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Edward Harris Kaplan
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requirements for the Degree of Doctor of Philosophy

ABSTRACT

This thesis describes the basic workings of public housing tenant
assignment systems and presents the detailed assignment procedures

utilized by several public housing authorities across the United
States. Using these procedures as a guide, the theory of birth and

death processes is used to develop realistic models for the prediction
of applicant waiting times, tenant allocations, and project
compositions. These models are applied to real data from the Boston

Housing Authority to answer various policy questions.

A special case of tenant assignment occurs when large housing projects

are redeveloped and tenants must be relocated. Scheduling models are

derived for these redevelopment programs accounting for the fact that
tenants must always be assigned to appropriate units. An application

of the methods developed to a relocation problem in Boston is also

presented.

The thesis concludes with a discussion of both the policy implications

of the work reported, and areas deserving future research attention.

Thesis Supervisor: Dr. Richard C. Larson

Title: Professor of Electrical Engineering and

Urban Studies; Co-Director of the Operations
Research Center
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Chapter I

Introduction

Public housing authorities exist in almost every major American

city. The primary service of these authorities, the provision of

affordable, decent housing for low income households, is clearly in

heavy demand. One only has to examine applicant waiting lists to

realize that the demand for public housing far exceeds supply. For

example, there are currently about 10,000 households waiting for public

housing assignments in Boston (Boston Housing Authority computer

files). In Philadelphia, 15,000 applicants are on the waiting list

(letter from Philadelphia Housing Authority dated Jan. 24/84), while

over 40,000 applicants await public housing assignments in Baltimore

(letter from Housing Authority of Baltimore City postmarked Jan 19/84).

With such burdens being placed on public housing programs, there

is a clear need to develop means for effectively managing this demand.

The consequences of poor demand management impact both the level of

service provided by housing authorities and new applicants' perceptions

of public housing. For example, in their management review of the

Boston Housing Authority (BHA), Coopers and Lybrand report:

"The demand for low-income housing, as evidenced by the number

of applications received by the BHA, far exceeds the number of

units that the BHA can make available in acceptable condition in

its current situation ... it is estimated that the Occupancy

Department spends 1000 hours or more per month of staff time in

reviewing applications, interviewing applicants and determining

eligibility. This time is provided at the expense of processing

legitimate requests for transfer and assignment of existing

14



tenants to acceptable units. Just as importantly, acceptance and

processing of applications probably creates a false sense of

encouragement in applicants that their housing needs will be

solved by the BHA and deters them from seeking other alternatives

to their present situation."

(Coopers and Lybrand, 1980, p.III 16-17)

This dissertation is concerned with techniques for managing public

housing demand. Our major contribution lies with identifying the

impacts that alternative tenant assignment systems have on service

quality (primarily expressed as waiting time for housing assignments)

and housing authority objectives (for example, the racial integration

of housing projects). Once housing authorities have the means to

examine the implications of their adopted policies, it should prove

easier for these authorities to develop policies which better achieve

stated goals. As so much of our work will involve the tenant

assignment process, we will briefly review the steps in this process as

they might apply to a new applicant for public housing in a typical

U.S. housing authority.

1.1 The Tenant Assignment Process

1.1.1 Arrival of New Applicant

The assignment process for a new tenant begins when that tenant

applies for public housing. The application form for the Housing

Authority of Baltimore City is shown in Figure 1.1; this form is

typical of those used in American housing authorities. The tenant is

asked to provide basic information necessary for determining the unit

type required (e.g. household size and composition); eligibility (e.g.

15



Figure 1.

For Ofce use Uniy

Housing Authority of Baltimore City

Application for Public Housing and Section 8 Programs

Please print and fill out this form completely.

1. Name of Head of Household
Last Name Fir

2. Present Address
Streer A aress

3. Teleonone Number Social Securit

4. Is the head of the household or the spouse 62 years of age or older?

5. Are all the members of your household over the age of 457

Date

App. No.

sr Name Middle Intal

y Number

Yes No -

Yes __ No .

6. Is the nead of the household or the soouse handicapped or disabled? Yes No __

7. Have vou ever ived in pubic housing in Baltimore City before?

If so. wnere did vou lve?

Yes - No .

When? _

8. iHowes mnany people, ocluding your-eif, wil be living in the housenold?
Numbern tom,,v

9. How rrany people woo will be living in the household are under age 18?
Namoo mm..ars

10. How many people who will be living in the housenold are female

11. What is the total income coming into the household at this time? S per ___
week moth. or year

12. Do you or anyone living in the housenold receive income from any of the following sources?

Department of Social Services (DSS) Yes _ No Suopiemental Security income Yes No -

Social Security Yes No Other:Miscellaneous Yes No

Employment ifull time or part time) Yes No

13. Please creck the spaces oelow of the places wrere you would ike to live.
We wil try to consider you for the deveiopments of your choice.

Any famisv devetooment
Any renabilItateu house
Any elderly develooment

_ Sheltered housing .. Congregate Housing
Section 8 Existing Program
Section 8 Moderate Rehabilitation
Section 8 Regional Housing

Family developments

Anderson Village
The Broadway
Brooklyn Homes
Cherry Hill Homes
Claremont Homes
Douglass Homes
Fairfield Homes
Flag House Courts
Gilmor Homes
Hollander Ridge
Julian Gardens
Lafayette Courts
Latrobe Homes
Liexinqton Ferrace
McCuiloh Homes
Mount winains

Muronv Home-s
Dipo nd inrns

Number of Bedrooms

1, 2, 3
2. 3.4, 5

1, 2. 3
1, 2, 3,4, 5
1, 2, 3.4, 5
1, 2. 3.
1 2. 3,
1, 2, 3,4,5
1, 2, 3
1, 2, 3.4, 5, 6

3, 5
1. 2. 3, 4
1, 2. 3
1, 2, 3. 4
1, 2. 3, 4 5

2 and 4
1. 2, 1 a -
1 2. 3, 4

Elderly and Handicaoped Developments
Most aewiomenis rae .erts no oneSeiroon 5partmn'-ie

-- Bel-Park Tower'
The Brentwood
The Broadway'
Chase House
Claremont Extension
Ellerslie Apartments
Govans Manor
Hollander Ridge'
Hollins House a one bedroom only
Lakeview Towers'
Bernard E. Mason Apts. * one bedroom only
McCulloh Extension 0. 1, & 2 bedroom"
Monument East Apartments
Primrose Place e one bedroom only"
Rosemont e one bedroom only
The West Twenty'
Wyman House

* n^*e'*'"e Hous" *o*''*i" " C*"9'*9*'* HO"i'-ixq**''-**-e

Please mail this application by folding it on the dotted lines
so tne address on tne back faces outward or deliver it to

Housing Authority of Baltimore City
Housing Application Office
American Building, 5th Floor
231 E ist Baltimore Street
Paltimore. Maryiand 21202

16
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income); assignment priority (e.g. handicapped or disabled status); and

desired location for residence.

1.1.2 Determination of Eligibility

The application form is reviewed, and certain facts are verified

by housing authority officials to determine whether or not the

applicant is eligible for the public housing program. Eligibility is

usually determined on the basis of income, though other attributes

(e.g. past criminal record) affect eligibility as well. If a household

is found ineligible, it is notified as such and dismissed from the

system. Otherwise, the applicant is entered onto the waiting list for

housing assignments.

1.1.3 Waiting List Processing

Essentially, eligible households wait until they are notified of

an available unit. The particulars of waiting list management can be

quite complicated, as housing priorities and tenant choices must be

taken into account. In addition, households may choose to drop out

while waiting for housing assignments, a wait that can take several

years. During the wait for an assignment, households may be contacted

periodically to reassess housing needs or to see if public housing is

still desired. The details of waiting list management are discussed in

Chapter 2.

1.1.4 Housing Assignments

Housing assignments are triggered by household moveouts from

housing projects. As the waiting lists for public housing units are

almost never empty, housing assignments can only occur when vacancies

appear due to moveouts. When such moveouts arise, the managers of the

relevant housing projects contact the central authority office to

17



release those households next in queue for assignment from the waiting

list. If the unit offered to the household in question is acceptable,

a rental agreement is signed and the tenant occupies the unit shortly

thereafter.

There are a number of questions associated with the tenant

assignment process. First of all, it should be clear that the manner

in which a housing authority organizes the waiting list for housing

assignments greatly impacts the performance of the tenant assignment

system. How do authorities manage waiting lists? What are the

consequences of these management strategies for tenant waiting times?

How will these rules effect ultimate project compositions? What is the

role of tenant choice in a tenant assignment process? How long will

households wait for assignments before dropping out of public housing

waiting lists for a particular assignment scheme? These questions are

addressed in detail in this dissertation.

1.2 Guide to the Thesis

In Chapter 2, the tenant assignment policies used in ten large

U.S. housing authorities are analyzed in detail. The results of this

analysis enable a characterization of tenant assignment schemes in

terms of waiting list management, priority classes, methods for

implementing priority assignments, and tenant choice. We will argue

that the different assignment schemes reflect the different viewpoints

held towards the function of public housing as a social service system,

but that specific assignment systems may not be consistent with broader

policy objectives.

The different policies reviewed in Chapter 2 are carefully modeled

in Chapters 4 and 5. The idea is to develop a set of techniques which

18



describe the consequences of a particular tenant assignment policy.

The performance measures chosen include the waiting time from

application to assignment for a new applicant, the demographic

compositions of projects, and tenant allocations (numbers of tenants

assigned to different projects; number of dropouts). These models are

applied to real data from the Boston Housing Authority in Chapter 6.

Issues considered include the effects of changing from the current

assignment system in Boston to (i) a project based or (ii) a citywide

system, and the time necessary to integrate a particular project

following current policy. The models require various assumptions, and

some of these are verified empirically in a study of household

occupancy times presented in Chapter 3.

It is appropriate to mention the use of models at this point. The

models developed throughout this thesis are somewhat novel in that they

are designed to reflect the particulars of public housing operations.

The models enable the policy maker to describe the implications of a

particular policy without actually implementing the policy. This

stands in stark contrast to other modes of scientific enquiry, such as

social experimentation, which would require a tremendous effort in time

and money to obtain results comparable to the ones reported throughout

this thesis.

Thus far, we have focused on the problem of assigning new

applicants to housing units. A very different form of tenant

assignment occurs when housing projects are redeveloped. Here tenants

must be relocated to temporary and new permanent units while large

scale construction takes place. As these "relocation problems" are

starting to occur more often due to the deterioration of public housing
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stock, methods for addressing these problems could prove quite

valuable. A class of relocation models is developed in Chapter 7. The

application of these models to an actual redevelopment project is

described in Chapter 8.

The thesis concludes in Chapter 9 with a review of the

implications of the work presented. Areas for future research are

outlined, as are suggestions for implementing the research completed in

this document.

1.3 Public Housing as an Urban Service System

Before closing this introductory chapter, I would like to place

this work in perspective. Within the last fifteen years, operations

researchers have begun to analyze the operations of urban service

systems with an eye towards improving the quality of service these

systems offer. In areas such as policing (Larson, 1972) and fire

protection (Walker, Chaiken, Ignall; 1979), it is clear that this

research has had an impact on the provision of the said services. Most

of the major recommendations from these researchers were developed from

mathematical models of the service system studied.

I would like to view this work on managing public housing demand

as being in the same spirit as these earlier studies. Though I have

chosen to focus on tenant assignment and relocation problems, public

housing authorities have other logistical concerns such as the

maintenance of housing stock; the design of rent collection and tenant

accounting systems; and the provision of security to all public housing

occupants. The work reported in the following pages represents only a

sample of what could be learned from a detailed study of the

operational problems of public housing management.
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CHAPTER II

TENANT ASSIGNMENT POLICIES IN U.S. HOUSING AUTHORITIES

At the heart of public housing operations lies a fundamental

resource allocation question: How are eligilble applicants to public

housing assigned to public housing units? More precisely, what is the

procedure used to determine which household is assigned to the next

available apartment? The manner in which a housing authority answers

these questions has far reaching consequences ranging from the

determinaton of the waiting time until assignment for a newly arriving

public housing applicant to the ultimate demographic compositions of

housing projects and the happiness of the tenants living therein.

We will refer to the collection of procedures and decision rules

used by housing authorities to assign households to housing units as

tenant assignment policies. Tenant assignment policies, more than any

other facet of public housing operations, reflect the true character of

a public housing authority. These policies illustrate (and implement)

the functions housing authorities perceive public housing programs to

serve. Indeed, the public housing population within an authority's

jurisdiction is a testimony to the tenant assignment practices (past

and present) of that authority.

As mentioned in Chapter 1, public housing authorities are faced

with demands for housing units that far exceed supply. This demand for

public housing is essentially managed via tenant assignment policies.

Tenant assignment policies dictate what form waiting lists will take,

what choices prospective tenants receive in the assignment process, how

prospective tenants are prioritized, and ultimately, how long
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prospective tenants are required to wait for a housing assignment.

Thus, a careful study of tenant assignment policies is necessary if we

are to understand the issues involved in managing public housing

demand.

To develop an appreciation for tenant assignment policies and

their attendant problems, it is useful to examine a range of assignment

policies currently utilized by major U.S. housing authorities. Towards

this end, I contacted sixteen large housing authoriites listed in the

Council of Large Public Housing Authorities (CLPHA) directory

requesting copies of their tenant assignment policies in whatever form

they exist; the text of the request is shown in Exhibit 2.1. From

these letters, I received detailed responses including stated tenant

assignment policies from the following ten housing authorities:

Baltimore, Boston, Cambridge, Chicago, Greensboro, Houston,

Minneapolis, Omaha, Pittsburgh, and St. Paul. For the remainder of

this Chapter, we will present an analysis of these policies, extracting

important features for future consideration as we proceed. The issues

raised in this chapter will form the basis for most our technical work

in Chapters 4 and 5.

2.1 Objectives of Tenant Assignment Policies

That housing authorities share the broad social goal of providing

decent, affordable housing for low-income households is evident from

the stated objectives of these authorities. Here are four such

statements:

"... provide decent, safe, sanitary, and uncongested rental
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Exhibit 2.1

OPERATIONS RESEARCH CENTER

ROOM E40-164

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 021 39

(617)2 5 3 -3601

November 25, 1983

The purpose of this letter is to request from you or a member of your staff
some readily available information. As background, I am a doctoral candidate at the
Massachusetts Institute of Technology undertaking research in the operational aspects
of public housing occupancy policies. Much of my work, which to date has occurred
almost exclusively in Boston, involves the modeling of tenant assignment systems.
These models can be applied in day-to-day settings (e.g., to forecast the probable
waiting times for new applicants), or as policy analytic tools (e.g., to study the
effect of a tenant assignment scheme which prioritizes households on the basis of
ethnicity, income, or some other criterion). I have also constructed models which
aid in sequencing large redevelopment programs where tenant relocation is a major
concern; these models have been used by the Boston Housing Authority.

It is my hope that this research will result in a flexible set of techniques
specifically geared toward public housing occupancy planning and policy analysis.
Toward this end, I would be most appreciative if you or a member of your staff would
send me one or more of the following items:

1. A sample application form for public housing from your agency;

2. Any guidelines, directives, or procedures manuals pertaining to your
agencv's approach to tenant assignmenc (e.g., now are waiting 1i.-ts

mananged--bv deve lioment? itvwide hen an apartment becomes ava
able, how is the LeCisiULn made regarding which household next upe
that apartment?).

In return, I would be delighted to provide you with a synopsis of my dissertation
and details pertaining to the modeling effort as they become available.

Thank you very much for your cooperation, and I look forward to hearing
from you.

Sincerely,

Edward Kaplan
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housing for families with low incomes at rentals consistent with

their incomes." (Section 7113, Occupancy Standards, Chicago

Housing Authority)

"These policies are designed to meet the needs of limited-income

families for decent, safe, sanitary low-rent housing which

provides a suitable living environment and which fosters economic

and social diversity and upward mobility." (Section 1.0,

Occupancy Policy, Greensboro Housing Authority)

"The Tenant Selection and Assignment Policies have been designed

by the Agency to take into consideration the needs of individual

families for low income housing and the statutory purpose of

developing and operating a socially and financially sound

low-income housing program which provides a decent home and a

suitable living environment, and fosters economic and social

diversity in the tenant body as a whole." (Section 1, Statement

of Policy, Minneapolis Community Development Agency)

"... the basic objective, within a reasonable period of time, of

housing tenant families with a broad range of income,

representative of the range of low-income families in this

Authority's area of operation, as defined in state law, and with

rent-paying ability sufficient to achieve financial stability of

the project or projects." (Section 3.01 (D)), Resolution No. 27

of 1981, Housing Authority of the City of Pittsburgh)

The statements cited reveal other objectives besides the provision

of low-income housing. Both the Minneapolis and Pittsburgh statements
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mention the necessity of achieving financial solvency in their

authorities; such a goal necessarily requires a certain mix of incomes

among project occupants, and could lead to explicit income mixing

policies. The Pittsburgh statement makes reference to housing

households "within a reasonable period of time "; as assignment

policies have tremendous impacts upon waiting times, the Pittsburgh

objective should lead to an efficient (in time) assignment scheme. The

Omaha and Minneapolis statements mention "social diversity" as a policy

objective; this refers to achieving demographically mixed project

populations, and could lead to explicit racial mixing policies.

Towards this end, consider two of the stated objectives of the

Boston Housing Authority:

"... assure that no discrimination on the basis of race, creed,

color, religion, national origin, marital status, sex, or handicap

is practiced in the selection of applicants, assignment of

tenants, or the granting of transfers... promote racial

integration of public housing developments." Section IA and IB,

Tenant Selection, Assignment, and Tranfer Plan, Boston Housing

Authority)

To promote racial integration of projects, one would presumably

implement differential assignment rates for different racial groups.

Some may construe such differential assignment rates as a violation of

the notion that "no discrimination on the basis of race... is practiced

in the... assignment of tenants." The internal consistency of tenant

assignment policies is perhaps questionable.

The preceding discussion has illustrated the more common stated

objectives of public housing authorities to the extent that our ten
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responding authorities can be considered representative. We will now

proceed to examine the specifics of tenant assignment policies,

policies which presumably act to achieve the objectives mentioned

above, beginning with the issues of waiting list management and tenant

choice.

2.2 Waiting List Management and Tenant Choice

Much can be learned about an authority's tenant assignment process

by examining the means by which waiting lists are managed. Typically,

waiting lists are first differentiated by unit requirements. These

requirements usually refer to apartment size (e.g. number of bedrooms),

but may also include special features (e.g. apartments equipped with

aids to the handicapped).

Waiting lists are also prioritized, with households in higher

priorities receiving assignments before households in lower priorities.

However, as authorities vary greatly in both the attributes considered

to merit high priority status and the methods for implementing

prioritized assignments, we will discuss priorities in detail later on.

Finally, waiting lists vary by geographic scale, in that any

particular waiting list (already broken down by unit requirement and

priority status) may be applied to a single project, a group of

projects in a neighborhood or community, or all projects in the

authority. Within the bounds of geographic scale, priority status and

unit requirement, assignments are typically made in chronological order

of tenant application.

The geographic scale covered by a waiting list has direct
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implications for tenant choice in the assignment process, and for the

ultimate demographic compositions of projects. Consider the following

two extremes. On the one hand, an authority could operate a system of

project based waiting lists; each new applicant would select a single

project, and wait until an appropriate unit becomes available. Such a

system guarantees that all households are eventually offered units in

their chosen projects. Such a system also causes the authority to

abdicate control over the demographic design of projects, as tenants

decide where to live; the authority cannot route tenants to projects

to achieve some goal such as desegregation. Finally, a project based

system will produce unbalanced waiting times, with households

experiencing long waits at "popular" projects, and shorter waits

elsewhere.

At the other extreme, an authority could operate a citywide first

available unit system, where households are assigned to the first

apartments vacated regardless of their locations. This system does not

possess any guarantee that households will be offered units in

desirable locations; rather, there is only a probability that a

household will be assigned to a project viewed as desirable by that

household. However, assuming for the moment that tenants don't quit

the system, an assignment scheme of this form would integrate all

projects in the same ratios as found on the waiting list. Also, the

waiting times experienced by those on the waiting list would be much

more balanced.

These two extremes in geographic scale illustrate a basic trade

off that occurs in tenant assignment policies: one must balance

tenant choice in the assignment process against the authority's ability
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to influence the demographic compositions of projects. In assessing

this tradeoff, one must also remain cognizant of the waiting times

implied by the assignment process chosen, as excess waiting times will

cause tenants to quit the system.

The housing authorities in our survey practice assignment policies

which cover the range between the two extreme examples presented.

Recognizing that tenant choice is important for both continued

participation in the housing program and ultimate tenant satisfaction,

some of the authorities have devised mechanisms which grant prospective

tenants some degree of choice via the right to refuse a certain number

of offered units. Consider the following guidelines from the Housing

Authority of Baltimore City:

"Eligible applicants shall be offered suitable housing within the

location wherein the highest number of vacancies exist. Rejection

of three separate offers of suitable accomodations shall result in

the placement of the applicant's name at the bottom of the

eligible applicant list, unless the applicant shall prove undue

hardship or handicap to the satisfaction of the Authority..."

(Section IVG, Statement of Policies and Standards Governing

Admission To and Occupancy of Low-Income Public Housing Operated

by the Housing Authority of Baltimore City, Housing Authority of

Baltimore City)

A similar policy is followed in Houston:

"If there is a suitable vacant unit in more than one location, the

applicant shall be offered the unit at the location that contains

the largest number of vacancies. If the applicant rejects the

first offer, he/she shall be offered a suitable unit at the
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location containing the next highest number of vacancies. If the

applicant rejects three (3) such offers he/she shall be placed at

the bottom of the eligible list. The Authority shall make all

such offers in sequence and there must be a rejection of a prior

offer before the applicant may be offered another location.

(Section IV, Admissions and Continued Occupancy Policy, Housing

Authority of the City of Houston)

The assignment systems illustrated by the Baltimore and Houston

statements will be refered to as refusal systems. We can formalize the

notion of a refusal system through the following characterization: A

k strike refusal system is a tenant assignment system where eligible

applicants are offered up to k units, sequentially. Applicants may

refuse any (or all) of the first k-1 units offered with no associated

penalty. If an applicant refuses all k units, then the applicant must

return to the bottom of the waiting list. In other words, in a k

strike system, "k strikes and you're out." The Baltimore and Houston

policies are both three strike systems (i.e. k=3).

It is interesting to note how refusal systems can cover the range

from project based to citywide waiting lists. Suppose that an

authority is operating a citywide system with one strike refusal; this

situation gives tenants no choices other than accepting an offered unit

or retreating to the bottom of the waiting list (or leaving the

housing system altogether). Now, suppose that the authority offers an

infinite number of strikes. This would afford applicants the luxury of

refusing units without penalty until a desireable unit is offered, and

effectively would represent a project based scheme. Applicants could

decide a priori which projects to live in, and refuse offered units
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until an offer occurs in a desired project.

Eight of the authorities surveyed use refusal systems as a

mechanism for implementing tenant choice; these authorities are listed

in Table 2.1 along with the geographic scale of the waiting list

managed, and the number of strikes in the refusal system. Note that

city wide, one strike systems are in use. Consider the case of St.

Paul:

"Suitable vacancies arising at a given time at any location shall

be offered to the eligible applicant first in sequence at such

time. The eligible applicant must accept the vacancy offered or

be moved to last place on the eligible applicant list." (Section

C, Tenant Selection and Assignment Plan, Public Housing Agency of

the City of St. Paul)

Thus, the degree of choice offered to new applicants via refusal

systems is quite varied in U.S. Housing Authorities.

The Boston Housing Authority (BHA) has a tenant assignment system

which is quite different from the refusal systems discussed above:

"Applicants shall be asked to name up to three preferred locations

for housing from among all BHA housing developments or leased

housing on a community-wide basis. ... The interviewer shall

explain to the applicant (1) that he/she will be offered only one

of his/her preferred locations; (2) that the offer will be made in

whichever requested development has the earliest appropriate

vacancy; and (3) that if the applicant refuses to be housed at

that location... his/her application will be treated as a

refusal.. ." (Section III B, Tenant Selection, Assignment and

Transfer Plan of the Boston Housing Authority, Boston Housing

Authority)
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Table 2.1

City

Cambridge

Greensboro

Baltimore

Minneapolis

Houston

Chicago

Omaha

St. Paul

Eight Authorities with Refusal Systems

Geographic Scale
of Waiting List

Citywide

Citywide

Citywide

Citywide

Citywide

Project Based

Project Based or Citywide
at Applicant's Choice

Citywide

Number of
Strikes (k)

1

3

3

2

3

1

1

1
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The policy towards refusals mimics that of one strike systems (with

exceptions granted for various reasons).

Thus, the BHA system represents a different approach to tenant

choice. Applicants pre-specify a collection of up to three projects,

and the BHA guarantees that the unit offered to the applicant will fall

within one of the projects specified. If an applicant is interested in

only one project, the applicant can specify solely that project, so for

some prospective tenants the BHA functions as a project based tenant

assignment system. However, most new applicants specify two or three

projects, and for these prospective tenants, the BHA functions as a

multiqueue assignment scheme; households are on waiting lists at

several projects simultaneously.

The BHA system appears to heavily favor the tenant choice side of

the choice/project composition tradeoff discussed earlier, even more so

than project based waiting lists. Yet, as mentioned before, one BHA

objective is to promote the racial integration of projects. To achieve

this goal in a heavily choice based assignment system is difficult.

The way the BHA tries to integrate projects is through the use of

priority structures. All housing authorities studied here also use

priority structures, but for a variety of reasons. Let us now turn to

examination of the types of priorities evidenced by the authorities in

our survey; later we will consider the different methods used for

implementing these priorities.

2.3 Priorities in Tenant Assignment

Within a given waiting list (broken down by unit requirements),

all applicants are not treated equally. Some applicants are viewed as
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more needy, or more deserving of public housing than others. When one

peruses the attributes which amount to different priority classes in

different authorities, one is left with the sense that these priorities

reflect the housing authority's view of its social mission. Consider

the followilng statement regarding priorities:

"1. Only those applicants who can pay a rent in the needed income

range will be considered. In the event that there are no eligible

applicants in this income range, the next highest range is used.

2. Within the applicants in this income range, displaced families

will be given preference over nondisplaced families.

3. Within this group of displaced families, the family with the

earliest date of applicaton will be selected.

4. If there are no displaced families, the nondisplaced family

with the earliest date of application within the income range will

be selected.

GHA reserves the right to waive any provisions within these

policies to meet emergency conditions; an emergency condition is

defined as a situation in which failure to supply immediate relief

would pose a serious threat to the health, life, or safety of the

applicant." (Section 4.5, Occupancy Policy, Greensboro Housing

Authority)

These statements clearly reflect the mission of public housing as

perceived by the Greensboro Housing Authority. Emergencies, those with

the greatest need, are housed as a top priority. After this, an income

mix is enforced to ensure that the authority remains solvent. Finally,

displaced families are prioritized over nondisplaced households, again

reflecting relative need. Note that within priorities, assignments
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occur on a first come first housed basis.

The policies reviewed contain many different priority categories,

and different orderings of these categories. Most authorities reserve

their highest priority classifications for households exhibiting the

greatest need; these households are typically referred to as

emergencies or displaced households. Many authorities also attempt to

house elderly applicants before assigning "regular" households.

However, not all authorities grant emergency or displaced

households highest priority status. For example, the Chicago Housing

Authority's highest priority status is defined as follows:

"Both for initial occupancy and as vacancies occur in developments

initially made available subsequent to November 24, 1969, dwelling

units shall, depending upon bedroom size only, be offered first to

eligible applicants residing at that time in the community area in

which the development is located. This procedure is to be

followed to the extent that such area residents shall have a

priority to occupy 50% of the dwelling units in the

development.. ." (Section 7142, Occupancy Standards, Chicago

Housing Authority)

In fact, the application form for public housing administered by the

Chicago Housing Authority explicitly states:

"WE DO NOT HAVE EMERGENCY HOUSING, and you cannot be housed until

we have housed all other families, of the same size as yours that

are ahead of you on the waiting list." (Form CHA-315, Chicago

Housing Authority Registration-Family Housing, Chicago Housing

Authority)

Residency is also a factor in determining a household's priority in
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St. Paul, where applicants receive a large number of "points" if they

are either St. Paul residents, or are employed within the jurisdiction

of the Public Housing Agency of the City of St. Paul (we will discuss

the use of points in implementing priority schemes in the next

section).

Other attributes taken into account when determining priority

classifications include: household income (either for economic reasons

of financial solvency, or social reasons of income diversity in project

populations); transfers from other locatons in the public housing

system; household ethnicity (for purposes of integrating projects);

veteran or serviceman status; and relationship of rent at current

private housing unit to household income. Table 2.2 presents the top

four priority classes evidenced by the tenant assignment policies for

eight of the authorities surveyed; the two other cities (Omaha and

St. Paul) will be reviewed in the next section with scoring systems.

One thing is clear from Table 2.2; a given household with

particular characteristics could receive greatly varying treatment

from the different housing authorities owing to the different

definitions of priorities across cities. This isn't entirely

surprising, as the priority classes shown presumably represent the

varied objectives of the housing authorities studied. What is not

clear is whether or not the particular priority schemes used do in fact

achieve the objectives set out by housing authorities; we will return

to this issue at the end of this chapter.

2.4 Implementing Priorities

The last section described the different priorities housing
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Table 2.2

Assi unecnt Priorities in Eight U.S. Public Housing Authorities
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authorities have established in their tenant assignment policies. In

this section, we will considr three different ways that authorities

implement these priorities: Categorical priorities, blend priorities

(or differential assignment rates), and score priorities.

