
MODELING OF LOW FREQUENCY STONELEY
WAVE PROPAGATION IN AN IRREGULAR

BOREHOLE

by

Kazuhiko Tezuka

JAPEX Research Center
Chiba, 261 Japan

C.H. Cheng

Earth Resources Laboratory
Department of Earth, Atmospheric, and Planetary Sciences

Massachusetts Institute of Technology
Cambridge, MA 02139

and

X.M. Tang

NER Geoscience
Braintree, MA 02184

ABSTRACT

This paper describes a propagator matrix formulation for the problem of the Stoneley
wave propagation in an irregular borehole. This is based on a simple one-dimensional
theory that is possible for the low frequency Stoneley wave, because it is a guided
wave with no geometrical spreading in the borehole. The borehole and the surrounding
formation are modeled by multi-layers discretized along the borehole axis, then the
propagator matrices at each boundary are calculated. The mass balance boundary
condition is introduced to express an interaction of the Stoneley wave at the interfaces
which include radius changes.

We have used the method to investigate the reflection and the transmission char
acteristics of the Stoneley wave with several models. The results are consistent with
the results obtained by other existing modeling methods such as the finite difference
method and the boundary integral method. The calculation speed is much faster than
those of the other methods.

We have applied the method to the field data to simulate the synthetic iso-offset
records and have compared them with the actual field records. The results show a good
agreement in the major reflections due to the washout zones and an important disagree
ment in the reflections related to the fractures. This result suggests the possibility of
distinguishing the fracture induced reflections from others.
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Through this study, we found that the proposed method is efficient in modeling
the low frequency Stoneley wave propagation in the irregular borehole, especially in
simulating the synthetic iso-offset records, which provide helpful information in the
evaluation of fractures.

INTRODUCTION

The valuation of fractures and associated permeable structures is one of the most im
portant work areas in exploration geophysics. Geothermal and petroleum reservoirs
are sometimes characterized by the fracture system that rules their oil, gas and steam
productivities. Acoustic logging is one of the effective techniques to· evaluate the sub
surface fractures crossing the borehole. In particular, the Stoneley wave is known as
a wave mode sensitive to the fracture and its permeability. When the Stoneley wave
propagates across the fracture, it attenuates its amplitude and also generates a reflected
wave (Paillet and White, 1982; Hornbyet al., 1989). The reflection patterns, which we
can easily see on the iso-offset waveform display, give us good information about the
fractures. However, the Stoneley wave reflections occur not only because of the fractures
but also because of the lithology and borehole diameter changes (Palllet, 1980; Hardin
et al., 1987). In many cases, most of the significant reflections seem to be generated
by the borehole washout. To evaluate the fractures by using the Stoneley reflection, it
is important to know the effects of the irregular borehole on the Stoneley wave prop
agation. Stephen et al., (1985) used the finite difference scheme to numerically model
such configurations. Bouchon and Schmitt (1988) treated the same problem by using
the boundary integral equation approach combining the discrete wavenumber formula
tion. They showed that when the change is smooth the Stoneley wave propagation was
not affected, but a significant amount of reflection could be seen in the case of steep
variation. However, these methods are rather time consuming in simulating an actual
borehole geometry for practical use. Tang and Cheng (1993) studied the interactions of
the Stoneley wave due to the formation structure changes with a simple I-D theorem.
They assumed that the Stoneley wave propagated along the borehole with no geometric
spreading because it is a guided wave. We expand their method in order to simulate the
Stoneley wave propagation in the irregular borehole which has a variation in borehole
radius.

