3.091 Fall Term 2004 Homework #11 November 18, 2003 (to be tested 11/23)

from Module Chapter 4 "Solubility Equilibria": 4, 8, 10, 16, 26, 29 from Main Text Chapter 11 "Acids and Bases": 5, 6, 13, 35, 50, 52, 64, 85, 89 plus the following problems.

1. (a) Identify the conjugate acid-base pairs in the following reactions:

(i) HI (aq) + H₂O $(l) \rightarrow$ H₃O⁺(aq) + I⁻(aq)

- (ii) $CH_3COOH(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + H_2O(l)$
- (iii) $\operatorname{NH}_3(aq) + \operatorname{H}_2\operatorname{O}(l) \rightarrow \operatorname{NH}_4^+(aq) + \operatorname{OH}^-(aq)$
- (b) Identify which of the following cannot be a Brønsted base and give a reason for your choices: H₃O⁺, AlCl₄⁻, CN⁻, O²⁻, SiH₄, AsH₃.
- (c) Estimate the *p*H and *p*OH of a 0.03091 M solution of hydroiodic acid ($K_a \approx 10^9$).
- **2.** Bi_2S_3 dissolves in water according to the following reaction:

$$\operatorname{Bi}_2 S_3(s) \Leftrightarrow 2 \operatorname{Bi}^{3+}(aq) + 3 \operatorname{S}^{2-}(aq)$$

for which the solubility product, $K_{\rm sp}$, has the value of 1.6×10^{-72} at room temperature.

- (a) At room temperature how many moles of Bi_2S_3 will dissolve in 3.091×10^6 liters of water?
- (b) How many Bi^{3+} ions will be found in the solution described in part (a)?
- **3**. Calculate the volume of 0.25 M NaI that would be needed to precipitate all the Hg^{2+} ion from 45 mL of a 0.10 M $Hg(NO_3)_2$ solution according to the following reaction:

$$2 \operatorname{NaI}(aq) + \operatorname{Hg}(\operatorname{NO}_3)_2(aq) \rightarrow \operatorname{HgI}_2(s) + 2 \operatorname{NaNO}_3(aq)$$

- **4.**(a) Strontium fluoride, SrF_2 , has a K_{sp} value in water of 2.45×10^{-9} at room temperature. Calculate the solubility of SrF_2 in water. Express your answer in units of molarity.
 - (b) Calculate the solubility of SrF_2 in 0.03 M NaF (*aq*). Express your answer in units of molarity. Assume that NaF is completely dissociated in water.