2.4.1 Categorical Priorities

This method is the most common observed. Households are assigned

to a priority category on the basis of their attributes. For example,

a non-elderly, non-displaced household with an income in the range most

underepresented would receive a priority of category 3 from the

Minneapolis Community Development Agency according to Table 2.2. In a

categorical priority system, no households in a priority category j can

be assigned until all households in categories one through j-1 have

been assigned. Within category j, assignment is in chronological order

(i.e. first come first housed). Thus, our category 3 household in

Minneapolis would not be housed until all households in categories 1

and 2 (elderly displaced, or others displaced by public action or

natural disaster) are housed. In addition, newly arriving applicants

in categories 1 through j-1 will be housed before applicants in

priority category j initially present are housed. Completing our

example, a newly arriving household displaced by public action in

Minneapolis will be housed before a non-displaced, non-elderly

household in priority category 3, regardless of how long the category 3

household has been waiting.

While the implementation of such categorical schemes is

relatively straightfoward, these schemes do possess one problematic

feature. If the rates at which high priority applicants arrive are
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sufficiently high to guarantee that such applicants are always present

on the waiting list, then lower priority applicants will never be

housed. We have not been able to study statistics for authorities

across the country, but one could certainly conjecture that in some

housing authorities, certain eligible applicants are effectively barred

from receiving a public housing assignment due to the priority system

in use.

2.4.2 Blend Priorities

One way to prioritize which does not have the drawback of the

previously discussed categorical scheme is to assign different priority

groups differential admission rates. For example, if one is attempting

to integrate a predominantly non-white project, a means for doing this

could be: assign k white applicants for every non-white applicant

assigned to the project. If k is chosen to be very large, the effect

of such a blend priority scheme would mimic that of a categorical

scheme where white households are given highest priority, and non-white

households are given lower priority. However, choosing k to be smaller

(e.g. k=2 or 3) creates a situation where white applicants are being

assigned at a faster pace than non-whites, but non-whites continue to

be assigned. This form of prioritizing is being practiced in Boston

with respect to household racial characteristics (white, non-white) and

household incomes (above median income for family size, below median

income for family size) to achieve various racial and income mixes in

Boston Housing Authority projects (Price and Solomon, 1983).

2.4.3 Score Priorities

In two of the authorities studied, Omaha and St. Paul, applicants
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are actually assigned points on the basis of their housing need and

other characteristics. Let:

wi = points (or weight) assigned to attribute i,

i = 1,..., I

1 if household j possesses attribute i
Xij = I

0 if not

Then the score for household j, sjs is given by the sum

I
s. = w.x.. (2.1)

J .1 1)
i=1

Households are assigned scores using equation (2.1); these scores are

then rank ordered from highest to lowest. The households are then

assigned in descending order of their scores. The attributes and

attendant points awarded in Omaha and St. Paul are shown in Table 2.3.

It is very interesting to compare these two scoring systems. In

Omaha, just under 50% of the total possible points is awarded to

attributes demonstrating lack of housing. In St. Paul, just over 50%

of the total possible points is awarded to residency/work location.

Clearly, these two authorities have differing views of their missions

as public housing agencies!

2.5 Impacts of Tenant Assignment Policies

The tenant assignment policies of a housing authority have direct

impacts on the waiting times for prospective tenants, the demographic

character of projects over time, and the ultimate allocations of

tenants to projects (or the number of tenants who drop out). We raised

the issue previously that tenant assignment policies are meant to

reflect the objectives of housing authorities. Yet, it is not

immediately clear that the policies reviewed here meet the objectives
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Table 2.3

Score Priorities in Omaha and St. Paul

Omaha

Attribute

Displaced, about

to be displaced, no
housing, or about
to have no housing
through no fault of

applicant

Will move to a unit
where race is a
minority

Substandard housing

Rent above maximum

percentage of income

Veteran/Serviceman

or dependent

Points

100

45

30-38

20

10

Source: Resident Selection and
Assignment Plan, Omaha
Housing Authority

St. Paul

Attribute

St. Paul resident

or employed within

jurisdiction of
authority

Displaced by

government action

Without housing

Substandard housing

Rent above 30% of
income

Elderly, disabled or
handicapped

Veteran

Points

64

32

16

8

4

2

1

Source: Memo to National
Association of
Housing and
Redevelopment

Officials, Public
Housing Agency of
City of St. Paul,
1983.
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stated by the relevant authorities, nor is it immediately clear how one

could check to see if these policies are consonant with the stated

goals.

What is lacking is a set of well reasoned procedures which, when

used thoughtfully, have the ability to predict the consequences of a

given tenant assignment policy. Were such procedures available,

housing officials could view the impacts of their policies on measures

such as new applicant waiting times, project compositions and tenant

allocations to see if in fact the policies are performing as intended.

One could also assess the consequences of proposed changes to a tenant

assignment policy on the performance measures mentioned. Finally, one

could provide better information regarding waiting times to new

applicants to aid them in their decisions regarding public housing.

The next several chapters embark on the development of procedures

for addressing the issues raised here. Following an empirical analysis

of occupancy times in Boston public housing in Chapter 3, the broad

classes of tenant assignment policies reviewed in this chapter are

translated into mathematical models. In Chapter 4, we construct

detailed models for project based systems incorporating all three of

the priority schemes presented here. Chapter 5 broadens the models to

incorporate refusal systems, city wide first available unit systems,

and multiqueue systems as used by the Boston Housing Authority. These

models are applied to real data from the Boston Housing Authority in

Chapter 6 to conclude our study of tenant assignment systems and

models.
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Chapter III

Analysis of Household Occupancy Times

in the Boston Housing Authority

We have just completed a discussion of tenant assignment systems

used in U.S. Housing Authorities. It was clear from our analysis that

tenant assignment policies consist of rules for "front door" entrance

and assignment to housing projects. We argued that these rules have

long run impacts on the demographics of public housing projects among

other things.

To gain a feeling for the time scale involved in serving public

housing tenants, I conducted a study to examine the length of time

households actually spend in public housing. The data compiled and

analyzed in this study serve several purposes:

1) For the first time, basic estimates of occupancy time are

available. These estimates can be used to determine the time

necessary for projects to "turn over," and have implications

for the demographics of projects over time.

2) The data can be used to verify certain assumptions made in

models of the tenant assignment process; such models will be

developed in Chapters 4 and 5.

3) The data can be used to assess the stability of public housing

populations; are households spending more or less time in

projects now compared to ten or twenty years ago?

4) Certain issues regarding tenant flow and intraproject

transfers can be assessed.

5) The data should prove to be of interest in their own right to

general housing researchers. For example, how do household
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occupancy times in public housing compare to those for

comparable households in private housing? We do not pursue

such issues here, but these data could prove useful to the

housing research community in answering various questions.

The remainder of this chapter is devoted to the description,

presentation and analysis of the data collected in my study of

household occupancy times in the Boston Housing Authority (BHA).

3.1 Data Collection and Goals of the Study

The data analyzed in this report were collected during June 1983.

Six Boston housing projects were visited: Faneuil, Washington Beech,

Mission Extension, Mission Hill, Mary Ellen McCormack, and Charlestown.

These projects were chosen for two reasons. First, the necessary

records for data extraction were available at these projects.

Secondly, these projects are representative of the diverse physical and

social conditions that pervade public housing in Boston. In addition,

all of these projects are well established, the most recent of the

group having housed tenants since 1950.

The information collected pertains to household occupancy times in

project apartments. For every household that moved out of a project

apartment in the years 1975 through June 1983 inclusive, the following

data were recorded:

1) Identification of the apartment occupied

2) Bedroom size of the apartment occupied (i.e. number of

bedrooms)

3) Move in date to the apartment occupied

4) Move out date from the apartment occupied

43



5) Transfer data (the bedroom size of the new apartment occupied

as of the move out date for internal transfers, or a code

indicating that the household left the project)

In addition, the move in dates and apartment bedroom sizes for all

households currently living in the projects studied were recorded.

The major sources for these data are the Space Inventory Cards

that are maintained at most developments (though some developments in

the BHA have not maintained these files). Space Inventory Cards are

meant to keep a history of the status of all apartments in a housing

project. Thus, move in and move out dates, rental adjustments, major

repairs, and rehabilitations are all examples of the data potentially

retrievable from the Space Inventory Cards.

In some instances, however, these cards are not always accurate.

Other data sources used include Tenant Status Review forms (TSR's), and

development specific "Bibles" (log books that chronologically track

move ins and move outs as they occur). When incomplete Space Inventory

Cards were encountered, these secondary sources were utilized. In a

few cases, however, it was not possible to reconstruct the required

information; such cases were subsequently discarded from this study.

The major variable of interest to this study is household

occupancy time, or length of stay (LOS) in public housing. For those

households who moved out in the period January 1, 1975 through June 1,

1983 (henceforth referred to as the "complete" population), LOS is

simply defined as the elapsed time between the move in and move out

dates. For current occupants (henceforth referred to as the "current"

population), LOS is defined as twice the elapsed time between the move

in date and the date of data collection. The logic behind this is
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simple: on average, current tenants are halfway through their current

LOS, thus an estimate of their ultimate LOS is given by doubling the

observed amount of time they have spent in their apartments thus far.

The properties of LOS for the complete and current populations are of

course quite different; much shall be said about this later on.

There are several questions about LOS which we want to answer.

First of all, we want to know how long households live in public

housing and whether or not this duration varies by bedroom size and

project. If LOS varies, how does it vary? This is a question of basic

interest, for it defines the time frame within which housing

authorities (like the BHA) serve their clients.

A technical question relates to the distribution of LOS. Models

predicting waiting times for public housing assignments make

assumptions regarding the LOS distribution, as do models of project

mixing (e.g. differential assignments according to minority preference

or income level). Are these assumptions warranted? This study will

try to find out.

Thirdly, we wish to know if the public housing population is

stable over time with respect to LOS. Are households spending the same

amount of time in public housing now compared to clients ten, twenty or

more years ago?

Finally, it is of interest (and practical utility for waiting time

models) to determine transfer rates. For example, what fraction of

households leaving two bedroom apartments transfer to three bedroom

apartments? What fraction leaves the project altogether? Given that

one policy under consideration by the BHA is the prioritization of

transfers, this information is important.
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3.2 Household Occupancy Times in Public Housing

The first step in analyzing LOS was to display the relevant data.

Frequency distributions for LOS broken down by project and bedroom size

may be found in Appendix 3.1 for both the complete and current

populations. From these histograms, it is evident that LOS varies

quite a bit.

The variation in LOS for the complete population is summarized in

Table 3.1. The shortest average occupancy time observed is on the

order of 3.5 years, while the longest observed mean occupancy times are

on the order of 10.5 years. Overall, the mean LOS for the complete

population (accounting for sampling variability) equals 5.2 years. To

further summarize these data, the following questions were posed and

answered:

1) How does mean LOS vary by bedroom size?

2) How does mean LOS vary by project?

3) Are these variations significant?

These questions were answered using weighted least squares. The

results of the analysis are as follows:

3.2.1 Variation in LOS by Bedroom Size

LOS appears to increase with bedroom size from one to three

bedroom apartments, then decrease from three to five bedroom apartments

as shown in Table 3.2. However, the associated t-statistics indicate

that there is no significant difference between the bedroom adjusted

mean LOS and the overall mean occupancy time for any bedroom size (the

computed t-statistics would have to exceed 2.101 in absolute value to

reject the null hypothesis of no difference using a 5% level of

significance). In fact, the hypothesis that mean LOS is equivalent for
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Table 3.1

LOS for Complete Population: Summary Statistics

(LOS in years)

Bedroom Size

Project

Mean LOS
Faneuil St. Dev.

Sample n

Wash.
Beech

Mission
Extension

Mean LOS
St. Dev.
Sample n

Mean LOS
St. Dev.
Sample n

Mean LOS
Mission St. Dev.
Hill Sample n

Mary
Ellen

Mean LOS
St. Dev.
Sample n

Mean LOS
Charles- St. Dev.
town Sample n

1 4

6.10
6.02
16

7.13
7.48
27

5.13
3.03
70

5

19.87

1

8.09
4.55
14

2

8.14
6.32
137

5.54
5.87
178

5.34
4.66
222

4.39
2.98
403

10.83
9.06
266

5.49
4.79
442

3

9.34
7.45
99

5.17
4.70
85

6.67
5.32
155

5.70
3.46
180

10.36
8.41
63

5.89
4.70
213

3.41
1.88
5

8.27
8.54
67

3.66
4.07
94

3.36
2.60
210

9.67
8.94
395

5.59
5.20
404

5.70
4.11
74
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Table 3.2

LOS by Bedroom Size

(Complete Population)

Bedroom Size

1

2

3

4

5

Mean LOS (years)

4.6

5.2

6.1

5.4

4.9

St. Error

.661

.538

.827

1.393

3.465

t-statistic
(Mean-5.2)
St. Error

-. 01

0.00

1.09

0.14

-. 09

Model: LOS = Pi + Ei

where i = LOS for bedroom size i; 6i = error term
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all bedroom sizes cannot be rejected (F=.569 with 4 and 18 degrees of

freedom; the associated significance level equals .688). Thus, one may

conclude that mean LOS in the complete sample does not vary by bedroom

size - however, this result will change modestly when different

projects are identified and explicitly considered.

3.2.2 Variation in LOS by Project

LOS varies greatly with the project under consideration. This is

clear from Table 3.3. Here, the t-statistics indicate that at a 5%

significance level, three projects (Faneuil, Mission Hill and Mary

Ellen McCormack) have mean occupancy times that differ from the overall

population mean. The hypothesis that all projects have the same mean

LOS is easily rejected (F=11.833 with 5 and 17 degrees of freedom; the

likelihood of obtaining a result this extreme under the null hypothesis

is essentially zero). Thus, we conclude that mean occupancy times are

significantly above average in the Faneuil and Mary Ellen McCormack

projects, significantly below average in the Mission Hill project, and

about average in the Washington Beech, Mission Extension, and

Charlestown projects.

3.2.3 Simultaneous Consideration of Bedroom Size and Housing Project

A more sophisticated model is presented in Table 3.4. Here, we

may note that controlling for project, one can no longer accept the

hypothesis that mean LOS is invariant over bedroom size (F=3.911 with 4

and 13 degrees of freedom; significance level is .027). However, the

maximum difference in mean LOS attributable to bedroom size is on the

order of 1.5 years; this variation is small compared to the differences

in mean LOS attributable to the various housing projects studied. We
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Table 3.3

LOS by Project
(Complete Population)

Project

Faneuil

Washington Beech

Mission Extension

Mission Hill

Mary Ellen McCormac

Charlestown

Mean LOS (years)

8.6

5.8

5.3

4.3

-k 10.2

5.6

St. Error

1.134

.779

.554

.258

.860

.373

t-statistic
(Mean-5.2)
St. Error

3.00

0.77

0.18

-3.49

5.81

1.07

Model: LOS = Yj + Ej

where Yj = LOS for project j; Eg = error term
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Table 3.4

LOS by Bedroom Size and Project

MODEL: LOS = + i + Y + Ei
J

where = common term

= effect of bedroom size i (P5=5BR effect = 0)

Yj = effect of project j (Y6 = Charlestown effect = 0)

Ei = error term associated with bedroom size i, project j

Coefficient

(1BR)

(2BR)

(3BR)

(4BR)

(Faneuil)

(Washington Beech)

(Mission Extension)

(Mission Hill)

(Mary Ellen McCormack)

Value

5.802

- .909

- .173

.664

.390

2.635

- .076

- .384

-1.262

4.841

St. Error

1.445

1.436

1.424

1.445

1.517

.938

.684

.522

.354

.735

t-statistic
(value/St. Error)

4.016

- .633

- .122

.460

.257

2.810

- .112

- .736

-3.562

6.586
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thus conclude that the major variation in LOS is project specific;

differences in LOS due to bedroom size can largely be ignored. This

finding will greatly simplify future work, as it will not be necessary

to differentiate between apartments on the basis of bedroom size when

estimating occupancy times.

3.3 The Probability Distribution of LOS

When working with statistical data, it is often convenient to

assume that the data come from a particular probability distribution

(e.g. Normal, Poisson, exponential, gamma, etc.). Such an assumption,

if warranted, greatly simplifies more detailed mathematical analysis,

and can also provide an explanation of the process generating the data.

It is of particular interest to see if the household occupancy

times correspond to the exponential probability distribution. One

purpose for collecting LOS data, as previously mentioned, is for the

estimation of waiting times for public housing assignments. The best

understood models of this sort (known as queueing models) often assume

that the service times (in our case, household LOS) are exponentially

distributed. A second use of the exponential distribution will be

demonstrated in the next section where we estimate mean cohort LOS

assuming exponentiality. In this section, the appropriateness of the

exponential assumption shall be examined.

The probability density function for an exponential random

variable x is given by

f(x) = Pe-eX x>0', p>0. (3.1)

Here, x could represent household length of stay; the mean length of

1
stay would then be given by -. A graph of the exponential density is

shown in Figure 3.1.
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Figure 3.1

An Exponential Density

for

Length of Stay

f (x)

Probability
Density

p1

I
I

x

E W(x) Length of
Stay

Mean Length
of Stay
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The LOS histograms for the complete population are shown in

Appendix 3.1, and many of them do appear to have the shape of the

exponential density. To see if these lengths of stay do in fact follow

the exponential distribution, X2 tests were computed for each of the

histograms shown. Testing the null hypothesis that the LOS data for

the complete population came from exponential distributions yields

mixed results. At a significance level of 5%, this hypothesis cannot

be rejected for 9 out of 19 tests. In certain projects (notably Mary

Ellen McCormack), the exponential distribution fits the LOS data

remarkably well, while in other projects (notably Mission Hill), the

exponential model does not work well at all. The results of these

tests are shown in Table 3.5.

That the exponential distribution fails for Mission Hill is not

entirely surprising; this project has undergone numerous physical

transitions (including the closing of buildings) which would alter the

"natural" move out dates of public housing tenants. The same is true

to a degree at Mission Extension.

It would seem, then, that it would not be entirely misleading to

treat LOS as an exponential variable. Practically, this is of great

utility for future data collection: rather than painfully collecting

move in and move out dates as in this study, the exponential model

requires only the move out rate for estimation purposes. Thus, the

number of move outs per apartment per year is all that needs to be

computed to use the exponential model. A corresponding estimate of

mean cohort LOS is then given by the reciprocal of the move out rate.
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Table 3.5

Chisquare Tests for Exponentiality

Project

Faneuil

Faneuil

Wash. Beech

Wash. Beech

Wash. Beech

Mission Ext.

Mission Ext.

Mission Ext.

Mission Hill

Mission Hill

Mission Hill

Mission Hill

Mary Ellen

Mary Ellen

Mary Ellen

Charlestown

Charlestown

Charlestown

Charlestown

Bedroom Size Sample Size Degrees

2 137

3 99

1 67

2 178

3 85

1 94

2 222

3 155

1 210

2 403

3 180

4 70

1 395

2 266

3 63

1 404

2 442

3 213

4 74
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of Freedom Chisquare Significance

9 12.4 0.192

6 17.8 0.007

3 12.7 0.005

9 12.5 0.187

5 3.6 0.608

5 5.7 0.337

10 19.1 0.039

9 23.1 0.006

7 43.6 0.000

11 78.6 0.000

9 67.0 0.000

4 14.9 0.005

19 13.8 0.795

16 19.9 0.225

1 1.1 0.294

13 38.3 0.000

13 14.0 0.374

10 12.8 0.235

4 11.3 0.023



3.4 Stability of Household Occupancy Times

The analysis of the last two sections focused on the complete

population: households who have completed move outs within the study

period. To see if those currently living in public housing are

following the same distributions of LOS evidenced in the complete

population, occupancy times for the current population were compared to

what would be expected based on the complete population using the

following method.

Let f(x) refer to the probability density of LOS from the complete

population, and h(x) be the probability density from the current

population. If household occupancy times are equal, then arguments

based on the theory of random incidence show that these two densities

are related by (see Drake (1967, p. 157))

h(x) = xf(x) (3.2)
E(x)

From (3.2), it is easy to show that the mean occupancy time for

those in the current population, Eh(x), is related to the first two

moments of occupancy time in the complete population, Ef(x) and Ef(x 2 ),

by the equation

Eh(x) = Ef(x 2 )/Ef(x) (3.3)

Also, the second moment of occupancy time for the current population is

given by

Eh(x2 ) = Ef(x3 )/Ef(x) (3.4)

Thus, the variance of occupancy times for the current population

varh(x) equals

3 2
E (x ) E (x )2

varh E(x) E (x) (3.5)
f f
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To see if the current population is actually related to the

complete population via equations (3.3) to (3.5), we compute the

observed first three moments Ef(x), Ef(x 2 ) and Ef(x 3 ) of the complete

population, and treat these as known. We then estimate the mean

occupancy time xh from the current population, and construct the

statistic

2
Xh - ( )/E (x)

z = f(3.6)
3 2

E f(x ) E (x )
(- E _ W [ f ]2)/ nE (x) E (x) h

where nh is the sample size taken from the current population. The

z-statistic thus computed will roughly follow a Normal distribution

with mean 0 and variance 1.

Table 3.6 summarizes the LOS data for the current population,

while Table 3.7 shows expected information for the current population

assuming that the trends of the complete population were followed.

Finally, Table 3.8 presents the z-statistics which test whether or not

the data shown in Table 3.6 match the expectations of Table 3.7.

The implications of Table 3.8 are clear. With few exceptions, the

current and complete populations have significantly different mean

lengths of stay (at a significance level of 5%, a z-statistic with

absolute value greater than 1.96 is significant). Almost all of the

z-statistics are positive. This indicates that the current population

has longer mean occupancy times than would be expected according to the

complete population.

A notable exception to this trend is found at Washington Beech.

Here, current LOS's are less than would be expected for 1 and 2 bedroom

apartments, more than would be expected for 3 bedroom apartments, and
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Table 3.6

LOS for Current Population: Summary Statistics

(LOS in years)

Bedroom Size

Project

Mean LOS
Faneuil St. Dev.

Sample n

Wash.
Beech

Mission
Extension

Mean LOS
St. Dev.
Sample n

Mean LOS
St. Dev.
Sample n

Mean LOS
Mission St. Dev.
Hill Sample n

Mary
Ellen

Mean LOS
St. Dev.

Sample n

Mean LOS
Charles- St. Dev.
town Sample n

1 4 52

16.17
17.03

124

6.38
7.04

103

15.80
16.16
38

9.61
9.33

146

24.71
21.72

431

15.06
13.38

283

36.45
17.53
6

11.90
9.27
8

13.05

7.47
8

11.76
7.60
11

25.33
15.82
13

12.03
9.39

73

3

18.45
18.30

119

12.93
12.03
64

15.94

16.15
31

13.22
11.22

166

26.18
18.69

149

19.06
12.78

156

8.75
10.17
45

10.85
12.17
31

6.18
6.10

70

15.79
16.30

409

12.23
11.96

273

15.44
13.53
51
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Table 3.7

Expected Summary Statistics for Current Population LOS

(LOS in years)

Bedroom Size

1 2 3 4

Mean LOS
Faneuil St. Dev.

Wash.
Beech

Mean LOS
St. Dev.

Mean LOS
Mission St. Dev.
Extension

Mean LOS
Mission St. Dev.
Hill

Mean LOS
Mary St. Dev.
Ellen

Mean LOS
Charles- St. Dev.
town

17.09
8.68

8.17
6.44

5.37
3.42

13.05

6.99

11.75

7.35

9.41
5.82

6.41
3.32

17.93 18.40
11.31 10.44

10.42 9.66
5.66 4.95

59

Project 5

12.05
7.63

10.65
3.72

15.28
7.59

9.443
5.81

10.90
6.56

7.81
3.48

14.97
7.43

6.92
3.03

4.45
1.80

17.17
11.10

9.65
4.62

8.66
4.37



Table 3.8

Z-Statistics for Stability Tests on Current Population LOS

Bedroom Size

Project 1 2 3 4 5

Faneuil --- 4.97 4.55 --- ---

Washington Beech -6.44 -7.42 4.81 -0.12 0.96

Mission Extension 2.31 6.78 4.27 5.01 ---

Mission Hill 1.99 11.63 20.03 14.41 13.48

Mary Ellen McCormack -3.83 12.54 9.89 --- ---

Charlestown 5.26 18.35 25.48 11.07 ---
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about what would be expected for 4 and 5 bedroom apartments. It is

unclear why this is so.

Now suppose that incoming public housing tenants have occupancy

times consistent with the current population. A reasonable question to

ask is: how long can an entering household be expected to stay in

public housing? In other words, what would be the mean LOS for a

cohort of households entering public housing now (as opposed to the

mean LOS for those already living in public housing). In the last

section, we supported the assumption that occupancy times are

exponentially distributed. If we assume that an incoming cohort has

exponential lengths of stay, then it is simple to estimate the implied

mean cohort occupancy time based on the mean occupancy times for the

current populaion.

For the exponential distribution, the first two moments of

occupancy time are given by:

Ef(x) = 1/ l (3.7)

Ef(x 2 ) = 2/pt2  (3.8)

Substituting these results into equation (3.3) yields

2/
Eh)= 1 = 2/ (3.9)h 1/^t

Thus, the mean cohort occupancy time equals Eh(x)/2, and we estimate

this by

Mean Cohort Occupancy Time = xh/2 (3.10)

These mean cohort occupancy times are presented in Table 3.9, along

with the mean occupancy time from the complete population.

It appears that households are staying about two years longer in

public housing when compared to the complete population, although there
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Table 3.9

Observed Mean LOS for Complete Population and
Estimated Mean Cohort LOS for Current Population

(LOS in years)

Bedroom Size

1 2 3 4

Obs. Mean LOS

Faneuil Est. Mean LOS

Wash.
Beech

Mission
Extension

Obs. Mean LOS
Est. Mean LOS

Obs. Mean LOS
Est. Mean LOS

Mission Obs. Mean LOS
Hill Est. Mean LOS

Mary
Ellen

Obs. Mean LOS
Est. Mean LOS

Charles- Obs. Mean LOS
town Est. Mean LOS

8.27
4.38

3.66
5.43

3.36
3.09

9.67
7.85

5.59
6.12

Project

8.14

8.09

5

8.09
5.95

6.10
5.88

7.13
12.67

5.13
6.02

9.34

9.23

5.17
6.47

6.67
7.97

5.70
6.61

10.36
13.09

5.89
9.53

5.54
3.19

5.34
7.90

4.39
4.81

10.83
12.36

5.49
7.53

3.41
6.53

5.70
7.72

62



are exceptions (notably Faneuil and Washington Beech). It should also

be mentioned that Table 3.9 does not totally agree with Table 3.8; in

some cases, the z-statistic indicates that mean LOS has increased where

Table 3.9 suggests a decrease. These discrepancies can be explained by

the fact that the exponential approximation is not always warranted,

thus the results from Table 3.8 are more reliable.

3.5 Transfers and Termination of Occupancy

Finally, one of our stated goals was to investigate internal

transfer rates. The observed transfer probabilities for the complete

population are summarized in Table 3.10. The most noticeable feature

of this table is that the vast majority of apartment occupancies

terminate with the household leaving the project. However, in many

projects and bedroom categories, over 10% of all occupancies end with a

transfer to another on site apartment.

The two projects with the highest transfer probabilities (or

equivalently the lowest exit probabilities) are Mission Hill and

Mission Extension, where transfer rates are typically over 20% and

often over 30%. However, these transfer likelihoods are artificially

high due to the physical transitions at these projects; this is also

consistent with the poor fit of the exponential model to household

occupancy times at those projects. At the other projects, transfer

probabilities are rarely higher than 15%.

One slightly disturbing feature is the regularity with which

transfers occur between apartments of the same size. This is not

supposed to occur (except in emergencies or for medical reasons), and
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Table 3.10

Transfer Probabilities

To: Bedroom Size

2 3

.081 .059
--- .051

4 5 Exit Sample n

--- --- .860 136
--- .949 98

Washington
Beech

Mission
Extension

Mission
Hill

Mary
Ellen
McCormack

Charlestown

1

2

3
4

5

1
2

3
4

1
2

3

4
5

1
2

3

1
2

3
4

.015

.039
.012

.032
.023
.026
.037

.091

.020

.039

.057

.046

.030

.048

.064

.027

.014

.015

.056

.012

.063

.160

.081

.039

.037

.177

.112

.039

.071

.046

.053

.191

.035

.109

.033
.014

.028

.035

.053

.091

.117

.034

.169
.050
.014

.003

.026
.095

.005

.048

.132

.068

--- --- .970
--- .876

.012 .929
--- --- .937
--- --- 1.000

.009

.058

.111

.020
.106
.071
.200

.013

.002

.043

.755

.796

.747

.815

.699
.677
.765
.743
.800

.906
--- .891
--- .667

.003

.011

.033

.054 .014

.894

.805

.788

.851
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Project

Faneuil

1From
(BR Size)

2

3

67

178
85
16

14

94

221
154
27

209
403
179
70
5

395
266
63

404
442

212
74



cannot be explained at present for all projects. The physical changes

at Mission Hill and Mission Extension would have something to do with

this phenomenon at those projects, however.

3.6 Summary of Findings

This chapter described the analysis of household occupancy times

in six Boston Housing Authority projects (Faneuil, Washington Beech,

Mission Extension, Mission Hill, Mary Ellen McCormack, and

Charlestown). The results of this analysis are detailed in the body of

the chapter along with the methodology employed. The main results of

the study may be summarized as follows:

1) Mean occupancy times do not appear to vary by apartment size

from the overall mean occupancy time of 5.2 years.

2) Mean occupancy times vary greatly by project, from a minimum

of 4.3 years at Mission Hill to a maximum of 10.2 years at

Mary Ellen McCormack.

3) Household occupancy times are often exponentially distributed.

Thus, the properties of occupancy time distributions can be

inferred from move out rates. Also, the assumption that

occupancy times are exponential, used in models for assignment

waiting times, can be justified in several instances.

4) Household occupancy times appear to have increased. In other

words, households entering public housing today can be

expected to remain longer in their apartments than households

who entered several years ago, often by as much as two

additional years.