In this paper, we formulate first the basic theory by using the I-D wave propagation
theorem. The reflection and the transmission coefficients due to the change of borehole
radius are discussed under two different types of boundary conditions. Then, we expand
the theory to treat more complicated borehole geometries by using the propagator ma
trix. The pressure wavefields inside the borehole are calculated for several cases. Those
results are compared with the synthetic waveforms obtained by other modeling meth
ods such as the finite difference method and the boundary integral method. Finally, we
apply the method to field data to simulate the reflections due to the washout zones, and
also to distinguish these from those due to the fractures.
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For the most simple case, we consider a fluid filled borehole surrounded by two layered
elastic formations which include one boundary between the upper and the lower half
spaces (Figure 1). Each layer is described by its parameters: compressional velocity
(vp ), shear velocity (vs) and density (p). The borehole has a step change in radius at
the boundary z = ZI and the radius 1'i is constant in each layer. The logging tool is
simulated as a rigid cylinder ofradius 1't at the borehole center. We assume the logging
is performed at frequencies below the cut-off frequency of any mode other than the
fundamental, so that only the Stoneley wave is supposed to be excited in the borehole.
As the Stoneley wave is a kind of guided wave, most of the energy is trapped inside
the borehole. There is almost no geometrical spreading, and at such a low frequency,
borehole fluid may be considered as approximately uniform across the fluid annulus
between the tool and the borehole wall (Tang and Cheng, 1993). Under these conditions
it is sufficient to solve the problem as a case of one dimensional wave propagation.

The wave equation for the Stoneley wave is given in terms of displacement potentials.

~~ 2 )8z2 + ki <Pi = 0 (1

where <Pi is the Stoneley wave displacement potential and ki is the axial Stoneley
wavenumber in each layer. The fluid pressure P and the axial displacement u of the
Stoneley wave are given by

(2)

(3)

where PI is a fluid density and w is an angular frequency.

The solution to Equation (1) is given by

(4)

where D i and Ui are unknown coefficients at each layer. The first term of Equation
(4) represents the down-going wave and the second term represents the up-going wave.
Let us consider a down-going Stoneley wave DleiklZ, (z < ZI) incident at the boundary.
In the upper layer, there are both incident and reflected waves, since some part of the
energy of the incident wave will be reflected back from the boundary. Therefore, the
potential in the upper layer is given by

<PI = D 1eik1Z + Ule-ik,z

where D1 and U1 are the amplitude coeflj.cients for the incident and the reflected waves,
respectively.

In the lower layer, there are only transmitted waves but no up-going waves because
the lower layer is an infinite half space and there is no source.

<P2 D 2eik,z + U2e-ik,z

= D2eik2Z
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where D 2 is the amplitude coefficient of the transmitted wave. The two unknown
coefficients Ul and D2 are determined from the boundary conditions.

The coupling inside the borehole is caused by the differences among the ki propaga
tion constants due to the fact that the property of each layer is different from the other.
In addition to the propagation constants the change in the borehole radius is supposed
to be a cause of interaction. Then, we consider two sets of boundary conditions. One is
a combination of the continuity of the fluid pressure and the continuity of the vertical
displacement. Another is a combination of the continuity of the fluid pressure and the
fluid mass balance across the boundary. The mass balance means that the volume of
the fluid squeezed from the upper layer should be equal to the volume of the incoming
fluid in the lower layer. That is

(5)

where al and a2 are section areas of each layers; Ul(Zl) and U2(Zl) are vertical displace
ments at Z = Zl given by Equation (3). The mass balance condition cannot coincide
with the continuity of vertical displacement except for the case of al = a2. Thus, we
first solved the amplitude coefficient in two ways by using both sets of boundary con
ditions independently. Then, both results are discussed by comparing them with the
result obtained by other modeling methods later. We shall call the first condition "the
non mass balance condition" and the second one "the mass balance condition" .

The mass balance condition provides the following simultaneous equations through
Equation (5), Equation (2), and Equation (3)

DleiklZl + Ule-iklZl

alkl(Dleik,Z, _ Ule-ik,Z,) _

These equations can be solved for unknown coefficients Ul and D2.

(6)

At Z = 0 the reflection (R) and transmission (T) coefficients are given by

R=UI!D1
a1k1 - a2k2

-
a1k1 + a2k2

T= D 2/D1
2alkl

(7)=
a1k1 + a2k2'

For the non mass balance condition, another set of simultaneous equations are ob
tained as

DleiklZl + Ule-iklZl = D2eik2Z1

kl(Dleik,Z, _ Ule-ik,Z,) = k2D2eik2Z1.

