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LN–6 IDLE MIND SOLUTIONS

1. The number of defects (vacancies) in a given atomic assembly N is proportional to

e��Hv�kT where ∆Hv is the energy of defect formation and k is the Boltzmann
constant.

nv � Ne��Hv�kT

nv � ANe��Hv�kT (unless otherwise stated, we assume A = 1)

and
nv

N
� e��Hv�kT � e�

1.12 x 1.6 x 10�19

1.38 x 10�23 x 1724 � 5.36 x 10�4

For nv = 1, we find:

N � 1
5.36 x 10�4

� 1.87 x 103 filled sites�vac.

2. This problem is analog to problem 1.

Required: nv = ANe�(Hv�kT)

Cr, TM = 2130K
Hv = 1.08 eV

nv � Ne�Hv�kT

Here we want to find N for nv = 1.

1 � Ne�Hv�kT

N � 1
e�Hv�kT

� eHv�kT

� 2.718
1.08 x 1.6 x 10�19

1.38 x 10�23 x 2129

N = 358 filled sites/vacancy
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3. To solve this problem we must first convert nv/cm3 into nv/N, which is simple since
the molar volume for Al is 10 cm3 (N = NA/Mol.Vol. = 6.02 x 1022). Accordingly, we
have:

nv

N
� 2 x 1017

6.02 x 1022
� 3.32 x 10�6 � exp(� �Hv�kT)

ln 3.32 x 10–6 = –∆Hv/kT

∆Hv = –kT x ln 3.32 x 10–6 = 1 x 10–19 J

�Hv � 1 x 10�19 J x 1 eV
1.6 x 10�19 J

� 0.63 eV�vac.

4. Required: nv = ANe�(Hv�kT)

ToK = ToC + 273.16
Given is:

nv(T1)
nv(T2)

� 2 x 10�3 � ANe�Hv�kT1

ANe�Hv�kT2

� e�Hv�kT1

e�Hv�kT2
� e�Hv�kT1 x e�Hv�kT2

2 x 10�3 � e�
Hv
k
� 1

T1
� 1

T2
�

In logarithmic form:

ln (2 x 10�3) � �
Hv

k
� 1

T1
� 1

T2
�

Hv � �
k x ln(2 x 10�3)

1
T1

� 1
T2

� �
1.38 x 10�23 x (� 6.22)

1
773.16 � 1

1173.16

=   1.95 x 10–19 J = (1.22 eV)
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5. We have: (1)     1/1010 = A exp(–∆Hv/kT1)
(2) 1/(3x109) = A exp(–∆Hv/kT2)

We see that by dividing we can get rid of the constant:

3 x 109

1010
� 0.3 � exp�� �Hv

k
� 1

T1
� 1

T2
��

and

ln 0.3 � �
�Hv

k
� 1

T1
� 1

T2
�

�Hv � � k x ln 0.3
1
T1

� 1
T2

� 2.09 x 10�19 J�vacancy

6.
nv

N
� A exp�� �Hv

kT
� � 1

105
� 10�5

Assuming A to be close to 1, we have:  ln 10–5 = –(∆Hv)/(kTx)

Tx � �
Hv

k x ln 10�5
� � 1.05 x 1.6 x 10�19

1.38 x 10�23 x (�)11.5
� 1059K � 786oC

7. Slip along <111> directions suggests a “BCC”
system, corresponding to {110}, <111> slip.
Therefore:

a 3� � 4r

a � 4r
3�

� 1.78 x 10�10 m

Densest planes are {110}

We find:
2 atoms

a2 2�
� 4.46 x 1019 atoms x m�2
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8. According to LN6–15: N = 2n–1 where N = number of grains/inch2 if viewed at a
magnification of 100X and n = grain size number. Taking n=7:

N = 26 x 104 grains/inch2 = 6.4 x 105 grains/inch2

Knowing N, we can compute an average grain diameter:

dgrain = N1/2 = 1.25 x 10–3 inch = 3.12 x 102 mm = 31.2 µm

In more expanded form: If we have 64 x 105 grains (cubic – exposing square
areas under the microscope) per inch2 (N grains), then in linear arrangement we
have N�  = 800 grains/inch. The side of each grain is then:

1/800 inch = 1.25 x 10–3 inch = 1.25 x 10–3 x 25 mm = 3.12 x 10–3 mm = 31.2 µm

We can now establish a convenient list for grain size numbers in the metric scale.

