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Abstract

Fair value accounting forces institutions to revalue their inventory whenever a new
transaction price is observed. An institution facing a balance sheet constraint can
have incentives to suspend trading in Level 3 assets (traded on opaque over-the-counter
markets) to avoid marking-to-market. This way the asset’s book valuation can be kept
artificially high, thereby relaxing the institution’s balance sheet constraint. But, the
institution loses direct control of its asset holdings, leading to possible excessive risk
exposure. A regulator trying to reign in risk-taking faces ambiguous tools of increasing
fines for mismarking and tightening capital requirements: although both make no-
trading less like, conditional on no-trading they increase risk-taking. Random audits
in general decrease risk-taking. Outside investors, who do not know at what price the
asset would trade, reduce their valuation of the bank’s balance sheet the longer the
asset has not traded. Their expected discount from reported book value is convex in
time since last trade.
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1 Introduction

Balance sheets matter, especially in times of financial crisis when credit channels tighten. The

impact of illiquid, or so-called Level 3 assets, on banks’ balance sheets plays an important

role on their strategies. Level 3 assets include amongst others CDOs, ABSs and other –

sometimes bespoke – structured credit products. Such hard-to-value assets made up nearly

$600 billion of the balance sheets of the 8 largest US banks as of April 2008. More recently,

many mortgage products became Level 3 assets as the ABX index ceased to serve as a

reliable valuation basis.1 Anecdotal evidence suggests that some assets are even actively kept

off markets to obstruct price discovery to avoid adverse balance sheet impact.2 Given the

accounting flexibility that comes with the Level 3 category, institutions continue to list these

assets at inflated values on their books. To regulators and the government, it is important

to understand what drives a bank to suspend trading in a certain asset to effectively control

risk-taking via capital requirements or other instruments.

I provide a model that derives when instutions suspend and restart trading of certain

assets. Under fair value accounting, book valuations of securities generally have to be up-

dated when new transaction prices are observed. However, over-the-counter markets can be

so opaque that no continuously observable prices exist. An institution active in such mar-

kets has to take the accounting impact of its own trading decisions into consideration. If

faced with regulatory capital requirements, it might be optimal to book gains immediately

as fundamentals rise above accounting valuations, but suspend trading when fundamentals

1The ABX index, an index for asset backed securities, does not exist for its theoretically most recent vin-
tage. The old vintages of the ABX have ceased to serve as a valuation basis for many OTC mortgage products
(except for the specific names in the index). The website of Markit, the company that owns the Markit ABX.it
index, states the following: 30 September 2008 - Per majority dealer vote, the roll date for the Markit ABX.it
05-2 index has been postponed due to the current market conditions. Markit will announce the new launch
date in due course. http://www.markit.com/information/products/category/indices/abx.html

2As Norris (2008) writes in the New York Times: “Did you ever hear of a broker who would not agree to
earn a commission? Even if getting the money required absolutely no work at all? Apparently, some brokers
think such a move could be wise. It’s not that they don’t like income, but they may fear that letting some
securities trade at low prices could force them to report even larger losses than they are already posting.”
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drop to obstruct price discovery, thereby delaying losses. As book value ceases to reflect

current market prices, the capital requirement is relaxed. Asset holdings, however, become

fixed, leading to potentially excessive risk exposure. The institution optimally balances the

benefit of a relaxed balance sheet constraint against the cost of possible excessive exposure

to determine when to stop and restart trading, and thus when to book gains and losses, and

if to follow such a no-trading strategy at all. A regulator wanting to control leverage of a

bank has as possible tools capital requirements, fines for mismarking and random audits.

Increasing fines or capital requirements can lead to increased risk-taking by increasing the

maximal leverage the institution is willing to accept. Random audits in general decrease the

risk-taking of banks. These results are robust to an n bank extension – even if n banks each

have to mark to each others prices, there can be no-trading equilibria. To an outside observer

such as the regulator, the expected value of the balance sheet of a bank is decreasing and

convex in time since last trade.

The model is set in a continuous-time stochastic market in which a risk-averse institution

allocates its equity between a risk-free bond and a risky asset. Three assumptions drive the

model. First, the institution is subject to capital requirements that take the form of a simple

leverage constraint based on book values. Second, the risky asset has a stochastic underlying

value or shadow price, i.e. the price at which the asset can be bought and sold in the market

under current conditions. The shadow price only becomes the realized market price when a

trade occurs. Furthermore, in an opaque market the shadow price – as part of the underlying

market conditions – is only observed by inside investors. Third, in opaque markets where no

continuously observable asset prices or pricing inputs exists, we model the option to mark-

to-model by allowing marking to last observable trading price. If the market is OTC, an

institution is able to ignore all but self-generated transaction prices. This assumption is later

relaxed to a finite number of banks observing each other’s trading prices.

The baseline model is a simple Merton setup – without any constraints, the optimal

strategy is constant leverage which implies continuous portfolio rebalancing. A tight enough

constraint on leverage prevents such a strategy from being implementable. If the market in

question is widely traded, the institution cannot obstruct price discovery on its own, and
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has to comply with the leverage constraint at each point in time. If the market is opaque,

however, it is possible for the institution to obstruct price discovery by ceasing to trade.

This introduces a trade-off: by continuing to trade, the balance sheet reflects market prices

and the constraint applies, but exposure remains fully controlled. By suspending trade, the

institution freezes its balance sheet value, thereby relaxing the constraint, but the now fixed

asset position can lead to excessive risk exposure.

In opaque markets, once the institution stops trading, further losses on its position are

concealed as the balance sheet is frozen. Yet actual leverage – based on the shadow price –

continues to drift from reported leverage, thereby allowing a (passive) violation of the lever-

age constraint. There will be a shadow price at which the actual exposure has become too

large for the institution’s risk bearing capacity. At this point, it will voluntarily deleverage

and reveal all previously concealed losses. If the shadow price reverts before hitting this

retrading boundary, the institution will restart trading, having successfully avoided any con-

straint induced position adjustments. Thus, only when prices rise and the institution’s actual

leverage is at its constraint will continuous trading occur.

This trading behavior will generate a specific valuation profile on the institution’s books.

Price gains above previously reported valuations are booked immediately. When prices drop,

however, the institution stops trading and losses to the balance sheet are concealed as valu-

ations become stale. Figure 1 illustrates. The blue line traces the actual shadow price path

whereas the red line traces out the reported asset values for accounting purposes. Shadow

price innovations are not reflected on the balance sheet when the red line lies above the

blue line. When the price deteriotes too much from its last reported value, the institution

voluntary deleverages to avoid excessive risk exposure, leading to a large discrete jump in

accounting valuations and balance sheet value. As an example, Merrill Lynch in the summer

of 2008 decided to drastically deleverage out of mortgage related assets. This sale was done

at prices significantly below reported valuations, thus leading to a large jump in book value.

A regulator cannot observe the fundamental process, but is nevertheless interested in

regulating risk-taking of banks. The tools at its disposal are capital requirements (that

translate to a leverage constraint), random audits to enforce the capital requirements and
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Figure 1: Illustrative price paths: Shadow price blue line, reported valuation red line

fines if mismarking of the books is detected. We show that tightening the leverage constraint

or increasing fines has ambiguous effects: although both make the no-trading outcome less

appealing, if a no-trading strategy is followed the maximal and thus average risk-taking of

the firm increases.

A multiple firm extension adds strategic interaction via realized prices. A bank now has to

acknowledge transaction prices of a set of finite other banks. We show that a bank’s constraint

defines it incentives to trade or not to trade. Thus, when leverage constraints are similar,

incentives are aligned and a no-trading outcome can arise. However, when constraints are

too far apart continuous trading ensues. Additionally, when each bank has an independent

chance of a liquidity shock that forces it to exit the market, the more banks are in the market

the less likely a no-trade outcome becomes.

Knowledge of the optimal no-trading region will allow an outside investor – who cannot

observe the shadow price directly – to perform a valuation of the company’s balance sheet.

Monte carlos simulations show that the expected balance sheet value is decreasing in time

since the last trade. The intuition is that the conditioning eliminates those paths that have

strongly increases price paths.

The technical foundations of my model build on the literature in the area of risky arbitrage.

Liu and Longstaff (2004) present a model in which an institution faces a leverage constraint

in a fixed horizon model with a Brownian Bridge as the price process. Since the authors do

not allow for possible accounting manipulation, the trade-off between no trading and stale

valuations on the one hand and continuous trading on the other hand cannot arise in their

4



framework. Other models allowing for portfolio constraints are Grossman and Vila (1992),

Cvitanic and Karatzas (1992), Pavlova and Rigobon (forthcoming) and Basak and Croitoru

(2000).

Related papers focusing on the strategic interaction originating from balance sheet con-

straints are Brunnermeier and Pedersen (2005) and Attari, Mello, and Ruckes (2005). Here,

competitors try to exploit the balance sheet constraint of an institution via market-based

price manipulation. This effect propagates through an assumed temporary price-impact of

trades. This motive is absent in this paper, and the interaction is through the balance sheet

impact of imposing the shadow price on the books of other banks.

Two related papers with with respect to the fair value accounting component of the

model are Plantin, Sapra, and Shin (forthcoming) and Heaton, Lucas, and McDonald (2009).

