Lecture 18
Classical Iterative Methods

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson
November 14, 2006
Iterative Methods for Linear Systems

- **Direct methods** for solving $Ax = b$, e.g. Gaussian elimination, compute an exact solution after a finite number of steps (in exact arithmetic)

- **Iterative algorithms** produce a sequence of approximations $x^{(1)}, x^{(2)}, \ldots$ which hopefully converges to the solution, and
 - may require less memory than direct methods
 - may be faster than direct methods
 - may handle special structures (such as sparsity) in a simpler way

![Graph showing residual convergence](image-url)
Two Classes of Iterative Methods

- **Stationary methods** (or classical iterative methods) finds a splitting $A = M - K$ and iterates $x^{(k+1)} = M^{-1}(Kx^{(k)} + b) = Rx^{(k)} + c$
 - Jacobi, Gauss-Seidel, Successive Overrelaxation (SOR), and Symmetric Successive Overrelaxation (SSOR)

- **Krylov subspace methods** use only multiplication by A (and possibly by A^T) and find solutions in the Krylov subspace $\{b, Ab, A^2b, \ldots, A^{k-1}b\}$
 - Conjugate Gradient (CG), Generalized Minimal Residual (GMRES), BiConjugate Gradient (BiCG), etc
The Model Poisson Problem

- Test problem for linear solvers: Discretize Poisson’s equation in 2-D:

\[- \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 1\]

on a square grid using centered finite difference approximations:

\[4u_{ij} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1} = h^2\]

- Dirichlet conditions \(u = 0 \) on boundaries
- Grid spacing \(h = 1/(n + 1) \)
- Total of \(n^2 \) unknowns \(u_{ij} \)
- A “typical problem” despite the simplicity
The Model Problem in MATLAB

- In MATLAB:

\[
\begin{align*}
n & = 8; \quad h = 1/(n+1); \quad e = \text{ones}(n,1); \\
A1 & = \text{spdiags}([-e, 2*e, -e], -1:1, n, n); \\
A & = \text{kron}(A1, \text{speye}(n, n)) + \text{kron}(\text{speye}(n, n), A1); \\
f & = h^2 * \text{ones}(n^2, 1);
\end{align*}
\]

or simply

\[
A = \text{delsq}(\text{numgrid}('S', n+2));
\]

- Resulting linear system \(Au = f \) is sparse and banded.
Eigenvalues of Model Problem

- A is symmetric positive definite, with eigenvalues $\lambda_{ij} = \lambda_i + \lambda_j$, $i, j = 1, \ldots, n$, where

 $$\lambda_k = 2 \left(1 - \cos \frac{\pi k}{n + 1} \right)$$

 are eigenvalues of the 1-D Laplace operator

- Largest eigenvalue $\lambda_n = 2(1 - \cos \frac{\pi n}{n+1}) \approx 4$

- Smallest eigenvalue $\lambda_1 = 2(1 - \cos \frac{\pi}{n+1}) \approx \pi^2 / (n + 1)^2$

- Condition number $\kappa(A) = \lambda_n / \lambda_1 \approx 4(n + 1)^2 / \pi^2$
Stationary Iterative Methods

- Iterative methods for $Ax = b$ that can be written

$$x^{(k+1)} = Rx^{(k)} + c$$

with constant R are called stationary iterative methods.

- A splitting of A is a decomposition $A = M - K$ with nonsingular M.

- Stationary iterative method from splitting:

$$Ax = Mx - Kx = b \implies x = M^{-1}Kx + M^{-1}b = Rx + c$$

- The iteration $x^{(k+1)} = Rx^{(k)} + c$ converges to the solution $x = A^{-1}b$ if and only if the spectral radius $\rho(R) < 1$.

 - Proof. Blackboard
Choosing a Splitting

- Find a splitting \(A = M - K \) such that

 \[(1) \quad Rx = M^{-1}Kx \text{ and } c = M^{-1}b \text{ are easy to evaluate} \]

 \[(2) \quad \rho(R) \text{ is small} \]

- Example: \(M = I \) makes \(M^{-1} \) trivial, but probably not \(\rho(R) \) small

- Example: \(M = A \) gives \(K = 0 \) and \(\rho(R) = \rho(M^{-1}K) = 0 \), but expensive \(M^{-1} \)