ASTM No. n Grain/mm2 Approximate Grain Diameter (µm)

–3 1 1000.0
–2 2 708.0
–1 4 500.0

0 8 354.0
1 16 250.0
2 32 177.0
3 64 125.0
4 128 88.4
5 256 62.5
6 512 44.2
7 1024 31.2

9. For example:

(1) dopant elements in semiconductors → affect electrical conductivity

(2) vacancies in close packed metals → explain solid state diffusivity

(3) edge dislocations → explain slip; visible as etch pits and in X–ray topography

(4) grain boundaries → visible in reflected light; evidence by X–ray diffraction

(5) micro–precipitates → visible in X–ray transmission, IR transmission
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10. The information provided is:

nd(T1)
nd(T2)

� 10�3 �
ANe�

Ed
kT1

ANe�
Ed
kT2

(T1 � 773K, T2 � 1073K)

10�3 � e�(Ed�kT1)

e�(Ed�kT2)
� e�

Ed
kT1 x e�

Ed
kT2 � e�

Ed
k
� 1

T1
� 1

T2
�

ln 10�3 � �
Ed

k
� 1

T1
� 1

T2
�

Ed � � k ln 10�3

� 1
T1

� 1
T2

�
� �

1.38 x 10�23 x (� 6.9)
1

773 � 1
1073

Ed � 2.63 x 10�19 J x 1 eV
1.6 x 10�19 J

� 1.64 eV

11. At the melting point:  
Nd

N
� e�(Ed�kT) � e�

1.2 x 1.6 x 10�19

1.38 x 10�23 x 1357 � 3.56 x 10�5

(1 of 28570 sites is “absorbed vacancy”.)

At room temperature:  
Nd

N
� e�(Ed�kT) � e�

1.2 x 1.6 x 10�19

1.38 x 10�23 x 300 � 7.2 x 10�21

(1 of 1.4 x 1020 sites is vacant.)

The volume change (as specified) is due to the vacancies generated at the
melting point – no significant vacancies exist at room temperature!! Therefore, the
volume change is:

3.5 x 10–5       ∆V = 0.0035%
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12. Silicon = 2.33 g/cm3 (density)
Al:  1021/m3 = 1015/cm3

Al (g�cm3) � 1015 x 26.98
6.02 x 1023

� 4.48 x 10�8 g

Wt.% Al in Si � 100 x 4.48 x 10�8

2.33
� 1.9 x 10�6 %

13. The tensile strength is largely controlled by slip, which in FCC systems (Al)
involves the twelve {111} <110> slip systems. The mobility of dislocations, which
controls slip, is high in single crystals because of the high degree of crystal
perfection and slip proceeds from one external surface to another. In
polycrystalline Al the mobility of dislocations is slowed down because of mutual
interference (high density of dislocations) and, because of precipitates frequently
encountered, slip is retarded. Slip, moreover, is arrested at grain boundaries and
proceeds from there into different directions; the strength of polycrystalline
material is higher than that of single crystals.

slip systems in
single crystals

slip systems in poly– 
crystalline materials

14. 1�2000 � 5 x 10�4 �
Nd
N
� e�

Ed
RTM TM � 3680K

ln 5 x 10�4 � �
Ed

8.314 x 3680

Ed = 7.6 x 8.314 x 3680

Ed = 2.3 x 105 J/mole = 230 kJ/mole
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15. (a) (1) impurities
(2) dislocations
(3) grain boundaries
(4) “surfaces”

(b) (2) and (3)

(c) (2)

(d) vacancies

16. As a first approximation we have nv/N = exp–(∆Hv)/(kT). (In metals the
pre–exponential is generally found to be close enough to unity to be neglected.)

nv � N exp �
�Hv

kT

Presently N = no. of lattice sites per cm3 of Cu:

N � 6.02 x 1023

7.1
� 8.5 x 1022 sites�cm3

nv � 8.5 x 1022 x exp � 4 x 1.6 x 10�19

1.38 x 10�23 x 1350
� 1 x 108�cm3

17. (a) The change in density due to the formation of Schottky defects upon heating
of Cu is a density change caused by an increase in the number of vacancies;
the atoms originally at the vacated sites move to the surface and thus
increase the atomic volume:

�nv � nT2
� nT1

� N �exp�� �Hv

kT2
� � exp�� �Hv

kT1
��

= N (1.84 x 10–4 – 1.2 x 10–15 )

Taking molar quantities: N = 6.02 x 1023

∆nv = 1.1 x 1020 vacancies

The volume change, ∆V, associated with the “arrival” of 1.1 x 1020 atoms at
the surface (coming from the interior) is:

(continued)
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17. (a) Continued.

�V � 7.1 x 1.1 x 1020

6.02 x 1023
� 1.3 x 10�3 cm3

%�V � 100 x 1.3 x 10�3

7.1
� 2 x 10�2 %

This volume change corresponds to a 2 x 10–2 % increase, relating to a
density change from 8.96 g/cm3 (= 8.96g/1.0002 cm3) which is meaningless
since it is beyond the precision of the density given in the P/T.

(b) The experimentally observed density change (–6.4%) can be attributed to
lattice expansion associated with increased thermal vibrations of the atoms.
The effective atomic radius increases with temperature.

18. The energy required to form one mole of vacancies in Cu (∆Hv) =
20,000 cal x 4.18 J/cal. The formation of one vacancy requires:

�Hv �
83, 600

6.02 x 1023
� 1.39 x 10�19 J�vac.

nv
N
� exp � 1.39 x 10�19

1.38 x 10�23 x 1350
� 5.6 x 10�4 � 1

1740

We find one vacancy per 1740 sites.

