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We study theoretically quantum melting transitions of stripe order in a metallic environment, and the associated
reconstruction of the electronic Fermi surface. We show that such quantum phase transitions can be continuous
in situations where the stripe melting occurs by proliferating pairs of dislocations in the stripe order parameter
without proliferating single dislocations. We develop an intuitive picture of such phases as “stripe loop metals”
where the fluctuating stripes form closed loops of arbitrary size at long distances. We obtain a controlled critical
theory of a few different continuous quantum melting transitions of stripes in metals. At such a (deconfined)
critical point, the fluctuations of the stripe order parameter are strongly coupled, yet tractable. They also decouple
dynamically from the Fermi surface. We calculate many universal properties of these quantum critical points. In
particular, we find that the full Fermi surface and the associated Landau quasiparticles remain sharply defined
at the critical point. We discuss the phenomenon of Fermi surface reconstruction across this transition and the
effect of quantum critical stripe fluctuations on the superconducting instability. We study possible relevance of
our results to several phenomena in the cuprates.
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I. INTRODUCTION

In the last several years, evidence for the occurrence of
stripe and related orders has accumulated in many underdoped
cuprates. Static charge and spin stripes have long been known
to occur in some La-based cuprates.1 Other cuprates have
been thought to have incipient stripe ordering (“dynamic
stripes”) that can be pinned locally around impurities or near
vortex cores in the low-temperature superconducting state.
Such pinning of incipient stripe order is routinely observed in
STM experiments in the Bi-based2 and oxychloride3 cuprates.
Further a number of phenomena in the yttrium barium copper
oxide (YBCO) family have indicated the possible role of
incipient stripe order. Quantum oscillations4 seen in high
magnetic field and low temperature have been interpreted5

in terms of the reconstruction of a large Fermi surface
by stripe order. Such a Fermi surface reconstruction might
also explain the sign of the Hall effect6 and various other
transport properties of underdoped YBCO at low temperature
and in high magnetic fields.7 Several experiments also show
that YBCO undergoes a rapid crossover to a regime of
enhanced orthorhombicity at a temperature that roughly tracks
the pseudogap temperature.8–10 This is reasonably associated
with enhanced electronic nematic order, which is naturally
a precursor of stripe order. Most recently, direct evidence
for charge stripes in YBCO has been obtained in an NMR
experiment in high magnetic fields.11

The stripe ordering seems to disappear with increasing
doping. The Fermi surface of overdoped Tl-2201 has been
mapped out in great detail through angle dependent magnetore-
sistance studies,12 quantum oscillations,13 and angle resolved
photoemission experiments.14 All these probes clearly and
convincingly demonstrate the existence of a large band
structure-like Fermi surface at low temperature. The absence of
any Fermi surface reconstruction strongly suggests the absence
of stripe ordering.

These developments sketch a picture of the evolution of
the low temperature “underlying normal” state electronic
properties upon moving from the overdoped to the underdoped

side. Decreasing doping tends to produce stripe ordering which
reconstructs the large Fermi surface. It is natural then to expect
the existence of a quantum phase transition between the large
Fermi surface metal and a stripe ordered metal with recon-
structed small Fermi pockets. Such a transition, if second order,
might conceivably play a role in the mysterious phenomena
characterizing the strange metal regime of optimally doped
cuprates. This viewpoint is advocated, e.g., by Taillefer in
Ref. 15.

Despite this strong motivation, there is very little theoretical
understanding of such quantum phase transitions. In a weakly
interacting Fermi liquid, the stripe order may be viewed simply
as a undirectional charge density wave (CDW) or spin density
wave (SDW). The transition to this kind of order may then be
described in terms of a fluctuating order parameter coupled
to the particle-hole continuum of the metallic Fermi surface.
Such a theory was formulated by Hertz16,17 and others in the
1970s and has received enormous attention over the years.
Despite this the theory is very poorly understood in two space
dimensions (the case relevant to cuprates). Very interesting
recent work shows that the low energy physics involves strong
coupling between the various gapless degrees of freedom—the
resulting theory currently has no controlled description and
remains to be understood.18–20

In light of this and in light of the fact that the cuprates
are in any case unlikely to be correctly described as weakly
interacting Fermi liquids, it is natural to explore alternate
strong coupling approaches to phase transitions associated
with stripe ordering21 and the associated Fermi surface
reconstruction. Specifically, it is interesting to view this
transition as a melting of stripe order by quantum fluctuations.
Could the stripes melt through a continuous quantum phase
transition? What is the nature of the resultant melted phase?
How does the metallic Fermi surface affect (and is affected
by) such a putative continuous stripe melting transition?
What is the correct description of the universal singulari-
ties associated with such a stripe melting quantum critical
point?
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In a recent short paper, we initiated a study of these
questions with the main goal of explaining some old neutron
scattering experiments in the cuprates. In this paper, we expand
in detail the ideas on stripe melting that we discussed in our
earlier work.22 We provide a few concrete and tractable exam-
ples of continuous stripe melting transitions in the presence
of a metallic Fermi surface. As expected, the stripe melting is
accompanied by a reconstruction of the metallic Fermi surface.
Remarkably, despite this, right at the quantum critical point
the critical stripe fluctuations decouple dynamically from the
particle-hole continuum of the Fermi surface and are described
by a strongly coupled though tractable quantum field theory.
In the language of renormalization group theory, the coupling
of the stripe fluctuations to the Fermi surface is a “dangerously
irrelevant” perturbation—though it is irrelevant at the critical
fixed point it is relevant at the stripe ordered fixed point and
leads to the Fermi surface reconstruction. One consequence of
this dangerous irrelevance is that close to the quantum melting
transition, the energy scale associated with the onset of stripe
order is parametrically larger than the energy scale at which the
Fermi surface reconstructs. We determine the universal critical
singularities both of the stripe order parameter and of the
electronic excitations at the hot spots on the Fermi surface that
are connected to each other by the stripe ordering wave vector.

The stripe melting transitions discussed in this paper and
in our earlier work22 are obtained by proliferating some but
not all topological defects of the stripe order parameter. The
resulting stripe melted phase retains a memory of the long
range stripe ordered phase by possessing gapped excitations
associated with the unproliferated topological defects. Phases
of this kind were proposed by Zaanen23 and co-workers
and further explored in Refs. 24–26. Despite having the
same symmetries, these are not regular Fermi liquids, due to
the unproliferated defects. A clear distinction between these
nontrivial stripe liquid phases and the regular Fermi liquid lies
in the topological structure, i.e., the former have ground-state
degeneracies on nontrivial manifolds. While this difference
is completely sharp theoretically, it is very difficult to detect
with any conventional experimental probe. In particular, these
phases have large Fermi surfaces with Landau quasiparticle
excitations described within the usual Fermi liquid theory
paradigm. Their single-electron properties, transport, and
low-energy thermodynamics are Fermi-liquid like, thus such
phases may have easily been mistaken for Fermi liquids. The
topological structure associated with the unproliferated defects
leads to a fractionalization of the stripe order parameter—this
is extremely difficult to probe in experiments.

We provide a simple physical picture of the stripe fluc-
tuations that lead to this kind of stripe melted phase. When
the stripes melt the resulting ground state will in general
be a quantum superposition of arbitrary stripe configurations.
The fluctuating stripe phases described in this paper may be
pictured as ones in which the stripes form closed loops of
arbitrary size while they fluctuate (see Fig. 1). Cutting a stripe
loop open to leave an open end for a stripe costs a finite energy
and describes an excited state. Such an open end is precisely
the gapped unproliferated topological defect that survives the
stripe melting transition. This picture is justified and elaborated
in detail below. We thus dub such phases ‘stripe loop metals.”
In contrast, the conventional Fermi liquid may be viewed as

Stripe loop metal Regular fluctuating stripes

FIG. 1. (Left) In the stripe loop metal phase, only those stripe
fluctuations that result in closed loop patterns are allowed. (Right) In
regular fluctuating stripes, both closed and open patterns are possible.

consisting of fluctuating stripes of all kinds including ones
with open ends in its ground state.

In the early work such a stripe loop metal was suggested
as a candidate for the underdoped cuprates. As it seems
extremely unlikely that the “underlying” normal state in
the underdoped cuprates has a large unreconstructed Fermi
surface the stripe loop Fermi liquid is unlikely to occur in the
underdoped side. It is more interesting therefore to explore
the possibility that it may describe the “normal” ground
state of the overdoped cuprates. Indeed, none of the existing
experimental probes of the overdoped normal state are in a
position to distinguish between such a stripe-fractionalized
Fermi liquid and the conventional Fermi liquid. Further, as
we demonstrate in this paper, the stripe loop Fermi liquid
admits a direct and interesting second order transition to
the stripe ordered metal with a reconstructed Fermi surface.
However, our results also demonstrate that the corresponding
critical stripe fluctuations cannot by themselves account for
most of the observed non-Fermi liquid physics around optimal
doping in the cuprates. Nevertheless, as we discuss, this kind
of stripe melting transition may contain interesting lessons
to at least understand the nature of stripe fluctuations near
optimal doping. Quantum melting transitions between the
stripe ordered metal and the conventional Fermi liquid are
more challenging to address, and we leave them for the future.

Apart from developing an intuitive description of the
stripe loop metal phase, we also discuss several experimental
consequences of the theory of the quantum phase transition
to the stripe ordered metal. The availability of a theory of
a continuous stripe melting transition enables us to reliably
address the phenomenon of Fermi surface reconstruction
across such a transition. For instance, we determine how the
gap opens at the hot spot as the transition is approached from
the stripe melted side and the growth of the quasiparticle
weight in the folded portion of the reconstructed Fermi surface
in the stripe ordered phase. We also study the issue of the
low-temperature superconducting instability of the metal and
its interplay with the stripe melting. Not surprisingly, we find
that the energy scale of the superconducting instability is
enhanced as the stripe quantum critical point is approached
from either side.

The rest of the paper is organized as follows. In Sec. II,
we discuss some of the challenges presented to theory by
well known experimental results.27 We then set the stage for
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discussing phase transitions by first describing various possible
stripe order parameters that are of relevance for the cuprates
in Sec. III. In Sec. IV, we discuss possible phase diagrams for
stripe melting transitions and the associated defects in the order
parameters. The concept of “stripe loop metals” is introduced
in Sec. V and connected to the corresponding quantum field
theories. In Sec. VI, the theories of several charge-stripe
melting transitions are presented in detail. Spin-stripe melting
transitions are discussed in Sec. VII. In Sec. VIII, we calculate
single particle properties close to the phase transitions. The
possibility of pairing by stripe fluctuations within our theory
is analyzed in Sec. IX. In Sec. X, we review some results
of scaling theory applied to fluctuating stripes. We discuss
some existing experimental results as well as predictions of
our theory for future experiments. Some more technical details
can be found in the appendixes.

II. CHALLENGES FROM PRIOR EXPERIMENTS

If quantum criticality associated with onset of stripe order
is held responsible for the physics of the strange metal in
the cuprates, then it is very important to experimentally
establish that critical stripe fluctuations occur in the strange
metal regime. There is actually very little information from
experiments on critical stripe fluctuations in near optimal
cuprates above their superconducting transition termperature.

