Lecture 15 The QR Algorithm I

MIT 18.335J / 6.337J Introduction to Numerical Methods

> Per-Olof Persson October 31, 2006

Real Symmetric Matrices

- We will only consider eigenvalue problems for real symmetric matrices
- Then $A = A^T \in \mathbb{R}^{m \times m}$, $x \in \mathbb{R}^m$, $x^* = x^T$, and $\|x\| = \sqrt{x^T x}$
- $\bullet~A$ then also has

real eigenvalues: $\lambda_1, \ldots, \lambda_m$ orthonormal eigenvectors: q_1, \ldots, q_m

- Eigenvectors are normalized $||q_j|| = 1$, and sometimes the eigenvalues are ordered in a particular way
- Initial reduction to tridiagonal form assumed
 - Brings cost for typical steps down from ${\cal O}(m^3)$ to ${\cal O}(m)$

Rayleigh Quotient

• The Rayleigh quotient of $x \in \mathbb{R}^m$:

$$r(x) = \frac{x^T A x}{x^T x}$$

- For an eigenvector x, the corresponding eigenvalue is $r(x) = \lambda$
- For general x, $r(x) = \alpha$ that minimizes $||Ax \alpha x||_2$
- x eigenvector of $A \Longleftrightarrow \nabla r(x) = 0$ with $x \neq 0$
- r(x) is smooth and $\nabla r(q_j) = 0$, therefore quadratically accurate:

$$r(x) - r(q_J) = O(||x - q_J||^2) \text{ as } x \to q_J$$

Power Iteration

• Simple power iteration for largest eigenvalue:

Algorithm: Power Iteration

 $v^{(0)} = \text{some vector with } ||v^{(0)}|| = 1$ for k = 1, 2, ... $w = Av^{(k-1)}$ $v^{(k)} = w/||w||$ $\lambda^{(k)} = (v^{(k)})^T Av^{(k)}$

apply Anormalize Rayleigh quotient

Termination conditions usually omitted

Convergence of Power Iteration

• Expand initial $v^{(0)}$ in orthonormal eigenvectors q_i , and apply A^k :

$$v^{(0)} = a_1 q_1 + a_2 q_2 + \dots + a_m q_m$$

$$v^{(k)} = c_k A^k v^{(0)}$$

$$= c_k (a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + \dots + a_m \lambda_m^k q_m)$$

$$= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2 / \lambda_1)^k q_2 + \dots + a_m (\lambda_m / \lambda_1)^k q_m)$$

• If $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_m| \ge 0$ and $q_1^T v^{(0)} \ne 0$, this gives:

$$\|v^{(k)} - (\pm q_1)\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{\kappa}\right), \qquad |\lambda^{(k)} - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2\kappa}\right)$$

- Finds the largest eigenvalue (unless eigenvector orthogonal to $v^{(0)}$)
- Linear convergence, factor $pprox \lambda_2/\lambda_1$ at each iteration

Inverse Iteration

• Apply power iteration on $(A-\mu I)^{-1}$, with eigenvalues $(\lambda_j-\mu)^{-1}$

Algorithm: Inverse Iteration
$$v^{(0)} =$$
 some vector with $||v^{(0)}|| = 1$ for $k = 1, 2, ...$ Solve $(A - \mu I)w = v^{(k-1)}$ for w apply $(A - \mu I)^{-1}$ $v^{(k)} = w/||w||$ $\lambda^{(k)} = (v^{(k)})^T A v^{(k)}$ Rayleigh quotient

• Converges to eigenvector q_J if the parameter μ is close to λ_J :

$$\|v^{(k)} - (\pm q_j)\| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^k\right), \qquad |\lambda^{(k)} - \lambda_J| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^{2k}\right)$$

Rayleigh Quotient Iteration

- Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- Improvement: At each iteration, set μ to last computed Rayleigh quotient

$\begin{array}{ll} \textbf{Algorithm: Rayleigh Quotient Iteration} \\ v^{(0)} = \text{ some vector with } \|v^{(0)}\| = 1 \\ \lambda^{(0)} = (v^{(0)})^T A v^{(0)} = \text{ corresponding Rayleigh quotient} \\ \textbf{for } k = 1, 2, \dots \\ \textbf{Solve } (A - \lambda^{(k-1)}I)w = v^{(k-1)} \text{ for } w & \text{apply matrix} \\ v^{(k)} = w/\|w\| & \text{normalize} \\ \lambda^{(k)} = (v^{(k)})^T A v^{(k)} & \text{Rayleigh quotient} \end{array}$

