED PROGRAMMING

LISP 2 is a language primarily devoted to symbol manipulation that originated at the
same period as FORTRAN - the late fifties. It is being widely used now that suitable
hardware has become available. LISP is a functional language, i.e. most programming is
done by combining existing functions at different levels of specialization rather than by
describing a sequence of operations. This process, caIled procedural abstraction, favors
the partition of the task to more manageable subtasks and therefore makes incremental
programming easy. LISP structure encourages a type of programming characterized by
an "applicative" style, close to the composition of functions in mathematics. Further
more, recursive applications of functions are possible and commonly used to describe
procedures. In fact, the representation of programs is done with the same data structure
(lists) as any other data. This enables the system to handle complex programs with
the same ease as elementary data. Despite its orientation toward symbolic operations,
compiled versions of LISP are also suitable for arithmetic computations (Winston and

2Acronym for List .Eroces8ing.
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Another strategy to augment abstraction in programming is to encourage the or
ganization of data. Suppose we are to write processing operators for single seismic
waveforms. A simple and useful data structure that describes a general concept WAVE
FORM will be composed of a time-series, a sampling rate and some identification. These
components are also called the slots (or attributes) of the abstract data type (or ob
ject) WAVEFORM. The strength of data-abstraction is that pieces of related data can be
treated as a unique entity. In addition, specific procedures are defined to construct,
access and modify the elementary slots. This suppresses the burden of retrieving and
organizing the diverse components for every specific task and enables better program
ming since, according to Winston and Horn (1984), "keeping track of such details can
cause brain damage". Data abstraction allows concentration on high-level concepts and
makes programs easier to modify since information is organized in well-defined com
pound structures.

A systematic recourse to data abstraction where objects are also responsible for the
management of functions is called object-oriented (or object-centered) programming. In
object-oriented programming, procedures are attached to objects in much the same way
as any other attribute. LISP makes this easy to handle since data and programs are
represented with the same basic structure: a list. Message-centered languages are a
subspecies of object-oriented languages characterized by an original syntactic feature:
a given procedure attached to an object is executed in response to a message sent by
another object. Suppose we have two data types WAVEFORM and SEQUENCE (representing
sequences of waveforms). We can associate a procedure "draw-self" to both objects
that operates differently for a single waveform and for a sequence of waveforms. The
adequate response is given when an instance of SEQUENCE or WAVEFORM receives the
message "draw-self". The specific details for the actual execution of the task, however,
are transparent for the higher level operations.

ZetaLisp is a dialect of LISP that includes a message-centered language called the
flavor system. Flavors are non-hierarchically structured objects that can be mixed
together to form a new concept. The "mixed" flavor inherits the attributes of each
parent flavor as well as attached messages (also called methods). Invoking the application
of a method is called message passing. A thorough description of the principles of
message-centered programming and flavors can be found in Winston and Horn (1984).

In pure message-centered programming, an operation can occur only when an object
sends a message to another object. In practice, every operation does not need to be
initiated by message passing and low level procedures are performed via basic LISP
functions. Operators on arrays are also written in LISP since compiled ZetaLisp is as
fast as FORTRAN for arithmetic operations and includes powerful built-in functions
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for the description and· manipulation of arrays3.

THE AMIS SYSTEM

The AMIS system owes much to object-oriented programming concepts as described in
the section below. The description of a few basic data types forms the core of the
processing environment. This confers the ability of a fast and simple access to data,
operators, and results. Another advantage of an object-oriented design for signal pro
cessing is that the development of processing algorithms and the practical utilization
on real data are done with a unique language (Kopec, 1984). Thus, the tasks of de
velopment and utilization can be tackled within the same environment, which allows
incremental improvement of the processing operators. Also, this type of structure is
very well suited for encapsulating the processing <lperators into a knowledge-based sys
tem, both from the standpoint of data and result description and of the planning of
processing operations.

Since data and results are represented as abstract objects, they can be easily ma
nipulated and accessed. The only drawback of the actual implementation may be that
instances of objects and attributes have no memory of their past values, i.e., application
of an operator twice leads to loss of the first result. This type of bookkeeping can be
handled by a higher level object structure. Since processing operators are defined as
messages attached to data structures, they are manipulated with the same ease as data.
Their applications can be easily controlled by high level constructor procedures.