Plantin, Sapra, and Shin (forthcoming) examine the systemic effects of marking-to-market

in a static model that utilizes a game theoretic framework. The authors show that mark-to-

market accounting can lead to a destabilization of the financial system in that it enhances

feedback effects. In this paper we show that tightening capital constraints can lead to larger

risk-exposure. Heaton, Lucas, and McDonald (2009) present an overview of the historic devel-

opment of mark-to-market accounting and provide a model that shows how rigid accounting

rules can be socially inefficient.

2 Model Setup

The model is set in continuous-time with t ∈ [0,∞) on a suitable defined probability space

(Ω, P,F). There is one type of agent, a financial institution such as a bank. The goal is

to characterize the dynamic impact of accounting rules and balance sheet constraints on

the institution’s trading decisions and consequently on the path of reported valuations, and

derive possible implication for estimating balance sheet value and for multi-bank behaviour.

For tractability, I set the interest rate to zero, i.e. r = 0.

5



Shadow price process. Assets in thinly traded markets, such as certain OTC markets,

can be subject to significant deviations of reported prices from fundamentals – that is there

is a difference between what prices are reported on an institutions books and what price the

asset could fetch if sold in the market.

In our model, there is only one risky asset the institution can invest in, simply termed

the asset. The asset pays no dividends and has a fundamental value (or shadow price) Pt –

this price should be understood as the (shadow) price at which the asset can be bought or

sold at time t as the outcome of a matching process in the market. Once a trade occurs at

t, this (shadow) price becomes the realized transaction price. An institution that is active

in the market observes the fundamental value even when no transaction occurs, but outside

investors – or the regulator / government – cannot observe the current shadow price. We

assume the following (shadow) price dynamics

dP

P
= µdt + σdBt (1)

To get a frictionless market, there is another group of ’buy and hold’ investors ready

to buy and sell at the prevailing fundamental value. The possible trading impact of the

institution is purely caused by the (accounting) balance sheet link.

By excluding asymmetric information considerations, we are able to isolate the mechanical

effects fair value accounting and balance sheet constraints have on trading behavior. In the

current crisis there is evidence of strong balance sheet driven effects influencing the trading

behavior of institutions, as pointed out by Adrian and Shin (2008).

Wealth process. Financial institutions largely finance themselves through the standard

instruments of debt and equity. At a bank, management’s task is to maximize the value of

existing equity.

Let Wt denote the wealth or equity of the institution. The balance sheet in this simple

world is made up of debt Dt (negative Dt denotes lending) with constant price 1 and Nt units
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of the risky asset of price Pt each (negative Nt denotes shorting).

Assets Liabilities

Nt × Pt Value of Assets Dt Debt

Wt Wealth / Equity

Naturally, Wt is restricted to be non-negative. Without loss of generality, we will be able to

ignore this constraint due to our assumption of logarithmic utility below.

The bank’s choice variable is φ ≡ NP
W

, its leverage or exposure. As they will feature

subsequently, it is useful to derive the log wealth dynamics. Applying Ito’s Lemma to log (Wt),

imposing self-financing and recalling that r = 0 , we have

d log W =

[

φµ −
1

2
σ2φ2

]

︸ ︷︷ ︸

≡µlog W

dt + σφdZ (2)

The drift of log W , µlog W , as a function of φ is independent of the level of Wt. The bank is

endowed with a strictly positive and finite amount of initial wealth W0.

I impose that φ has to be square integrable, i.e. φ ∈ L2. Additionally, recapitalization

of the bank is ruled out by assumption as it would allow adjustments of φ without trading.

The main argument here is that outsiders who do not observe the underlying true balance

sheet situation are reluctant to inject equity.

Preferences & Time horizons. We assume that the institution maximizes its utility from

final wealth at a random time τρ. Thus, the institution has no intermediate consumption. At

time τρ it realizes its current wealth Wτρ and derives a utility U
(

Wτρ

)

= log
(

Wτρ

)

.

The stopping time τρ is an exponentially distributed random variable with intensity ρ

that is independent of Z - this can be interpreted as a horizon time of the asset (it realizes

and pays out P at this time) or a horizon time of the bank (it liquidates all assets at market
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prices and exits the market). The value function can thus be written as

sup
φ

Et

[

log
(

Wτρ

)]

= sup
φ

Et

[
ˆ ∞

t

ρe−ρ(s−t) log (Ws) ds

]

(3)

where Et [·] denotes the expectation operator w.r.t. to the filtration Ft. Note that due to log

utility, the institution will always keep equity positive, making debt risk-free.3

The choice of preference structure, although simplistic, allows us to capture the essential

parts of market participants’ behavior. First, decision making units at financial institutions

have finite time horizons, though the exact horizon remains uncertain. Alternatively, the

horizon can be understood as an extreme liquidity event that forces the realization of wealth,

and thus prices, onto the bank. Second, investment banks display effective risk-aversion.

To focus on the economic aspect of balance sheet constraints, we use a logarithmic utility

definition, as it allows to abstract from any possible intertemporal hedging demands.

Leverage constraint. Financial institutions are constrained in their asset allocation de-

cisions: financial market regulators require certain amounts of minimum capital and debt

contracts often come with attached covenants. Any such constraint will curtail the institu-

tion’s ability to exploit possible high drift assets by restricting the maximum position size.

To make a statement about the impact of fair value accounting on an institution’s portfolio

decisions, we will focus on constraints that operate on the reported balance sheet of the

institution.

Regulatory capital requirements force a bank to have sufficient capital base for their asset

positions. Such capital requirements can be found in the Basel accords. We assume here that

the regulator uses the reported balance sheet data for implementing capital requirements. A

minimum capital requirement then gives a static leverage constraint in our model.

Additionally, debt often comes with attached covenants to limit the risk-taking ability of

the firm. Such debt covenants fit into our story if they can be (a) summarized as a static

3Of course, we can easily incorporate final date management fees. Suppose that ξ is the porportion of
assets under management that go to the bank. Then we have log (ξW ) = log ξ + log W and we simply have
a level effect on the value function, but the choice between different strategies is not altered.
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leverage constraint and (b) are enforceable in courts only based on the reported statements

of the firm (i.e. the accounting statements).

In terms of our model, the balance sheet constraint takes the form of a leverage constraint

φ ∈
[

φ, φ̄
]

(4)

where we assume φ = 0 (a no-shorting constraint) and φ̄ ≥ 1: the institution is allowed to

invest all of its equity in the risky asset (φ = 1) or in the bond (φ = 0). Because of parameter

restrictions we will make subsquently, only φ̄ will matter, and we will thus refer to φ̄ in the

following simply as the constraint.

Accounting. Recent shifts away from historical cost accounting to fair value account-

ing have led to significant changes in how financial assets are valued. For accounting pur-

poses, there are three asset categories, as specified in Financial Accounting Standards Board

(”FASB”) statement 157 that implemented fair value accounting: Level 1, Level 2 and Level

3.4

It is important to note the position of the SEC regarding the primacy of a market price

in accounting valuations. Although FASB 157 allows for valuation exceptions (in case of

distressed transactions), the interpretation of this rule by the regulator is strict. Applying a

forward looking equilibrium view of valuations that ignores current illiquidity or imbalances

in supply and demand is not permissible, as ”GAAP defines fair value as the amount at which

an asset could be bought or sold in a current transaction”. However, with FASB 159 having

been passed in February 2009, there has been a significant expansion of when it is allowed to

use marking-to-model in illiquid markets.

To model marking-to-market and marking-to-model in a tractable way, I make the fol-

lowing simplifying assumptions: (A1) The institution has the option to value Level

3 assets on its books at its last observable transaction price. In other words, in

a market with no observable prices, trading is intimately linked to own price realization.

4FASB 157 became effective November 15, 2007.
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(A2) Once an institution trades a Level 3 asset at a price that reveals it to be in

violation of the capital requirement, the institution is forced by the regulator to

comply with the leverage constraint. The regulator may levy a fine on the institution

at this point.

Allowing the institution to mark to the last observable transaction price permits us to

remain agnostic about the specific model used by the institution to value the asset for its

balance sheet. This affords us a certain degree of robustness while still maintaining the

essential link between an institution’s own trading decision and the value of its inventory. In

real life, internal auditors are informed at an almost instantaneous basis of new transaction

prices that are generated by the bank itself. Furthermore, the accounting balance sheet of

the trading desk is reported daily to the regulator. We rule out fake trading (trades that are

done between institutions at inflated prices) by noting that the possible punishment for such

behaviour is much larger than for having slightly misleading marking-to-model valuations.

In conversations with traders, such a strategy was always strongly denied because of possible

jail-time punishment.

Let us briefly discuss the three accounting categories of assets.

Level 1 assets. Level 1 assets are liquid assets with publicly quoted prices, such as ex-

change traded assets. The unadjusted quoted prices have to be used for accounting purposes

if the company has access to the market in question. Thus, the price of these assets is close to

unambiguous and the institution has virtually no discretion in valuing its books. Examples

of such assets would be common stock traded on the NYSE, such as a GM share

Level 2 assets. Although Level 2 assets are not exchange traded, the valuation of these

assets is based on a model that requires the input of market observables. Such observables

might be quoted prices of similar assets, interest rates, implied volatility or a related index.

Level 2 assets, although market-to-model, are thus subject to continually updated inputs. An

example of Level 2 assets are simple derivatives such as a plain vanilla option on a common

stock.

