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ABSTRACT

Horizontal transverse isotropy (HTI) is the simplest azimuthally anisotropic model used
to describe vertical fracturing in an isotropic matrix. Using the elliptical variation of
P-wave normal-moveout (NMO) velocity with azimuth, measured in three different
source-to-receiver orientations, we can obtain the vertical velocity VPvect, anisotropy
parameter 8(V), and the azimuth a of the symmetry-axis plane.

Parameter estimation from variations in the moveout velocity in azimuthally anisotropic
media is quite sensitive to the angular separation between the survey lines in 2D, or
equivalently source-to-receiver azimuths in 3D, and to the set of azimuths used in the
inversion procedure. The accuracy in estimating the parameter a, in particular, is also
sensitive to the strength of anisotropy. The accuracy in resolving 8(V) and VPvect is
about the same for any strength of anisotropy. In order to maximize the accuracy and
stability in parameter estimation, it is best to have the azimuths for the three source­
to-receiver directions 60° apart. In land seismic data acquisition having wide azimuthal
coverage is quite feasible. In marine seismic data acquisition, however, where the az­
imuthal data coverage is limited, multiple survey directions are necessary to achieve
such wide azimuthal coverage.
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Having more than three distinct source-to-receiver azimuths (e.g., full azimuthal cov­
erage) provides useful data redundancy that enhances the quality of the estimates, and
sets the stage for a least-square type of inversion in which the errors in the parameters
estimates are minimized in a least-square sense.

In layered azimuthally anisotropic media, applying Dix differentiation to obtain
interval moveout velocity provides sufficient accuracy in the inversion for the medium
parameters, especially where the direction of the symmetry planes is uniform. In order
to obtain acceptable parameter estimates, an HTI layer overlain by an azimuthally
isotropic overburden (as might happen for fractured reservoirs) should have a thickness
(in time) relative to the total thickness. The total thickness should be equal to or greater
than the ratio of the error in the NMO (stacking) velocity to the interval anisotropy
strength of the fractured layer.

INTRODUCTION

The model of transverse isotropy with horizontal symmetry-axis (HTI medium) is the
simplest azimuthally anisotropic model used to describe vertically fractured reservoirs.
The two orthogonal vertical symmetry planes that characterize the HTI model are: the
symmetry-axis plane, which contains the symmetry-axis (perpendicular to the cracks)
and the isotropy plane (parallel to the cracks). The HTI model also is described by
the Thomsen (1986) parameters of an equivalent vertical transverse isotropic (VTI)
medium that generates the same wave-propagation signatures in the symmetry-axis
plane as in the original HTI medium. These parameters, defined with respect to the
vertical axis, govern the moveout for HTI media, even outside the symmetry-axis plane
where t.he equivalence between t.he t.wo models is not valid (Tsvankin, 1995; AI-Dajani
and Tsvankin, 1996). The equivalent VTI Thomsen paramet.ers are «V), b(V), and ,,(V),

in addition to the vertical P- and S-velocities (Riiger. 1995).
The presence of azimuthal anisotrop)' in practice has been documented in several

studies, such as those by Lynn et al. (1995) and Mallick et al. (1996). With increased use
of multicomponent seismic surYC'ys and with dose attention paid to fractured-reservoir
characterization in making hvdrocarbon drilling and production decisions, azimuthal
anisotropy has attracted the interest of researchers (e.g.. Crampin et al., 1980; Thomsen,
1988, 1995; Sena, 1991; Ruger. 1995; Tsvankin. 1995. 1997; AI-Dajani and Tsvankin,
1996. )

Tsvankin (1995) derived an analytic expression for the short.-spread NMO velocity
that is valid for pure mode propagat.ion and arbitrary strengt.h of anisotropy in a single­
homogeneous HTI layer with a horizontal reflector. The elliptical variation of this
NMO velocity as a function of azimuth, in the horizontal plane, is not only restricted
to HTI media, but also occurs for media with more general azimuthal anisotropy (e.g.,
orthorhombic) (Grechka and Tsvankin, 1996). In their study of reflection moveout in
HTI media, AI-Dajani and Tsvankin (1996) derived an exact analytic expression for the
quartic coefficient of the Taylor's series expansion of the traveltime-offset curves. This
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Reflection Moveout Inversion in HTI Media

expression is valid for pure mode propagation and arbitrary strength of anisotropy..
The inversion for the parameters of azimuthally anisotropic media has been limited

mostly to shear-wave splitting analysis with the goal of estimating crack orientation
and crack density. One of the few parameter-estimation algorithms based on moveout
analysis of P-wave data was presented by Sena (1991); however, Sena's method is limited
to weak anisotropy and requires knowledge of the vertical velocity.

Here, we discuss the estimation of anisotropic parameters and the detection of frac­
ture orientation from reflection moveout data in homogeneous and horizontally-layered
HTI media. Estimating the anisotropy parameters allows the possibility of estimating a
quantity for crack density, in addition to estimating crack orientation, of great interest
in the characterization of fractured reservoirs. The error study here provides insight
into both the inverse problem and the optimal survey design needed in azimuthally
anisotropic media. Our analysis concentrates on P-wave reflection moveout in HTI me­
dia. Results of numerical applications and synthetic data examples show the accuracy
and stability of the inversion procedure.

REFLECTION MOVEOUT IN HTI MEDIA

AI-Dajani and Tsvankin (1996) show that, for conventional spreadlengths and a horizon­
tal reflector, reflection moveout for P-waves in homogeneous HTI media is sufficiently
approximated by the conventional hyperbolic moveout equation. This equation is pa­
rameterized by the azimuthally dependent NMO velocity given in Tsvankin (1995).
After recasting, his expression is

V" 1'",.? ( ) ,1 ',,,
~/n-mo a = T,·') . '), T:.) :>. '

lsi Sllr (\ + I/s~ cos (\

where 1~1 and 1~2 are the NMO velocity in the two vertical symmetry planes, and (t is
the angle between one of the svmmetry planes and the survey line in 2D acquisition (or
equivalently, source-to-recei\"('r orientation in 3D acqnisition). From equation (1), Vol
and 1~2 are the semi-axes of what we call the NMO ellipse.

