3.091 Fall Term 2004 Homework #5 with Solutions October 5 (for weekly guiz on Tuesday, October 12)

- **1.** Chemical analysis of a germanium crystal reveals indium at a level of 0.0003 atomic percent.
 - (a) Assuming that the concentration of thermally excited charge carriers from the Ge matrix is negligible, calculate the density of free charge carriers (carriers/cm³) in this Ge crystal.
 - (b) Draw a schematic energy band diagram for this material and label all critical features.
- 2. Show that green light ($\lambda = 5 \times 10^{-7}$ m) can excite electrons across the band gap of silicon.
- **3.** Determine the amount (in grams) of arsenic required to be substitutionally incorporated into a mole of silicon in order to achieve in it a free-electron density of 5×10^{17} /cm³.
- 4. (a) Electromagnetic radiation of frequency 3.091×10^{14} Hz illuminates a crystal of germanium. Calculate the wavelength photoemission generated by this interaction. Germanium is an elemental semiconductor with a band gap, E_g , of 0.7 eV.
 - (b) Sketch the absorption spectrum of germanium, i.e., plot % absorption vs wavelength, λ .
- **5.** (a) Chemical analysis of a silicon crystal reveals arsenic at a level of 0.0002 atomic percent. Assuming that the concentration of thermally excited charge carriers from the Si matrix is negligible, calculate the density of free charge carriers (carriers/cm³) in this Si crystal.
 - (b) Draw a schematic energy band diagram for this material and label all critical features.
- 6. (a) Determine the amount (in grams) of boron required to be substitutionally incorporated into 1 kg of germanium in order to establish a charge carrier density of 3.091×10^{17} /cm³.
 - (b) Draw a schematic energy band diagram for this material and label all critical features.
- 7. (a) An electron beam strikes a crystal of cadmium sulfide (CdS). Electrons scattered by the crystal move at a velocity of 4.4×10^5 m/s. Calculate the electron energy of the incident beam. Express your result in eV. CdS is a semiconductor with a band gap, E_g, of 2.45 eV.
 - (b) Cadmium telluride (CdTe) is also a semiconductor. Do you expect the band gap of this material to be greater or less than the band gap of CdS? Explain.
- **8.** (a) Aluminum phosphide (AlP) is a semiconductor with a band gap, E_g , of 3.0 eV. Sketch the absorption spectrum of this material, *i.e.*, plot % **absorption** *versus* **wavelength**, λ .
 - (b) Aluminum antimonide (AlSb) is also a semiconductor. Do you expect the band gap of this material to be greater than or less than the band gap of AlP? Explain.
- **9.** You wish to make n-type germanium.
 - (i) Name a suitable dopant.
 - (ii) Name the majority charge carrier in the doped material.
 - (iii) Draw a schematic energy band diagram of the doped material. Label the valence band, conduction band, and any energy levels associated with the presence of the dopant.