5) Internal transfer probabilities are between 10% and 15% for

most cases of interest. A non-negligible fraction of
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transfers occur between apartments of the same size. It is

unclear why this is so.

We have discussed the features of tenant assignment policies in

Chapter 2, and the timing of household occupancies in this chapter.

With this background material in mind, we are now prepared to develop

detailed tenant assignment models. We will begin with single project

models in the next chapter.
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APPENDIX 3.1 EMPIRICAL DISTRIBUTIONS OF LOS

Part 1: Complete Population
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Part II: Current Population
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LOS (yrs) One Bedroom Apartments at Charlestown Frequency
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CHAPTER IV

TENANT ASSIGNMENT MODELS

In this chapter, we begin to develop models which describe major

features of the tenant assignment systems discussed in Chapter II. We

will begin with an overview of a generic tenant assignment system for a

single project, and present some mathematical results which will prove

useful in our later work. Following this, we will examine various

aspects of single project tenant assignment systems; gradually we will

incorporate dropout and prioritized assignment structures. By the end

of this chapter we will have developed applicable models for single

project assignment policies.

4.1 A General Assignment System

A simplified assignment procedure is diagramed below in Fig. 4.1.

New applicants are assumed to arrive at a housing project in accordance

with a Poisson process with rate X. In any time period of length

Y', the probability that exactly k new appliants arrive is assumed to

equal

Pr{k applicants in period of length = >, > 0
k = 0,1,...

(4.1)

Upon application, households are assigned a unit requirement, or they

are deemed ineligible. Unit requirments typically refer to apartment

sizes, but they could also include special features such as aids to

the handicapped or mobility impaired. All decisions regarding unit

requirements and eligibility are assumed independent, thus the
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Figure 4.1

A Tenant Assignment System

Eligible Waiting

Applicants

New
Applicants

--------- +-

U

N

I
T

R

E

Q
U

I

R
E

M

E
N

T

4.

List Assignment Residency Exit

1 R1 9J1
------------- + jn(t) ------------- R1 --------- +

X2 12 '2
------------- jn2(t) ------------- R2  --------- +

X K PK K
-------------+ >nK(t)l ------------- + > R3 I---------+

Dropout
INI

INELIGIBLES

K

i IN

96



effective arrival rate for new households with unit requirement i
K

equals ki, and Z Xi + XIN = X, where XIN equals the arrival rate for
i=1

ineligible applicants, and K is the number of unit types.

Eligible households then join a waiting list for their unit

requirement. At time t, the number of households waiting for type i

units equals ni(t). Waiting lists may function as a simple accounting

of those in queue for housing; they can also be prioritized in several

ways. For example, "emergency" households may receive priority over

standard applicants, while social goals such as racial integration may

grant priorities to specific households. We will always assume that

within unit requirements and priority structures, households are

assigned to public housing on a first come, first served basis.

One more assumption is key regarding waiting lists. We will

assume that waiting lists are never empty, that is, ni(t)>O Vi,t. This

assumption is almost always true empirically, and it has the following

implication: the rate at which tenants are assigned equals the rate at

which tenants leave the project; more succintly, the assignment rate

equals the moveout rate. This result will greatly simplify our

analysis.

Two things can happen to a household once it has been placed on a

a waiting list; the household is eventually assigned to an apartment,

or the household eventually drops out of the system. Dropout is an

important feature of tenant assignment systems, as typical waiting

times are sufficiently long to enable many of those waiting for public

housing to find housing elsewhere. It is often the case that

households are more likely to drop out than to receive an assignment.

In our work, we will assume that the rate at which households drop out
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is proportional to the number of households waiting for assignments.

Though this seems like a simple assumption, it will complicate our

modeling effort. This complication is necessary, however, if we are to

develop realistic tenant assignment models.

We earlier established that due to non-empty waiting lists, the

rate at which tenants are assigned equals the rate at which tenants

move out of the housing project. In Chapter 3, we presented evidence

which suggested that the amount of time individual households live in

public housing is approximately exponentially distributed. This being

the case, the time between successive moveouts will also be

exponentially distributed. If the project contains m units, and house-

holds live in public housing apartments for a mean of R time periods,

then our assumptions imply that the length of time between succesive

moveouts will be exponentially distributed with mean R/m. This in turn

implies that the moveout process is Poisson with rate P=m/R. Finally,

due to the equivalence of assignment and moveout processes, we see

that the actual assignment process is Poisson with rate P.

It should be mentioned that in order for the moveout process to be

considered as Poisson, it is not necessary for individual household

occupany times to be exponentially distributed. If the number m of

apartments is sufficiently large, then the moveout process will

approach a Poisson process, irrespective of the underlying distribution

of household occupancy times. This is due to the fact that the pooled

output from a large number of "renewal processes" approaches a Poisson

process as the number of individual processes in the pool becomes large

(see Cox (1970, p.77-79)). In our case, the individual processes are
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household specific moveouts, while the pooled process consists of the

moveouts generated by the project as a whole.

We summarize our main assumptions as:

1. New applicants for type i units arrive in accordance with a

Poisson process at rate X1 .

2. The waiting list for type i units is never empty; that is,

ni(t)>0 V i,t. This implies that the assignment rate equals

the moveout rate.

3. Households waiting for type i units drop out of the system at

a rate proportional to the number of households in queue; if N

such households are waiting, the dropout rate is assumed to

equal N 6 , where 6 is the household specific dropout rate.

4. Households in type i units reside in projects for exponentially

distributed lengths of time. At 100% occupancy (which is

always the case by assumption), a mean residency of length R

in a project with m units implies that the lengths of time

between successive moveouts are exponentially distributed with

mean R/m. Equivalently, the moveout and tenant assignment

processes are Poisson with rate IL-m/R.

In studying tenant assignment systems, we will be interested in

describing how the system looks to a newly arriving eligible applicant.

In particular, we will try to answer the following questions:

1. Suppose a newly arriving eligible applicant finds N households

waiting for housing assignments. How long will our household

have to wait for a housing assignment?

2. While our household is waiting for an assignment, how many of

the N households originally waiting will also be assigned?

How many will drop out?
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The answers to thse seemingly simple questions are usually quite

difficult to derive, yet when we know this information, we can say a

lot about tenant assignment. First of all, the estimation of waiting

times for public housing should be basic to any housing authority .

When potential public housing residents try to decide whether or not to

remain in queue for housing, let alone choose which projects to live

in, the amount of time required to wait could be a major factor

impacting the decision. Thus, using models to be developed, new

applicants can be informed of how long they can expect to wait for a

housing assignment under the relevant tenant assignment policy. That

the provision of this information will enable prospective tenants to

make better decisions is sufficient to warrant our modeling effort!

Aside from this day to day application, our models will supply

housing planners with important information. For example, one will be

able to determine the length of time necessary to process all

households waiting as of some given time (typically the end of a

month), and the numbers of those waiting who will ultimately be housed

or drop out. In addition, planners will be able to study the effects of

alternative tenant assignment policies on the demographic compositions

of projects, and determine how much time is necessary to achieve

various social goals such as racial integration or income mixing.

Another useful feature our models will provide is the ability to com-

pare and contrast alternative tenant assignment policies such as those

discussed in Chapter 2.

Throughout this chapter, we will develop models which predict

waiting times and allocational quantities (such as the number of

assignments and the number of dropouts) for various tenant assignment
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schemes. Most of these models will make use of some mathematical

results associated with so called birth and death processs; these

results will be summarized for later application. Following this, we

will engage in the details of models for tenant assignment. We shall

derive the necessary mathematical results, discuss statistical issues

associated with using the models, and present numerical examples where

relevant. Our work is reviewed at the end of the chapter.

4.2 Birth and Death Processes

Imagine a system characterized by a random variable which at any

time can take on only non-negative integral values. One example of

such a system is the number of households waiting for housing

assignments at a given time. Denoting our random variable by X(t), we

say that the system occupies state n at time t if X(t)=n. Continuing

with the tenant assignment example, the system would be in state n

whenever n households are waiting for housing assignments.

Suppose we know that at some time t, the system is in state n,

that is,X(t)=n. Our system corresponds to a birth and death process if

the only possible states the system can next occupy are states n+1 (a

birth), n-1 (a death), or n (a return). For tenant assignments, a

birth corresponds to a new addition to the waiting list; a death

corresponds to either a tenant assignment or a dropout, and a return

corresponds to no change.

To make our process operational, we make the following two

assumptions:

1. Occupancy Times are Exponentially Distributed

Given that the system enters state n at time t, the length of time

the system will remain in state n, Tn
, is an exponentially distributed
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random variable with mean Tn- Note that the length of time spent in

state n, while dependent on n, is independent of time - Tn does not

depend on t.

2. State Dependent Virtual Transitions

Given the system enters state n at time t, the probability that

the system next occupies state j (at time t + Tn ) is given by

qn j = n-1

rn j = n (4.2)
Prob In + j} =

Pn j= n +1

0 all other values of j

Also, we insist that pn + rn + qn = 1 for all states n.

Equation (4.2) implies that the only state to state transitions

allowed correspond to births, deaths, and returns. Note that the

transition probabilities (pn,rnlqn) are state dependent, but

independent of time. Also note that by including a return probability

rn, we allow for virtual transitions - the process, upon leaving state

n, returns to state n at time t + Tn with probability rn.

Assumptions 1 and 2 lead to the following description of our

process: having entered state n at time t, the system remains in state

n for Tn time units, where Tn is an exponentially distributed random

variable with mean Tn- At time t + Tn, the system moves to state n-1

with probability qn, returns to state n with probability rn, or moves

to state n+1 with probability pn. This processed is summarized in the

state transition diagram shown in Fig. 4.2.

102



Figure 4.2

State Transition Diagram for the Birth and Death Process
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In our work, we will typically be interested in the random

variable wn, the amount of time necessary to first enter state 0 given

that the system starts in state n. The variable wn will describe the

length of the time necessary to process n households on a waiting list,

where a household is processed if it is assigned or if it drops out.

We will most often wish to compute the mean and variance of wn.

To do this, we make use of the fact that both the mean E(wn) and the

second moment E(wn2 ) can be found as the solution Mn of the difference

equation.

Mn = Pn Mn+1 + rn Mn + qn Mn-1 + gn (4.3)

To obtain E(wn), one sets

gn = "n (4.4)

and solves (4.3) for Mn-

The interpretation of this is straightforward. Having entered

state n, the process spends Tn units of time, on average, before

changing states. With probabilities pn~rn and qn, the process jumps to

state n+1, n, or n-1. The expected times to reach state 0 from each of

these states are E(wn+1), E(wn) and E(wn-1), respectively. Thus, the

expected amount of time required to reach state 0 from state n equals

the sum of the expected time spent in state n, plus the

probabilistically weighted sum of the mean times to reach state 0 from

each of states n+1, n, and n-1.

To obtain E(wn 2 ), one sets

2 --
g = E(T ) + 2 [p t E(w )+ rt E(w ) + q T E(w)]
n n n n+1 n+1 n n n n n-1 n-1

(4.5)
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and solves (4.3) for Mn- This result is not obvious; for its

derivation see Howard (1971 b; p. 735). The approach is useful; in

every case of interest to us, equation (4.3) can be solved.

To see this, rewrite the left hand side of (4.3) as

(Pn + rn + qn)Mn, and re-express the equation as

Pn(Mn+1 - Mn) - qn(Mn - Mn-1) = -gn (4.6)

Next, define Un to be the first difference of Mn, that is

Un = Mn - Mn-1 (4.7)

Recall our definition for wn; it follows that w0 = 0. Thus,

Mo = 0 (since E(w0 ) = E(w 0
2 ) = 0) , and we have the relationship

n
M = Z U. (4.8)
n 1

It will sometimes be the cause that pn = 0 Vn. When this is true,

(4.6) may be written as

g
U = (4.9)
n qn

and we find using (4.8) that

n

M = E gi (4.10)
n i q

for this case.

When pn * 0 Vn it will be true that pn > 0 Vn.

Dividing through (4.6) by pn we obtain

U - - U =-- (4.11)
n+1 p n pn n

This is a first order, linear difference equation with non-constant

coefficients; it has the solution (Levy and Lessman, 1961; p. 153)
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n-1 q n-1 gk k q.U= n -iU - n (-- /)] (4.12)
ppn p 1 k=1 Pk j=1 j

For all of the models we will consider, the following conditions will

always hold:

n q.

1) lim 11 = *0
n+1 i=1 Pi

2) lim U =K > 0
n"n

These two conditions enable the initial term U1 to be expressed as

*o g 1 q.
U (- / J) (4.13)

i=1 pi j p1

Using this expression in (4.12), we find that

*g. i q.
U = E ( I/ i ) (4.14)
n i=n i j=n j

Finally, using (4.8) we have our general result

n * g i q.
M = E E (- / rn 2) (4.15)

n k=1 i=k i j=k j

Our approach will provide us with the first two moments of wn

irrespective of the complexity of the transition probabilities

(Pn, rn, qn). This approach will always work provided the stated

conditions

n qK
(lim II = , lim U =K > 0)
n+O i=1 Pi n+ n

hold. Having presented the necessary results from birth and death

processes, we can now return to the problems of modeling tenant

assignment systems.

106



4.3 Tenant Assignment Models

All of the models we will develop will be variations on the

following scenario: a new household (or "test applicant") applies for

public housing and is found eligible. Upon joining the waiting list,

the applicant finds N households already waiting for housing

assignments. Each of these N households will either receive a unit or

drop out of the system; once a household is assigned or drops out, the

household is said to have been processed. All N households must be

processed before our new applicant can be housed. The time necessary

to process the N households found on the waiting list will be denoted

by wN-

The major purpose of our modeling effort is to predict the length

of time households will have to wait until they receive public housing

assignments. Thus, we will assume throughout that our new applicant

will not drop out, but will wait whatever amount of time is necessary

to receive an assignment. The length of time our applicant must wait

from the time the Nth household originally present leaves the waiting

list until the applicant is assigned an apartment will be denoted by

w The total amount of time our new applicant must wait from arrival

*

until assignment, wN, is thus given by

* *

wN = wN + w 
(4.16)

Most of our attention will focus on obtaining the mean and variance of

wN* and related quantities.

4.4 Single Project, No Dropout, No Priorities

We begin our analysis with a simple case. Suppose that there is a

single housing project, filled to capacity, consisting of m identical
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units. A new eligible applicant chooses this project, and finds N > 0

households already waiting for housing assignments. All households are

willing to wait as long as necessary to receive assignments (i.e. there

is no dropout), and no new applicants will be housed before our test

applicant is assigned (i.e. there are no priorities).

Based on our empirical results from Chapter 3, we can reasonably

assume that the length of time any household resides in the project (in

the absence of household specific information) is exponentially

distributed. If the mean length of project residency is given by R,

then the lengths of time between successive household departures from

the project will be independent and exponentially distributed with mean

IL-1 = R/m , as shown in Figure 4.3. This system and its attendant

assumptions are summarized in Figure 4.4.

Under these assumptions, it is easy to show that wN, the time to

assign the N households found on the waiting list, follows the Nth

order Erlang distribution with the density function

N N-1 -1xw w > 0
f ( = i VL > 0 (4.17)

wN (N-1)! N=1, 2,

Also, the additional time our new applicant must wait, w*, equals the

time between two successive moveouts. The variable w* is thus

exponentially distributed as shown in Figure 4.3:

fw* (w) = -e- w w> 0 (4.18)

From (4.17) and (4.18) we can easily obtain the mean and variance of

the waiting time for our test applicant:

N + 1
E(w *) - (4.19)

N IL
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Figure 4.3
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Figure 4.4

The Single Project, No Dropout, No Priorities System

Test
Applicant

1 ------- +

Waiting List

N > 0

Project Residency

--- R -------+

Assumptions

1) N > 0 households are found waiting for housing assignments by

a newly arriving test applicant.

2) Households are assigned in order of application.

3) No households drop out, and no new applicants are assigned

prior to the test applicant.

4) The lengths of time between successive moveouts are

exponentially distributed with mean 41-=R/m. Equivalently,

households are assigned to the project from the waiting list

according to a Poisson process with rate P.
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var(wN*) = N+ 1 (4.20)

Thus, a newly arriving applicant could expect to wait

(N + 1)/P = (N + 1)R/m time units until assignment.

While these results are easily obtained directly, it is useful to

derive them using the birth-and-death process described earlier. For

this system, we have:

1) tn is exponentially distributed with mean P-1 ; n=1,2,3,

2) pn = 0, rn = 0, qn = 1; n=1,2,3, ..

From the discussion following equation (4.9), we see that

n q.
M = - (since p =0 for all n).
n . 1 g. n

- 1
To obtain E(wN), we set g = = - and q.=1 to obtain

n n 1 1

1 N
E(wN i (4.21)

Similarly, to obtain E(wN2 ), we set

g 2 + 2 1 n- 2n4.22)n 22 2

and thus

2 N 2i N(N+1)
E(w )= Z 2/ 1= 2 (4.23)

i= 1

yielding

var(wN) = E(w 2 - [E(wN 2

N(N+1)(E)2N (4.24)
= 2 2 .2

Since E(w*)=W-l, var(w*)=p-2 , and wN and w* are independent we finally

have

111



* N 1 N+1
E(wN) + -= (4.25)

N N~ 1 N+1

var(w N + 1 N+1 (4.26)WN [2 2 2

These results agree with our earlier results obtained directly.

Formula (4.25) corresponds to a method often used by housing

authorities to calculate waiting times. The parameter P. is set equal

to the annual moveout rate from the apartment in question, and N is

taken as the length of the current waiting list. Of course, this

formula is simplistic in that:

(i) Dropout is not considered.

(ii) Priorities are ignored.

(iii) Tenant choice is dismissed - households must accept an

offered unit.

We will address these shortcomings in subsequent models.

4.4.1 Statistical Issues

To use the model outlined in this section, one needs to estimate

the unit turnover rate P.. Since we have reasonably assumed that the

size of the waiting list is always positive, and the length of time

between moveouts is exponentially distributed, it follows that the

distribution of the number of moveouts (which equals the number of

housing assignments) that occurs in a time period of length I is

Poisson with parameter L-Z; that is

Pr(number of moveouts in a period of length =k) - ( -Ak Z

k!
P > 0 (4.27)
k > 0
k=0, 1, 2, ...
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The expected number of moveouts in a period of length I simply equals

l11. Thus, a simple (and good) estimate of lt is the empirical moveout

rate. If M moveouts are observed during a period of length 1, then one

estimates 1 using

I) = M/1 (4.28)

The estimator 1 has other appealing properties in addition to its

simplicity. First, the estimator is unbiased, that is, E(L) = IL.

Secondly, the estimator is very stable for large time periods Z; this

follows from the easily proven fact that var(l) = IL/R. Typically, one

might set I equal to one year, and update 91 on an annual basis; more

frequent re-estimates are of course possible.

4.4.2 An Example

Suppose that the annual moveout rate at a project equals 20

households per year. Figures 4.5 and 4.6 report the values of E(wN*)

and var(wN*) for this example as functions of N, the size of the

waiting list encountered by our test applicant. We will continue to

build upon this example as our model becomes increasingly complex.

4.5 Single Project, Dropout, No Priorities

4.5.1 The Incorporation of Dropout

Our first improvement on the pure assignment process discussed is

the incorporation of dropout. We maintain all previous assumptions

from before, and in addition we postulate that if n households are

waiting for housing assignments at time t, then the probability that

one of these households drops out of the system in the interval

(t, t+At) equals n6At. We refer to 8 as the household dropout rate.
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Figure 4.5

Mean Waiting Time in a

Single Project, No Dropout,

No Priority System
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Figure 4.6

Variance of Waiting Time

in a Single Project, No

Dropout, No Priority System
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This system and its assumptions are summarized in Figure 4.7.

We will first derive the moments of wN, the time necessary for the

N households ahead of the test applicant to be housed or drop out.

Given that n households are waiting, the expected time until a

household either drops out or is assigned is given by (nb+p)-1. Thus,

the expected time necessary for all N households to leave the waiting

list is given by

N
E(wN) nb1 (4.29)

n=1

Similarly, the variance of the time until a household either drops out

or is housed is given by (n5+1I)- 2 . Since all processing times are

independent, we have for the variance of the time necessary to process

all N households found waiting

N

var(wN)= 2 (4.30)
n=1 (n8+ )

Once all N households found waiting have been processed, our test

applicant must wait for the next moveout to occur before assignment

takes place. The amount of time necessary, w*, is exponentially

distributed with mean, p-1, thus

* 1
E(w ) = - (4.31)

* 1
var(w ) - 2 (4.32)

Combining our results we obtain

N
E(w*)=- + E 1 (433)

N p. n6n= 1
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Figure 4.7

The Single Project, No Priorities System With Dropout

Test
Applicant Waiting List Project Residency

1 ------- +> N>0 R ------ + Exit

Dropout

N8

Assumptions

1) N > 0 households are found waiting for housing assignments by

a newly arriving test applicant.

2) Households are assigned in order of application.

3) Dropouts occur at rate n6 when n households are waiting for

housing assignments; the test applicant will not drop out with

certainty.

4) The lengths of time between successive moveouts are

exponentially distributed with mean -1=R/m. Equivalently,

households are assigned to the project from the waiting list

according to a Poisson process with rate P.
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N

var(wN*) 2 + 2 (4.34)
pn= 1 (n 6+p)

as the first two moments for the amount of time the test applicant must

wait to receive a housing assignment.

We can also derive these results using our general method based on

the birth-and-death process. As was the case with the pure assignment

process, we set pn=rn=O and qn=l. However, the state occupancy time Tn

is now exponentially distributed with mean (n+1)-l. Since pn=0, we

n
use the result M = E g /q.n i i

i=1

To obtain E(wN), we set gn"=n=(nO+pI)-1 which yields

N

E(w1) E (4.35)
i=1

Similarly, to obtain E(wN2 ), we set

2 1 n-i 1
g = +2 (4.36)
gn 2 (n-1)6+ jo7(n 8+) j=1

yielding

2 N 2 N n-1
E(w )= 2 + 2 E ( , (4.37)

N n2~n (n-1)&+p~ j j6-Ip.
n=1 (n6+0) n=1 j=1

From (4.36) and (4.37), the formula var(wN)=E(wN2 )-E(wN)2 yields

equation (4.30) after some algebraic manipulation. Equations (4.33)

and (4.34) then follow as has already been shown.

While the formulas for E(wN) and var(wN) are not terribly

complicated, we can obtain a simple approximation that eliminates the

summations involved. Let f(n)=(n+0) 1. Since f(n) is strictly

decreasing, we know by the mean value theorum for integrals
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(Purcell (1972), p.275) that there exists some number u such that:

i) n < u < n+1

ii) f(n) > f(u) > f(n+1)

iii) fn+1 f(x)dx = f(u)

n

Conditions (ii) and (iii) together imply the inequality

f(n) > fn+1 f(x)dx > f(n+1)
n

(4.38)

and thus

N N
Z f (n) >E

n=1
n+1 N+ 1 N

f f(x) dx = f f(x)dx > E f(n+1)
n=1 n n=1

Using the inequality (4.39) we establish that

N+1 f(x)dx < Z f(n) < N f(x)dx + f(1)

1 n=1 1

Now, the integrals involved are easily evaluated:

rN 1 1 rNO+pl
JN x& dx = ~ log[ ]
x= 1

N

Note that E f(n) = E(wN
n=1

We thus have the bounds

1 og 1(N+1)+)< 1 l N+ 1
~& 109L M N -6 T*UT ) +

(4.41)

(4.42)

and can simply approximate E(wN) by averaging these bounds, that is,

1g 1  [(N+1) +][N
6 +] 1 l

E(wN) 2 2![ I + j
2 T ~ (6+11)2

(4.43)

To approximate var(wN), we set f(n)=(n 6 +P)-2. Following exactly

the same line of reasoning illustrated above, we obtain

(4.44)var(wN 2 N5+ (N+ 1)$+ 1
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The approximations (4.43) and (4.44) are typically accurate to three

decimal places for common values of 6 and p1.

For planning purposes, it is useful to know the number of

households that are actually assigned to the project. Since the

assignment process is Poisson, we know that in a period of length Z,

the mean and variance of the number of assignments equals Il. Now,

suppose we want to estimate the number of households assigned to the

project from the N households originally found on the waiting list by

our test applicant. The expected length of time to process these

households is E(wN), thus we obtain

E(number housed from waiting list of size N) = IE(wN) (4.45)

An alternative derivation argues as follows. When a household is

processed given n households waiting, the likelihood of an assignment

equals (nb+)- 1 . Thus, the expected number assigned equals the sum of

the assignment likelihoods; this is the same as (4.45).

This second line of reasoning also yields the variance of the

number assigned from those found waiting. Formally, let

next household processed is assigned given

1 n households waiting

xn = { (4.46)
0 next household processed drops out given

n households waiting

Probabilistically, we have the mass function

1 with probability I(n 6+0p-1

xn = {(4*47)
0 with probability n5(n 6+p)-1

Let NA equal the number of households assigned from the initial

group of N households found waiting. Clearly,

N

N = E x (4.48)
A n

n= 1
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Thus, we have for the mean of NA

N N
E(NA) = E(xn n wN (4*49)

n=1 n=1

as already mentioned. Now, the variables xn are mutually independent,

each with variance Inb(n 6+M)1. Thus,

N N
pEna

var(N ) = var(x ) = E (4.50)A n n+
n=1 n=1

Finally, we note that having estimated the number of assignments,

we can also estimate the number of households initially waiting that

drop out. If ND is the number of households from the N initially found

waiting who drop out, then we must have,

ND = N - NA (4.51)

Thus, the moments of the number of dropouts are given by

E(ND) = N - E(NA) (4.52)

var(ND) = var(NA) (4.53)

4.5.2 Statistical Issues

To use the dropout model we have discussed, one needs to estimate

the household dropout rate 6. Depending upon the information at hand,

one can obtain estimates with varying degrees of precision. Ideally,

one would estimate 6 by observing a cohort of applicants entering

public housing at time to, following this cohort until some fixed time

T, and then determining:

i) The time tj at which household j is assigned to an apartment;

jEA where A is the set of households assigned; t0 < tj < T.

ii) The time tj at which household j drops out; jED where D is the

set of households that drops out; t0 < tj < T
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iii) The number of "censored" households nc who have yet to receive

an assignment or drop out by time T, the end of the study

period.

The likelihoods associated with (i) - (iii) are easily determined. If

an assignment occurs at time tj, we know that a dropout did not occur

in the interval (to, tj). The probability that a household does not

drop out in (t0 , tj) equals e j o , and hence the contribution to

the likelihood of the abserved data from assigned households equals

L A = rI e-N j ot (4.54)
1 jCA

If a dropout occurs at time tj, its associated likelihood is

6e-(tj to. Thus, the contribution of dropouts to the likelihood is

L = R be- 5(t i-t) 4.55)
jDD

Finally, for those who have yet to drop out or receive assignments by

time T, the contribution to the likelihood equals

L c-n 6 (T-t0 (4.56)
c

The overall likelihood function is given by the product of (4.54)

through (4.56):

-t-n 0(T-t)
L = Ti e-6 (t -t0 e-0(t - t 0 e c 0 (4.57)

jEA jED

Maximizing (4.57) with respect to 6 yields the maximum likelihood

estimate of the household dropout rate

(t -t ) + (t -t ) + n (T-t
j EA 0 jED 0 c 0

n D

T (4.58)
EX
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where nD equals the observed number of dropouts, and TEX equals the

total exposure time for all households in the cohort.

Unfortunately, the exact times of dropout are rarely known. One

usually discovers dropouts when they are contacted for assignment. We

will therefore consider some simpler estimates which do not require the

precise times at which dropouts occur.

Suppose that at the end of the observation period, one knows the

times tj,jSA at which households were assigned, the number of dropouts

nD, and the number of households who have yet to drop out or be

assigned nc. The probabiltiy that nD households drop out in the

interval (t0 ,T) is given by

L = [ 1-e (Tt) D (4.59)

thus the total likelihood associated with the observed data is

-6 (T-t ) nD - 6 (t.-t ) -n 6 (T-t ) (4.60)

2 jSA

Maximizing this with respect to 6 yields

A n (T-t)

2 T-t n ( ) (t.-t (4.61)
o c o j o

The estimate 2 is useful if one knows the times at which tenants are

assigned, but only the number of dropouts in some interval (to,T).

Finally, if the only data available consists of the number of

dropouts nD in some interval (to,T), and the number of households N in

the cohort at time to, we have for the likelihood function

- 6 (T-t ) nD -(N-n )6 (T-t )o DD o
L = [1-e ] e (4.62)
3
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The maximum likehood estimate in this scarce data situation equals

= 1 log (4.63)
3 T-T n

N

For small values of the ratio nD/N, (4.63) can be approximated by

6 ~ D (4.64)
3 N(T-t

0

1
By way of example, if nD/N = .25, log [- ] = .29, a small

1-.25
difference.

We have covered three approaches to estimating the household

dropout rate 5. If one knows precise times of assignment and dropout

from sample cohort data, the estimator 61 of (4.58) is appropriate,.

If the times of dropout are unknown but assignment times are, the

estimator 62 from (4.61) can be used. Finally, if only the number of

dropouts are known, the estimator 63 from (4.63) or (4.64) is

appropriate.

4.5.3 An Example

Continuing with the example from before, we assume an annual

moveout rate of 20 households per year. Figures 4.8 and 4.9 plot

E(w*) and var(w*), the mean and variance of the waiting time
N N

experienced by a test applicant, for various values of the household

dropout rate 6. For example, at 6=.1, households will wait, on average,

10 years before dropping out. With N=100, E(w*) has been reduced from
N

just over 5 years to just over 4 years, almost a 20% reduction.
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4.6 Blend Priorities

Our next improvement on the tenant assignment model reflects the

often stated goals of cresting project communities with specific

demographic characteristics. Racial integration is one case in point.