For pure P-wave propagation in HTlmedia, 1~1 = VPvertVl + 28(V) (NMO velocity
in the symmetr)·-axis plane). I~" = I'Pvert (the vertical P-wave velocity), and (t in
this case is the angle hetween t I", s)'mmetr)'-axis plane and the survey line direction.
Here, 8(V) is Thomson's parameter 8 for the equivalent VTI medium. For pure 5­
wave propagation. instead of tl,,' P-wavp vertical velocity (VPvertl we substitute the
S-wave vertical velocities (1 s~""" for the slow shear wave and polarized normal to the
cracks, and VSllvert for the fast shear wa\"(' and polarized parallel to the cracks) and
instead of 8(V) we have a(V) and I(V) for the two shear-wave types, respectively; where
aW) = (~)2(f(V) _ 8(V)).

S.lvert

The elliptical variation of NMO-velocity with azimuth is well known for the case
of an isotropic layer above a dipping interface (Levin, 1971). The NMO velocities in
the dip and strike directions determine the semi-axes of the ellipse. Additionally, the
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elliptical behavior of the NMO-velocity is a general phenomenon for arbitrarily dipping,
layered azimuthally anisotropic media of any complexity (e.g., orthorhombic media)
(Grechka and Tsvankin, 1996).

In HTI media, the effective NMO velocity for reflection from the bottom of layer N
is well approximated, as shown by Al-Dajani and Tsvankin (1996), by the conventional
Dix (1955) formula:

(2)

where to is the two-way zero-offset time to reflector N, V2i is the interval NMO velocity
for eacn individual layer i given by equation (1) for P-waves, and /:;,ti is the two-way
zero-offset time in layer i.

THE INVERSE PROBLEM

Because the azimuthal dependence of NMO velocity in an azimuthally anisotropic layer
is elliptical [equation (1)], NMO velocities for three distinct survey-line azimuths are
thus sufficient, as well as necessary, to reconstruct the elliptical distribution of the NMO
velocity or, equivalently, to obtain the parameters Yo1, Yo2, and 0:. If the symmetry­
plane directions are known, then NMO-velocity measurements in the two symmetry
planes are sufficient to reconstruct the NM0 velocity ellipse. Instead of inverting for
the parameters of the ellipse [equation (1)], namely its orientation and the semi-axes,
in HTI media we can estimate the medium parameters directly, simplifying the task of
estimating crack density from P-wave reflection moveout.

In HTI media, for any number of input moveout velocity measurements, equation (1)
yields two different sets of solutions for the two orthogonal symmetry axes, each with
different combinations of VPve't and 6(V). One solution has a positive 6(Y) with low
VPve,t, while the other has a negative 6(Y) with high VPve,t. Both solutions provide the
same values of NMO velocity in all azimuthal directions; hence, we cannot distinguish
between the symmetry-axis plane and isotropy plane from these measurements alone.

To illustrate this inverse problem, consider an HTI layer with VPve't = 2.0 km/s,
6(Y) =-0.2, and the symmetry axis pointing in the x-axis direction (Figure la). Note
that a 6(Y) value of -0.2 approximately corresponds to a 20% azimuthal variation in
the NMO velocity between the two symmetry-plane directions. Suppose we compute
the NMO velocities along three different source-to-receiver azimuths (0:1,0:2, and 0:3),

measured from the symmetry-axis direction. As shown in Figure la, there are two sets
of solutions corresponding to orthogonal directions of the symmetry axis that satisfy the
three NMO velocities and produce the same elliptical variation of NMO velocity with
azimuth (Figure Ib). Additional information, however, such as nonhyperbolic reflection
moveout, with maximum magnitude in the symmetry-axis plane, can help to distinguish
the symmetry-axis plane from the isotropy one and obtain the correct VPve't and 6(Y).

Furthermore, for typical ratios of the vertical velocities (VS-'-ve't/VPve,t :s .707), the
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parameter Ij(V) is negative (see Appendix A); therefore, the NMO velocity reaches its
maximum in the isotropy plane and minimum in the symmetry-axis plane. Thus, if we
assume that Ij(V) < 0, we can identify unambiguously the symmetry-axis direction.

In 3-D (or, 2-D) land acquisition surveys or water-bottom cable surveys, we have rel­
atively full control on offset and azimuthal coverage. Constructing a common-mid-point
(CMP) gather for a specific azimuthal direction in 3-D acquisition survey, in general,
requires collecting (sorting) traces from a range of azimuths (sectors). In conventional
marine surveys, however, the azimuthal coverage is quite limited. Therefore, in order
to obtain the required coverage along different azimuth directions the receiver lines
(streamers) should be carried along those directions. Thus, multiple surveys will be
necessary. Here, we investigate the choice of azimuth range for the azimuthal directions
that provide best inversion results.

Intuitively, a maximum azimuthal separation between the survey lines (or, equiva­
lently, between the source-to-receiver azimuths) can be expected to increase both stabil­
ity and resolution; hence, setting the three azimuths 600 apart is of particular interest in
our investigation. Moreover, some think in-line and cross-line directions provide the best
offset coverage. We set two azimuths perpendicular to each other in the investigation
in order to simulate this acquisition design.

ERROR ANALYSIS

To estimate the sensitivity of the NMO velocity to the anisotropic parameters, we
evaluate the Jacobian of equation (1). The Jacobian is obtained by calculating the
derivatives of NMO velocity with respect to the model parameters VPvert, Ij(V) , and
a. Although the NMO-velocity in equation (1) is nonlinear, its dependence on the
anisotropy parameters is smooth enough to use the Jacobian for developing insight into
the inverse problem. The derivatives used to form the Jacobian are as follows:

d)(a) = VPvert 8Vnmo (a) = 1,
Vnmo(a) 8VPvert

(1 + 21j(V»)[1 + 21j(V) sin2 a] ,

21j(V) sin a cos a
1 + 21j(V) sin2 a .

The normalization of the derivatives chosen here simplifies the comparison of of each
parameter's contribution to the NMO velocity. As a result, the information provided
by these derivatives consists of relative values for VPvert, and absolute values for Ij(V)

and a (the latter measured in radians).
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The sensitivity of this inversion to errors in the input data (NMO velocities) can be
estimated using the Jacobian matrix

dZ(0:1)
dz(o:z)
dZ(0:3)

where 0:1> o:z, and 0:3 are the azimuths of the eMP gathers relative to the symmetry
axis of the HTI model.

The condition number for the Jacobian matrix provides an approximate overall
estimate of the quality (stability) of the inversion for all three parameters. In this
paper, we will use the condition number as a criterion to design the best experimental
setup. Then, we quantify propagation of errors to the medium parameters for a given
error in the input measurements (NMO velocity) via a study of the covariance matrix
and analysis of the numerical error.