- We will study splittings based on the diagonal and the upper/lower triangular parts of \(A \)

\[
A = D - L - U
\]
The Jacobi Method

- The simplest splitting is the Jacobi method, where $M = D$ and $K = L + U$:

$$x^{(k+1)} = D^{-1} \left((L + U)x^{(k)} + b\right)$$

- In words: Solve for x_i from equation i, assuming the other entries fixed

- Implementation of model problem: Trivial in MATLAB, but temporary array required with for-loops. The following code:

```matlab
for i = 1 to n
    for j = 1 to n
        u_{i,j}^{(k+1)} = (u_{i-1,j}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i,j+1}^{(k)} + h^2)/4
    endfor
endfor
```

performs one step of the Jacobi method
Convergence of the Jacobi Method

- The following results can be shown: The Jacobi method converges if
 - \(A \) is strictly row diagonally dominant: \(|a_{ii}| > \sum_{j \neq i} |a_{ij}|\), or
 - \(A \) is weakly row diagonally dominant: \(|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|\) with strict inequality at least once, and \(A \) is **irreducible** (strongly connected graph)

- Our model problem is weakly row diagonally dominant and irreducible, so the Jacobi method converges

- More specifically, the splitting is \(A = D - L - U = 4I - (4I - A) \), so
 \[
 R_J = (4I)^{-1}(4I - A) = I - A/4
 \]
 with eigenvalues \(1 - \lambda_{i,j}/4 \), and
 \[
 \rho(R_J) = \max_{i,j} |1 - \lambda_{i,j}/4| = |1 - \lambda_{11}/4| = \cos \frac{\pi}{n + 1} \approx 1 - \frac{\pi^2}{2(n + 1)^2}
 \]

- Therefore, it converges with a constant factor every \(O(n^2) \) iteration
The Gauss-Seidel Method

- In the Gauss-Seidel method, we choose \(M = D - L \) (which is triangular and therefore easy to invert) and iterate:

\[
x^{(k+1)} = (D - L)^{-1}(Ux^{(k)} + b)
\]

- In words: While looping over the equations, use the most recent values \(x_i \)

- Implementation of model problem: Still easy in MATLAB using \(\backslash \), and for-loops are actually easier than Jacobi since no temporary array:

```matlab
for i = 1 to n
    for j = 1 to n
        u_{i,j}^{(k+1)} = (u_{i-1,j}^{(k+1)} + u_{i+1,j}^{(k)} + u_{i,j-1}^{(k+1)} + u_{i,j+1}^{(k)} + h^2)/4
    end
end
```

- The order matters! For Cartesian grids, the red-black ordering updates in a checkerboard pattern
The Successive Overrelaxation Method

• In the *Successive overrelaxation method*, or SOR, the Gauss-Seidel step is extrapolated a factor ω:

\[x^{(k+1)} = \omega \tilde{x}_i^{(k+1)} + (1 - \omega) x_i^{(k)} \]

where \tilde{x} is the Gauss-Seidel iterate

• $\omega = 1$: Gauss-Seidel, $\omega > 1$: *overrelaxation*, $\omega < 1$: *underrelaxation*

• In matrix form:

\[x^{(k+1)} = (D - \omega L)^{-1}(\omega U + (1 - \omega) D)x^{(k)} + \omega(D - \omega L)^{-1}b \]
Convergence of Gauss-Seidel and SOR

- It can be shown that with a symmetric positive definite matrix A, Gauss-Seidel and SOR converges with $0 < \omega < 2$

- In general hard to choose ω for SOR, but if spectral radius of the Jacobi method $\rho(R_J)$ is known, the optimal $\omega = 2 / \left(1 + \sqrt{1 - \rho(R_J)}\right)$

- For the model problem with red-black ordering:
 - Gauss-Seidel is twice as fast as Jacobi
 - For SOR, the optimal $\omega = 2 / \left(1 + \sin \frac{\pi}{n+1}\right)$, giving a spectral radius

$$\rho(R_{SOR}) \approx 1 - \frac{2\pi}{n + 1}$$

which is n times faster than Jacobi/Gauss-Seidel, or a constant factor improvement every $O(n)$ iteration
The Symmetric Successive Overrelaxation Method

- To obtain an iteration matrix similar to a symmetric matrix, apply two SOR steps in opposite directions:

\[
x^{(k+1)} = B_1 B_2 x^{(k)} + \omega (2 - \omega) (D - \omega U)^{-1} D (D - \omega L)^{-1} b,
\]

\[
B_1 = (D - \omega U)^{-1} (\omega L + (1 - \omega) D)
\]

\[
B_2 = (D - \omega L)^{-1} (\omega U + (1 - \omega) D)
\]

- This **Symmetric successive overrelaxation method**, or SSOR, is useful as a preconditioner for symmetric matrices.

- By itself not very different from two steps of SOR