As Level 2 assets have to be marked-to-model based on observable inputs, there are only

few degrees of freedom available to the institution in how to influence the valuation. This
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motivates the decision to treat Level 2 assets as having continuously updated valuations in

this model.5

Level 3 assets. According to FASB 157, Level 3 assets are assets that have to be marked-

to-model based on unobservable inputs. For the category Level 3 to apply, there have to be

neither quoted prices of the asset itself nor any observable, i.e. Level 2, inputs available to

the institution. This means that there are no actively traded similar or identical assets, nor

are there any observable market inputs such as relevant indices or underlying assets. It is

clear from the description that Level 3 assets are primarily found in OTC markets with high

levels of opaqueness.

To model the valuation of Level 3 assets in a tractable way, we will make a third assump-

tion: (A3) the institution Level 3 trading happens in an opaque enough market

to be able to ignore other institution’s transaction prices of the same or similar

assets for its own accounting treatment. Financial accountants and auditors, even in-

ternal ones, do not have the expertise to be able to observe the shadow price process, nor

do they have access to transaction prices of other institutions because of the decentralized

nature of the market.6 We relax the non-observability assumption in section 6.

3 Continuously updated valuations: Level 1 and 2 as-

sets

In this section, we will look at the case of Level 1 and Level 2 assets for which accounting

rules result in continuously updated balance sheet valuations.

5There is a possible exception in that accounts can be declared ”hold to maturity”. This option is often
utilized by insurance companies, as many of their claims are not retraded. Declaring an account as ”hold
to maturity”, however, restricts the ability to retrade in the future: trading non-trivial amounts of the asset
will force the institution to re-declare the account as a trading or assets available for sale account, with the
option to switch back to ”hold to maturity” only after a fixed period of time.

6Current practice has internal auditors gathering quotes from other institutions if those provide them
voluntarily. But even if such quotes are available, it is important to note that these are not trade quotes
– they come from the other institution’s risk management units, and not from the actual trading desks.
Clearly, if there is no threat of trade on these quotes, and if institutions are in similar situations, there is
little incentive to report the true actual quotes.
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Denote the value function of the overall problem by V (W ). Then rewriting the definition

of the value function, we get

V (Wt) = sup
φ∈A

Et [log (Wτ )] = sup
φ∈A

Et

[
ˆ τ

0

d log W

]

= sup
φ∈A

Et

[
ˆ τ

0

φtµ −
σ2φ2

2
dt

]

+ Et

[
ˆ τ

0

σφtdBt

]

(5)

where we already imposed r = 0. Maximizing the value function w.r.t. φ thus reduces to

maximizing the drift of log W , µlog W . When A is unrestricted, a path-by-path maximization

gives φ∗ = µ
σ2 , the Merton outcome. Consider now a a leverage constraint as discussed

in Section 2 with φ̄ ≤ φ∗. Then since the quadratic function φtµ − σ2φ2

2 is monotonically

increasing in φ for φ < φ∗, the investor holds the highest possible φ he is allowed to hold, φ̄.

We will call the strategy of keeping φ = φ̄ under continuous trading the compliance strategy.

To derive the value function, we use equation (3) to get the following HJB

ρV = supφ∈A

{

µφWVW +
σ2φ2

2
W 2VWW

}

+ ρ log W (6)

We see that the value function will have the form V̄ = log W + ḡ with ḡ = 1
ρ

(

µφ̄− σ2φ̄2

2

)

and a maximum at φ̄ = φ∗ of g∗ = µ2

2ρσ2 . This value also applies for any φ̄ > φ∗, so that

the unconstrained value function is simply V (W ) = log W + µ2

2ρσ2 . In either case, keeping

leverage constant when facing a stochastic price requires continuous trading and thus leads

to continuously updated balance sheet valuations.

Let an upper bar −, i.e. ȳ, denote parameters and functions corresponding to the region

that has continuous trading while the constraint is binding. Let us summarize:

Proposition 1 The value function for the constrained institution without the option to mark-

to-model is V̄ (W ) = log W + ḡ with

ḡ =







g∗ = µ
2ρσ2 for φ∗ < φ̄

1
ρ

(

µφ̄− σ2φ̄2

2

)

for φ∗ ≥ φ̄
(7)
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and the optimal strategy is φ = min
{

φ̄, φ∗}.

Proofs omitted from the text can be found in the appendix.

4 Possibly stale valuations: Level 3 assets

This section contains the main proposition of this paper that derives the optimal non-trading

strategy and value function in the case of Level 3 assets, when the institution’s trading

decision can impact its financial reporting. The main insight is that although the institution

cannot actively (via trading) violate the constraint, accounting rules allow it to passively do

so by ceasing to trade.

Given our assumptions from section 3, the institution holding Level 3 assets faces the

following choice: If it trades at time t, the shadow price Pt is realized and accounting rules

force an updated valuation of any inventory still held. The constraint is then enforced and

possible fines levied. If no (own) trade occurs, however, the bank can keep level 3 assets at

their old values on the books.

Denote by φ̂ the so called retrading boundary, the level of exposure at which the institution

voluntarily reveals the shadow price (and thus its violation of the leverage constraint) and is

forced (by the regulator) to immediately retrade to within
[

0, φ̄
]

. At this point the regulator

levies a proportional fine of fW on the bank with f ∈ [0, 1).7 In the following, we will refer to

the strategy that includes passively violating the leverage constraint the no-trading strategy.

Possibly stale valuations without leverage constraints. The option to keep valuations

stale only generates value if it allows a relaxation of the balance sheet constraint. As this

constraint is nonexistent for φ̄ = ∞, the institution will find it optimal to continuously trade,

marking-to-market its balance sheet at each point in time. Thus, the unconstrained solution

from section 3 is the upper limit to any value function involving accounting manipulation.

7Note that the fine is not applied at the horizon time liquidation. However, a simple level shift would take
place if the fine were applied, with the constant ρ log (1 − f) ≤ 0 added to the value function. As discussed
in detail in the section 5, this would not affect the optimal strategy conditional on no-trading, but only if a
no-trading strategy is followed or not.
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Possibly stale valuations with leverage constraints. Once the institution faces a con-

straint on its leverage, the option to keep valuations stale may become valuable. The intuition

for this is simple: with continuous trading and thus continually updated prices, the institu-

tion is forced to fulfill the leverage constraint and thus accept suboptimal leverage. With

marking-to-model concealing losses via stale book valuations, the institution is able to keep

its book value artificially inflated and thereby relax the leverage constraint.

Denote by φ̃t the institution’s actual exposure based on the current shadow price, as

opposed to its accounting based exposure φt based on a possibly stale transaction price. In

the previous section, as the institution was assumed to be trading continuously, these two

variables coincided, i.e. φ̃t = φt. When the institution stops trading at a time s its number of

units of the risky asset, Ns, and the amount of debt, Ds, become fixed (recall r = 0). Thus,

accounting equity on the balance sheet becomes fixed at NsPs − Ds.

We now conjecture the following strategy: the investor will let exposure drift on φ̃ ∈
(

φ̄, φ̂
)

by not trading, and will only readjust the portfolio at a point φ̃ = φ̂ back to φ̄. Any

φ̃ < φ̄ is immediately (and costlessly) reset to φ̄. The following lemma will establish a helpful

result.

Lemma 1 Conditional on using a hiding strategy, the investor will never let exposure drift

when φ̃ ≤ φ̄.

Proof. Consider a strategy that has φ̃ drifting and has ˆ̄φ < φ̄ as its lower end. Without loss

of generality, consider a situation in which the agent has stopped trading for φ̃ stricly inside
(

0, φ̄
)

at t = 0. Then, for any path ω, let the stopping time s denote the first time φ̃ crosses

φ̄ from below. Thus, on t ∈ (0, s) the agent has an exposure φ̃t < φ̄. But since he is not

constrained on (0, s), he can improve on this strategy by simply setting φ̃ = φ̄ on t ∈ (0, s)

by equation (5). Thus, ˆ̄φ < φ̄ cannot be optimal.

Define the distance (in a geometric sense) of the current shadow price pt from the last

traded price ps as yt−s ≡ pt

ps
. Thus, when the bank trades y is reset to 1. The next lemma

will establish properties of the conjectured strategy to not trade on
(

φ̄, φ̂
)

.
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Lemma 2 Suppose the bank lets exposure drift on φ̃ ∈
(

φ̄, φ̂
)

, and readjusts the portfolio

once φ̃ = φ̂ back to φ̄. Any φ̃ < φ̄ is immediately reset to φ̄. Then

(i) on the concealment or no-trading region φ̃ ∈
(

φ̄, φ̂
)

, the institution’s actual leverage φ̃ is

only a function of yt−s:

φ̃ (yt−s) ≡
φ̄yt−s

1 + φ̄ (yt−s − 1)
> φ̄ (8)

(ii) the wealth or equity of the institution becomes zero at the finite point ¯̄y = 1 − 1
φ̄

, the

bankruptcy point, and

(iii) the optimal retrading boundary ŷ (where ŷ solves φ̂ = φ̃ (ŷ)) has to lie strictly within the

finite interval
(

y, 1
)

.

Proof. (i) By simple substitution, and recalling that φ̄ = NsPs

Ws
and r = 0, we can derive

φ̃t|s =
NsPt

Wt

=
NsPt

NsPt − Dt

=
NsPt

NsPs − Ds + Ns (Pt − Ps)

=
NsPs

Pt

Ps

Ws + NsPs
Pt−Ps

Ps

=
φ̄yt−s

1 + φ̄ (yt−s − 1)

(ii) First, note that the numerator of φ̃, NsPt, is everywhere positive and bounded. Thus, φ̃

has a pole at the point at which the denominator becomes zero, y = 1 − 1
φ̄
. As φ̄ > 1, we

conclude y < 1.8 Second, note that the actual exposure φ̃ becomes negative for y < y. Thus

wealth has to vanish at y.