Conditioning of the Problem

The reciprocal of the condition number, ,,-1, for the Jacobian matrix J is given by

,,-1 = I Amin I
I Amax I'

(3)

where Amax and Amin are the maximum and minimum eigenvalues, respectively, of the
matrix A = JTJ (JT is the transpose of J).

A small ,,-1 number (:::::0) implies an ill-conditioned (i.e., nearly singular) problem,
while a large ,,-1 number usually implies a well-conditioned problem.

Figure 2 shows the reciprocal of the condition number, ,,-1, as a function of the
middle azimuth o:z and o(V), where the outer azimuths are 0:1 = 0° and 0:3 = 120°.
Notice that when the middle direction 0:2 coincides with either of the two other azimuths
(i.e., only two azimuths are available), the problem is clearly singular, with ,,-1=0. Note
also that for o(V)=O (no azimuthal variation in NMO velocity, as in isotropic media),
there is no symmetry-axis direction to resolve and again ,,-1=0. Since the ellipticity of
the NMO-velocity function increases with increasing lo(V)I, the stability improves with
an increase in the absolute value of o(V). Not surprisingly, for typical values of o(V),

as shown by Figure 2, the maximum of ,,-1 (the highest stability) corresponds to the
third-line direction o:z being midway in between the two other lines. This is true for
any angular separation. When the third azimuth orientation is close to any of the other
two (intuitively a poor choice), the problem again becomes ill-conditioned. Figure 3
shows the results of this study for five different angular separations, L10:, between the
lines: (a) 7.5°, (b) 15°, (c) 30°, (d) 45°, and (e) 60°. ,,-1 shows the least variation
with azimuth for the maximum angular separation (L10: = 60°) between the survey lines
(curve e in Figure 3). Even though the global maximum for ,,-1 is not associated with
curve e, we should choose a survey design that has a higher overall stability for the
whole range of azimuths, since we usually do not know the symmetry-axis direction in
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advance. The angular separation of 45° (curve d in Figure 3), provides a higher value
of K-1 for a limited range of azimuths (75° ::; 0<2 ::; 105°) than that for the 60° angular
separation; however, at other azimuths, K-1 drops by about 50% (e.g., for 0<2 = 30°).
This variation in K- 1 makes the 45° angular separation less desirable compared to the
60°. K- 1; however, is not too small for any value of 0<2 for curves d and e. Therefore,
we should not expect any stability problem when those angular separations are used.

As expected, narrower angular separations « 45°) do not provide stability compa­
rable to that for 45° or 60°. Interestingly, curve c generates the global maximum for
K- 1 for 0<2 = 90°. This local phenomenon, however, is particular for this case (8(V)=_
0.2) that appears neither in other azimuthal directions nor for smaller values of 8(V)
(Figure 4). For values other than 0<2 = 90° the value of curve c's K-1 is smaller than
curve e's.

The same conclusions can be drawn for the model with weaker anisotropy (smaller
8(V»), shown in Figure 4. Notice that values for K-1 in Figure 4 are smaller than those
in Figure 3: Thus, K- 1 values are approximately linear to 8(V).

Overall, the condition-number analysis shows that the widest angular separation be­
tween the azimuths (i.e., l:.o< = 60°), provides a well-conditioned (well-behaved) inverse
problem for any orientation of the three lines with respect to the symmetry axis.

Error Propagation (Covariance Matrix)

The propagation of errors from the input measurements (NMO velocity) to the medium
parameters (VPver" 8(V), and 0<) could be analyzed by calculating the covariance matrix
of this inverse problem.

For the special case of a perfect forward modeling operator, a perfect parameteriza­
tion of the model (i.e., no discretization errors), no a priori information, no uncertainties
other than those associated with the input NMO-velocity data, and data uncertainties
that are normally distributed with a known covariance, the covariance for the least­
squares estimates of the model parameters is given by (Tarantola, 1987)

CM = J*cD(J*l , (4)

where J* is the pseudo-inverse of the Jacobian matrix, J of this inverse problem, and
CD is the data covariance matrix.

Let us further simplify the calculation by considering the fact that the Jacobian has
the full-column rank [that is, three NMO velocity measurements along distinct source­
to-receiver azimuths, for the range of angular separations that we are considering, do not
produce zero eigenvalues (i.e., no null eigenvectors)] and that the data have independent,
identically distributed errors with a known variance Cd. In this case, equation (4) reduces
to

(5)

where Cd is a single measurement representing the variance of the input data (NMO
velocity).
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Thus, in the following analysis, we are estimating only the portion of the model
covariance that comes from the forward modeling operator.

We will use the square-root of the diagonal elements of em to estimate the expected
error (standard deviation) for each parameter: the absolute error in a measured in radi­
ans, the absolute error in fj(V), and the percentage error in VPvert. If we set Cd to unity,
the diagonal elements of [JT JI- 1/ 2 simply measure the magnification factors of the error
in each parameter for any given error in the input NMO-velocity measurements (given
in percent). The magnification factors of the errors for the three parameters are denoted
as M" (measured in radians), Mo(vl (dimensionless), and MVpvoct (dimensionless).

Similar to the analysis of the previous section, let us study the square-root of the
covariance matrix (error propagation) as a function of the central azimuth, a2, for three
angular separations between the survey lines: Aa = 30°, 45°, and 60°. The central
azimuth, a2, spans the angular range from 0° to 180° measured from the symmetry­
axis direction. The variance of the input data (NMO-velocity) measurements Cd in
equation (5), as described above, is set to unity. The resulting magnification factors for
the errors in each parameter are shown in Figures 5-7.

As demonstrated by Figure 5, the accuracy in estimating the parameter a improves
by a factor of about 3 by using an angular separation of 60°, as opposed to 30°, for most
ranges of azimuths. For a2 near the symmetry-plane directions, the error in a estimates,
however, is about the same for the three angular separations. Where the symmetry-axis
direction is not known in advance (as most often is the case), however, the behavior
of the 30° angular separation is inappropriate. This indicates that the parameter a is
quite sensitive to the set of azimuths used in the inversion procedure when Aa is small.
For Aa = 45° we have similar observations, though to a lesser degree. The accuracy
in estimating a is highest for an angular separation of 60° and is highly consistent for
all orientations a2. Notice again that the error in a varies inversely with the absolute
value of fj(V) (Figure 5a compared to Figure 5b).

As shown in Figure 6, fj(V) is most stably estimated when Aa = 60°. Note that
the parameter fj(V) is also sensitive to the angular separation between the survey lines
and the set of azimuths used in the inversion. Interestingly, the propagation of errors
into fj(V) is about the same for different anisotropy strengths (compare Figure 6a with
Figure 6b). This implies that we should expect the same absolute error in fj(V) for a
wide range of fj(V), and the relative error in fj(V) will be smaller for stronger anisotropy.

