Homework #8

Solutions

1. $n_v/N = 3.091 \times 10^{-5} \text{ at } 1234^{\circ}C = 1507 \text{ K}$ $= 5.26 \times 10^{-3} \text{ at } \text{mp} = 2716 \text{ K}$ $\frac{n_v}{N} = A \exp\left(-\frac{\Delta H_v}{RT}\right)$ $3.091 \times 10^{-5} = A \exp\left(-\frac{\Delta H_v}{1507 \text{ R}}\right)$ (1) $5.26 \times 10^{-3} = A \exp\left(-\frac{\Delta H_v}{2716 \text{ R}}\right)$ (2) $(1)/(2) = 5.876 \times 10^{-3} = \exp\left(-\frac{\Delta H_v}{1507 \text{ R}} + \frac{\Delta H_v}{2716 \text{ R}}\right)$

Taking the logarithm of both sides gives

$$-5.137 = \frac{\Delta H_v}{R} \left(-\frac{1}{1507} + \frac{1}{2716} \right) = -2.954 \times 10^{-4} \frac{\Delta H_v}{R} \Rightarrow \Delta H_v = 1.497 \times 10^5 \text{ J/mol}$$

20	sin ² 0	normalized	clear fractions	(hkl)?	$\frac{\sin^2\theta}{h^2+k^2+l^2}$
38.40	0.108	1.00	3	111	0.0360
44.50	0.143	1.32	4	200	0.0358
64.85	0.288	2.67	8	220	0.0359
77.90	0.395	3.66	11	311	0.0358
81.85	0.429	3.97	12	222	0.0358
98.40	0.573	5.31	16	400	0.0358
111.20	0.681	6.31	19	331	0.0358

2. All we need to know is the temperature dependence of the vacancy density:

$$\frac{n_v}{N} = Ae^{-\frac{\Delta H_v}{RT}} \text{ where T is in Kelvins and the m.p. of Al is 660°C}$$
$$\frac{0.08}{100} = Ae^{-\Delta H_v/RT_1}, \text{ where } T_1 = 923\text{K}; \qquad \qquad \frac{0.01}{100} = Ae^{-\Delta H_v/RT_2}, \text{ where } T_2 = 757\text{K}$$

Taking the ratio:

$$\frac{8 \times 10^{-4}}{1 \times 10^{-4}} = \frac{Ae^{-\Delta H_{\nu}/RT_{1}}}{Ae^{-\Delta H_{\nu}/RT_{2}}} = e^{-\frac{\Delta H_{\nu}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)} \qquad \therefore \ln 8 = -\frac{\Delta H_{\nu}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$$
$$\therefore \Delta H_{\nu} = -\frac{R \times \ln 8}{\frac{1}{923} - \frac{1}{757}} = -\frac{8.314 \times \ln 8}{\frac{1}{923} + \frac{1}{757}} = 7.28 \times 10^{4} \text{ J/mole vac}$$
$$\therefore \Delta H_{\nu} = \frac{7.28 \times 10^{4}}{6.02 \times 10^{23}} = 1.21 \times 10^{-19} \text{ J/vac} = 0.755 \text{ eV/vac}$$

3.(a) We need to know the temperature dependence of the vacancy density:

$$\frac{1}{10^4} = Ae^{-\frac{\Delta H_v}{kT_1}} \text{ and } \frac{1}{10^3} = Ae^{-\frac{\Delta H_v}{kT_x}}$$

From the ratio: $\frac{1}{10^4} = \frac{10^3}{10^4} = \frac{Ae^{-\Delta H_v/kT_1}}{Ae^{-\Delta H_v/kT_x}} \text{ we get } -\ln 10 = -\frac{\Delta H_v}{k} \left(\frac{1}{T_1} - \frac{1}{T_x}\right)$
 $\therefore \left(\frac{1}{T_1} - \frac{1}{T_x}\right) = \frac{k\ln 10}{\Delta H_v}$
 $\frac{1}{T_x} = \frac{1}{T_1} - \frac{k\ln 10}{\Delta H_v} = \frac{1}{1073} - \frac{1.38 \times 10^{-23} \times \ln 10}{2 \times 1.6 \times 10^{-19}} = 8.33 \times 10^{-4}$
 $T_x = 1200 \text{ K} = 928^{\circ}\text{C}$

(b) repeat the calculation following the method given above but with $\Delta H_v = 1.0 \text{ eV}$ to find that $T_x = 1364 \text{ K} = 1091^{\circ}\text{C}$

NOTE: the change in ΔH_{ν} from 2.0 eV to 1.0 eV resulted in a change from 128 K to 291 K in $\Delta T.$

- **4.** Cu is FCC; example: (111) $[10\overline{1}]$; (111) $[\overline{1}01]$; (111) $[0\overline{1}1]$; (111) $[\overline{1}01]$
- 5.

Defect	Туре	Improved Materials Properties	Adversely Affected Materials Properties
	Vacancy f(T)	 diffusivity 	– electron mobility

```
page 3
```

		- color centers	– carrier lifetime
		– ionic conductivity	
	Substitutional	– conductivity (dopant)	– conductivity (impurities)
Point Defect		– strength (hardness)	– ductility
	-	– characteristic T (like T _M	M) – characteristic T
	Interstitial	– strength	– ductility
		– characteristic T	– characteristic T
		– electrical properties	– electrical properties
Line Defect	Dislocation	– ductility (malleability)	– strength
		– strength (at high	– yield stress
		dislocation density)	– optical properties
			– lasing action
Planar Defect	Grain Boundaries	– strength	– creep resistance
			– electrical properties
			– magnetic properties

6.
$$\frac{n_v}{N} = A \exp{-\frac{\Delta H_v}{k_B T}}, \qquad \Delta H_v = 1.5 \, eV \qquad \frac{n_v}{N} = \frac{1}{10^6} \text{ at } 888^{\circ}\text{C}$$

need first to solve for value of A -- use data at 888°C

$$A = \frac{\frac{n_{v}}{N}}{\exp{-\frac{\Delta H_{v}}{k_{B}T}}} = \frac{10^{-6}}{\exp{-\frac{1.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times (888 + 273)}}} = 3.203$$

calculate $\frac{n_v}{N}$ at m.p. of Pd, 1825 K

$$\therefore \frac{n_{\rm v}}{N} = 3.203 \times \exp\left(-\frac{1.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times 1825}\right) = 2.328 \times 10^{-4} < 10^{-3}$$

 \therefore it is **not** possible to achieve a vacancy fraction of 10^{-3} by simply raising temperature.