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ABSTRACT

Stoneley waves in permeable boreholes are diagnostic of formation permeability be-
cause their propagation is affected by the dynamic fluid flow at the borehole wall. We
characterize this flow using the concept of dynamic permeability. We examined the
applicability of the dynamic permeability to porous media by applying it to a single
fracture case and found that it agrees excellently with the fracture conductivity de-
rived from an exact solution. In dealing with the interaction of a Stoneley wave with
a porous formation, we decompose the problem into twe parts. The first is the in-
teraction of the Stoneley with an equivalent elastic formation without fluid flow. The
second is the interaction with the flow that is governed by the dynamic permeability.
In this manner, we obtained a simple model for the Stoneley propagation in permeable
boreholes. We compared the Stoneley wave attenuation and dispersion characteristics
from this model with those from the complete model of the Biot-Rosenbaum theory
in the case of a hard and a soft formation, respectively, We found that the results
from both models agree very well for a hard formation, although they differ at higher
frequencies for a soft formation because of the increased solid compressibility. The
theoretical predictions from this simple model were also compared with recently pub-
lished laboratory data of Stoneley wave measurements, performed at both low- and
high-frequency regions of Biot theory. The simple model and experiment are in ex-
cellent agreement. Because of the simplicity of the model, it can be easily applied
to problems concerning Stoneley propagation in permeable boreholes, especially to an
inverse problem to extract formation permeability from Stoneley wave measurements.
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INTRODUCTION

The estimation of rock permeability from borehole Stoneley waves is of considerable
importance in acoustic logging studies. Field measurements clearly indicated the ef-
fects of formation permeability on Stoneley waves {Bamber and Evans, 1967; Staal
and Robinson, 1977; Williams et al., 1984; Zemanek et al., 1985). On the other hand,
theoretical studies also showed the correlation between permeability and Stoneley prop-
agation. White (1983) and Hsui and Toksdz (1986) developed low frequency models to
study the problem and predicted this correlation, although these models are not accu-
rate at high frequencies. Rosenbaum (1974) was the first to use Biot’s (1956) theory
for a porous solid to model acoustic logging in a porous formation and investigated
the effects of permeability on high-frequency borehole acoustic waves. This model is
therefore termed the Biot-Rosenbaum model. Cheng et al. (1987) applied this model
to the medium frequency range of [0-8] kHz, in which the Stoneley wave is effectively
excited. They found substantial influence of permeability on Stoneley propagation and
a good agreement of the theory with field observations. Schimtt et al. (1988) extended
the model to study the permeability effects on the Stoneley and other borehole waves
(e.g., pseudo-Rayleigh waves). Winkler et al. (1989) performed laboratory model ex-
periments to measure borehole Stoneley wave propagation and found that the theory
and experiment agree very well. In addition, Chang et al. (1988) and Norris (19893) de-
rived low-frequency asymptotics of the Biot-Rosenbaum theory for the Stoneley wave
and showed that the White (1983) and Hsui and Tokséz (1986) models are the low-
frequency representation of the theory when the {frame of the solid is very rigid. In
summary, it has become clear that the Biot-Rosenbaum model is the appropriate basic
theory for wave propagation in a borehole penetrating a porous formation.

The notion of permeability was originally defined by Darcy (1856) to measure the
ability of a porous material to transport fluid under a static pressure gradient. One
would wonder how such a static quantity is related to dynamic wave propagation. The
relation lies in the “slow wave” that exists in a porous solid. Basically, the Biot’s
theory predicts three distinct types of waves in a fluid-saturated porous medium {Biot,
1956a,b), the “fast” compressional and shear waves, and the slow compressional wave.
The former waves are analogous to the P and S waves in an elastic solid, while the
latter wave is a dilatational wave associated primarily with the motion of the pore fiuid.
The slow wave exhibits strong frequency-dependent behaviors. At low frequencies, the
slow wave motion is diffusive, and the amount of fluid flow driven by this motion is
well described by the static Darcy’s law. At high frequencies, however, this wave is a
propagational wave and the fluid flow is no longer governed by this law. To address
this frequency-dependent fluid transport problem, Johnson et al. (1987) developed the
theory of dynamic permeability for the general porous media; Tang and Cheng (1989)
derived dynamic conductivity for fluid transport through a fracture under an oscillatory
pressure gradient. The former theory was derived based on the low- and high-frequency
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behaviors of the pore fluid motion and a simple response model that satisfies certain
causality and reality conditions. The latter theory, because of the simple geometry
involved, was rigorously derived by solving the Navier-Stokes equation for a viscous
fluid filling the fracture. We will show that the dynamic permeability, when applied
to the fracture situation, is almost identical to the exact dynamic conductivity. The
success of this comparison will further demonstrate the general applicability of the
dynamic permeability to porous media, whatever the pore shape and sizes.

In the case of Stoneley wave propagation in a permeable borehole, the borehole wave
will excite all three types of Biot waves in the formation. The Biot-Rosenbaum model
deals with the interaction between the borehole propagation and these three waves
by rigorously solving a set of coupled partial differential equations in connection with
boundary conditions at the borehole wall. Although such an approach is complete and
accurate, the mathematics and computation involved make the model complicated.
Particularly in an inverse problem to exiract formation permeability from Stoneley
wave measurements, this model is not convenient to use. In this study, we take a much
simpler alternative approach to this problem. We decompose the interaction into two
parts. The first is the interaction of the Stoneley with the formation shear and fast
compressional waves in the absence of the slow wave. This problem is equivalent to
the one with a formation having effective elastic moduli corresponding to the first two
waves, for which the solutions are known. On the basis of the first step, the second
step is to add the interaction between the Stoneley and the formation slow wave,
for which we will apply the dynamic permeability to measure the loss of Stoneley
energy that is carried away by the slow wave into the formation. Since the correlation
between Stoneley attenuation and permeability is believed to be largely due to this
latter interaction, the final results of our approach are expected to be consistent with
those from the Biot-Rosenbaum theory, as long as the frequency dependent transport
property of the porous formation is correctly accounted for. The success of this effort
will not only further verify the Stoneley attenuation mechanism in permeable boreholes,
but will also provide a much simplified useful model that is of sufficient accuracy in
applications to both forward and inverse problems concerning borehole Stoneley wave
propagation in a porous formation.