In an important and well-known experiment, Aeppli et al.27

measured the dynamic spin susceptibility of slightly under-
doped (x = 0.14) lanthanum strontium copper oxide (LSCO)
near (π,π ) over a wide range of temperatures and wave vectors.
However, as emphasized in our previous work,22 the results
paint a very intriguing picture of the stripe fluctuations and
pose a challenge to theory. From the scaling of the width of
the neutron scattering peak (the inverse correlation length)
with temperature, they deduced that the dynamical exponent
z ≈ 1. They further found that for low frequencies the peak
height scales as T −2. Within z = 1 scaling, a standard scaling
argument shows that this implies an anomalous exponent
η ≈ 1 for the critical spin fluctuations (see Sec. X A). Such
a large value of the anomalous dimension η ≈ 1 of the spin
fluctuations is very unusual for a Landau quantum critical
point, but it is quite common for non-Landau quantum critical
points.28–34 Later on in this paper, we provide a careful
discussion of the data of Ref. 27 and highlight the need for
further experimental studies.

We would like to emphasize that in a metal, z = 1 is very
surprising. Since the stripe-ordering vector Q connects two
points on the Fermi surface (see Fig. 2), the stripe-fluctuations
should be Landau damped. The propagator of the stripe
fluctuations is expected to be modified as (see Fig. 3)

χStripe(k,ω) = 1

ω2 − v2(k − Q)2

Landau Damping−−−−−−−−→ 1

ω2 + iγ ω − v2(k − Q)2
, (1)

where the damping rate γ is determined by the properties of the
conduction electrons close to hot spots, i.e., points on the Fermi
surface that are connected by Q. For small frequencies ω → 0,
the quadratic term can be neglected against the damping term
and the stripe fluctuations become strongly coupled to the

(π, π)(−π, π)

(π,−π)(−π,−π)

Qs,1 + G

Qs,2 + G

2Qs,1 + G

2Qs,2 + G

(π, π)(−π, π)

(π,−π)(−π,−π)

FIG. 2. (Color online) The Fermi surface of LSCO at x = 0.15
as measured in Ref. 35 via ARPES, shown in the first Brillouin zone.
(Left) Hot spots on the Fermi surface that are connected by the SDW
wave vectors. (Right) Hot spots of the CDW wave vectors.

Fermi surface. In particular, we see that ω ∼ δk2, where δk =
(k − Q), i.e., the dynamical exponent z = 2. Recent careful
analyses18–20 show that at low energies the stripe fluctuations
couple even more strongly to the Fermi surface, and higher
order contributions become important. There is currently no
controlled description of the resulting theory.

This form of the Landau damping is not unique to the
weakly interacting Fermi liquid but rather general in the
presence of gapless excitations into which a stripe fluctuation
can decay. In Appendix A, we demonstrate this explicitly for
several known non-Fermi liquid metals.

The data of Ref. 27 shows dynamical exponent of z =
1 over all measured temperatures, i.e., no evidence of the
expected strong coupling to the Fermi surface is seen. Of
course, once a single-particle gap develops, a low-energy stripe
fluctuation can no longer decay into particle-hole excitations
and effectively decouples from the Fermi surface. This does
not require phase coherence and is therefore already possible
in the pseudogap phase. While such an opening of a gap would
explain the observed z = 1 below the pseudogap temperature
T ∗, it would also predict a dramatic change in the nature
of the stripe correlations upon crossing T ∗. Above T ∗ the
stripe fluctuations are strongly coupled to and modified by
the gapless Fermi surface, while below T ∗ they decouple.
However, in the data of Ref. 27, the measured spin correlations
develop smoothly across the pseudogap temperature, which for
x = 0.15 LSCO is around 150 K.36

The apparent message from the experiments is that the
critical stripe fluctuations are indifferent to the fate of the
electronic Fermi surface. This has also been emphasized by
other neutron studies of the cuprates where magnetic scattering
near the incommensurate peaks seems to not know about the

k

k + q

k

q

FIG. 3. Landau damping of the stripe fluctuations is given by the
fermionic polarization function near the ordering wave vector.
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Unidirectional
stripes

Checkerboard
order

FIG. 4. Unidirectional and checkerboard stripe patterns. The gray
lines denote minima in the charge density and the arrows denote the
orientation of the Néel vector.

particle/hole continuum of the Fermi surface at low energies.37

This state of affairs in experiments should be contrasted with
the emerging picture from modern clarifications18–20 of the
standard weak coupling “Hertz-Millis” approach to stripe
ordering quantum phase transitions; in this theory, the stripe
fluctuations become more and more strongly coupled to the
Fermi surface at low energy. Given this stark contradiction,
we therefore focus our attention on an alternate theory of the
stripe ordering transition, which describes it as a quantum
melting of stripes by proliferation of topological defects.

III. POSSIBLE STRIPE ORDER PARAMETERS

Throughout the paper we will use the term “stripe” as a
collective term for various kinds of CDW and SDW states.
With the cuprates in mind, we focus on two-dimensional
systems (a single copper-oxygen plane) with an underlying
orthorhombic or tetragonal lattice. The simplest stripe pattern
is (1) a unidirectional charge stripe. Here, the expectation
value of the charge is modulated at some wave vector Qc (see
Fig. 4), i.e.,

ρ(r) ≡ 〈c†r,σ cr,σ 〉 = ρ0 + (
ρQc

ei Qc ·r + c.c.
)
, (2)

where c
†
r,σ creates a spin σ electron at r and summation over

spin indices is implied. Such unidirectional stripe patters occur
naturally in orthorhombic crystals, where there is a preferred
direction for Qc. In tetragonal crystals, unidirectional order
is possible by spontaneously breaking the lattice rotation
symmetry (in addition to the lattice translation symmetry
along Qc). This case is frequently referred to as smectic in
the literature.

When the ordering vector Qc is commensurate with the
lattice, i.e., Qc = 2π

a
(mx,my), where mx,y are integers, this

is referred to as a phase with commensurate charge stripes.
For the cuprates, commensurate stripes with my(mx) = 0
and a period of mx(my) = 4 are most commonly observed
experimentally.

(2) In a unidirectional spin stripe, the expectation value of
the spin undergoes spatial modulations, i.e.,

	S(r) ≡ 1
2 〈c†r,σ 	τσσ ′cr,σ ′ 〉 = ei Qs ·r 	M + e−i Qs ·r 	M∗. (3)

For collinear spin order, i.e., 	S(r) × 	S(r ′) = 0, it follows that

	M = eiθ 	N, (4)

Spin, Charge

Néel

2π
Qc 2π

Qs

FIG. 5. A period-4 charge stripe accompanied by an antiphase
spin stripe. The sign of the Néel-vector changes from one charge
stripe to the next.

where 	N is a real vector. A further possibility is spiral order,
i.e.,

	M = 	n1 + i	n2, (5)

where 	n1 and 	n2 are real vectors with 	n1 · 	n2 = 0. With
the cuprates in mind, we consider collinear spin stripes
exclusively. In the cases of interest here, SDW order at Qs

will be accompanied by CDW order at Qc = 2 Qs . In a weak
coupling, Landau-Ginzburg approach, this follows since the
charge density has the same symmetries as the square of the
spin density. Since the ordering wave vectors of charge and
spin are tied together, it is sufficient to name either one. We
will adopt the convention that the period of a commensurate
stripe refers to the charge sector, i.e., a “period-m stripe” has
period m for the charge, but period 2m for spin (see Fig. 5).

It is often convenient to express a spin-configuration not in
terms of the spin directly, but in terms of the Néel vector (see
Fig. 5). In particular, in the experimentally observed antiphase
stripes, the Néel vector changes sign between two adjacent
charge stripes.

(3) On a tetragonal lattice, in addition to the above,
a checkerboard pattern which respects the lattice rotation
symmetry is possible. Here, the charge and spin densities have
equal modulations in both the x̂ and ŷ directions, i.e.,

〈ρ̂(r)〉 = ρ0 + (
ρQc

ei Qc,1·r + ρQc
ei Qc,2·r + c.c

)
. (6)

and likewise for the spin density. All of these ordering patterns
are of relevance in the cuprates, and we will discuss them in
turn.

IV. QUANTUM MELTING OF STRIPES: POSSIBLE
PHASE DIAGRAMS

Before addressing the quantum phase transition in detail,
we will now briefly discuss a possible phase diagram and
some properties of the phases that we consider. The limiting
cases are, on the one hand, the usual Fermi liquid with a large
Fermi surface which respects all symmetries of the underlying
crystalline lattice. On the other hand, there are various striped
phases where translation symmetry is broken by static spin
and charge order as discussed in the previous section. In
these phases, the original large Fermi surface is reconstructed.
As a striped phase undergoes a transition (or a sequence of
transitions) into the Fermi liquid, the symmetries broken by
stripe order are restored. Depending on the stripe order in
question, these are spin rotation, lattice rotation, and lattice
translations symmetry. In general, there may be intermediate
phases where only a subset of the symmetries are restored. For
example, when spin-rotation symmetry is restored but lattice

115138-4



STRIPE MELTING AND QUANTUM CRITICALITY IN . . . PHYSICAL REVIEW B 86, 115138 (2012)

?

single dislocation double dislocation

FIG. 6. (Left) Single dislocations in the charge stripes are bound
to half-dislocations for the spin-order, leading to frustration. (Right)
Double dislocations in the charge stripes avoid frustration. The gray
lines denote minima in the charge density and the arrows denote the
orientation of the Néel vector.

symmetries remain broken, a spin-striped phase turns into a
phase with charge stripes only. Intermediate phases without
stripe order are also possible, e.g., a spin-nematic phase where
lattice symmetries are restored but spin rotation symmetry
remains broken.

A. Structure of defects in the stripe order parameter

Just like melting of an ordinary crystal, the melting of
stripes is most conveniently described in terms of defects in
the stripe order. In the limiting case of perfect long-range
stripe order, no defects are present. The Fermi liquid lies in the
opposite limit, where stripe order is completely destroyed and
the number of defects is no longer well defined, i.e., it may be
viewed as a condensate of all possible defects. Intermediate
phases can be realized (and characterized) by proliferating
only a subset of allowed defects.