Figure 7 demonstrates that the best accuracy in VPvert for all azimuths is again
achieved for an angular separation of 60°. The accuracy in resolving VPvert is about the
same for the three angular separations when the central orientation a2 is close to the
isotropy-plane direction. Considering again the fact that the symmetry-axis direction
is not known in advance, the choice of an angular separation of 30° (or any smaller
angular separation) and, to some extent, 45° is inadequate. It is interesting to observe
that the accuracy in estimating VPvert slightly increases as anisotropy becomes weaker
(compare Figure 7b with Figure 7a). This is not surprising since VPvert is essentially an
"isotropic" quantity, and it can be expected to be best resolved when the medium is
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isotropic (6(V) = 0).
To compute the expected absolute error (standard deviation) in the estimated symmetry­

axis direction a for a particular angular separation between the survey lines, we

• Pick the magnification factor for a given set of azimuths from Figure 5.

• Multiply this factor by the error (standard deviation) in the input NMO-velocity
measurements to get the absolute error in a (in radians).

Similarly, to estimate the absolute error in 6(V), we apply the same procedure but
using Figure 6. For VPvert, Figure 7 should be used to find the percentage error in this
parameter. For example, consider an azimuth combination of al = 0°, a2 = 60°, and
a3 = 120° and a model with VPvert = 2.0 km/s and 6(V) = -0.2. From Figures 5a,
6a, and 7a, an error in the input NMO-velocity measurements of ±1.6% is expected to
cause the following errors in the medium parameters: ±0.048 radians in a (±2.75°),
±0.02 in 6(V), and ±2.2% in VPvert (±0.044 km/s).

It is important to mention that in the case of land seismic data acquisition, wide
azimuthal data coverage (~ 45) is quite feasible. In marine cases, however, the maxi­
mum azimuthal coverage is about 30°. As a demonstration, error propagation for the
parameter a is simulated in Figure 8. Note the huge magnification of error in the case of
narrow azimuthal separations. Therefore, in marine acquisition, in order to ensure that
the estimated parameters contain minimum errors, we should have multiple azimuthal
surveys (60° apart).

Overall, from Figures 5-8, we conclude that the best angular separation for the
inversion procedure is 60°. All three parameters are sensitive to the angular separation
between the survey lines. The sensitivity to the orientations of the survey lines is large
for small D.a, but small for D.", = 60°. Unlike VPvert and 6(V), the accuracy in estimating
the parameter a, in particular, is quite sensitive to the strength of anisotropy (the errors
in a estimates vary inversely with the strength of anisotropy).

Numerical Inversion

The above analysis based on the Jacobian matrix is approximate since the NMO-velocity
equation (1) is nonlinear. In this section, we perform nonlinear inversion by means of
the Newton-Raphson method and study the sensitivity of the results to errors in the
input information. We consider the same HTI models studied earlier, with 6(V) = -0.1
and 6(V) = -0.2, both with VPvert = 2.0 km/s. After 100 trials with ± 3 % range
of uniformly-distributed random errors (standard deviation of about 1.6 %) introduced
into the exact NMO velocities, we obtain the results displayed in Table 1 for 6(V) = -0.2,
and in Table 2 for 6(V) = -0.1. The different three source-to-receiver azimuths used to
conduct these tests are displayed in Table 3. It is important to mention, as discussed
earlier that for each trial two different sets of solutions are obtained that satisfy the
input NMO velocities. The correct solution is selected under the assumption that the
parameter 6(V) is typically negative.

7-9



Al-Dajani and Alkhalifah

Supporting the conclusions of the error analysis, the inversion results in Tables 1
and 2 demonstrate that the azimuth of the symmetry-axis plane, the parameter a,
is better estimated as the absolute value of 8(V) increases (error reduction is almost
linearly proportional to 8(V»). Comparing the inversion results for 8(V) in Table 1 with
their counterparts in Table 2, we observe that the improvement in the estimation is
not significant with increase in 8(V). Also, the errors in estimating VPvert are somewhat
smaller in the case of weaker anisotropy (e.g., compare set 9 in both Tables 1 and 2).

Consistent with the covariance study, the smallest errors, measured by the mean and
the standard deviation, are associated with sets of azimuths with maximum separation
between the survey lines (.6.", = 60°), especially for the symmetry-axis direction a (sets
9-12 in Tables 1 and sets 9-10 in Table 2). An angular separation of 45° provides an
accuracy (e.g., sets 5-8) comparable to the one for the 60° separation, especially for 8(V)

and VPvert. Note that the accuracy for", deteriorates when two of the selected azimuths
happen to coincide with the symmetry planes of the medium (set 5 as opposed to set
7). As expected, the worst results correspond to narrow azimuthal separations (sets 1
and 2).

The variations in the mean and the size of standard deviation of the three param­
eters in Tables 1 and 2 are thus consistent with the results of the covariance-matrix
analysis. It should be mentioned, however, that having more than three distinct source­
to-receiver azimuths (e.g., full azimuthal coverage) provides a useful data redundancy.
This redundancy enhances the quality of the estimates and sets the stage for a least­
square type of inversion in which the errors in the parameters estimates are minimized
in a least-square sense. Actually, with N number of observations (solutions), the error
bars (standard deviation) will reduce by a factor of 1/VN - 1.
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- Set 1 - - Set 2 - - Set 3 -

VPvert 8\Y) a VPvert 8(Y) a VPvert 8(Y) a

mean 2.24 -0.23 19.5 2.04 -0.21 0.9 2.0 -0.2 60.1
std dey 0.87 0.11 29.5 0.14 0.03 9.1 0.03 0.02 3.1

- Set 4 - - Set 5 - - Set 6 -

VPvert 8\ V) a VPvert 8\ V) a VPvert 8\Y) a

mean 2.0 -0.20 0.8 2.01 -0.20 0.5 2.0 -0.20 29.9
std dey 0.05 0.02 6.1 0.03 0.01 4.8 0.03 0.02 3.2

- Set 7 - - Set 8 - - Set 9 -
VPvert 8(V) a VPvert

8(Y) a VPvert
8(Y) a

mean 2.0 -0.20 45.3 2.0 -0.20 -44.87 2.0 -0.20 0.4
std dey 0.03 0.02 2.8 0.08 0.03 2.9 0.04 0.02 2.8

- Set 10 - - Set 11 - - Set 12 -

VPvert 8\Y) a VPvert 8\Y) a VPvert 8\ V) a

mean 1.99 -0.20 31.0 2.0 -0.20 -60.3 2.0 -0.20 45.4
std dey 0.03 0.01 3.5 0.04 0.02 3.0 0.04 0.02 3.4

Table 1: Inversion results using the twelve different sets of source-to-receiver azimuths
given in Table 3. Here, 8(Y) = -0.2 and VPve,t = 2.0 km/s.