In the following, we first test the dynamic permeability with the exact dynamic
conductivity in the case of a fracture., Next, we use the dynamic permeability to
derive a governing equation for the pore fluid flow. Then we apply this equation to
borehole Stoneley propagation and obtain a simple model. The results from this model
are then compared with those from the Biot-Rosenbaum model and the experimental
results available from Winkler et al.’s (1989) article. Finally, we discuss the conditions
under which the simple model is valid or inadequate.
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DYNAMIC PERMEABILITY: A TEST OF ITS VALIDITY

For a homogeneous, isotropic, porous solid saturated with a Newtonian viscous fluid,
Johnson et al. (1987) developed the theory of dynamic permeability to characterize the
frequency-dependent behavior of the pore fluid flow. Assuming that the solid frame is
rigid, they derived the complex permeability as
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where kg is the static Darcy permeability, w is the angular frequency, « is the high-
frequency limit of the dynamic tortuosity, which is a parameter describing the tortu-
ous, winding pore space, pg and p are fluid density and viscosity, respectively, and ¢
is porosity. The symbol A is a measure of pore size and is approximately given as

(Johnson et al., 1987)
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In the case of a fracture, A is the fracture aperture and the number 8 in Eq. (2) is
replaced by 12. For general porous media A is difficult to characterize, we will therefore
use the relation in Eq. (2) for the value of A in Eq. (1). The low- and high-frequency
behaviors of x(w) are readily derived from Eq. (1). At low frequencies, x(w) — xo; at
high frequencies, x(w) — iu¢/(a@pow), varying inversely proportional to w. Since x(w)
is a very important parameter that we will later apply to our Stoneley propagation
model, we wish to test its validity and accuracy against a simple model with known
results.

In the study of frequency-dependent fluid transport in a single fracture filled with
a Newtonian fluid, Tang and Cheng (1989) derived the fracture dynamic conductivity,
which is written as
'i‘:wLo
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where Lg is fracture aperture, V; is sound velocity in fluid, and k is a complex wave
number found from the following period equation

Ftan(F22) + fFtan(F ) =0, (4)
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By studying the low- and high-frequency asymptotic solutions of Eq. (4) (see the
appendix of Tang and Cheng, 1989), it was found from Eq. (3) that

= L§/(2) (v—0),
= ilof(wpy) (w— o0) .
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To compare Eq. (1) with Eq. (3), we need to use appropriate parameters in Eq. (1).
For the fracture case, a = 1, A = Lg, ko = L3/12 and ¢ = 1 . By Darcy’s law,
the fracture conductivity and permeability are related via C' = xLo/p. Therefore, the
fracture dynamic conductivity derived from Eq. (1) is

L
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It is obvious that the low- and high-frequency behaviors of Eq. (6) are exactly those
given in Eqs. (5). A complete comparison between Eqs. (3) and (6) is illustrated
in figures la and 1b for a set of fracture apertures ranging from 10 pgm to 100 pm.
The fluid is water with g = 1 cp. The reason for choosing different apertures is that
the fracture fluid motion is controlled by the viscous skin depth 6§ = /2u/pow. For
water, the skin depth is about 18 pm at 1 kHz and 8 um at 5 kHz. For apertures
which are small compared to é the fluid motion is dominated by diffusion. While for
apertures which are large compared to 8§, the motion is mostly propagational. Thus the
comparison of C(w) and C(w) from small to large apertures will fully illustrate their
compatibility in frequency ranges from quasi-static to dynamic regimes. Figure la
shows the amplitudes of C{w) (solid curves) and C(w) (dashed curves) in the frequency
range of [0-5] kHz. The conductivities are normalized by their zero frequency value
L3/(124). An excellent agreement of C(w) with the exact C(w) is seen from the
quasi-static regime (the lower frequency part of the Ly = 10 pm curves), through the
transition regime (the Lo = 30 and 60 pm curves), to the dynamic regime (the higher
frequency part of the Ly = 100 pm curves). Figure 1b shows that not only their
amplitudes but also their phases are in excellent agreement. Thus the general formula
of Eq. (1), when applied to the special case of a fracture, agrees extremely well with
the exact solution of Eq. (3). In fact, Eq. (1) has been successfully tested with large
tube lattices with randomly varying radii (Johnson et al., 1987). The present test,
together with the previous test, further reflects the general applicability of the theory
of dynamic permeability to the modeling of frequency dependent fluid fiow properties
of porous media.
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RELATION TO BIOT’S SLOW WAVE

In this section, we will demonstrate the relation between the dynamic permeability
and Biot’s slow compressional wave and derive an equation that will later be used in
the borehole propagation problem. For a fluid-saturated porous medium, the equation
of continuity for the pore fluid is

v (p8%) + 2(90) =0 , ()

where ¢ is time, 7 is the macroscopic fluid veloeity through the porous medium. For a
small amplitude fluid motion, the density p can be written as

p=patp , (8)
where p’ is the density perturbation, which is related to the pressure disturbance P as
p'=P|V} . (9)

At this stage, we ignore solid frame elasticity and consider the pore fluid flow that
results from the pore pressure gradient and permeability. Therefore, we can still use
Darey’s law

T = _Ew) v P . (10)

I

However, an important modification to the conventional Darcy’s law is that the static
permeability xp has now been replaced by the dynamic permeability x(w) given by
Eq. (1). Transforming Eq. (7) to the frequency domain, then substituting Eqs. (8),
(9), and (10) into it and taking the first order perturbation terms, we obtain a linearized
equation for the pore fluid pressure

PP+ —P=0, (11)
Do
where K
Do = ww)Ky (12)

ou

is the pore fluid diffusivity for the rigid frame case and Ky = ngfz is the fluid modulus.
A plane wave solution to Eq. (11) has a wave number k = \/iw/Do. Using the dynamic
permeability given in Eq. (1) and substituting it into Dy given in Eq. (12), we obtain the
low- and high-frequency behaviors of this wave motion. At low frequencies, Dg ~ const.
and k x /4w , indicating that this motion is diffusive. At high frequencies, Dg « (iw)™?
and k « w , implying that this motion becomes a propagational wave. Therefore, based
on the theory of dynamic permeability, Eq. (11) correctly predicts the general behavior
of Biot’s slow compressional waves.

