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ABSTRACT

Seismic data acquired directly over near-surface limestone formations are commonly
observed to be of inferior quality. A possible cause for this degradation is scattering
in the near-subsurface by, e.g., the weathering layer, rough free-surface topography,
or heterogeneities such as cavities or clusters of vugs. We applied different numerical
scattering schemes to study the effects of each of these three scattering mechanisms.
For a particular dataset acquired in West Texas, we find that a weathering layer is
the dominant cause of noise on records acquired in valleys. However on mesas, near­
subsurface heterogeneity is the primary cause of scattered wave-energy. Topography
turned out to be of only secondary importance.

As additional attributes, we use energy-density and energy-flux vectors to study
the frequency dependence of the different scattering models. These attributes allow
us to study where energy concentrates and in which direction it flows. For example,
we observed that near sub-surface heterogeneities build up waveguides which efficiently
trap seismic energy near the surface.

INTRODUCTION

In many areas of the world, the nature of the local topography, geomorphology, and
geology hinders reflection-seismic exploration. These regions are also called no-record
areas. Commonly, it is the presence of high-velocity layers in the near-subsurface which
makes it difficult to image deeper structures. Basaltic layers, carbonates outcrops, or
permafrost regions are all examples of the problem. Specifically, the problem seems
to occur when these high-velocity layers are juxtaposed against much lower velocity
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materials. Reflections from depth are almost impossible to interpret on surface seismic
data acquired in such regions.

Specialized data acquisition can improve the data quality (Papworth, 1985; With­
ers et al., 1994; Ryu, 1997). Different processing tools have been applied with varying
degrees of success. Pritchett (1990) found that suppressing source-generated noise with­
out also suppressing the desired reflections is rather difficult. On high velocity surfaces,
the angle of reflection arrivals at the surface at moderate to long offsets is large, which
shortens the apparent horizontal wavelengths of the reflections relative to the wave­
lengths of some source-generated noise. Papworth (1985) described the application of
residual statics using a detailed near-surface velocity model. Purnell (1992) tailored
acoustic migration to selected families of converted wave arrivals to image below the
high velocity layers. Recently, model-based filters have been developed which remove
scattered phases (Blonk and Herman, 1996; Ernst and Herman, 1996).

There are several factors which affect amplitudes and phases. Spatially varying
amounts of heterogeneity lead to different static time shifts for each trace (Vanden­
berghe et al., 1986). Energy trapped in zones of lower velocity causes strong rever­
berations and yields complex tuning effects (Pujol et al., 1989). Waves are subject to
attenuation, absorption, and scattering by the heterogeneities (Wu and Aki, 1985; Gib­
son and Levander, 1988). Specifically, mode conversions between reflected, transmitted,
and surface-waves become very efficient in these situations (Gulati and Stewart, 1997).
In the near-subsurface and within waveguides such as low-velocity layers, body waves
convert to surface waves and vice versa. Pujol et at. (1989) and Papworth (1985) associ­
ated strong S-wave arrivals with P-to-S conversion at basalt surfaces. All of these effects
affect not only the original P-wave, but also source-generated noise and reflections from
deeper layers.

We acquired a dataset in West Texas over high-velocity carbonate formations. As
examples, two shot gathers are shown in Figures 1 and 2. The first record (Figure 1) was
acquired in a topographic depression. The second record (Figure 2) is recorded on top of
a mesa. Both records are badly contaminated by 'noise'. Our data-processors reported
a number of problems, including statics, the weathering layer, and topographic effects.
Interestingly, they considered their main problem to be backscattered wave-energy over
the mesas. The backscattered energy could not be removed by conventional processing.
The amount of scattered energy was simply too large and incoherent.

In this paper, we do not attempt to derive alternative acquisition or processing
schemes. We believe that the first step in understanding the problem is to identify its
cause and to study what exactly happens when seismic waves pass through such regions.
Hence, we develop different geological models for the near-subsurface. Specifically, we
consider three different scattering mechanisms: (1) strongly heterogeneous debris or
weathering layers; (2) irregular topography; and (3) heterogeneities such as large vugular
cavities. Because we are mainly interested in the qualitative behavior of the different
mechanisms, we limit ourselves to 2-D models and 2-D propagation. For each model,
we calculate synthetic seismograms and compare its results to our field records. We find
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that the weathering layer (1) is the dominant cause of degradation for data acquired
over topographical depressions. Contrarily, we find near-subsurface heterogeneities (3),
such as cavities and other regions of enhanced porosity, to be the primary cause of
scattering for data acquired over elevated areas.

This paper is structered as follows: First, we look at the field data, study how data
quality and topography correlate, and present the three mechanisms. We calculate the
synthetic seismogram for an equivalent flat free-surface model which serves as refer­
ence data for comparisons. Second, we use a boundary element method, described in
Appendix A, to calculate the seismogram for rough free-surface topography. Then, we
simulate the effects of heterogeneities at various levels of depth using the Multiple Mul­
tipole Method, described in Appendices Band C. As additional attributes, we will use
frequency dependent energy-density and energy-flux to study where energy concentrates
and where it propagates. Finally, we will discuss and summarize our findings.

