3.091 Fall Term 2004 Homework #2 September 14 (to be tested 9/21)

From the text, Chapter 3, problems 7, 25, and 201 (old edition 6, 22, and 107).

Also, the following questions.

- 1. Determine the orbiting velocity of an electron in the ground state of atomic hydrogen. Express your answer in units of m/s and as a fraction of c, the speed of light.
- 2. From a standard radio dial, determine the maximum and minimum wavelengths (λ_{max} and λ_{min}) for broadcasts on the
 (a) AM band,
 (b) FM band.
- 3. A photon with a wavelength (λ) of 3.091×10^{-7} m strikes an atom of hydrogen. Determine the velocity of an electron ejected from the excited state, n = 3.
- 4. Determine the minimum potential that must be applied to an α -particle so that on interaction with a hydrogen atom, a ground state electron will be excited to n = 6.
- **5.** An electron in Li^{2+} falls from n = 2 to the ground state. Calculate the wavenumber, $\bar{\nu}$, of the emitted photon.
- 6. Calculate the wavelength, λ , of a photon capable of exciting an electron in He⁺ from the ground state to n = 4.