
3.091 Fall Term 2004 Homework Quiz #9A solution outline

(a) A melt of silicate glass, g_1 , cooled at rate, r_1 , has glass transition temperature, T_{g_1} . A new glass, g_2 , is formulated by the addition of CaO to g_1 . If a melt of g_2 is cooled at rate, r_1 , how does the glass transition temperature, T_{g_2} , compare to T_{g_1} ? Explain with reference to atomic structure.

If g_2 is cooled at rate, r_1 , the glass transition temperature, T_{g_2} , will lie below T_{g_1} . The addition of CaO to g_1 promotes chain scission of the silicate network. The resulting decrease in viscosity of the g_2 melt allows for greater mobility than would be the case in the g_1 melt at comparable undercooling. Accordingly, if each melt is cooled at the identical rate, it is necessary to cool g_2 to a lower temperature than g_1 before the system has solidified.

So $T_{g_2} < T_{g_1}$.

(b) The fictitious compound, arrhenium fluoride (AhF), decomposes readily at temperatures exceeding 37°C. The figure below shows how the rate of reaction varies with the concentration of AhF. The rate, r, is in units of M s⁻¹ and the concentration of AhF, c, is in units of M (mole L⁻¹). The slope has a value of 1.67 and the intercept has a value of 0.490.

- (i) What is the order of reaction? n = 1.67
- (ii) Calculate the value of the rate constant. The value of the rate constant is given by the intercept of the plot of log rate versus log concentration. Therefore,

$$k = 10^{0.490} = 3.09 \left(\frac{mol}{L}\right)^{-0.67} \frac{1}{s}$$