Before addressing the phase transition, it is necessary to
identify the possible topological defects. We begin by consid-
ering incommensurate, unidirectional spin and charge stripes.
To allow for defects, we must allow the order parameters to
vary in space and time. It is convenient to introduce the phases
of the stripe-order parameters as

θs,c(r,t) ≡ [ Qs,c(r,t) − Qs,c(0,0)] · r. (7)

θ (r,t) has the interpretation of being (Q times) the local
displacement of the stripes in the Q̂ direction at time t . The
fundamental topological defects are (a) dislocations where the
phase of the spin order winds by π and 	N rotates by π and (b)
dislocations where the phase of the spin order θs winds by 2π

(see Fig. 6). Around these defects, the phase of the charge stripe
θc = 2θs winds by 2π and 4π , respectively. We will hence refer
to defects of type (a) as single dislocations and to defects of
type (b) as double dislocations. Spin order is frustrated around
single dislocations but not around double dislocations (see
Fig. 6). In the commensurate case of a period m, charge stripe
Qc = ( 2π

m
,0) we can also have elementary oriented domain

walls where the entire stripe pattern is shifted by one lattice
spacing (θc increases by 2π

m
). A single dislocation is then lo-

cated at the point where m such domain walls meet (see Fig. 7).
In a conventional (weak coupling) approach, the stripe

melting is described as an XY transition for the charge-
stripe order parameter eiθc . At this transition, all dislocations
proliferate and the resulting state is the Fermi liquid. However,

FIG. 7. (Left) Four elementary directed domain walls (dashed
lines) meet at a stripe dislocation. The charge order in neighboring
domains is related by a primitive lattice translation. The thin vertical
lines are drawn as a guide for the eye and are separated by one lattice
spacing. (Right) Configuration with three domain walls but without
a dislocation.

in the presence of a Fermi surface, this approach becomes
problematic for the reasons discussed in Sec. II. It is then
natural to ask whether these complications are still present at a
modified transition where only certain dislocations proliferate.

A physical mechanism that may lead to a situation where
some, but not all defects proliferate was already mentioned
above. We have seen that when spin order is present, it is
frustrated around single dislocations. This raises the energy
cost of such dislocations,38 potentially even above the energy
of double dislocations which are not frustrated. Thermal
melting by proliferating double dislocations was studied for
spin stripes in Ref. 39 and for a striped superconductor/the
Larkin-Ovchinnikov (LO) state in Refs. 40 and 41. Quantum
melting of the LO state was discussed in a cold-atoms context
in Ref. 42.

Even in the absence of long-range spin order, strong short-
range spin correlations may significantly raise the core-energy
of single dislocations. In this paper we thus explore a stripe
melting transition where double dislocations proliferate, while
single dislocations remain gapped. In the resulting stripe liquid
phase, all lattice symmetries are restored. This phase was first
proposed by Zaanen23 and co-workers and further explored in
Refs. 24–26. Despite having the same symmetries, it is not
the regular Fermi liquid due to the gapped single dislocations.
A clear distinction between the nontrivial stripe liquid phase
and the Fermi liquid lies in the topological structure, i.e., the
former has a ground-state degeneracy on nontrivial manifolds.
While this difference is completely sharp theoretically, it is
extremely difficult to probe experimentally. In particular, the
stripe liquid phase has the same large Fermi surface with well
defined Landau quasiparticles as the weakly interacting Fermi
liquid. Its single-electron properties, transport, and low-energy
thermodynamics are also identical, thus this phase may have
easily been mistaken for a Fermi liquid. A detailed discussion
of this phase along with a more physical picture is given in
Sec. V.

Above we saw that the order parameters b = eiθs and 	N
are intertwined only around single dislocations, while around
double dislocations they are independent. Thus at energies well
below the core energy of single dislocations, b and 	N become
separately well defined (this will be explained more formally in
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g1

g2
Spin Nematic

X

Stripe Liquid
Metal

Spin Stripe

Charge Stripe

FIG. 8. Schematic zero-temperature phase diagram close to the
multicritical point X that separates the four phases discussed in the
text. The dashed line is parametrized by g.

Sec. V B). We can envisage four different phases (see Fig. 8), in
all of which the single dislocations are gapped. First, 〈 	N〉 �= 0,
〈b〉 �= 0 is the ordered phase with both spin and charge order.
Second, 〈 	N〉 = 0, 〈b〉 �= 0 describes a phase with a charge
stripes but without spin order. Third, when 〈 	N〉 �= 0, 〈b〉 = 0,
lattice symmetries and time reversal symmetries are restored.
Thus in this phase, the spin expectation value 	S = 0 but spin
rotation symmetry is broken by a spin quadrupole moment
Qab = NaNb − 1

3
	N2δab (such a phase is frequently referred

to as spin nematic). Finally, 〈b〉 = 0,〈 	N〉 = 0 describes the
nontrivial stripe liquid we mentioned above and which we
discuss in detail in the following section. In the presence of
itinerant fermions, the two latter phases have a conventional
large Fermi surface, while in the striped phases with 〈b〉 �= 0,
the Fermi surface is reconstructed by the stripe order.

V. STRIPE LOOP METALS

A. Physical picture

As we mentioned above, the distinction between the stripe
liquid metal obtained after proliferation of paired dislocations
and the regular Fermi liquid is topological and thus difficult to
detect. On a pictorial level, however, the difference between
these phases becomes very intuitive, by looking at the charge
density ∼ei Qc ·rb2. In a perfectly stripe-ordered phase, all
the stripes extend across the entire system, and there are
no stripe endings. In the regular Fermi liquid, all kinds of
fluctuations are allowed, in particular, there are dislocations
where stripes end (see Fig. 1). We are instead interested in
a stripe liquid phases where only double dislocations are
allowed. Introducing any number of (static) paired dislocations
into a stripe ordered phase turns the stripe pattern into a set
of closed stripe loops. In the stripe liquid phase, where these
dislocations proliferate, there will thus be a fluctuating pattern
of stripe loops, but no stripe endings (see Fig. 1).

Indeed, this picture can be made precise by connecting the
stripe patterns to features of the field theory, which we will
demonstrate below. To see the topological nature of the SLM
it is useful to consider the system on a cylinder, around which
the stripes wind in the ordered phase. In the SLM phase, all
fluctuations of stripes are allowed, as long as there are no
loose ends. Thus the number of closed charge stripes winding
around the cylinder is conserved mod 2 (see Fig. 9). There are
two ground states that are distinct by the parity Pc of closed
stripes around the cylinder. The distinction between these two
states is clearly topological, i.e., cannot be determined by just
looking at any finite region of the cylinder.

(a)

(b)

Pc = −1

Pc = +1

↔ ↔

↔ ↔

FIG. 9. (a) Three smoothly connected configurations of the stripe
loop metal on a cylinder. The number of stripes winding around the
cylinder is conserved mod 2. The parity Pc of closed stripes is a
topological quantum number distinguishing between two possible
ground states. (b) Three smoothly connected configurations with
an even number of stripes winding around the cylinder. These
configurations cannot be smoothly deformed into the configurations
shown in (a) and belong to a different ground state.

B. Gauge theory

To make the stripe loop representation of these phases more
precise we now connect it to the corresponding field theory.
Formally, to express the physical order parameters in terms of
b and 	N , i.e.,

	M = 	Nb, (8)

ψ = b2, (9)

the phase θs of b should fall in the interval [0,π ]. It is more
convenient to instead let θs ∈ [0,2π ], which comes at the cost
of a local Z2 redundancy. At each site, we can independently
change the sign of both b and 	N without affecting the physical
order parameters. As this emergent gauge degree of freedom
is an artifact of our chosen representation of the operators, any
physical operator must be a gauge-invariant combination of
these operators. In particular, inverting Eq. (9) leads to

br = sr

√
ψr = sre

iθc(r)/2, (10)

where sr depends on a particular gauge, but the combination
brsr is gauge invariant, i.e., under a gauge transformation
where br → −br we also have sr → −sr .

Any term in the Hamiltonian of b and 	N needs to be
invariant under such a transformation, in particular, the kinetic
terms must take the form

Hhopping = −tb
∑
〈r r ′〉

b∗
r τ

z
r,r ′br ′ − t 	N

∑
〈r r ′〉

	Nrτ
z
r,r ′ 	Nr ′ . (11)

Here, τ z
r,r ′ is a Z2 gauge field, which transforms under a local

Z2 gauge transformation br → σrbr , 	Nr → σr 	Nr as τr,r ′ →
σrσr ′τr,r ′ , with σr ∈ {+1,−1}. While b itself is not gauge
invariant, the integral of its phase θs around a close loop is,
i.e.,

ei2πns = (
τ z

r,r1
τ z

r2,r3
. . . τ z

rN ,r

)
eiπnc , (12)∮

∇θs,c · ds = 2πns,c. (13)
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τz = +1

τz = −1

τx = +1

τx = −1

Z2 gauge field deconfined

Visons gapped

h � J

Z2 gauge field confined

Visons condensed

J � h

FIG. 10. (Left) Typical configuration in the deconfined phase of
Z2 gauge theory. Electric field lines, τ x

ij = −1, denoted by double
black lines in the upper picture, are deconfined. Visons—plaquettes
with an odd number of τ z

ij = −1—denoted by a spiral in the lower
picture, are absent. Visons act as sources for the thick gray lines, thus
there are only closed strings of these. (Right) Typical configuration
in the confined phase. The electric field is confined and visons have
proliferated, thus there are both open and closed gray lines. In the
present context, the gray lines describe charge stripes.

In the ordered phase 〈b〉 �= 0, single valuedness of b requires
that ns be an integer for any loop. We now consider a loop
enclosing a single defect where θc winds by 2π , i.e., nc = 1.
Then Eq. (12) requires that around this loop

τr,r1τr2,r3 . . . τrN ,r = −1. (14)

We have seen that single dislocations in eiθc corresponds to
a Z2 gauge flux of π in the gauge theory. Such an excitation
(see Fig. 10) is usually referred to as a vison. Therefore the
transition between Fermi liquid and the SLM is described
as a confinement transition of the Z2 gauge theory, where
visons are gapped in the deconfined phase (SLM), while they
proliferate in the confined phase (FL). At the deconfinement
transition, both b and 	N are massive and do not significantly
affect the critical properties of the gauge theory. However, the
phase of the gauge theory has important consequences for the
b and 	N fields. As long as the visons are gapped, b and 	N are
independently well defined. Once the visons condense b and 	N
become confined, i.e., they are glued together into Z2-charge
neutral objects like b2 and b 	N .

Let us briefly review some basic properties of Z2 gauge
theory: a simple Hamiltonian for the Z2 Gauge theory on a
square lattice is

H = −J
∑
〈ij〉

τ x
i,j − h

∑
�

∏
〈ij〉∈�

τ z
i,j , (15)

where � denotes a square plaquette. In addition, the system is
subject to the gauge constraint

Ĝi = τ x
i,i+x̂ τ

x
i,i−x̂ τ

x
i,i+ŷ τ

x
i,i−ŷ = 1. (16)

For h → 0 (the confined phase of the gauge theory), the ground
state is

|0〉 =
∏
〈ij〉

∣∣τ x
ij = +1

〉 ∼
∏
〈ij〉

(∣∣τ z
ij = +1

〉 + ∣∣τ z
ij = −1

〉)
.

(17)

In the deconfined phase, J → 0, it is given by

|0〉 =
(

1 +
∑

i

Gi +
∑
i �=j

GiGj + · · ·
)∏

〈ij〉

∣∣τ z
ij = +1

〉
.

(18)

Pictorially, this state can be represented by coloring in gray
each bond of the dual lattice that crosses a link where τ z

ij = −1
(see Fig. 10). The confined ground state is then a superposition
of all possible configurations with both open and closed gray
lines at low energies. The vison number is given by the gauge
flux n = ∏

� τ z thus there is a vison at the end of each open
line. In the deconfined phase (of the Z2 gauge field), the visons
are gapped, thus there are only closed gray lines. As visons
(i.e., charge stripe endings) act as sources for these gray lines,
these lines can be identified with the charge stripes.