-

[
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Correction for Solid Frame Elasticity

We now relax the assumption that the solid frame is rigid and make a correction for
the effects due to its elasticity. Based on Biot’s theory, Chang et al. (1988) as well
as Norris (1989) showed that, at low frequencies, if the frame elasticity is taken into
account, the diffusivity given in Eq. (12) should be corrected to become

D =Do(1+&)", (13)
with & given by
_ Ky 1 4 Ky 4
£ fle 2 [fva-r-m-swm+3m|} . a9
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where K, is the solid grain bulk modulus, K} and N are the solid frame bulk and
shear moduli, respectively, It should be noted that in Chang et al.’s formula, the
permeability in Dy (Eq. 12) was the static permeability xo. Here we have replaced kg
with k(w), but still use the correction term £ given in Eq. (14) for the frame elasticity.
Because k{w) — kg as w — 0, Eq. (13) is identical to Chang et al.’s diffusivity at low
frequencies. As frequency increases, the frequency-dependent fluid flow is accounted for
by #{w), and the effects due to frame elasticity will be compensated by the correction
term £. With this correction, Eq. (11) becomes

V2P +iw/DP =0,
2 _ . _ Tweor (15)
{ HewlD= Zn e

The wavenumber given in Eq. (15) is in complete agreement with the slow wavenumber
from the exact Biot formulation (for example of this formulation, see Chang et al., 1988)
in the low-frequency region of the Biot theory. In the high-frequency region, the two
wavenumbers are slightly different depending on porosity and permeability. Since most
field situations are relevant to the low-frequency region of Biot theory {Winkler et al.,
Eq. (15) is adequate for applications to such situations. Even in the high-frequency
region of Biot theory, this equation is still a good approximation. Therefore, since
Eq. (15) characterizes the dynamic fluid flow through a porous medium, it will later be
employed in conjunction with the problem of Stoneley wave propagation in permeable
boreholes.

APPLICATION TO BOREHOLE STONELEY WAVES

For a Stoneley wave propagating in a borehole whose axis is aligned with z direction,
the borehole fluid displacement potential can be written as

U(r,z) = 1,b(r)e£k‘z , (16}
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where r is the radial variable and k; 1s the Stoneley wave number. In this formulation,
the axial symmetry is assumed. It follows that the radial potential function i satisfies
the following boundary value problem (Tang et al., 1989)

{ Vi + v =0

%?=Pow2(%)v,b , at r=R, (17)

where { is the two dimensional Laplace operator and v = | /w?/V}? — k? is the radial

wave number. The wall impedance (u/p) is the ratio of the displacement v and pressure
p evaluated at the borehole boundary r = E. When the borehole wall is permeable, u
includes two contributions. The first is the elastic displacement of the wall, given by
e .« The second is the fluid flow into pores that are open to the borehole wall, given by
¢uy . The first problem is equivalent to that of a borehole with an equivalent elastic
formation consisting of the porous skeleton and fluid. In the first step, we only consider
P and S waves in such a formation. They are analogous to Biot’s fast compressional
and shear waves., Whereas for the second problem, we are mainly concerned with pore
fluid flow, which is Biot’s slow compressional wave. Splitting the problem of Egs. (17)
into two, we can write % and 2? as

¥ o= "»be'l"ﬁbf 3 (18)

v o= vf-}-u? \ (19)

where . satisfies the following boundary value problem

V?¢c + Vf P =0

%@ég_ - png(%f—)d;e yat r=R, (20)
and 1y and Vj’: are perturbations to 1. and v?, respectively. They result from the fluid
flow at the borehole wall. The solution to the elastic problem (Eqgs. 20) is known. The
boundary condition in Egs. (20) leads to a borehole dispersion equation (Cheng et al.,
1982). Given the effective elastic moduli or P and S wave velocities of the equivalent
elastic formation, we can solve the dispersion equation to find v2, from which the
Stoneley wave number k;, without the flow effects is obtained. The calculation of the
effective moduli and the velocities are described in the next section. To find u}, we
substitute Eqs. (18) and {(19) into Eqs. (17) and obtain a boundary value problem for
(i

{ iy + iy = —vi
(21)

%) u
%} = powz(%)%bf + powzcb(;f-w yat r=R .
Applying the two-dimensional Green’s theorem

2 2 _ Oty O
[ e T b5 =y T eldA = § e TL -7 (22)
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where
A : borehole area; S :borehole boundary » = R

to Eqgs. (20) and (21) and using their respective boundary conditions, we get

L) [—————fg Lredd } - (23)

2 _ 2
vy = =P T A

To evaluate v, we need to find the flow impedance (us/p) and the ratio of integrals
in Eq. (23). If we assume that the borehole Stoneley wave does not vary significantly
with r in either the elastic or the porous case, then we have

fsbpedS 2
lavbedd "R

To find (us/p), we need to solve Eq. (15). Under the excitation of a borehole propa-
gation e**s%, the formation pore fluid pressure has the form

(24)

P(r,z) = p{r)e*=* , r >R . (25)

In the previously mentioned quasi-static, low-frequency models, the term e**:* was

ignored (see White, 1983 for example). This is valid when the wavelength is large
compared to the borehole radius. However, at higher frequencies, the pore fluid flow is
coupled with the borehole propagation and this term should be included. Substitution
of Eq. (25) into Eq. (15) results in a Bessel’s equation for p

d’p 1dp

fw
_&_13+;E+(_Dm_kf)p='0,r_>_R, (26)

for which the solution is

Ko(ryf—iw/D + k?
=) XV 7

y i
Ko(Ry/—iw/ D + k2)

p(r)

where p(R) is the borehole pressure at the wall and Kj is the zero order modified Bessel
function. Differentiating Eq. (27) with respect to » and using the modified Darcy’s law
given by Eq. (10) (note that v = —iwuy in this equation), we find the wall impedance
due to flow as

u i) e K1(Ry/—iw/D + k?) (2%)

P wpd Ko(Ry/—iw/D + k2)

where I, is the first order modified Bessel function. Using Eqs. (23}, (24), and (28),
and a relation following from Eq. (19)

V%:Vz-ufzkge“kg ,
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we obtain a final expression for the Stoneley wave number

2 [ i K1(Ry/—iw/D + k2
ko= |2+ tpowk(w) _%+k2 V1 iw/ 2) (29)

LR zKo(R\/—iw/D-’rk'g) -

It is a very good approximation to replace k, on the right hand side of Eq. (29} by k..,
since the amplitude of their difference is considerably smaller than that of kz.. In this
way, we obtain a simple, explicit formula for calculating Stoneley wave propagation
in permeable boreholes. The Stoneley phase velocity and attenuation are calculated
using

Ver = w/Re(ks) ,

Q-1 = 2Im(k.)/Re(k,) . (30)

Eq. (29) is the central result of this study. Before we compare our simple model with the
complete model of the Biot-Rosenbaum theory, we wish to point out the relevance of our
model to other simple low-frequency models. At low frequencies, we have in Eq. {29)
that iw/D > k2, k(w) — ko, and kI, — pow?(1/K;+1/N). With these relations it can
be readily seen that our simple model reduces identically to Chang et al. (1988) and
Norris {1989) quasi-static models. When the solid is taken as rigid, our model reduces
to the White (1983) and Hsui and Tokséz (1986) models. We emphasize that the
major improvements of these quasi-static models by the present simple model are the
use of the dynamic permeability and the Stoneley wave number corresponding to an
equivalent elastic formation. The former parameter takes into account the frequency
dependent effects of the pore fluid flow, while the latter parameter, the effects of the
formation elasticity on borehole Stoneley waves, In addition, as we will show later, the
use of the latter parameter can even allow us to model Stoneley propagation in the
presence of intrinsic attenuation in the formation and borehole fluid.

COMPARISON WITH BIOT-ROSENBAUM MODEL

In this section, we compare our simple model with the Biot-Rosenbaum model for
the effects of frequency, permeability, porosity, and intrinsic attenuation. We will also
study the cases of a hard and a soft formation to check the applicability and limitations
of the simple model. A parameter in the Rosenbaum (1974) formulation is the borehole
acoustic pressure impedance factor k. When x = 0, the borehole fluid pressure and
the formation pore fluid pressure are equal, this case being referred to as the open
hole case, in which fluid flow occurs through pores that are open to the wall. With
increasing x, the pressure communication between the two fluids decreases. As x goes
to infinity there is no hydraulic exchange at the wall and this is referred to as the
sealed borehole case. All examples in this study will assume the open hole case, except
that we will briefly mention the relationship between the two models for the sealed
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hole case in the following. In both models the solid frame moduli are calculated using
(Schmitt et al., 1988; Norris, 1989)

Ky = (1—¢)ps(VP —4V2[3) (31)
N = (1-¢)pV7, (32)

where p; is the density of the solid frame, V}, and V; are the compressional and shear
velocities of the dry rock. For the equivalent elastic formation, the effective P and §
velocities are calculated using

Vo = \/(Ife+4/3N)/pc, (33)

ﬁ; - \/N/Pe ) (34)

where the effective density p, and bulk modulus K, of the formation are given by the
Gassmann equations (see White, 1983):

pe = Ppo+ (1 - ¢)Ps » (35)
(1 - Kb/ K,)?
[6/Kr+ (1~ )/ K, — K/K2]

Eq. (36) indicates that the effective bulk modulus equals the bulk modulus of the
skeleton plus a fluid-dependent term. The elastic formation Stoneley wave number k.
in Eq. (29) is calculated by substituting the above given ffp and V;, and p, into the
borehole dispersion equation, as given by Cheng et al. (1982). Interestingly, we find
that the Stoneley wavenumber k. so obtained is almost equivalent to the wavenumber
corresponding to the sealed borehole case of the Biot-Rosenbaum theory. This is not
surprising since Biot’s (1956a and b, 1962) theory for a porous solid is formulated on
the basis of Gassmann’s theory by adding fluid flow and dissipation effects (White,
1983). Without flow at the borehole wall, the Stoneley primarily interacts with the
P and S waves in the formation. These fast waves are little affected by the pore
fluid flow effects associated with their motions, although these effects are predicted by
the Biot-Rosenbaum model (see Schmitt et al., 1988), which yields some (negligibly
small) attenuation for the Stoneley wave. Thus, for the sealed hole case, the above
calculated k.. is adequate to determine the borehole Stoneley propagation. In the open
hole case, we substitute k.. into Eq. (29) to calculate the Stoneley wavenumber with
the fluid flow effects. The whole procedure is straightforward and much simpler than
solving the borehole dispersion equation corresponding to the Biot-Rosenbaum theory
(Rosenbaum, 1974). Especially in an inversion procedure where extensive computation
of the forward model is required, using the present model will be much simpler and
faster than using the Biot-Rosenbaum theory.

K. = Ky+

(36)

In the following examples, the grain modulus K, = 3.79 x 10'° Pa, the solid density
ps = 2650 kg/m3, the borehole radius B = 10 c¢m, and the borehole and formation
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pore fluid is water with pg = 1000 kg/m?, 4 = 1 ¢p and V; = 1500 m/s. The tortuosity
for both models is taken to be 3 (the a in Eq. (1) is equivalent to Morse’s dynamic
fluid-solid coupling factor E in the Rosenbaum (1974) formulation). Other parameters
that vary from example to example are summarized in Table 1.

Hard Formation

A hard formation is the one whose shear wave velocity is greater than the borehole
fluid velocity. This formation is important because many permeable reservoir rocks,
such as sandstone, fall into this category. Another reason for studying this case is
that in this formation, the rock is less compressible than the pore fluid, so that the
fluid-solid coupling is not pronounced and the simple correction for the frame elasticity
(Eq. 13) is expected to be adequate.

We first study the effects of the dynamic permeability in Eq. {29), since this param-
eter is a major quality by which our model differs from other quasi-static, low-frequency
models. These effects can be illustrated by respectively using the dynamic permeabil-
ity x(w) and the static permeability x¢ in Eq. (29) and comparing the results against
those of the Biot-Rosenbaum theory. We choose kg = 10 Darcy in our calculations.
Although this value is rather high for common reservoir rocks, it serves to demonstrate
the dynamic effects of x(w) in Eq. (29). Other parameters involved are given in Table 1.
For this value of kg, Biot’s critical frequency f. = p¢/(2mryapp) (2t f. the viscous and
the dynamic effects are comparable) is only about 1.3 kHz. But the dynamic effects
occur before this frequency is reached. Figure 2a shows the dynamic permeability in
the frequency range of [0-8] kHz. The amplitude of k(w) (solid curve) is normalized by
Ko, and its phase (dashed curve) by m/2. The static Darcy permeability (solid line) is
also plotted. As seen from this figure, the amplitude decreases, and the phase increases
with frequency, this behavior of £(w) being substantially different from the constant xo.
Figure 2b shows the Stoneley wave attenuations calculated using Eq. (29) with x(w)
(solid curve marked dynamic) and kg (solid curve marked ’quasi-static’), respectively.
The results are compared against that of the Biot-Rosenbaum model (dashed curve).
Surprisingly, the result from the simple dynamic model fits that from the complete
theory very well, simply because of the use of x(w). Whereas the result from using
Ko agrees with the theory only at the low-frequency limit. It largely over-predicts the
attenuation at frequencies above 2 kHz. The difference between the dynamic and quasi-
static results can be qualitatively explained by the behavior of x{w) shown in figure 2a.
That is, because of the decrease of k{w) with frequency, the formation is less permeable
under high-frequency excitations than it is under low-frequency excitations. Figure 2¢
shows the Stoneley wave dispersions associated with figure 2b. To our satisfaction, the
simple dynamic model (solid curve marked dynamic) agrees with the complete theory
(dashed curve} fairly well, the velocity of the simple model being slightly lower than
that of the Biot-Rosenbaum model. The velocity from using kg is significantly lower

