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The Eigenvalue Decomposition

e Eigenvalue problem for m X m matrix A:
Ax = \x

with eigenvalues A and eigenvectors = (nonzero)

e Eigenvalue decomposition of A:
A=XAX"" or AX = XA
with eigenvectors as columns of X and eigenvalues on diagonal of A

e In “eigenvector coordinates”, A is diagonal:

Ar=b — (X7'0) = AX'2)



Multiplicity
The eigenvectors corresponding to a single eigenvalue \ (plus the zero
vector) form an eigenspace
Dimension of F/\ = dim(null(A — AI)) = geometric multiplicity of A

The characteristic polynomial of A is
pa(z) =det(zl — A)=(z—=A)(z—Xg) - (2 = A\p)

A is eigenvalue of A <= pa(A) =0

— Since if A is eigenvalue, Az — Ax = 0. Then AI — A is singular, so

det(\ — A) =0
Multiplicity of a root A\ to p4 = algebraic multiplicity of A

Any matrix A has m eigenvalues, counted with algebraic multiplicity
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Similarity Transformations

e The map A — X' AX is a similarity transformation of A
e A and B are similar if there is a similarity transformation B = X 'AX

e A and X ' AX have the same characteristic polynomials, eigenvalues,

and multiplicities:

— The characteristic polynomials are the same:

px-1ax(2) =det(2] — X 'AX) = det(X (2] — A)X)
= det(X 1)det(2] — A)det(X) = det(z] — A) = pa(z)

— Therefore, the algebraic multiplicities are the same

— If E, is eigenspace for A, then X ' F is eigenspace for X "1 AX,

So geometric multiplicities are the same



Algebraic Multiplicity > Geometric Multiplicity

e Let n first columns of V' be orthonormal basis of the eigenspace for A

e Extend V to square unitary V', and form

M C
0 D

B=V*AV =

® Since
det(z] — B) = det(zI — Al )det(zI — D) = (z — \)"det(z] — D)
the algebraic multiplicity of A (as eigenvalue of B) is > n

e A and B are similar: so the same is true for \ of A



Defective and Diagonalizable Matrices

e |f the algebraic multiplicity for an eigenvalue > its geometric multiplicity, it

IS a defective eigenvalue
e |f a matrix has any defective eigenvalues, it is a defective matrix

e A nondefective or diagonalizable matrix has equal algebraic and
geometric multiplicities for all eigenvalues

e The matrix A is nondefective <= A4 = XAX !
— (<=)If A= XAX"! Aissimilar to A and has the same

eigenvalues and multiplicities. But A is diagonal and thus nondefective.

— (=) Nondefective A has m linearly independent eigenvectors. Take
these as the columns of X, then A = XAX L.



Determinant and Trace

e The trace of Aistr(A) = Z;n:l Q. j

e The determinant and the trace are given by the eigenvalues:

det(A) = ﬁ N, tr(A) = zm: by
since det(A) = (—=1)"det(—A) = (=1)"pa(0) = [[;Z, A,
pa(z) =det(zl — A) Zaﬂz

j=1

zm:)\jzm 1

Jj=1

pa(z) = (2= A1)+ (2 =



Unitary Diagonalization and Schur Factorization

e A matrix A is unitary diagonalizable if, for a unitary matrix (), A = QAQ*

e A hermitian matrix is unitarily diagonalizable, with real eigenvalues

(because of the Schur factorization, see below)
e A is unitarily diagonalizable <= A is normal (A*A = AA")

e Every square matrix A has a Schur factorization A = QT'Q)* with unitary
() and upper-triangular T’

e Summary, Eigenvalue-Revealing Factorizations
— Diagonalization A = X AX ! (nondefective A)
— Unitary diagonalization A = QAQ* (normal A)

— Unitary triangularization (Schur factorization) A = QT'Q)* (any A)



Eigenvalue Algorithms

The most obvious method is ill-conditioned: Find roots of p 4 ()
Instead, compute Schur factorization A = (QT'(Q)* by introducing zeros

However, this can not be done in a finite number of steps:

Any eigenvalue solver must be iterative

To see this, consider a general polynomial of degree m
p(2) = 2"+ a1 2"+ F a2 + ag

There is no closed-form expression for the roots of p: (Abel, 1842)

In general, the roots of polynomial equations higher than fourth

degree cannot be written in terms of a finite number of operations



Eigenvalue Algorithms

e (continued) However, the roots of p are the eigenvalues of the companion

matrix
- 0 Cap T
1 0 —aq
1 0 — a9
A= |
0 —Um—2
u 1 —Am—1

e Therefore, in general we cannot find the eigenvalues of a matrix in a finite

number of steps (even in exact arithmetic)

® |n practice, algorithms available converge in just a few iterations
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Schur Factorization and Diagonalization

e Compute Schur factorization A = QT'Q)* by transforming A with

similarity transformations
Q- QT AQQy - Q;
Q" ¢

which convergetoa’l ' as ] — o0

e Note: Real matrices might need complex Schur forms and eigenvalues

(or a real Schur factorization with 2 X 2 blocks on diagonal)

e For hermitian A, the sequence converges to a diagonal matrix
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Two Phases of Eigenvalues Computations

e General A: First to upper-Hessenberg form, then to upper-triangular

e Hermitian A: First to tridiagonal form, then to diagonal
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