Lecture 13 Eigenvalue Problems

MIT 18.335J / 6.337J Introduction to Numerical Methods

Per-Olof Persson

October 24, 2006

The Eigenvalue Decomposition

• Eigenvalue problem for $m \times m$ matrix A :

 $Ax = \lambda x$

with eigenvalues λ and eigenvectors x (nonzero)

 \bullet Eigenvalue decomposition of A :

$$
A = X\Lambda X^{-1} \quad \text{or} \quad AX = X\Lambda
$$

with eigenvectors as columns of X and eigenvalues on diagonal of Λ

• In "eigenvector coordinates", A is diagonal:

$$
Ax = b \rightarrow (X^{-1}b) = \Lambda(X^{-1}x)
$$

Multiplicity

- The eigenvectors corresponding to a single eigenvalue λ (plus the zero vector) form an eigenspace
- Dimension of $E_{\lambda} = \dim(\mathrm{null}(A \lambda I))$ = geometric multiplicity of λ
- The characteristic polynomial of A is

$$
p_A(z) = \det(zI - A) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)
$$

- λ is eigenvalue of $A \Longleftrightarrow p_A(\lambda) = 0$
	- **–** Since if λ is eigenvalue, $\lambda x Ax = 0$. Then $\lambda I A$ is singular, so $\det(\lambda I - A) = 0$
- Multiplicity of a root λ to p_A = algebraic multiplicity of λ
- Any matrix A has m eigenvalues, counted with algebraic multiplicity

Similarity Transformations

- The map $A \mapsto X^{-1}AX$ is a similarity transformation of A
- A and B are similar if there is a similarity transformation $B = X^{-1}AX$
- A and $X^{-1}AX$ have the same characteristic polynomials, eigenvalues, and multiplicities:
	- $-$ The characteristic polynomials are the same:

$$
p_{X^{-1}AX}(z) = \det(zI - X^{-1}AX) = \det(X^{-1}(zI - A)X)
$$

= $\det(X^{-1})\det(zI - A)\det(X) = \det(zI - A) = p_A(z)$

- **–** Therefore, the algebraic multiplicities are the same
- **–** If E_λ is eigenspace for A, then $X^{-1}E_\lambda$ is eigenspace for $X^{-1}AX$, so geometric multiplicities are the same

Algebraic Multiplicity ≥ **Geometric Multiplicity**

- $\bullet\,$ Let n first columns of \hat{V} be orthonormal basis of the eigenspace for λ
- $\bullet\,$ Extend \hat{V} to square unitary V , and form $\;$

$$
B = V^* A V = \begin{bmatrix} \lambda I & C \\ 0 & D \end{bmatrix}
$$

• Since

 $\det(zI - B) = \det(zI - \lambda I) \det(zI - D) = (z - \lambda)^n \det(zI - D)$

the algebraic multiplicity of λ (as eigenvalue of B) is $\geq n$

• A and B are similar; so the same is true for λ of A

Defective and Diagonalizable Matrices

- If the algebraic multiplicity for an eigenvalue $>$ its geometric multiplicity, it is a defective eigenvalue
- If a matrix has any defective eigenvalues, it is a *defective matrix*
- A nondefective or diagonalizable matrix has equal algebraic and geometric multiplicities for all eigenvalues
- The matrix A is nondefective $\Longleftrightarrow A = X \Lambda X^{-1}$
	- $\mathsf{I} \leftarrow (\Longleftarrow)$ If $A = X \Lambda X^{-1}$, A is similar to Λ and has the same eigenvalues and multiplicities. But Λ is diagonal and thus nondefective.
	- \blacktriangle (\Longrightarrow) Nondefective A has m linearly independent eigenvectors. Take these as the columns of X, then $A = X \Lambda X^{-1}$.

Determinant and Trace

- The trace of A is $\text{tr}(A) = \sum_{i=1}^m a_{ij}$
- The determinant and the trace are given by the eigenvalues:

$$
\det(A) = \prod_{j=1}^{m} \lambda_j, \qquad \text{tr}(A) = \sum_{j=1}^{m} \lambda_j
$$

since $\det(A) = (-1)^m \det(-A) = (-1)^m p_A(0) = \prod_{i=1}^m \lambda_i$ and

$$
p_A(z) = \det(zI - A) = z^m - \sum_{j=1}^m a_{jj} z^{m-1} + \cdots
$$

$$
p_A(z) = (z - \lambda_1) \cdots (z - \lambda_m) = z^m - \sum_{j=1}^m \lambda_j z^{m-1} + \cdots
$$

Unitary Diagonalization and Schur Factorization

- A matrix A is unitary diagonalizable if, for a unitary matrix Q , $A = Q \Lambda Q^*$
- A hermitian matrix is unitarily diagonalizable, with real eigenvalues (because of the Schur factorization, see below)
- A is unitarily diagonalizable $\Longleftrightarrow A$ is normal $(A^*A = AA^*)$
- Every square matrix A has a Schur factorization $A = QTQ^*$ with unitary Q and upper-triangular T
- Summary, Eigenvalue-Revealing Factorizations
	- **–** Diagonalization $A = X \Lambda X^{-1}$ (nondefective A)
	- **–** Unitary diagonalization $A = Q \Lambda Q^*$ (normal A)
	- **–** Unitary triangularization (Schur factorization) $A = QTQ^*$ (any A)

Eigenvalue Algorithms

- The most obvious method is ill-conditioned: Find roots of $p_A(\lambda)$
- Instead, compute Schur factorization $A = QTQ^*$ by introducing zeros
- However, this can not be done in a finite number of steps:

Any eigenvalue solver must be iterative

• To see this, consider a general polynomial of degree m

$$
p(z) = zm + am-1zm-1 + \dots + a1z + a0
$$

• There is no closed-form expression for the roots of p : (Abel, 1842)

In general, the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations

Eigenvalue Algorithms

• (continued) However, the roots of p are the eigenvalues of the *companion* matrix

$$
A = \begin{bmatrix} 0 & & & & & -a_0 & \\ 1 & 0 & & & & -a_1 & \\ & 1 & 0 & & & & -a_2 & \\ & & 1 & \ddots & & & \vdots & \\ & & & \ddots & 0 & -a_{m-2} & \\ & & & & 1 & -a_{m-1} & \end{bmatrix}
$$

- Therefore, in general we cannot find the eigenvalues of a matrix in a finite number of steps (even in exact arithmetic)
- In practice, algorithms available converge in just a few iterations

Schur Factorization and Diagonalization

• Compute Schur factorization $A = QTQ^*$ by transforming A with similarity transformations

$$
\underbrace{Q_j^* \cdots Q_2^* Q_1^* A Q_1 Q_2 \cdots Q_j}_{Q^*}
$$

which converge to a T as $j \to \infty$

- Note: Real matrices might need complex Schur forms and eigenvalues (or a real Schur factorization with 2×2 blocks on diagonal)
- For hermitian A , the sequence converges to a diagonal matrix

Two Phases of Eigenvalues Computations

• General A : First to *upper-Hessenberg* form, then to upper-triangular

 \bullet Hermitian A : First to tridiagonal form, then to diagonal