- Set - - Set -
5 7

VPvert 8\V) a VPvert 8\ V) a

mean 2.01 - 0.5 2.0 - 43.4
0.11 0.10

std 0.03 0.02 10.1 0.03 0.03 8.2
dey

- Set - - Set -

9 10

VPvert 8(Y) a VPvert 8(Y) a

mean 2.01 - 1.0 2.0 - 29.9
0.11 0.10

std 0.03 0.02 7.2 0.03 0.02 7.5
dey

Table 2: Inversion results using four different sets of source-to-receiver azimuths given
in Table 3. Here, 8(Y) = -0.1 and VPve,t = 2.0 km/s.

7-11



Al-Dajani and Alkhalifah

IAzimuths I
1 0° 15° 30°
2 0° 30° 60°
3 60° 105° 150°
4 0° 75° 150°
5 0° 45° 90°
6 30° 75° 120°
7 45° 90° 135°
8 -45° 0° 45°
9 0° 60° 120°

10 30° 90° 150°
11 -60° 0° 60°
12 45° 105° 165°

Table 3: Sets of azimuth combinations used to generate the numerical results in Tables 1
and 2. The source-to-receiver azimuths are measured from the symmetry-axis direction.
An azimuth direction of 150° is the same as -30°.

THE INVERSE PROBLEM IN LAYERED MEDIA

So far we have considered the inverse problem for a single homogeneous HTI layer.
However, a fractured zone characterized by the HTI symmetry may be overlain by an
inhomogeneous and anisotropic overburden. In this section, the inverse problem is stud­
ied for a model with an azimuthally isotropic overburden (e.g., purely isotropic, VTI,
or both) above the HTI layer. Once the interval NMO velocities in the HTI layer have
been found by conventional Dix differentiation (layer-stripping) of the moveout veloc­
ity from the top and bottom of the HTI layer, we can apply the single-layer inversion
discussed above. An additional question to be addressed, however, is how the relative
thickness of the HTI layer (compared with the total thickness) influences on the stability
and accuracy of the parameter estimation. Before discussing this inverse problem and
addressing this issue, let us consider a synthetic (noise-free) model.

Consider a model common for fractured reservoirs, which contains five homogeneous
isotropic layers overlaying an HTI layer, as shown in Figure 9. Using a 3-D anisotropic
ray-tracing code developed by Gajewski and Psencik (1987), the exact traveltime reflec­
tions were generated as a function of offset along five source-to-receiver lines: 0°, 30°,
45°, 60°, and 90° (Figure 9). The traveltime-offset curves are plotted in Figure 10. Con­
ventionally, stacking velocity is estimated using semblance (coherency) analysis. Here,
however, NMO velocity is estimated by fitting a hyperbola to the traveltime curve ina
least-squares sense. Thus, NMO (stacking) velocity is obtained:

"N 2v.2 = L-j=! Xj
nmo "N t2 _ Nt2 '

wJ=l J 0

(

(

---
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where Xj is the offset of the j-th trace, tj is the corresponding two-way reflection trav­
eltime, to is the two-way vertical traveltime, and N is the number of traces. A spread­
length of 1.5 km is used to compute the NMO velocity. In the least-squares fitting
procedure, the vertical time to was fixed at the correct value.

Applying Dix differentiation for the NMO velocity from the top and bottom of
the HTI layer, we obtain an estimate of the interval Vnmo as a function of azimuth
(Figure 11). Even though estimating the NMO velocity on finite spreads, in general,
introduces errors due to the influence of nonhyperbolic moveout and due to the fact
that Dix differentiation outside the symmetry planes is approximate (Al-Dajani and
Tsvankin, 1996), we obtain relatively accurate values for the interval NMO velocity for
all azimuths (Figure 11). It is important to mention that as seen in Figure 11, the
difference between the estimated and the exact interval NMO velocities is due to the
combined influence of nonhyperbolic moveout and dix differentiation. Since 8(V) < 0, the
maximum interval NMO velocity in Figure 11 corresponds to the fracture orientation
(isotropy plane), while the minimum is observed in the symmetry-axis direction. If
8(V) > 0 (which is not likely in HTI media, see Appendix A), the minimum interval
NMO velocity would correspond to the isotropy plane.

From equation (1), the interval8(V) can be obtained from the interval NMO velocities
in the two symmetry planes as

8(V) = ~ (Vnmomin ) 2 1 (6)
2 VnmOmnx - '2 1

where Vnmomin and Vnmomnx are the estimated interval NMO velocities along the symmetry­
axis direction and in the isotropy plane, respectively, and 8(V) is assumed to be negative.

The estimated 8(V) for the HTI layer using equation (6) and the interval NMO
velocities in Figure 11 is -0.312 where the correct value is -0.318.

In the following section, we conduct an error analysis for this inverse problem to
quantify issues such as accuracy, stability, and error propagation for HTI media.

Error Analysis

To set up the inverse problem, consider the model shown in Figure 12, where the NMO
velocity for reflections from the bottom of the HTI layer is given by the Dix equation:

VJ = VJ_l(l- p) + V;moP, (7)

with VN-l being the NMO velocity for a reflection from the top of the HTI layer, Vnmo
is the interval NMO velocity of the HTI layer given by equation (1), and P = f:;.tN/TN is
the ratio of the two-way interval traveltime f:;.tN in the HTI layer to the two-way total
traveltime TN from the surface to the bottom ilf the HTI layer.

From equation (7), the interval NMO velocity for the HTI layer can be represented
as

v 2 = VJ-VJ_l(l-p)
nmo .

P
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Therefore, the interval·NMO velocity in the HTI layer estimated in the inversion process
is dependent on the relative thickness of the layer p. This fact, which is well known from
isotropic interval velocity analysis, influences the accuracy of the parameter estimation
in the HTI layer. In order to gain more insight into this inverse problem, we conduct
the following error analysis.

