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The Eigenvalue Decomposition


• Eigenvalue problem for m × m matrix A: 

Ax = λx 

with eigenvalues λ and eigenvectors x (nonzero) 

• Eigenvalue decomposition of A: 

A = XΛX−1 or AX = XΛ 

with eigenvectors as columns of X and eigenvalues on diagonal of Λ 

• In “eigenvector coordinates”, A is diagonal: 

Ax = b → (X−1b) = Λ(X−1 x) 
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Multiplicity


•	 The eigenvectors corresponding to a single eigenvalue λ (plus the zero 

vector) form an eigenspace 

•	 Dimension of Eλ = dim(null(A − λI)) = geometric multiplicity of λ 

•	 The characteristic polynomial of A is 

pA(z) = det(zI − A) = (z − λ1)(z − λ2) · · · (z − λm) 

•	 λ is eigenvalue of A ⇐⇒ pA(λ) = 0 

–	 Since if λ is eigenvalue, λx − Ax = 0. Then λI − A is singular, so 

det(λI − A) = 0 

•	 Multiplicity of a root λ to pA = algebraic multiplicity of λ 

•	 Any matrix A has m eigenvalues, counted with algebraic multiplicity 
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Similarity Transformations


•	 The map A �→ X−1AX is a similarity transformation of A 

•	 A and B are similar if there is a similarity transformation B = X−1AX 

•	 A and X−1AX have the same characteristic polynomials, eigenvalues, 

and multiplicities: 

–	 The characteristic polynomials are the same: 

pX−1AX(z) = det(zI − X−1AX) = det(X−1(zI − A)X) 

= det(X−1)det(zI − A)det(X) = det(zI − A) = pA(z) 

–	 Therefore, the algebraic multiplicities are the same 

–	 If Eλ is eigenspace for A, then X−1Eλ is eigenspace for X−1AX , 

so geometric multiplicities are the same 
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Algebraic Multiplicity ≥ Geometric Multiplicity


• Let n first columns of V̂ be orthonormal basis of the eigenspace for λ 

• Extend V̂ to square unitary V , and form 
  

λI C 
B = V ∗AV =   

0 D 

• Since 

det(zI − B) = det(zI − λI)det(zI − D) = (z − λ)ndet(zI − D) 

the algebraic multiplicity of λ (as eigenvalue of B) is ≥ n 

• A and B are similar; so the same is true for λ of A 
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Defective and Diagonalizable Matrices


•	 If the algebraic multiplicity for an eigenvalue > its geometric multiplicity, it 

is a defective eigenvalue 

•	 If a matrix has any defective eigenvalues, it is a defective matrix 

•	 A nondefective or diagonalizable matrix has equal algebraic and 

geometric multiplicities for all eigenvalues 

•	 The matrix A is nondefective ⇐⇒ A = XΛX−1 

–	 (⇐=) If A = XΛX−1 , A is similar to Λ and has the same 

eigenvalues and multiplicities. But Λ is diagonal and thus nondefective. 

–	 (=⇒) Nondefective A has m linearly independent eigenvectors. Take 

these as the columns of X , then A = XΛX−1 . 

6 



∏
 ∑


∑


Determinant and Trace


• The trace of A is tr(A) = 
∑m

j=1 ajj 

• The determinant and the trace are given by the eigenvalues: 

m m 

det(A) = λj, tr(A) = λj 

j=1 j=1 

∏m
since det(A) = (−1)mdet(−A) = (−1)mpA(0) = j=1 λj and 

m ∑

m−1
pA(z) = det(zI − A) = z m −
 +
ajjz 

j=1 

m 

· · ·


m−1
pA(z) = (z − λ1) · · · (z − λm) = z m −
 λjz
 +
 · · ·

j=1
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Unitary Diagonalization and Schur Factorization


•	 A matrix A is unitary diagonalizable if, for a unitary matrix Q, A = QΛQ∗ 

•	 A hermitian matrix is unitarily diagonalizable, with real eigenvalues 

(because of the Schur factorization, see below) 

•	 A is unitarily diagonalizable ⇐⇒ A is normal (A∗A = AA∗) 

•	 Every square matrix A has a Schur factorization A = QTQ∗ with unitary 

Q and upper-triangular T 

•	 Summary, Eigenvalue-Revealing Factorizations 

–	 Diagonalization A = XΛX−1 (nondefective A) 

–	 Unitary diagonalization A = QΛQ∗ (normal A) 

–	 Unitary triangularization (Schur factorization) A = QTQ∗ (any A) 
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Eigenvalue Algorithms


• The most obvious method is ill-conditioned: Find roots of pA(λ) 

• Instead, compute Schur factorization A = QTQ∗ by introducing zeros 

• However, this can not be done in a finite number of steps: 

Any eigenvalue solver must be iterative 

• To see this, consider a general polynomial of degree m 

p(z) = z m + am−1z 
m−1 + · · · + a1z + a0 

• There is no closed-form expression for the roots of p: (Abel, 1842) 

In general, the roots of polynomial equations higher than fourth 

degree cannot be written in terms of a finite number of operations 
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Eigenvalue Algorithms


•	 (continued) However, the roots of p are the eigenvalues of the companion 

matrix 



0 −a0 

1 0 −a1 

1 0 −a2 

1 
. . . 

. . . 
. . . 0 −am−2 

1 −am−1 
























A =


•	 Therefore, in general we cannot find the eigenvalues of a matrix in a finite 

number of steps (even in exact arithmetic) 

•	 In practice, algorithms available converge in just a few iterations 

10




Schur Factorization and Diagonalization


•	 Compute Schur factorization A = QTQ∗ by transforming A with 

similarity transformations 

Q∗ 
j · · · Q

∗ 
2
Q∗ 

1 A Q1Q2 · · · Qj 
︸ ︷︷ ︸ ︸ ︷︷ ︸ 

Q∗ Q


which converge to a T as j → ∞


•	 Note: Real matrices might need complex Schur forms and eigenvalues 

(or a real Schur factorization with 2 × 2 blocks on diagonal) 

•	 For hermitian A, the sequence converges to a diagonal matrix 
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Two Phases of Eigenvalues Computations 

• General A: First to upper-Hessenberg form, then to upper-triangular 


 

 


× × × × ×
 × × × × ×
 × × × × ×


× × × × × × × × × × × × × ×
Phase 1
 Phase 2



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

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


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× × ×




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


 × × ×


× ×

−→
 −→


× × × × × × × × 

A � A∗ H= T 

• Hermitian A: First to tridiagonal form, then to diagonal 


 

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

× × × × ×
 × ×
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