(
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The reflection and the transmission coefficients are given by
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R= Ul/Dl
kl - k2

=
kl + k2

T=D2/D l
2kl

(8)-
kl + k2'

It is explicit that both coefficients of the mass balance condition are the same as those
of the non mass balance condition if the radius is constant (al = a2).

The wavenumber k of the Stoneley wave in the fluid-fliled borehole, surrounded by
an elastic formation and containing a rigid tool at the borehole center, is determined
by the following borehole period equation (Tang and Cheng, 1991; Schmitt, 1988).

loUr)
hUrl

(9)

where In and Kn are the first and second kind modified Bessel functions of order n
(n = 0, 1), p is formation density, Pf is fluid density, c = w/ k is the Stoneley wave
phase velocity and rand rt are the borehole and tool radii respectively. The radial
wavenumbers, I, m and f are given by

1= Vk2 - W2/V~

m = Vk2 - W2/V~

f = V k2 - W2/VJ.
For given respective elastic properties of the layer the Stoneley wavenumber k can be
determined as a function of frequency.

Figure 2 shows the transmission and the reflection coefficients at the single boundary
calculated from Equation (7) and Equation (8). The parameters used in the calculation
are: Pl = 2.6g/cm3 , Vpl = 5.0 km/s, and Vsl = 3.0km/s for the upper formation
and P2 = 2.3g/cm3 , Vpl = 3.0km/s, and Vsl = 2.7km/s for the lower formation.
The borehole fluid density and velocity are 1.0 g/cm3 and 1.5km/s. The radii of the
borehole in the upper and the lower formation are O.lm and 0.15m, respectively. The
tool radius is rt = am. The transmission and the reflection coefficients are calculated for
both boundary conditions at frequencies ranging up to 5kHz. The plotted values are the
absolute value ofthe complex coefficients. It is obvious from the figure that the reflection
coefficients of the mass balance condition are much larger than those of the non mass
balance condition. Inversely, the transmission coefficients of the mass balance condition
are smaller than those of the non mass balance condition. The slight inclination of the
coefficients curves is due to the dispersion characteristics of the Stoneley wave.

The effect of the radius ratio (r2/rl) on both coefficients is shown in Figure 3.
The model used in the calculation is depicted in the figure. Only the ratio of the
radius of the borehole is changed to 3.0 from 1.0 in the homogeneous formation. In
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the mass balance condition, both of the coefficients have a notable dependency on the
radius ratio. The reflection coefficient increases with the increasing radius ratio, and
the transmission coefficient decreases reversely. Both curves are very much as expected.
In the non mass balance condition, however, the reflection coefficients are almost zero.
Any changes in both coefficients cannot be seen in the curves. They are insensitive to
the change of radius ratios. The two different types of boundary condition result in
quite different reflection characteristics. Then, we have the question which boundary
condition is proper. A good approach to the discussion of this problem is to calculate
the synthetic waveforms and compare them with the results obtained by some other
modeling techniques, such as the finite difference method and boundary integral method.

To calculate the synthetic waveforms, we need the Stoneley incident amplitude A(w)
which is related to the source and the excitation function. At the source position, it is
given by

A(w) = S(w)E(w) (10)

where Sew) is the source spectrum and E(w)is the Stoneley wave excitation function that
is given by Tang and Cheng (1993). The excitation function of the Stoneley wave is a
function that depends on the formation and fluid properties, and on borehole radius and
the tool radius. This function is calculated basically by a discrete wavenumber summa
tion technique; however we are interested in only the Stoneley but not other modes, so
that the excitation function can be calculated by the residue theorem (Kurkjian,1985).
Putting D1(w) = A(w), using the solved amplitude coefficients (Ui(w), Di(w)), the fluid
pressure (from Equation (2) and Equation (3)) in specific receiver positions is calculated
as a function of the frequency. The results are then transformed into the time domain
using an inverse Fourier transform.