As another example, the Boston Housing Authority intends to assign two

"moderate" income households for every "low" income household at

housing developments where the low income population comprises over 50%

of the total project population; it is hoped that a more diverse range

of incomes will help to stabilize public housing populations (Price and

Solomon, 1983). In other cities, income mixing may be invoked to

achieve financial solvency (e.g. Greensboro, North Carolina).

Assignment policies such as those mentioned which attempt to "design"

the demographic characteristics of housing developments often invoke a

method we will refer to as a blend priority system.

Formally, a blend priority scheme assigns a probability bj to the

assignment of the next household in queue from group j on any tenant

assignment. Groups may be defined in a variety of ways to reflect the

particular policies of a given housing authority (e. g. low income

whites, moderate income blacks). Within groups, households are

processed in chronological order of application. The higher the value

of bj, the higher the priority given to group j. Also, as every

household assigned is the member of some group, we must have E b.=1.

A simple model demonstrates the consequences of employing blend

priorities. Assume that a project is always filled to its capacity of

H households; again all households are taken to require similar units.

Let hjm be the expected number of group j households in the project
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after the mth tenant assignment from the time when blend priorities

were implemented. We can model hjm as:

hj,m+1 = hjm + Pr{household of type j is assigned on move in}

- Pr{household of type j leaves the project on move
out)

(4.65)

The likelihood that a group j household is assigned on move m is the

blend probability bj. If we assume that the likelihood of a group j

household leaving the project is proportional to the expected number of

group j households present, then the probability of a group j departure

equals hjm/H. Equation (4.65) thus becomes:

hj,m+1 = hjm + bj - hjm/H (4.66)

This equation has the solution

hjm = Hbj + [hjO - Hbj][1 - 1/H]m m = 0, 1, 2, ... (4.67)

where hjO is the number of group j households present in the

development when blend priorities are implemented. Equation (4.67) is

shown graphically in Figure 4.10.

This model is quite useful in analyzing the consequences of

various priority schemes. For example, if one wishes to racially

integrate a project, the model can evaluate the time frame necessary to

achieve the desired level of integration for alternative blend

probabilities bj. A practical scheme might take the form "admit k

group 1 tenants for every group 2 tenant assigned"; the resulting blend

probabilities for this example would set b - b =

1 k+1 2 k+1

Using these values for bj, one can "follow" the changing demographics

of the project using a graph similar to Figure 4.10. Although the

model has been formulated in terms of the number of assignments
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required to achieve a desired demographic composition, one can

associate an expected length of time between tenant assignments with

each moveout, resulting in a model where demographics change over

chronological time. Finally, the model demonstrates the equivalence

between specifying blend priorities probabilistically and designing the

ultimate demographic composition of a housing project.

To forecast waiting times for new applicants in a blend priority

setting, we argue as follows: tenant assignments occur according to a

Poisson process with rate P, the moveout rate from the project. When

an assignment occurs, the probabiltiy that the household chosen is from

group j equals bj. Thus, tenant assignments from group j occur

according to a Poisson process with rate PgL=bjpl, as long as successive

assignments are assumed to be independent.

Having established this result, we may use the models already

developed to forecast waiting times; a system diagram and attendant

assumptions appear in Figure 4.11.

When an arriving group j test applicant finds Nj group j households

waiting for housing assignments, equations (4.33) and (4.34) apply

after substituting 1Ig for P. and Nj for N yielding

N.
* 1 1

E(w )= + - (4.68)
N. n6+P. .

J n=1 J J

N.
* 1 1

var(w )2= + (4.69)
N. 2 2
j n=1 (n8+11.) .

J J

as the mean and variance of the waiting time for our test applicant.

One can also use the approximations found in equations (4.43) and

(4.44) for quick estimates.
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Figure 4.11

The Single Project, Blend Priority System With Dropout

Project
Residency

* I '1=b)(him/H)P'
N1 > 0 ---------- R ----------

Test

applicant 'Dropout

in group j 'N10

Np=bj- I(hjm/H)II 11
1 - +N > 0 ---------- +1 R I---------- --------+

'Dropout
N 0

B=bB I (hBm/H)I

NB > 0 - + R ----------

Assumptions

1) Nj > 0 group j households are found waiting for housing

assignments by a newly arriving group j test applicant

2) Within groups, households are assigned in order of application

3) Within groups, dropout occurs at rate n5 when n households are

waiting; test applicants will not drop out with certainty

4) Tenant assignments take place according to a Poisson process

with rate IL. On any assignment, the probability that a group

j tenant is assigned equals bj. Successive assignments are

independent, thus group j tenants are assigned acccording to a

Poisson process with rate Ipj=bjpt.

5) The probability that a departing household is from group j is

proportional to the expected number of group j households in

the project.
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4.6.1 An Example

Again we consider a project with an annual moveout rate of L-=20

households per year. We will fix the household specific dropout rate

to 6=.1, and consider two blend groups. Group 1 applicants receive

assignments with probability b1 =.33, while group 2 applicants are

assigned with probibility b 2 =.67. The mean and variance of the waiting

time for an arriving group i test applicant are shown in Figures 4.12

and 4.13.

4.7 Categorical Priorities

In every tenant assignment policy reviewed in Chapter 2, we

discovered that housing authorities give absolute priorities on

assignment to certain classes of households. Typical of this is is the

policy in Minneapolis where "Individuals and Families displaced by

public action or a natural disaster while residing within the

jurisdiction of the Agency shall have preference over other individuals

and Families." (Minneapolis Community Development Agency (1983, p.1)).

Whenever households in such a priority class are present (i.e. waiting

for an assignment), they are assigned before other households,

regardless of the waiting times of these other households. We will

refer to tenant assignment systems of this form as categorical priority

systems, and will generalize our models to accomodate such schemes.

Actual categorical priorities for several U. S. authorities were

discussed in Chapter 2.

To model categorical priorities, we assume that there are J

priority categories in the system, and a test applicant in category j

arrives. The test applicant finds ni households waiting in priority

category i, i=1, 2, ... , j. All households have the same expected
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Figure 4.13
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project residency R; as usual, the household assignment process is

Poisson with parameter P=m/R where m is the number of units in the

project.

We further assume that households in priority category i arrive in

a Poisson manner with rate Xi, i=1, 2, ... , J. Initially, we will

suppose that no households drop out; this assumption will be relaxed

later. Of interest is the mean and variance of the time our test

applicant will wait until assignment. The system diagram and a summary

of our assumptions for this model are found in Figure 4.14.

Upon arrival, the total number of households found waiting by our

test applicant in priorities 1 through j equals

j
N. = En > 0 (4.70)
J ii

In addition to waiting for these Nj households to be assigned, our test

applicant will be superseeded by newly arriving households in

priorities 1 through j-1. These households arrive in Poisson fashion

with rate

j-1
Y = E ?. (4.71)

We assume that Yg<'.

Suppose that at some unspecified time, there are n households (not

including the test applicant) waiting for housing assignments in

priorities 1 through j. One of two events can next occur: a household

will be assigned, reducing the number of households waiting to n-1, or

a new household in one of priorities 1 through j-1 will arrive,

increasing the number of households waiting to n+1. The probability

that the former event will next occur equals 1/(I+Yj), while the

probability that the latter event will next occur equals Yj
/(P+Yj
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Figure 4.14

The Categorical Priorities, No Dropout System

Poisson Arrivals
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Assumptions

(1) ni priority i households are found waiting for housing

assignments by a newly arriving priority j household,

i=1,2, ... , j.

N. n > 0.
J ii=1

(2) Priority i households arrive according to a Poisson process

with rate Xi, i=1,2, ... , J. The arrival rate of class 1

j-1
through j-1 households, Yj, is given by Y. .

i=1

(3) A priority i household is assigned only if no households in

priorities 1, 2, ... , i-1 are present. Within priorities,

assignment is in order of application.

(4) Tenant assignments take place in a Poisson fashion with rate

11; >Y-
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These probabilities arise from the Poisson nature of the assignment and

priority arrival processes. In additiion, the length of time between

successive events (assignments or arrivals) is exponentially

distributed with parameter L+Yj; this result also follows from the

Poisson processes involved.

We are now ready to apply the results from birth-and-death

processes derived earlier. Let:

Pn = Yj/(P + Yj) (4.72)

rn = 0 (4.73)

qn = 4/(P + Yj) (4.74)

To obtain E(wN ), the expected time until the Nj households found by
J

our test applicant in priorities 1 through j are assigned, we set

gn = E(Tn) = 1/(P+Yj) (4.75)

Using these values for pn, rn, qn, and gn in equation (4.15) results

in

N.

M =E(wN. -. < p. (4.76)

J J J

Similarly, we obtain the second moment of wN by setting
J

9n = E(Tn2 ) + 2 [pnTn+1E(wn+1) + rntnE(wn) + gn n-1E(wn-1)]

2 + 2[ j 1 n+1 + 0 + 1 n-1
2 P+Y. 11+Y. p-Y. P4-Y. P+Y. P-Y.

(p+Y.) I 3 1 1 3
J

= 2 n Y. < 1 (4.77)
2 11-Y

J

Again, we use equation (4.15) to obtain
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2
2 N. 1+Y. N.

M = E(w ) = 3 3 + Y. < I (4.78)
N. N. 2 11-Y. 2 JJ j (1J-Y.) J ( - .

Combining (4.76) and (4.78) we obtain the variance of W
N.
J

2 2 N~ I-+Y.
var(wN. ) = E(w ) - E(wN.) 2 j 1 Y.< (4.79)

N. WN N. 0- 2 P-Y.i
JJJ (P-Y.) J

J

The additional time our test applicant must wait, w*, is clearly

the same as w1, the length of time necessary to house a solitary

household found waiting in priorities 1 through j. Thus we can use

(4.76) and (4.79) to obtain

E(w*) = (4.80)

J

var(w*) 2 Y (4.81)

(1-Y . 2 -Y

Finally, we can combine our results to obtain the mean and

variance of the waiting time for a newly arriving priority j test

applicant given that Nj households are found waiting in priorities 1

through j:

N.+1
E(w )-=-- (4.82)

N. R-Y.
J J

N.+1 P'+Y.
var(w ) = 2 -a- (4.83)

N 2 -Y
j (-~Y.) j

J
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A simplistic (but not entirely correct) interpretation of (4.82) is

that the assignment rate ji has been reduced by the amount Yg - of the 4

apartments available per unit time for assignment, Yj must be allocated

to newly arriving households in priorities 1 through j-1. Thus, the

"effective" assignment rate is I-Yj, and equation (4.82) is the same as

equation (4.25) for the pure service model with P. replaced by P-Yj.

However, we see from (4.83) that the effect of priorities is more

complicated than a simple adjustment to the assignment rate. If the

only effect of categorical priorities was to reduce P. to P-Yj, then the

variance of the waiting time for our test applicant would equal

(Nj+1)/(p-Yj)2 . The actual variance, given in equation (4.83),

inflates this amount by the factor (P+Yj)/(P-Yj). As the arrival rate

of priority applicants approaches the assignment rate, this inflation

factor becomes quite large. Thus, a major impact of categorical

priority schemes on waiting times rests with the increase in the

variability of the time until assignment.

4.7.1 Statistical Issues

The model of this section has introduced a new group of quantities

which require estimation - the arrival rates of applicants in various

priority categories. By assumption, these arrival processes are

Poisson, thus a reasonable estimate of Xi, the arrival rate of priority

i applicants, is given by the observed number of priority i applicants

arriving in some time period divided by the length of the time period:

i = Ai/A (4.84)

where Ai is the number of priority i arrivals in a time period of
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length 1. This estimator has the same properties as the assignment

rate estimator P discussed earlier in equation (4.28).

To estimate the arrival rate of new applicants in priority

categories 1 through j-1, Yj, we merely sum the individual category

arrival rate estimates; that is

A j-1 A

Y. = E X (4.85)

As Yj is also the parameter of a Poisson proces, Yj possesses the

same properties is I1 and X1. The estimation of Yg should not pose any

special problem for housing administrators.

4.7.2 An Example

As with our previous examples, we assume a project with an annual

moveout rate of P1=20 households per year. However, we now consider a

situation where applicants in priorities 1 through j-1 arrive at a rate

of Yj households per year for various values of Yj. The corresponding

mean waiting times appear in Figure 4.15. Figure 4.16 plots the

variance. In the absence of dropout, both of these quantities grow

linearly with Nj, the number of househoulds in priorities 1 through j

found waiting by our test applicant. The effect of increasing Yj on

waiting time is clearly seen from these plots.

4.7.3. Applications of Categorical Priorities: Multiple Unit Types
and Transfers

The analysis performed thus far has assumed that every household

requires the same unit type, and all project units are identical. In

fact, our analysis is valid for multiple unit types if we treat unit
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Figure 4.15
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Figure 4.16
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types independently of each other. If P(k) is the moveout rate for

type k units, Y.(k) the arrival rate for applicants in priorities 1

through j-1 requiring type k units, and N.(k) the number of households

in priorities 1 through j requiring type k units found by a newly

arriving test applicant in priority j who also requires a type k unit,

all of our previous results hold; the analysis is simply interpreted to

be conditional on households who require type k units. This approach

assumes no interaction between different household unit requirements.

For example, a household which applies for a type k unit, cannot change

its unit requirement to some other type 1. This is not a major problem

in as much as such unit type changes are relatively infrequent. Also,

if the model is frequently used, a household requiring a type k unit in

one month, but a type R unit in some subsequent month (perhaps due to

a change in family size) will appear on the type I waiting list (and

hence in the data base for a "type I model") in that subsequent month;

as our analysis is always conditional, this change in unit requirements

can be incorporated into a new waiting time forecast.

In certain tenant assignment systems, intra project transfers from

type k to type I units receive categorical priorities over new

applicants. Suppose that when a household terminates a period of

residency in a type k unit, the household transfers to a type I unit in

the same project with probability qkR. We let qko represent the

likelihood that a household leaves the project after residency in a

type k unit (qko is referred to as the "exist" probability), and since

all households leaving type k units must go somewhere, we require

Eqk=1-
1=0
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Suppose that there are two priority categories: intra-project

transfers and new applicants. To obtain the "application rate" for

intra-project transfers into type I units, we set

y()= (k) qklz (4.86)
k=1

and proceed as before. Extension to the case where intra-project

transfers represent the jth priority category is straightforward.

Though equation (4.86) is correct if we focus our attention on

type I units, there is a problem of dependence between moves -a

transfer from a type k unit to a type I unit necessitates a new

assignment (or perhaps a new transfer) into the type k unit being

vacated. In fact, that new type I vacancies triggering transfers from

type k units cause new assignments of type k to be made destroys the

Poisson assignment process to type k units. However, we choose to

ignore this difficulty for the sake of modeling simplicity. As long as

the intra-project transfer probabilities qk1,A>0 are low relative to

the exit probabilities q , such dependence should not cause any major
ko

changes to occur in our results. Table 3.10 presents empirical

intra-project transfer probabilities for six housing projects in

Boston. Note that the exit probabilities are typically over 70%, and

are often over 80%.

4.7.4 Applications of Category Priorities: Score Priorities

In Chapter 2, we noted that two of the cities in our survey of

tenant assignment practices, St. Paul and Omaha, assign points to new

applicants; these points reflect the priorities assigned by the housing

authorities to the households. Applicants are processed in the order
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of their scores, form highest to lowest, with ties being broken by date

of application (for a discussion of the specifics of the St. Paul and

Omaha systems, we Chapter 2).

We will now show that the assignment of scores to applicants is

just a special case of the category priority model we have been

discussing. Let S be the random variable representing the score

obtained by a randomly chosen applicant. We assume that the

probability law of S is characterized by the (known) density function

fs(s). Let s* be the score assigned to a newly arriving test

applicant, and let N(s*) be the number of households found on the

waiting list by the test applicant with scores greater than or equal to

s*

Suppose now that new applicants arrive according to a Poisson

process with parameter X. Some of these households will receive scores

that are greater than s*; the fraction of new applicants in this

situation equals

Pr{S > s} = f f (s)ds (4.87)
5* S

Thus, the arrival rate of new applicants with scores greater than s* is

given by

Y(s*) = XPr{S > s*} (4.88)

The score priority system is thus a categorical priority system, but

with continuous categories. The mean and variance of the waiting time

for our test applicant is given by equations (4.82) and (4.83)

substituting N(s*) for Nj and Y(s*) for Yg. It should be noted that in

practice, the integral in (4.87) would be replaced by the sum

5
max

Pr{S > s } =E f (4.89)
* s

S=S +1
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where fs is the relative frequency at which a score with value s

occurs, and smax is the maximum possible score.

4.8 Merging Dropout and Categorical Priorities

Thus far, we have presented models which exhibit specific features

of tenant assignment systems; the analysis of this section will begin

to consolidate these features into realistic tenant assignment models

suitable for use by public housing authorities. Our first step is to

merge our earlier model of dropout with the categorical priority

systems just discussed. Figure 4.17 provides a graphic depiction of

the system and a listing of its attendant assumptions.

The situation is as follows: a newly arriving test applicant in

priority j finds Nj>O households in priorities 1 through j waiting for

housing assignments. New applicants in priorities 1 through j-1 arrive

in Poisson fashion with rate Yj. As usual, the tenant assignment

process is Poisson with rate Ii. Finally, in a manner similar to our

earlier dropout model, we assume that when n households in priorities 1

through j are waiting for assignments, the dropout rate for the system

equals n5; these n households are ahead of our test applicant, and the

test applicant by assumption will not drop out.

Suppose that at some unspecified time, n households await

housing assignments in priorities 1 through j. A household could be

assigned, or a household could drop out, reducing the number of

households waiting to n-1. Alternatively, a new household in one of

priorities 1 through j-1 could arrive, increasing the number of

households waiting to n+1. The probability that the next event to

occur is a tenant assignment or a dropout equals (n6 +b')/(n 6 +I+Yj),

while the probability that the next event is the arrival of a new
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Figure 4.17

The Categorical Priorities System With Dropout

Poisson Arrivals Waiting List

----------------------- + n ----------

Project

Residency

X-1
---------------- + nj ------------ --------+ R ---- +Exit

Yj

1 ------------- nj ----------

Nj > 0

Dropout Nj8

Assumptions

1) ni priority i households are found waiting for housing

assignments by a newly arriving priority j household,

i=1,2,...,j. N~ n >0.
i=1

2) Priority i households arrive according to a Poisson process

j-1
with rate Xi, i=1,2,...,J. Y.A E X.= the arrival rate of

I i=1 3.

households in priorities 1 through j-1.

3) A priority i household is assigned only if no households in

priorities 1,2,...,j-1 are present. Within priorities,

assignment is in order of application.
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4) Dropouts occur at rate n6 when n households are waiting for

housing assignments in priorities 1 through j. The test

applicant will not drop out with certainty.

5) Tenant assignments take place in a Poisson fashion with rate

1.
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applicant in one of priorities 1 through j-1 equals Yg/(nS+p+Yj).

These probabilities follow from the Poisson arrival, assignment, and

dropout processes involved. In addition, the length of time between

successive events (assignments, dropouts or arrivals) given n

households waiting is exponentially distributed with parameter nb+p+Yj.

Returning to our results from birth and death processes, we set

pn = Yj/(n6 +tl+Yj) (4.90)

rn = 0 (4.91)

qn = (n5+p.)/(n5+1+Yj) (4.92)

To obtain E(wN ), the expected time until all Nj households found by
N

our test applicant in priorities 1 through j are assigned or drop out,

we set

gn = E( n) = 1/(n++Yj) (4.93)

Using these results in equation (4.15) we obtain

N j D(ikIi

M = E(w) = Yi-k / U A(1+)) (4.94)

N j k=1 i=k Z=k

Once one computes the values of E(wN.) using equation (4.94), the
NJ

2
second moment E(w ) is found by setting

N

g 2 + 21 E(w

J

+ n6 +p4 1 E(w 1 )] (4.95)
nbp+Y. (n-1)6+tl+Y. n-1

J J

and using this result in equation (4.15). As one can see, the analytic

results become messy; computationally, there is no problem in obtaining
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E(w 2 ). The variance of w is then found by subtraction.
N. N .

J

The additional time w* our test applicant must wait is not equal

to w1 , the length of time necessary to house a solitary household found

waiting in priorities 1 through j. This is due to our assumption that

the test applicant will not drop out. To handle this scenario, we

modify the dropout rate to (n-1) 6 when n households, including the test

household, are waiting for assignments. In this manner, when n equals

1 (i.e. when only the test applicant is waiting), the dropout rate

equals zero (i.e. the test applicant cannot dropout). Utilizing our

previous arguments, we obtain for the mean additional waiting time

E(w*) = Y / {((.-1)6+41) (4.96)

2
To find E(w* ), we set gn as in equation (4.95), but we substitute a

dropout rate of (n-1)5 for n5 throughout. This also involves a

recalculation of the equivalent "mean" waiting times E(wn); equation

(4.94) may be used, but again the dropout rate 16 must be modified to

(1-1)6.

An entirely equivalent (and perhaps less confusing!) procedure is

* *2
to compute E(w ) and E(w ) directly by initially adjusting the

J J
dropout rate to (n-1) 6 and re-setting Nj to Nj+1. This approach

directly yields

N.+1 i

E(w ) = E (Yi-k,/ - (4.97)

j k=1 i=k Ak

as the mean waiting time for our test applicant. The second moment is

obtained by setting gn as in equation (4.95), correcting n6 to (n-1) 6 ,
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* *
and setting E(wn+1) to E(wn*), and E(wn-1) to E(w n 2 ) where E(w ) is

n-2 n

conputed using equation (4.97).

This model appears complicated, but it is the first model with

sufficient realism to be of actual use. We have already seen that

categorical priority systems can be construed to represent a range of

different assignment policies (including transfers and point scoring

systems). The addition of dropout to this model, while increasing the

difficulty of the analysis involved, provides us with a reasonable

approach to forecasting waiting times. Implementation of this model on

a digital computer poses no special difficulties, as the following

example demonstrates.

4.8.1 An Example

Again we assume a project with an annual moveout rate of [1=20

households per year. We fix the arrival rate of new applicants in

priorities 1 through j-1 to Yg=10 households per year. The mean and

variance of the waiting times for a test applicant are shown for

various values of 6, the household specific dropout rate, in Figures

4.18 and 4.19. Note the dramatic effect of increasing 6 on the waiting

time. It appears that mean waiting time grows logarithmically with the

size of the waiting list for positive values of 6; the variance of

waiting time appears to approach a limit as the waiting list becomes

large. In housing authorities where categorical priorities more or

less define the entire tenant assignment system, graphs such as Figures

4.18 and 4.19 could be used to conveniently forecast waiting times for

new applicants.
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Figure 4.18
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Figure 4.19
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4.8.2 A Balance Equation

In accounting for tenant flow, housing officials are sometimes

interested in the number of tenants housed, the number of dropouts, and

the number of new applicants in a given time period. If we define

NA = number of households assigned in priorities 1 through j
j

ND. number of households who drop out in priorities 1 through j
J

Ny. number of new applicants in priorities 1 through j-1
J

Nj= number of households found waiting by a newly arriving

priority j test applicant

we see that over the period of time until our test applicant is housed,

we must have

NA = 1 + Nj + Ny - ND (4.98)

where the "1" refers to the certainty of our test applicant being

assigned. As this equation must hold in expected value, we obtain

ME(wN) = 1 + Nj + YjE(wN ) - E(NDj) (4.99)

J J

where we have taken advantage of the Poisson assignment and priority

arrival processes, and the known quantity 1+Nj.

We have argued that

E(NA) = 1E(w ) (4.100)

J J

*
E(N ) =Y.E(w ) (4.101)

Y. J N.
J J

and using equation (4.99) we find that

*
E(N ) =1 +N. +(Y. - )E(w ) (4.102)

D. J JN.
J J
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Note that if Yj>PI (a possibility for this model), the expected number

of dropouts will be larger than the number of households originally

waiting; if Yj<I, the expected number of dropouts will be less than the

size of the initial waiting list. This result holds even for very

small dropout rates; in fact, the result does not depend on the

specific dropout model we have assumed - any dropout process will yield

equation (4.102).

4.9 Categorical Priorities, Blend Priorities and Dropout

We conclude our discussion of single project tenant assignment

models by considering a realistic system with categorical priorities,

blend priorities and dropout. The system is depicted graphically in

Figure 4.20; a list of assumptions is also shown. Though this system

appears complex, it follows quite naturally from our earlier work.

As usual, we are interested in the waiting time faced by a test

applicant; in this case, our test household is a member of blend group

i and categorical priority j. Our test applicant finds Nij households

waiting in categorical priorities 1 through j who are also members of

blend group i. Households in categorical priorities 1 through j-1

arrive according to a Poisson process with parameter Yj. Of these new

arrivals, a fraction Oig will be members of blend group i, 261i=1.
i

Thus, the arrival rate for new blend group i households in categorical

priorities 1 through j-1 equals Oijy3.

Tenant assignments take place at rate P. However, on each

assignment, the probability of assigning a blend group i tenant is set

equal to bi, the desired fraction of group i tenants in the project.

Therefore, blend group i tenants are assigned according to a Poisson

process with rate bi'.
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Figure 4.20

Categorical Priorities, Blend Priorities And Dropout

Arrivals in categorical Waiting List

priorities 1 through

j-1, blend group i Assignment Project Residency Exit

eijyj
ij j - - - ---- Ni,j -l - --

bi
R------- R---------+(him/H)P'

Test Applicant

--------------------- + Nij -

Nij > 0

Dropout
Nij

Assumptions

1) nij categorical priority j households in blend group i are

found waiting for housing assignments by a newly arriving

categorical priority j blend group i household.

j
N..j= E n .kk1i ik

k=1

2) Categorical priority k households arrive according to a

j-1
Poisson process with rate Xk. Y.= X = arrival rate of all

k=1 k

households in categorical priorities 1 through j-1.

3) The probability that a newly arriving household in categorical

priorities 1 through j-1 is also in blend group i equals ei3;

B
E 0 =1 where B equals the number of blend groups.

. ij
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4) A categorical priority j household is assigned only if no

households in categorical priorities 1,...,j-1 are present.

5) Within categorical priorities, a household from blend group i

is assigned with probability bi, Ebi=1. Within categorical

and blend groups, assignment is in order of application.

6) Dropouts occur at rate n5 when n households (not including the

test applicant) are waiting for housing assignments. The test

applicant will not drop out with certainty.

7) Tenant assignments take place in a Poisson fashion with rate

1; tenants from blend group i are assigned at rate biL.
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Finally, dropout is assumed to occur at a rate proportional to the

number of households waiting. The test applicant does not drop out by

assumption.

For our test applicant, the relevant facts are:

1) Nij households are already waiting.

2) Assignments take place at rate biP.

3) Higher priority applicants arrive at rate OigYj.

4) Dropout is proportional to n 6 when n households in blend group

i, categorical priorities 1 through j are waiting ahead of the

test applicant.

We can therefore use our earlier results to obtain E(w ), the

expected waiting time for our test applicant from arrival until

assignment, by making the following adjustments in equation (4.97):

1) Substitute Nij for Nj. (initial waiting list)

2) Substitute biP for IL. (assignment rate)

3) Substitute 3ijYj for Yj. (categorical priority arrival rate)

These changes yield

N .+1

E(w ) = E ([0 .Y.mk/ I [(1-1)6 + bil) (4.103)
ij k=1 m=k Ak

The second moment of w is obtained from the arguments following

equation (4.97) making the substitutions indicated above. As long as

the probabilities Oij can be estimated, the implementation of this

model should pose no special problems. As presented, the model is

quite rich in the variety of situations that can be studied.
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4.9.1 Statistical Issues

This section has introduced the new quantity Oij, the likelihood

that a new arrival in categorical priority 1, 2,..., j-1 is a member of

blend group i. Rather than estimating Oij directly, we will choose an

indirect approach that is easily understood. Let Pij represent the

probability that a newly arriving household in categorical priority j

is in blend group i, EP =1. Then the likelihood that an arrival in
i3

one of categorical priorities 1 through j-1 is in blend group i equals

Pr{arrival in blend group ilarrival in one of categorical
priorities 1 through j-1

j-1
=E Pik Pr{arrival in categorical priority klarrival in one

k=1 of categories i through j-1
(4.104)

by the laws of conditional probability. However, since categorical

priority j applicants arrive according to a Poisson process with

parameter Xg, we have

Pr{arrival in categorical priority klarrival in one of priorities
1 through j-1}

j-1
= k / (4.105)

1

Thus, we can express Oij as

j-1 j-1
9 = zp k/ E A

k=1 ikk

j-1
=- 1 (4.106)Y. ik kj k=1

Now, the quantities Xk and Yj are easily estimated as has already been

discussed in equations (4.84) and (4.85). Also, to estimate Pik, one

merely observes the fraction of newly arriving categorical priority k
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households who are also members of blend group i. These estimates may

be denoted by Pik, and we can thus estimate Oij by

^ 1 $~1 ^ ^
E P (4.107)ij Y k=1 ik k

4.9.2 An Example

As before, we consider a project with an annual moveout rate of

4=20 households per year. New households in categorical priorities 1

through j-1 arrive at a rate of Yj=10 per year. We assume a household

specific dropout rate of 8=.1. In addition, we consider two blend

groups; group 1 tenants receive 33% of all assignments, while group 2

tenants receive 67% of all assignments. Of those households arriving

in categorical priorities 1 through j-1, 50% are from blend group 1,

and 50% are from blend group 2.

The expected waiting time faced by an arriving group i test

applicant who finds Nij group i households waiting for assignments is

plotted in Figure 4.21; the corresponding variances are shown in Figure

4.22. Note the long waits for group 1 applicants; this is due to the

fact that the effective arrival rate e1jYj is close to the effective

service rate bl1-. In addition to longer mean waits, the uncertainty

associated with waiting time is relatively higher for group 1 than

group 2 applicants, as is clearly seen from Figure 4.22.