(iii) By its definition y is finite for any φ̄ > 1. Thus, the set
{

t : yt ≤ y
}

has non-zero

probability mass if the bank does not retrade. We conclude that the value function Ṽ of the

institution for any retrading boundary ŷ ≤ y would result in a value of −∞. This is clearly

suboptimal, as any ŷ > y yields finite value. We therefore conclude that ŷ > y.

Part (i) of the second lemma shows that stale prices allow the institution to expand its

space of possible exposure φ̃ beyond
[

φ, φ̄
]

, albeit in a passive way that is linked to the

behavior of prices via φ̃ (y). Thus, non-trading can lead to a closer approximation of φ∗. But

8We ruled out φ̄ ∈ [0, 1] by assumption. It should be clear to the reader that in this case the institution’s
wealth can never become negative as φ̃ ∈ [0, 1].
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as y → y, the institution’s actual exposure becomes unbounded, i.e. φ̃ → ∞, and wealth

becomes unboundedly risky. Consequently, the institution will retrade once the log shadow

price reaches some point ŷ, as shown in part (iii) of the lemma, for any bounded fines levied

by the regulator.

Suppose the institution stopped trading in the past and no φ̃ > φ̄. Then there are three

possible outcomes: One, the exposure drops back to φ̄ via rising prices, at which point the

institutions restarts trading to keep the exposure from dropping below φ̄. Two, the price

detriorates so far that the exposure increases to the the retrading boundary φ̂ and the bank

retrades back to φ̄, incurring regulatory fines but avoiding excessive exposure. Three, before

φ̃ reaches either φ̂ or φ̄ the horizon event realizes, the institution realizes its wealth (and exits

the market).

The bank optimizes over ŷ, the point at which the mismarking is voluntarily revealed and

a large balance sheet adjustment occurs. As a preliminary analysis, note that if there is zero

cost to adjustment, i.e. f = 0, the agent is always better of compared to simply trading at

the constraint φ̃t = φ̄ by following the (non-optimal) strategy of not trading on y ∈ (y∗, 1)

where y∗ ≡
(φ̄−1)φ∗

φ̄(φ∗−1)
< 1 so that φ̃ (y∗) = φ∗. But we will see that the bank can do even

better.

4.1 Solution

Let us now derive the value function. For this purpose, fix a φ̄. We now write the value

function conditional on a no-trading strategy as V (W, y) = log W +g (y) where the deviation

of the current shadow price from the last reported price, y, is now a state variable. We write

the value function in terms of y and not in terms of φ̃ because it will allow us closed form

solutions up to a nonlinear equation for the retrading boundary ŷ. From simple optimality

conditions (see Dixit (1993) or Dumas (1991)), the value function will satisfy value matching

and smooth pasting at the boundary ŷ, as well as smooth pasting due to reflection at the

boundary point y = 1 (a property implied by the value function being an expectation). We

thus have 3 boundary conditions for a second order ODE with one free boundary ŷ, so the
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function g is pinned down. Note that y follows a geometric Brownian motion on (ŷ, 1) with

reflection at y = 1 and resetting at ŷ. Thus, dy
y

= µdt+σdBt with y0 = 1, so that the HJB will

give the following linear second-order ODE on [ŷ, 1] after plugging in V (W, y) = log W +g (y),

1

2
σ2y2g′′ (y) + µyg′ (y) − ρg (y) + µlog W (y) = 0

where µlog W (y) is the drift of the investor’s log-wealth due to exposure φ̃. The solution to

the homogenous part of the ODE is

gh (y) = c+yη+ + c−yη−

where η± =
σ2

2
−µ±

r

2ρσ2+
“

σ2

2
−µ

”2

σ2 . Assume σ2 ≥ µ < ρ. We then have η+ ≥ 1 > −1 > η− and

φ∗ ≥ 1. Define the Wronskian

Wr (y) = yη+η−yη−−1 − η+yη+−1yη− = − (η+ − η−) yη++η−−1

We can now solve the particular part of the ODE, which we denote by gp, by the method of

variation of coefficients,

gp (y|l) =
2

σ2

[
ˆ l

y

µlog W (s)

s2

sη+yη− − yη+sη−

Wr (s)
ds

]

(9)

where l is an arbitrary limit of integration inside the range [ŷ, 1] and µlog W (s) = φ̃ (s)µ −

1
2σ

2φ̃ (s)2. As l can be freely chosen, we pick l = 1 for convenience. In the following, let

gp (y) ≡ gp (y|1).
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We are now able to write the overall solution including boundary conditions as

g (y) = gh (y) + gp (y) = c+yη+ + c−yη− + gp (y)

subject to

g′ (1) = η+c+ + η−c− = 0

g (ŷ) = g (1) + log (1 − f)

g′ (ŷ) = 0

with ŷ ∈ (¯̄y, 1) and where we used the fact that g′
p (y) vanishes at y = l = 1. We see that

we are left with a non-linear system of equations. Solving for the value function given an

(arbitrary) retrading boundary ŷ, we get

g (y|ŷ) =
log (1 − f) − gp (ŷ)

η+ (ŷη− − 1) − η− (ŷη+ − 1)
(η+yη− − η−yη+) + gp (y) (10)

so that the final equation determining ŷ is

0 = gy (y|ŷ)|y=ŷ =
log (1 − f) − gp (ŷ)

η+ (ŷη− − 1) − η− (ŷη+ − 1)
η+η−

(

ŷη−−1 − ŷη+−1
)

+ g′
p (ŷ) (11)

Finally, denote the optimal value function (that is g (y|ŷ) with the optimal ŷ) conditional on

a no-trading strategy by g (y). Let us summarize:

Proposition 2 Suppose the bank employs a no-trading strategy on (ŷ, 1) with ŷ bounded

away from 1. Then the optimal retrading boundary ŷ is given by equation (11) and the bank’s

value function given ŷ is given by equation (10). The bank will follow a no-trading strategy

if and only if g (1) > ḡ.

For closed form solutions up to the determination of the boundary ŷ that do not contain

integrals, we need η± ∈ Z . For arbitrary N ∈ N we have mixed log-polynomial solutions

IN (s) ≡

ˆ

sN

1 + φ̄ (s − 1)
ds =

N
∑

n=1

sn · cstn + log
[

1 + φ̄ (s − 1)
]

cst0
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and

I2
N (s) ≡

ˆ

sN

(

1 + φ̄ (s − 1)
)2ds =

N
∑

n=1

sn · ˜cstn + log
[

1 + φ̄ (s − 1)
]

˜cst0 +
(

1 + φ̄ (s − 1)
)−1 ˜cst−1

where cstn, ˜cstn are some constants. IN and I2
N are the solutions to the two integrals that

appear in gp (y) and g′
p (y). For η± /∈ Z, we can numerically integrate via very robust methods

to get gp (y) and g′
p (y).

4.2 The impact of fines on risk-taking

We can prove the following comparative static statement with respect to f :9

Corollary 1 Suppose that ŷ is optimally chosen so that g′′ (ŷ) > 0. Then

(i) the initial value of the no-trading option goes down as fines increase, dg(1)
df

< 0, but

(ii) conditional on following a no-trading strategy, the retrading boundary ŷ decreases and

thus the accepted maximum leverage φ̂ increases as fines increase, dŷ
df

< 0.

The intuition for part (i) of the corollary is straighforward - as fines increase, the value

derived from a non-trading strategy declines. Part (ii) is the more interesting part of the

corollary, and the intution hinges on the fact that it is conditional on a no-trading strategy.

As fines increase, given that the bank is following a no-trading stragegy, resetting from y to

1 is now costlier. Consequently, the bank will be more willing to wait a little longer to see if

the process y drifts upward again. Essentially, higher fines will make the bank more willing

to gamble for low values of y.

An important implication of this result is that increasing fines for the mismarking of the

balance sheet has an ambiguous effect on the risk-taking of a financial institution. Suppose

the regulator increases fines for misrepresenting one’s balance sheet. Part (i) of the corollary

states that the overall attractivness of the no-trading strategy shrinks - g (1) decreases whereas

9No such clean analytical results can be obtained for the other parameters ρ, µ, σ as they enter the
characteristic roots of the differential equation and are thus much more entwined in the solution. Numerical
comparative statics are readily available, but dropped for brevity.

19



0.4 0.5 0.6 0.7 0.8 0.9 1.0
y

0.1

0.2

0.3

0.4

0.5

0.6

g!y",g!,g

0.4 0.5 0.6 0.7 0.8 0.9 1.0
y

2

4

6

8

10
Φ
#
!y",Φ!,Φ

Figure 2: Value function & exposure: Left panel: Benchmark value functions: optimal
Level 3 behaviour blue line (g (y)), continuous trading given constrained dashed red (ḡ), un-
constrained dash-dot green (g∗); Right panel: exposure/leverage: optimal Level 3 behaviour
leverage blue line (φ̃ (y)), constraint dashed red (φ̄), unconstrained optimal leverage dash-dot
green (φ∗)

ḡ is unaffected by possible fines. As the set of institutions following a no-trading strategy

shrinks, this effect decreases risk-taking. But part (ii) states that if a no-trading strategy

remains optimal, risk-taking actually increases. Thus, fines have a dual effect - they make

following the no-trading strategy less attractive, but conditional on an instution following a

no-trading strategy increase the maximal and thus also the average risk-taking.