D(t, z) = 2
1 100

pew, z)eu"tdw
7r -00

= PI 100

w2¢(w, z)eiwtdw
27r -00

Figure 4 shows the synthetic array waveforms of the Stoneley wave propagating
across a single boundary. The model and its parameters used in the calculation are
the same as those in Figure 2. The Kelly source with the center frequency of 2 kHz
is excited at 1.65m above the interface. The seismograms recorded at an array of
30 receivers located along the borehole axis at distances ranging from O.lm to 3.0m
from the source are displayed. The borehole geometry is depicted beside the waveform
arrays. In the mass balance case, a remarkable up-going reflection wave is generated
at the boundary. Accordingly, the transmitted wave decreases its amplitude below the
boundary. In the non mass balance case, however, we can see neither a reflection nor an
attenuation at the boundary. Figure 5 shows the synthetic array waveforms obtained
by the finite difference method. The waveforms are calculated by using a velocity
stress formulation on a staggered grid (Virieux, 1986; Kostek, 1990; Cheng, 1992). The
parameters and the model geometry used in the calculation are the same as those in
Figure 4. A 150*250 grid with t.r = t.z = 0.02 m is used. The time step is set at 2/Lsec.
A Kelly source (Kelly et aI., 1986) with a center frequency of 2 kHz is applied as source.
In the results, we can see a significant reflection at the boundary. The strength of the
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reflected waves is the same as that of the reflections we have gotton in the modeling
of the mass balance boundary condition (Figure 4)(a). Including the velocity of the
Stoneley wave and the process of phase changes at the boundary, the overall features of
both results are in quite good agreement. These results lead to the understanding that
the mass balance boundary condition provides a more adequate formula than the non
mass balance boundary condition to simulate the Stoneley wave propagating across a
boundary with borehole radius changes. Thus, we will adopt the mass balance condition
for further study.

MULTI LAYERED CASES

We next consider the borehole with various radii in the multi-layered medium. We
assume a model of n-llayers sandwiched between the upper and lower infinite half spaces
shown in Figure 6. Each layer is described by its parameter shown in the figure. The
displacement potential within each layer is expressed by Equation (4). With the mass
balance boundary condition, the amplitude coefficients satisfy the following relation at
the boundary.

(
Ui ) = Mi ( Ui+l )
Di Di+l

where Mi is the propagator matrix given by

(11)

where

(12)

rnll = aiki + ai+l ki+l ei (ki- ki+1 )Zi

2aiki

aiki - ai+l ki+l i(ki+ki+dzie
2aiki

aile; - ai+lki+l e-i(k,+ki+l)Z,
2aiki

aiki + ai+lki+l e- i (ki- ki+1 )Zi.

2aiki

We assume a unit impulse incident wave onto the interface Z = Zl from the upper half
space. The coefficient of the down-going wave in the upper half space D1 is supposed to
be 1. Successive application of Equation (11) and additional use of the relation Un = 0
(no up-going waves in the lower half space) yield

(~~ ) = Ml(~~)

= M1M2'" Mn-1 ( ~n )
= MT (~n)
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with the multiple propagator matrix product

MT = TI Mi = (mTll m T12 ).
i=1 mT21 mT22

(13)

Then the unknown coefficients Ul and Dn can be given by

where

WT = _1_ ( mTllmT22 - mT12m T21 m T12 ). (14)
mT22 -~21 1

Ul is the amplitude coefficient of the reflected Stoneley wave in the upper half space,
and D n is that of the transmitted Stoneley wave in the lower half space. Once we know
Dn and Un = 0, we can solve Un-I, Dn- 1 and Un- 2, Dn- 2 ... successively up to U2, D2
by using Equation (11).