WEST TEXAS DATASET

Conoco acquired the dataset in West Texas over Cretaceous formations. Unfortunately,
they did not release complete or detailed information. For example, neither the exact
location nor the applied source- and receiver-patterns have been disclosed. Figure 3
presents the elevation of source- and receiver-stations relative to an unknown datum.
Two distinct levels can be seen: Elevations over 1750 ft are on mesas. Experience
suggests that mesas are hard formations. Contrarily, elevations below 1750 ft constitute
valleys. It is likely that they are covered with debris comprising a very heterogeneous
near-surface layer.

Not surprisingly, seismic records acquired over the valley region differ drastically
from records acquired on a mesa. For example, the seismogram shown in Figure 1 was
shot across the valley with the source located at station 1045. The other seismogram
(Figure 2) was recorded on top of the mesa with the source located at station 1153. The
two regions differ most significantly in the appearance of the Rayleigh waves. The valley
record 1045 contains some Rayleigh waves, especially for later arrival times and larger
offsets, but it is an incoherent event with nonlinear traveltimes. However, the Rayleigh
waves dominate on mesa record 1153, with linear traveltime and consistent amplitudes.
A similar difference is observed for the first breaks. In the valley record 1045, the first
break is a fading event strongly affected by static shifts. In the mesa record 1153, it is
a rather strong and very linear feature.

From records acquired on top of the mesa, we estimated average seismic velocities
of the surface layer: P-wave velocity a = 4630 mis, S-wave velocity (3 = 2122 mis,
and Rayleigh wave velocity / = 1990 m/s. The velocities of P- and Rayleigh waves
are directly measured from the records, while the S-wave velocity is inferred from the
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Rayleigh function for a uniform, elastic halfspace (Aki and Richards, 1980).

(1)

From the data, we also obtain the dominant frequency of 30 Hz. For the density p, we
will use an average limestone density of 2600 kg/m3 (Clark, 1966).

The data-processors reported a number of problems, including statics, the weath­
ering layer, and topographic effects. For data acquired over the valley fill, standard
processing sequences were found to be marginally successful in imaging deeper reflec­
tions. They considered their main problem to be backscattered P- and Rayleigh waves
on records acquired over the mesas. These events could not be removed by conventional
processing. The amount of incoherent energy was simply too large. To examine this fur­
ther, we used a slant stack to separate forward and backward propagating wave-energy
(Durrani and Bisset, 1984). Figure 4 shows the top portion of the first 56 traces from the
record shot over the mesa. Also shown are the forward/backward separated records. All
three seismograms are scaled equally. Interestingly, hardly any backscattered Rayleigh
waves can be detected in Figure 4(c). Nearly all backscattered events propagate with the
P-wave velocity. They mostly radiate from the direct and near-surface guided P-wave.

To understand these effects, we need to consider the morphology and geology of the
outcropping carbonates. We devised three different models which could explain the ob­
served degradation of the seismic signal: (1) strongly heterogeneous debris or weathering
layers; (2) rough surface topography; and (3) near-surface heterogeneities such as large
vugular cavities and regions of enhanced porosity. Weathering layers are conceptionally
very similar to the third mechanism. One expects variable amounts of static delays
and conversion of different wavemodes. However, the effect of the two models is quite
different. Robertsson et al. (1996) examined the effect of strongly heterogeneous weath­
ering layers. Using a finite difference model, they observed the formation of waveguides.
While their results do not resemble our mesa record 1153, their seismograms look very
much like our valley record 1045! This observation appears reasonable. The formation
of a thick weathering layer is much more likely in a topographical depression (valley)
than on an elevation (mesa).

Rough topography is known to cause significant effects of amplification and deam­
plification of propagating waves both at the irregularity itself and in a substantial neigh­
borhood around it. Rough surface topography also converts wavemodes very efficiently,
generating strong backscattered waves (Sanchez-Sesma and Campillo, 1991).

Commonly, near-surface limestone layers are highly heterogeneous, despite their
massive appearance. Although the matrix velocity is rather high, these layers often
contain a substantial amount of pore space which may contain low-velocity materials
such as gases, liquids, or soil. A wave propagating through such a layer is delayed by
variable amounts, yielding problems with statics (Vandenberghe et aI., 1986; Mukerji
et al., 1995). Furthermore, mode conversions of reflected, transmitted, and surface
waves become very efficient in these situations.
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Since the processing of data acquired over valleys was marginally successful, we will
focus our study on the mesas concentrating on mechanisms (2), rough surface topog­
raphy, and (3), near-surface heterogeneities such as large vugular cavities and regions
of enhanced porosity. Using the method of discrete wavenumber integration (Bouchon
and Aki, 1977), we calculate the response of a homogeneous limestone halfspace. Not
knowing the exact acquisition geometry, we assume an explosive point-source at a depth
of 10m and point-receivers 1 m below the surface. We use a Ricker wavelet (Hosken,
1988) with a center-frequency of 30 Hz as source-time function. Figure 5 presents the
z-component of the synthetic seismogram which should be compared to the enlarged
mesa record 1153 shown in Figure 4(a). Clearly, the timings of the first break and
the Rayleigh wave are correct. Not surprisingly, the synthetic record misses all other
arrivals visible on the field record.

As additional quantities, we also define the time averaged energy-flux vector and the
energy-density of the wavefields (Ben-Menahem and Singh, 1981). The instantaneous
energy-flux vector S(x, t), also known as Poynting power, is defined by

S(x, t) = 3(e u(x, t) . 3(e u(x, t) (2)

where the dot denotes the derivative with respect to time. For a harmonic wave of
angular frequency w, we easily obtain the time averaged energy-flux vector S(x,w):

S(x,w) = (S(x,t))

1 rT

= T io S(x, t) dt

= ': (u*(x,w)' u(x,w) - u(x,w)· u*(x,w)).

