RESERVOIR DELINEATION RESEARCH

Richard L. Gibson, Jr.

Earth Resources Laboratory
Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139

SUMMARY

This report describes work performed by the Reservoir Delineation Consortium during
the past year. We have made progress in the areas of theoretical analysis of wave prop-
agation, data analysis, and significant field work at the Michigan test site. Research
on wave propagation focused on developing new algorithms for rapid and flexible cal-
culation of full waveform synthetic seismograms. These methods provide the modeling
tools for surface seismic, crosshole, single hole experiments and data interpretation. Ini-
tial progress on a finite volume method is summarized, and simulations using parabolic
equations, attennation modeling, and elastic wave simulations with multiple multipole
methods are also examined in this report. New work in the area of data processing and
analysis is represented by hydraulic fracturing imaging via source location methods and
nonlinear refraction imaging. The past year (1995} has been one of the most active in
our entire experience with the Michigan test site, and a summary report documents the
crosshole survey, single well imaging experiments and dipole logging performed recently.

This introduction to the report describes first the wave propagation research, includ-
ing a summary statement providing our motivations for continued research in this area.
Briefly, while there are many algorithms currently available for modeling tasks, each
of them has its own limitations and advantages in regard to both accuracy and speed.
Given a strong incentive for accurate and efficient inversion or migration algorithms,
there is a continuing need for improving the modeling routines that serve as the basis
for data analysis. Following this motivation is a brief summary of each of the reports
mentioned above. The overview concludes with a summary of the field work results and
the two papers on data processing tasks.

9-1



Gibson

INVESTIGATIONS IN SEISMIC WAVE PROPAGATION

Motivations for Modeling

Simulation of elastic wave propagation has several important applications. Forward
modeling of seismograms for an earth model can help to confirm the accuracy, or pos-
sibly the inaccuracy, of the proposed velocity structure. Perhaps a more common use,
however, is to utilize the propagation model as the basis for inference of a geological
model from the seismic data itself. The various methods of migration and inversion all
utilize some model of wave propagation to back propagate data into the subsurface or
to derive corrections to earth models by computing errors based on differences between
computed and observed seismograms.

. While modeling capabilities in academia and industry have become increasingly pow-
erful and more complex in recent years, so has the data that drives the numerical work
come to originate from bigger and more sophisticated experiments. Three-dimensional
surveys are increasingly the norm for exploration and production geophysics, and, with
the quality and volume of data increasing, the interpretations have become increasingly
more precise, focusing on more subtle features within the data. The utility of 3-D seismic
has been shown for Gulf of Mexico reservoirs by Abriel et al. (1991), who present case
histories showing that high quality 3-D acquisition and processing facilitate the identi-
fication of both structural and stratigraphic traps. In some cases, the 3-D data allows
the identification of productive reservoirs that are completely missed in 2-D exploration
(Abriel and Wright, 1991). Other applications of 3-D data include reservoir monitoring
during steam floods, where velocity changes created by the advancing steam front can
be tracked in detail in 3-D (Lumley, 1995). Tasks such as these examples entailing a
very detailed interpretation of the data require careful analysis and processing—this is
especially important in 3-D applications, where detailed, accurate simulations are still
most difficult. They are also quite time-consuming, rendering many forms of analysis
impractical.

Therefore, there is still a need to improve our modeling capabilities for 3-D seismic
wave propagation to facilitate robust, efficient and accurate analysis of such data. Below,
I first discuss the range of methods often used in current research and applications.
These approaches are in various stages of development and utility, and there may be
gaps in the list. However, the principal algorithms used are discussed in increasing
order of accuracy, and, not coincidentally, of increasing computer time. This survey of
algorithms also outlines the shortcomings of each method. I then describe the papers in
this volume that represent the current Earth Resources Laboratory research motivated
primarily to overcome the limitations of methods described in the first part of this note.