(15)

Let us consider the Stoneley propagation across a simple rectangular washout zone
sandwiched between two infinite half space formations of the same properties. Using
Equation (12) to Equation (14), putting n = 3, ZI = 0, and Z2 = L the total transmission
and reflection coefficients from the washout zone whose thickness of L are given by

4ala2klk2e-ik,L

G
2i(a~k~ - aikD sin(k2L)

G

where the denominator G(w) is given by

G = (alKl + a2k2)2e-ik2L - (alkl - a2k2)2eik2L.

Figure 7 shows the total transmission (a) and reflection (b) curves of the Stoneley wave.
The parameters and the borehole geometry used for the calculation are depicted in the
figure. The figures plot the amplitude of both the total coefficients versus frequency
for two different zone thicknesses. They are L = 0.5m and L = 0.1m. As the total
reflection coefficient comes mainly from the superposition of the two primary reflected
up-going waves (at Z = 0 and z = L), it shows a periodic spectrum that contains a
number of maxima and minima (Tang and Cheng, 1993). The period of the maxima
or minima, that is approximately a function of the averaged Stoneley velocity and the
zone thickness (L), is inversely proportional to L. lfthe center frequency of the Stoneley
wave is close to the frequency corresponding to the minima, the reflection is small, even
if there are significant radius changes. The superpositions of the primary reflections
from the several boundaries are essentials characterizing the total reflection from the
complicated borehole geometry. Figure 8 shows the total reflection (R) and transmission
(T) coefficient at the sinusoidal washout zone. The washout zone is discretized with
100 layers. The borehole radii of the layers vary sinusoidally giving the characteristic
bulge at the washout zone. The parameters used in the calculation are the same as
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Figure 7. The coefficients calculated for three different zone thicknesses (L=O.lm, 0.2m
and 0.5m) are plotted against frequency. The total reflection coefficients depend strongly
on the frequency. They have peaks at specific frequencies that are a function of zone
thicknesses. The peak frequency shifts to the lower, and the band width of the spectrum
becomes narrower with increasing zone thickness. In the case of the smooth varied
washout zone (L=0.5m), only the limited low frequency Stoneley wave will be reflected.
The periodic bumps in the spectrum (RO.5) come from the superpositions we mentioned
before.

COMPARISON WITH THE BOUNDARY INTEGRAL MODELING

Bouchon and Schmitt (1989) studied the Stoneley wave propagation in an irregular
borehole by using the boundary integrai equation combining the discrete wavenumber
formulation. This is a semi-analytical approach. They reported that a smooth variation
in a borehole radius does not effect the records obtained ahead of the discontinuity
location, but that the presence of steep radius discontinuity reflects a significant amount
of the Stoneley energy. To confirm the performance of our new method, we apply it
to the steep radius variation model and to the smooth radius variation model used in
Bouchon and Schmitt's study.

The steep model has an interval whose radius changes sinusoidally from 12cm at an
axial distance of l.5m from the source to a value of 7cm at a distance of l.6m. The
smooth model has the same change occurring between the distances of l.Om and 2.0m.
The parameters of the formation and the fluid are the same as those in Figure 3 as a
source. In the propagator matrix modeling, we finely discretized the transition interval
into 100 layers. Putting the infinite half space on the top and at the bottom layer of
the interval, a model consist of a total of 102 layers is used for the calculation. A Kelly
source with a center frequency of 2 kHz is applied as a source.

Figure 9 shows the sets of waveform arrays obtained by the propagator matrix
method and the boundary integral method in the steep model. The source frequency is
below the cut-off frequency of any mode other than the fundamental, so that only the
Stoneley wave is excited. The results show quite good agreement with each other. The
steep change in the borehole radius gives rise to a reflected Stoneley wave. The ampli
tudes of the reflected waves are almost the same. The velocities of the Stoneley waves
are also in good agreement. We can also see good agreement in the results of the smooth
model in Figure 10. There can be seen neither reflections nor any perturbations due to
the radius changes. Only the amplitude of the Stoneley wave becomes larger gradually
from a distance of l.Om to 2.0m, corresponding to the smooth decrease in radius. We
can conclude that the overall features, including the reflection, the transmission, and
the velocity characteristics of the propagator matrix modeling are consistent with the
boundary integral modeling.