(3)

The superscript * denotes the complex conjugate. u(x) is the stress tensor associated
with the displacement field u(x, w). The energy-flux provides a measure of how much
energy flows in a given direction. Plotted as a vector field, it also shows the coherency
of the wavefield. We also define another quantity, the energy-density E(x, w):

E(x,w) = p~x) u(x,w). u*(x,w) + ~ u(x,w): ,,*(x,w)

= p(x) u(x,w)· u*(x,w)

= w2p(x) u(x,w)· u*(x,w)

(4)

,,(x) is the strain tensor associated with the displacement field u(x,w). We simplified the
expression using the equipartition theorem between kinetic- and strain-energy-density
(Aki and Richards, 1980) which allows us to use only one term, the kinetic, which is
easier to evaluate. The energy-density E(x,w) reveals where energy is concentrated.
Both energy-flux and energy-density are frequency dependent. For the flat free-surface,
we calculate the two measures at two different frequencies, 20 Hz and 45 Hz. The results
are shown in Figure 6. The arrows show magnitude and direction of the energy-flux. At
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both frequencies, energy is predominantly flowing downward and along the free surface.
The color-shading shows the energy-density. Bright colors denote higher energies, while
dim colors denote lower ones. We observe that energy is highly concentrated along
two lobes, similar to a vertical point-force, and along the free surface. The wiggling
of the energy-flux vectors and the checkerboard pattern of the energy-density are not
numerical artifacts but interference effects between direct P-, reflected P-, converted S-,
and the Rayleigh-wave which have different spatial wavelengths. It is well-known that
linear superposition of different wavelengths yields spatial beating patterns. Note that
the wavelength of the beat at 20 Hz is nearly twice the beating wavelength at 45 Hz.

IRREGULAR TOPOGRAPHY

Irregular topography is known to cause amplification and deamplification of propagat­
ing waves both at the irregularity itself and in a substantial neighborhood around it.
Rough surface topography also converts wavemodes very efficiently, generating strong
backscattered waves (Sanchez-Sesma and Campillo, 1991). To study the effect of the
topography depicted in Figure 3, we apply a boundary element technique similar to
the one developed by Sanchez-Sesma and Campillo. We assume that the total wave­
field utot(x, w) can be separated into an incident field uinc(x, w) and a diffracted field
u diff (x, w) induced by the rough topography. Applying Huygen's principle, we postulate
a set offorces 7J(x', w), acting as secondary sources, at every point x' along the interface.
We write the total wavefield as

utot(x, w) = uinc(x, w) +JG(x, x', w) . 7J(x', w) dx' (5)

where G(x,x',w) is the displacement Green's tensor for a force system at location
x' evaluated at x. Discretizing the force system 7J(x, w) and the free-surface boundary
condition allows us to solve the integral equation (5) for each frequency w. Once 7J(x, w)
is determined, we calculate energy-density E(x,w), energy-flux S(x,w), and by Fourier
synthesis seismograms u(x, t). The method is outlined in greater detail in Appendix A.

Figure 7 shows the vertical displacement calculated for the topography of the mesa
record 1153. While the flat free-surface yielded only the 'direct' P arrival and a strong
Rayleigh wave (Figure 5), we now obtain multiple P-wave arrivals in the forward direc­
tion and various Rayleigh arrivals propagating both forwards and backwards. Figure 8
shows the energy-density E(x,w) and energy-flux vectors S(x,w) for 20Hz and 45Hz.
The same scaling was applied as for the flat free-surface case shown in Figure 6-the
bright yellow color indicates pixels laying above the rough topography. At 20 Hz, energy­
density and energy-flux are similar to the fiat free-surface case. One would expect this
result. In terms of the dominant spatial wavelengths, the rough topography is merely
a small perturbation of the fiat free-surface. At 45 Hz, the differences between the flat
and the rough surface are more distinct. In general, the energy-densities are smaller for
the case of the rough surface. For larger offsets, the energy-distribution patterns shift
downwards by the average amount of topography above.
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Compared with the field record 1153 shown in Figure 4(a), the rough topography
generates too many scattered Rayleigh waves while hardly producing any scattered P­
waves, which dominate the field record. Based on this observation, we exclude rough
surface topography as the major mechanism for generating scattered energy contami­
nating the records acquired over West Texas mesas.

NEAR-SUBSURFACE HETEROGENEITIES

The third and final mechanism to be considered is strong heterogeneities in the near­
subsurface, e.g. vugs, joints, cavities, or other regions of enhanced porosity. Commonly,
these features cluster and align along fault-planes or structural boundaries. To model
waves propagating in such environments, we adapt the Multiple MultiPoles method
(MMP) which is particularly well suited for elastic scattering from individual hetero­
geneities or clusters thereof approaching a sizable portion of the dominant seismic wave­
length. The method has been described in detail in a previous publication (Imhof, 1996).
In Appendix B, we outline the method only as necessary for the present work. We sepa­
rate the total wavefield u tot (x, w) into the incident field uinc(x, w) and a field u diff (x, w)
scattered by the heterogeneities. The scattered wavefield is expanded into a set of basis
functions which are solutions to the wave equation in a homogeneous reference medium.
Assuming we have D heterogeneities, the displacement u diff (x, w) of the scatterered
wavefield can be expressed as

D Pd +N

udiff(x,w) = LL L apndu:nd(x,xpd,k,w)+bpndu:nd(x,xpd,l,w). (6)
d=l p=l n=-N

For a fullspace, the expansion functions u:nd and U:nd are given in terms of scalar
multipole potentials (B-4). For the present problem, we need expansions which also
contain the effect of the free surface. We will use asymptotic expansions (C-23) and
(C-24) which are derived in Appendix C. Equations for the weighting coefficients !1l'nd
and bpnd are found by enforcing the boundary condition at discrete points along the
interfaces between elastic halfspace and void inclusions. These equations form a system
of linear equations, which determine the self-consistent solution to the posed scattering
problem.

The models consist of elliptical heterogeneities (4 m x 2 m) embedded in a homo­
geneous halfspace. For simplicity, we define the heterogeneities to be voids. Each
heterogeneity represents a cluster of vugs, joints and cavities, or any other region of
enhanced porosity. They are aligned around a common depth. We will calculate two
different models with average depths of 25 m and 80 m, respectively. The depth vari­
ance is 3 m, the average horizontal separation is 15 m, and the horizontal variance is
5 m. Special care has been taken to avoid overlap between different heterogeneities as
overlap would break our numerical scheme. For both models, we calculate the verti­
cal displacement. The seismograms are presented in Figure 9. Both cases have the
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direct P-wave and the dominant Rayleigh wave in common. However, the scattered
fields are very different. Shallow heterogeneities generate predominantly backscattered
Rayleigh waves emanating from the original Rayleigh wave. To a lesser degree, they
also radiate forward scattered Rayleigh waves originating from the direct P-wave. Deep
heterogeneities primarily generate P-waves that propagate in the backward direction.
The scattered waves originate from the body-waves. These effects are to be expected
because the Rayleigh waves do not go deep enough to be scattered by heterogeneities.
Likewise, the scatterers are too deep to generate large amounts of Rayleigh waves.

We obtain further insight from energy-density E(x,w) and energy-flux S(x,w). Fig­
ure 10 shows these quantities for shallow heterogeneities at 20 Hz and 45 Hz. Again, the
scales equal the ones applied in the previous figures. Wave-energy is effectively trapped
between the free-surface and the heterogeneities. The heterogeneities act like a waveg­
uide, enhancing propagation along the surface. However, this effect is not uniform-at
some locations energy-density increases, while at others it decreases. Downwards, en­
ergy is being passed in only a few directions. Altogether, the heterogeneities form a
screen and reduce the coherence of the wavefields. For deep heterogeneities the results
are slightly different (Figure 11). At 20 Hz, the energy-density is hardly affected by
the presence of the scatterers. Their distance from the seismic source is large enough
that wave propagation is barely disturbed. At 45 Hz, the situation is different. The
seismic wavelengths are closer to dimension and separation of the heterogeneities. As
for shallow heterogeneities, energy is being trapped between the free-surface and the
scatterers, and coherence of the energy-flux is reduced. Again, the heterogeneities are
building up a waveguide.

The synthetic seismogram calculated for the model with the deep heterogeneities,
shown in Figure 9(b), exhibits features very similar to the ones observed over the mesa
record 1153 shown (Figure 4). We believe that heterogeneity at some depth below the
surface causes the degradations observed on the records acquired over the mesas.

DISCUSSION AND CONCLUSIONS

All numerical simulations were done in 2-D. In order to apply these simulations to 3-D,
the properties of wave propagation and scattering need to be compared for 2-D and
3-D waves. As 2-D waves propagate, their amplitude varies and the wavelet changes
its shape. Because we never used amplitude in this study, and we are concerned only
with qualitative behavior of near sub-surface heterogeneity models, these differences are
insignificant.

All three models of heterogeneity vary in 3-D with each model generating more,
and possibly stronger, events for 3-D propagation and 3-D models. Although results
will be contaminated by scattered energy, the general, qualitative findings will remain
the same. Therefore, despite variation both in wave propagation and in scattering, the
numerical simulations of this study can be applied to 3-D wave propagation.

We found that the effects of rough surface topography and near-subsurface hetero-
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geneities are frequency dependent. Higher frequencies (45 Hz) are much more affected
than lower ones (20Hz). For example, the scattering strength strongly depends on the
ratio between characteristic size of the heterogeneities and the dominant wavelength
(Aki and Richards, 1980). This dependence implies that different frequency compo­
nents of the wavefield scatter differently thus both reducing the coherence of the differ­
ent phases and reflections and contributing to source generated background noise. The
frequency dependence also results in dispersion and apparent attenuation.

For aligned heterogeneity in the near-subsurface, we found that wave-energy is ef­
ficiently being trapped between heterogeneities and the free-surface. We observed that
aligned heterogeneities forms waveguides. Further from the surface, the wavefield prop­
agating downwards is noisy and incoherent. Moreover, reflections from deeper targets
propagate back through this layer, degrading the sought reflections once more.

In the example seismic dataset, we find that the quality of the data depends strongly
on the location of source and receivers with respect to valleys and mesas. We began
with the assumption that scattering was responsible for these differences. We proposed
three different scattering mechanisms: (1) strongly heterogeneous debris or weathering
layers; (2) irregular topography; and (3) near-surface heterogeneities such as cavities
or regions of enhanced porosity. A comparison of Figure 1 against results obtained
by Robertsson et al. (1996) made us believe that mechanism (1) is dominant for data
acquired in the valleys. However, data acquired on top of seismically-fast limestone
mesas proved to be of even lower quality, e.g., Figure 2. A very strong Rayleigh wave and
large am.ounts of scattered wave-energy dominate the records, overwhelming reflections
from deeper targets. By comparing synthetic seismograms with field data, we ranked
mechanism (1) to be the least important and (3) to be the most important. We found
scattered wave-energy to be predominantly in the form of P-waves which suggests that
the heterogeneities are located not directly at the surface but at some depth, e.g., 80 m.
Due to their common presence in outcropping limestone, we believe that small cavities,
vugs, or other regions of enhanced porosity are the cause of the observed degradation
of seismic signals recorded in West Texas.
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Appendix A Boundary Element Method

Following the derivation by Sanchez-Sesma and Campillo (1991), we assume that the to­
tal wavefield utot(x, w) can be separated into an incident field uinc(x, w) and a diffracted
field u diff (x, w) induced by the rough topography.

utot(x,w) = uinc(x,w) +udiff(x,w) (A-I)

Applying Huygen's principle, we define the diffracted field by a set of forces '1(x', w)
acting as secondary sources at every point x' along the interface. As a notational detail,
we assume primed coordinates to be on the free surface. Unprimed coordinates are
anywhere in the elastic halfspace.

utot(x,w) = uinc(x,w) +JG(x,x',w)· '1(x',w) dx' (A-2)

where G(x,x',w) is the displacement Green's tensor for a force system located at x'
evaluated at x. The displacement Green's tensor is given by (Ben-Menahem and Singh,
1981)

G(x,x',w) = p~2 [12I1,b(lr) + \l\l(1,b(lr) - </>(kr))] (A-3)

where p is the density, w defines the angular frequency, k = w/ a and l = w/ f3 denote
wavenumbers for the P- and S-waves, r = Ix-x'l, and finally the scalar Green's functions
</>(kr) = iHa1)(kr)/4 and 1,b(lr) = iHa1)(lr)/4 with Ha1)(.) the Hankel functions of the
first kind and zeroth order. The traction-free boundary condition at the free surface x"
implies that

(

. 1 Jenc(x",w) + 2'1(x",w) + T(x",x',w)· '1(x',w) dx' = 0 (A-4)

where tinc(x",w) is the traction of the incident wave. The term 1/2'1(x",w) accounts
for the singularity of the traction at x' = x". The tensor T(x", x', w) yields the traction
at x" in the direction ii(x") for a force system located at x'. T can be obtained from
the displacement Green's tensor G by the relations between displacement, strain, and
stress

T(x",x',w) = ~C: (\lG(x",x',w) + G(x",x',w)\l). ii(x") (A-5)

where C is the fourth-order compliance tensor containing the elastic material param­
eters. Discretizing the integral equation (A-4) yields a matrix equation for the yet
unknown forces '1(x',w). First, we limit the integration boundaries to ±L/2 where the
distance L is large enough that truncation effects do not reach the receivers within the
time window of interest. Second, we split the range between ±L/2 into N elements of
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length 1:>.8 = LIN = x~ - x~_l where the coordinates x~ are the midpoints of the little
elements. Finally, we assume the force 1J(x', w) to be of the form

N

1J(x',w) = I::W(x~ - x')1Jn(w)
n=l

where W(x) are triangular shape functions which yield a piecewise-linear approximation
of the forces 1J(x',w):

W(x) = {I - Ix l/1:>.8 farlxl < 1:>.8 .
o forlxl > 1:>.8

(A-7)

The grand integral (A-4) is converted into a summation of integrals over the shape
functions which can be evaluated by Gaussian integration of order J with weighting
coefficients Wj and nodal points {j'

t inC ( II ) 1 (" ) JT( II , ) (' ) d '- xmlw = ZT/ Xm,W + Xm,X ,W . TJ x ,W X

N

= ~1Jm(w)8mn + I::JT(x;;',x',w). W(x~ - x')1Jn(w) dx' (A-8)
n=l

N J

= ~1Jm(w)8mn + 1:>.8 I:: {I::Wj T(x;;',x~ + {j,w)} '1Jn(w)
n=l j=1

Every midpoint x~ is used once as x;;' which yields a set of matrix equations for the
discrete forces 1Jn(w).

Appendix B Elastic Multiple Multipole Expansions

In this appendix, we want to state some of the main features of the Multiple MultiPole
(MMP) method which was presented in another publication (Imhof, 1996) and how we
applied those features. The medium is assumed to be a homogeneous fullspace with D
embedded cavities. In the frequency domain, the displacement u(x, w)eiwt of an elastic
P-SV wave travelling in the two dimensional, homogeneous region is described by

1 1
- 'V'V . u - - 'V x 'V x u + u = 0
k2 [2

(B-l)

where we suppressed the harmonic time factor eiwt . We also introduced the wave vectors
k = wlo- and I = wlfJ for a particular frequency w, P-wave velocity 0-, and S-wave
velocity fJ.