o,

-
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than that of the dynamic models. This difference can be explained as follows: For the
high permeability used, the dynamic (or inertial) effects of pore fluid flow are increased,
which tends to decouple the borehole propagation from the formation (Schmitt et al.,
1988) and the Stoneley wave velocity tends to reach the free space fluid velocity. Since
these effects are accounted for by the dynamic permeability, the simple dynamic model
correctly shows this tendency (i.e., the increase of Stoneley velocity). However, the use
of ko assumes that the pore fluid flow is still governed by viscous forces and therefore
maintains significant borehole formation coupling, resulting in lower Stoneley velocity
than that of the dynamic models.

Next, we compare the two models versus frequency for a representative range of
permeabilities and porosities found from typical reservoir rocks (Table 1). Note that the
permeability here refers to the static Darcy permeability (i.e., kg in Eq. (1)). Figure 3a
shows the Stoneley wave attenuations predicted by our simple model (solid curve) and
the Biot-Rosenbaum model (dashed curve). The frequency range is [0-10] kHz. This
is a range in which most field Stoneley wave measurements are made. A general good
agreement between the two models is achieved for formations ranging from low {curve
A), medium (curve B), to high (curve C) permeabilities and porosities. Figure 3b shows
the Stoneley wave phase velocities predicted by the two models. Again, the agreement
is quite good between the two models. For low and medium permeability (porosity)
cases A and B, the agreement is excellent. For the high permeability (porosity) case C,
the simple model predicts slightly lower velocity at higher frequencies than the Biot-
Rosenbaum model! does. This difference should be expected since the effect of fluid-solid
coupling due to the relative motion of the two phases may become significant when
permeability and porosity are increased. But this effect is not taken into account in our
simple model. However, these differences, as well as those shown in figure 3a for the
attenuation, are only of academic importance because in practice they are well within
the error of Stoneley wave measurements made in the field or even in the laboratory.

As the third example, we compare the Stoneley wave attenuations and dispersions
from the two models versus permeability. Figure 4 shows the results at 1, 2, and 5
kHz for a sandstone with 15 percent porosity. In figure 4a, the agreement between the
two models is quite good throughout the permeability range of [0-1000] mD for the
three frequencies. The attenuations from the simple model (solid curve) and from the
Biot-Rosenbaum model (dashed curve) are fairly close and show the same increasing
tendency with permeability. In figure 4b, the velocities from the two models are almost
identical in the low permeability range up to 100 mD. This range corresponds to curves
A and B in figure 3b. As permeability further increases, they begin to show some
differences because of the increase of the inertia coupling effect between fluid and solid
in the Biot-Rosenbaum model. These differences can also be reflected in curve C of
figure 3b. However, as explained above, the differences of this kind are of little practical
importance. What is interesting in figure 4b is that the simple model even shows a
complex feature of the Biot-Rosenbaum model, i.e., the increase of Stoneley velocity
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with permeability {an effect due to the increased pore fluid mobility, as explained
above). This feature can be seen from the high permeability end of the 2 and 5
kHz curves. Although we only showed the comparisons for the permeability range of
common reservoir rocks, the agreement between the two models will continue at higher
permeabilities. This has been demonstrated by the agreement shown in figure 2, where
#g = 10° mD was used. Again, in complement to fizures. 2and 3, the comparison shown
in figure 4 confirms the validity of the simple model.

As a last example for the hard formation case, we demonstrate the validity of our
simple model in the presence of intrinsic body-wave attenuation in the fluid acoustic
wave and the formation shear and compressional waves. Because in the field the
measured Stoneley wave attenuation is coupled with the intrinsic attenuation (Cheng
et al., 1987), the latter effect must be considered for our model to be applicable under
field conditions. In the Biot-Rosenbaum model, the effects of intrinsic attenuation
are taken into account by using the complex body-wave velocities. In our model,
this problem can treated in much the same way. In calculating the elastic formation
Stoneley wave number k.. in Eq. (29), we can simply introduce the effect of intrinsic
attenuation by using the transformation

Vo = Vo /(14+1/2Qy)

where subscript -« can be each one of the subscripts p, s, and f, and V,, and @ cor-
respond to Vp, V,, V; and their respective ¢)’s. The anelastic body-wave dispersion
can also be added as necessary. Here we neglect this minor effect. Figure 5 shows
the comparison between the two models for the intrinsic attenuation effect. Formation
and borehole fluid quality factors are taken to be @, = 100, @, = 50, and Q; = 20.
Other parameters involved are the same as those of curve C in figure 3a, given in Ta-
ble 1. The Stoneley attenuation due to intrinsic effects is also shown, which is nearly
constant throughout the frequency range, consistent with the results of analyzing par-
tition coefficients (Cheng et al., 1982). The total attenuation curves from the simple
model (solid curve) and the Biot-Rosenbaum model (dashed curve) are seen to agree
quite well, showing only slight difference in the higher frequency range. In fact, the
total attenuations are almost equal to the respective sums of the attenuations due to
flow {curves C of figure 3a) with the intrinsic attenuation in figure 5. IFrom this exam-
ple, we see that the effects of intrinsic attenuation are properly handled by using the
complex-valued wavenumber k;. in our simple model.

Soft Formation

A soft formation has a shear wave velocity smaller than the fluid acoustic velocity.
Because of this, the solid may have a compressibility comparable to that of the pore
fiuid and the dynamic coupling between the two phases becomes strong, especially at
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high frequencies. As a result, the simple model that ignores this coupling effect may
not be adequate under such conditions. We choose to study this case in order to show
the differences between the simple model and the Biot-Rosenbaum model] in the soft
formation case, so that one will be aware of these differences when applying the simple
model to such conditions.