To study the sensitivity of the effective NMO velocity to the anisotropic parameters
of the HTI layer and the layer thickness, we evaluate the Jacobian of equation (7). The
derivatives used to form the Jacobian are

and

Again, the normalization of the derivatives simplifies the assessment of the relative
importance of each parameter. Hence, the information provided by these derivatives
consists of relative values for VN-l, and VPvert, and absolute values for /j{V) and a
(measured in radians within the layer). Note that VN-l is not an unknown (it is one
of our measurements), but it is included in the Jacobian to simplify the analysis of the
inverse problem.

The sensitivity of this inversion to errors in the input data (Le., NMO velocity at
the top and bottom of the HTI layer) can be assessed from the Jacobian matrix

o
d2(ad
d2(a2)
d2(a3)

o
d3(ad
d3 (a2)
d3(a3)

where aI, a2, and a3 are the azimuths of the eMP gathers measured from the symmetry­
axis of the HTI layer.

As shown above, to obtain maximum stability and accuracy, the best set of azimuths
for use in the inversion process corresponds to the maximum angular separation, ~a =
600

• This conclusion remains valid here as welL Hence, in the upcoming tests we set
the azimuths to al = 00

, a2 = 600
, and a3 = 1200 to concentrate on the dependence of

the inversion results on p and 8(V).

The stability of the inverse problem for this azimuthal separation, measured using
the reciprocal of the condition number [equation (3)], is linearly proportional to the
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layer thickness ratio (p) for p < 0.4 (Figure 13). For p > 0.4, K- 1 flattens out, as seen
in Figure 13. Also, as in the homogeneous case, the stability increases (approximately
linearly) with an increase in the absolute value of 8(V) (compare Figure 13a with Fig­
ure 13b). As we expect, for small thickness ratios (e.g., p < 0.1) the inverse problem is
ill-conditioned.

To study the propagation of error (standard deviation) into the parameters of the
HTI layer as a function of the thickness ratio p for a given error in the input measure­
ments (NMO velocity for reflections from the top and bottom of the HTI layer), we
compute the covariance matrix [equation (5)] for the Jacobian -matrix J of this inverse
problem. The assumptions here are the same as those for the homogeneous case dis­
cussed earlier. Setting the variance of the input NMO-velocity measurements to unity
means that the square-root of the covariance represents the magnification of error (stan­
dard deviation) in each parameter for any given error (standard deviation) in the input
NMO-velocity. Figure 14 shows the error magnification factors (the square-root of the
diagonal elements of [JT J]-1/2) as a function of p: (a) magnification factor in the abso­
lute error in "" (Ma ) measured in radians, (b) magnification factor in the absolute error
in 8(V) (Mo(v)), and (c) magnification factor in the percentage error in VPvert (Mvpvo,t)'
As seen in Figure 14, the magnification of error in each parameter is proportional to
1/p. Thus, for p < 0.4 the resolution, measured by the square-root of the variance (i.e.,
standard deviation), improves significantly (linearly) as p increases. For p > 0.4 the
resolution remains almost the same, which is consistent with the results obtained from
the reciprocal of the condition number.

Numerical Inversion in Layered Media

In this section we perform the nonlinear inversion of NMO velocity in layered media
by means of the Newton-Raphson method (as for the single-layer model) and study
the sensitivity of the results to errors in the input information (NMO velocity at the
top and bottom of the HTI layer) as a function of p. Consider two HTI models, with
8(V) = -0.1 and 8(V) = -0.2, both of which have VPvert = 3.0 km/s, and the NMO
velocity at the top ofthe HTI layer, VN-1 = 2.0 km/s. From the study of the single-layer
model, azimuthal separation of 60° between the survey azimuths, in general, produces
the best inversion results. Let us select here ""1 = 0°, ""2 = 60°, and ""3 = 120° to
be the three source-to-receiver azimuths used in the inversion process. From 100 trials
with ± 3 % range of random error introduced to the exact NMO velocities at the top
and bottom of the HTI layer, we obtain the perturbed interval NMO velocities (using
Dix differentiation), which are then used to estimate the parameters of the HTI layer.
The solutions (the mean and standard deviation) as a function of p are displayed in
Figure 15 for 8(V) = -0.2 (a, b, and c) and for 8(V) = -0.1 (d, e, and f). As in the
homogeneous case, the solutions are obtained under the assumption that the parameter
8(V) is negative.

Consistent with the study of the covariance matrix, Figure 15 shows that the errors
in the estimates do not change much for p > 0.4, and vary significantly (almost inversely)
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with p for small p. That is, for small thickness ratios (p < 0.4), the error in the parameter
estimation is magnified by the factor 1/p compared to the error in the effective NMO
velocity, as expected from equation (8).

The parameter a is better resolved for higher absolute value of {j(V) (Figures 15a
and 15d) (e.g., the error bars for a become twice as large when {j(V) changes from ­
0.2 to -0.1). The improvement in the accuracy in estimating the parameter {j(V) with
increasing {j(V) is not as dramatic as that in a (Figures 15b and e). As in the single-layer
model, the absolute error measured by the error bars is almost the same for both values
of {j(V); therefore, the relative error is smaller for stronger anisotropy. The accuracy
of VPvert estimates, as in the single-layer case, slightly improves for weaker anisotropy
(Figures 15c and f).

As demonstrated by Figure 15, an HTI layer. overlain by an azimuthally isotropic
overburden should have a relative thickness (in time) to the total thickness of at least
equal to the ratio of the error in the NMO (stacking) velocity to the interval anisotropy
strength of the fractured layer. For example, for typical errors in the estimated NMO
(stacking) velocity (~ 2%), as is the case in this numerical study, the minimum ratio
of thickness (in time) of the HTI layer to the total thickness, p, needed to resolve
the three parameters with acceptable accuracy when {j(V) = -0.1 is at least about 0.2
[Figures (15d-f)]. As the strength of anisotropy in the HTI layer increases ({j(V) = -0.2),
we obtain acceptable medium parameter estimates for smaller values of p [e.g., 0.1 in
Figures (15a-c)]. It is important to mention, however, that parameter estimation may
become unstable for an HTI layer with weak azimuthal anisotropy (1{j(V) I < 0.1, which
corresponds to azimuthal interval-NMO-velocity variation < 10%), especially for small
values of p (p < 0.2). The significant deviation of the mean from the true solution in
Figure (15b, c, e, and f) for p < 0.2 can be interpreted as a direct indication of instability
in the inversion process. Larger errors in the NMO-velocity estimates (> 2%) cause the
required minimum relative thickness of the HTI layer to be larger in order to obtain
acceptable inversion results.