Instead of directly using the displacement utot(x,w), we separate it into parts.

utot(x,w) = uinC(x,w) + udiff(x,w) =

uinc(x, w) + u<l>(x, w) + u'l' (x, w) + UO (x, w) (B-2)
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The first term u inc (X, w) is the incident wavefield. The terms u <I' and u" denote the
p- and S-waves generated by the cavities. Because they depend on the geometry of the
cavities and the source mechanism, we will expand them into multiple multipole series.
We will need to truncate the expansions after a finite number of terms. Therefore, we
also add an error term UC(x,w) to (B-2).

The displacement fields u <I' and u" are expanded as follows:

D Pd +N

u<l'(x,w) LL L apndU:nd(X,Xpd,k,w),
d=l p=l n=-N

D Pd +N

u"(x,w) = LL L bpndUind(X,Xpd,l,w) ,
d=l p=l n=-N

(B-3a)

(B-3b)

where apnd and bpnd are yet unknown weighting coefficients. The expansion functions
u:nd and Uind are solutions to (B-1). We have an expansion for each cavity 1 :0; d :0; D.
In each cavity d, we place Pd different multipoles of orders - N to +N centered at
Xpd. Each summation over n corresponds to a multipole. Because we have more than
one multipole per cavity, the scheme is named multiple multipoles expansion. For a
homogeneous fullspace, the expansion functions are defined as:

U:nd(X, Xpdl k, w)

U:nd(X,Xpdl l,w)

\lHI~I) (k Ix - xpdl) ein~pd

\l x yHI~I) (llx - xpdl) ein~pd

(B-4a)

(B-4b)

For a halfspace, we add the steepest-descend contributions of the free surface to the
expansions. The resulting expansions (C-23) and (C-24) are derived in Appendix C.
Each expansion function satisfies the wave equation (B-1). For each function, e.g. U:nd'

we obtain the corresponding stress tensor CT:nd:

(B-5)

where C is a fourth-order tensor containing the elastic parameters (Ben-Menahem and
Singh, 1981). On the boundary of the cavities, the total traction t(x, w) = CT(X, w)· ft(x)
has to vanish. Thus, we find a linear set of equations by satisfying the boundary
condition on discrete matching points x at the boundary of the cavities. Along each
cavity d, we have:

(

D Pd +N

tinc(x, w) +~~n~N { apnd t:nd(x, w) + bpndtind(X,W)} + tC(x,w) = 0 (B-6)

Generally, the resulting system of linear equation needs to be be solved in the least­
squares sense by choosing more matching points than expansion functions.
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Appendix C

Near-Surface Scattering

Asymptotic Elastic Free Surface

More realistic models of the earth should include the effect of the free surface which
induces additional wave-phases interacting with scatterers. An analytical analysis of
the free surface yields the following phases (Lapwood, 1949). For a source emanating
P-waves, we have:

1. P, a P-wave propagating directly from the source to the receiver.

2. PP, a P-wave reflected as a P wave at the surface.

3. PS, a P-wave converted into a S-wave at the surface.

4. pSp, the surface S-wave which started and ended as a P wave but propagated
along the surface as an S-wave. It does not satisfy a stationary-time criterion. It
is a surface wave being confined to the near neighborhood of the free surface. It
is not able to propagate itself and depends on energy supplied by the incident P
wave. It is insignificant unless both source and receiver depths are small.

5. pS, the secondary S-wave which started as a P wave but converted into an S-wave
at the interface. Contrarily to the PS-phase, it does not follow a stationary-time
path. It is like the pSp except that the attenuation depends only on the source
depth.

6. Rayleigh wave: R, a true surface wave which loses no energy to the interior of the
elastic but proceeds with undiminished amplitude along the free surface.

Similarly, for a source generating S waves, we obtain:

7. S, the S-wave travelling directly from the source to the receiver.

8. SS, an S-wave reflected at the surface as an S-wave.

9. SP, an S wave converted into a P-wave at the surface.

10. sPs which started and ended as an S-wave, but travelled most of it's way as a
P-wave along the surface. It is not a true surface wave but resembles a body wave
being reflected twice at the surface. The path is a minimum time path where the
wave propagated to and from the surface as an S wave, but as a P wave along the
surface.

11. sP, the secondary P-wave which started as an S-wave but converted into a P-wave
at the interface. Contrarily to the SP-phase, it does not follow a stationary-time
path.

12. Rayleigh wave: Q. Similar to R, but generated by the incident S wave.
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A schematic definition of these waves is presented in Figure 12. Of these waves, P, PP,
PS, S, SS, and SP arise in the case of planar waves. The others are diffraction effects
due to the curvature of the wave-fronts impinging on the free surface. In the special
case of a receiver close to the surface, P, PP and PS combine, pS and pSp combine, S,
sPs and SP combine, and S, SS, and sP combine.

Different techniques and methods exist to obtain the exact solution to the free
surface problem. Instead of using the exact but costly solution, we sacrifice accuracy
and derive asymptotic solutions which are numerically more efficient to evaluate. The
main difference between the approximation and the exact solution will be the absence
of some of the forementioned wave phases 1 - 12.