4.10 Summary

This chapter has developed a variety of models for studying tenant

assignment policies in single project housing systems. The models are
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Figure 4.21
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Figure 4.22
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rich in that they incorporate:

-- project moveout rates

-- dropout

-- blend priorities (e.g. racial integration)

-- categorical priorities (e.g. emergencies)

-- the number of households waiting for assignments

The major focus has been on modeling the time from when a new

applicant arrives until that applicant is housed. We also examined

allocational quantities such as the expected number of households

assigned and the expected number of dropouts.

The models assume that there is no interaction among unit types;

the models can account for transfer policies within the context of

categorical priorities. More importantly, the models reflect single

project, no choice assignment systems. They are not immediately

applicable to multi-project schemes or systems with an appreciable

degree of tenant choice. In the next chapter, we will build on the

work just completed to design models for multi-project systems with

various degrees of tenant choice.
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Chapter V

Assignment Models with Tenant Choice

One characteristic that distinguishes many tenant assignment

schemes from other queueing systems is the choice given to the tenants

(customers) regarding which project (server) they are assigned to

(receive service from). From our review of tenant assignment policies

in Chapter 2, we can identify two systems for addressing the issue of

tenant choice: refusal systems and multi-queue systems. We will

briefly discuss each of these before modeling waiting times for these

classes of tenant assignment systems.

5.1 Refusal Systems

In many cities, when a household is offered an apartment, the

household can refuse to accept the apartment, for whatever reasons,

without penalty - to a point. For example, a household might be

allowed three offers; if the household rejects all three offers, then

it must retreat to the back of the waiting list. If an apartment is

rejected by a certain household, it is immediately offered to the next

household on the waiting list.

Refusal systems allow households some degree of choice, albeit by

after-the-fact rejection as opposed to before-the-fact selection. The

higher the number of refusals allowed, the more flexible the system is

from the prospective tenant's standpoint. Of course, the ability of

the authority to maintain control over the composition of housing

projects decreases as the number of allowed refusals increases.
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5.2 Multiqueue Systems

Multiqueue systems, while difficult to analyze, are in many ways

the fairest tenant assignment processes from the prospective tenants'

viewpoint. In a multiqueue system, tenants specify a number of

projects (up to some maximum) in which they are willing to reside. The

household's name is placed on a waiting list at every project in the

relevant choice set - the set of projects under consideration for

residency. The household is assigned to that project in the choice set

where a unit becomes first available. Thus, households are guaranteed

to be offered a unit in a project of their own choosing. If a

household is very choosy, they need only specify a single choice -

guaranteeing an assignment to that choice.

The drawbacks to such a system are twofold. First of all, since

some projects will be more "popular" than others, waiting times will

become unbalanced. Secondly, the housing authority loses a good deal

of control over project composition in such systems. Even though

priorities may be instituted to promote social goals such as racial

integration and income mixing, these priorities may never gain the

chance to be enacted if households choose projects strictly along

ethnic or other socioeconomic lines.

5.3 Models for Refusal Systems

We will now proceed to modify some of our results from Chapter 4

to incorporate the possibility that households may refuse offered

apartments. The essential addition to our models is the probability

that a prospective tenant will accept an offer. As noted in Chapter 2,

refusal systems differ according to the number of apartments tenants

are allowed to refuse without penalty. It is very difficult to model
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an assignment scheme with an arbitrary number of "strikes" but two

special cases which bound all possibilities are tractable and of

considerable interest:

(i) Infinite Refusal - tenants may refuse offers indefinitely

until accepting an apartment

(ii) One Strike Refusal - tenants are required to either accept

the first apartment offered or face dismissal from the

system.

As refusal models become complicated, we will focus our attention

solely on mean waiting times. To clarify the notion of choice by

refusal, we first consider models which ignore dropout and priority

structures; these features will be reinstated later on in the chapter.

5.3.1 Infinite Refusal: No Dropout, No Priorities

The situation developed in this model is similar to the model in

equations (4.19) and (4.20), the only difference being the

incorporation of refusal. A newly arriving test applicant finds N>O

households waiting for housing assignments at a given project.

Households leave the project in Poisson fashion at rate P-. Whenever a

household leaves the project, the apartment vacated is immediately

offered to the first household on the waiting list. This apartment is

accepted with probability a, O~a(1. If the apartment is refused, it is

offered to the next household or the waiting list; this next household

also accepts with probability a.

Thus, we have a situation where all households are assumed to

accept offered apartments with the same acceptance probability a,

independently of the actions of other households. We make one

exception to this rule: our test applicant will not accept any
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apartment that has been offered to other households; when our test

applicant is offered a "fresh" unit, the offer is accepted with

probabiltiy . The justification for this assumption lies in the

resulting mathematical simplifications introduced; the actual impact of

this assumption on numerical results is negligible.

We make one additional assumption. If at some time there are n

households waiting for assignments ahead of our test applicant, and a

unit is offered and refused, by all n+1 households of interest on the

waiting list, the unit is then automatically filled by a household from

a backup list of infinite size. This assumption preserves the identity

between moveouts and tenant assignments, and is made for that purpose.

A diagram of this system and a list of its attendant assumptions are

found in Figure 5.1.

As in the models of Chapter 4, we let wN denote the time necessary

to process the N households found waiting by our test applicant. The

assumptions of our process lead to the following equation for the mean

of wN:

E(wN) = + (1- )N E(wN) + [1-(1- )N ] E(w ) (5.1)

This equation is of the form described by (4.3) with:

pn=0, rn=( 1-a)n, qn=1-(1-aX)n, gn=r~

Since Pn=0 Vn, we see from (4.10) that the solution of (5.1) is given

by

N1 1
E(wN) 9(5.2)

N i=1 1-1 )

Now, the additional mean time E(w*) our test applicant must wait

clearly equals E(w1 ), the time necessary to assign a single household

found waiting. From (5.2) we have
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Figure 5.1

Infinite Refusal: No Dropout, No Priorities

Test

Applicant Waiting List Assignment Residency Exit
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(1-(C)Np Assignment

(1-a)N9

Refusals Backup
List

Assumptions

1) N>O households are found waiting for housing assignments by a

newly arriving test applicant.

2) Households are offered units in order of application.

Households accept units with probability a, independently of

the decisions of other households. The test applicant refuses

any unit previously offered to another household, and accepts

"fresh" units with probability a.

3) No households drop out. If all households (including the test

applicant) refuse an offer, the unit is assigned to a

household from a backup list.

4) Households leave the project according to a Poisson process

with rate P.
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E(w*) = (5.3)

Combining (5.2) and (5.3), we find for the mean time to house our test

applicant from arrival given that N households are found waiting:

E(wN = + (5.4)
N ~J. i=1 1-(1-L)

Note that if a, the acceptance probability, equals one, (5.4) reduces

to (N+1)/-, the same result obtained for our simplest model of Chapter

4 in equation (4.19).

Using the arguments based on the mean value theorem developed in

equations (4.38) through (4.40), we can approximate (5.4) by a closed

form expression. Noting that

J 1 dx = x - log[1-(1-L() x + constant (5.5)
1-(1-a) lg 1-(X

we have the approximation

E 1 2n-11 log { a2
i=1 1-( 1-a 2 a 'log(1-a) [1-(1-a)n+1 n

(5.6)

Using this result in (5.4) yields

E(wN*) + [2N-1+ 1

N L [a 2~ a

+ 1 logi N2 N1] (5.7)
[1-(1-) ][N+1 N

As N becomes large, (5.7) tends towards

E(w *) +I - + 1-+ log a
N 1 a 2 2a log(1-(X)

N
= + C (5.8)

12
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where

C = .1-- - .1+ log a X (5.9)1 2 a 2log(1-aX)-

Thus, the expected waiting time for our test applicant grows linearly

with the number of households found waiting for assignments. Note that

as a, the acceptance probability, approaches 1, the constant C

approaches -1 , yielding E(wN*) = (N+1)/ , as expected.

Although the analysis of this section has assumed that prospective

tenants have the right to refuse an infinite number of offers, the

results may serve as approximations to systems offering small numbers

of units for consideration, providing the acceptance probability a is

relatively high. For example, if a system allows for 3 strikes, and

0=.8, the likelihood that a tenant is dismissed from the system equals

(1-.8)3=.008. This is rather close to zero, the corresponding

dismissal probability in an infinite refusal system. Therefore, we

feel that infinite refusal models offer a reasonable approximation to

finite strike systems as long as the acceptance probability is

relatively high. Unfortunately, we currently have no estimates of a;

methods for estimating a will follow our discussions of one strike

systems.

5.3.2 One Strike Refusal: No Dropout, No Priorities

In a one strike system, a household is offered exactly one unit.

If this unit is refused, the household is immediately dismissed from

the system. To analyze one strike schemes, we assume that households

accept offers with acceptance probability a, and that an available unit

is offered until it is accepted. We will now consider the case where a

newly arriving test applicant finds N households.
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The process realized by one strike refusal is not of the birth and

death type described in Chapter 4, so our usual methods no longer

apply. The state transition diagram associated with one-strike

assignment is shown in Figure 5.2 for the case where N=2, and our test

applicant is thus the 3rd household on the waiting list. The "states"

of the system indicate the number of households waiting for housing

assignments. Once a state is entered, the system remains in that state

for a period of length T, where T is exponentially distributed with

mean -1. Households are dismised from the system whenever an offer is

refused; units are offered until they are accepted.

Defining wn to be the time necessary to process the first n

households on the waiting list, we obtain the following equation for

the mean wait:

1 n-1 k-1
E(w ) =-+ E a(1-a) E(w ) (5.10)

n 4 k=1 n-k

Given that n households are waiting, the likelihood that the next

unit offered is accepted by the kth household in queue equals

a(1-a)k-1. When this event occurs, (k-1) households are dismissed for

refusing an offer, while an additional household (the kth) is assigned.

Thus, there are n-k households remaining to be processed. Of course,

the time to process zero households is zero, while the mean time

between successive unit offers equals 1-1. These arguments taken

together produce equation (5.10).

This equation can be solved by induction to yield

1
E(w ) = - [1+(n-1)a] (5.11)n 4

as the expected time necessary to process n households. Now, when our

test applicant discovers N households waiting, our applicant becomes
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Figure 5.2

State Transition Diagram for the

One Strike Refusal Model

(1-a)

1-a

Assumptions

1) Households accept offers independently with probability G.

Tnitf are offered until thev are accented. If a housenold

ref-uses- an offer, ti irse fo h ytm

2) The length of time between successive moveouts, , is

exponentially distributed with mean 4-1.
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the (N+1)st household in queue. Using (5.11), the expected waiting

time for our test applicant is seen to equal

1E(w *) = - [1+Na] (5.12)N

This result has a simple interpretation. Since a is the

acceptance likelihood, Na is the expected number of units accepted by

those households found on the waiting list. The quantity Na is also

the expected number of units offered to the N households found by our

test applicant. Our test applicant is guaranteed to receive an offer,

thus the total number of units offered equals 1+Na in expectation. As

the mean time between offered units equals P-1, the time necessary to

process our test applicant equals (1+Na)P-1. Note that this result

requires no assumption about the acceptance or rejection of a unit by

the test applicant based on decisions made by other households.

It is interesting to compare (5.12) to the equivalent result for

infinite strike systems developed in (5.4) through (5.8). As expected,

the two schemes are equivalent when a=1; both yield a mean wait of

N+ 1N time units. As a decreases, the mean wait increases for infinite

strike systems, and decreases for one strike systems. For any

particular finite strike refusal system, the mean waiting time can be

bounded from above by the infinite refusal model, and from below by the

one strike model. If a is relatively high, these bounds are fairly

tight. the situation is illustrated graphically in Fig. 5.3 where

equations (5.8) and (5.12) are graphed as functions of N for various

values of a with P=20.
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Figure 5.3
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5.3.3 Estimating the Acceptance Probability

To use the models described, one needs to estimate the acceptance

probability a. Perhaps the easiest approach to this problem is to

count the number of offers required for each newly available unit to be

assigned. Regardless of the number of strikes in a refusal policy, the

probability that a newly available unit will be assigned on the kth

offer is given by

pk = X(1_a)k-1 k=1,2... (5.13)

Thus, the likelihood of observing a sample of n units where unit i

required ki offers until acceptance, i=1, ... , n is given by

n k.-1 Ek -n
L =Ha(1-a) 0=C n(l-) (5.14)

i=1

Maximizing this expression with respect to a yields the maximum

likelihood estimate

a n (5.15)
n
E k.

i=1 
1

Of course, a is the well known maximum likelihood estimate for the

"success" probability when sampling from the geometric distribution.

To estimate a then, one merely counts the total number of offers

required to fill a pre-selected set of newly available apartments, and

divides this into the number of units in question. As mentioned, this

procedure will work for refusal schemes of any number of strikes, as

long as the assumption of a constant acceptance probability is met. In

fact, one could test the validity of this assumption by seeing if the

observed numbers of offers required to assign units follows a geometric

distribution, but we have not yet obtained sufficient data to do so.
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5.4 Refusal Models with Dropout and Categorical Priorities

The models of the previous section have served to illustrate the

effect of introducing choice by refusal into tenant assignment systems.

However, to return to a more realistic modeling scenario, we will

reintroduce dropout and categorical priorities as introduced in Chapter

4. The incorporation of blend priorities is relatively straightforward

and will therefore be omitted from the ensuing discussion.

5.4.1 Infinite Refusal with Dropout and Categorical Priorities

We assume that new applicants in categorical priorities 1 through

j-1 arrive according to a Poisson process with parameter Yj. Our newly

arriving test applicant finds Nj>O households waiting in priorities 1

through j. Households drop out of the system at rate n6 when n

households (not including the test applicant) are waiting for

assignments; by assumption, the test applicant will not drop out. As

usual the assignment process is Poisson with rate P. In addition, we

assume that households independently accept offered units with

acceptance probability a, and that households may indefinitely refuse

units before accepting an offer. Finally, we assume that our test

applicant will not accept an apartment that has been previously refused

by another household. This model is diagrammed in Figure 5.4.

These assumptions define a birth and death process, thus the

methods of equations (4.2) through (4.15) apply. It is easiest to

solve first for the expected value of wN., the time necessary to
J

process the Nj households found waiting. We will then find E(w*), the

additional mean time until our test applicant is housed. Consistent

with our general formulation for birth and death processes, we set:
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Figure 5.4

Infinite Refusal with Dropout and Categorical Priorities

Poisson Arrivals
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Y.

n n+(5.16)

(1-a)np
r- n n+p+Y. (5.17)

J

q n6 + (1-(118n)
n n +P+Y.

To obtain E(wN.), we assign
J

n np+ (5.19)

J

and obtain from equation (4.15)

N. 00

E(wN) = E E (Yi-k/ I, + (1-(1-a) )p.}) (5.20)
j k=1 i=k A=k

Now, to obtain E(w*), we correct the drop out rate to (n-1)5 to reflect

the assumption that our test applicant doesn't drop out. This yields

E(w ) = 1 Y {(A-1)5 + (1-(1-a) p ) (5.21)

Combining (5.20) and (5.21) we obtain

* *
E(wN = E(wN. ) + E(w ) (5.22)

J J

as the expected time until our test applicant is assigned.

Though (5.20) and (5.21) represent the most complicated instance

of our general results from equation (4.15) this model is easily seen

to reduce to some special cases we have already studied. For example,

setting a=1 in (5.20) and (5.21) yields the same results as equations

(4.94) and (4.96). If we assign zero to both 6 and Yj in (5.20) and

(5.21) these equations reproduce (5.2) and (5.3) if we interpret 00 to

equal 1. Finally, if we set a equal to zero, (5.20) produces the mean
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time until all Nj households found waiting drop out (as M=0 implies no

assignments are made), while (5.21) equals infinity. If we assume that

our test applicant does not drop out then the waiting time for the

applicant is infinite when a=O.

5.4.2 An Example

For a numerical example, we assume a project with a turnover rate

of [1=20 apartments per year. Higher priorities arrive at rate Y=10

households per year, while the household specific dropout rate is fixed

at 6=.2. We consider three cases for infinite refusal: a=.1, =.5 and

OL=1. The resulting expected waiting times as calculated from (5.22)

are shown in Figure 5.5. Note the long waits associated with M=.1;

this is expected as most offered units are refused. Also, note how

similar the waiting times are for OX=.5 and M=1. The small difference

in mean waits for these cases is owed to the low likelihood of all

households present rejecting an offered unit. Thus, for the infinite

refusal model, expected waiting times are not terribly sensitive to the

acceptance probability a once this probability reaches an appreciable

magnitude (e.g. O=.5).

5.4.3 One Strike Refusal with Dropout and Priorities

We will now generalize our earlier work on one-strike models to

include the effect of dropout and categorical priorities. Summarizing

our assumptions, we postulate:

(i) New applicants in categorical priorities 1 through j-1 arrive

according to a Poisson process with parameter Yj

(ii) A newly arriving test applicant finds Ng>0 households waiting

in priorities 1 through j
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Figure 5.5
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(iii) The system dropout rate equals n 6 whenever n households (not

including the test applicant) are waiting for assignments;

the test applicant does not drop out by assumption

(iv) Households are assigned from the waiting list in Poisson

fashion with rate P4

(v) Households independently accept offered units with acceptance

probability a

(vi) Households receive only one offer; if this offer is rejected,

they are dismissed from the system

These assumptions define a rather complicated stochastic process;

the associated state transition diagram is shown in Figure 5.6. We can

write down an equation for the mean of w, the time necessary to process

n households found on the waiting list as

E(w ) = + E(w
n nb+ P+Y. n5+P-+Y. n-1

J J

p n-1 k-1+ y E M(1-) E(w ) (5.23)n 5+ p+Y.* n-k
J k=1

Y.
+ E(w

n6 +li+Y. n+1
J

Unfortunately, this infinite set of equations does not possess a closed

form solution comparable to equation (4.15). However, we can rewrite

(5.23) as

n+1
a E(w.) = n y (5.24)
ni +
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Figure 5.6

State Transition Diagram for the

One Strike Refusal Model with

Dropout and Categorical Priorities

Y. y
(n-2) 6+i++yj (n-i) 6+pi+y .

n+1

182

Y.

+p +.i+y

Y.y i

n6+pt+y.
J



i=1,2,..., n-2

J

where ~ = -(n
6-Ipa)where a i=n-1 (5.25)

J

1 i=n

- Y.
i=n+1

n6+P+Y.
J

As n, the number of households on the waiting list becomes large, the

probability that the next event to occur is a high priority arrival

approaches 0. This suggests that one may presume a maximum size for

the waiting list, and assume that once the waiting list reaches this

size, the next event to occur must be a dropout or a tenant assignment.

Formally, we assume that when n equals a maximum size T1, we have

- ptc(-cVa)
i=1,2, . , -2

() 6+X)

a = - 5+Pa)i=TI-1 (5.26)

1 i= T)
1) 1=

and E a . E(w.) = (?)0+9) 1

i=1 i

Using (5.25) and (5.26), we can define a finite set of linear

simultaneous equations for E(wj) through E(wy)) by allowing n to run

from 1 through f1.

This set of equations can be efficiently solved, as the

coefficient matrix obtained from (5.25) and (5.26) is nearly in echelon

form; an algorithm based on the LU factorization of the coefficient

matrix is described in Appendix 5.1.
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To obtain the mean additional time required to process our test

applicant, E(w*), we condition on whether or not the applicant

immediately preceding our test applicant has accepted an offered unit.

If the preceding applicant has accepted an apartment, then we must take

into account the probability of a higher priority applicant arriving

during our test applicant's wait for a new unit. Otherwise, the test

applicant is either housed or leaves the waiting list. More formally,

we have

E(w acceptance by preceeding applicant) = + E(w +w
11+WY. t+Y. 1

J J

(5.27)
*

E(w rejection by preceeding applicant) = 0 (5.28)

By assumption, all applicants accept units with probability a. Thus,

the unconditional mean of w* is given by

E(w*) = a 1  + E(w +w (5.29)~~. 14Y. 1
J J

and upon solving for E(w*), we find that

* (1+Y E(w ))
E(wj) = pgl+Y (5.30)

J

Using the system of equations developed in (5.24) through (5.26) with

equation (5.30), we can set the expected waiting time until our test

applicant is either housed or dismissed from the system equal to the

sum of E(wN ) and E(w*).

5.4.4 An Example

We again examine a project with a moveout rate of P-20, priority

arrival rate of Y=10, and a household specific dropout rate of 6=.2.

The expected waiting times (solved using the finite state
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approximation) for the one strike model are presented for the cases

a=.1, 0=.5, and a=1 in Figure 5.7. Unlike infinite refusal models,

the waiting times for one strike models are heavily dependent on a, the

acceptance probability. It is evident that most applicants are

dismissed from the system as a decreases from 1.

5.5 Multiproject Models

The modeling effort thus far has focused exclusively on single

project tenant assignment systems. As noted from our review of

currently used tenant assignment schemes, several cities operate city-

wide waiting lists where assignments are made on a first available

unit basis, regardless of the particular project involved. In this

section, we will show how single project models are easily adapted to

multiproject systems of the form described.

Suppose that for a particular unit type, the assignment process at

project i is Poisson with rate [Lj, i=1,...,I. the overall assignment

process for the entire housing authority will also be Poisson with rate

I
=- S . (5.31)sys i

since in first available unit systems, assignments at projects are

mutually independent. Thus, one can consider the entire authority to

function as a "mega-project" with respect to housing assignments.

One such situation is demonstrated schematically in Figure 5.8.

The prediction of waiting times in multiproject first available

unit systems is therefore rather straightforward. One only needs to

substitute Psys for Ii in the relevant single project tenant assignment

model to obtain estimation of the mean waiting time (or the variance of

waiting time) for a newly arriving test applicant. The features of
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Figure 5.7
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Figure 5.8

A Multiproject First Available Unit System
with Categorical Priorities and Dropout

Poisson Arrivals Waiting List Assignment
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Applicant
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Nj6
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sys 1 1 "sys
------- + R --------- +

Assumptions

1) Nj households in categorical priorities 1 through j are found

waiting by a newly arriving priority j household.

2) Households in categorical priorities 1 through j-1 arrive in a

Poisson process with rate Yj.

3) Tenant assignments at project i occur in Poisson fashion with

rate 9Ii. The overall system assignment rate is given by

I

PEsys= 1-
i=1

4) Dropout occurs at a rate proportional to the number of

households waiting; the test applicant does not drop out by

assumption.
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blend priorities, categorical priorities, and tenant refusal can all be

incorporated in this framework.

Of additional interest is the number of households who will be

assigned to specific projects. These quantities are easily obtained

from the product of the project specific assignment rates with the mean

waiting time:

E(number housed at project i) = PIiE(wN*) (5.32)

where [Li is the assignment rate at project i, and wN* is the time

necessary to process a test applicant who finds N households waiting

for assignments (note that the waiting list may be prioritized).

One rather unrealistic feature of our multiproject analysis

surfaces when refusal systems are considered. It is difficult to

imagine an authority where the likelihood of a household accepting a

unit is independent of the project in which the unit is situated. A

more realistic model would assign a project specific acceptance

probability ai to the acceptance of an offered unit located in project

i. Unfortunately, such a model is too complicated to consider at the

present time; the development of refusal models with project specific

acceptance probabilities could prove to be an interesting topic for

future research.

5.6 Multiqueue Systems

Refusal systems offer one means for allowing tenants some degree

of choice in an assignment procedure. An entirely different approach

would be to guarantee tenants assignment to a member of a pre-chosen

group of projects. A system of this form is currently used by the

Boston Housing Authority. The advantage of such a system is that

tenants can indeed specify where they are willing to live. The
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disadvantage is that the authority using this system relinquishes

control over the demographic composition of housing projects.

To model the waiting times for such systems, we must take into

account the detailed choices and positions of all tenants on the

waiting list. We can summarize tenant choices via the notion of a

choice set. Formally, the choice set Cj consists of all projects

chosen by tenant j as acceptable for assignment. Thus, tenant j can

only be assigned to project i if i 6 Cj.

The positioning of tenants on the waiting list is arranged in

order of application date. However, as tenants' choice sets overlap,

one may think of the waiting list as a number of queues, one for each

project, with a tenant appearing in all queues for projects in his or

her choice set (hence the term "multiqueue"). An example is shown in

Figure 5.9 for a simple system with three projects and two choices per

choice set.

The tenant assignment rule for a multiqueue system (ignoring

dropout and priorities) states that a newly available unit at project i

is assigned to the household at the front of the waiting list for

project i. The household assigned is then removed from all other

project waiting lists. Thus, in a multiqueue system, tenants are

assigned to that project in their choice set in which the first

available unit appears. An example of an assignment sequence using the

waiting list in Figure 5.9 is shown in Figure 5.10. Note that the

households are not assigned in strict chronological order; this is due

to the restriction of assignments to choice sets. Also, note the

dependence of the waiting list at one project on assignments that occur

at other projects. In the example of Figure 5.10 household 4 is
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Figure 5.9

A Multiqueue Waiting List

Tenant ID (j)

2

3

4

5

6

7

Choice Set (Ci)

1,3

2,3

1,2

1,3

2,3

1,2

2,3

Project (i)

1

2

3

Waiting List (By Tenant ID)

1,3,4,6

2,3,5,6,7

1,2,4,5,7
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Figure 5.10

A Sample Assignment Sequence for the Multiqueue
Waiting List of Figure 5.9

Project with New Available Unit Household Assigned

2 2

3 1

2 3

1 4

1 6

3 5

2 7
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assigned to project 1 on the first assignment made to project 1, even

though household 4 is initially third in queue at project 1. Of

course, this is due to earlier assignments made at other projects.

Before continuing, it is worth noting that we have already

considered two special cases of multiqueue assignment systems. If the

choice set for every tenant consists of a single project, then the

entire assignment system decomposes into a series of independent single

project first come first serve waiting lists. This situation has been

discussed in detail in Chapter 4 and the early part of this chapter.

Alternatively, if the choice set for every tenant consists of all

projcts in the system, then the situation is the same as the

multiproject first come first serve assignment scheme considered in

the previous section.

The last concept we need to introduce before formulating a model

for multiqueue systems is that of a "state." Previously, it was

sufficient to know the number of households on the waiting list in

order to make probabilistic statements about future events (e.g. an

assignment, a dropout). Now, it is necessary to know the configuration

of all households in the system on the multiqueue waiting list after

each assignment is made. Each distinct, possible configuration will be

referred to as a state. The actual state transitions for the

assignment sequence in Figure 5.10 are illustrated in Figure 5.11.

Note that these states represent the particular sequence that was

observed; they do not represent all possible states.

We are now ready to model the multiqueue system. As usual, we

assume that the moveout (and hence the assignment) rate at project i

equals Ii; and that the assignment process is Poisson. If we set
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Figure 5.11
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the Assignment Sequence of Figure 5.10
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sys= 9I, then the probability that an assignment is made to project i
i 1

on any transition is given by

Pr (Assignment made to project iD = (5.33)
sys

Now, suppose the system currently occupies some state k, where all

possible states have been arbitrarily numbered from 0 (the initial

state, or starting configuration) to Do (the first state in which all

households present in state 0 have been assigned). We define

qkl = Pr (System next occupies state 11 (5.34)
System currently occupies state k1

k,=0.. .,DO
k*1

If we let Gki be the group of projects which would carry the system

from state k to state I if an assignment is made at any project in the

set GkI, then we see that

qk (5.35)
i G 1k

sys

Finally, we define pij(nISk) to be the n-step transition

probability for the assignment of household j to project i given that

the system is currently in state k. This probability gives the

likelihood that household j will be assigned to project i in exactly n

assignments, given that the system is currently described by state k,

and is computed recursively as

D

pij (nS k =0 q k ij (n-1SI) C (5.36)

for each project i and household j on the waiting list.
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Once these n-step probabilities have been computed, we can easily

compute the mean length of time necessary to house all those initially

present on the waiting list, and the expected number of assignments

that will occur at each project. First, we compute the ultimate

probability of assigning household j to project i, given that the

system is initially in state 0 as

Pig (S ) = pij (nS) i EC (5.37)
n=1

0 ifc.
J

The expected number of households assigned to project i of those

originally present initially is then given by

N
E (Assigned to project ilS ) = E p .(S ) (5.38)

j=1

Finally, the expected time necessary to assign those who ultimately are

assigned to project i is given by

1 N
E(wS) =- p. (S ) (5.39)No . . 1 0

I j=1

If a test applicant choosing only project i were to enter the housing

system in state 0, the mean waiting time for our test applicant would

equal

E( I + E(wS (5.40)

Once one is familiar with the notion of state in the multiqueue

context, the formulation just presented is rather straightforward.

Unfortunately, the concept of state also serves to make the preceding

analysis unworkable for all but the most trivial problems. The number

of possible states explodes geometrically with the number of projects
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and the size of the waiting list, and combinatorically with the number

of projects allowed in a choice set. For example in the simple system

of Figure 5.9, enumeration yields a total of 24 possible states. In a

system such as the Boston Housing Authority with up to three projects

per choice set, over fifty projects, and waiting lists of over 2000

households for most bedroom sizes the number of states attainable is in

the billions. These realities render our approach inoperable.

However, it is not al all difficult to simulate the operations of

a multiqueue tenant assignment scheme. A simulation would generate

events in a manner consistent with the process as it has been

described, and calculate statistics such as waiting times and the

number of project specific assignments based on several "realizations"

of the system. We will now describe an algorithm for simulating a

multiqueue assignment scheme (ignoring dropout and priorities), and

present some examples.