4.3 Benchmark scenario

As the benchmark scenario, assume µ = .06, σ2 = .02 (and thus σ =
√

2
10 ≈ .141), so that

φ∗ = 3. Also, pick ρ = .14. The resulting roots are η± = {−7, 2}, and we can solve in closed

form up to ŷ.

Figure 2 shows the value function g (y) in our benchmark case for φ̄ = 1.5 and f = .15

as the blue line. The green line depicts the unconstrained value function g∗ whereas ḡ the

value function resulting from the compliance strategy. The value function g (y) increases at

first when prices, i.e. y, drop as leverage φ̃ (y) gets closer to φ∗. But there will be a point

beyond which the value function g (y) starts decreasing as prices drop. As the institution’s

exposure φ̃ starts increasing beyond φ∗, the value function g (y) can even drop below ḡ.10 In

10This can only occur for f > 0.
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other words, there is regret: g (1) > ḡ and g (ŷ) < ḡ imply that when the agent made the

decision to follow a no-trading strategy at y = 1, it dominated the compliance strategy. But

as prices deteriorate, there will be a point at which the bank regrets having stopped trading

in the past instead of having followed a compliance strategy.

Figure 3 shows the behaviour of the optimal retrading boundary ŷ when we vary f and

φ̄ (odd rows), and the corresponding value the initial point y0 = 1 (even rows). We see that

ŷ is close to the bankruptcy boundary ¯̄y for low values of φ̄. For our benchmark scenario

of f = .15, the no-trading strategy is dominated by the compliance strategy for φ̄ > 2.1 -

this is the upward jump in the solid blue line describing the optimal ŷ (with ŷ = 1 implying

following the compliance strategy). We can also see this in the even rows as the function

g (1), which is the red dashed line, dips below the function ḡ, which is the green dot-dashed

line. As fines increase, the set of φ̄ on which the no-trading strategy is optimal shrinks slowly

as the function g (1) slopes downard more rapidly. We can see that the boundary ŷ gets closer

to bankruptcy boundary ¯̄y as corollary 1 showed analytically. The comparative statics w.r.t.

ρ are not shown here, but the conditional on no-trading boundary ŷ only moves very little

for reasonable changes in ρ (±50%). The impact of ρ on the attractiveness of the no-trading

option is discussed in section 4.4.

Note that for all parameter values we have ŷ increasing in φ̄. From a regulators per-

spective, increasing capital requirements (and thus decreasing φ̄) leads to more conditional

risk-taking (as ŷ decreases) and possibly switching away from a compliance strategy to a

no-trading strategy that increases risk-taking.

An optimal no-trading strategy will thus result in a specific reported valuation profile.

Figure 1 illustrates. When φ̃ is at φ̄, and the price rises, the bank immediately trades to

keep exposure from dropping below φ̄. Thus, the rising price is reported and the gains

to the balance sheet are immediately realized. The realized price path traced out by this

trading behaviour resembles a maximum process of the price, as the asset’s valuation remains

stale on
(

φ̄, φ̂
)

. However, as opposed to the maximum process, there are downward jumps

to the reported price path in case φ̃ reaches φ̂. At this point, the reported price drops

(proportionally) by (1 − ŷ). This leads to a large and abrupt change in the reported balance
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Figure 3: Optimal trading boundary and corresponding initial value: Odd rows: Op-
timal retrading boundary blue line (ŷ), bankruptcy boundary dashed red (¯̄y), unconstrained
optimal exposure boundary dash-dot green (y∗); Even rows: Optimal value at y = 1 blue line
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Figure 4: Value of Level 3 accounting option (β): Blue line ρ = .06, red line ρ = .14,
green line ρ = .24

sheet value of the firm, as is shown in the right panel of figure 1.

4.4 Value of option to mark-to-model

We can now derive how big the wealth gain is, for a given constraint φ̄, of having accounting

flexibility that allows for more leverage. Let β ≥ 1 be the multiple that has to be applied to

wealth W so the agent is willing to forego the accounting flexibility that comes with Level 3

assets at time 0. Then

β = max

{

exp

[

g (1) −
1

ρ

(

µφ̄−
σ2φ̄2

2

)]

, 1

}

Figure 4 illustrates β for different hoirzon intensities.

First, we see that the β curve is bell-shaped. As φ̄ → φ∗, clearly the accounting option

becomes less valuable: the constrained value function ḡ will asymptote towards the uncon-

strained value function g as φ̄ → ∞. Therefore, the additional value to be gained from

discretionary accounting has to vanish as well, as g̃ lies between g and ḡ at y = 1.

On the other hand, at φ̄ = 1, the discretionary accounting option does not enlarge the

strategy space: if the institution stops trading at φ̄ = 1, its actual and reported leverage will
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always be constant at 1, as debt is zero. By continuity, the possible value gain is small for

φ̄ close to 1: for a given ŷ, φ̃ remains flat for a large range of y, resulting only in marginal

improvements in closer approximating φ∗. As φ̄ increases, φ̃ becomes steeper as a function of

y, allowing the institution to closer approximate φ∗ and leading to more value to be gained

from stale prices.

4.5 Discussion of applicability of leverage constraint

The reader might be concerned that the leverage rules imposed by the regulator are static:

given that the bank is not reporting any continuous trades, the regulator knows that its

leverage is higher than allowed. There are two answers to why the model still makes sense.

One, there is the enforcability issue. The regulator might be well aware that mismarking is

going on, but this is not enough to intervene. An intervention has to be sanctioned by a court,

and thus evidence has to be produced as to what the real underlying price is. The argument

is that the counter-positive “the bank is not trading and thus has to be mismarking” does

not hold up in court. A thorough audit has to be performed that will produce the evidence

necessary to intervene. Such audits can be handled by extensions discussed in section 5.

Two, the model can still go through even if there is enforcability via the counter-positive

by inserting some small transaction costs into the model. The reason is the following: with

proportional transaction costs, the agent may not use φ̄ has his lower exposure limit. Rather,

with sufficient transaction costs, the bank might choose a no-trading region with lower limit

ˆ̄φ < φ̄. If sufficient probability mass lies on the set
[
ˆ̄φ, φ̄

]

, the expectation of the exposure of

the bank can lie below φ̄, ruling out intervention by the regulator. Although the transaction

costs extension can be incorporated into the model, the level of technical detail involved is

beyond the scope of the paper.
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5 Auditing, random detection & liquidity shocks

Consider now the situation in which the regulator audits randomly and with intensity ξ finds

enforceable11 evidence of mismarking of the balance sheet. In this case, the regulator levies a

fine f̂W and forces immediate compliance with the leverage constraint. If the agent himself

decides to retrade, a fine fW is imposed if revealed to be in violation of the constraint, with

potentially different f ≤ f̂ . An observationally equivalent interpretation of this setup would

be that the bank faces liquidity shocks that force it to realize prices at random times that are

exponentially distributed with intensity ξ. This interpreation forces f = f̂ for consistency.

For the rest of this subsection we will follow the audit interpretation.

A random audit thus punishes in two ways: (1) it imposes a cost on the firm for non-

compliance in the form of a fine, and (2) it imposes an additional cost on the firm by forcing

a trade down to φ̃ = φ̄. The first part of the punishment is essentially a constant flow cost (in

value function terms) of ξ log
(

1 − f̂
)

. The second part of the punishment, however, is not

constant and will depend on how far y is away from y∗. Can this second effect outweigh the

first effect? Clearly, this will depend on y, for a y very close to 1 the first effect will dominate,

whereas for y around y∗, the second effect may dominate. Writing out the HJB/ODE for

this specification, we have

ρg (y) = Lyg (y) + µlog W (y) + ξ
[(

log
[(

1 − f̂
)

W
]

+ g (1)
)

− (log W + g (y))
]

= Lyg (1) + µlog W (y) + ξ
[

∆g (y) + log
(

1 − f̂
)]

where this is a very simple version of a differential-difference equation (here, the difference

being ∆g (y) ≡ [g (1) − g (y)]) and Lyg (y) ≡ µyyg′ (y) + σ2y2

2 g′′ (y) is the linear generator of

y. The punishment can now be written as the sum of (1) ξ log
(

1 − f̂
)

, which is the constant

flow punishment cost, and (2) ξ∆g (y), which is the state dependent punishment cost.

The ODE is easy to solve due to its underlying linear nature. There are now different

roots of the homogenous equation, η± =
σ2

2
−µ±

r

2(ρ+ξ)σ2+
“

σ2

2
−µ

”2

σ2 , but the solution to the

11See discussion in 4.5.
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homogenous equation stays in the same form

gh (y) = c+yη+ + c−yη−

Secondly, the particular part now becomes

gp (y|l) =
2

σ2

ˆ l

y

µlog W (s)

s2

sη+yη− − yη+sη−

Wr (s)
ds + C

where C = ξ
ρ+ξ

[

g (1) + log
(

1 − f̂
)]

is a constant. As C includes the unknown value g (1),

we need to evaluate g (y) at y = 1 to get

C =
ξ

ρ

[

c+ + c− + log
(

1 − f̂
)]

The boundary conditions are the same as in section 4

g′ (1) = g′
h (1) = η+c+ + η−c− = 0

g (ŷ) = g (1) + log (1 − f)

⇐⇒ gh (ŷ) +
2

σ2

ˆ 1

ŷ

...ds = gh (1) + log (1 − f)

g′ (ŷ) = g′
h (y) +

2

σ2

(
ˆ 1

ŷ

...ds

)′

= 0

where 2
σ2

´ 1
ŷ

...ds ( 2
σ2

(
´ 1

ŷ
...ds

)′
resp.) took the place of gp (ŷ) (g′

p (ŷ) resp.) in comparison to

the solution of section 4 as the particular solution gp now contains both an integral and the

constant C.