Figure 6 shows the comparison between the simple model (solid curves) and Biot-
Rosenbaum model (dashed curves) for three different soft formations given in Table 1.
The permeabilities and porosities are the same as those used in figure 3 and the curves
A, B, and C have the same correspondence as in figure 3. Because the effective Stoneley
excitation will be shifted to a lower frequency range in the soft formation case, the
results in Figure 6 are shown only in the frequency range of {0-6] kHz. Although the
attenuations in figure 6a predicted by the two models are identical at low frequencies
and all decrease with increasing frequency, the attenuation from the simple model is
significantly over-predicted at high frequencies, compared to the attenuation from the
Biot-Rosenbaum model. This indicates that the fluid flow effects are less pronounced
for the soft formation case, than they are for the hard formation case. Figure 6b shows
the Stoneley wave phase velocity from the two models. Compared to the attenuation
in figure 6a, the difference between the two models is less apparent from the velocities.
Only the high-permeability curves C show some meaningful difference. Despite these
differences, the simple dynamic model may still be a reasonably good model if one
applies it to the low-frequency range (e.g., < 2 kHz in this particular case), because in
the soft formation case the Stoneley wave energy is located in a narrower low-frequency
range than it is in the presence of a hard formation.

We now compare the two models versus permeability for three different frequencies
of 1, 2, and 5 kHz. The porosity of the formation is 30 percent. Figure 7a shows
the attenuations from the simple model (solid curves) and from the Biot-Rosenbaum
model (dashed curves). Both attenuations increase with increasing permeability, with
the simple model results higher than those of the other model. For the 1 kHz case,
both results are in reasonably good agreement. As frequency increases, they begin to
differ significantly. These effects can also be seen from figure 6a. Figure 7b shows the
velocities associated with figure 7a. The velocities from the two models are very close
at low permeabilities. They begin to differ as permeability increases. This difference
also appears on curves C of figure 6b. Again, the comparison in figure 6 shows the
applicability of the simple model at low frequencies. At higher frequencies, this model
over-predicts the Stoneley attenuation, especially at high permeabilities.
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COMPARISON WITH LABORATORY EXPERIMENTAL
RESULTS

In a recently published paper, Winkler et al. (1989) showed the experimental results
on the Stoneley wave propagation in permeable materials. These experiments were
performed to evaluate the applicability of Biot’s theory to acoustic logging in porous
formation using Stoneley wave measurements. Excellent agreement was found between
theory and experiment. In their experiments, they used formation materials with dif-
ferent permeabilities, velocities, and porosities, and fluids with high and low viscosities.
By varying these parameters, they were able to conduct the experiments in both low-
and high-frequency regions of Biot’s theory, as well as in the intermediate transition
zone. Thus, in addition to the comparison with Biot-Rosenbaum theory in the previous
section, these experiments provide a further test of our simple model and its validity
in different frequency regions of Biot theory, as well as its applicability to porous ma-
terials with different properties. Four samples were measured in their experiments.
Three were synthetic materials made of resin-cemented glass beads. One was a rock
sample made of Berea sandstone. All these samples were cylindrical in shape, having
a diameter of 21.6 cm. A borehole was drilled along the sample axis, the diameter
of the hole was 0.95 cm for the synthetic samples and 0.93 cm for the rock sample,
respectively. The sample and fluid properties are given in Table 1 of Winkler et al.
{1989), and are summarized in Table 2 of this paper for reference. One can see from
the properties given in Table 2 that all the samples belong to the hard formation case
because their shear velocities are higher than fluid velocities. Our simple model has
been shown to be applicable to such a formation. In Winkler et al.’s (1989) paper, the
experimental results were given for the Stoneley phase velocity and attenuation, which
can be directly compared with our theoretical results calculated from Eqgs. (29) and
(30). In the experiments, P and S velocities and density of the fluid-saturated sam-
ples were also measured, as listed in Table 2. We can therefore use these parameters
as the effective elastic formation properties to directly calculate the elastic Stoneley
wavenumber kg, in Eq. (29). In addition, although our model is for the borehole with a
formation of infinite radial extent, the results still hold true for the laboratory models
of finite size. This comes from the fact that the Stoneley wave is a guided wave trapped
in the borehole, so that it is not sensitive to the large outer boundary of the samples,
as long as the radius of this boundary (10.8 cm) is much bigger than the borehole
radius (0.47 cm).

We begin the comparison with sample A, saturated with high-viscosity silicon oil
with 4 = 96 cp (Table 2, sample A). With this high viscosity, the pore fluid motion is
controlled by viscous effects. This puts us in the low-frequency region of Biot theory.
Figure 8a shows Stoneley velocity versus frequency. The experimental data were digi-
tized from the published figures of Winkler et al. (1989). The theoretical curve (solid
curve) is calculated using Eq. (29). The theory fits the data extremely well. A copy of
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Winkler et al.’s (1989) results is shown in figure 8c and d. The theoretical curve shown
in figure 8c goes slightly above the data points, although this is not significant for
the confirmation of the theory. The dashed curve in figure 8a is the Stoneley velocity
corresponding to the sealed borehole case, which is calculated from the given param-
eters of the fluid-saturated sample (Table 2). This curve fits almost exactly with the
original curve shown in figure 8¢ which is calculated with a non-permeable borehole
wall. This is also the case for the remaining three examples. This fit indicates that,
when the borehole wall is sealed, the formation acts like an equivalent elastic formation
with effective properties given by Eqs. (33) through (36). The corresponding Stoneley
attenuation data as 1/} versus frequency are shown in figure 8b. Again, the theory
fits the experimental data excellently.

For the next example, we compare the theory and experiment for a sample saturated
with low-viscosity fluid (Table 2, sample C). This low viscosity {0.818 cp) puts the
experimental bandwidth in the high-frequency region of Biot theory. As seen from
figure 9a, the open hole Stoneley velocity crosses the sealed hole velocity at about
17 kHz. This high-frequency behavior due to the permeability effects, as predicted by
Biot-Rosenbaum theory, is seen to be also predicted by our simple model, although
this crossing is less significant than what is shown on Winkler et al.’s (1989) theoretical
curve (figure 9¢), and the high-frequency portion of our curve goes slightly below the
measured data, while the curve of Winkler et al. (figure 9¢) goes slightly above the
measured data in the high-frequency range. The scatter of the data around 20 kHz
was attributed to the mode interference due to the finite size of the sample (Winkler
et al., 1989). In spite of the scatter, the theory fits the experiment very well. For
‘the Stoneley attenuation shown in figure 8b, both theory and experiment show the
strong increase of attenuation as frequency decreases. The simple model predicts
slightly higher attenuation than the theory of Winkler et al. (1989) shown in figure 9d.
However, the agreement between the simple theory and experiment is still very good.