5.6.1 Simulating Multiqueue Systems

A simple method for simulating multiqueue systems involves

generating exponential inter-moveout times, and assigning households to

projects in a manner consistent with the given choice sets for the

households on the waiting list at these simulated moveout times. We

will describe an algorithm to do this using the following notation:

Il = moveout rate at project i

Sik = time elapsed between the (k-1)st and the kth moveout at

project i

wik = time at which the kth moveout (and hence the kth assignment)
occurs at project i

t = time at which the Zth tenant assignment occurs (system wide)
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i(AZ) = ID of the project where the Zth tenant assignment occurs

Cj = set of projects chosen by household j (i.e., the choice set
of household j). Households are ordered by application date
(i.e., in order of arrival).

1 if household j has been assigned

0 if not

Ni = number of households assigned to project i

Ti = time necessary to assign all households ultimately assigned
to project i

The simulation proceeds in three major blocks:

Block 1: Generate Inter-moveout Times, Compute Assignment Times

1) For every project in the system generate K random inter-

moveout times Sik, k=1,...,K using an exponential distribution

with parameter 41 for project i

2) For every project in the system, compute k assignment times

using the recursions

wik=wi,k-1 + Sik; wij = 0; k=1,...K

At the end of Block 1, the simulation has generated K assignment times

for each project in the system.

Block 2: Sort the Assignment Times to Obtain a System Assignment
Sequence

In this block, all of the project assignment times wik are sorted

in ascending order, and stored in the variable t . Thus, the time at

which the .th system wide assignment occurs is given by t . While

sorting, the project ID's associated with each assignment time are

saved. At the end of Block 2, the variable i(l) identifies the project

at which the Zth system wide assignment occurs.
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Block 3: Allocate Households to Projects and Compute Project Specific
Waiting Times

(1) Set Ti=O and Ni=O for every project i.
Set Yg=0 for every household j.

(2) Set =0.

(3) Set Z+I+1

(4) Find min j such that i()EC and 'Fj=O.
If no such j, go to (6).

(5) Set T {+1; Ti(i)+t ; Ni(l)+Ni(.X)+1.

(6) Is qj=1 Vj? If yes, go to (7).
If no, go to (3).

(7) STOP.

Block 3 performs the allocation of households to projects. After

initializing the variables Ti, Ni and Yj, the algorithm locates the

household that is first in line for each new unit that occurs; assigns

the household to the relevant project; removes the household from

consideration at other projects; updates the number of households

assigned and the waiting time for the relevant project; and checks to

see if all households have been assigned. When all households have

been assigned, the routine is complete. To compute the expected number

of households assigned and the average waiting times at each project,

the entire algorithm (Blocks 1 through 3) is repeated several times,

and the resultant values of Ti and Ni from the various runs are

averaged to compute Ti and Ni; the mean waiting time and mean number of

households assigned at project i. As an example, a simulation

allocating 100 households to five projects in a 2 project per choice

set multiqueue system was performed for various values of 1Ii, the

moveout rates, and various combinations of project choices. A computer

coding of the model may be found in Appendix 5.2.
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Project choice sets were generated by sampling without replacement

from the pool of five projects according to predetermined

probabilities. Each household was given an initial probability pi of

selecting project i, i=1,...,5. Having selected project i, the

conditional likelihood of selecting project i' equals

Pr{choose i'Jchosen il = pii/( 1 -pi) i,i'=1,...,5 (5.41)
i'*i

Thus, the probability that the choice set for any household consists of

projects i and i' equals

Pr{Choice set contains i and i'l = pipit L 1 + 1 (5.42)
1-p 1-p!

1 1

i i'=1, ... ,

A total of 18 experiments were performed. In each experiment,

choice sets generated by a particular set of pi's were combined with

moveout rates given by a particular set of PIi's to compute the mean

time to house all assigned households by project, and the mean number

of households assigned to each project. For each experiment, the

simulation model was run 100 times; choice sets were not regenerated

with each run for a given experiment. Table 5.1 shows the parameters

used in generating the experimental runs, while Table 5.2 presents the

resultant mean numbers of assignments and average waiting times by

project.

In the first experiment, where assignment rates and project

desirability are homogeneous across projects, the resulting tenant

allocation and waiting times are also invariant. Both the assignment

rates and the choice structures have been systematically varied in the

successive experiments. It is interesting to note the interaction
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Table 5.1

Parameters for the Simulation Experiments

Project Choice Probabilities

Case P1 P2 P-3 P4 PC

A 1/5 1/5 1/5 1/5 1/5

B 1/8 1/8 1/8 1/8 1/2

C 1/15 2/15 3/15 4/15 5/15

Yearly Moveout Rates

Case _1 p_ P3 g __

1 10 10 10 10 10

2 10 10 10 10 50

3 50 10 10 10 10

4 10 20 20 50 50

5 50 50 20 20 10

6 10 20 30 40 50

7 50 40 30 20 10
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Table 5.2

Experimental Results

Mean Number of Households Assigned

Project Moveout

Choice Rate
Case Case N1 N2

A 1 19.5 20.2

B 1 20.6 21.4

C 1 15.1 20.4

A 2 14.4 14.8

B 2 12.2 10.9

C 2 11.0 12.4

B 3 34.7 17.9

C 3 19.5 19.2

A 4 7.1 14.2

B 4 8.5 15.1

C 4 6.6 13.6

B 5 29.3 31.7

C 5 17.4 28.2

A 6 6.8 14.0

B 6 8.2 14.5

C 6 6.6 13.6

B 7 29.8 28.7

C 7 17.6 26.7

R3

20.7

17.4

21.7

15.5

10.3

12.7

14.1

20.6

16.0

13.5

14.2

15.0

21.1

21.6

17.6

20.5

18.4

25.2

N4

19.8

19.0

21.0

14.8

11.0

11.8

15.1

20.1

30.9

24.2

32.0

15.0

21.9

26.5

22.8

25.8

14.5

20.3

Mean Time to Assign
all Households

N5

19.8

21.7

21.8

40.5

55.6

52.1

18.3

20.6

31.8

38.7

33.6

9.0

11.3

31.1

36.9

33.5

8.5

10.2

1.94

2.07

1.52

1.44

1.22

1.04

0.70

0.40

0.67

0.87

0.57

0.59

0.35

0.62

0.84

0.56

0.60

0.35

T2  T3

1.97 1.94

2.05 1.80

2.03 1.98

1.45 1.42

0.97 1.01

1.23 1.10

1.70 1.43

1.91 1.89

0.69 0.74

0.70 0.68

0.66 0.62

0.61 0.76

0.57 0.98

0.68 0.69

0.67 0.61

0.67 0.63

0.69 0.64

0.67 0.79

T4

1.96

1.86

2.09

1.45

1.04

1.14

1.48

1.96

0.62

0.48

0.64

0.74

1.09

0.67

0.57

0.65

0.72

1.00

T5

1.91

2.25

2.09

0.81

1.13

1.05

1.83

1.99

0.63

0.79

0.67

0.90

1.05

0.62

0.76

0.66

0.86

0.96
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between choice structure and assignment rates. For example, in the

fourth experiment, using a homogeneous choice structure, an average of

40.5 households were assigned to project 5; in the fifth experiment

using the same assignment rates of 10 for projects 1 through 4 and 50

for project 5, an average of 55.6 households went to project 5 with the

choice structure biased in favor of project 5. Now, the same choice

structures used in experiments 4 and 5 were also used in experiments 1

and 2, but with homogeneous assignment rates. Here, the number

assigned to project 5 increased from 19.8 to 21.7 on average - hardly

the same as the increase from 40.5 to 55.6 noted earlier.

An informal analysis of these results leads one to conclude that

the interaction between choice structures and assignment rates is

complex. Certainly, projects with higher assignment rates will house

more tenants; projects which are more likely to be chosen are more

likely to house tenants as well. Beyond these almost trivial

observations, it is difficult to characterize the behavior of

multiqueue systems.

That the choice aspect of multiqueue systems combined with the

exact ordering of tenants on the waiting list is critical to the

outcomes of the assignment process is illustrated by the following

example. Imagine a system with two projects, both with equal

assignment rates. Also, imagine 100 tenants to be housed; 50 will

accept either project 1 or 2, the other 50 will accept only project 1.

If the waiting list is such that the fifty households willing to go to

either project are the first fifty tenants on the list, then one would

expect 25 of these tenants to be assigned to the first project, and 25

to the second. The remaining 50 tenants, having chosen only project 1,
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would be assigned to project 1, yielding a final tally of 75 households

assigned to project 1 and 25 assigned to project 2.

Alternatively, if the 50 households choosing only project 1 were

processed first, then any new units opening up at the second project

will be assigned to households who are indifferent to living in either

project (since the 50 households in the first half of the list will

only accept project 1). Thus, by reversing the order of the waiting

list, one would expect a final tally of 50 households assigned to

project 1 and 50 households assigned to project 2. Clearly, choice and

order are important in the outcome of a multiqueue assignment process.

While we have developed a simulation model for calculating the

mean times to "clear" waiting lists and the expected number of project

assignments for multiqueue systems, we have not really succeeded in

understanding the qualitative features of these assignment schemes.

The simulation model will prove useful for actually forcasting waiting

times in a multiqueue system (once modified to incorporate dropout and

priorities, for example). However, the development of analytic models

for the multiqueue model poses a difficult research problem.

5.7 Conclusions

This chapter extended the analysis of Chapter 4 to incorporate

certain aspects of tenant choice found in the tenant assignment schemes

of U.S. Housing Authorities. We examined the notion of refusal

systems, and developed models for the cases of one-strike and infinite-

strike refusal. The applicability of our models to multiproject first

come first serve assignment schemes was demonstrated. Following this,

we developed a simulation model for application to multiqueue systems,
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and presented the results of some preliminary experiments with this

model.

We have devoted a great deal of time to the development of tenant

assignment models. In the next chapter, we will use these ideas to

analyze some real data from the Boston Housing Authority in an attempt

to demonstrate the utility of tenant assignment modeling in a policy

analysis setting.
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Appendix 5.1

An Algorithm for Obtaining E(wN) in the One Strike Refusal
Model with Dropout and Categorical Priorities

Define:

- La(1- a) ij1/(105+p+Y.)
J

-(pX+i6)/(i+p+Y.)
J

1
(i) ai =M aij -Y.i/(ib+l+Y.)

J J

0

i= 1,2, . . -

j=1,2, ... , i-2

j=i-1

j=i

j=i+1

j>i+1

j=1,2, ... , T-2

j=TI-1

jn

i=1, ... , -1

(ii) a .

-pa(1-C) ~n ~1/( O+ )

1 t T) T

(iii) bi = 1/( 6 ++Yj)

(iv) bT1 = 1/( 116+p)

The expected waiting times E(wn) are given by the solution to the
set of I simultaneous linear equations

a.. E(w.) = b
j=1

i=1,2, ... , Ti
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Owing to the special structure of the coefficients aij, these equations
are easily solved by the following algorithm:

1 ) b1 bj/al11

2) v1  a12/a11

3) FOR i=2 to 11

4) 0o + ai1

5) bi + bi - zob1

6) IF i=2 THEN GO TO 12)

7) FOR j=2 TO i-1

8) 11 + aij - ovj1

9) bi + bi - lbj

10) -0 +

11) END j

12) 11 + aii - levi_1

13) bi + bi/.11

14) vi + ai,i+1/Z1

15) END i

16) E(w ) + b
71 T)

17) FOR i=fl-1 TO 1

18) E(wi)=bi-vibi+1

19) END i
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Appendix 5.2

UCON L0 UL 7NI, rNOSOURLlCE

I LLHT:ON OF EFFECTIVE QuEuE LEN T.HS C COOPERtTIvE QUEUES
FI-E QUEUES. TWO CHOICES PER TEHM, FI.XEO CHOICE STRUCTURE

DIMENSION XC5,300),T<5,300),ST(3000), IFACC3000).IQ<5,300),L(5),
+LQi5),WCS),AVCLC5),AvGL2(5),AVGW.5.),VGW2(5), ISERVE(300),
*LHIMBDA 5 ), LOLD< 5), N%,5, 300), NSTA R%5,3 G00),OLDISTRKS , 3 00,
+'L1I 5) , L2<5 )
REAL LAN1BDA,L.NSTAR,LOLDL1,L2.LL

INPUT PAR1METERS

DICPLAY "ENTER # PROJECTS, # HOi-EHOLDS. LO
HCCEPT NP,tlH.HT
DISPLHY "ENTER SERVICE RATES"
MCCEPT LrMBC'w I). I=O ,P
DICPL"Y "ENTER BREHPPOINTS FOR CHOICE STRUCTURE"
"CCEPT 61,E2,83,64

INITIALI2E FOR CHOICE STPUCTURE GENERATQO

L'0 1 I=l,NiP
"o) J=1 NH

IL.' I, J)=IJ

5 .01NTINltUE
D'ISPL4Y "ENTER SEED"
HCCEPT SEED

GENERATE CHOICE STRUCTURE

DO 10 J=1.NH
11 CALL CHQICE(1f,81,82,B3,84 ;EED

'ALL CHOICE2.81 ,6E2,B3,84,SEED,
F. II.EQ.I ) GO TO II

10 CONT INUE

BUILD ORIGINAL QUEUES

00 15 1, NP

Do 15 J-1,NH
IFC<'XI, J)EQ.0) GO TO 15
IS=IS+1
10'. I, IS)-.J

I5 CONTINUE

WRITE ORIGINAL QUEUES TO FILE 8

DO 20 IS=l,NH
D0 25 I=1 NP
IF' IQ<I,IS).GT.0) GO TO 21

25 CONTINUE
GG TO 2

21 I ,23 IOC I IS), I=1 NP
.~.3 RM T: 13, 1 X

207



CONTI'iUE
.:2 CON T I NLU

INITIALIZE SIMULATION LOOP
C

DISPLAY "ENTER DESIRED NUMBER OF SIMULNTIONS"
t4CCEPT NSIM
DO 30 I-1.NP
AVGLC I >=0
AVGL2( I )=j
A4VGi< I .-0
RVGW2. I = 0

30 60tITINlUE
DO 10 0 KSIrl=1 ,NSIM

I NITI HLIZE 3IMULHTION V-4RIH8LES

I'o 35 I= ,NP
- I =0

T'CI.K>=0

41) CONT I NUE
T5 UO0TIHUE

DO 45 J-I NH
ISEPVEC J)=0

45 C0N T INUE

GENEHRTE SERVICE TIMES

DO 50 I=f NP
TI I -- ALOG< RAND( SEED ) >/LAMBDRt I

T r,,K .=f I , K - i )-i4LOGC RA4NDf, SEED,, > LaMi90w I )
50 0:NTINUE

SORT THE SERVICE TIMES

KKK- =
DO 55 K1,NT
DO 55 I-INP
KKK=K KK+
STe KK)=T( I, K)
I F AiC( KKK )- r

55 CONTINUE
NNTT=NP*NT

0 ICHECK-
DO 65 k.KK-2,NNT'
IF-ST kKK-1).LE.STKKKK)) GO TO 65
ILHECK=1
StaHP-ST< fKKK
KSUAP=IF ACC KKK)
STK KK=$T KKK-I )
IFPCK KKK =IFAC KKP - I

IFHCE EKD-1 ;=,hJ1P

- CHCr .- 0 1 1 T0 TO -60
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COUNT THE TRUE EFFECTIVE QUEUE LENGTHS

DO 100 K=1,NNTT
I=IFACCK )
IF(LOCI).EQ.NH) GO TO 100
00 200 J=LQ( I),NH
IF<Y(I, J).EQ.0.OR.ISERvECJ).GT.0) GO TO :00
L. I =L. I >+1

'AJ-, I )ST K I
LO' I >=J+i
GO TO 100

200 GONTIHUE
1 00 GON T it WE

ECOPD OJEUE LENGTHS HND TOTAL 'AITS ON FILE 9

- ITE,9 N 0 1 1 LIl), Wl I ). = I , NP
.. I0 h-MHT(5:F4. 0,2x,F7.L,x))

PDHTE MERN HND MEnHN QUNRE STATISTICS

C-J 270 I=i ,NP
yG I '=t VGL . I )+LC I )

xyGI ,= GW I 3+ I

GL2 I =4VGL2( I )+L I )*L I
avwu, I 3AG2 +CI>W

27 0 C ON T INUE

END SIMUILATION LOOP

1 000 r CNTIUE

COPUTE EUIMAPY STATISTICS

DO 2G0 1-1 .NP
AVGL- I )YAVGL I )/FLOAT NSIM)
-VGWI=. ) GYW.IJ , I )/FL,ATK NSIM )

YvGL2', I '-AVGL2( I ).YFLOA T(NSIM)
AVGW2 I )-AVGW2< I )/FLOMTCNSIN)

280 CONTINUE

DISPLAY AYERAGE RESULTS

WRITEk 1 0, 284 )
284 FORMAT< " SIMULHTION RESULTS")

,RITE% 10,2 6)
286 FORMNTC(" QUEUE L L+*2 W W**2".

DISPLY "HVEPHGE RESULTS FOR EACH QUEUE"
DISPLAY "QUEUE", "L", "L**2", "u", "W**2"
DO 29') 1-1 ,NP
DIS PLHY I HVGL'. I ) .VGL2( I ),A V ),J I YGWUN I
vR I TE- 1 '), - ' I , ivGLC I ), AVGL2'; I ), )VC It )vGW2( I

90 ,TI'JE

E 0 G' F - IUr''LHT!ON
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~'Si16OiTINE SETS UP HSI 1E4T&- zLIP 'LHOICE STPLI,_T.P E

A'J6JOUrIN CH-OICE( 1,61 0,93,4,,-i
FL IP=RANNI(SEED)
IF.,FLIP.LE.61) Iml
IF-lBi.LT.FLIP.AND.FLIP.LE.e2' I-:'
IF<82.LT.FLIP.aNDFLIP.LE.193) I=3
IFk83,LT.FLlP.ANDFLIP .LE.84) 1-4
IFC64.LT.FLIP) 1-5
RETURN
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Chapter VI

Using Tenant Assignment Models: Examples from Boston

The Boston Housing Authority (BHA) administers over 14,000 public

housing units in 69 family and elderly developments (including leased

housing). As of November 1983, about 8,000 households were waiting for

project assignments in the one through five bedroom apartment range.

The BHA assigns tenants using the multiqueue assignment scheme

discussed in Chapter 5. However, the authority is considering changes

in its tenant assignment policies.

As a preliminary application of our tenant assignment models, the

BHA was interested in forecasting waiting times and tenant allocations

under the current system and making these predictions known to newly

arriving applicants. Additional policy questions address the addition

of newly rehabilitated units to the system; the institution of income

and racial mixing priorities; and the implementation of an alternative

tenant assignment scheme (e.g. single project or citywide first

available unit systems). In this chapter, we will utilize many of the

techniques developed in Chapter 4 and 5 to study some of these issues.

6.1 Simulating BHA Tenant Assignments

In order to analyze BHA waiting lists, the simulation model

described in Chapter 5 was modified to incorporate the effect of

dropout. An initial decision to treat emergency applicants as regular

applicants was made due to the relatively few numbers of emergency

applicants in the system. To include dropout, we modify Block 1 of the

simulation by including the following step:
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For every household in the system, generate a random time until

dropout using an exponential distribution with parameter 5.

In Block 2 of the simulation, these times until dropout are sorted,

saving household identifiers, along with the assignment times generated

in Block 1. Finally, Block 3 is modified such that possible tenant

assignments include dropouts; if the "project" identified in step 4 of

Block 3 corresponds to a dropout, and the household has yet to be

assigned, then the household drops out, and the number of dropouts is

incremented. A complete computer listing of the simulation model used

for the BHA analysis is found in Appendix 6.1.

The data analyzed in this chapter all stem from BHA computer

files. The November 1983 waiting list, replete with project choices

for each household listed in order of application date, was obtained.

This list reflects all households waiting for housing assignments in

BHA projects as of November 1983. Table 6.2 shows the breakdown of

households on the waiting list by bedroom size and project choices; as

households can choose up to three projects in the BHA assignment

system, the project figures in Table 6.1 overstate the true number of

households waiting. The true size of the waiting list for each bedroom

size is indicated at the bottom of Table 6.1.

Two sets of parameters need to be estimated in order to implement

the model; the moveout rates for each project by bedroom category, and

the household specific dropout rates, also estimated by bedroom size.

The moveout rates were estimated by observing the actual one year

moveout rates from January 1 through December 31, 1983 for each project

with available data by bedroom size; moveout rates were unavailable for

212



Table 6.1

Waiting Lists by Bedroom Size

Project ID 1BR 2BR 3BR 4BR 5BR

Charlestown 101 58 111 115 28 9
Mission Hill 103 138 342 300 111 27
Lenox Street 104 175 454 322 - -

Orchard Park 105 56 167 150 52 10
Cathedral 106 145 330 317 91 -
Maverick 108 57 180 140 27 7
Franklin Hill 109 119 301 267 80 -
Whittier St. 111 108 323 228 71 -
Beech St. 113 89 267 190 61 14
Mission Extension 114 118 192 129 38 16
Columbia Point 120 3 14 6 10 2
Mary Ellen McCormack 123 283 316 219 - -
Old Colony 124 223 268 176 21 5
West Newton St. 158 242 532 379 105 19
Rutland 174 125 271 186 - -
Collins 226 21 7 - - -

Annapolis 227 4 2 - - -

Ashmont 228 22 8 - - -

Holgate 229 9 1 -

Foley Apts 230 156 - - - -

Groveland 232 8 4 - - -

Davison 234 17 - - -

Washington 235 155 8 - - -

West 9th St. 236 132 7 - - -

Carrol Apts. 237 127 7 - - -

Meade Apts. 238 7 8 - - -

Warren Tower 240 21 - - -

Eva W. White 241 21 1 - - -

Walnut Park 242 16 7 - -

Tremont St. 244 32 - - - -

Amory St. 245 24 2 - - -

Warren Apts . 247 27 5 - - -

Torre Unidad 249 43 - - - -

Rockland 250 24 - - -

Codman Apts. 251 21 8 - - -

Heritage 252 84 8 24 14 -

St. Botolph 253 38 - - - -

Pasciucco 254 12 - - - -

Lower Mills 257 45 8 - - -

Ausonia Homes 261 115 5 - - -

Hassan 262 23 4 -

West Roxbury 270 61 13 - - -

Washington Cory 271 176 16 - - -

Cliffmont Roslindale 272 9 2 - - -

Bellflower 277 54 3 - - -

Peabody Square 283 52 1 - - -

Northampton 298 23 - - -
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Table 6.1 (con't)

Waiting Lists by Bedroom Size

Project ID 1BR 2BR 3BR 4BR 5BR

1701 Washington St. 299 21 - -
Broadway 501 8 15 9 1
Camden St. 502 70 243 162 - -
Commonwealth 503 11 9 19 7 -
Faneuil 504 - 246 172 - 16
Fairmont 505 1 199 162 - -
Archdale 507 79 249 222 59 6
Orient Heights 508 41 222 145 43 6
Gallivan Blvd 510 - 485 455 111 -
Franklin Field 511 4 13 24 15 -
South St. 512 100 266 224 72 -

Franklin Elderly I 601 - - 2 -
Franklin Elderly II 602 1 - -
L St. 603 185 11 - -

Summer St. Hyde Park 605 37 - - - -

ACTUAL 2092 2783 2150 493 74
TOTAL

(True number of
Households

Waiting)
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four projects. These rates are shown in Table 6.2. For projects with

waiting lists but no observed moveouts, the moveout rate was

arbitrarily set to .1.

The estimation of dropout utilized the simple estimator 63 presented

in equation (4.64). All households who applied for public housing in

August 1982 were examined at the end of a one year period. Those

households who withdrew or were found to be ineligible during the one

year period were considered to have dropped out. The data used to

estimate household specific dropout rates, along with the computed

estimates of 6 and the estimated mean time until dropout for each bedroom

category appear in Table 6.3.

Expected tenant allocations and depletion times were estimated from

100 runs of the simulation model. Households choosing one of the

projects with missing data were treated as though they has not chosen the

project involved, and households choosing only projects with missing data

were deleted from the analysis. In addition to computing the expected

number of tentants assigned to projects and the associated mean time to

assign these tenants, the model computed the standard deviations of the

number of tenants assigned and the time to deplete the initial waiting

lists. The model also computed the mean and standard deviation of the

number of dropouts that occurred over the 100 simulation runs. These

results are presented in Tables 6.4 through 6.8.

In reviewing these results, a number of features are evident.

First, there is a tremendous variability in the number of households

assigned to the different housing projects. This reflects both the

differences in project popularity (as evidenced by the figures in Table
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Table 6.2

Moveout Rates by Bedroom Size (1982)

Project ID 1BR 2BR 3BR 4BR 5BR

Charlestown 101 75 56 6 7 .1
Mission Hill 103 18 35 12 6 1
Lenox Street 104 23 9 .1 - -
Orchard Park 105 25 23 17 1 .1
Cathedral 106 39 25 13 .1 -
Maverick 108 11 18 13 3 1
Franklin Hill 109 7 26 7 1 -
Whittier St. 111 .1 13 3 1 -
Beech St. 113 16 36 13 4 1
Mission Extension 114 25 19 4 3 .1

Columbia Point 120 1 13 8 2 .1

Mary Ellen McCormack 123 56 27 5 - -
Old Colony 124 33 22 9 5 .1

West Newton St. 158 8 .1 .1 .1 .1
Rutland 174 2 5 4 - -
Collins 226 5 .1 - - -

Annapolis 227 3 1 - - -

Ashmont 228 4 1 - - -

Holgate 229 6 .1 - - -

Foley Apts 230 5 - - - -

Groveland 232 .1 .1 - - -

Davison 234 7 - - - -

Washington 235 11 2 - - -

West 9th St. 236 10 .1 - - -

Carrol Apts. 237 9 1 - - -

Meade Apts. 238 1 .1 - - -

Warren Tower 240 8 - - - -

Eva W. White 241 8 .1 - - -

Walnut Park 242 4 2 - - -

Tremont St. 244 3 - - - -

Amory St. 245 8 3 - - -

Warren Apts . 247 4 .1 - - -

Torre Unidad 249 2 - - - -

Rockland 250 .1 - - - -

Codman Apts. 251 4 .1 - - -

Heritage 252 14 3 .1 .1 -
St. Botolph 253 5 - - - -

Pasciucco 254 4 - - - -

Lower Mills 257 3 1 - - -

Ausonia Homes 261 3 1 - - -

Hassan 262 11 .1 - - -

West Roxbury 270 13 .1 - - -

Washington Cory 271 13 .1 - - -

Cliffmont Roslindale 272 8 1 - - -

Bellflower 277 10 1 - - -

Peabody Square 283 8 4 - - -

Northampton 298 5 - - - -
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Table 6.2 (con't)

Moveout Rates by Bedroom Size (1982)

Project ID 1BR 2BR 3BR 4BR 5BR

1701 Washington St. 299 2 - - -

Broadway 501 .1 1 1 2 -
Camden St. 502 7 3 2 - -

Commonwealth 503 .1 2 1 .1 -
Faneuil 504 - 25 14 - .1
Fairmont 505 .1 3 1 - -
Archdale 507 5 30 8 1 .1
Orient Heights 508 6 31 19 1 .1
Gallivan Blvd 510 - 3 1 1 -
Franklin Field 511 2 7 2 .1 -
South St. 512 3 2 5 .1 -
Franklin Elderly I 601 1 3 .1 - -
Franklin Elderly II 602 3 .1 -
L St. 603 2 .1 - -

Summer St. Hyde Park 605 7 1 - - -

SYSTEM 576.6 470.4 168.4 38.6 3.9
ASSIGNMENT

RATES
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Table 6.3

Estimation of Household

Dropout Rates (Aug. 82 - July 83)

INITIAL

SAMPLE SIZE
^

ESTIMATED MEAN
TIME UNTIL

DROPOUT (YEARS)

1 64 183 .3497 2.86

2 40 232 .1724 5.80

3 28 183 .1530 6.54

4 9 40 .2250 4.44

5 1 6 .1667 6.00
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Table 6.5

AGGREGATE SYSTEM RESULTS - UNIT TYPE 2 2783 HOUSEHOLDS PRESENT AT START 100 SIMULATION ROUNDS

PROJECT MEAN NUMB3ER SERVED Std. Deviation

TD
lot
103
104

tos
108
103
111
113

120
123
124
158
174
226
227
228
229
232
235
236
237
238
241
242
245
247
25 1
252
257
261
262
270
271
272
277
283
501
502
503
504
505
507
508
51o
5it

512
603

94.09
145.01

92 .4)
109 to)
63 93

112. 46
73 43

133 '4
1s 9 1D
10. 1
139 12
85.3-7

1 ,9 r
45 61
0 94
1 39
3 153
0 30
0 66
5 29
0.53
2 115
0 90
0 22
4 29
I 67
0 94
0 95
9.96
2. 7
2.67
0.83
1.27
1 13
0.97
1 .94
0.98
3.50

25.34
3. 70

102.20
30 60

1 10.30
109. 39
35. 46
8.859

23 23
1. 14

EXPECTED NUMBER OF DROPOUTSe1042.50

3.77
9. 70

6. 37
7 88
8.31
7 23
9 90
5 '4

10.94
8 32
1.54
7.44
8.26
1 1 7

5.24
0.83
0.56
1 30
0.46
0 70
f 36
0. 71
I 13
0. 75
0 4'
I 24

0 55
0 86
0.96
I 18
1.09
0.86
081
1 05
0 83
0.67
0.80
0. 14
1.11
4 82
1 20
8 40
3.73
8 91
7.06
4 89
1 40
3 84
1.07

MEAN DEPLETION TIME Std. Deviation

1.71
4 12
6 83
3.95
4 25
3 53
4 36
51 66
3 70
4 07
7 78

3 81
3 84

1 1 53
9 19
4 56
1 23
3 12
0 54
2.21
2 60
1 92
2 52
3 65
0 42
2 30

50
4 32
3.92
1.85
2.43
2.52
2.96
7 25
6 24
0.48
1.80
0.25
3.29
8.49
1.83
4.09
9.84

3 68
3.53

11.82
1.29

11.73
5.51

0. 18
O 17
0. 65
0.20
0 19
0 18
0 19
0 47
0. 16
o 20
0.22
2 19
0. 18
7 70
0 83
4 64
0.91
1 40
i .16
3 27
0 90
3 26
i 12
4 29

S'16

.3 4'

5.21
4 50
0.57
1 .23
1.28
3 83
6.21
5.25
0 51
I 04
O. 23
1.52
0.82
0.68
0.20
1i i

0. 17
0. 19
1. 18
0.3'
1 48
5.68

Std. Devintlon= 21 02
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Table 6.6

AGGREGATE SYSTEM RESULTS - UNIT TYPE 3 2150 HOUSEHOLDS PRESENT AT START 100 SIMULATION ROUNDS

PROJECT MEAN NUM1ER SERVED Std. Deviat ion

ID
10f
103
104
105
106
108
109

113
114
20

123
124
158
174
252
501
502
503
504
505
507
508
510

5 12
601

37 46
94.35
2.04

92. 16
101 .55
58 81
63.01
31 44
85 04
30.83

5 63

68 01
1 42

40.