The most prominent phases induced by the free surface are the Rayleigh waves R
and Q, and the primary reflections PP, PS, SP, and SS. We will concentrate on these
phases and neglect all others. Describing P-waves as a function of a scalar potential <p
where the displacement u = \7 <p, we synthesize an arbitrary P-wave propagating toward
the free surface by superposing all possible plane waves:

(

1 1+00 eipx+ilh-zl.,
<p = - w(k,1') d1',

7C -00 "'I
(C-1)

where hand z denote the depths of source and receiver, respectively. Also, x is the
horizontal distance between source and receiver. For a given wave number, k = wiD:,
l' and "'I = )P - 1'2 are the tangential and normal component of the wave number
with respect to the free surface. To satisfy the radiation condition, we choose the root
such that 'Jm"'l < 0 for z < O. Finally, w(k,1') is a weighting function which varies
continuously and slowly with the argument 1'.

To satisfy the boundary conditions at the free surface, we need a P-wave as well as an
S-wave propagating downwards. Describing the S-wave by a vector potential 'ljJ = 'l/Jy,
we can again synthesize the fields by superposition:

'l/Jps =

1 1+00 eipx+i(h+=)-Y
- w(k,1') PP(1') d1',
7C -00 "'I
1 1+00 eipx+ih-y+iz6
- w(k,1') PS(1') dp,
II -00 f

(C-2)

(C-3)

where 0 = )12 - 1'2 and 1 = wl/3. Again we require that 'Jm 0 < 0 for 0 < O. The coef­
ficients PP(1') and PS(1') are the reflection coefficients necessary to satisfy the boundary
conditions along the free surface:

PP(1')
41'2"'10 _ [12 _ 21'2] 2 81'2"'10

(C-4)
41'2"'10 + [12 - 21'2f - 1 + R(1')

PS(1') =
4n [1 2

- 21'2] 4n [12 - 21'2]
(C-5)

41'2"'10 + [12 _ 21'2]2 R(1')
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where R(1') = 41'2')'0+ [1 2 - 21'2]2 defines the Rayleigh function. At l' = 1'r the Rayleigh
function R(1') vanishes. The resulting singularity gives rise to an additional propagatory
mode, the Rayleigh wave.

Similarly, we also synthesize the scalar potential of an arbitrary S-wave propagating
toward the free surface by superposing all possible plane waves.

1 1+00 eipx+ilh-zlo
7/J =;: -00 w(l,1') 0 d1' (C-6)

Again, to satisfy the boundary conditions at the free surface, we need a P-wave as well
as an S-wave propagating downwards. Both fields are synthesized by superposition.

1 1+00 eipx+ih6+izi
¢sp ;: -00 w(Z,1')SP(1') 0 d1' (C-7)

1 1+00 eipx+i(h+z)o
7/Jss = ;: -00 w(l,1')SS(1') 0 d1' (C-8)

The coefficients SP(1') and SS(1') are the reflection coefficients necessary to satisfy the
boundary conditions along the free surface.

41'0 [t2 - 21'2] 41'0 [Z2 - 21'2]
SP(1') = = (C-9)

41'2')'0 + [t2 - 21'2]2 R(1')

41'2')'0 - [Z2 _ 21'2] 2 81'2')'0
SS(1') = -1 + -- (C-10)

41'2')'0 + [Z2 - 21'2]2 R(1')

Instead of solving (C-2), (C-3) (C-7) and (C-8) exactly, we evaluate all integrals
by the steepest decent approximation and add the contribution of the Rayleigh pole

. (Lapwood, 1949; Aki and Richards, 1980; DeSanto, 1992). Thus, for (C-2) we obtain:

l
Ppp+e eipx+i(h+z)'y

¢pp"" w(k,1')PP(1') d1'
ppp-e 7r'"y

i eipx+i(h+zh
+ w(k,1')PP(1') dp

r 7r"'(

1ff1 . '(1') "= -- w(k,1') PP(1' )e'PpPx+, ,+" )pp-',7C kr pp

(

eiPX+i(h+Zh)
+27CiRes w(k,1')PP(1') 7C')
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where r = vx2 + (h + z)2 and Ppp denotes the saddle point of (C-2) located at Ppp =
kx/r.

Similarly, the P to S conversion (C-3) yields

where Pps = kxp/rpl 'f'p = Jx~ + h2 , rs = Jx; + z2, X s = x - xp,

o< xp < x is given by

(C-12)

2
(s = fz and

(C-14)

(C-16)

(a2 _ j32)x~ _ 2x(a2 _ j32)X~ + [a2(x 2 + h2) _ j32(X2 + z2)] x~-

2xa2h2xp + x 2a 2h2 = 0 (C-13)

which is numerically solved using a Newton-Raphson algorithm (Press et al., 1988).
For the S to P conversion (C-7), we obtain

2 1 " 'h" .•_ w(1 p) SP(p )eZPspx+z usp+1.Zl'sp- z :r
1f IR.,. + kRp(p' sp

12
- 2p2 "+"h' +"+w(l p)sgn(x)i r e'PrX'"r Wlr

, Ir8r - (12 - 2p;)

where Psp = lXs/R" R, = vX; + h2, Rp = ..jX'j; + z2, X p = x - X" (p = ¥ and
o< X s < x is given by

(a2 _ j32)X; _ 2x(a2 _ j32)X~ + [a2(x2 + z2) _ j32(x2 + h2)] X; +
2xj32h2X s - x 2j32h2 = 0 (C-15)

which is again solved numerically using a Newton-Raphson algorithm.
Finally, the S to S reflection (C-8) yields