The basic data-types for signals in the AMIS system are TRACE and SEQUENCE, rep
resenting respectively waveforms and arrays of waveforms. Processing operators are
attached to sequences and/or traces depending on the nature of the task they perform.
Some operators applied on certain classes of data can produce side effects, i.e., related
processing results are assigned to the adequate slots of traces. Initial arrays of wave
forms can be transformed with operators or they can be segmented: this leads to the
creation of new instances of specialized sequences, respectively TRANSFORMED-SEQUENCE
and SUB-SEQUENCE. Thanks to the object-centered structure, any creation of more spe
cific instances confers also the ability of invoking the same collection of operators and
of accessing all relevant information. In particular, "images" (i.e., graphical represen-

. tation of objects in windows), stay physically present and are readily available in the
environment. Again, an illustration of the possibilities of the system, with the help of
practical sessions, is given in Appendix A of Larrere (1987).

3Ba,sic mathema.tica.l operators on a.rrays could a.lso be implemented with FORTRAN subroutines,
using either network links or the Symbolic3 FORTRAN.

I
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The objects in AMIS are structured hierarchically. Two main concepts are defined at the
root of the tree, representing in one part waveforms and arrays of waveforms (DATA
TYPE), and in the other part abstract data types useful for results and for the practical
implementation (ABSTRACT-TYPE). A concept subsumed by other objects inherits their
slots. Figure 1 shows a portion of the hierarchical relations between AMIS objects sub
sumed by DATA-TYPE. The data type SUB-SEQUENCE has an instance sub-sequence-03
that is an actual piece of data. It is subsumed by the object SEQUENCE which is a specific
DATA-TYPE. The list of the definitions of objects is presented in Appendix B of Larr"re
(1987). The central concept is the data type SEQUENCE that embodies two important
slots, image and list-ai-traces.

Image represents the abstracted part af the object SEQUENCE, related to graphical rep
resentations. Processing operations are primarily attached to images of sequences
rather than to sequences themselves.

list-ai-traces relates a sequence to its primary components, i.e., the individual wave
forms, represented by the data type TRACE.

Since every data type slot is assumed to be an instance of some defined object in the
environment, the overall structure forms a description of the semantic of the domain,
i.e., of the meaning of links between the various concepts. A piece of this network is
shown in Figure 2. This network shows, in particular, that a SEQUENCE has an image,
which is an instance of the particular object SEK-IMAGE, that is itself an ABSTRACT-TYPE
containing other members of ABSTRACT-TYPE called REGIONS that contain DATA-TYPE
objects.

Processing Operators

Processing operators in AMIS are messages that can be sent to instances of SEQUENCE
or TRACES. The listing of these messages is given in Appendix C of Larr"re (1987).
Most operators are built on lower level array processing functions. The most important
operators on SEQUENCE are:

1. Operators for single signals, generalized for sequences of traces, including normal
ization, interpolation with cubic splines, estimation of maxima in time-windows
and computation of envelopes via moving average.

2. Two methods for picking:
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• Automatic threshold detection for all kinds of waves. The appropriate time
band for picking is restricted by taking into account the nature of the wave .

• Manual picking with the mouse4 . A minimum of two picked points is required.
The values for other waveforms in the sequence are linearly extrapolated or
interpolated.

3. An accurate computation of move-out between traces using dynamic time warping5

with the possibility of interactively adapting and optimizing the parameters - i.e.,
the position of windows and the number of points.

4. The study of wave dispersion in the time domain - computation of phase velocity
variations as a function of the length of the path of propagation.

Some operators are very general and can be invoked for any type of sequence and
trace, others are restricted to certain data types. The two following examples illustrate
why the field of application of operators is sometimes restricted:

• The message "envelope" can be sent to any type of trace and sequence, including
fragments of sequences and already transformed sequences. The operator is not
task-dependent, hence messages for traces and for sequences are built on the same
very general I,rsp function .

• The message "handpick-arrival-time" is only defined for instances ofRAW-SEQUENCE
of at least two traces, and does not make sense for an instance of SUB-SEQUENCE
except when the value of the type slot of SUB-SEQUENCE is po, So, or Stoneley
waves.

Processing results are described by two objects linked with the instances of TRACE.
These objects are INITIAL-PROCESSING-VALUES and FINAL-PROCESSING-VALUES. Pick
ing methods (Le., automatic threshold detection and manual picking) fill the "initial
values" slots of waveforms. The initial arrival time values are then used to compute
velocities with signal matching and the results are transferred to the "final-values" slots
of waveforms. All results, as well as the history of operations applied to a given instance
of SEQUENCE can be retrieved with the help of specific messages (see the list of operators
in Appendix C).

'This technique is not intended to give precise arriva.l time estima.tes since there is the limita.tion of
the initials3,mpling rate. Nevertheless, it ca.n provide high manua.l precision picking if done a.fter spline
interpola.tion.