Existing Methods

A number of approaches exist for the computation of synthetic seismograms, with vary-
ing degrees of applicability and accuracy. The variation in accuracy arises in part from
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the amount of analytic work done to simplify the equations describing wave propagation.
For example, the ray method (Cerveny, 1985; Ben-Menahem and Beydoun, 1985; Gib-
son et al., 1991) applies a high frequency, asymptotic solution to the wave equation to
derive a set of first order differential equations that can be integrated for ray paths, trav-
eltimes and amplitudes. By performing a significant amount of mathematical analysis
before approaching the computer, the geophysicist is able to achieve significant savings
in computer time. One cost, however, is that programming becomes more challenging,
because the code must be sufficiently complex to keep track of the location of a given
ray path within the earth model and to know whether the ray should reflect or transmit
on striking an interface within the model. Additional difficulties arise in anisotropic
media, where the two quasi-shear waves propagating through a general, anisotropic
layer can be coupled in ways not accounted for in standard ray algorithms (Chapman
and Shearer, 1989; Coates and Chapman, 1990). Though the method is rapid and the
visualization of ray paths, especially in 3-D, provides significant help in understanding
propagation effects in a given model, there are therefore still some potentially important
shortcomings in terms of accuracy and completeness.

There is a strong incentive for more accurate solutions, especially given increasing
interest in high accuracy, 3-D wave propagation modeling. One approach that can
be relatively fast is the discrete wavenumber method for full waveform meodeling of
propagation in 1-D structures (Bouchon, 1982; Mandal and Toksoz, 1990). In this case,
the rapidity of the numerical algorithms is achieved by utilizing some analytic solutions
to account for the layering (propagator matrix methods—Aki and Richard, 1980) and
reducing the wavefield to an integral expression over horizontal (or radial) wavenumber.
The method can be extended to anisotropic media, at the cost of a significant increase in
computation time, since propagation in anisotropic 1-D (structural) models is in general
still 3-D (i.e., out-of-plane propagation takes place outside of symmetry planes of the
material) (Mandal and Toks6z, 1990). In this situation, the integration must be carried
out over both x and y components of the wavenumber.

The boundary element methods (Bouchon, 1985; Campillo, 1987; Sinchez-Sesma
and Campillo, 1993; Dong et al., 1995; Dong and Toksoz, 1995) are similar in spirit,
in that they are based on integral expressions for the wavefields. Interfaces are dis-
cretized into elements, and 2-D implementations for laterally varying structures have
been available for several years. While interface shape is fairly general, velocities within
each layer are still assumed constant. The primary numerical cost of these solutions
is in computing the interactions of each of the discrete elements of the interfaces (the
Green’s tensors), which is often accomplished using the discrete wavenumber approach
outlined above. Therefore, the larger the number of elements (discretization is controlled
by wavelength; there must be at least three elements per wavelength), the longer the
computation time. For this reason, the method is generally restricted to relatively low
frequencies, especially in 3-D implementations currently under development (Pedersen
et al., 1994a, 1994b; Bouchon et al, 1995; Bouchon and Barker, 1996). It is also of
interest to note that the method hag also recently been extended to compute wavefields
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propagating in and around boreholes in layered media (Dong et al., 1995).

While the discrete wavenumber and boundary element methods do provide, in prin-
ciple, exact solutions to the wave equation for both isotropic and anisotropic media,
there are significant restrictions on the types of media that can be modeled. In partic-
ular, complex, laterally varying models cannot be incorporated in these algorithms. An
interesting step in this direction has been made by Wu (1994), who recently proposed
an algorithm for computing one-way wave propagation in 3-D earth models based on
the phase screen method. The main idea of this approach is to break up the model into
thin siabs with depth, propagation across each slab corresponding to a phase shift based
on velocity and vertical wavenumber. Laterally heterogeneity, and the compressional
and shear wave scattering caused by this variation in velocities, is approximately taken
into account by analytically derived coupling terms from the Born approximation. Be-
cause this approach is much more rapid than the two-way wave equation finite difference
approach, it has great appeal for application in migration or inversions. At the same
time, because of the one-way propagation and approximations made in the derivation,
its accuracy is unknown.