Iffl ""(h )' ".1/Jss "" --I w(l,p) SS(pss)e'P"x+, +z ""-',
1f r

+ w(l p) 2iprlr eiPrx+i(h+z)6r
, Ir8r - (1 2 - 2p;)

where r = vx2 + (h + z)2 and Pss denotes the saddle point of (C-8) located at Pss =

lx/r.
Setting the weighting function w(k,p) = 1, we recognize in equation (C-l) the well­

known identity (Chew, 1990)

(

1 1+00 eipx+ilz-hl'Y
Ho(kr) = - dp

1r -00 f
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where r2 = x2 + (z - h)2. By using the raising or lowering operators n(k) and .e(k)
(Chew, 1990) as weighting functions w(k,p), we obtain the solution to sources of dif­
ferent angular order Hlnl(kr)einO. More specifically, the operators n(k) and .e(k) raise,
respectively lower, the angular order of a solution by one:

Hn(kr)einO = nn(k)Ho(kr)

Hlnl(kr)einO = .e1nl(k)Ho(kr)

n ~ 0,

n:"O O.

(C-18)

(C-19)

A little calculation involving the recurrence relations of Bessel functions (Abramowitz
and Stegun, 1964) and equation (C-17) shows that the following expressions define the
operators.

1 [ [} . [} ] ip - 'Yn(k)=-- -+,- =---
k [}x [}z k

.e(k) =_.!:. [~-i~]=- ip+'Y
k [}x [}z k

(C-20)

(C-21)

To simplify the notation, we introduce an alternative raising and lowering operator.

for n > 0

for n = 0

for n < 0

(C-22)

Thus, replacing w(k,p) by ~n(k) in equations (C-ll) and (C-12) allows us to estimate
the effect of the free surface on a compressional cylindrical solution of arbitrary angular
order n. Similarly, replacing w(l,p) by ~n(l) in equations (C-14) and (C-16) yields the
contributions of the free surface to the rotational solution of order n.

For a compressional source of order n located at Xd = (0, h), we obtain the following
expression for the displacement by combining (C-1), (C-ll), and (C-12).

\7X(
(C-23)
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For a rotational source of order n located at Xd = (0, h), we obtain the following
expression for the displacement by combining (C-I), (C-16), and (C-14).

(C-24)

(

(
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Rayleigh Guided
waves

Figure 1: The first 1.5 s of the seismogram shot with the source located in the valley at
station 1045. Shown are the traces located between station 1045 and 1221.
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Figure 2: The first 1.5 s of the seismogram shot with the source on top of the mesa at
station 1153. Shown are the traces located between station 1153 and 1329.
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Figure 3: Elevation as a function of station number for the seismic dataset. The vertical
exaggeration is 25 : 1. The distance between stations is 110 ft.A slow and heterogeneous
surface layer exists for elevations lower than 1750 ft. For higher elevations, a fast and
more homogeneous limestone is exposed at the surface. Thin arrows indicate the receiver
locations for the example records 1045 and 1153. The bold arrow denotes the receivers
used for detailed analysis of record 1156.
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(a)

(

(b) (c)

(

Figure 4: Details of field record 1153. Only the first 56 receivers and the first 512 ms
are shown: (a) total field record, (b) forward propagating waves, and (c) backward
propagating waves. All seismograms are scaled equally.
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Figure 5: Flat free-surface: vertical displacement calculated for a pointforce at surface
location 1153 at a nominal depth of 10 m.

2-25



Imhof et aI.

o

-50

-E -100

if
"

-150

(

-200 L.:::;:=====~:::::====~~=====~=====~o 100 200 300 400

Offset [m]

(a)

o

-50

...c: -100
"if
"

-150

-200 L=======::;::=======i:::.:=====--::7:-----......,~o 100 200 300

Offset [m]

(h)

Figure 6: Flat free-surface: energy-density E(x,w) and energy-flux vector S(x,w) for
the total wavefield at (a) 20Hz and (b) 45Hz.
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Figure 7: Rough free-surface: vertical displacement calculated for a pointforce at surface
location 1153 at a nominal depth of 10 m.
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Figure 8: Rough free-surface: energy-density E(x,w) and energy-flux vector S(x,w) for
the total wavefield at (a) 20Hz and (b) 45Hz. The bright yellow indicates pixel above
the topography.
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Figure 9: Heterogeneous near-subsurface: vertical displacement calculated for a point­
force at surface location 1153 at a nominal depth of 10m: (a) distribution of hetero­
geneities with average depth of 25 m, and (b) with average depth of 80 m.
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Figure 10: Heterogeneous near-subsurface: energy-density E(x, w) and energy-flux vec­
tor S(x,w) for the total wavefield at (a) 20Hz and (b) 45Hz. The yellow speckles
indicate the locations of the heterogeneities at an average depth of 25 m.
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Figure 11: Heterogeneous near-subsurface: energy-density E(x,w) and energy-flux vec­
tor S(x,w) for the total wavefield at (a) 20Hz and (b) 45Hz. The yellow speckles
indicate the locations of the heterogeneities at an average depth of 80 m.
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Figure 12: A summary of elastic waves which propagate due to the interaction of an
incident wave and the free surface. PP, PS, SP and SS arise in the case of reflection
of plane waves. All others are diffraction effects due to the curvature of the wavefronts
impinging on the free surface (Lapwood, 1949).
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