~The technique is described in the next section.

(
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SIGNAL MATCHING WITH DYNAMIC TIME WARPING

Dynamic Time Warping

461

Dynamic time warping can be regarded as a generalization of cross-correlation that
allows not only shifting but also stretching and squeezing of one signal with respect
to the other. A general signal matching problem consists of estimating a mapping
function between two time series at any point in time. This mapping function must
be such that it minimizes a given measure of dissimilarity or distance between the two
signals. Therefore, the problem can be formulated as an optimization problem, and was
tackled with two different approaches:

• A non-linear least-square inversion for estimating the mapping function as a sum
of simple analytical functions. Martinson et al. (1982) used truncated Fourier
series and successfully applied this technique to geophysical data.

• The problem can also be formulated as a search in the two-dimensional discrete
space of accumulated distances between the two signals. Sakoe and Chiba (1971)
proposed an algorithm using dynamic programming. The technique, called dy
namic time warping, was widely used and developed for speech recognition prob
lems (see Rabiner et aI., 1978). Anderson and Gaby (1983) review some possible
applications in the geophysical domain, among which waveform classification and
well-to-welllog correlation (Lineman, 1986) were developed. He suggested the use
of dynamic time warping for the processing of entire sonic waveforms.

Figure 3 shows the dynamic time warping problem for two discrete signals ai and bj

of respective lengths Nand M. We need to determine a discrete mapping function
Ck = [i(k) , j(k)) that corresponds to a minimum distance between each couple of samples.
Choosing a local cost function d(c(k)), we are to minimize the overall cost function
D(c) = L: d(c(k)). This problem is equivalent to a path finding problem in the N x M
discrete domain of accumulated costs (see Figure 3). Given constraints on endpoints
and with the definition of the legal local moves (the set of allowed moves from any point
[i,j) to its neighbors), it can be shown that the minimum cost path from the origin [0, 01
to any point ii, j) is independent of what happens beyond this point. The minimum cost
path is determined recursively by minimizing more and more local costs. An optimal
path finding algorithm using dynamic programming can be applied to evaluate the
mapping function Ok (Sakoe and Chiba, 1971). A complete description of the algorithm
can be found in Parson (1986).



462 Larrere

Application to Full Waveform Processing

The mapping fun~tion Ck = [i(k),j(k)] is a representation of time shifts between the
two input signals for all samples. The time-shifts are 5tk =1 i(k) - j(k) I. Figure 4a
illustrates the case where the two signals are identical: we have i(k) = j(k) for all k,
hence Ck is a straight line between the initial and final tie-points, and 5tk = 0, for all k.
Figure 4b shows that if two identical signals are shifted by a constant number of samples
s (corresponding to a time move-out t.), the theoretical mapping function is a straight
line beginning at Cl = [0, s]. If the time shift between the two signals increases with
time, as shown in Figure 5, the mapping function departs from the constant slope. The
dynamic time warping technique presents applications two for full waveform matching
in the context of the AMIS system.

• The method is potentially very accurate for recovering the variation of move-out
with time due to wave dispersion between a couple of waveforms.

• The nature of the algorithm enables the operator to control the mapping and to
set constraints in order to limit the space of possible matches. These constraints
can drastically prune the search tree, hence making the matching computationally
effective.

This signal matching technique was applied to two slightly different problems: first,
to perform fast correlations on short windows to estimate travel times (and therefore
wave velocities); second, to make detailed analyses of the dispersion of arrivals in the
time domain. The first task could be addressed with traditional cross-correlation tech
niques since the very beginning of arrivals is in general not dispersed. However, for
dispersed waves (i.e., PL modes, pseudo-Rayleigh and Stoneley) determining the phase
velocity as a function of time can be done by non-linear matching techniques.

Velocity determination The determination of a wave velocity with dynamic signal
matching involves five steps:

1. Determination of the arrival-time to of the wave for each waveform in the sequence
using a fast picking method.

2. Windowing the arrival around to; the window length depends on the dominant
frequency - for instance, the window is longer for the S wavetrain than for the
P-wave.

3. Interpolation of the windowed waveform with a cubic spline. The interpolation
factor depends on the precision required.

(
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4. Correlation by dynamic time warping with a maximum time shift constraint. The
maximum time shift is the result of a trade-off between confidence in the first
estimate and computational cost.