C. SLM on tetragonal lattices

The previous discussions considered unidirectional charge
order. On tetragonal lattices there is the additional possibility
that the order respects the lattice rotation symmetry, i.e.,

〈ρ̂(r)〉 = ρ0 + (
ρQc

eiQc,xx + ρQc
eiQc,yy + c.c

)
. (19)

Now there are two possibilities of a stripe loop metal respecting
lattice rotation symmetries. The SLM can be realized by
independent fluctuations of the vertical and horizontal stripes,
i.e., we consider double dislocations in θc,x and θc,y separately.
Such a state is depicted in Fig. 11, left. In such a phase there
are two kinds of (gapped) visons, corresponding to endings of
horizontal or vertical stripes.

There is a further possibility for a SLM phase, distinct from
the previous case, which is illustrated in Fig. 11 (right). This

SLM (Checkerboard) Tetragonal SLM

FIG. 11. (Left) Checkerboard pattern with a double dislocation in
both the vertical and the horizontal stripe. (Right) There is a different
kinds of dislocation, where a horizontal stripe turns into a vertical
one. Such dislocations also do not suffer from spin frustration, thus
there is the possibility of a phase where both the double dislocations
and this new kind of dislocations proliferate.
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corresponds to allowing, in addition to the double dislocations
in θc,x and θc,y separately, a new kind of defect where both
the phases of both θc,x and θc,y wind by ±2π . It is easy to
see that in the presence of spin order, such dislocations are not
frustrated.

In order to describe the transition, we begin with two equal
order parameters 〈ψx〉 = 〈ψy〉 �= 0. To include the new kind
of defect, we write the stripe order parameter in a somewhat
modified form:

ψx = b1b2,
(20)

ψy = b1b
∗
2 .

Now at a defect where the phase of b1 winds by 2π , both θc,x

and θc,y wind by 2π . Similarly, around a single dislocation in
b2, θc,x winds by 2π , while θc,y winds by −2π . Further, at a
single dislocation in both b1 and b2, the phase of ψx winds
by 4π , while the phase of ψy does not wind at all. Thus this
decomposition captures both the double dislocations discussed
above, as well as the new kind of dislocation. Formally, this
decomposition has only a single Z2 redundancy, associated
with changing the sign of both b1 and b2 together.

VI. CHARGE STRIPE MELTING TRANSITIONS

A. Orthorhombic crystal

We begin with the simplest case, i.e., unidirectional charge
order without spin order. Our strategy will be to initially
consider incommensurate stripes (i.e., no pinning of the stripe
order parameter to the crystalline lattice) in the absence of an
electronic Fermi surface. We will justify this a posteriori by
showing that both these couplings are irrelevant (in the RG
sense). Both in the ordered phase and in the SLM, the Z2

fluxes (equivalently single dislocations) are gapped, so we can
neglect them when studying this transition. To determine the
universal properties of the phase transition, it is convenient
to employ a “soft-spin” formulation. The low-energy effective
field theory is given by the most relevant, symmetry-allowed
terms of b, 	N , i.e.,

S[b, 	N ] =
∫

dτd2rLb + LN + LbN , (21)

Lb = |∇b|2 + 1

v2
c

|∂τ b|2 + rb|b|2 + ub|b|4, (22)

LN = |∇ 	N |2 + 1

v2
s

|∂τ
	N |2 + rN | 	N |2 + uN | 	N |4, (23)

LbN = v|b|2| 	N |2. (24)

We note, in particular, that under a combined time reversal
and spatial inversion (along Q), b is invariant, thus no linear
derivative terms are allowed. When the spin is disordered, 	N
is gapped and may be integrated out. What remains is then a
3D XY transition for the b field. The critical properties of this
model are well known.43 It should be noted that the transition
can be formally described as a regular XY transition for the
b field, although the physical stripe melting transition is in
a fundamentally different universality class. The fundamental
field b itself is not a physical field, but rather the stripe order
parameter ψ = b2. More generally, only operators invariant
under the local Z2 transformations are physical, thus the

operator content of this universality class is very different from
the usual 3D XY transition. However, the critical properties
are easily derivable from the ones of the 3D XY universality
class. The anomalous dimension of the composite field44 ψ ,
i.e., ηψ ≈ 1.49 is dramatically different from the anomalous
dimension of b, ηb ≈ 0.04. This universality class has been
studied in Refs. 33, 34, and 45 where it was dubbed XY ∗.

Let us now consider the stability of the XY ∗ stripe melting
transition to various perturbations.

(a) Pinning to lattice. The pinning of the period-4 charge
stripe to the lattice is described by a term

Spin = −λ

∫
dτd2r cos(4θc). (25)

In terms of the phase θs of the b field this becomes

Spin = −λ

∫
dτd2r cos(8θs). (26)

This is an eightfold anisotropy on the XY field at the 2 + 1D
XY fixed point, which is well known to be strongly irrelevant.
Thus despite the commensurate ordering wave vector the stripe
fluctuations depin from the lattice as the quantum critical point
is approached. Clearly this pinning term is important at long
distances in the stripe ordered state, and thus represents a
dangerously irrelevant perturbation of the critical fixed point.
If the stripe ordering occurs at incommensurate wave vector
then there is no pinning of the stripes either at the critical point
or in the ordered phase.

(b) Coupling to Fermi surface. Thus far we have ignored
the presence of the conduction electron Fermi surface. It
couples to the critical stripe fluctuations in several ways that
we now analyze. The most interesting coupling arises in the
case where the stripe ordering wave vector connects two points
of the Fermi surface. In the stripe ordered phase, this leads to
a term

κψ
∑

k

c
†
k+Qck + H.c. (27)

in the conduction electron Hamiltonian that will reconstruct
the electronic Fermi surface. At the critical point or in the
stripe melted phase, this coupling will lead to a damping of the
stripe fluctuations. Integrating out the conduction electrons in
the stripe melted phase leads to the standard Landau-damping
term

λd

∫
dωd2q|ω||ψ(q,ω)|2. (28)

This may be viewed as an interaction (between the b fields)
that is long ranged in imaginary time between the stripe
fluctuations. The relevance/irrelevance of this term at the stripe
melting XY ∗ critical point is readily ascertained by power
counting. Under a renormalization group transformation x →
x ′ = x/s,τ → τ ′ = τ/s, we have ψ → ψ ′ = s�ψ with � =
(1 + η)/2. This implies

λ′
d = λds

1−η. (29)

As η > 1 at the XY ∗ fixed point, the Landau damping of the
critical stripe fluctuations is irrelevant.

A direct coupling of the energy density of the stripe
fluctuations to soft shape fluctuations of the Fermi surface (in
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the continuum only to the breathing mode) is also allowed
by symmetry. However, it was shown in Ref. 25 that if
the correlation length exponent νXY > 2

3 , such couplings are
irrelevant. For the 3D XY model,43 ν = 0.67155, so this
coupling is also irrelevant.

For an orthorhombic crystal all other couplings to the Fermi
surface are even more strongly irrelevant. The situation with
tetragonal symmetry is more complicated and will be analyzed
below.

(c) Fermi surface reconstruction. In the stripe ordered
phase, gaps will open up at “hot spots” of the original large
Fermi surface which are connected to each other by the
ordering wave vector Q. The irrelevance of the coupling
of the critical stripe fluctuations to the conduction electrons
suggests that the scale at which the Fermi surface reconstructs
is parametrically lower than the scale at which the stripe order
onsets. To explore this, we now describe the coupled system
of stripes and conduction electrons in a different framework
that does not integrate out the conduction electrons. We restrict
attention to conduction electron states near the hot spots and
linearize their dispersion. The resulting action takes the form

S =
∫

dτd2rLc + Lint + Lb,

Lc =
∑

i

c̄i (∂τ − ivi · ∇) ci, (30)

Lint = κ
∑
ij

(ψij c̄icj + c.c.),

where ci denotes a fermion at the ith hotspot, vi is the Fermi
velocity at the ith hot spot, and ψij is a stripe-order parameter
with a wave vector that connects the ith and the j th hot spot.
Here, we generalized the fermion action to allow for more
than one stripe-ordering wave vector, as will be the case in
the presence of tetragonal symmetry, which we will discuss
below. Lb is the Euclidean Lagrangian of the b field(s) in the
2 + 1D XY universality class.

Consider now the RG transformation appropriate for the
3D XY fixed point. The action Sc = ∫

dτd2rLc is invariant
under this RG transformation provided that we scale

c1,2 → c′
1,2 = sc1,2. (31)

With this scaling the full action is at a “decoupled” fixed
point at κ = 0. By power counting, we see that a small κ

renormalizes as

κ ′ = κs
1−η

2 . (32)

As η > 1, κ is irrelevant consistent with the analysis of the
previous section. Now assume we are in the ordered phase
a distance δ from the critical point. The energy scale �stripe

of stripe formation (i.e., the scale at which the critical theory
Lb crosses over from the critical to the ordered fixed point)
increases as

�stripe ∼ |δ|νz. (33)

To determine the value of the gap at the hot spots, we
consider the self-energy of the electrons. It must have the
dimensions of energy, i.e.,

�(ω,κ,�stripe) = 1

s
�[sω,s(η−1)/2κ,s�stripe]. (34)

kk k + Q

ΔFSΔFS

FIG. 12. Diagram for the fermion self-energy in the ordered phase.

We choose s such that s�stripe = 1 and scale by a factor of
κ2�

η

Stripe/ω, obtaining

�(ω,κ,�stripe) =
[
κ�

(1+η)/2
Stripe

]2

ω
f

[
ω

�stripe
,

κ

�
(1−η)/2
stripe

]
, (35)

where f is a universal scaling function. On the ordered side,
close to the hot spot, the electron self-energy has the form (see
Fig. 12)

�(ω,k) = �2
FS

iω − εk+ Q
, (36)

where �FS is the size of the gap at the hot spots.
By matching this to Eq. (35), we get

�FS ∼ �
(1+η)/2
Stripe . (37)

Thus as expected the hot spot gap �FS (the scale at which the
Fermi surface reconstructs) is parametrically different from
the scale at which stripe ordering occurs (see Fig. 13). The
two energy scales have a ratio

�FS

�stripe
∼ �

(η−1)/2
Stripe , (38)

which goes to zero as the critical point is approached.
Thus the XY ∗ stripe melting critical point survives un-

modified by either the coupling to the lattice or to the
electronic Fermi surface. It therefore provides a concrete
tractable example of a stripe melting transition in a metal.
On tuning through this transition the Fermi surface undergoes
a reconstruction (see Fig. 14, for a more detailed discussion
including different parameters see Ref. 46). This of course
happens through the coupling of the stripe order parameter to
the conduction electrons as described above in Eq. (27).