Note that C does not enter the first and third boundary condition, as it drops out when

taking the derivative, and drops out of the second boundary condition as it enters both sides

of the equation additively. Consequently, the only difference to the model in section 2 with

a horizon intensity ρ + ξ will be in the level of the value function as represented by C. Of

course, the level matters for the choice of the no-trading versus the compliance strategy.

But conditional on the no-trading strategy, the solution to the optimal retrading boundary
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is equivalent to the no-auditing solution with ρ + ξ. Thus, we can write the value function

(conditional on no-trading) as

gρ,ξ (y) = gρ+ξ (y) +
ξ

ρ

[

gρ+ξ (1) + log
(

1 − f̂
)]

(12)

where we used the notation gρ,ξ (y) for the model with horizon intensity ρ and auditing

intensity ξ and gρ+ξ for the model without auditing but overall horizon intensity ρ + ξ.12

This equality holds due to the fact that the constants c+, c− are the same for gρ,ξ and gρ+ξ

(as they are determined by the same roots and the same boundary conditions), so we can

make use of gρ+ξ (1) = c+ + c−. We summarize:

Corollary 2 Suppose the bank employs a no-trading strategy on (ŷ, 1) with ŷ bounded away

from 1. Suppose further that it faces random auditing with intensity ξ that forces it conform

to the balance sheet constraint and brings fines of level f̂W with it. Then the optimal stratgey

is the same as in Proposition 2 as if facing a horizon intensity of ρ+ ξ with no auditing, and

the overall value function is given by equation (12). The bank will employ a hiding strategy

if and only if gρ,ξ (1) > ḡρ.

What now is the effect of stochastic auditing or liquidity shocks on the trading decision of

the firm?13 Figure 5 supplies the optimal retrading boundaries ŷ in the case of our benchmark

parameters with ξ = .1. The solid blue line depicts the retrading boundaries under no-

auditing ŷρ, whereas the dashed red line depicts the retrading boundaries under auditing

ŷρ+ξ. We see that conditional on no-trading, the trading boundaries are almost identical -

as mentioned in section 4.3, reasonable variations in ρ do not impact the optimal retrading

boundary much. Thus, the main impact of random auditing will come from the impact it

has on the attractiveness of the no-trading versus compliance strategy.

We see that the monotonicity of the cut-off between no-trading and compliance that we

saw in 4.3 disappears - the bank will become less willing to use a no-trading strategy for very

12A similar notation applies for ḡ: ḡρ denotes the outside option w.r.t. an intensity ρ. Note however that
ḡρ = ḡρ,ξ -= ḡρ+ξ.

13Note that this discussion also applies approximately to pure level effects as discussed in footnote 7 because

equation (12) contains a shift down via the constant ξ
ρ

log
(

1 − f̂
)

.
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low and very high levels of φ̄. This is cause by the level shift of the value function due to the

constant. For very low φ̄, and without auditing, following a no-trading strategy instead of

a compliance strategy will be approximately the same as the occurence of fines is a remote

event with ŷ that far out. But with auditing, there is a constant probability of detection

with a fine that is not proportional to the deviation of φ̃ from φ̄. Thus, for low values of φ̄

the bank will follow a compliance strategy. From a regulators perspective, very tight capital

requirements combined with moderate fines can now ensure a compliance strategy.

Additionally, we see that fines now have a much stronger impact, as they also influence

the shift down of the value function. Although we still have the fact that fines shift the

no-trading boundary down, we note that a much lower level of fines is required to enforce

compliance across the whole range of φ̄ ∈ [1, φ∗].

6 Multiple banks

The previous case described the optimal strategy of a single bank. Consider instead a change

to our assumption (3) to: (A3’) there are n institutions that each have to acknowl-

edge each other’s transaction prices in their Level 3 asset trading but can ignore

all other transaction prices. These banks can have possibly different leverage constraints

φ̄. If there is continuous price updating, there is no strategic interaction between the banks,

as we take the price process as exogenous. With price impact and continuous updating, we

would be in the predatory trading case treated by Brunnermeier and Pedersen (2005). In

their model, the driving mechanism for predatory trading is the round-trip benefit in which

a predatory seller sells for more on the way down and then buys back for less on the way

up as one less player is bidding. This mechanism is absent here by design as the underlying

price process is exogenous – there is no round-trip benefit. The only impact of a trade is

the endogenous realization of the underlying (shadow) price. Strategic interaction arises in

markets for level 3 assets, as prices are not continuously updated and a bank’s trade imposes

transaction prices not only on itself but also on its competitors.
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Figure 5: Optimal trading boundary and corresponding initial value under au-
diting: Odd rows: Optimal retrading boundary without auditing blue line (ŷρ), optimal
retrading boundary with auditing dashed red line (ŷρ+ξ), bankruptcy boundary dash-dot
green (y∗); Even rows: Value of no-trading without auditing blue line (gρ (1)), value of no-
trading with auditing blue line (gρ+ξ (1)), value of continuous updating dash-dot green (ḡ);
f̂ = f throughout
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6.1 Different horizon times

Consider the situation in which all banks have the same leverage constraint φ̄. Assume that

the banks horizon times (or liquidity shocks, see section 5) are independent. When i has to

liquidiate (and is replaced by a new idential institution, so stationary is preserved) or has to

trade due to a liquidity shock at time τi , the price that is realized is also imposed on the

books of institution j. Essentially, we can frame this situation in terms of the setup in 5 with

ξ =
∑n

j (=i ρj = (n − 1) × ρ and f̂ = f where we assumed that ρj = ρ, ∀j so that we have a

symmetric problem.

6.2 Different constraints

Let us now consider the possibility that the leverage constraints φ̄ amongst the banks are not

the same. This might be due to unmodeled lines of businesses of the banks. Consider the two

bank case with banks A and B – this is without loss of generality as only the least constrained

institution and most constrained institution amongst n are pivotal. Let us assume for ease

of exposition that the banks share the same horizon time and there is no auditing, but the

banks are facing different leverage constraints. Let bank A be less constrained than bank B,

i.e. φ̄A > φ̄B. What then are possible outcomes of the trading game of the agents?

First, there is an always-trading equilibrium in which all banks trade continuously. The

optimal response to an always-trading player is to always trade as well – stopping trading

at the constraint will simply lead to an immediate violation of the constraint that brings

substantial (and very frequent) fines with it.

Second, there can be an equilibrium in which trading stops. Consider the situation in

which bank A, the least constraint bank, decides to follow its single player optimal strategy

and picks ŷA as its retrading boundary. As the curve ŷ
(

φ̄
)

is upward sloping (see figure 3), a

more lax leverage constraint (higher φ̄) leads to an individually optimal retrading boundary

ŷ.

Bank B now has two options: it can either (1) always-trade and ensure itself a value ḡ

or it can (2) mimic bank A and get some value gB (1|ŷA) (that is not equal to gB (1) as the
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retrading point ŷA is not individually optimal for bank B). If bank B is much more constrained

than bank A, it will have significantly lower leverage going into the no-trading region. B will

then have to weigh if it is worth to stop trading, given that it will be forced to liquidate at

ŷA – it would be willing to not trade until ŷB < ŷA , but A’s trading reveals the violation

of the leverage constraint on B’s books. Clearly, if bank B individually is unwilling to stop

trading given an optimal ŷB, it will not accept a suboptimal boundary ŷA. But if bank B

individually would be willing to stop trading, it might accept bank A’s boundary.

Alternatively put, banks’ constraints and their positions define their incentives to stop

trading. When positions (influenced by their constraints) lie closely together, incentives to

stop trading are aligned and there exists an equilibrium that yields no-trading. The no-

trading interval is determined by the least constrained bank, but the most constrained bank

will determine if this equilibrium actually exists. When the no-trading equilibrium exists, it

is the Pareto optimal one from the view of the firms. Let us summarize:

Proposition 3 Let there be n banks with different leverage constraints φ̄ but with possibly

different horizon times and independent liquidity shocks. These banks have to acknowledge

each other’s transaction prices for accounting purposes. Further, assume that all φ̄i’s are

such that banks would individually stop trading. Then

(i) There always exists an always-trading Nash equilibrium in which all banks trade continu-

ously.

(ii) There can exists a second, no-trading Nash equilibrium when the leverage constraints of

the least and most constrained bank lie close enough together. The no-trading interval will

be determined by the least constrained bank, and the least constrained bank will still find it

optimal to follow a no-trading strategy, i.e.

gB (1|ŷA) > ḡB

. This second equilibrium Pareto dominates the always-trading equilibrium from the banks’

perspective.