5. Computation of the wave velocity from the initial move-out and the dynamic time
warping time shift.

The process is repeated for every couple of waveforms in the sequence. The first step is
essential for the reliability of results, especially in the case of S-wave detection. For an
interactive process, P- and S-wave first arrival estimates are obtained with automatic
or manual picking and errors can be easily and quickly corrected. For an automated
process, a priori assumptions must be made (choice of a model) and control procedures
must be set in order to check the validity of the picks.

Dispersion studies Signal matching with dynamic time warping allows the study
of the dispersion of arrivals in the time domain for two waveforms. This information
could also be obtained in the frequency domain or via T-p transform but these methods
require arrays of waveforms to work. The study of dispersion is restricted to a part of
the waveform for two reasons:

• The measure of similarity between signals emphasizes the resemblance of the
prominent waves. Because high amplitude arrivals have a prevailing contribu
tion on the cost function, weak arrival are matched less accurately. For instance,
in a hard formation and for short offsets, the method cannot resolve the P-wave
time delays because of the dominant energy in the pseudo-Rayleigh wave.

• The computational cost is too high when two entire waveforms are matched6 with
the high sampling-rate required for sufficient precision.

RESULTS

Synthetic Microseismograms

Results using synthetic waveforms are presented first in order to test the accuracy of
the method. Synthetic microseismograms were generated with the discrete wavenumber

GThe computational cost of dynamic time wa.rping is theoretically proportional to the product of
the two signal lengths. In fa.ct, the internal building of the recursion slows down the computa.tion when
signal lengths pass a given threshold.
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method in the case of an open borehole surrounded by an homogeneous formation.
The mechanical properties are: Vp = 4000 mis, Vs = 2310 mis, Qp = 50, Qs = 25,
p = 2.4x 103 kg/m3 . The time sampling rate is 11.84 microseconds. The borehole radius
is 10 cm and the center frequency of the source is 5 kHz. Figure 6 shows the complete
sequence of synthetic waveforms. The source to receiver distances range from 2.50 m
to 8.00 m in increments of 0.50 m. The energy in the Stoneley wave is prodominant for
all of the waveforms.

Velocity determination A P-wave velocity analysis was performed on the synthetic
data shown on Figure 6. For the sake of illustration, the initial automatic threshold
detection step was ill-done. There is a cycle-skip for the 7.00 m offset. This cycle
skipping was the result of a relatively poor signal-to-noise ratio for large offsets due to the
attenuation. Figure 7 and 8 show the time-windowed P-waves after spline interpolation.
The window length is about two and a half cycles and the time sampling is less than a
microsecond.

As shown on Figures 9 and 10, the mapping functions are nearly perfect straight
lines for offsets less than 5.00 m. The quality of match decreases for larger offsets, as
the level of numerical noise increases. Note also that the mapping function between
the 6.50 m and 7.00 m offsets - involving a cycle-skip - shows a linear part that
corresponds to the maximum shift constraint on the match. This indicates that paths
with lower cost could be found if larger move-outs were tolerated. The move-out value is
estimated by taking the average of the three most common time-shift values, excluding
the extremities of the mapping function. This estimate was found to be more robust
than the straightforward average value.

Since the mapping function is constrained to stay in a diagonal band defined by a
maximum time shift, matching the 7.00 m offset (with initial cycle-skipping) corresponds
to a wrong estimate. In order to make the proper correlation the initial window length
must be larger, so that it includes the first skipped cycle, and the constraint on the
maximum shift must be relaxed. These increase the computational·cost significantly.

Excluding results corresponding to the arrival detected with a cycle-skip, all final
velocity values are within 2.0 % of the theoretical value. The average value for the entire
array is 3960 mls (the theoretical value being 4000 mls). The determination of the S
wave velocity (not shown here) was done with the same relative error. This example is
representative of the order of precision of the method as applied to a few sequences of
synthetic seismograms. Tests for waveforms without attenuation showed less deviation.
All results, including the P-wave velocity determination, have a systematic negative
bias, i.e., an underestimation of velocities, on the order of 0.5 % to 1 %. This is
consistent with the fact that body wave velocities are in all cases upper bounds to the
phase velocities of guided arrivals and leaky waves.

(
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Dispersion study A study of the dispersion of the first cycles of the pseudo-Rayleigh
arrival in the time domain was done on the same set of microseismograms. Figure 11
shows the initial sequence, from which the beginning of the pseudo-Rayleigh wavetrains
corresponding to offsets of 5.00 m and 5.50 m were correlated with dynamic time warp
ing. The two signals are normalized and interpolated before signal matching.