It is promising that the Stoneley wave propagation in the irregular borehole can be
modeled by the simple I-D wave propagation theory with the mass balance boundary
condition.
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SYNTHETIC ISO-OFFSET RECORDS

Full waveform traces of acoustic logging are sometimes displayed as so called iso-offset
records forms, that is an array of traces recorded by fixing the source-receiver distance
and moving the tool along the borehole. In the iso-offset records, the reflection event
makes a specific pattern of spreading both upward and downward symmetrically. The
pattern helps an analyst to recognize the location of the obstacle causing the reflection.
In the previous section we described the source in the infinite half spaces. However, to
get synthetic iso-offset records, we need to allow the source to be located at any depth
in the irregular borehole. In this section, prior to making synthetic iso-offset records, we
describe the procedure to treat the source inside the irregular borehole. This problem
is analogous to the problem of the sources in the layered medium (Temme and Miiller
1982). The geometry of the medium is illustrated in Figure 11. The source is located in
the 8th layer at the depth of z = zs. The 8th layer requires special treatment, because
there is a stress jump at the source point, and the source potential has to be included in
the displacement potential of the 8th layer <Ps. We separate the 8th layer into two layers.
Above the source (z < zs) we use a new denotation 8+ with amplitude coefficient D s+,
Us+, and below the source (z > zs) we assign D s-, Us- to the coefficients. The relation
between the two pairs of coefficients is

( Us+) (Us-) ( As )
D s+ = Ds- + -liAs '

(16)

where As is the source term. With additional relations of D1 = 0 (no down-going wave
in the upper half space) and Un = 0 (no up-going wave in the lower half space), we
apply Equation (11) to the layer 1 to 8+ , and layers s- to n separately.

where

and

(~1) = M 1M 2 ... M s - 1 ( ~:: )

= s(~::)

s-1 ( )S = II Mi = 811 812
i=l 521 822

(17)

where

= M sM s+1 '" M n - 1 ( ~n )

= r( ~n) (18)
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Substituting Equation (18) into Equation (17) through Equation (16), we get
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(19)

This equation can be solved for the unknown coefficients U1 and Dn in term of matrix
with source potential.

. (20)

where

." = 821t12 + 822t22

I; 811 822 - 812821

Once we know U1 and Dn , the other coefficients can be solved for successively in the
same manner as the multi-layered cases. However, this requires some attention. The
coefficients in layers n-l to s- may be solved from the lower layers as

(21)

and, the coefficients in layer 2 to s+ must be solved from the upper layers as

(22)

where M i-
1 is the inverse matrix at the ith boundary. In the case of the model consisting

of many layers, we don't need to handle all the layers to calculate the waveform at a
certain depth but we need the appropriate number of.layers above and below the source
depth. The farther boundary from the source makes the reflection which arrives later.
If the arrival time exceeds the window length of our interest, it appears on the trace as
a wrap around ghost. To prevent the ghost, the layers beyond the maximum distance
should be replaced with the infinite half layers.

APPLICATION

In the following we present synthetic iso-offset records calculated for the borehole model
based on the actual field data. The data used in the modeling includes sonic log, density
log, and caliper log. The composite log chart in Figure 12 shows compressional and shear
slowness, bulk density, and borehole diameter. We discretized those curves by a one
foot interval and made a 560-Iayer model. The mud velocity and density are set to
be 1600km/s and 1.5g/cm3 , respectively. We ignore the tool radius. The propagator
matrices are calculated at each boundary. The excitation function for the Stoneley mode
is calculated in a layer in which the source is posted. Then the synthetic waveforms
are obtained by following the procedure described in the preceding section. The Kelly
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source with a center frequency of 1.5kHz is applied as the source. The receiver is fixed
at 9ft above the source. The source and receiver set is moved from the depth of X292ft
up to x098ft.