ψ = 0
g

gc

Quantum critical

SLM

ΔFS

Δstripe

T

FS reconstruction

FIG. 13. Stripe ordering and reconstruction of the Fermi surface
occur at parametrically different energy scales. The dashed lines
�stripe ∼ |g − gc|0.67 bound the quantum critical region and mark
the onset of stripe order for g < gc. The solid line representing
the finite-temperature phase transition is parametrically the same as
�stripe. The dotted line denotes the scale where the Fermi surface
reconstructs and is given by �FS ∼ |g − gc|0.83.
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FIG. 14. Reconstruction of the Fermi surface due to period-4 charge stripes. On the left, the unreconstructed large Fermi surface is shown
in the extended zone scheme. The dashed lines frame the part of the Brillouin zone that is used to show the reconstructed Fermi surface in
the center and on the right. In the center, reconstructed Fermi surface due to unidirectional charge stripes is shown in black, while the gray
lines indicate the original, folded Fermi surface. On the right, the reconstructed Fermi surface due to checkerboard order is displayed in similar
fashion.

B. Tetragonal crystal

We now turn to the situation where in addition to lattice
translations, we also have fourfold rotation symmetry. In this
case, the average charge density ρ will be modulated in both
the x and the y directions, i.e.,

ρr = ρ0 +
∑
i=x,y

e2iQi ·rψi + e−2iQi ·rψ∗
i . (39)

For the translation-symmetry broken state, there are now
two possibilities: rotational symmetry can be spontaneously
broken 〈ψx〉 �= 0, 〈ψy〉 = 0 (or vice versa), resulting in
unidirectional stripes. Alternatively, the charge order can
preserve rotational symmetry 〈ψx〉 = 〈ψy〉 �= 0, resulting in
a “checkerboard” pattern. As we will show below, the
checkerboard state admits a direct transition into the stripe
loop metal. In order to reach the Fermi liquid, both translational
and rotational symmetry need to be restored. We consider the
four possible sequences of phase transitions that are shown in
Fig. 15.

(a) Stripe → Nematic stripe loop metal → Nematic →
Fermi liquid. First, we consider a phase transition between a
unidirectional stripe-ordered state and a nematic Fermi liquid.
In this case, one of the ψi is zero on both sides of the
transition. Furthermore, rotational symmetry remains broken
after translation symmetry is restored, so we can describe
the translation-symmetric state as a condensate of pairs of
unidirectional stripe dislocations. We thus fractionalize the
nonzero order parameter as in the orthorhombic case and
obtain the same action as in Eq. (21). The properties of
this phase transition are thus identical with the orthorhombic
case which we discussed in the beginning. After translation
symmetry is restored, we still have rotational order and the Z2

structure remaining in a state which we dub nematic SLM. The
Z2 structure disappears in a second-order phase transition25 to
a nematic Fermi liquid, which is probably first order.47 Finally,
the theory of the phase transition between a nematic metal and
a rotationally symmetric metal48 has a controlled limit,49 thus
the properties of the entire sequence of phase transitions are
understood.

(b) Stripe → Nematic SLM→ SLM → FL. We again
consider the same stripe-melting transition into the Nematic
SLM, as discussed in the previous case. Instead of killing the
topological structure, the system may first undergo a transition
where rotational symmetry is restored. This transition is
unaffected by the presence of the Z2 structure and is again
described by the nematic QCP discussed above. The last
transition, where the topological structure is killed, is slightly
different than in the case a, due to tetragonal symmetry. This

T

g

A

Stripes Nematic
SLM

Nematic FL

T

g

B

Stripes Nematic
SLM

SLM FL
T

g

C

Checkerboard SLM FL
T

g

D

Checkerboard Tetragonal
SLM

FL

FIG. 15. Finite temperature phase diagrams for the three se-
quences of phase transitions that we discuss here.
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scenario was also studied in Ref. 25, and the transition is
expected to be first order.

(c) Checkerboard → SLM → FL. We now discuss the
case where the ordered phase is described by two equal order
parameters 〈ψx〉 = 〈ψy〉 �= 0. To describe a transition out of
this state, we now fractionalize both order parameters:

ψi = b2
i . (40)

We thus obtain a theory of two order parameters coupled to
two fluctuating Z2-gauge fields. In the ordered phase, both
horizontal and vertical stripes coexist, and defects in the
horizontal stripes and in the vertical stripes are decoupled.
Again, our aim is to melt the stripes by proliferating pairs of
dislocations, without closing the gap for single dislocations.
In that case, we can safely ignore the gauge field and describe
the transition by the following Euclidean action:

S =
∑
i=x,y

∫
τ,r

|∂μbi |2 + r|bi |2 + u|bi |4 + 2v

∫
τ,r

|bx |2|by |2.

(41)

We first analyze this action in the absence of any coupling to
the Fermi surface and for v = 0. This describes two decoupled
XY ∗ models, which have a fixed point where u is of order
ε = 4 − d, where d is the number of space-time dimensions.
The scaling dimension of v close to this fixed point is given by

dim[v] = d − dim[|bx |2] − dim[|by |2] = 2

νO(2)
− d, (42)

where νO(2) ≈ 0.67155 is the correlation length exponent of
the XY model in three dimensions.43 We thus obtain

dim[v] ≈ −0.02 < 0, (43)

i.e., this perturbation is (weakly) irrelevant and the decoupled
fixed point is stable. Next, tetragonal symmetry allows a
linear coupling between the nematic fluctuations of the order
parameter ONematic(r,τ ) = |bx |2 − |by |2 and the ones of the
Fermi surface

ρnem. ∼
∑

k

(cos kx − cos ky)c†kck, (44)

where c
†
k creates an electron with momentum k. Unlike the

coupling in Eq. (27), this term involves fermions close to a
single point on the Fermi surface which leads to enhanced
damping |ω| → |ω|/|q|, i.e.,

λNematic

∫
d2q

∫
dω

|ω|
|q| |ONematic(q,ω)|2 . (45)

To determine its relevance, we note that this term couples
different space-time points, thus its scaling dimension is
determined by the dimension of |bx |2 − |by |2. But at the
decoupled fixed point this is given by the dimension of |bx |2
alone, i.e.,

dim[λNematic] = d − 2dim[|bx |2 − |by |2] = dim[v]. (46)

Thus the coupling to the Fermi surface is also irrelevant in
this case. Therefore the two XY ∗ order parameters decouple
both from each other and from the Fermi surface at the phase
transition and we obtain a second-order transition from the
checkerboard ordered phase into the SLM phase.

TABLE I. Transformation properties of various fields under
discrete symmetries (we here assume period-4 charge stripes).

Symmetry ψx ψy b1 b2

x translation eiπ/2ψx ψy eiπ/4b1 eiπ/4b2

y translation ψx eiπ/2ψy eiπ/4b1 e−iπ/4b2

π/2 rotation ψy ψ∗
x b∗

2 b1

Time reversal ψ∗
x ψ∗

y b∗
1 b∗

2

x-axis reflection ψx ψ∗
y b2 b1

(d) Checkerboard → Tetragonal SLM → FL. The final
sequence we discuss here involves the tetragonal SLM intro-
duced in Sec. V C. The order parameters of charge stripes in
the x and y direction are decomposed as

ψx = b1b2, ψy = b1b
∗
2, (47)

which comes with a single Z2 redundancy. To describe the
transition, we thus disorder both ψx and ψy , while keeping
the gap of the single type of vison finite. The transformation
properties of b1, b2 under lattice symmetries are shown in
Table I.

On symmetry grounds, this transition is described by
Eq. (41) and most of the above discussion follows through.
In particular, the critical stripe fluctuations are governed by
the same critical exponents, and the coupling to a Fermi
surface is irrelevant. We note that in this representation
|ψx |2 − |ψy |2 = 0, thus it appears as if nematic fluctuations
are strictly zero. However, the operator∑

μ=x,y

Im[b∗
1(r + aμ̂)b1(r)]Im[b∗

2(r + aμ̂)b2(r)] (48)

= 1

2

∑
μ=x,y

Re[ψ∗
x (r)ψx(r + aμ̂)]

− Re[ψ∗
y (r + aμ̂)ψy(r)], (49)

has the same symmetries as |ψx |2 − |ψy |2. Thus the decom-
position (47) does allow for nematic fluctuations.

VII. SPIN STRIPE MELTING TRANSITIONS

For strong coupling stripe melting transitions it is natural
to expect that the spin stripe order will melt through two phase
transitions; first, the spin order goes away, while charge stripe
order persists (i.e., translation symmetry remains broken),
followed by a second transition where the charge stripe also
melts. So far, we focused exclusively on the second transition
without addressing the first. It turns out that this transition
(between a spin-stripe and a charge-stripe phase) is quite
complicated and we currently do not have a good theory to
describe it. To see the source of the difficulty, let us attempt
to follow the same prescription as above, i.e., initially ignore
the coupling to the Fermi surface. Since b is condensed, 	N is
now physical (gauge invariant), thus the transition is just the
O(3) transition with ηN ≈ 0.04. Now if we add the conduction
electrons, 	N can couple directly to their spin density,

κs
	N ·

∑
k

c
†
k+Q 	σck + H.c. (50)

115138-11



DAVID F. MROSS AND T. SENTHIL PHYSICAL REVIEW B 86, 115138 (2012)

T

g

gs gc

Charge
Stripe

Spin Stripe

Quantum Multicritical

Stripe
Liquid
Metal

FIG. 16. Schematic finite temperature phase diagram as a func-
tion of g (see Fig. 8). The spin order vanishes first at gs , while the
charge order persists up to gc.

Following the same argument as below Eq. (27), we see that
this is strongly relevant since ηN � 1 (the marginal case is
η = 1), and the fluctuating spin stripes no longer dynamically
decouple from the Fermi surface. The resulting theory was
studied by Abanov and Chubukov18,19 and by Metlitski and
Sachdev,20 who showed that it is strongly coupled at low
energies. There is currently no controlled description of this
transition.

A. Stripe multicriticality

The difficulties with spin-stripe melting can be avoided if
the spin-melting and the charge-melting transitions happen for
nearby values of the tuning parameter g (see Fig. 8), which is
likely in the cuprate phase diagram. Then, despite the presence
of two distinct quantum phase transitions the somewhat
higher-T physics will be controlled by a “mother” multicritical
point where spin and charge stripe order simultaneously melt
(see Fig. 16). In our earlier work,22 we postulated that the
temperature regime probed in the experiments of Ref. 27 is
controlled by such a multicritical stripe melting fixed point.

To study this multicritical point where both b and 	N are
critical, we again begin by ignoring the presence of the Fermi
surface and the underlying lattice. The effective theory for this
transition is the same as in Eq. (21), which we reproduce here
for convenience:

S[b, 	N ] =
∫

dτd2rLb + LN + LbN , (51)

Lb = |∇b|2 + 1

v2
c

|∂τ b|2 + rb|b|2 + ub|b|4, (52)

LN = |∇ 	N |2 + 1

v2
s

|∂τ
	N |2 + rN | 	N |2 + uN | 	N |4, (53)

LbN = v|b|2| 	N |2. (54)

At the multicritical point where both b and 	N are critical, a
small coupling v is an irrelevant perturbation,50 thus we are
left with a decoupled O(3) × O(2) fixed point. As before,
we now need to consider the effects of coupling to the Fermi
surface and to the lattice. The irrelevance of the direct coupling
between b and the Fermi surface as well as of the lattice
pinning follow by the same argument as for pure charge-stripes
melting transitions. Like in the case of charge stripes, there is a
symmetry allowed coupling between the energy density of the
	N fluctuations and soft shape fluctuations of the Fermi surface.