The finite difference method is an attractive alternative, because it is in principle
an exact solution of the wave equation. It has been applied in 2-D simulations for a
number of years (e.g., Alterman and Karal, 1968; Boore, 1972; Virieux, 1986; Levander,
1988). Finite differences are useful because not only does the algorithm provide a
complete solution of the wave equation, but the earth model can include very general,
complex lateral variations in seismic velocities. At the same time, there are limitations
on this method—in particular, because the entire volume of the earth model must be
discretized, the numerical cost can be prohibitive. For this reason, most applications
until rather recently have been to 2-D earth models.

As increasingly powerful computers become available, however, the use of 3-D simu-
lations is more practical and frequent (Frankel and Vidale, 1992; Yoon and McMechan,
1992). Parallel computers are especially useful, since the differencing is a local opera-
tion, and the program can fairly efficiently divide up the computations between different
processors within the computer (Cheng, 1994). Even with this approach for increasing
computational speed, there are still strong limitations because as model size increases,
so does computation time, even with the most powerful computers. The discretization
of a conventional finite difference model, and the size of the computational problem, is
controlled by the lowest velocity in the model, since there must be a minimum number
of points per smallest significant wavelength in the model (approximately 10 for fourth-
order, staggered grid formulations). If a particular subset of the model must be very
detailed, discretization must also be decreased for this reason. For example, simnulation
of a VSP or single well experiment will require incorporation of the borehole in the
model, a structure with a size on the order of 20 ¢m. Given a spatial discretization on
the order of, say, 1 cm and propagation distances of hundreds of meters, the resulting
simulation would be impossible.

The computational cost is the major limitation in general use of finite difference
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algorithms in industry applications. Pre-stack depth migration or inversion tasks will
generally require repeated simulations, and the numerical cost of 3-D finite differences
renders them impractical with current computational devices. There is therefore a
strong motivation for methods more accurate than ray tracing but which are still signif-
icantly rapid for regular use in modeling or data processing. The phase screen approach
described above, is a candidate for this task, but it is still poorly characterized method
in terms of accuracy and range of applicability.

Therefore, for both modeling and inversion in 3-D, there is still a need for increased
speed and accuracy in modeling algorithms. Methods which provide complete solutions
to the wave equation tend to be either too slow for detailed and complex models (finite
differences) or restricted to simple geometries (discrete wavenumber methods). Ray
methods are rapid and can easily be applied to 3-D models, but are limited in accuracy.
The primary motivating factor for the research presented in this report is to continue
to develop methods which will allow the geophysical community to overcome these
limitations and to perform increasingly accurate and realistic simulations of elastic wave
propagation in realistic and relevant earth models.

RESEARCH IN THIS REPORT -

Wave Propagation

Two fundamental problems associated with modeling using the finite difference meth-
ods are addressed in a new algorithm presented by Nolte (Paper 10). The finite volume
method is based on an application of Gauss’ Theorem to a discretization of the medium
into triangular elements (specifically, a Delaunay and Dirichlet tesselation). This analy-
sis results in a set of difference equations that, when the medium is completely regularly
discretized, become very similar to conventional staggered grid formulations. However,
the discretization can vary within the model, depending on the velocity of a given layer
or on the degree of detail within the model. In this sense, it is more general than the
finite difference results and offers a potential saving in computation time because there
is a smaller number of grid points. In addition, the grid can be easily deformed to
exactly map interfaces or the free surface, so that modeling of these features may be
more accurate than with finite differences. Initial tests with a homogeneous reference
model provide good results.

For some migration and tomography applications, a rapid computation of travel
times and amplitudes in 3-D is essential, though the full wavefield may not be required
for the particular task. Cheng et al. (Paper 11) develop a method for this type of appli-
cation by using a high-order parabolic version of the wave equation. They specializing to
consider one-way wave propagation, and by using Padé expansions to approximate the
resulting equation a rapid and accurate solution for phase (traveltime) and amplitude
of the wavefield is obtained. While similar methods have been widely used in migration
applications, such as the famous 45-degree approximation, applications to modeling or
computation of travel times in seismology are uncommon. Tests show that results are
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accurate and that the method has strong potential for these modeling tasks.