Convergence of Rayleigh Quotient Iteration

• Cubic convergence in Rayleigh quotient iteration:

$$\|v^{(k+1)} - (\pm q_J)\| = O(\|v^{(k)} - (\pm q_J)\|^3)$$

and

$$|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)} - \lambda_J|^3)$$

• Proof idea: If $v^{(k)}$ is close to an eigenvector, $||v^{(k)} - q_J|| \le \epsilon$, then the accurate of the Rayleigh quotient estimate $\lambda^{(k)}$ is $|\lambda^{(k)} - \lambda_J| = O(\epsilon^2)$. One step of inverse iteration then gives

$$\|v^{(k+1)} - q_J\| = O(|\lambda^{(k)} - \lambda_J| \|v^{(k)} - q_J\|) = O(\epsilon^3)$$

The QR Algorithm

• Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: "Pure" QR Algorithm

$$\begin{split} A^{(0)} &= A \\ & \text{for } k = 1, 2, \dots \\ & Q^{(k)} R^{(k)} = A^{(k-1)} \\ & A^{(k)} = R^{(k)} Q^{(k)} \end{split} \quad & \text{QR factorization of } A^{(k-1)} \\ & \text{Recombine factors in reverse order} \end{split}$$

- With some assumptions, $A^{(k)}$ converge to a Schur form for A (diagonal if A symmetric)
- Similarity transformations of A:

$$A^{(k)} = R^{(k)}Q^{(k)} = (Q^{(k)})^T A^{(k-1)}Q^{(k)}$$

Unnormalized Simultaneous Iteration

- To understand the QR algorithm, first consider a simpler algorithm
- Simultaneous Iteration is power iteration applied to several vectors
- Start with linearly independent $v_1^{(0)}, \ldots, v_n^{(0)}$
- We know from power iteration that $A^k v_1^{(0)}$ converges to q_1
- With some assumptions, the space $\langle A^k v_1^{(0)}, \ldots, A^k v_n^{(0)} \rangle$ should converge to q_1, \ldots, q_n
- Notation: Define initial matrix $V^{(0)}$ and matrix $V^{(k)}$ at step k:

$$V^{(0)} = \left[\begin{array}{c} v_1^{(0)} \\ \cdots \\ v_n^{(0)} \end{array} \right], \quad V^{(k)} = A^k V^{(0)} = \left[\begin{array}{c} v_1^{(k)} \\ \cdots \\ v_n^{(k)} \end{array} \right]$$

Unnormalized Simultaneous Iteration

- Define well-behaved basis for column space of $V^{(k)}$ by $\hat{Q}^{(k)}\hat{R}^{(k)}=V^{(k)}$
- Make the assumptions:
 - The leading n+1 eigenvalues are distinct
 - All principal leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where columns of \hat{Q} are q_1, \ldots, q_n

We then have that the columns of $\hat{Q}^{(k)}$ converge to eigenvectors of A:

$$||q_j^{(k)} - \pm q_j|| = O(C^k)$$

where $C = \max_{1 \le k \le n} |\lambda_{k+1}| / |\lambda_k|$

• Proof. Textbook / Black board

Simultaneous Iteration

- The matrices $V^{(k)} = A^k V^{(0)}$ are highly ill-conditioned
- Orthonormalize at each step rather than at the end:

• The column spaces of $\hat{Q}^{(k)}$ and $Z^{(k)}$ are both equal to the column space of $A^k \hat{Q}^{(0)}$, therefore same convergence as before

Simultaneous Iteration \iff QR Algorithm

- The QR algorithm is equivalent to simultaneous iteration with $\hat{Q}^{(0)} = I$
- Notation: Replace $\hat{R}^{(k)}$ by $R^{(k)}$, and $\hat{Q}^{(k)}$ by $\underline{Q}^{(k)}$

Simultaneous Iteration:	
$\underline{Q}^{(0)} = I$	
$Z = A\underline{Q}^{(k-1)}$	
$Z = \underline{Q}^{(k)} R^{(k)}$	
$A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$	

Unshifted QR Algorithm: $A^{(0)} = A$ $A^{(k-1)} = Q^{(k)} R^{(k)}$ $A^{(k)} = R^{(k)} Q^{(k)}$ $\underline{Q}^{(k)} = Q^{(1)} Q^{(2)} \cdots Q^{(k)}$

- Also define $\underline{R}^{(k)} = R^{(k)} R^{(k-1)} \cdots R^{(1)}$
- Now show that the two processes generate same sequences of matrices

Simultaneous Iteration \iff QR Algorithm

- Both schemes generate the QR factorization $A^k = \underline{Q}^{(k)} \underline{R}^{(k)}$ and the projection $A^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$
- Proof. k = 0 trivial for both algorithms. For $k \ge 1$ with simultaneous iteration, $A^{(k)}$ is given by definition, and

$$A^{k} = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}R^{(k)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)}$$

For $k\geq 1$ with unshifted QR, we have

$$A^{k} = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k-1)}A^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)}$$

and

$$A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$