20 25
5. 7159 *90.(93

13 '43

96 16
84 94
17 99
10. 47
43.74

0 65

5 04
7.98
1 33
5.24
8.65
6.62
7 13

7.37
4 33
0 54

6.53
1.23

0 92
1 .53
3. 93
1.6 1
4 869
3 0 9
7 42

6 94
3 14

2 39
4. 56
0.73

MEAN DEPLETION TIME Std. Deviation

6.28
7.93
13. 10
5.39
7.78
4.61
8 74

10.51
6.60
7.59
0 76
8.08
7.64

13.92
9 96
6. 63
3 52

i0.32
5 32
5.79

15 02
7 08
4 49

18.31
9 27
8.66
2.46

0.57
0.44
8.45
0.44
0.44
0.33
0.66
1 14
0.46
0.56
0.29
0.68
0. 61
7 95
1.01

6. 16
1 45

1. 17
i .50

0.48
2.22
0 44

3 28
2 12
f 03
0 70
3.65

EXPECTED NUMBER OF DOPOUTS. 097-73 Std. Oeviation= 38 49
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Table 6.7

AGGREGATE SYSTEM RESULTS - UNIT TYPE 4

PROJECT MEAN NUMBER SERVED Std. Deviation
ID

101
103
105
106
108
109
Il
113
114
120
124
158
252

50 3
507
)08

510

512

16.55
38.25
8.43
1.51

10.53
9. 73
9.09

23.72
16 I1
6 36
13. 35

1 91
0 55
0 R3
0 90

10.5 ~,
3.8
1. 45

2.52
4.26
2.45
1. 18
2.35
2. 35
2 47
3.89
2.71
1. 45
2.36
1. 18
0 62
0.38
0.5)
2 71
1.99
2. 71
0.90

493 HOUSEHOLDS PRESENT AT START 100 SIMULATION ROUNDS

MEAN DEPLETION TIME Std. Deviation

2.45
6. SI
7.56
5.06
3.50
9.21
8.23
5.91
5.28
3. 12
2.69
9. 12
1 53
0.33
1.63
7.90
6 83
10. 21
3,41
7 65

0.41
0.69
1.45
5.92
0.76
1.36
1.37
074
0.83
0 99
0.54
7. 21
2.37
0.37
2.56
1.27
t.92
1.92
4. 07
5.84

EXPECTED NUMBER OF lROPOJTS= 307 52 Sid. Deviation- 9 60
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.atle t6.8

AGGREGATE SYSTEM RESULTS - UNIT TYPE 5 74 HOUSEHOLDS PRESENT AT START 100 SIMULATION ROUNDS

PROJECT MEAN NUIMBER SERVED Std. Devlation MEAN DEPLETION TIME Std. Deviation

ID

101 0.74 0.86 3.92 4.94
103 9.30 2.57 9.19 2.19
105 0.86 0.88 3.12 3.71
108 4.22 1.23 3.79 1.28
113 6.47 1.76 6.27 1.77
114 1 to 0.96 5.27 5 16
120 058 0.68 2.23 3.71
124 0 72 0.76 2.99 4 07
158 1 43 1 10 7 !0 5.82
504 1 40 1.15 6.88 6,07
507 0 58 0.70 2.07 2.96
508 953 0.64 2.23 3.21

EXPECTED NUMFE OF DROPOUTS- 46.07 Std. Deviation- 4.11

223



6.1), and the differences in project assignment rates (as evidenced by

the figures in Table 6.2).

For the same reasons, there is a large variability in mean depletion

times. These numbers have the following meaning: if a test applicant

choosing only project i applied for public housing, and this applicant is

guaranteed not to drop out, then the expected time until the test

applicant is assigned would equal

i* 1E(wN ) = E(depletion time at project i) + - (6.1)

As the mean depletion times vary from well under six months to well over

six years, one would expect that making this information available to new

applicants would influence their decisions as to which projects to

choose.

Another interesting feature of these results rests with the large

number of households who are predicted to drop out. By bedroom category,

we have:

1 Bedroom - 41.40% expected to drop out

2 Bedroom - 37.46% expected to drop out

3 Bedroom - 49.20% expected to drop out

4 Bedroom - 62.38% expected to drop out

5 Bedroom - 62.26% expected to drop out

These dropout percentages seem high, considering the magnitudes of the

household specific dropout rates in Table 6.3. However, when one

considers the product of the household dropout rates with the number of

households waiting for assignments, it becomes clear that for many

projects, the aggregate dropout rate for all households waiting is higher

224



than the project assignment rate. This yields the large numbers of

dropouts observed.

We have shown the simulation model to be useful in predicting the

implications of the BHA's multiqueue tenant assignment system for tenant

allocations and waiting list depletion times. To place these

consequences in some sort of comparative context, we will reanalyze the

BHA data under the following two schemes:

1) Suppose each household is allowed only 1 choice (arbitrarily

chosen to be the first one listed on the application form).

This represents a series of single project assignment schemes.

2) Suppose all households are assigned on a first available unit

basis citywide, and that households are indifferent among

projects. This represents a system-wide multiproject assignment

scheme.

As the analysis is the same for all bedroom sizes, we will focus our

attention on those households requiring 3 bedroom units.

6.2 Single Project Assignment Scheme

To model the implications of a single project scheme, we recall that

for a system with dropout but no priorities, the expected amount of time

to process a waiting list of size N is given by

N
E(wN) = + (6.2)

n= 1

The mean number of households assigned then equals IE(wN). The expected

number of dropouts, E(ND), is then computed as

E(ND) = N - E(wN) (6.3)

following the reasoning of equation (4.51).
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Table 6.9 shows the three bedroom unit moveout rate for each

project, along with the number of households who listed that project

first on their application form. The mean number of assignments,

expected depletion times and numbers of dropouts were computed using the

equations above. As some 159 households listed a project for which no

moveout information was available as a first choice, the total number of

households considered reduces from 2150 to 1991.

Compared to the multiqueue system, the single project scheme creates

even more variability in tenant allocations and waiting list depletion

times. This is to be expected, as unlike the multiqueue system where

assignments at one project effect assignments elsewhere, tenant

allocations in the single project scheme are independent across projects.

Thus, the single project scheme creates maximum variability in tenant

allocations and waiting times across the entire system.

In considering dropout, it is clear that those projects with lower

assignment rates will induce relatively larger numbers of dropouts.

Systemwide, the expected number of dropouts equals 1123.51, or 56.43% of

those initially waiting for assignments. This represents a noticeable

increase from the 49.2% of all three bedroom households expected to drop

out under the multiqueue system.

6.3 Citywide First Available Unit System

To model the implications of a citywide assignment scheme, we use

the multiproject approach of Chapter 5. First, we set

Isys = = 168.4 (6.4)

as the system wide annual assignement rate for three bedroom units. From
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Table 6.9

Results from Single Project Assignment Scheme

Mean

Number E(wN)
PROJECT N Assigned (years) E(Nn)

Charlestown 6 69 39.48 6.58 29.52
Mission Hill 12 179 92.88 7.74 86.12
Lenox Street .1 128 3.07 30.65 124.94
Orchard Park 17 76 57.63 3.39 18.37
Cathedral 13 127 77.35 5.95 49.65
Maverick 13 73 52.52 4.04 20.48
Franklin Hill 7 104 53.90 7.70 50.10
Whittier St. 3 74 30.27 10.09 43.73
Beech St. 13 68 49.79 3.83 18.21
Mission Extension 4 45 25.84 6.46 19.16
Columbia Point 8 3 2.88 0.36 .12
Mary Ellen McCormack 5 144 54.75 10.95 89.25
Old Colony 9 65 43.56 4.84 21.44
West Newton St. .1 127 3.06 30.60 123.94
Rutland 4 26 17.80 4.45 8.20
Heritage .1 7 1.26 12.60 5.74
Broadway 1 2 1.63 1.63 .37
Camden 2 35 16.66 8.33 18.34
Commonwealth 1 11 6.15 6.15 4.85
Faneuil 14 79 56.70 4.05 22.30
Fairmont 1 67 15.38 15.38 51.62
Archdale 8 71 44.56 5.57 26.44
Orient Heights 19 53 44.08 2.32 8.92
Gallivan Blvd 1 253 23.59 23.59 229.41
Franklin Field 2 15 9.72 4.86 5.28
South St. 5 88 42.35 8.47 45.65
Franklin Elderly .1 2 .64 6.42 1.36
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equation (6.2) we obtain the expected time to process all 2150 households

awaiting assignments as:

2150 1
E(w ) = E = 7.08 (6.5)

2150 n=1 (.153n + 168.4)

This result is somewhat astonishing in its own right. Ignoring the

possibility of priority assignments, and assuming that households would

accept whatever units are offered whenever they are located, it would

take about 7 years to house all three bedroom households waiting for

assignments as of November 1983. This represents the shortest amount of

time in which these assignments could occur! The result suggests that

waiting lists should be closed, at least for some projects, owing to

excessive waiting times.

In a first available unit system, mean depletion times are equal at

all projects. Recall that the expected number of households assigned to

project i simply equals 9iE(wN). These figures are presented in Table

6.10. All variability in tenant allocations can now be attributed to the

different assignment rates at the different projects. As such, the

citywide first available unit system demonstrates the smallest

variability in housing assignments among tenant assignment systems for

our data.

The expected number of dropouts in the citywide system is given by

equation (6.3) using "sys and the total number of households waiting

citywide for three bedroom units; the actual figure equals 2150 - 168.4 x

7.08 = 957.73. Thus, one would expect 44.55% of all households to drop

out. This represents a decrease from the 49.2% of all households that

are expected to drop out in the multiqueue system.
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Table 6.10

Results from Citywide First Available Unit System

Project Moveout Rate Mean Number Assigned

Charlestown 6 42.48
Mission Hill 12 84.96
Lenox St. .1 .71
Orchard Park 17 120.36
Cathedral 13 92.04
Maverick 13 92.04
Franklin Hill 7 49.56
Whittier St. 3 21.24
Beech St. 13 92.04
Mission Extension 4 28.32
Columbia Point 8 56.64
Mary Ellen McCormack 5 35.40
Old Colony 9 63.72
West Newton St. .1 .71
Rutland 4 28.32
Heritage .1 .71
Broadway 1 7.08
Camden 2 14.16
Commonwealth 1 7.08
Faneuil 14 99.12
Fairmont 1 7.08
Archdale 8 56.64
Orient Heights 19 134.52
Gallivan Blvd 1 7.08
Franklin Field 2 14.16
South St. 5 35.40
Franklin Elderly .1 .71
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An interesting question to consider'relates to the number of

households in a citywide first available unit system who would have

received an assignment to a project in their choice set. If this

figure is relatively high, one would not expect to encounter major

objections from tenants if a switch to a citywide system was proposed.

If this figure is low, then a change to a citywide system could have

the effect of causing many would be tenants to drop out of public

housing rather than accept a unit in an undesirable location.

To calculate the likelihood that a tenant is assigned to a project

in their choice set under a citywide assignment scheme, we note that

Pr{assignment to a unit} = Pr{assigned unit is in assignment}
in choice set a choice set I occurs

x Pr{assignment occurs} (6.6)
The probability that an assignment occurs is simply the dropout

probability subtracted from 1. For our data,

Pr{assignment occurs} = 1 - .4455 = .5545 (6.7)

Now, the probability that an assigned unit is in a choice set given

that an assignment occurs can be estimated by

Pr{assigned unit is in I assignment} =

a choice set occurs

1 N household j is assigned a household j
Pr(unit in the choice is assigned} (6.8)

j=1 set C.

In words, we will estimate the conditional likelihood of an

assignment occuring in a choice set by averaging the household specific

likelihoods of this same event. These household specific probabilities

are easy to obtain:

household j is assigned a household j
Pr{ unit in the choice set Cj I is assigned }
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= 1-C. (6.9)

i

where the P''s represent the assignment rates at the various projects.

Thus, we estimate the conditional probability of an assignment belonging

to some choice set given an assignment occurs as

Pr{ assigned unit is in assignment 1 (6.10)a choice set occurs N . E (
j=1 . i

For our data, application of equation (6.10) yields a conditional

probability of assignment to a choice set given that an assignment occurs

of .0855. Combining our results, we obtain

assignment to a
Pr{ unit in a choice set} = .0855 X .5545 (6.11)

= .0474

A switch to a citywide first available unit system would result in less

than 5% of the 2150 households waiting as of November 1983 for 3 bedroom

apartments receiving assignments in desirable projects. Given this

result, any attempt to change from the current multiqueue system to a

citywide first available unit system must be viewed as unwise.

6.4 Other Issues

We have focused on the impact of changing the current multiqueue

system to either a single project assignment scheme or a citywide first

available unit system. There are a number of other issues one could

address using the methods we have developed; two of them shall be briefly

mentioned.
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6.4.1 Categorical Priorities

Our models ignored the effect of prioritized arrivals as these

represent a small percentage of all applicants for BHA housing units.

However, given the relatively long waiting times for housing assignments,

the effect of priorities (such as emergencies) could have a major impact

upon the waiting times for standard applicants, and hence upon the number

of dropouts from the system. We already know how to incorporate the

affect of categorical priorities into single project and citywide first

available unit systems. The simulation model could also be modified to

incorporate the effect of priorities on tenant allocations and waiting

times.

6.4.2 Blend Priorities

Two major policy reforms are currently being reviewed by the BHA.

The first involves income mixing, while the second involves racial

integration. In both cases, the BHA has specified the desired project

compositions, in terms of racial and income mixes, for most projects in

the authority. Models of blend priorities could be used to determine the

time necessary to achieve these goals, and the impact of these policies

on tenant waiting times.

As an example, the Gallivan Blvd. housing project currently

possesses a racial mix of 46.4% white households and 53.6% non-white

households (from BHA records). The new racial mixing plan calls for two

white households to be admitted for every non-white household, implying a

target mix of 67% white households, and 33% non-white households. The

project is comprised of 250 households with a total moveout rate of 5

households per year across all apartment types. From equation (4.67) of

Chapter 4, we see that if current trends continue, the expected number of
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white households in Gallivan Blvd. on the mth move after implementing the

stated racial blend priority equals

hwhite,m = 250 X .67 + (250 x .464 - 250 X .67)(1 - 1/2 5 0)m

m=0,1,2,...

= 167.5 - 51.5 (.9 9 6 )m (6.12)

At a pace of roughly five moves per year, we see that after 10 years (or

50 moves), the expected number of white households in Gallivan Blvd would

equal (using m=50 in equation (6.12)) 125, or 50% of the total project

population. After 20 years (or 100 moves), the mean number of white

households would equal 133, or about 53% of the project population. The

process could only move faster if the moveout rate increased, or if the

blend probabilities were changed to favor white households more heavily.

While these results are hardly exact, they should serve to convince the

reader that the integration of the Gallivan Blvd project will take a long

time to achieve.

6.5 Summary

This chapter has illustrated a number of useful points. Fist, we

showed that one can predict waiting times and tenant allocations in a

complex system like the BHA using our models. Secondly, we showed how

one can perform various policy analyses using the models developed in

Chapters 4 and 5. We examined the impacts of single project and citywide

first available unit systems on housing assignments and waiting times,

and also considered the choice effects associated with a citywide scheme.

Finally, we mentioned some other issues that could be studied, such as

the impact of categorical priorities, and the impact of racial and income

mixing on tenant allocations, waiting times, and project compositions.

While we have not tried to be exhaustive, this chapter has hopefully
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served the purpose of demonstrating the potential usefulness of tenant

assignment modeling in a policy context.
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Appendix 6.1

C
c This orogram simulates a tenant assignment system where tenants are
C assigned on a first come first serve pasts within choice sets Dropout
C Is incorporated into the model. The model computes household specific
C measures. as well as system wide statistics. This program is the
c property of Ed Kaplan. Dept. of Urban Studies and Plarning. Mf.
c
C

double precision dseed
common proj(3.3000).x(3.3000),w(3.3000),drop(3000).tdrop(3000) iserve(3000lavgl(70).avgsq 70).sigl(70),avgwg(70).sigwl70).p(

3),avgw(3)

common r (70).rleq(70).rlsumi70),wtotl70).wtotsa(70o.rwsums7O.r;atel50),avowsqi70).
8 ihsnildi 70.10(AO I .rimut 70).nq( 70). idl(70), tti 9000), tfact 9000), I serve( 70).1ip(9(XXJ)

common t.tally.dmudroon.dron2.drsum.np.nn.nc.nsim,ksimc.ntypes.itype.aseed

integer c.prol.tally

r here is the main calling sequence

call nout
calI 'ni

do 1 k S m=l .nsim
ifilksim, 1010 .eq.ksim) print,"round.ksim
call eri-,

call update
10 continue

call reoort
stop
end

subroutine input

double precision dseed
common rrol(3.JOO)..(3.3000).w(3.3000).dropl3OOO). tdroo(30OO).iservei3O0(i).avgl(70),avglsai 70).sigl(70),avgwq(70,sigw7O).p

31.avgwi31

common ri7 .rio n ,r s (7 .wo t7 .t ts t7 .r um 7 sr e 50 . v w (7 .& ib nid 70 10O).ru(7 ).n (70 . l(70). tt(90001. ifac(9000), lservei70), ipt 90001

common t.tally.du.dropn,droon2,drsum,np.nn.nc.nsim. ksimc,ntypes.i type.dsee

integer c.pro, tally

C

C This routine inputs data from the terminal and from files 7 and B.
C

rewind 7
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rewind a

C Input parameters from terminal

Print,"Input number of unit types, tvoe desired for this run.*
print.'seed for random number generator.'
print.-numoer of choices allowed. and number of simulations."
read. ntypes.itype.dseeoncnsi

c read in prolect information

J.0
10 1i 11

readf7.15.end=30) id(ilratelkli.k=1.ntvOes)
15 formati

if (1 ) e1. 0 o1 to 20
rmut , I ratef itv~e I
go to in

c set up dropout .-ate

20 npo -i
dmu.rAt5i i t pel
go to .0

10 irint "Fri-or in nrut - roiect fi i (unit 07)*
s tco

read in indivii-Jai iiormat.ion

40 jO
50 '=.1

readt R.15.enni-ho) lr tc ) .= .c
C check to see that at laast one choice is a real project

do 42 i:1 no
do 42 c= I nc
iffpro ic). I g i"q )) go to 50

42 continue

=-11

go to 50
60 ni= ) -1

pr int . ''nht ' ,n
return

subroutine init

double orecision dseed
common pro)13.3000). xi 3.3000.w( 3.l3000).drop(p3000), tdropi300O). 1serve(30OO).avgJ 70).avglsq(70) , s g().avgwat701 , sgwi 70).p(

3).avgw13)

common rit7O).risoiO0).risumt7O).wtot(70).wtotso70).rwsum(70).rateISO).avgwsq(70).
81hshldf 70. 1000) .rmuu 70).nq '0) . id(70). t tl9000). 1fact 9000).1 servel 70). i(9000)

common t.taITy.omu.dropn.dropn2.drpsum.np.nhnc.nsim.kstm.c.ntvpesItype.dseed

integer c.proj.tally
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c this routine initializes Simulation variables

e initialize aggregate variables

do 10 f-I.no
rli+)-0
risqdi 1-
rlsum(i i-0
wtot ti)=O
wtotSi 0)-4
rwsum( ii-O

lservet i,
to continue

c initialize dr-oout measures

droon-O)
Iroons -O
drosum-1)

* init Ial ire couinter

tal II -

c initialize nousenoid variacles

do 20 )i.nn
dronn 1-o
tdroPi )-,)
iservet )'
do 20 c ."c
-lc. l)di

20 continje

* form initial tueues at projects

do 30 I-I.rn
do 40 r- oc

do 90 I.-"n
if(profic.) ne.idlii) go to 50

lishii.ndtiiibi
go to AO

50 cont inue
40 continue
30 continue

return
end

Subroutine service
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double precision dseed
common proj3.3000).x(3.30O).w(3.30OO).drop(3000).tdrop(3000).iserve(3000).avgl

1(0),avglsq70).sig(70).avgwQ(70).sigwtO).p(
3).avgwi3)

common ri70).rlts(70).rlum(70).wtot(70).wtotsq(70).rwsum(70).rate(50).avgusq(7).
&ihShid(7OiOOO).rimu(70).nqt7O).Id(70).tt(9000o).ifac(9000).lserve70).Ip(9000)

common t.tally.imu.dropn.dropn2.rpsum.no.nhnc.nsim.ksim.c.ntypes. ttype.dseed
Integer c.projtally

c This is a service/allocate routine that generates, sorts and
c locates service/drcout times

C set up tne vector of transit ion times

kkk -0

do 10 =i.np

if(n 1).eq. 0) go to 10
t=0
do 20 =. noi I
t= t- a loqggotsidssedt) rui tI)

ttl ika i-i

ft 3 i k i i

20 continoe
10 continue

c generate dropout times

do 50 1I nt
kkk=kkk+i
tt(ikkl alog(qguofs(dseed))/dmu
ifackl'k )=op+

50 continue

c sort the transition times using snall sort

igap=zkk
51 igapo=gap/2

nmn=kk- igap
do 3 iIi ,1nmq

it-11+ioao

52 iftt(
1 

) le ttli,)) qo to 53
swao-tt iI
tt( ti)l tii )
tt()jl~swao
iswap ifactii)

ifact i1)ifact Ij)
Ifaci jj)-iswap

tijj
jjjj - gap
if)j q.ii go to 52

53 continue
if(igap.gt.I) go to 51
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C allocate housenolds

do 70 k$,-1.kkk
if(taliy eq.nn) return
i-tfacIkk )

C check for dropout

if(i gt.np) go to So
if(Iserve(il .gt nql i go to 70
do 66 k=Iserve(t).nq(I)
J - $ ttiIdE I Ii
It I gt nn) prInt "ERROR - jnh",kk. ifac(kk).j.ksim
If( I tnni) Stop
iffiserv ei).eq.il go to 66
1servet 1)=k+I
iserve(j)=1
ttIt(kk )
tally=taliv+1

C assign to project. update measures

risumi)=i- sum( i)+1
rwsumf , l= t
do 90 c-t.nlc
lftaroulc.j 'te idlill go to 90
xIc.I I--ic, )+
go to 71

90 continue

print. "EPOR - HSHLD ASSIGNED TO ILLEGAL PROJECT!I*
stop

66 continue

" get project out of process
lserveli1=nq(i4)+I

go to 70
c process dropout

80 j-i-np
if Iserve(l ).eq.ii go to 70
tallv-Tallv+1
t-ttikk )
iservet il- I
drpsums orpsum+. I
droo 1 =dr o I j
tdroci:)-edroot jl-

70 continue

return
end

subroutine update

double orpcision dseed
common oro j( 3, 30001. x(3. 3000).w(3.3000).drop(3000), tdrop(3000). iserve(3000). ) a(70avg st 70) s ig(70). avgw( 70) .sigw(70).p(

3).avgw(3)
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common r I ( 701.r lso(70).rIsum(70),wtot(70).wtotsq(70).rwsum(70).rate(50),avgws3(70).

&I hs I dl 70. 1OOO),rnmut 70).no( 70), id(70), tt(9000). if act90OO).1Iserve j70). 1 p(900)
common t. tal lydmudropn.droon2.drpsue.np.nh.nc.n m.ksim.c.ntypes. itype.dsoed

integer c.proj.tally

c this rout ine undates all counters after each simulation run

C update dropout counters

droon-rrpn*drps'tm
droorn2 =rron2+drosum e2

drosum =0

c update project info

do 10 I 1.r-P
r I (i j Tr i I i }+ - ,sumi i j
r 1 9um1 , 1 -IOMI1

rwsumI - l -')

10 con tie

c upoate tally

tally=O

c update -serve

do 20 jil.nn
Iiserval I ) =0)

20 conti"ue

re tu rn

sutornuti-e rort

dounie Irecislonseed

common prolijj00O).xi3.3000i.w(3.3000O.drop(3000),tdrop( 30), t sOrve(3000). avgif7o).avgs 70),slgl(70).avgwqi70,slgwl 70).P(
3).avgw 3)

common rl (70). lso(70).r1sumi70).wtot(70) wtotsq(70).rwsumi70).rate(501 avqwsq(70).
&ihsnldi7). tOO1 .rmul70).nqi70). idt 70), tt(9000). ifac(9OO). lserve(70), Pi(

9
000)

common t. tS11 y.dmu.dropn.roOn2.drpsum.np. nh.tnc. noit.ksIm.c.ntypes. I type. osed

integer c.proj.tally
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C this routine computes the final system statistics and produces reports

C process aggregate measures - first dropouts

rn-floatinsim)
avgdro-drovn/rn
avgdro2=dropn2/rn
sigrp-sortIavgorp2-avgdrp**2)

c process project information

do 10 =.np
avg1Il)'rli i1/rn
avlIsol i =rlso i) rn

sig i 14 =snir tr av q , ) -avg I I le) a2)

avowat i 0 qt ( I a / n

avgwsov t ) wtotsqf i 1/rn

siowt =srtiavqwst i I-avgwqi 1)+2)
10 continue

c procss housenid infnrmat'on

c print out individual reports

wrtit i1.2)5)
205 fr'Au''INDIVTOUAL Pf7SULTS")

206 foratl '"HOUSEiNOLD" t1. 5.WAAR".+20."PQEF1" t27."Prn.". t34."'Wait*,
&t4)."0QEF2".t47. 'P-on '.t54."Wait" '60. PREF3".t67. crop.".t74."Wait",
&It8 ."-n Dror'Oui '+Q7 ."Avg Tim to Orpooiut"/')

207 fr~at~i.'4 i5.f tt20,2,.i3.t27 f5 3.134 f5.1.t40.2x.i .t47.
Sf5.3.t54.f5 1.t6O.2-.i3.t67.f5.3.t74.f5.1,tBO.4x.f5.3,t97.5x.f5.1)

do 20 =1nih

pdroo-drooi j)/rn
ataJroo=u
if( or-ci I.gt .0) atdrop'tdroo( j )/drooi j)
wbar=O0

do 30 c-1.nc
ple ) i'. I)/rn
avaw I -n
I ff t'i.; ) e . 0) go to 35

avg~wt I =w c. / i .J)
35 wuar-rar+pIc)*avwqic)

30 cont
Ificdror, "0.1) go to 25
wbar',nar/(1 -Iaroo)

25 wr I opt '1.20
7

) j.wnar prol i.j).p .avgw( ).proj(2.j ,p(2. avgw(2).
&projf3. ).p(3).avgwi3).parop.atdrop

20 cont nue

c produce ouiout - first report - aggregate results to ftlalO

writeiio0.201) itype.nh.nsim
201 formatl^4GGREGATE SiSTEM RESULTS - UNIT TYPE". li. t3.5x.i4." HOUSEHOLOS PRESENT AT START",3x4." SIMULATION ROUNDS")

writef It. 202)
202 formati. "ROJECT" tiO."MEAN NUMBER SERVED*, t0."Std. Oeviiation".tSO.

&'MEAN CEPLETION TIME".t70,"Std. Oeviatton"//)
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iflnoli) eo.O) go to 50
writs~i 10203) "IUitlavgll l.sigilti).avgwgt i).sigwl i)

203 formait2w. 3.PlO.5x.fE.2.t30.4,x.fG.2.t50.5,x.f6.2.t7O.4x.f6 2)
50 continue

cwrite out Oronout info
writosll0.204) ovgcjrp-svgdrp

204 formatt,/EXPECTEO NUMBER OF OROPOUTS-".f7.2.4x.'Std- D~vlatjon.,f7.2)

return
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Chapter VII

Relocation Models for Public Housing Redevelopment Programs

A very different type of tenant assignment issue arises in the

context of project redevelopment programs. Given that many public

housing projects were constructed in the period following World War II;

these projects have literally come of age. In the Boston area alone,

four major housing projects are undergoing physical redevelopment at

tremendous expense; some relevant data are shown in Table 7.1. Given

these expenses, public housing authorities must be able to determine

how large developments can be rehabilitated within cost, time,

occupancy and other constraints.

Clearly, there are many complex issues involved in any

redevelopment process, including physical design problems, financing

techniques, tenant participation in program planning, construction

management, and overall program control. One issue central to all

public housing redevelopment efforts is the relocation problem - in

order to redevelop public housing stock current tenants must be

relocated to temporary quarters, and assigned to upgraded housing units

once these units are available. Relocation problems involve two broad

classes of issues. First, it should be clear that when relocating

tenants in a large public housing project, one is dealing with a large

population and its associated set of heterogeneous social concerns.