The number of sites per cm3 is given by:
NA

Mol.Vol.
� 6.02 x 1023

7.1
� 8.5 x 1022 sites�cm3

We now find:

nv �
8.5 x 1022

1740
� 4.9 x 1019�cm3



LN–6

19. According to LN6–15, N = 2n–1 where N = number grains/inch2 when viewed at a
magntification of X100 (under a microscope) and n is the grain size number.
Grains, 3–dimensional, when viewed under the microscope expose an area which
can be approximated as a square with a particular side length. Any grain size
analysis can thus be made along one dimension.

no. averaged diameters (grains)�linear inch � 2.54 x 10�2

100 x 10�6 x 100
� 2.54

Given: N = 2n–1

6.45 = 2(n–1)

ln 6.45 = (n–1) ln 2
(n–1) = (ln 6.45)/(ln 2) = 2.68

                  n = 3.68 ~ 4

20. (1)
ÉÉ
ÉÉ
ÉÉ

→
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21. The fundamental relationship is nv�N � Ae��Hv�kT.

It can be applied at the two given temperatures, which allows us to eliminate the
unknown constant A; solving, we obtain ∆Hv and with it the value of the constant
A. needed to solve for the unknown temperature, Tx.

(1) 1
1011

� Ae��Hv�kT1 T1 � (750� 273)K

(2) 1
1010

� Ae��Hv�kT2 T2 � (850� 273)K

Dividing (1) by (2), we obtain:

10�1 � e�
�Hv

k
� 1

T1
� 1

T2
�

� ln10 � �
�Hv

k
� 1

T1
� 1

T2
�

�Hv � k x ln 10
1

1023 � 1
1123

� 3.65 x 10�19 J�vac

A � 1
1011

e
�Hv
kT1 � 1.69

1
108

� Ae� �H�kTx

Tx � �H
k ln(A x 108)

� 1396K � 1123oC

22. We know that the ratio of vacancies to sites is given as n
N

� Ae�
�HV
kT

(A, not specified is assumed to be one), with ∆HV, k and T given we still need to
know N, the number of lattice sites/cm3 for aluminum. We can get that from the
atomic volume (10 cm3/mole) which makes N = 6.02 x 1022/cm3.

n
N

� Ae�
�HV
kT ; n � Ne�

�HV
kT �6.02 � 1022e�

1.05�1.6�10�19

1.38�10�23�883

n = 6.02 x 1022 x 1.03 x 10–6

=   6.2 x 1016 vac/cm3
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23. The problem is simple in principle, but there are wrinkles: We deal with a simple
cubic lattice – in the center of the unit cell we accomodate an atom; the maximum

diameter will be �a 3� � 2r(O2)�; the wrinkle – what is the atomic volume? The P/T
gives an estimated density and an atomic volume not directly related to the
density – atomic radii cannot be used when considering a solid.
I would answer this question by stating the given information and indicating how to
solve the problem in principle (as above). I would also question the meaning of the
data given.

24. Identify 3 types of crystal defects in solids and suggest for each of these one
materials property which is adversely affected by its presence and one which is
improved.

Defect type
Improved

Materials Properties

Adversely affected

Materials Properties

Point
Defect

Vacancy
   f(T)

– Diffusivity
– Color Centers
– Ionic Conductivity

– Electron mobility
– Carrier Lifetime

Substitutional
– Conductivity (dopant)
– Strength (hardness)
– Characteristic T (like TM)

– Conductivity (impurities)
– Ductility
– Characteristic T

Interstitial
– Strength
– Characteristic T
– Electrical Properties

– Ductility
– Characteristic T
– Electrical Properties

Line
Defect Dislocation

– Ductility (Malleability) – Strength
– Yield Stress
– Optical Properties
– Lasing Action

Planar
Defect

– Strength
– Electrical Properties
– Magnetic Properties

Grain
Boundaries

– Creep
– Electrical Properties
– Magnetic Properties

– Strength (at high
    density)
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25. (a) deBroglie wavelength

�p � h
mv where:

λp: particle wavelength

h: Planck’s constant

m: mass of particle

v: velocity of particle

(b) Bohr postulate

mvr � n h
2 ��

where:

m: mass of electron

v: velocity of electron in orbit

h: Planck’s constant

n: quantum number of orbit

r: radius of electron orbit

(c) Schottky defect: A  Schottky defect is a single vacancy (uncharged) or a pair
of oppositely charged ion vacancies.

(d) Heisenberg uncertainty principle

�E � �t � h ; �p � �x � h
where:

h: Planck’s constant

∆E: uncertainty in energy
∆t: uncertainty in time

∆p: uncertainty in linear momentum
∆n: uncertainty in position

(e) Schrödinger wave equation: The Schrödinger equation is a differential
equation whose solutions yield the possible wave functions that can be
associated with a particle such as an electron in a given physical situation;
the equation tells us how the wave function changes as a result of the forces
acting on the particle.

(f) Moseley relationship

�K� � R(Z� 1)2 � 3
4

where:

R: Rydberg’s constant

Z: Atomic number of element

�K� : wave number of Kα x–ray

(g) Bragg’s law

n� � 2d(hkl) sin �


