3.091 Fall Term 2004 Homework #1 Solutions

- **1-9.** (a) diamond, element, nonmetal
 - (b) brass, mixture, metals;
 - (c) soil, mixture, contains metal and nonmetals
 - (g) salt, compound, composed of metal and nonmetal
 - (h) iron, element, metal
 - (i) steel, mixture, metal

1-57.			
	Ζ	Α	e
³¹ P	15	31	15
¹⁸ O	8	18	8
³⁹ K	19	39	19
⁵⁸ Ni	28	58	28

1 20

- **1-47.** Three: ¹⁶O, ¹⁷O, ¹⁸O.
- 1-48. All have the same number of protons but different numbers of neutrons.
- **1-49.** 1.99268×10^{-23} g; 12.0000 amu
- **1-50.** 1200.0 amu, 1300.3 amu
- **1-51.** (b) The random selection will include isotopes ${}^{12}C$ and ${}^{13}C$.
- **1-62.** Fluorapatite, $Ca_5(PO_4)_3F$ contains 5 Ca^{2+} and 3 PO_4^{3-} ions, therefore, there is a charge of (5)(+2) + 3(-3) = 10 9 remaining after counting up the contribution of the Ca^{2+} and PO_4^{3-} ions. Since fluorapatite is a neutral molecule, the charge on the fluoride ion must be -1.
- **1-88.** Element X is a metal whose chemical properties are similar to potassium. There is only one isotope of element X. The mass of X in amu is 22.98976. Use the trends in masses in Table 1.4 to identify element X.

Answer: It is clear from the table that for the light elements the ratio of the atomic number to atomic mass is very close to 1:2. So the integer nearest to $\frac{1}{2}$ of 22.98976 is 11. That makes the element sodium.

2-83. mol C = (194.2 × 0.4948) g ×
$$\frac{1 \text{ mol C}}{12.011 \text{ g}}$$
 = 8.000 mol C
mol H = (194.2 × 0.0519) g × $\frac{1 \text{ mol H}}{1.0079 \text{ g}}$ = 10.0 mol H
mol N = (194.2 × 0.2885) g × $\frac{1 \text{ mol N}}{14.0067 \text{ g}}$ = 4.000 mol N

mol O = (194.2 × 0.1648) g ×
$$\frac{1 \text{ mol O}}{15.999 \text{ g}}$$
 = 2.000 mol O

The molecular formula of caffeine is $C_8H_{10}N_4O_2$

2-102. (a) $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O$ (b) $2 H_2S(g) + 3 O_2(g) \rightarrow 2 H_2O(g) + 2 SO_2(g)$ (c) $2 B_5H_9(g) + 12 O_2(g) \rightarrow 5 B_2O_3 + 9 H_2O(g)$

2-123. 4
$$P_4(s) + 5 S_8(s) \rightarrow 4 P_4 S_{10}(s)$$

 $\begin{array}{ll} 0.500 \;\; mol \; P_4 \times (4 \; mol \; P_4 S_{10}) \; / \; (4 \; mol \; P_4) = 0.500 \;\; mol \; P_4 S_{10} \\ 0.500 \;\; S_8 \times (4 \; mol \; P_4 S_{10}) \; / \; (5 \; mol \; S_8) = 0.400 \;\; mol \; P_4 S_{10} \end{array}$

Since S_8 produces fewer moles of P_4S_{10} , therefore it is the limiting reagent. If P_4 is doubled, S_8 is still the limiting reagent, and the amount of P_4S_{10} produced remains unchanged. If S_8 is doubled, then P_4 becomes the limiting reagent and the yield of P_4S_{10} rises to a value of 0.500 mol.

2-129. Fe₂O₃(s) + 2 Al(s)
$$\rightarrow$$
 Al₂O₃(s) + 2 Fe(l)
150 g Al $\times \frac{1 \mod Al}{26.98 \text{ g}} \times \frac{2 \mod Fe}{2 \mod Al} = 5.56 \mod Fe,$
250 g Fe₂O₃ $\times \frac{1 \mod Fe_2O_3}{159.7 \text{ g} Fe_2O_3} \times \frac{2 \mod Fe}{1 \mod Fe_2O_3} = 3.13 \mod Fe,$
Therefore, the limiting reagent is Fe₂O₃. The amount of Fe produced is 175 g Fe.

2-173. Cocaine, $C_{17}H_{21}O_4N$, MW = 303.36 g/mol $\Rightarrow C = 67.31\%$; H = 6.98%; N = 4.62%; O = 21.10%

Aspirin, $C_9H_8O_4$, MW = 180.16 g/mol

 \Rightarrow C = 60.00%; H = 4.48%; O = 35.52%

With a 7.31% difference in the amount of C and a 2.5% difference in the amount of H, it should be possible to distinguish between cocaine and aspirin by elemental analysis of carbon and hydrogen.