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Real Symmetric Matrices


•	 We will only consider eigenvalue problems for real symmetric matrices 

R
m×m 

R
m ∗ • Then A = AT ∈ , x ∈ , x = xT , and �x� = 

√
xT x 

A then also has • 
real eigenvalues: λ1, . . . , λm 

orthonormal eigenvectors: q1, . . . , qm 

•	 Eigenvectors are normalized �qj � = 1, and sometimes the eigenvalues 

are ordered in a particular way 

•	 Initial reduction to tridiagonal form assumed 

–	 Brings cost for typical steps down from O(m3) to O(m) 
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•	 �

Rayleigh Quotient


•	 The Rayleigh quotient of x ∈ R
m: 

xT Ax 
r(x) = 

xT x 

•	 For an eigenvector x, the corresponding eigenvalue is r(x) = λ 

•	 For general x, r(x) = α that minimizes �Ax − αx�2 

x eigenvector of A ⇐⇒∇r(x) = 0 with x = 0 

•	 r(x) is smooth and ∇r(qj ) = 0, therefore quadratically accurate: 

r(x) − r(qJ ) = O(�x − qJ � 2) as x → qJ 
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Power Iteration 

Simple power iteration for largest eigenvalue: • 

Algorithm: Power Iteration 

v(0) = some vector with �v(0)� = 1 

for k = 1, 2, . . . 

w = Av(k−1) apply A 

v(k) = w/�w� normalize 

λ(k) = (v(k))T Av(k) Rayleigh quotient 

Termination conditions usually omitted • 
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( )	 ( ) 

∣ ∣ 

Convergence of Power Iteration


Expand initial v(0) in orthonormal eigenvectors qi, and apply Ak:• 

v(0)	 = a1q1 + a2q2 + + amqm· · · 
v(k)	 = ckA

k v(0)


= ck(a1λ
k 
1 q1 + a2λ2

k q2 + + amλm
k qm)
· · · 

= ckλ1
k(a1q1 + a2(λ2/λ1)

k q2 + + am(λm/λ1)
k qm)· · · 

If λ1 > λ2 λm ≥ 0	and q1 
T v(0) = 0, this gives: •	 | | | | ≥ · · · ≥ | | �

∣ ∣k	 ∣ ∣2k 

�v(k) − (±q1)� = O ∣
∣

∣ 

λ

λ

1

2 
∣

∣

∣ , |λ(k) − λ1| = O 
∣

∣ 

λ

λ

1

2 
∣

∣ 

• Finds the largest eigenvalue (unless eigenvector orthogonal to v(0)) 

• Linear convergence, factor ≈ λ2/λ1 at each iteration 
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( )	 ( ) 

∣ ∣ 

Inverse Iteration 

Apply power iteration on (A − µI)−1, with eigenvalues (λj − µ)−1 • 

Algorithm: Inverse Iteration 

v(0)	 = some vector with �v(0)� = 1 

for k	 = 1, 2, . . . 

Solve (A − µI)w = v(k−1) for w apply (A − µI)−1 

v(k) = w/�w� normalize 

λ(k) = (v(k))T Av(k) Rayleigh quotient 

Converges to eigenvector qJ if the parameter µ is close to λJ :• 
∣ ∣k	 ∣ ∣2k 
∣ µ −	 λJ ∣ ∣ µ − λJ ∣ �v(k) − (±qj )� = O 
∣µ − λK 

∣

∣ , |λ(k) − λJ | = O 
∣

∣ 
µ − λK 

∣ 
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Rayleigh Quotient Iteration


Parameter µ is constant in inverse iteration, but convergence is better for • 
µ close to the eigenvalue 

Improvement: At each iteration, set µ to last computed Rayleigh quotient • 

Algorithm: Rayleigh Quotient Iteration 

v(0) = some vector with �v(0)� = 1 

λ(0) = (v(0))T Av(0) = corresponding Rayleigh quotient 

for k = 1, 2, . . . 

Solve (A − λ(k−1)I)w = v(k−1) for w apply matrix 

v(k) = w/�w� normalize 

λ(k) = (v(k))T Av(k) Rayleigh quotient 
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Convergence of Rayleigh Quotient Iteration


•	 Cubic convergence in Rayleigh quotient iteration: 

�v(k+1) − (±qJ )� = O(�v(k) − (±qJ )� 3) 

and 

|λ(k+1) − λJ | = O(|λ(k) − λJ | 3) 

Proof idea: If v(k) is close to an eigenvector, �v(k) − qJ � ≤ ǫ, then the • 
accurate of the Rayleigh quotient estimate λ(k) is |λ(k) − λJ | = O(ǫ2). 