Another special topic is the inclusion of attenuation effects into time domain finite
difference modeling. A direct evaluation of the convolutional integral expression for
attenuation effects is impractical, requiring a storing of a significant time history of the
seismic displacement fields. Cheng et al (Paper 12) develop a new approach to include
attenuation efficiently. A recursive algorithm is used to evaluate the convolution integral,
and attenuation parameters are estimated using conjugate gradient methods.

A final contribution to our research on the simulation of seismic wave propagation
is provided by Imhof (Paper 13), who derives a method for simulating full waveform
elastic wave propagation in 2-D media containing discrete scatterers. Conventional
mathematical methods frequently expand wavefields about some specified center point.
While this is a reasonable approach for simple geometries, it is not a good approach
for more complicated scatterer distributions. An extension of this is to expand the
wavefield about several points, a multiple multipole method. After several centers of
expansion are specified, the total wavefield (incident field from the source plus the
scattered waves) are computed by solving boundary conditions along the surface of
scatterers. In this approach, more equations than unknowns (amplitudes of scattered
field potentials) results, so that the scattered fields are determined by solving the set of
boundary condition equations in a least squares sense. Therefore, the computation time
is spent building the boundary condition equation matrix and then inverting it. Imhof
shows, by comparison to finite difference results, that the method can be quite accurate
and fast. In addition, he analyzes the errors related to the number of expansion points
and the nature of the expansion functions associated with these points to develop some
guidelines for the general application of the algorithm.

Field Work

Turpening et al. (Paper 14) describe the four different experiments conducted at the
ERL test site during 1995. Conoco headed the acquisition of two crosshole surveys, one
targeting the reef at a depth of about 4500 ft (1370 m), the other designed to image the
Antrim Shale at a depth of 1000 ft (305 m). The latter formation is currently of interest
because of the discovery of significant reserves of gas associated with fractures. Both of
these surveys utilized an orbital vibrator source to collect shear wave data. Therefore,
images of the reef resulting from these data should be very interesting to compare to
earlier images derived from compressional wave data. Additional work performed at the
site included a single well survey of the reef directed by Lawrence Berkeley Labs, using
a high frequency version of the orbital vibrator. This task followed the crosshole surveys
immediately, since Conoco perscnnel operated the Conoco wireline. The last portion
of the work conducted at the site was a dipole log run by Halliburton Energy Services.
This provides the most modern dipole data set that will be interesting to compare to
previous logging runs.
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Data Analysis

An accurate image of the growth and geometry of a hydraulic fracture can be invalu-
able in directing the production of hydrocarbons. Union Pacific Resources Company is
planning a fracturing experiment monitoring the microearthquakes using geophones to
image the fracture by locating the events. While previous work has used such observa-
tions to determine the geometry and location of a fracture, Li ef al. (Paper 15) provide
a fairly unique analysis by carefully studying the proposed experiment to help estimate
accuracy of locations prior to the experiment by performing accurate error analysis. An
SVD method and specified data variance models allow an estimate of error ellipses for
various hypothetical locations of source events, given a configuration of an injection well
and two monitor holes. This analysis is very useful in designing the experiment and
choosing both the number of receivers and the locations of monitor wells.

Zhang and Toksoz (Paper 16) consider an improved algorithm for seismic refraction
inversion, which will potentially provide very useful results for tasks such as the esti-
mation of static corrections. Their implementation seeks to improve previous methods
in several ways. First, they apply the Shortest Path Raytracing method to rapidly
and (more importantly) very accurately compute travel times in laterally heterogeneous
models. In addition, they improve the inversion by minimizing the misfit of both travel-
time and traveltime gradients and by using Tikhonov regularization to minimize model
roughness. Application of the method to field data collected near Boston confirms the
accuracy of the solutions.

Conclusions

Considering the report as a whole, there is a comprehensive set of papers. These are
oriented toward a common goal of how best to characterize the subsurface reservoir
and investigate both fundamental topics (wave propagation) and applied data analysis
tasks. Future work will continue in the same areas in the effort to continually improve
our tools for assessing hydrocarbon reservoirs in meaningful ways.
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