Figure 6 shows the possible multiple bank equilibria for the n bank case. The blue line
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Figure 6: Multiple bank equilibrium: The blue line shows the optimal ŷ for each φ̄. The
dashed-red line is the maximal ŷ a bank with constraint φ̄ is willing to accept to still use a
no-trading strategy. The shaded red area is the set of φ̄’s for which only an always trading
equilibrium exists. Beyond the vertical line at φ̄B = 2.09 only an always trading equilibrium
exists.

shows the optimal ŷ for each φ̄, whereas the dashed red line shows the maximal acceptable

ŷA for the most constrained player φ̄B. To use the graph, first figure out the maximal ŷmax
B

bank φ̄B is willing to accept a no-trading equilibrium. Then via the blue line we translate

it back to the maximal leverage constraint that A can have for the no-trading equilibrum to

exits, φ̄−1 (ŷmax
B ). For example, for φ̄B = 1.1, the maximal leverage of the least constraint

bank that still allows a no-trading equilibrium is around φ̄max
A = 1.8. For any φ̄B ≥ 1.4,

the maximal bank A leverage constraint is φ̄A = 2.09. Thus, there can be sizable differences

in the constraints faced by each bank that can still sustain a no-trading equilibrium. Most

major banks carried sizable positions in related level 3 assets into the current crisis, their

incentives to stop trading were aligned. Thus, the model provides some explanation of why

banks might refuse to trade. Additionally, the current situation shows that these balance

sheet incentives can outweigh possible predatory trading incentives that are abstracted from

in this current model.
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7 Estimating true balance sheet value

Takeovers, forced mergers or refinancing at short notice involving companies heavily invested

in Level 3 assets pose a formidable challenge to any acquirer or outside investor. Although

the target company will open its books, outside investors often lack the necessary expertise

to accurately value some of the assets held by the target. As our model showed, it is likely

that book valuations based on stale prices are out of line with current shadow prices. As an

example, the Korean Development Bank was in such a situation during its talks over a con-

trolling stake at Lehman Brothers shortly before the latter’s demise. Given the rapidly closing

window of opportunity and the consequently very tight time frame, the Koreans ultimately

passed on investing in Lehman Brothers, partially because of their difficulty appraising some

of Lehman Brothers assets.

Our model can give some guidance in how to estimate the market price of such assets to

an outsider with only access to the internal transaction prices and book valuations. Recall

that we assumed that only institutions active in the market observe the shadow price process.

With the derived no-trading boundaries, we are now in a position to examine the expected

shadow price of non-traded assets to an outsider.

Our aim is to answer the following question: After prices have become stale, what is the

expected shadow price given t units of time have passed since the last trade? Suppose the

asset last traded at time s at a price Ps. If the asset has not been traded on [s, s + t], the

expected value of the asset at time s + t is

E
o
s+t [Ps+t] = Ps · Es [ys+t|yr ∈ (ŷ, 1) for all r ∈ [s, s + t] , ys = 1]

where Eo
t denotes an expectation w.r.t. the outsider information set and accounting informa-

tion provided by the insider.

The last price at which significant amounts of the asset traded, Ps, is observable from the

company’s books, as is the time since last trade t. We rely on Monte Carlo methods to derive

expected price paths as a full-fledged examination of the behavior of Eo
s+t [Ps+t] is beyond
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Figure 7: Expected price path for stale asset: Ps = 1, benchmark parameters, ŷ = .37

the scope of this paper.

Figure 7 shows one such expected price path. The path is monotonically decreasing in

time: the longer an asset has been non-traded, the lower on average its price will be. This

outcome is counter to the underlying shadow price process being increasing in its uncondi-

tional expectation. It is the property of the conditioning set [ŷ, 1] that leads to strong enough

’bad news’ conditioning to reverse the drift of the price process. Intuitively, ’good’ paths that

revert back to 1 before time s+t will not be included in the conditioning set, as they result in

the institution trading on (s, s + t) – we are dropping the strongest upward drift paths. The

expected price path is further convex in t, i.e. it decreases very fast at the beginning, but

the rate of the decrease diminishes. Essentially, the information content of the asset staying

stale for another ∆t periods vanishes for assets that have not been traded for some large t.

It is important to note that the model is driven by the static balance sheet constraints

that relies on self-reported transaction prices – the bank games the accounting rules to opti-

mally breach this constraint. If the constraint could take the above derived decreasing price
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path when no trade occurs into account, then the no-trade outcome could unravel unless

we introduce transaction prices as discussed in 4.5. However, as we argued before, enforce-

ability in a juridical sense requires some positive proof and such proof cannot be acquired

instantenously.

8 Conclusion

This paper examined the dynamic effects of fair value accounting on the trading behavior of

financial institutions and its implications for the valuation of non-traded assets on the insti-

tution’s books. Certain OTC markets are so opaque that an institution under marking-to-

market accounting only has to acknowledge self-generated transaction prices. Consequently,

there can be incentives for balance sheet constrained institutions active in such markets to

obstruct price discovery by keeping assets off the market.

I provide a model that derives when instutions suspend and restart trading of certain

assets. Under fair value accounting, book valuations of securities generally have to be updated

when new transaction prices are observed. However, OTC markets can be so opaque that no

continuously observable prices exist. An institution active in such markets has to take the

accounting impact of its own trading decisions into consideration. If faced with regulatory

capital requirements, it might be optimal to book gains immediately as fundamentals rise

above accounting valuations, but suspend trading when fundamentals drop to obstruct price

discovery, thereby delaying losses. As book value ceases to reflect current market prices, the

capital requirement is relaxed. Asset holdings, however, become fixed, leading to potentially

excessive risk exposure. The institution optimally balances the benefit of a relaxed balance

sheet constraint against the cost of possible excessive exposure to determine when to stop

and restart trading, and thus when to book gains and losses, and if to follow such a no-

trading strategy at all. A regulator wanting to control leverage of a bank has as possible

tools capital requirements, fines for mismarking and random audits. Increasing fines or

capital requirements can lead to increased risk-taking by increasing the maximal leverage the

institution is willing to accept. Random audits in general decrease the risk-taking of banks.
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These results are robust to an n bank extension – even if n banks each have to mark to

each others prices, there can be no-trading equilibria. To an outside observer such as the

regulator, the expected value of the balance sheet of a bank is decreasing and convex in time

since last trade.

References

Adrian, T., and H. S. Shin (2008): “Liquidity and leverage,” Working Paper.

Attari, A., A. S. Mello, and M. E. Ruckes (2005): “Arbitraging arbitrageurs,”Journal

of Finance, 60(5), 2471–2511.

Basak, S., and B. Croitoru (2000): “Equilibrium mispricing in a capital market with

portfolio constraints,” Review of Financial Studies, 13(3), 715–748.

Brunnermeier, M. K., and L. H. Pedersen (2005): “Predatory trading,” Journal of

Finance, 60(4), 1825–1863.

Coddington, E. A. (1961): An introduction to ordinary differential equations. Dover.

Cvitanic, J., and I. Karatzas (1992): “Convex duality in constrained portfolio optimiza-

tion,” Annals of Applied Probability, 2(4), 767–818.

Dixit, A. (1993): The art of smooth pasting. Routledge.

Dumas, B. (1991): “Super contact and related optimality conditions,” Journal of Economic

Dynamics & Control, 15, 675–685.

Grossman, S. E., and J.-L. Vila (1992): “Optimal dynamic trading with leverage con-

straints,” Journal of Financial and Quantitative Analysis, 27(2), 151–168.

Heaton, J. B., D. J. Lucas, and R. McDonald (2009): “Is Mark-to-Market Accounting

Destabilizing? Analysis and Implications for Policy,” Working Paper.

36



Liu, J., and F. A. Longstaff (2004): “Losing money on arbitrage: Optimal dynamic

portfolio choice in markets with arbitrage opportunities,” Review of Financial Studies,

17(3), 611–641.

Norris, F. (2008): “Trade now could cost broker later,” The New York Times.

Pavlova, A., and R. Rigobon (forthcoming): “Asset prices and exchange rates,” Review

of Economic Studies.

Plantin, G., H. Sapra, and H. S. Shin (forthcoming): “Marking-to-market: panacea or

pandora’s box?,” Journal of Accounting Research.

37



A Appendix

A.1 Solutions to the ODE: Method of variation of coefficients
By the method of variation of coefficients, we can write the particular solution of an ODE in integral form
involving its linearly independent solutions (see for example Coddington (1961), Ch.3, Sec. 10, Thm. 11).
In our case, the second order ODE has linearly independent solutions yη+ and yη

− , and the solution will be
of the stated form. Note that l ∈ [ŷ, 1] is completely free, and does not influence the solution.

Lemma 3 For the variation of coefficients solution

gp (y|l) =
2

σ2

[
ˆ l

y

µlog W (s)

s2

sη+yη
− − yη+sη

−

Wr (s)
ds

]

the function and its first derivative w.r.t. y vanish at the limit of integration l

gp (l|l) =
∂gp (y|l)

∂y

∣
∣
∣
∣
y=l

= 0 (A.1)

but the second derivative w.r.t. y does not

∂2gp (y|l)

∂y2

∣
∣
∣
∣
y=l

=
2

σ2

µlog W (l)

l2

Proof. Taking derivatives, we see that

∂gp (y|l)

∂y
=

2

σ2





´ l

y

µlog W (s)
s2

η
−

sη+yη
−−η+yη+sη

−

y·Wr(s) ds

−
(

µlog W (y)
y2

yη+yη
−−yη+yη

−

Wr(y)

)





=
2

σ2

ˆ l

y

µlog W (s)

s2

η−sη+yη
− − η+yη+sη

−

y · Wr (s)
ds

∂2gp (y|l)

∂y2
=

2

σ2





´ l

y

µlog W (s)
s2

η
−

(η
−
−1)sη+yη

−−η+(η+−1)yη+sη
−

y2·Wr(s) ds

−
(

µlog W (y)
y2

η
−

yη++η
−

−1−η+yη++η
−

−1

Wr(y)

)





=
2

σ2

[
ˆ l

y

µlog W (s)

s2

η− (η− − 1) sη+yη
− − η+ (η+ − 1) yη+sη

−

y2 · Wr (s)
ds −

µlog W (y)

y2

]

Plugging in y = l, the integrals vanish as the integrands are all bounded, and we are left with the result.