Since νO(3) > 2/3, this is again irrelevant. Next, the field 	N is
not physical (gauge invariant) and thus cannot directly couple

to the Fermi surface. The gauge invariant spin density that
coupled to the spin density of the itinerant electrons at the
hot spots is 	M = b 	N . In real space and (imaginary) time, the
correlation function of 	M simply factorizes into the correlators
of its constituents, i.e.,

〈 	M(r,τ ) · 	M(0,0)〉 ∼ 1(
r2 + v2

c τ
2
) 1+ηb

2
(
r2 + v2

s τ
2
) 1+ηs

2

.

(55)

In particular, we can read off the anomalous dimension of 	M
as ηM = 1 + ηN + ηb. Here ηN,b are the (small) anomalous
dimensions of the b and 	N fields in the regular 3D XY and
O(3) models, respectively. In the presence of a Fermi surface,
the fluctuations of the physical spin fluctuations 	M = b 	N will
be Landau damped, like the fluctuations of the physical charge
fluctuations ψ = b2 in Eq. (28), i.e.,∫

d2qdω|ω|| 	M|2. (56)

Since ηM > 1, the Landau damping of spin fluctuations is
also irrelevant. A further possibility to construct a gauge
invariant operator as a combination of b and 	N fields is the spin
quadrupole operator Qab = NaNb − 1

3
	N2δab. It couples to the

microscopic quadrupole operator of the conduction electrons,
which is given by

Qel
αβ(r1,r2) = f (r1 − r2)

(
σα

1 σ
β

2 + σ
β

1 σα
2

2
− δαβ 	σ1 · 	σ2

3

)
,

(57)

where 	σi is the spin density at r i and f (r) is a nonuniversal
function obeying lattice symmetries. For slow fluctuations of
Qel

αβ , all the electrons need to be on the Fermi surface that
imposes strong phase-space constraints familiar from Fermi-
liquid theory. It is thus convenient to decompose the vertex
into its angular harmonics in the particle-hole and Cooper
channels, to get

χ ′′
Q(K ,�)

=
∫ �

0
dω

∑
k

∑
m

Fm�′′
m(k,ω)�′′

−m(K − k,� − ω)

+
∫ �

0
dω

∑
k

∑
m

VmC ′′
m(k,ω)C ′′

−m(K − k,� − ω),

(58)

where �m and Cm are the particle-hole and particle-particle
propagators, respectively, with angular momentum m. Now
it is straightforward to evaluate χQ term by term and thus
establish the irrelevance of Landau damping. In particular, in
the m = 0 channel we have, for a Fermi liquid,

C ′′
0 (ω,k) ∼ �

(
ω2 − v2

F k2
)
, (59)

�′′
0(ω,k) ∼ ω√

(vF k)2 − ω2
�[(vF k)2 − ω2], (60)

and it is then clear that χ ′′
Q ∼ �3 (with a cutoff-dependent

logarithm in the particle-hole channel) and hence damping is
strongly irrelevant.
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We have thus verified that the decoupled multicritical
point is indeed stable both against coupling to the Fermi
surface, and against pinning to the crystalline lattice. As we
pointed out, this is the opposite of what one would expect
for a conventional stripe melting transition, where the stripe
fluctuations become strongly coupled to the Fermi surface at
low energies. This immunity of the critical stripe fluctuations to
the properties of the Fermi surface, whether it is gapless or has
a single particle (pseudo)gap is consistent with the experiments
of Ref. 27. More quantitatively, in the theory introduced
above, stripe correlations at finite temperature obey ω/T

scaling with a dynamical critical exponent z = 1, as observed
experimentally. Further, the height of the peak in the dynamical
spin-susceptibility scales with temperature (see Sec. X A)
as limω→0

χ ′′
P (ω,T )

ω
∼ 1

T 3−ηM
, where ηM = 1 + ηN + ηb ≈ 1.08.

This again agrees remarkably well with the results of Ref. 27.

VIII. SINGLE-PARTICLE GREEN FUNCTION AND FERMI
SURFACE RECONSTRUCTION

We now turn to calculate the Green function of the electrons
at the phase transition. Since the coupling to the fluctuating
stripe order is irrelevant, it is sufficient to consider the leading
order contribution to the electron self-energy in perturbation
theory. The same self-energy has already been evaluated
explicitly in a different context in Ref. 33. We here reproduce
the universal behavior from scaling. Electrons on points of
the Fermi surface that are connected by Q (hot spots) will be
affected most strongly, so we focus on those. In the vicinity of
the critical point, the electron self-energy obeys [see Eq. (35)]

�(ω,δk,κ,�stripe) = ωg

[
δkz

ω
,
�stripe

ω
,

κ0

ω(1−η)/2

]
, (61)

where δk is the momentum deviation from the hot spot and g

is a universal scaling function. The leading order contribution
(see Fig. 17) appears at order κ2, so we get

�(ω,δk = 0,κ → 0,�stripe = 0) ∼ κ2
0 ωη. (62)

Since η > 1, the Fermi surface as well as the Landau
quasiparticles remain sharply defined at this critical point, even
at the hot spots.

We can further use the scaling form of the self-energy to
discuss the reconstruction of the Fermi surface. For sufficiently
large doping g > gc, the stripes are melted and we have a large
Fermi surface. At lower doping the stripe fluctuations, and
consequently the scattering of Fermions increases. It is clear
that the scattering is nonuniform on the Fermi surface, i.e., it
decreases with distance to the hot spot. At even lower doping,
spectral weight from the original, large Fermi surface starts
being transferred to a “shadow” Fermi surface, i.e., the surface
of k points that is connected to the large Fermi surface by Q.
Deep in the stripe ordered phase, the shadow Fermi surface

k k − q

q

k

FIG. 17. Diagram for the leading contribution to the fermion self-
energy.

ZShadowband

gc g

FIG. 18. (Color online) The spectral weight on the shadow band
vanishes as a power law close to the critical point.

becomes part of the new, reconstructed Fermi surface. In the
vicinity of the critical point, the spectral weight obeys universal
scaling (with nonuniversal angle-dependent prefactors), which
can be easily calculated.

We compute the self-energy for electrons (see Fig. 17)
close to a generic point K 0 on this “shadow” Fermi surface,
safely away from the hot spots. It is again given by Eq. (61),
since the intermediate electron lies on the Fermi surface. For
ω/vF ,δk,�stripe/vF � K0, the denominator in the imaginary
part of the Green function

ImG(ω,K 0 + δk,�stripe) = �′′

(ω − εK 0+δk − �′)2 + (�′′)2

(63)

can be replaced by ε2
K 0

and the spectral function inherits the
scaling form of �′′, i.e.,

A(ω,K 0 + δk) ∼ ω
η

z

ε2
K 0

G

(
δkz

ω
,
�stripe

ω

)
, (64)

where G is a new scaling function.
This implies51 that the quasiparticle weight Zshadow obeys a

power law (see Fig. 18)

Zshadow ∼ 1

ε2
K 0

|g − gc|ν(z+η). (65)

Here, η is the anomalous dimension of either charge of spin
fluctuations, depending on which ordering is responsible for
the reconstruction.

IX. PAIRING BY STRIPE FLUCTUATIONS

We now turn to the possibility of superconductivity due to
stripe fluctuations. We first focus on the stripe melted phase and
the approach to the critical point. Since the coupling between
the fermions on the Fermi surface and the fluctuating stripes
is irrelevant, it is safe to integrate out the strip fluctuations,
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T

g

gs gc

Tc

FIG. 19. (Color online) (Left) Typical large Fermi surface of
the cuprates is shown in the first Brillouin zone, where the shaded
regions denote the sign of a dx2−y2 order parameter. The solid
dots denote a pair of electrons, which resides at momenta where
the sign of the order parameter is positive. After scattering on a
fluctuating stripe, the scattered Cooper pair, denoted by the tips
of the arrows, find itself at momenta where the sign of the order
parameter has changed. Since the interaction itself is repulsive,
the effective electron-electron interaction is attractive in the dx2−y2

channel. (Right) Phase diagram including superconductivity induced
by stripe fluctuations. The transition temperature Tc is highest when
spin fluctuations are critical.

which gives rise to a four-fermion interaction

V (ω,k) = κ2

| Q − k|2−ηs
W (| Q − k|ξ,ωξ ) , (66)

where W is a scaling function with

lim
x→0

W (x,0) = x2−ηs and lim
x→∞ W (x,0) = 1 (67)

A sample function with these properties is

W̃ (x,0) = x2−ηs

x2−ηs + 1
. (68)

This interaction can then be treated in mean-field theory.
Since the interaction is repulsive, it can only contribute to
a superconducting order parameter with opposite sign on hot
spots that are connected by Qs (see Fig. 19). For Qs close
to (π,π ) and a typical (large) Fermi surface of the cuprates,
the lowest angular momentum channel that satisfies this is52

dx2−y2 . To determine the mean-field gap at zero temperature,
at weak coupling, we can neglect the frequency dependence
of the interaction, i.e.,

�d ∼ exp

[
− 1

N (EF )ud

]
, (69)

ud = −
∫

dkdk′V (k − k′)dkdk′δ(εk − μ)δ(εk′ − μ), (70)

where dk is a function with dx2−y2 symmetry. The dominant
contributions to this integral come from momenta close to the
hot-spots where dkdk′ ≈ −1. From these momenta, we get

ud (ξ,K) ≈ κ2ξ−ηs U (ξK), (71)

where K is a momentum cutoff and the scaling function U

must obey

lim
x→∞ U (x) = xηs and lim

x→0
U (x) = x2. (72)

Next, we want to determine the transition temperature
Tc. It is clear that for temperatures T � ξ−1 the frequency
dependence of the interaction can no longer be dropped.

For a qualitative result, it is sufficient to implement this
approximately by writing the temperature dependent effective
interaction as

ud (ξ,K; T ) ≈ ud (
√

ξ 2 + T −2,K). (73)

For weak coupling, the self-consistent equation for Tc then
becomes

ln
�

Tc

= 1

ud (Tc)N (EF )
, (74)

where � is a UV cutoff.
In the stripe ordered phase, the region around the hot spots

becomes gapped. This will suppress the ability of the residual
stripe flutuations to cause pairing. The resultant phase diagram
is shown schematically in Fig. 19. As expected, we find that
pairing is strongest close to the critical point, where it is
mediated by gapless spin fluctuations.

X. EXPERIMENTS

In this section, we discuss our results for the quantum
critical stripe fluctuations in the context of available data.

A. Scaling of quantum critical spin fluctuations

We first briefly review the standard scaling assumptions for
the full q and ω dependent dynamical spin susceptibility asso-
ciated with quantum critical spin fluctuations. The imaginary
part can be expressed in terms of a universal scaling function
F as

χ ′′(q,ω; T ,δ) = c0

|q − Qs |2−η
F

(
ω

c1|q − Qs |z
,
ω

T
,

ω

E0δνz

)
.

(75)

As before, Qs is the incommensurate peak wave vector, T is
temperature and δ = |g − gc| is the distance from the T = 0
quantum critical point. z is the dynamical critical exponent, ν

is the correlation length exponent, and ηs is the anomalous
dimension of the spin order parameter. c0, c1, and E0 are
nonuniversal numbers.