The result is shown on Figure 12. As expected, the general trend is a decrease of the
phase velocity with time. The very beginning of the arrivals is weak in amplitude and
contains a small component of P-wave arrival which explains the scatter in the results.
For the first 500 microseconds, the average velocity is about 2300 mls (the theoretical
S-wave velocity being 2310 m/s). The last 300 microseconds correspond to a decreasing
phase velocity, from 2300 mls to about 2100 m/s. Thus, the underestimation of the
S-wave velocity depends on the length of the window estimate. Nevertheless, taking the
average over a 1000 microsecond window still provides a good estimate of the S-wave
phase velocity (2250 m/s).

Field Data

The sequence displayed on Figure 13 is twelve traces of field data. The first receiver
is ten feet from the source and the distance between successive traces is a half foot.
Each trace contains a P wave, a pseudo-Rayleigh wavetrain and a Stoneley arrival. The
relative amplitude of the pseudo-Rayleigh arrival is low.

A velocity analysis with signal matching was performed for each couple of traces
for the P, Sand Stoneley waves. The respective average values for the velocities are
4100 mis, 2440 mls and 1460 m/s. These values agree very well with results obtained
with the semblance method and the maximum likelihood method (Ellefsen et aI., this
volume). The velocities between successive slices offormation, however, show important
variations. For the P wave, velocities vary between 3400 mls and 4500 mis, for the S
wave between 2140 mls and 2900 m/s. Accurate signal matching gave no significant
trend for the variation of P- and pseudo-Rayleigh wave phase velocities. As shown on
Figure 14, the pseudo-Rayleigh arrival seems to be fairly non dispersive.

CONCLUSIONS

The AMIS system proved to be well-suited for interactive processing of sequences of
waveforms. The primary advantage over other types of structure is that the core concept
of sequence makes possible the easy manipulation of complex two-dimensional objects.
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The system is adequate for a moderate amount of data, i.e., for sets of a few dozens
of traces. The operators are flexible and accurate, as demonstrated by tests on synthetic
data. These tests also confirm that the S-wave velocity is in general well-estimated from
the characteristics of the pseudo-Rayleigh arrival. Nevertheless, the general trend is to
underestimate velocities, by an amount that depends on the mechanical properties of
the formation.

Working with graphical representations of signals provides an instantaneous under
standing of the effects of operators. Thus the user has the ability to redo operations
easily, until the processing results are satisfactory. This type of approach is very useful
for development and for testing tasks.

The message-oriented style of programming allows modularity. Operators can be
easily encapsulated in more complex and general structures. This latter characteristic
is essential for further development and provides a wide range of applicability. Basic
operators form a very top-level language that can serve as a basis to construct more
specific tools. The ability to treat the operators as abstract structures is also essential
for integration in a knowledge-based system for full waveform interpretation.
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Figure 1: Hierarchical relations between AMIS objects: raw-sequence-16 and sub
sequence-03 are instances of the abstract data types RAW-SEQUENCE and SUB
SEQUENCE.
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,Figure 2: A partial representation of the network of relations between AMIS objects and
attributes. IS-A links represent subset-set relations between concepts.
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Figure 3: Matching of two discrete signals with dynamic time warping. The mapping
function is Ck = [i(k),j(k)). (After Myers, 1980.)
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Figure 4: Mapping functions corresponding to: a) Two identical signals; b) Two iden
tical signals with a time shift t._
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Figure 6: Synthetic microseismograms and automatic threshold detection of the P-wave
arrival. The amplitudes are magnified in the lower diagram to show the P-waves.
Note the cycle-skip at 7.00 m.
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Figure 7: Windowed P·waves for signal matching. Offsets are from 2.50 m to 5.00 m.
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Figure 8: Windowed P-waves for signal matching. Offsets are from 5.50 m to 8.00 m.
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Figure 9: The mapping functions for adjacent waveform pairs, Offsets are from 2,50 m
to 5,00 m,
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Figure 10: The mapping functions for adjacent waveform pairs. Offsets between 5.00 m
and 8.00 m. As the signal-to-noise ratio decreases the mapping function becomes
more noisy. Note the effect of the maximum time shift constraint on the beginning
of the mapping function at 650-700.
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Figure 11: Picking the S-wave onset with the mouse. Small rectangles correspond to
the arrival times picked by the user. Arrows point at interpolated time values for
all traces.
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Figure 12: Two pseudo-Rayleigh arrivals for the offsets 5.00 m and 5.50 m and the
corresponding variation of time delays.
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Figure 13: Raw array of full waveforms. The first receiver is 10 feet from the source
and the distance between two successive traces is 0.5 foot.
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Figure 14: Extracted S (and pseudo-Rayleigh?) wavetrains from the sequence presented
on Figure 13.
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