One step of inverse iteration then gives 

�v(k+1) − qJ � = O(|λ(k) − λJ | �v(k) − qJ �) = O(ǫ3) 
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The QR Algorithm


Remarkably simple algorithm: QR factorize and multiply in reverse order: • 
Algorithm: “Pure” QR Algorithm 

A(0) = A


for k = 1, 2, . . .


Q(k)R(k) = A(k−1) QR factorization of A(k−1)


A(k) = R(k)Q(k) Recombine factors in reverse order


With some assumptions, A(k) converge to a Schur form for A (diagonal if • 
A symmetric)


Similarity transformations of A:
• 

A(k) = R(k)Q(k) = (Q(k))T A(k−1)Q(k) 
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Unnormalized Simultaneous Iteration


•	 To understand the QR algorithm, first consider a simpler algorithm 

•	 Simultaneous Iteration is power iteration applied to several vectors 

Start with linearly independent v
(0) 

, . . . , v
(0) •	 1 n 

We know from power iteration that Akv1
(0) 

converges to q1• 

With some assumptions, the space �Akv
(0) 

, . . . , Akvn 
(0) � should •	 1 

converge to q1, . . . , qn


Notation: Define initial matrix V (0) and matrix V (k) at step k:
• 





V (0)	 (0) 

= 
 v1 · · ·


 


 

vn 

(0) 
 , V (k) = AkV (0) =  v(k) 
	  1 · · ·







(k) 
vn 
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Unnormalized Simultaneous Iteration


Define well-behaved basis for column space of V (k) by Q̂(k)R̂(k) = V (k) • 

• Make the assumptions: 

– The leading n + 1 eigenvalues are distinct 

– All principal leading principal submatrices of Q̂T V (0) are nonsingular, 

where columns of Q̂ are q1, . . . , qn 

We then have that the columns of Q̂(k) converge to eigenvectors of A: 

�qj 
(k) 

= O(Ck)−±qj �


where C = max1≤k≤n λk+1 / λk
| | | | 

• Proof. Textbook / Black board 
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Simultaneous Iteration 

The matrices V (k) = AkV (0) are highly ill-conditioned • 

Orthonormalize at each step rather than at the end: • 

Algorithm: Simultaneous Iteration 

Pick Q̂(0) 
R

m×n∈
for k = 1, 2, . . . 

Z = AQ̂(k−1) 

Q̂(k)R̂(k) = Z Reduced QR factorization of Z 

The column spaces of Q̂(k) and Z(k) are both equal to the column space • 
of AkQ̂(0), therefore same convergence as before 
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Simultaneous Iteration QR Algorithm
⇐⇒
The QR algorithm is equivalent to simultaneous iteration with Q̂(0) = I• 

Notation: Replace R̂(k) by R(k), and Q̂(k) by Q(k) • 

Simultaneous Iteration: Unshifted QR Algorithm: 

Q(0) A(0) = I = A 

A(k−1) = Q(k)R(k)Z = AQ(k−1) 

A(k) = R(k)Q(k)Z = Q(k)R(k) 

Q(k) = Q(1)Q(2) Q(k)A(k) = (Q(k))T AQ(k) · · · 

Also define R(k) = R(k)R(k−1) R(1) • · · ·


Now show that the two processes generate same sequences of matrices • 
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Simultaneous Iteration	 QR Algorithm ⇐⇒
Both schemes generate the QR factorization Ak = Q(k)R(k) and the • 
projection A(k) = (Q(k))T AQ(k) 

• Proof. k = 0 trivial for both algorithms. 

For k ≥ 1 with simultaneous iteration, A(k) is given by definition, and 

Ak = AQ(k−1)R(k−1) = Q(k)R(k)R(k−1) = Q(k)R(k) 

For k	 ≥ 1 with unshifted QR, we have 

Ak = AQ(k−1)R(k−1) = Q(k−1)A(k−1)R(k−1) = Q(k)R(k) 

and 

A(k) = (Q(k))T A(k−1)Q(k) = (Q(k))T AQ(k) 
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