First, at ω,T � E0δ
νz, the system is in the “quantum

critical regime” and does not know that the ground state is
not exactly at the quantum critical point. In this regime, the
width of the peak in q space will satisfy

κ(ω,T ) =
(

ω

c1

) 1
z

K

(
ω

T

)
, (76)

where K is a universal scaling function. Restricting to ω = 0,
we get the well known result

κ(ω = 0,T � E0δ
νz) ∼ T

1
z . (77)

Second, exactly at the peak q = Q, we have (still in the
“quantum critical” regime)

χ ′′
P (ω; T ) = ao

T
2−ηs

z

X

(
ω

T

)
(78)

with a0 a nonuniversal number (related to c0,c1) and X a
universal scaling function. At low frequency at a nonzero T ,
χ ′′ is linear in ω so that the scaling function X(x) ∼ x for
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small x. This then gives

lim
ω→0

χ ′′
P (ω,T � E0δ

νz)

ω
= ã0

T (2−ηs+z)/z
. (79)

B. Scaling in the LSCO experiment of Ref. 27

We will now use the scaling properties reviewed above to
carefully discuss the experiment in Ref. 27. There, Aeppli
et al. used neutron scattering to find the spin structure factor
S( Q,ω; T ), which is related to the imaginary part of the
susceptibility via

S( Q,ω; T ) = χ ′′( Q,ω; T )

1 − e− ω
T

ω � T−−−→ χ ′′( Q,ω; T )T

ω
. (80)

In their data, they fit the temperature dependence of the peak
height to a power law (see Fig. 3B in Ref. 27)

lim
ω→0

χ ′′
P,Fit(ω,T � E0δ

νz)

ω
∼ T −1.94, (81)

from which it follows (79) that

2 − ηs + z

z
≈ 1.94. (82)

To determine z, the width of the peak κ is plotted as a function
of

√
ω2 + T 2 over a range of frequencies and temperatures

(see Fig. 4 in Ref. 27). A linear relationship

κ(ω,T ) ∼
√

ω2 + T 2 (83)

is found, which implies (76) that z = 1, which in turn
determines the anomalous dimension ηs ≈ 1.06.

Some caution is, however, required with the quantum
critical interpretation of the data. To emphasize this, we note
that Ref. 27 also plotted χ ′′

P (ω,T ) as a function of κ(ω,T ) (see
inset of Fig. 4 in Ref. 27) and from a fit to the data found that

lim
ω→0

χ ′′
P,Fit(ω,T � E0δ

νz)

ω
∼ κ−3(ω = 0,T ). (84)

If quantum critical scaling applies, then from Eqs. (77) and
(79) it follows that

lim
ω→0

χ ′′
P (ω,T � E0δ

νz)

ω
∼ κηs−3(ω = 0,T ). (85)

Thus the last fit implies ηs = 0, in apparent contradiction to
the conclusion ηs = 1.06, reached from the previous fits.

To address this question, it is necessary to analyze κ(ω,T ),
which relates the two apparently contradictory fits. κ(ω,T )
saturates at low T ,ω. One possible cause is of course that the
system is not exactly at the quantum critical point. A second
possibility is quenched disorder. As the stripe order parameter
breaks translation symmetry, nonmagnetic disorder will couple
to it roughly as a “random field.” This will always lead to a
saturation of κ , even when there is true stripe ordering.

One resolution of this apparent contradiction is that the fit
leading to Eq. (84) includes data from the region where κ has
saturated. If the saturation is mainly due to disorder, those data
points (small values of κ) should not be used in scaling plots.
The remaining data points can be fit with

lim
ω→0

χ ′′
P,Fit(ω,T � E0δ

νz)

ω
∼ κ−2(ω = 0,T ), (86)

in agreement with ηs ≈ 1.06. Of course, once several data
points are excluded, the range of the remaining data is rather
small and consequently the error in extracting the exponent is
large.

In a more recent paper,53 the same neutron data are used to
compute

τeff = T

∫
q

lim
ω→0

χ ′′(q,ω,T )

ω
. (87)

If the q integral is restricted to the scaling region around Q,
scaling applies and the contribution of those wave vectors to
τeff is given by

τeff,scal ≡ T

∫
q≈ Q

lim
ω→0

χ ′′(q,ω,T )

ω
∼ T ηs . (88)

Thus, since ηs is close to one, τeff,scal must have a nearly
linear T dependence. In the data of Ref. 53, τeff is roughly
T independent. If scaling is indeed satisfied by the neutron
data near Q then it must be that the q integral is dominated by
nonscaling contributions away from the peak.

These caveats about the evidence for critical scaling in
the existing data strongly emphasizes the need for further
experimental efforts to study the singular stripe fluctuations
in modern samples of cuprates. Little is also known about
the doping and magnetic field dependence of these singular
fluctuations. In light of the suggested crucial role15 of these
fluctuations for the physics of the strange metal and the theory
discussed in this paper, we hope that such experimental efforts
will be forthcoming in the near future.

C. Other scaling in cuprate neutron experiments

Scaling of the spin fluctuation spectrum has been reported
in a number of cuprates over the years.54–56 In an early paper,
Keimer et al.54 studied very lightly doped LSCO and found
evidence of scaling of the local (i.e., q integrated) dynamic
susceptibility as a function of the ratio ω/T . Subsequent
experiments on highly underdoped YBCO near the edge of
the superconducting boundary also saw similar ω/T scaling.55

This scaling in very underdoped cuprate samples presumably
has little to do with the stripe quantum criticality discussed in
this paper.

More pertinent possibly is the ω/T scaling seen56 in the
normal state of underdoped YBCO6.5. This is in the pseudogap
regime and the spin fluctuation spectrum has incommensurate
peaks (“dynamic stripes”). Detailed studies of the q and T

dependence of the scale invariant part of the scattering have not
been reported in the literature. In the context of this paper, it is
particularly interesting to ask if this scaling is associated with
the mother multicritical regime (see Fig. 16) at intermediate
temperatures. If so, then the detailed q, ω, and T dependence
of χ ′′ will satisfy the scaling form discussed above with the
exponent ηs ≈ 1.06, z = 1. Upon cooling, superconductivity
develops and the measured spin fluctuations change character.
It is interesting to ask what happens if the superconductivity
is suppressed in a field. At similar doping levels in YBCO,
recent NMR experiments11 show that there is charge stripe
order without any accompanying spin stripe order. In terms
of Fig. 16, this places the system between gc and gs . In this
regime in our theory, there are dynamic scale invariant stripe
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Ωχ′′
M(Ω, K) v2|K| v1|K|

K

FIG. 20. (Color online) The imaginary part of the spin suscepti-
bility, plotted for three fixed values of �, as a function of K (MDC).
The value of χ ′′(�,K ) is given by the height of the blue curve above
the (dotted) base line. For any given value �, it is nonzero only over
a finite interval. For fixed K and as a function of � (EDC), it has a
similarly sharp onset at v1K , but does not drop back to zero at higher
frequencies.

fluctuations at intermediate temperatures. Upon cooling, the
spin correlation length saturates to a finite value but there is
a charge ordering transition. Associated with this there is a
reconstruction of the Fermi surface.

D. Dynamic susceptibility

For comparison with future experiments, we now compute
the dynamic spin-susceptibility at the multicritical point, i.e.,
the Fourier-transform of Eq. (55):

χ ′′
M (�,K ) ∼

∫ �

0
dω

∫
d2k

�
(
ω2 − v2

1k
2
)

(
ω2 − v2

1k
2
) 2−η1

2

× �
[
(� − ω)2 − v2

2(k − K )2
]

[
(� − ω)2 − v2

2(k − K )2
] 2−η2

2

. (89)

Two trivial limits of this function are given by

χ ′′
M (�,0) ∼ �η1+η2−1, (90)

χ ′′
M (�,K )|v1=v2 ∼ �

(
�2 − v2

1K
2
)

(
�2 − v2

1K
2
) 1−η1−η2

2

. (91)

For finite K and v1 �= v2, one can see that the most singular
contributions to χ ′′

M (�,K ) occur when all the momentum and
frequency are carried by either b or 	N , which is possible only
for � = v1K or � = v2K . For example, if � = v2K , then the
integrand diverges at ω,k → 0 as ω

η2
2 +η1−3. After integration,

a power-law singularity

χ ′′
M (v2K + δ�,K ) − χ ′′

M (v2K,K ) ∼ δ�
η2
2 +η1 (92)

remains. A numerical plot of this function is shown in Fig. 20.
In any actual experiment, χM will be modified from this by
finite temperature effects. In particular, all sharp features (onset
and peaks) are expected to be washed out. We expect that what
remains as a qualitative feature is a dispersive peak which is
relatively narrow as a function of K but has a long tail as
function of �.

E. Scaling of quantum critical charge fluctuations

In addition to measuring critical spin fluctuations via
neutron scattering, it may be possible to detect critical charge
fluctuations, e.g., via x-ray experiments. At a quantum critical

point where charge order melts, the scaling properties of the
dynamical charge structure factor SCharge( Q,�; T ) follow from
the same analysis as in Sec. X A. In particular, right at the
critical point, the peak amplitude at low frequencies obeys

SP,Charge(T ) ∼ T (ηc−2)/z, (93)

where ηc is the anomalous exponent of charge fluctuations,
which is ηc ≈ 1.49 in our theory. Measuring this exponent
thus constitutes an independent test of our theory.

F. Tunneling density of states near pinned stripes

STM has been a highly successful tool in investigation
of striped phases in the cuprates. Recently, it has been used
to image individual defects in the stripe order of bismuth
strontium calcium copper oxide (BSCCO).57 Within our theory
as the stripe melting transition is approached the core energy
of doubled dislocations decreases to zero, while that of
single ones stays nonzero. It is possible therefore that upon
approaching optimal doping the density of close dislocation
pairs increases at the expense of isolated dislocations. It will
be interesting to explore this in STM experiments.

STM experiments can also potentially be used to determine
the anomalous dimension of the charge stripe fluctuations ηc.
In the stripe-melted phase, but close to the phase transition,
there will always be disorder that locally pins fluctuating
stripes. Close to such an impurity, there is then local stripe
order with an amplitude which decays with distance from
the impurity. By locally measuring the tunneling density of
states, these oscillations as well as their decay can be detected
experimentally.