It is important to emphasize that, as we have seen in the previous sections, three
NMO velocity measurements along three distinct survey lines in 2-D cases or, equiva­
lently, azimuth orientations in 3-D acquisition with angular separation of 60°, are best
for performing the inversion procedure. Coverage along other directions, however, adds
some redundancy which may become useful in enhancing the quality of the inversion
process.

DISCUSSION AND CONCLUSIONS

We have discussed reflection moveout inversion for azimuthally anisotropic media, with
emphasis on P-wave reflection moveout for horizontal transverse isotropy (HTI). NMO­
velocity measurements obtained for three distinct survey azimuths are sufficient to invert
for the three medium parameters (VPvert, {j(V), and a), under the assumption that {j(V)

is typically negative. Without this assumption, additional information, such as the
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azimuthal variation in nonhyperbolic moveout, is needed to distinguish between the
symmetry-axis and the isotropy planes. For HTI models with parallel penny-shaped
cracks, the symmetry axis is normal to the crack plane. Hence, the azimuthal de­
pendence of reflection moveout in HTI media makes it possible to detect the crack
orientation.

Parameter estimation from variations in the moveout velocity in HTI media is quite
sensitive to the angular separation between the survey lines and to the set of azimuths
used in the inversion procedure. The accuracy in estimating the orientation of the
symmetry planes, a, in particular, is also sensitive to the strength of anisotropy, with
error inversely proportional to the strength of anisotropy. In order to maximize the
accuracy and stability in parameter estimation, it is best to have the azimuths for the
three source-to-receiver directions 60° .apart..The accuracy in resolving the parameters
for an angular separation of 60° is consistent at all azimuths, and for most ranges of
azimuths the associated errors are the least.

In HTI media, the accuracy in resolving (/V) is about the same for any strength of
anisotropy, with a slight improvement with increasing 18(V) I. Similarly, the accuracy
in estimating VPvert is about the same for any strength of anisotropy, with a slight
improvement as anisotropy becomes weaker.

Three NMO velocity measurements along three distinct survey lines in 2-D cases or,
equivalently, azimuth orientations in 3-D acquisition with angular separation of 60°, are
best for performing the inversion procedure.

In 3-D land and ocean-bottom-cable acquisition, where the acquisition is relatively
flexible, it is recommended to have azimuthal coverage along at least three directions,
60° apart. In conventional marine (streamer) surveys, the azimuthal coverage is quite
limited. Therefore, in order to obtain the required coverage along the optimal azimuth
directions (60° apart), the receiver lines (streamers) should be carried along those di­
rections, which means multiple surveys are needed.

In general, having more than three distinct source-to-receiver azimuths (e.g., full
azimuthal coverage) provides a useful data redundancy that enhances the quality of the
estimates, and sets the stage for a least-square type of inversion in which the errors
in the parameters estimates are minimized in a least-square sense. Actually, with N
number of observations (solutions), the error bars (standard deviation) will reduce by
a factor of l/vN - 1.

If the orientation of the symmetry axis is known, then two NMO-velocity mea­
surements (two survey azimuths) are sufficient to invert for VPvert and 8(V). Since
normal-moveout velocity has a nonlinear dependence on the azimuthal angle a (sin2 a),
at least two NMO velocity observations are necessary to identify the orientation of the
symmetry-axis using known' values of VPvert and 8(V).

An HTI layer overlain by an azimuthally isotropic overburden (as might happen for
fractured reservoirs) should have a relative thickness (in time) to the total thickness. The
total thickness should be at least equal to the ratio of the error in the NMO (stacking)
velocity to the interval anisotropy strength of the fractured layer. For example, a relative
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thickness (in time) with respect to the total thickness of at least 0.2 is needed in order
to obtain acceptable estimates of the medium parameters, provided that the azimuthal
variation in the interval NMO velocity within the azimuthally anisotropic layer is about
10% and the error in the input NMO velocity measurement is 2%.

The conclusions made here for P-wave reflection moveout inversion in HTI media,
such as the appropriate set of azimuths to be used for the inversion and the minimum
thickness of the layer required for reliable estimates for the medium parameters, are
also valid for pure S-wave propagation. In this case, however, instead of the P-wave
vertical velocity (VPvertl we have the S-wave vertical velocities (VS.Lvert and VSllvert) and
instead of I5(V) we have u(V) and T(V) for the two shear-wave types, respectively. Even
though the emphasis of our discussion is on HTI media, the NMO velocity variation with
azimuth is similar (elliptical) for more complicated azimuthally anisotropic media. The
key difference is the interpretation of the semi-axes of the NMO-ellipse [equation (1)]. A
generalization of the presented conclusions to arbitrary azimuthally anisotropic media
will be addressed in: a future paper.

Finally, it would be advantageous to integrate this methodology with other seis­
mic exploration techniques, such as azimuthal amplitude-variation-with-offset analysis
and borehole information, to reduce the ambiguity in the estimation of the medium
parameters.
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APPENDIX

SIGN OF HTI PARAMETERS

In order to determine the sign of 8(V) in HTI media due to parallel cracks, we use the
shear wave splitting parameter')' given in Tsvankin (1995) as a function of the HTI
parameters:

v,2 [ €(V) [2 _ l/j(V)] _ 8(V) ]'Y - Pvert

- 2 V§.LYe,t 1 + 2€(V) / j(V) + VI + 2 8(V) / j(V) .

The shear wave splitting parameter')' is a positive quantity (Thomsen, 1988). Since
the denominator of the term between "braCkets is also a positive quantity, as well as the
ratio of the vertical velocities, we obtain

where C')' is a positive quantity.
Therefore,

Hence,

Substituting €(V) in terms of the generic coefficient € (defined relative to the hori­
zontal symmetry axis, see Tsvankin, 1995, or Ruger, 1995) gives

8(V) = _€-[1/i V) - 2] - C')'.
1 + 2€

Since € :::: 0 for a single system of cracks and C')' is also a positive quantity, the sign
of 8(V) depends on the sign of the term

1/i V ) _ 2 =2 (VS.LY"t) 2 _ 1 ,
VPvert

Therefore, if {i:.::;' ::; 0.707, 8(V) is always negative. Even if {i:v:~:' :::: 0.707, 8(V) "

can still be negative depending on the term C')'.
For pure S-wave propagation (the fast shear wave SII and the slow shear wave S1-),

the NMO-velocity functions are governed by the anisotropy parameters ')'(V) and ,,(V)

for the two shear-wave types, respectively; where ,,(V) = (~)2(€(V) - 8(V»).
S.L vert