Figure 13 shows the field records (a) and the synthetic records (b) for the field
model. Each trace is plotted at the center depth of the source and the receiver. Two
large reflection patterns corresponding to the washout zone are recognized at depth of
x113ft and x244ft in the synthetic records. Oddly enough the reflection at the upper
washout zone seems smaller than the reflection at the lower washout zone, despite that
the upper washout zone is larger than the lower zone. This is because of the shape of
the washout zone shown in the borehole geometry depicted beside the iso-offset records.
The bottom part of the lower washout zone has a rapid change in the borehole radius
as against the smooth shape of the upper washout zone. The rapid change causes the
big reflection. We can also see some reflection patterns in the field records, however,
the low frequency coherent waves make it difficult to see the amplitudes of the reflected
waves. To reduce the contamination of the coherent waves and also to remove the
transmitted waves, the median filtering (Hardage, 1983) is applied to both the field and
the synthetic records. Figure 14 shows the scattered wavefield of both the field records
(a) and the synthetic records (b). The coherent waves on the raw field records and the
transmitted wave on both records have been successfully removed. In the field records
are seen the large reflections corresponding to the washout zones. The reflection strength
associated with the upper washout zone is smaller than that of the upper washout zone
and is consistent with the synthetic records. As for the washout zone, both records
are in good agreement. However, we also have an interesting disagreement. At the
depth of X143ft at which the notable reflection pattern is seen in the field records, we
cannot find a similar big event in the synthetic record. There are neither distinctive
changes in the borehole geometry nor drastic lithology changes. The reflection seems
to be caused by something else, possibly fracture. The left-hand column in Figure 14
shows the fracture density obtained by counting fractures on the resistivity image of
the formation micro scanner. There are high density anomalies around the depth of
X143ft where the inconsistent reflection has been seen in the field records. There are
yet other reflection events only in the field records which correspond to the fracture
density anomaly at depths of X190ft and X21Oft. These inconsistent reflections are
thought to be generated by the fractures crossing the borehole.

It is not easy to discriminate the reflections associated with the fractures from the
other reflections on the field records; however, this becomes easier if the synthetic records
are introduced. The synthetic records provide the image including only the information
related to the borehole geometry and the elastic properties of the formation. The image
can be used as helpful background information in the interpretation of fractures by the
use of the Stoneley wave reflections.

CONCLUSION

We have formulated a simple modeling method for the Stoneley wave propagation by
using the propagator matrix with the mass balance boundary conditions. Applying
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the method to some cases, we found that it provides a synthetic pressure field in the
borehole which is in good agreement with the results obtained by the finite difference

. modeling method as well as the boundary integration method.

We have applied the method to the field data and compared the synthetic iso-offset
records with the field records. The results show good agreement in the major reflections
due to the washout zone, but some significant disagreement in the reflections due to the
fracture. Since the synthetic records include only information related to the borehole
geometry and the elastic properties of formation, they can be used as helpful background
data in distingushing the reflections due to fractures from others.