The lowest order oscillatory contribution to the tunneling
density of states is shown in Fig. 21. The contribution due to
a δ-function disorder potential at the origin is

Nω(x) ∼
∫

y
Gx− y(ω) cos ( Q · y) D y(� = 0)G y−x(ω). (94)

We note that the integral is dominated by electrons close
points on the contour of energy μ + ω, which are connected
by Q. Around these points, we can expand the dispersion to
linear order, i.e., under the integral we have Gω(x) ∼ 1/x.
The propagator of charge-stripe fluctuations at zero frequency
is D(x) ∼ 1/xηc , so we get

Nω=0(x) ∼ |x|−ηc cos ( Q · x + �) , (95)

where � is some constant. The spatial decay in the amplitude of
the quasiparticle oscillations is directly given by the anomalous
exponent ηc of the charge stripes (see Fig. 22). We note
that unlike quasiparticle interference, these oscillations are

ω ω xx

y

y′

FIG. 21. The lowest-order contribution of pinned stripes to the
electronic tunneling density of states. The box denotes a time-
independent disorder potential.
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2π
Q x

|x|−ηc

N0(x)

FIG. 22. (Color online) Density of states for tunneling in elec-
trons at zero bias as a function of distance from an impurity. The
impurity locally pins stripe fluctuations which lead to an oscillatory
charge density close to the impurity. Conduction electrons scatter on
this pinned stripe fluctuations which leads to an oscillatory tunneling
density of states.

nondispersive, i.e., the wave-vector Q is set by the stripe order,
and does not change as a function of bias ω.

XI. CONCLUSIONS

In this paper, we have studied several examples of con-
tinuous quantum melting phase transitions of stripe order
motivated by the cuprates. The stripe melting was assumed
to be driven by the proliferation of doubled dislocations.
We developed a simple and intuitive picture of the resulting
stripe melted phase: the fluctuating stripes form closed loop
configurations of arbitrary size. Cutting a loop open to
produce two end points costs finite energy. We therefore
dubbed this phase a “stripe loop metal.” A stripe loop metal
phase has sharply defined Landau quasiparticles at a Fermi
surface that satisfies the usual Luttinger theorem. It however
differs from the conventional Fermi liquid in some very
subtle ways. The spectrum of excitations of the stripe order
parameter is fractionalized. Associated with this there is a
gapped Z2 topological defect that is the end point of an open
stripe(equivalently a relic of the single stripe dislocation of
the ordered phase). These differences are sufficiently delicate
that even if such a stripe melted state exists in a material, it
cannot easily be distinguished from a conventional Landau
Fermi liquid.

We showed that this kind of stripe melting transition is
strongly coupled yet tractable. The critical stripe fluctuations
dynamically decouple from the Fermi surface. However, in the
ordered phase, the stripes recouple to the Fermi surface and
reconstruct it. Thus our results provide concrete examples of
tractable strongly coupled quantum phase transitions associ-
ated with stripe melting and the associated reconstruction of
the Fermi surface. We are not aware of any other controlled
theories of quantum criticality related to Fermi surface
reconstruction by translation symmetry breaking order in two
space dimensions.

In the examples studied in this paper, the dangerous
irrelevance of the coupling of the stripe fluctuations to the
Fermi surface implies that the latter reconstructs at a scale
that is parametrically lower than the scale at which the stripe
ordering occurs. Furthermore, the stripe fluctuations do not
destroy the Landau quasiparticle at any point of the Fermi
surface at the quantum critical point.

Before concluding we discuss these results in the context
of several recent experiments and theoretical suggestions on
the cuprates. As discussed in the introduction there is growing
evidence for the ubiquity of stripe order in the underdoped
cuprates. Stripe order has also been invoked to reconstruct a
large Fermi surface to obtain pockets that may explain quantum
oscillation phenomena in a magnetic field at low-T , and Hall
effect and other measurements. In contrast, there is very little
evidence for stripe ordering in the overdoped side. A natural
suggestion is that a quantum critical point associated with
melting of stripe order and the related Fermi surface change
underlies some of the strange normal state properties around
optimal doping.

To apply the results of this paper to the cuprates, we first
need to postulate that the overdoped metal is a stripe loop
metal. There is very little experimental evidence against such
a proposal, and so it is worthwhile to examine our results
further. As proposed in our earlier work22 and discussed
further in this paper, the mother multicritical fixed point where
the charge and spin stripe orders simultaneously quantum
melt into an overdoped stripe loop metal might potentially
control the physics of the stripe fluctuations around optimal
doping in the strange metal regime. This proposal finds some
support in well known early experiments of Aeppli et al.27 on
near-optimal La2−xSrxCuO4 providing an explanation of both
the scaling of the peak width and peak height as a function
of temperature/frequency. We outlined a number of other
predictions from the proposed theory for future experiments.

A disappointing aspect of our results is that the critical
stripe fluctuations associated with the transition to the stripe
loop metal are not capable of producing most of the observed
non-Fermi liquid physics of the strange metal regime. In
particular, the electron quasiparticle remains well defined
even at the stripe melting quantum critical point. Given
the success of our theory in describing the observed stripe
fluctuations in neutron data, one possibility is simply that
the physics driving the strange metal non-Fermi liquid is
not stripe quantum criticality (contrary to the proposal of
Ref. 15). We suggest that our theory correctly describes the
stripe sector that decouples dynamically from the electronic
fluctuations of a non-Fermi liquid metal at the stripe quantum
critical point. The explanation of the non-Fermi liquid physics
itself should then be sought in some other mechanism.
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APPENDIX A: LANDAU DAMPING IN SOME NON-FERMI
LIQUID METALS

Consider a metal with a sharp Fermi surface, possibly in
a non-Fermi liquid phase. We take a scaling form for the
electronic spectral function

A(δk,ω) = 1

ωα/zf
F

( ω

δkzf

)
, (A1)
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where δk = (k − kF ) · k̂F . This is appropriate for the Fermi
liquid (α = zf = 1) but also for the marginal Fermi liquid and
certain non-Fermi liquids, such as a metal at a Pomeranchuk
transition (α = 1, zf = 3/2). Using this to perturbatively
calculate the self-energy of the fluctuations of the stripe order
parameter (see Fig. 3), we find

�′′(ω, Q) =
∫ ω

0
d�

∫
d2kA(k,ω + �)A(k,ω) (A2)

∼ ω
1+2 1−α

zf . (A3)

At low energies, for α > (2 − zf )/2, this dominates over the
bare ω2 term and, consequently, z is renormalized away from
one.

This remains true even for some more exotic models of the
strange metal, such as the uniform resonating valence bond
(RVB) state studied, e.g., in Ref. 58. In this model, there is
spin-charge separation, with the spin carried by charge-neutral
fermions (spinons) which form a Fermi surface, and the charge
carried by spinless bosons (holons), which form an incoherent
Boltzmann gas. The electron Green function is given by
the convolution of a spinon and a holon Green function.
Nevertheless, at finite wave vectors the Landau damping again
takes the form of Eq. (A3). The spin response of this state is
determined solely by the spinons (which form a Fermi surface),
thus the self-energy of spin stripe fluctuations has the form of
Eq. (A3). The charge response is given by the Ioffe-Larkin
rule:

�electron = �spinon�holon

�spinon + �holon
, (A4)

where the holon polarizability is finite and nonsingular at finite
wave vectors and �′′

spinon is of the form of Eq. (A3). Expanding

�′′
electron for small ω then yields �′′

electron ∼ ω
1+2 1−α

zf .

APPENDIX B: RG EQUATIONS FOR THE
TETRAGONAL MODEL

Consider the theory described by Eq. (41), i.e.,

S =
∑
i=x,y

∫
τ,r

(∂μ
	ψi)

2 + r( 	ψi)
2 + u( 	ψi)

4

+ 2v

∫
τ,r

( 	ψx)2( 	ψy)2, (B1)

where we wrote 	ψi = (Re[bi],Im[bi]). More generally, we can
consider this theory for N -component vectors 	ψi . The RG
equations to leading order in ε = 4 − d are readily obtained:

d

dl
u = εu − (8 + N )u2I0 − Nv2I0, (B2)

d

dl
v = εv − (4 + 2N )uvI0 + 4v2I0, (B3)

where I0 depends on the cutoff scheme. The fixed points (FPs)
are

A : (u∗,v∗) = (0,0), (B4)

B : (u∗,v∗) =
(

1

8 + N
,0

)
ε/I0, (B5)

C : (u∗,v∗) =
(

N

16 + 2N2
,

N − 4

16 + 2N2

)
ε/I0, (B6)

D : (u∗,v∗) =
(

1

8 + 2N
,

1

8 + 2N

)
ε/I0. (B7)

A standard stability analysis finds that the O(2N )-fixed point
D is stable for N < 2, C is stable for 2 < N < 4 and the
decoupled FP B is stable for N > 4. However, it is known
from higher-order expansions and Monte Carlo studies that
for N > 1, the decoupled FP is the only stable fixed point in
d = 3. So the leading order ε expansion gives the incorrect
result. Similarly, the leading order expansion in 1/N finds the
decoupled FP to be unstable [this can be seen from Eq. (42),
where to leading order in 1/N , ν = 1/2]. A higher-order
expansion in the presence of the nematic coupling (45), e.g.,
along the lines of Ref. 25, is rather involved, and we do not
pursue this direction here.

APPENDIX C: DUAL DESCRIPTION OF THE
DECONFINED TRANSITION

First consider the orthorhombic case. The dual description
of the usual XY transition is given by a vortex field �(r) =
eiϕ(r), which is minimally coupled to a fluctuating U (1) gauge
field, i.e., the hopping of vortices is described by

Hv = −tv
∑
r,ê

exp[iϕ(r) − iϕ(r + ê) − 2πiaê(r)] + H.c.,

(C1)

where the number of the original XY bosons is related to flux
of the gauge field via

nr = aŷ(r + x̂) − aŷ(r) − ax̂(r + ŷ) + ax̂(r) = ∇ × a.

(C2)

In the following, we will use ∇ to describe lattice derivatives to
lighten the notation. When the vortices are condensed 〈�〉 �= 0,
single valuedness of � requires that

2π
∑
�∈�

�̂ · a = 2π∇ × a = 2πN, (C3)

i.e., the boson number is quantized in integers. For the XY ∗
transition, we only allow doubled vortices �(r) = e2iϕ(r).
Their hopping is described by

H ∗
v = −tv

∑
r

exp[i2∇ϕ(r) − 4πia(r)] + H.c., (C4)

and when 〈�〉 �= 0, single valuedness of � implies

4π∇ × a = 2πN, (C5)

i.e., the boson number is quantized in half-integers, in
agreement with our fractionalizion prescription

ψ = b2. (C6)

Further, the single-vortex is now an Ising variable, i.e., � =
±√〈�〉 and can be identified with the Z2 gauge field.
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Now we turn to the tetragonal case, where we have two
vortex fields �i(r) = eiϕi (r), each coupled to their own gauge-
field ai(r). We only allow hopping of pairs �1�2 or �1�

∗
2 ,

i.e.,

H tet
v = −tv

∑
r,σ=±

exp{i∇ϕ1(r) + σ i∇ϕ2(r)

− 2πi[a1(r) + σ a2(r)]} + H.c. (C7)

If 〈�1�2〉 = 〈�1�
∗
2 〉 �= 0, the fluxes are quantized as

∇ × a1 ± ∇ × a2 = N±, (C8)

or alternatively the boson numbers as

n1 = 1
2 (N+ + N−), (C9)

n2 = 1
2 (N+ − N−), (C10)

so in terms of the charges Q1,Q2 of the original XY fields, the
elementary excitations in the phase where the paired vortices
have condensed carry charge (Q1,Q2) = (1/2, ± 1/2), which
is reflected in the fractionalization prescription [see Eq. (20)]

ψx = b1b2,
(C11)

ψy = b1b
∗
2 .
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