1. Each In atom will attract an electron and thus create a "mobile hole"; we only have to determine the number of In atoms/cm³. The atomic volume of the host crystal (Ge) is given on your PT as 13.57 cm³/mole.

(a) # Ge atoms/cm³ =
$$\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mole}} \times \frac{1 \text{ mole}}{13.57 \text{ cm}^3}$$

= 4.44 × 10²² atoms/cm³
In atoms/cm³ = 4.44 × 10²² × 0.0003 × 10⁻² = 1.33 × 10¹⁷ In/cm³

The number of free charge carriers ("holes") is 1.33×10^{17} /cm³; they are created through the acquisition of one electron by each In atom from the valence band of the host crystal.

2.
$$\lambda_{\text{crit}} = \frac{hc}{E_g} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{1.1 \times 1.6 \times 10^{-19}} = 1.13 \times 10^{-6} \text{ m}$$

The critical λ for silicon is 1.1×10^{-6} m; thus radiation of $\lambda = 5 \times 10^{-7}$ m = 0.5×10^{-6} m has even more energy than that required to promote electrons across the band gap.

3. We determine the atomic (molar) volume of Si (PT); thus we know the total number of As atoms required, and convert that number into number of grams of As:

Si (Atomic Volume): At.Wt./ $\rho = 12.1 \times 10^{-6} \text{ m}^3/\text{mole}$ # of As atoms required = $12.1 \times 5 \times 10^{17} = 6.1 \times 10^{18}$ As/mole of Si g of As required: 6.1×10^{18} As atoms $\times \{74.92 \text{ g}/(6.02 \times 10^{23})\}$

$$= 7.59 \times 10^{-4} \text{ g As}$$

4. (a) First compare E of the incident photon with E_g :

 $E_{incident \; photon} = h\nu = 6.6 \times 10^{-34} \times 3.091 \times 10^{14} = 2.04 \times 10^{-19} \; J$

 $E_g = 0.7 \ eV = 1.12 \times 10^{-19} \ J < E_{incident \ photon}$

 \therefore electron promotion followed by emission of a new photon of energy equal to E_g

- energy in excess of Eg is dissipated as heat in the crystal

 $\lambda_{abs\,edge} = \lambda_{emitted}$ as calculated in part (a) = 1.77 μm

5. Each As atom will donate a free electron to the conduction band; we only have to determine the number of As atoms/cm³. The molar volume of Si is given on your PT as $V_{molar} = 12.1 \text{ cm}^3/\text{mole}.$

(a) # Si atoms/cm³ =
$$\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mole}} \times \frac{1 \text{ mole}}{12.1 \text{ cm}^3} = 4.98 \times 10^{22} \text{ atoms/cm}^3$$

As atoms/cm³ = $4.98 \times 10^{22} \times 0.0002 \times 10^{-2} = 9.95 \times 10^{16} \text{ As/cm}^3$
free charge carriers is $9.95 \times 10^{16}/\text{cm}^3$.

(b)

6. PT gives molar volume of Ge as 13.57 cm^3 and 1 mole of Ge weighs 72.61 g

set up ratio: $\frac{72.61}{13.6} = \frac{1000 \text{ g}}{x}$ and solve for x to get 187.30 cm³ addition of boron gives 1 charge carrier/B atom + B concentration in Si must be 3.091×10^{17} B/cm³ N_{av} B atoms weigh 10.81 g $\therefore 3.091 \times 10^{17}$ B atoms weigh $\frac{3.091 \times 10^{17}}{6.02 \times 10^{23}} \times 10.81 = 5.55 \times 10^{-6}$ g \therefore to 1 cm³ of Ge, add 5.55×10^{-6} g B + to 187.30 cm³ of Ge, add $187.30 \times 5.55 \times 10^{-6} = 1.04 \times 10^{-3}$ g B

$$= 2.45 \text{ eV} + 0.55 \text{ eV} = 3.00 \text{ eV}$$

(b) $E_g(CdTe) < E_g(CdS)$

the Cd–S bond is stronger than Cd–Te bond because although both S and Te are group 16, Te is much larger than S

8. (a) first calculate the absorption edge:

$$E_{g} = \frac{hc}{\lambda_{abs\ edge}} + \lambda_{abs\ edge} = \frac{hc}{E_{g}} = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{3.0 \times 1.6 \times 10^{-19}}$$

$$= 4.13 \times 10^{-7} \text{ m}$$

$$\therefore \text{ for incident radiation with higher energy than E_{g}, absorption occurs.}$$

$$100$$
% absorption
$$0 \qquad \lambda_{abs\ edge} = 4.13 \times 10^{-7} \text{ m}$$

(b) $E_g(AlSb) < E_g(AlP)$

the Al–P bond is stronger than Al–Sb bond because although both P and Sb are group 15, Sb is much larger than P.

- **9.** (i) You need to dope with an electron donor, which means an element from Group 15. So this gives you P, As, Sb as candidates.
 - (ii) The majority charge carrier is the electron, which moves in the conduction band.

(iii) See answer to 5 (b).