The calculation speed of the method is much faster than other methods such as the
finite difference method and the boundary integral method. This is a great advantage for
the application to the field data which requires a big model to synthesize the iso-offset
records.
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Figure 1: Diagram showing acoustic logging in a formation which has a single bound
ary between the upper and lower infinite half spaces. Each layer is described by
compressional velocity, shear velocity and density. Ui and Di denote amplitudes of
up-going and down-going waves in each layer. A rigid tool is located at the center
of the borehole.
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Figure 2: Transmission and reflection coefficients for a Stoneley wave at a single bound
ary. (a) Results obtained by 'mass balance boundary condition'. (b) Results ob
tained by 'non mass balance boundary condition'. Borehole geometry and model
parameters are depicted beside the curves.
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Figure 3: Characteristics of Stoneley reflection and transmission coefficients against
ratios of radius changes. (a) Results obtained by 'mass balance boundary condition'.
(b) Results obtained by 'non mass balance boundary condition'. Borehole geometry
and model parameters are depicted beside the curves.
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Figure 4: The synthetic array waveforms of the Stoneley wave propagating across a single
boundary obtained by the l~D wave propagation theorem with the 'mass balance
boundary condition' (a) and with the 'non mass balance boundary condition' (b).
The model parameters used in the calculation are the same as those in Figure 2. The
borehole has a step change in radius at 1.65m from the source. The Kelly source
with its center frequency of 2 kHz is used for the source function. The seismograms
recorded by an array of 30 receivers located along the borehole axis at D.1m interval
are displayed.
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Figure 5: The synthetic array waveforms of the Stoneley wave propagating across a
single boundary obtained by the finite difference method. The model parameters
used in the calculation are the same as those in Figure 2. The Kelly source with its
center frequency of 2 kHz is used for the source function. The seismograms recorded
by an array of 30 receivers located along the borehole axis at O.lm interval are
displayed. The reflection and the transmission characteristics are consistent with
the results obtained by the l-D wave propagation theorem with the 'mass balance
boundary condition' (Figure 4(a)).
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Figure 6: Diagram showing a borehole including washout zone in the multi-layered
formation. n-1 layers each of which is described by its parameters and borehole
radius are sandwiched between the upper and the lower infinite half spaces. Uj and
D j denote amplitudes of up-going and down-going waves in each layer.
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Figure 7: Total transmission and reflection coefficients for a Stoneley wave at washout
zones of different thicknesses. (a) Results obtained for the washout zone with a
thickness of O.5m. (b) Results obtained for the washout zone with a thickness of
O.lm. Borehole geometry and model parameters are depicted beside the curves.
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Figure 8: Total transmission and reflection coefficients of a Stoneley wave at sinusoidal
washout zones. The zone thicknesses are O.1m, O.2m and O.5m. RO.1 denotes the
total reflection for the O.1m thickness model. TO.5 denotes the total transmission
for the O.5m thickness model.
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Figure 9: Comparison of the propagator matrix synthetic waveforms (a) with the bound
ary integral method (b). The steep borehole model, depicted beside the waveforms,
has an interval whose radius changes sinusoidally from 12cm at an axial distance of
1.5m from the source to a value of 7cm at the distance of 1.6m. The parameters of
the formation and the fluid are the same as those in Figure 3. A Kelly source with
a center frequency of 2 kHz is applied as a source. The seismograms recorded by an
array of 30 receivers located along the borehole axis at O.lm interval are displayed.
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Figure 10: Comparison of the propagator matrix synthetic waveforms (a) with the
boundary integral method (b). The smooth borehole model, depicted beside the
waveforms, has an interval whose radius changes sinusoidally from 12cm at an axial
distance of 1.0m from the source to a value of 7cm at the distance of 2.0m. The
parameters of the formation and the fluid are the same as those in Figure 3. A Kelly
source with a center frequency of 2kHz is applied as a source. The seismograms
recorded by an array of 30 receivers located along the borehole axis at O.lm interval
are displayed.
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Figure 11: Diagram showing an acoustic source in a washout zone surrounded by multi
layered formation. The Sth layer which includes the source requires special treat
ment. It is separated into two layers s+ and S-. U; and D; denote amplitudes of
up-going and down-going waves in each layer.
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Figure 12: Composite log chart showing profiles of compressional and shear slownesses,
formation density and borehole diameter (caliper). These curves are discretized by
a one foot interval, and a 560-layer model is made for the synthetic iso-offset records

calculation.
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Figure 13: Comparison of the synthetic iso-offset records (b) with the real field records
(a). The synthetic records are calculated by the propagator matrix method with the
mass balance boundary condition. The model parameters used in the calculation
are shown in the composite log chart. The Kelly source with the center frequency
of 1.5 kHz is used for the source function.
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Figure 14: The scattered wavefield of the field records (a) and the synthetic records
(b). The median filtering is applied to extract only the scattered wavefield from
the total wavefields shown in the preceding figure. The left-hand column shows the
fracture density histogram obtained by counting fractures on the resistivity image
of the formation micro scanner.