A.2 Optimality proofs
Proof of Proposition 1. Verification argument:
We will verify the optimal strategy φ∗ directly. Once the optimality of φ∗ is established, what remains is
essentially computing an expectation for a fixed φ∗. Note that τ is independent of Z, so that we can make use
of conditional expectations. Also note that τ is almost surely finite. We can then write out the expectation
as

max
φ

E [log Wτ ] = max
φ

E
τ

[

E
Z

[
ˆ τ

0
µφ −

1

2
σ2φ2ds

]

+ E
Z

[
ˆ τ

0
σφdZ

]]

(A.2)

where Eτ and EZ are expectations w.r.t. τ and Z respectively. By our assumption that φ is in L2, and by τ
a.s. finite, we know that the stochastic integral

´ τ

0 σφdZ is a martingale and its expectation is therefore zero.
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Maximizing the expectation thus reduces to maximizing the expectation of the time integral E
[´

...ds
]

. As τ
is independent of Z, we can maximize path-by-path. Applying simple calculus of variations will give φ∗. The
value function of the main part can thus be interpreted as the solution to the expectation of E [log Wτ ] with
fixed strategy φ∗. This verifies that our value functions is indeed optimal. This proof is similarly applicable
to the constraint φ̄ < φ∗ with only minor modifications.

Proof of Proposition 2. First, note that

c+ = −
η−
η+

c−

from the first boundary condition. Plugging this back into the second boundary condition gives

−
η−
η+

c−ŷη+ + c−ŷη
− + gp (ŷ) = −

η−
η+

c− + c− + log (1 − f)

⇐⇒ c− (ŷ) =
log (1 − f) − gp (ŷ)

η
−

η+
(1 − ŷη+) + (ŷη

− − 1)

so plugging this into the definition of g (y|ŷ) will give

g (y|ŷ) = c+yη+ + c−yη
− + gp (y)

= c−

(

yη
− −

η−
η+

yη+

)

+ gp (y)

=
log (1 − f) − gp (ŷ)

η+ (ŷη
− − 1) − η− (ŷη+ − 1)

(η+yη
− − η−yη+) + gp (y) (A.3)

We then take the derivative w.r.t. y and evaluate at y = ŷ to get equation (11).14

Verification:
Note that φ̃ (y) is potentially unbounded and thus may not fulfill our assumption φ̃ ∈ L2. From Lemma 2,
we know that there must exist an ε > 0 such that ỹ > y + ε. We pick an arbitrary but small ε = 10−10,
from which boundedness of φ̃ follows. Although this ε might theoretically not be small enough, we found it
sufficient for all our numerical solutions.
Pick an arbitrary stopping time τ̃ at which the agent retrades. We can then write, by Ito’s formula

e−ρτ̃V (Wt+τ̃ , yt+τ̃ ) = V (Wt, yt)

+

ˆ t+τ̃

t

[

µyVy + Wφ̃

(

µ +
1

2
σ2

)

VW +
1

2
Vyyσ2y2 +

1

2
VWW σ2φ̃2 + VyW σ2φ̃y

]

ds

+

ˆ t+τ̃

t

[

σyVy + σφ̃VW W
]

dZ

Conjecture the value function to be V = log W + g (y) and plug in to get

e−ρτ̃V (Wt+τ̃ , yt+τ̃ ) = V (Wt, yt) +

ˆ t+τ̃

t

(ODE) ds +

ˆ t+τ̃

t

[σyg′ (y) + σφ] dZ

We now need to show that
´

[

σg′ (y) + σφ̃ (y)
]

dZ is a martingale. Any alternative stopping strategy can be

described by a retrading point y′ ∈
[

y + ε, 1
]

. We then know by our closed form solution from Proposition
10 that for this alternative strategy x′ we have

14Optimality dictates, by Dumas (1991) and Dixit (1993), a smooth pasting condition at ŷ. We can also
derive this smooth pasting condition from the optimization maxŷ g (y|ŷ) for which we conveniently can choose
y = 1. See equation (A.5).
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(i) g′ (y) bounded for all y ∈
[

y + ε, 1
]

for ε > 0.

(ii) φ̃ (y) bounded for all y ∈
[

y + ε, 1
]

.
Therefore, the stochastic integral is a martingale on [y′, 1].
By construction, the value function is C1 at the optimal ŷ. Also, on y ∈ [ŷ, 1], (ODE) = 0 holds by
construction. On y ∈ (¯̄y + ε, ŷ) we have g (y) = log (1 − f) + g (1), a constant that only depends on ŷ. At
y = ŷ, by the ODE we also have

0 =
σ2

2
ŷg′′ (ŷ) − ρ [log (1 − f) + g (1)] + µlog W (ŷ) (A.4)

as matching g and g′ fixes g′′ via the ODE.
Numerically, we can show for all parameters in the paper that equation (11) has a unique solution ŷ < y∗

and that at this optimal point g′′ (ŷ) > 0. Thus, we know that µlog W (y) is increasing in y on (¯̄y + ε, y∗). We
conclude that (ODE) = −ρ [log (1 − f) + g (1)] + µlog W (y) < 0 on (¯̄y + ε, ŷ), and thus our initial strategy is
optimal.

Lemma 4 Let h (ŷ) ≡ η+ (ŷη
− − 1) − η− (ŷη+ − 1). On ŷ ∈ (0, 1), h (ŷ) > 0, h′ (ŷ) < 0 and h′′ (ŷ) > 0.

Proof.
The first derivative of h (ŷ) is h′ (ŷ) = η+η−

(

ŷη
−
−1 − ŷη+−1

)

. Note that
(

ŷη
−
−1 − ŷη+−1

)

> 0 ⇐⇒
(η− − 1) log ŷ > (η+ − 1) log ŷ which holds as ŷ ∈ (0, 1) implies log ŷ < 0. We thus have h′ (ŷ) < 0. In
conjuctino with h (1) = 0 this implies h (ŷ) > 0 on ŷ ∈ (0, 1). Further note that

h′′ (ŷ) = η+η−
[

(η− − 1) ŷη
−
−2 − (η+ − 1) ŷη+−2

]

> 0

as we made parameter restrictions implying η+ > 1.

Proof of Corollary 1.

(i) Let us first take the derivative dg(1|ŷ)
df

= ∂g(1|ŷ)
∂f

+ ∂g(1|ŷ)
∂ŷ

dŷ
df

. Evaluate equation (10) at y = 1 to get

g (1|ŷ) = log(1−f)−gp(ŷ)
h(ŷ) ∆η where ∆η = η+ − η−, we substituted in for h (ŷ) and we used the fact that g′p (y)

vanishes at y = l = 1. Taking the derivative gives

∂g (1|ŷ)

∂ŷ
= −∆η

g′p (ŷ)

h (ŷ)
−∆η

log (1 − f) − gp (ŷ)

h (ŷ)2
h′ (ŷ)

= −
∆η

h (ŷ)

[
log (1 − f) − gp (ŷ)

h (ŷ)
h′ (ŷ) + g′p (ŷ)

]

︸ ︷︷ ︸

= gy(y|ŷ)|
y=ŷ

= 0 (A.5)

Clearly, this is just the envelope theorem, and we thus have dg(1|ŷ)
df

= ∂g(1|ŷ)
∂f

= −∆η 1
1−f

1
h(ŷ) < 0. This of

course is straight-forward: when the fines increase, the value function has to go down.
(ii) How does the retrading boundary ŷ move as f changes? First, multiply equation (11) through by

h (ŷ) > 0 to get
Q (f, ŷ) ≡ [log (1 − f) − gp (ŷ)] h′ (ŷ) + g′p (ŷ)h (ŷ) = 0

Now, by the implicit function theorem, we know that dŷ
df

= −∂Q
∂f

/∂Q
∂ŷ

. The partial derivatives are

∂Q

∂f
= −

1

1 − f
h′ (ŷ) > 0

40



and

∂Q

∂ŷ
= [log (1 − f) − gp (ŷ)]h′′ (ŷ) − g′p (ŷ)h′ (ŷ) + g′p (ŷ)h′ (ŷ) + g′′p (ŷ)h (ŷ)

= [log (1 − f) − gp (ŷ)]h′′ (ŷ) + g′′p (ŷ)h (ŷ) = g′′ (ŷ)h (ŷ)

where we took the second derivative of equation (10), g′′ (y) = log(1−f)−gp(ŷ)
h(ŷ) h′′ (y) + g′′p (y), and evaluated

it at y = ŷ for the last step. As we have g′′ (ŷ) > 0 (this is given numerically from our optimization) and
h (ŷ) > 0 from the lemma above, we are left with ∂Q

∂ŷ > 0. We conclude that dŷ
df < 0.
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