The parameter ')'(V) defined in terms of the generic coefficient ')' (defined relative to
the horizontal symmetry axis, see Tsvankin, 1995, or Ruger, 1995) is given as

(

(

(

(
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and, is a positive quantity. Therefore, ,(V) is always negative.
The sign of the parameter (T(V), on the other hand, is not as obvious as that for the

other parameters. It depends solely on the sign of the combination (f(V) - 8(V)). Both
f(V) and 8(V) are negative quantities, but the difference between the two is typically
a positive quantity. There is nothing, however, to prevent (T(V) from being a negative
quantity.
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Figure 1: (a) Plan view of three 2D survey lines (source-to-receiver azimuths in 3D) over
a horizontal HTI layer with VPve,t = 2.0 km/s, and b(V) = -0.2, with the symmetry­
axis in the x direction. Two different sets of solutions for the symmetry-axis direction
(dashed lines) provide the same NMO-velocity variation, as shown in (b). The correct
solution (Sol. 1, horizontal dashed line) has VPve,t = 2.0 km/s and b(V) = -0.2, while
Sol. 2 has V Pmt = 1.549 km/s and b(V) = 0.333.
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Figure 2: The reciprocal of the condition number (",-1) as a function of 0<2 and 6(V);
"'1 =0° and "'3=120°.
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Figure 3: The reciprocal of the condition number (1<0- 1) as a function of azimuth, 002,

for five different angular separations between three survey lines. Each set of azimuths is
rotated so that the middle direction, 002, spans the azimuths from 0° to 180° measured
from the symmetry-axis direction. The five curves correspond to L100 = 7.5° (a), 15°
(b), 30° (c), 45° (d), and 60° (e); 8(V)=-0.2.
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Figure 4: The reciprocal of the condition number ,,-1 as a function of azimuth "'2 (same
as in Figure 3, but for 8(V)=-O.1).
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Figure 5: Magnification factor in the absolute error in a measured in radians (a compo­
nent in the diagonal of [JTJI-1/ 2 ) as a function of central azimuth a2 for three different
angular separations t.a between survey direction. The three sets of azimuth combina­
tions are rotated so that the central azimuth spans azimuths from 0° to 1800 measured
from the symmetry-axis direction. The three curves in (a) correspond to angular sep­
arations of 30° (gray), 45° (dashed black), and 60° (solid black); 6(V)=-0.2. The three
curves in (b) correspond to the same test as in (a), but for 6(V)=-0.1.
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Figure 6: The same as Figure 5, but for the absolute error in o(V) (o(V) component in
the diagonal of [JT J]-1/2). The vertical axis is dimensionless.
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Figure 7: The same as Figures 5 and 6, but for the relative error in VPvert (VPvert

component in the diagonal of [JTJt1/2). The vertical axis is dimensionless.

7-28



Reflection Moveout Inversion in HTI Media

... -- ...

...
~ 300 (a).
Cf)
c 250
CIl
15 200

~ 150
~

tj100 ,

:2 50: /'~_~... '" "
:~ ...... ,,,:::..-- ~

o~0:::::-::"25=---""5":-0~7==5::=::1:::0:"'0 ";:-1":-2""5--::1-:::5--::0--::1::::7=:!5

(X2 (deg)

~ 700 (b)./'·'\
Cf) 600 ,
C
CIl 500
15 400
~ 300 i
~

tj200 _--, / __ ,
:2: 100 ",'" .......... \ / '" ... \

0<.1':::'::"-::----:--,---;:::',,,;\:,:,.. /::::':..-.:--c-..,....,--~-=-':::'::,j,\
o 25 50 75 100125 150 175

~ (deg)

Figure 8: The same as Figure 5, but here the three curves correspond to angular sep­
arations of 5° (gray), 10° (dashed black), and 15° (solid black). (a) corresponds to
6(V)=-0.2, while (b) corresponds to 6(V)=-0.1.
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Figure 9: Survey lines over an HTI-layer model which is overlain by five homogeneous
isotropic layers.
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Figure 10: Traveltime-offset curves from all six interfaces of the model in Figure 9 for
azimuths a· of 0°, 30°, 45°, 60°, and 90°. Note that the reflections from the first five
interfaces are azimuthally isotropic, while the reflections from the bottom of the HTI
layer are azimuthally anisotropic.
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Figure 11: Estimation of interval NMO velocities from synthetic data. (a) shows the
azimuthal dependence of the NMO (stacking) velocity obtained from the conventional­
spread reflection moveout from the bottom of the HTl layer on the spreadlength equal
to the target depth (1.5 km). (b) shows the interval NMO velocity (solid curves) as a
function of azimuth computed for the HTl layer using Dix differentiation, and the exact
interval NMO velocity (dashed curves) from equation (1). The model geometry and
parameters are given in Figure 9. The effective NMO velocity at the top of the HTl
layer, estimated from reflection moveout, is 2.67 km/s.
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Azimuthally isotropic overburden

Figure 12: Schematic time section showing a model that contains an azimuthally
isotropic overburden over an HTI layer. t:.tN is the two-way vertical traveltime in
the HTI layer. The total two-way traveltime to the bottom of the HTI layer is TN,
while the NMO (stacking) velocity at the top and bottom of the HTI layer is denoted
as VN-l and VN, respectively. The ratio t:.tN/TN = p.
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Figure 13: Plot of ,,-1 as a function of p for VN-1 = 2.0 kmjs, VPve't = 3.0 kmjs. (a)
corresponds to 8(V) = -0.2, while (b) corresponds to 8(V) = -0.1. The azimuths are
a:1 = 0°, a:2 = 60°, and a:3 = 120°.
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Figure 14: Magnification factors in (a) the absolute error in (} measured in radians,
(b) the absolute error in /i(V), and (c) the relative error in VPvert as a function of the
layer-thickness ratio, p. The selected survey-line azimuths are: (}l = 0°, (}2 = 60°,
and (}3 = 120°. The model parameters are VN-l = 2.0 km/s, VPvert = 3.0 km/s, and
/i(V) = -0.2.
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Figure 15: Estimated VPvert,8V, and the azimuth of the symmetry-axis (OoJl, as well
as the associated error bars as functions of p. The plots in the left column correspond
to 8(V) = -0.2, while those in the right correspond to 8(V) = -0.1. VN- I = 2.0 km/s,
VPvert = 3.0 km/s. The azimuths are 001 = 0°,002 = 60°, and 003 = 120°. The black dots
and error bars represent the computed mean and standard deviation, respectively. The
solutions for VPvert are normalized by the true vertical velocity (3.0 km/s).
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