The third case (Table 2, sample B) is a sample having an intermediate viscosity.
This places the experimental bandwidth in the intermediate transition region of Biot
theory. The velocity and attenuation data are shown in figure 10. In this case, the
agreement between the theory and experiment is not as good as in the previous two
examples, the same as what is shown in Winkler et al.’s (1989) results (figure 10a,b).
In their case, the theoretical velocity (figure 10c) crosses the data at about 35 kHz and
the sealed velocity at 50 kHz. Thus it is not able to fit the data. Qur simple model
fits the high-frequency portion of the data, although the misfit in the low-frequency
portion persists. The theoretical attenuation shown in figure 10b is very close to that of
Winkler et al. (1989) shown in figure 10d. But the discrepancy between the theory and
experiment is significant. The discrepancies of figure 10 were attributed by Winkler
et al. as due to the undetected heterogeneities in the sample or perhaps due to the
behaviors of the porous material in the transition region that are not well defined in
Biot theory.
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The last example (Table 2, sample Berea 5.5.) is a Berea sandstone saturated with
silicone oil {# = 9.34 cp). Since this is the only case where a reservoir rock was mea-
sured, the results for this case are especially important, because a useful theory must
eventually work in rocks. The properties of the sample given in Table 2 put the exper-
imental bandwidth in the low-frequency range of Biot theory (Winkler et al., 1989),
which is relevant to most field situations. The theoretical velocity and attenuation
predicted by the simple model (shown in figure 11a,b) are very close to Winkier et al.’s
(1989) results (shown in figure 11c,d). For both velocity and attenuation, there is an
excellent agreement between theory and experiment.

'The above examples show that, in general, the laboratory experimental results are
in excellent agreement with the simple Stoneley propagation theory derived in this
study. These examples substantially confirm the validity of the simple theory and its
general applicability to porous media with different properties.

DISCUSSION

In this section, we further explore the cause of disagreement between the simple model
and the Biot-Rosenbaum model in the presence of a soft formation. We will also discuss
how to incorporate the effects of a borehole logging tool into our model.

In the formulation of our simple model, we split the interaction between the bore-
hole propagation and the porous formation into two parts, i.e., the one due to formation
elasticity and the other due to pore fluid flow. By this separation, it was implied that
the motion of the pore fluid flow is not strongly coupled with that of the solid. Strictly
speaking, this is true only if the latier motion is small compared to the former motion.
In fact, in a Biot solid, the effective moving fluid volume is proportional to the relative
motion between the two phases :

v o ¢(uf — us)

where u, is the displacement of the solid associated with the slow wave motion. In a
hard formation, or in the very low frequency range in which viscous fluid flow domi-
nates (for either a hard and a soft formation case), u, is small compared to uy, so that
the moving volume v is dominated by the contribution from uy. This point has been
demonstrated by the agreement of our model with the Biot-Rosenbaum model in the
presence of a hard formation and in the low-frequency range of a soft formation case.
However, in the presence of a soft formation, the increased compressibility results in a
larger u;, hence the relative motion us — u, is reduced and the effective flow volume
v decreased. In terms of borehole Stoneley waves, this means that less energy will
be carried away and that the attenuation will be less severe. In the Biot-Rosenbaum
theory, this coupling process is modeled in the form of coupled partial differential equa-
tions. Therefore, for given porosity, permeability and pore fluid, the high-frequency
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Stoneley wave attenuation for a soft formation will be less pronounced than that for a
hard formation (for example, one can compare the Biot-Rosenbaum results shown on
figure 3a and figure 6a). However, in our simple model, the relative motion us — u; is
still taken as u;. Although the frequency dependent behavior of u is accounted for by
using the dynamic permeability, which is independent of the solid elasticity (Johnson
et al., 1987}, and the effects of solid elasticity on us have been corrected (Eq. 13), the
resulting flow volume v is still larger than it actually is because of the missing term u,.
As a result, the predicted Stoneley wave attenuation is higher than the correct result.
This is indeed what we have seen in figure 6a.

In the presence of a logging tool of radius @ in the borehole, our model needs two
simple modifications. The first is the ratio of the boundary integral of ¥, to the area
integral of ¥, in Eq. {23). Without the tool, this ratio is approximately the ratio of
bore perimeter to bore area (i.e., 2/ R in Eq. 24). With the tool, the area becomes that
of the fluid annulus and Eq. (24) is now written as

fS ¢¢ed$ ~ 2R
[favpedA  R%—a?

Thus the resulting correction is to replace the term 2/ R in Eq. (29) with 2R/(R? —a?).
Another modification is calculating the elastic formation Stoneley wave number k..
in conjunction with the logging tool. This procedure has been described by Cheng
and Toksoz (1981). It is worthwhile to note that in a soft formation, the presence
of a logging tool will push the agreement between the simple model and the Biot-
Rosenbaum model to a higher frequency range, simply because the tool reduces the
effective borehole area and the wave propagation is approximately similar to that of a
borehole with smaller radius {Cheng and Toksoz, 1981).

CONCLUSIONS

In this study, we have applied the concept of dynamic permeability to the important
preblem of acoustic logging in a porous formation. We further examined the validity of
the dynamic permeability using the exact dynamic conductivity in the case of a fracture
and found they agree excellently. We showed that when the solid is less compressible
than the fluid, the dynamic permeability, together with a simple correction for the solid
elasticity, is an adequate description of the frequency-dependent pore fluid flow. Using
the dynamic permeability, we have obtained a simple dynamic model for Stoneley wave
propagation in permeable boreholes. We compared the model with the exact model of
the Biot-Rosenbaum theory for the effects frequency, porosity, permeability, intrinsic
attenuation, and formation type (hard or soft), and found that they yield practically
the same result in the hard formation case. While in a soft formation, the simple
mode] over-predicts the Stoneley wave attenuation at higher frequencies, because the
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increased coupling between the solid and fiuid is not fully accounted for. However, since
many important permeable reservoir rocks belong to the hard formation category, this
model will be of significant applicability to the estimation of formation permeability
using Stoneley wave measurements, because of its simplicity and validity in the hard
formation case. Comparison with the available experimental data showed the excelient
agreement between the simple model and the data and further confirmed this simple
theory. A further study on this theory is perhaps the application of it to formulate an
inverse problem, analyze its sensitivity to each model parameter, and finally invert for
the parameters using available Stoneley measurement data.
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Vp Vs ? Ko
Figure (m/s) (m/s) (%) (mD)
2 3800 2200 25 104
3 3800 2200 55,1525 10, 102, 10°
4 3800 2200 15
5 3800 2200 25 108
6 2300 1200 55,1525 10,102, 108
7 2300 1200 30

Table 1: Parameters used for comparison with Biot-Rosenbaum model. Biot’s strue-
tural constant is /8, and tortuosity « is 3. Borehole and pore-fluid is water with
po = 1000 kg/m>, V; = 1500 m/s, and g = 0.001 Pa-s. The solid grain density p,
=2650 kg/m® and modulus K, =37.9 GPa. The borehole radius is 10 cm.

Sample A B C Berea 5.5.

é (%) 265 229 223 21.0
ko (mD) 3600 2300 1300 220
o 24 24 24 3.2
ps (kg/m3) 2300 2270 2290 2650
K, (GPa) 50 50 50 37
po (kg/m®) 960 934 818 934
¢ (cp) 96 934 0.818 9.34
Vi (m/s) 1014 999 926 999
Fluid-saturated sample:

pe (kg/m?) 1940 1960 1970 2090
Vp (m/s) 2850 2930 2822 3208
Vs (m/s) 1680 1610 1665 2005

Table 2: Physical properties of the samples and fluids in Winkler et al.’s (1989) exper-

iment.
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Figure 1: Comparison between the complex fracture conductivities from Eq.(6) (solid
curve} and Eq. (3) (dashed curve) for fracture aperture Lg equals 10, 30, 60, and
100 microns, as indicated on the curves. The amplitudes in (a) are normalized by
their zero frequency value L3/12u and phases in (b) by /2. Both amplitudes ()
and phases (b) of the two conductivities are in excellent agreement for all apertures
and frequencies.
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Figure 2: Test of effects of dynamic permeability. (a) The dynamic permeability
#{w) as a function of frequency. Its static value ko = 10* mD. The amplitude
of k(w) (normalized by kg) decreases and its phase (normalized by 7/2) increases
with frequency. (b) Stoneley wave attenuations calculated using Eq. (29). . The
solid curve marked dynamic calculated using x(w) agrees with the Biot-Rosenbaum
theory, while the one marked quasi-static calculated using s significantly differs
from the theory at higher frequencies. {c) Stoneley phase velocities associated with
(b). This figure shows also the agreement of the simple dynamic model with the
full theory and the disagreement of the quasi-static results.
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Figure 3: Comparison between the simple dynamic model (solid curves) and the Biot-
Rosenbaum model (dashed curves) for three different (hard) formations (see Table
1) in the frequency range of [0-10] kHz. In both (a) and (b), curves A are for
a formation with ¢ = 0.05 and x¢ = 10 mD, curves B are for ¢ = 0.15 and
ko = 100 mD, and curves C are for ¢ = 0.25 and ko = 1000 mD. Both the Stoneley
attenuation (a) and phase velocity (b) show the good agreement of the two models.
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Figure 4: Comparison of the simple model with the Biot-Rosenbaum model versus
permeability xg for different frequencies. The formation is a sandstone with ¢ =
0.15. (a) Stoneley wave attenuation as a function of frequency. (b) Stoneley wave
phase velocity as a function of frequency. In both (2) and (b), the two models agree
quite well. Note that in {(b) the simple model can even model the the slight increase
of velocity with permeability (see 5 kHz curve), a2 complex feature predicted by the
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Figure 5: Comparison between the two models in the presence of intrinsic attenuation
for a hard formation with ¢ = 0.25 and k¢ = 1000 mD. Intrinsic @ values are
@p = 100, @ = 50, and @5 = 20. The total attenuation of the simple model (solid
curve) and that of the Biot-Rosenbaum model (dashed curve) are the sum of the
intrinsic attenuation curve and their respective predicted attenuations due to fluid

flow. The two results agree well.
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Figure 6: Comparison of the two models versus frequency for three different soft for-
mations (properties given in Table 1). In both (a) and (b), curves A are for a
formation with ¢ = 0.05 and &g = 10 mD, curves B are for ¢ = 0.13 and x¢ = 100
mD, and curves C are for ¢ = 0.25 and ko = 1000 mD. In (a), the attenuations
from the simple model (solid curves) coincide with those from the Biot-Rosenbaum
model at low frequencies, but differ from them at higher frequencies. In (b), the
velocities from the two models agree fairly well for low permeability cases A and
B. For high permeability case C, two models differ at higher frequencies.
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Figure 7: Compartson of the two models versus permeability for a soft formation case.
The formation has a porosity of 30 percent. In (a), the Stoneley attenuations from
the simple model (solid curves) differ from those from the Biot-Rosenbaum model,
especially at higher permeabilities and frequencies. In (b), the Stoneley velocities
from the two models fit at low permeabilities, but begin to differ as permeability
increases.
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Figure 8: Stoneley velocity (a) and attenuation (b) versus frequency for sample A.
Dots are experimental results. Solid curves are theoretical predictions from the
simple model. The dashed curve (a) is Stoneley velocity corresponding to a sealed
borehole wall. Original results of Winkler et al. (1989) are also given in (c) and (d)

of this figure.
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Figure 9: Stoneley velocity (a) and attenuation (b) versus frequency for sample C. Dats
are experimental results and solid curves are theoretical predictions. The dashed
curve is the sealed-hole Stoneley velocity. Winkler et al.’s (1989) results are shown
in (c) and (d).
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Figure 10: Stoneley velocity (a) and attenuation (b) versus frequency for sample B.
Dots are experimental results and solid curves are theoretical predictions. The
dashed curve is the sealed-hole Stoneley velocity. The data are in the transition
region of Biot theory. Winkler et al.’s (1989) results are shown in (c¢) and (d).
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Figure 11: Stoneley velocity {a) and attenuation (b) versus frequency. The sample
is made of a Berea sandstone. Dots are experimental results and solid curves
are theoretical predictions. The dashed curve is the sealed-hole Stoneley velocity.
Winkler et al.’s (1989) results are shown in (¢) and (d) of this figure.
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