Some tenants may have occupied their current units for several years,

and could be understandably reluctant to move. Other groups of tenants

might insist on being moved together to neighboring units (e.g. an

elderly parent and his/her extended family). In implementing

relocation programs, these idiosyncracies cannot be ignored.
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Table 7.1

Boston Area Redevelopment Projects

Project

Commonwealth

Jefferson Park

West Broadway

Franklin Field

Total Redevelopment
Costs

$31,566,275

$12,500,000

$29,176,000

$32,780,000

Number of Units Cost per Unit

392

175

341

346

$80,526

$71,429

$85,560

$94,740

Source: New Lives for Old Projects: Revitalizing Public Housing,
Public Housing Research Group, MIT, 1983.
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On the other hand, there are the technical issues relating to

project feasibility. For example, it must be possible to relocate all

households from a building before that building can be constructed;

this must be true for all buildings. From a technical perspective,

there are three major components to any redevelopment project: a

design which dictates the distribution of completed apartments (by

type) across the housing project; a sequence which dictates the order

in which buildings are to be redeveloped; and a relocation plan which

dictates where tenants will move temporarily (permanently), when these

temporary (permanent) moves will occur, and the "rules" which govern

these moves.

Methods for surfacing relocation strategies should be of major

interest to public housing officials, yet to date, no proposals for

systematically attacking relocation problems are evident. In this

chapter, I discuss some technical aspects of relocation planning. We

will begin with the formulation of a scheduling model for a

redevelopment program at a project with a homogeneous tenant

population. The properties of this model are examined via a numerical

example. As the procedure for solving the model is computationally

complex, we propose some approximations. We close by considering a

number of improvements to the model formulation aimed at incorporating

more realistic aspects of relocation problems.

7.1 The Basic Relocation Problem

The notation used in this section is summarized in Table 7.2. We

begin by considering a homogeneous project consisting of B buildings.

Each building b in the project initially contains nb households, b=1,2,...B.
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Table 7.2

Notation for the Basic Relocation Model

nb = number of households initially living in building b

ab = number of apartments to be contained in building b as a result of
the redevelopment program

Lb = length of time necessary to redevelop building b

B = number of buildings in the project

{1 if building b undergoes redevelopment in week t
bt 0 if not

Nt = number of households relocated from their initial homes in week t

At = number of new apartments completed and available for occupancy
project wide in week t

Vt = number of vacant units available for occupancy in week t

D = project duration

M = maximum feasible project duration
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All households in the project require the same unit type, and all

apartments in the project are of that required type.

The proposed redevelopment design for the project calls for ab

apartments to be present in building b after building b has been

redeveloped. Note that if building b represents a new building not

previously present, then nb=O. Also note that if building b is to be

demolished, then ab=0 . In general, ab can be greater than, equal to,

or less than nb- Of course, a necessary (but not sufficient) condition

for the feasibility of the relocation design is that

B B
Sab > E nb (7.1)

b=1 b=1

We assume that the time necessary to redevelop building b is known

and equal to Lb. Building b cannot undergo redevelopment until all

occupants of the building have been relocated. If building b undergoes

redevelopment in week t, then the work is completed in week t+Lb-1, and

the building may be reoccupied in week t+Lb-

Suppose that the building populations nb and new apartment

allocations ab are such that it is feasible to redevelop the project;

all buildings can be rehabilitated while all households are guaranteed

to be housed throughout the entirety of the project. The maximum

amount of time necessary to redevelop a feasible project equals

B
M = E Lb + 1 (7.2)

b=1

This follows from the fact that the longest feasible schedule is given

by redeveloping buildings one at a time with no overlap in the

redevelopment process.
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We now define the indicator variable xbt as

_ { 1 if building b undergoes redevelopment in week tbt ~ 0 if not

b=1,2,...,B
t=1,2,...,M-Lb

The variable xbt will inform us of when building b begins to be

redeveloped. Clearly, we only need to consider starting weeks up to

M-Lb, as the project, if feasible must be completed by week M, and a

start date for building b beyond week M-Lb would imply a project

completion date beyond week M, a contradiction. We also note that the

variables xbt are constrained by

M-Lb

xbt b=1,2,...,B (7.4)
t=1

This result simply ensures that all buildings undergo rehabilitation

exactly once.

Once the decision variables xbt are determined (we have not yet

stated how), several other interesting quantities may be defined.

First of all, we may define the number of households relocated from

their initial homes in week t, Nt, as

B

Nt = E nbxbt t=1,2,...M-min Lb (7.5)
b=1 b

since when xbt equals 1, nb households must be relocated from building

b. Similarly, we define the number of new apartments available for

occupancy in week t, At, as

B

At = nb xb,t-L t=1,2,...,M (7.6)
b=1 b
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since when xbt-Lb equals 1, building b undergoes redevelopment in week

t-Lb, and hence is available for reoccupancy in week t. Upon

availability for reoccupancy, building b contributes ab new apartments

for assignment.

Finally, we define Vt to be the number of vacant units in the

project in week t. This quantity is clearly given by the balance

equation

Vt =Vt-1 + At - Nt t=1,2,...,M (7.7)

The number of vacancies in week t equals the number of vacancies in

week t-1 plus the number of new apartments available for occupancy in

week t, minus the number of households relocated in week t. The

redevelopment program is assumed to start with an initial endowment of

vacancies V0 . Also, to guarantee that all households always are housed

in every week of the redevelopment program, we require that

Vt> 0 - t=1,2,...,M (7.8)

The number of vacancies is never allowed to become negative.

We are now able to formulate our basic relocation model. The

objective will be to find a sequence of construction which minimizes

the total time necessary to redevelop the project, subject to the

constraints that all households are always housed throughout the

redevelopment program. Let D be the duration of the redevelopment

project. We formulate the model as:

minimize D (7.9)

subject to:

M-Lb

bX
(M) E txbt + Lb < D b=1,2,...B

t=1
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M-Lb

(ii) b = 1 b=1,2 ... ,B
t= 1

B

(iii) Nt = E nb bt t=1,2,...,M-min Lb
b=1 b

B

(iv) At = E abxb,t-L t=1,2,...,M
b=1 b

(v) Vt = Vt-1 + At - Nt t=1,2,..,M

(vi) Vt > 0 t=1,2,...,M

(vii) xbt = 0 or 1 t=1,2,...,M-Lb
b=1,2,...,B

(viii) Vo is given

The model minimizes project duration subject to a set of

constraints. Constraint (i) states that all buildings are completed

within the project duration, and in fact defines the project duration.

Constraint (ii) ensures that all buildings are constructed exactly

once. Constraints (iii) through (v) define the number of households

relocated in week t, the number of new apartments available for

occupancy in week t, and the number of vacancies in week t. Constraint

(vi) insists that the number of vacancies remains non-negative

throughout the life of the redevelopment program; this guarantees that

all households are always housed. Constraint (vii) merely enforces our

coding device for identifying start times for buildings, while

constraint (viii) identifies the initial endowment of vacancies.

As formulated, the model is an integer program. Various integer

programming codes could be used to implement this model; the program I

used is a zero-one code from the University of Illinois at

Urbana-Champaign named ILLIP-2 (Young, Liu, Baugh, and Muroga (1977)).
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To demonstrate the properties of this model, we will consider a

numerical example.

7.2 A Numerical Example

As a numerical example, we will consider a project consisting of

five buildings with building populations nb, apartment distributions

ab, and redevelopment times Lb as shown in Table 7.3. It appears that

the project is conceivably workable, depending upon the initial number

of vacancies V0 , as there are enough new apartments being created (57)

to house the initial project population (54). Using the integer

program developed, we determined optimal construction sequences for

values of Vo ranging from 8 to 54. For Vo less than 8, it would be

impossible to evacuate any building, while for Vo greater than or equal

to 54, all buildings may be emptied instantaneously.

In Figure 7.1, the optimal project duration is plotted as a

function of the initial number of vacancies Vo. The first fact noticed

is that the minimum project duration monotonically decreases with the

initial vacancy endowment. However, the relationship between D and Vo

is not continuous; rather, there are many ranges of Vo within which D

remains constant. For example, any value of Vo in the range 42 to 53

inclusive yields a minimum project duration of 11 weeks. If these data

represented a real project where initial vacancies could cost $10,000

per unit to provide, the analysis in Figure 7.1 could conceivably save

over $100,000 of needless expenditures by noting the ineffectiveness of

providing additional vacancies in the cited range.

Secondly, it is interesting to note that the minimum number of

vacancies necessary to guarantee project feasibility is 10 even though

building 2 only contains 8 households at the start, and building 5
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Table 7.3

Data for the Relocation Example

10

8

12

15

9

54

a b

8

12

10

18

9

57

252

b

1

2

3

4

5

L b

5

6

5

8

5

29



Figure 7.1

Optimal Project Duration as a Function
of Initial Vacancy Endowment

t

D 1
30 0-30

0 28

P
T 26
I

M 24 ------- 25
A
L 22

P 20 ----- 20
R

0 18

E 16 1--16
C
T 14 ---------- 14

D 12 --------- 12
U
R 10 ---------- 11
A

T 8 0-+9
I

0 6
N

4

2

0

0 5 10 15 20 25 30 35 40 45 50 55

Vo

INITIAL NUMBER

OF VACANCIES
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contains only 9 initial households. Let us see why this is true.

Suppose VO equals 8. We could begin by clearing building 2; upon

completion of building 2 we would now possess 12 vacancies (8 initial

vacancies minus 8 households cleared plus 12 new units). With 12

vacancies, we could clear either building 1, building 3 or building 5.

Building 5 does not effect the vacancy pool, as n 5=a5 =9. However,

clearing either building 1 or building 3 will dictate a net loss of

vacancies. Suppose we clear building 3 first. After finishing 3, we

are left with 10 vacancies, sufficient for clearing building 1.

Unfortunately, after finishing building 1, there are only 8 vacancies

left, an insufficient number to clear building 4. Thus, the sequence is

infeasible. Had we cleared building 1 before building 3, we would have

become stuck even earlier. We have just shown that no sequence is

feasible for Vo=8. Similar reasoning shows that VO=9 also dictates an

infeasible project.

With respect to the actual sequences resulting from the minimum

project time criterion, there are often multiple optima for given values

of Vo; this is especially true as Vo increases. This has important

implications in practice; some construction sequences may be preferred

to others for reasons of geographic proximity, ease of movement or

access, etc. The changes in sequence (and project duration) occur when

new possibilities for emptying buildings arise. For example, at Vo=14,

the building sequence 2-3-4-1-5 is optimal and yields a project duration

of 25 weeks. When Vo increases to 15, the building sequence 4-2-5-1-3

is optimal and yields a project duration of 20 weeks. This shift is

attributable to the fact that at VO=15, it is possible to clear building

4, a feat not possible if V0<15.
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A feature of good sequences is that they efficiently utilize the

initial vacancies provided, and efficiently allocate new units as they

become available. To see this, one can examine Vt, the number of

vacancies available in week t (i.e. the number of unoccupied units).

Figure 7.2 plots Vt as a function of time for the building sequence

4-2-5-1-3 with VO=15. Note how efficiently units are utilized. For the

first nine weeks of the project, no units are unoccupied. For the next

five weeks, a single unit is left vacant; there are no vacancies for the

ensuing five weeks. All buildings have begun redevelopment by week 15.

Vacancies only accumulate at the end of the program as buildings become

complete.

This example also demonstrates the amount of overlap possible in an

efficient sequence; this is summarized in Figure 7.3. From weeks 9

through 19, there are always two buildings simultaneously being

redeveloped. Note how the completion of some buildings triggers the

beginning of redevelopment for others; the completion of building 4

enables the start of buildings 2 and 5, the completion of 5 enables the

start of building 1, and the completion of building 2 enables the start

of building 3.

As this example has demonstrated, our model is quite useful in

determining redevelopment sequences and analyzing the consequences of a

particular sequence. However, the integer programming solution is

complicated; most housing authorities do not have the capability to

routinely solve large mathematical programs. Therefore, it is useful to

consider some approximations; these are the subject of the next section.
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Figure 7.2

Unoccupied Units for the Sequence
4-2-5-1-3 with VO=15
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Figure 7.3

Redevelopment Sequence
4-2-5-1-3 with Vo=15
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7.3 Approximations to the Relocation Model

7.3.1 Linear Programming Relaxation

Perhaps the most obvious modification to our procedure involves

relaxing the integrality constraint (vii) on xbt in the formulation

(7.9). Such a relaxation would allow our model to be solved as a linear

program rather than as an integer program, and linear programs are much

easier to solve. If the values for xbt produced by a linear program

were almost always 0 or 1, then one could still contruct useful

schedules from the approximate results. However, if the resulting

values of xbt are heavily fractional, the linear programming approach

would not prove useful.

As an experiment, I ran our model as a linear program using the

package available through the Consistent System (Klensin and Dawson,

1981) for the data presented in Table 7.3 using values of 8, 12 and 20

for Vo. The results were not at all encouraging. The values for xbt

were not only fractional; they were not even closely linked

chronologically.

As an example, consider the case where V0 equals 8. From our

previous work, we know that this case represents an infeasible project

(i.e. D=o). Yet the linear program computes a project duration of

21.16 weeks. As for the values of xbt, consider the "fractional

starting dates" for building 1:

x1,1 4 = .0347

x1,15 = .5698

x1,16 = 0

x1,17 = .1928

X1,18 = 0

X1,19 = .2027
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The results say that about 3.5% of building 1 starts in week 14, 57%

starts in week 15, 19% starts in week 17, etc. The results for other

buildings and the other values of Vo mentioned are no better. Thus,

despite the simplicity involved in removing the integrality constraint,

linear programming does not represent a useful approach to approximating

our model.

7.3.2 Myopic Algorithm

A very different approximation can be developed based on physical

reasoning. One would suspect that to efficiently complete a relocation

schedule, one wants to "produce" new apartments as quickly as possible.

For building b, the rate at which apartments are produced is given by

ab/Lb, the ratio of the number of apartments created to the

redevelopment time for the building. Thus, a reasonable criterion to

use in determining which buildings to initially redevelop is

B ab
maximize b xb1 . (7.10)

b=1 b

This objective function attempts to maximize the rate of production of

new apartments project wide.

Of course, not all buildings can be selected. We still have to

satisfy an occupancy constraint of the form

B
E n b Vb1 o ' (7.11)

b=1

Constraint (7.11) states that the number of households relocated in the

first week cannot exceed the available number of vacancies available.

Combining (7.10) and (7.11) with the integrality constraint xbl=0

or 1, we have a procedure for deciding which buildings to begin in the

first week, namely:
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B ab
maximize b (7.12)

b=1 b

B
subject to E nbxb1 Vo

b=1

xb1 = 0 or 1 b=1,...B

The program (7.12) is a knapsack problem (for example, see Shapiro

(1979, p.116)), and can be easily solved using dynamic programming.

Let C (v) be the solution to the partial problem

maximize b (7.13)
b=1 b

subject to E nbxb1
b=1

xb1 = 0 or 1

Then a recursion relating C (- to C@(-) can be defined as

CP+1(v) = maximum (C (v-n@+1xp+1 + L P+1,1 (7.14)
I P+1', 1  P+1

As x +1,1 can only take on the values 0 or 1, the recursion simplifies

to

CP+1 (v) = maximum (Cp (v-np+1 ) + L (v)) (7.15)
P+1

If we define Co(v)~0, recursions (7.14) or (7.15) can be iterated until

C (v) has been tabulated. The optimal value of the objective function

C*(V 0 ) yields the maximum apartment production rate attainable, while
B

the optimal mix of buildings to begin in the first week is given by

those values of b for which xb1=1. This procedure could easily be

programmed on a microcomputer, or performed by hand for small problems.
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We have outlined an approach for making an initial decision. To

schedule an entire project, we can use our approach sequentially. After

a set of buildings has been chosen for redevelopment, we use the

knapsack model to decide which buildings should next be redeveloped. To

do this, we determine the earliest date at which the pool of vacancies

will change, and update the vacancy pool at that time. We can then

reapply the knapsack model to the buildings not chosen in the first

round, using the updated vacancy pool as a constraint. This process is

repeated until all buildings have been scheduled for redevelopment, or

until a particular knapsack attempt proves infeasible. This "myopic

algorithm" is formally described below:
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Myopic Algorithm

1) Initialize v = V0 , t=1, all xbj's=0

t-1
2) Define the set Ft = {b x = 01

j=1
(Note that F 1 contains all buildings)

ab
3) Solve maximum E b

bEF b
t

Subject to E
b EF

t

nbxbt 4 v

b=1 ,...,B
j=1,...,M-Lb

x bt= 0 or 1

Xbt= 0

Call optimal solution xbt , or STOP if infeasible.

*
4) v + v E n

bE F
t

t
5) For each building b, set I b E (j+Lb bj

j=1

6) Set + min U{b b>t}

b

7) Set t + I

B
8) v + v + E abb,t -L

b= 1 b

t
9) Are there any b such that E x bj = 0?

j=1

If yes, go to (2)

If no, STOP. xbj's give optimal schedule, D = most recent value of t.
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The steps of this algorithm will now be briefly summarized. Step 1

initializes the number of vacancies to Vo, sets the time counter to 1,

and enables all buildings available for redevelopment. Step 2 identifies

all buildings that have yet to undergo construction, while Step 3 chooses

those buildings to redevelop next on the basis of apartment production

rates or determines that the sequence being proposed is infeasible and

halts the process. Step 4 updates the vacancy pool by accounting for

newly relocated households. Steps 5 and 6 determine when the next

building completion occurs, and Step 7 sets the time counter to that

event in time. In Step 8, the vacancy pool is updated to reflect new

apartments just completed. Step 9 checks to see if all buildings have

undergone redevelopment; if not, the process returns to Step 2. If all

buildings have been assigned starting dates, the algorithm halts with the

"optimal" schedule and project duration.

This myopic algorithm was applied by hand to the data from Table 7.3

for the cases Vo=8, Vo=12 and Vo=19. For VO=8, the algorithm terminated

with an infeasible sequence, as expected. At VO=12, the algorithm

produced the building sequence 2-4-1-5-3 for a project duration of 25

weeks; this sequence is in fact optimal. At VO=19, the algorithm

produced the sequence 2-5-1-3-4 for a project duration of 20 weeks. This

sequence is also optimal. It cannot be concluded that the algorithm will

always produce optimal results, but these examples are certainly

encouraging and warrant further study of the myopic approach.

7.4 Generalization of the Relocation Model

We have invested a good deal of effort in analyzing the properties

of a basic relocation model. We will now consider a few modifications of

the model which should render it more realistic at least in its

formulation.
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7.4.1 Labor Force Considerations

As our model is currently formulated, we could achieve some

paradoxical results. Suppose there are two buildings, 1 and 2, with

n1=a1=n2=a2=5, and L1 =L2 =10. Also, suppose that building 3 has n3=a3 =10

and L3 =20. If VO=20, the three buildings would be completed 20 weeks

after starting, as all buildings could be cleared.

Suppose Vo=10. Either building 3 could be emptied, taking 20 weeks

to produce 10 units, or both buildings 1 and 2 could be cleared, also

producing 10 units, but in only 10 weeks. Something is wrong - the

hidden factor is that twice the effort is required to actually work on

the two small buildings compared to the one large building. Our

formulations have, in effect, assumed an "infinite labor force" which can

be used at will.

If we insist that some maximum number of apartments under

construction, say amax, cannot be exceeded in any week, then a reasonable

constraint is given by

B j ab
xb 4 a j=1,2,...,M (7.16)

b=1 t=j-L b+1 b max

This constraint says that the total number of apartments under

construction per week cannot exceed amax. Note that the limits of

summation run from j-Lb+l to j. This is consistent with our postulate

that buildings take Lb weeks to be redeveloped. Also note that the

number of apartments being redeveloped in a given week is estimated by

ab/Lb, the same production rate measure used in our myopic model.
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7.4.2 Sequence Constraints

It may be in a particular application that certain constraints are

posed on feasible sequences. For example, it may be that two buildings b

and b' must follow in order, that is, building b must precede building

b'. This is easily coded as

M-Lb M-Lb'

Etxbt < E txb't (7'17)
t=1 t=1

7.4.3 Multiple Unit Types

Perhaps the most obvious deficiency to our model is that it fails to

distinguish different unit types. Suppose that households of type k are

now matched to units of type k, k=1,...,K. Types could refer to size,

special features for the handicapped, or other attributes. The initial

building populations would now be denoted by nbk, the number of type k

households in building b. Similarly, the number of created apartments of

type k in building b would be denoted by abk. Finally, the initial

number of type k vacancies could be denoted by Vok-

Using an obvious notation, we could define the number of type k

households relocated, type k apartments made available, and type k

vacancies in week t as

B

Ntk E nbk bt k=1,...,K (7.18)
b=1

B
A = E abk xbt-L k=1,..*,K (7.19)

b=1 b

Vtk t-1,k + Atk - Ntk k=1,...,K (7.20)

and insist that Vtk>0 for every week t and unit/household type k.
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If the unit type classifications strictly refer to size, then it is

acceptable to place type k households into type k, k+1, ... , K units;

households must be housed in units that are of sufficient size. This

formulation requires us to define Ntk, Atk and Vtk in terms of the number

of households relocated, apartments created, and vacancies available in

week t for households requiring units of type k or larger. Our

constraints would become

K B
Ntk = E E nbl bt (7.21)

k =k b=1

K B
A = E E a x (7.22)

t =k b=1 b

Vtk would remain defined as before. This particular formulation will be

demonstrated within the context of an actual redevelopment effort in

Chapter 8.

7.5 Summary

This chapter has developed some theory for determining schedules for

public housing redevelopment programs. The key to our approach has been

to recognize that all tenants must always be assigned to appropriate

housing units. A basic model was developed in detail, and a promising

approximation was also presented. Modifications to our basic model aimed

at incorporating more of the realities of relocation problems were also

considered.

While more work remains to be done with models for relocation

programs (particularly with the approximation procedure), the models are

sufficiently developed for application to real problems. Such an

application is illustrated in the next chapter.
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Chapter VIII

Applying Relocation Models: The Franklin Field Project

8.1 Background

Franklin Field is a housing project operated by the Boston Housing

Authority. The project, initially occupied in 1954, was designed to

house 504 households in nineteen buildings. The original unit mix

consisted of 150 one bedroom, 179 two bedroom, 100 three bedroom and 75

four bedroom apartments.

For a variety of reasons, the physical condition of the Franklin

Field project has become problematic. According to the MIT Public

Housing Research Group,

"The buildings are, in general, deteriorated. The shared entries

and halls, for example, receive excessive use/traffic by families

with many children. A single entry commonly serves 12 units.

Security cannot be maintained since apartments are too small and

stairway access is uncontrolled. Thus common areas become play

areas."

"The apartments are small and poorly laid out and do not

adequately house the activities of family living. The livingroom

in a typical unit is laid out to work as a corridor, kitchens

and bathrooms are small, dining rooms are lacking, storage is

inadequate, bedrooms are too small for double occupancy, and

there is only one bedroom in large units."
(Public Housing Research
Group, 1983, p.66)

Issues such as these led to the current drive to redevelop the

Franklin Field project. Beginning in 1978 with a $3.5 million

modernization grant from the Massachusetts Executive Office of
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Communities and Development (Franklin Field is owned by the

Commonwealth of Massachusetts) to renovate 48 apartments, the

redevelopment effort now involves some $32,780,000 in both state and

federal monies. The original unit count of 504 is being reduced to 346

redesigned apartments; thus the redevelopment program is costing about

$94,740 per unit.

In reducing the number of units from 504 to 346, the Public

Housing Research Group notes that

"The primary goal of the redevelopment program is the adequate

housing of those families who currently live in Franklin Field.

Of the 346 proposed redesigned units, 26% are either duplex or

triplex to provide larger families with greater privacy and

separate entries and to thus reduce the use of shared entries and

enhance security for both shared and private entries.

... The proposal calls for all units to increase in size and to be

designed to better facilitate their use by family members."

(Public Housing Research
Group, 1983, p.66)

To implement the redevelopment project, it was necessary to

determine a sequence of construction that allowed for the feasible

relocation of those households already living in the project. The

redevelopment planning team (consisting of Boston Housing Authority

planners, representatives of Carr, Lynch Associates and Wallace, Floyd

Associates, redevelopment architects, and the Franklin Field Tenant

Task Force) initially moved the occupants of nine buildings (some 93

households) off-site leaving 198 households on-site. It was at this

point that I was contacted to aid in determining a feasible
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construction sequence and relocation strategy for the Franklin Field

redevelopment program.

In the next few sections, I will describe how this problem was

approached. The data involved will be presented, and the particular

version of our relocation model from Chapter 7 used for this project

will be discussed. Finally, a quick method used for allocating

households to units will be described.

8.2 Data for the Franklin Field Project

The first issue faced was the identification of the scale of

construction to take place. As buildings in the Franklin Field project

fall into rather natural groupings, it was decided that with the

exception of a single building, all construction and reoccupancy would

take place according to building pairs. As the project buildings are

roughly the same size and require comparable amounts of work, it was

also decided to assign equal redevelopment times to all pairs of

buildings. It was felt that each building pair would require roughly

six months of work. However, given the assumption that all building

pairs require equal redevelopment times, the actual time involved

becomes immaterial to the determination of an optimal construction

sequence. Thus, without loss of generality, the times for all building

pairs were assigned the value 1.

The Franklin Field redevelopment plan calls for the creation of

some 31 distinct unit types. For occupancy purposes, the design

distinctions between many units become unimportant. The project staff

from Wallace, Floyd Associates therefore reduced the number of unit

types necessary to consider from 31 to 11; the characteristics of these

unit types are shown in Table 8.1.
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Table 8.1

Unit Types for the Franklin Field
Redevelopment Program

Bedrooms

1 1/2

1 2/2

2

2 1/2

3

2 2/2

3 1/2

4

3 2/2

5

Number of Occupants

2

3

4

4

5

6

6

7

8

8

10

Source: Memo from Wallace, Floyd Associates, February 11,
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1983.

Unit Type

1

2

3

4

5

6

7

8

9

10

11

1



Table 8.2

Distribution and Demand for Units

by Type for the Franklin Field

Redevelopment Program

3 4

n3k a3kin4k a4k

0

0

0

0

0
0

0
0

0

0

4

4

0

8

4

4

0

4

2

0

2

0

0

0

0

0

0

0

0

0

0

0

2

2

0

11

5

4

1

2

1

1

1

Building Pair (b)

5 6 7

n5k a5k

0

0

0

0

0

0

0

0

0

0

2

2

0

11

6

4

1

3

1

1

1

n6k a6k

12 14

10 0

5 6

0 2

5 10

0 12

7 0

4 0

0 4

3 0

1 0

n7k a

4

9

10

0

5

0

4

2

0

1

1

7k

8

2

0

6

5

11

0

2

4

0

1

8

n8k a8k

3

7

9

0

3

2

1

1

0

1

0

9 10

n9k a9kInlok a10k

4 4

13 4

13 0

0 8

4 4

0 4

4 0

0 4

0 2

1 0

0 2

2

25

14

0

4

0

3

0

0

1

0

2

26

0

4

2

2

0

2

1

0

1

2

n2k a2k

Unit
Type (k)

1

2

3

4

5

6

7

8

9

10

11

1

nlk alk

0 0

0 0

0 0

0 7

0 4

0 2

0 1

0 1

0 0

0 1

0 0

0

0

0

0

0

0

0

0

0

0

0

6

0

0

10

6

11

1

1

3

1

0

11

(off-site)
nl1k a11k

10

27

25

3

9

5

12

2

0

0

0



Table 8.3

Vacancies by Type Resulting from the
Completion of Building Pairs 1 through 5

Unit Type (k) Number of Vacancies

2

3

4

5

6

7

8

9

10

11

Source: Table 8.2
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(Vok

8

0

47

25

25

4

11

7

149

135

127

127

80

55

30

26

15

8

4

4

4

1



Having identified these 11 unit types, the next step was to

determine the distribution of created units by type across building

pairs and to determine the number of households in each building pair

(and off-site) requiring at a minimum particular unit types. This

information was also compiled by the Wallace, Floyd Associates team

and is present in Table 8.2 using the notation of Chapter 7.

As mentioned previously, several buildings were initially emptied,

and their occupants were temporarily relocated off-site in other

available public housing units. The buildings vacated (represented by

building pairs 1 through 5 in Table 8.2) were initially redeveloped.

Upon completion, these buildings provided a pool of vacancies for the

relocation of the remaining residents of the Franklin Field project.

Table 8.3 reports the number of vacancies available by type resulting

from the completion of building pairs 1 through 5.

8.3 Model Formulation

As the unit types house monotonically increasing household sizes,

it was decided that households determined to require a type k unit

could be legally assigned to units of type k, k+1, k+2, ... , 11 for

k=1,2, ... , 11. Thus, the model formulation presented at the end of

Chapter 7 is applicable. The initial numbers of vacant units of type k

through 11, Vok, have been tabulated in Table 8.3. We can now

formulate the model used in Franklin Field using the notation of

Chapter 7:
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minimize D

subject to
6

E txbt + 1 < D
t= 1

b=1, ... , 6

6

Xbt = 1
t= 1

11 6
N tk = E n bAbt

I=k b=1

11 6
A = E E abAxb,t-1

I=k b=1

Vtk t-1,k + Atk - tk

Vtk 0

xbt= 0 or 1

b=1, ... , 6

t=1, ... , 6
k=1, ... , 11

t=1,
k=1,

t=1,
k=1,

t=1,
k=1,

b=1,
t=1,

.. , 7

.. , 11

.. , 7

.. , 11

7

.. , 6

.. , 6

Vok are given in Table 8.3.

Note that in formulating this model, we have:

(i) set B=6, representing building pairs 6 through 10 and the

households initially moved off-site

(ii) set Lb=l for b=1, ... , 6

6
(iii) set M=7= E L + 1

b=1 b

(iv) set K=11

This model was solved using the data in Table 8.2 for nbk and abk using

the ILLIP-2 program mentioned in Chapter 7 (see Young, Liu, Baugh and

Muroga, 1977).
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8.4 Model Results

The ILLIP-2 program located 10 optimal solutions (there could well

be more). However, one of these solutions corresponded to a sequence

that the redevelopment planning team had hoped to implement a priori.

This solution was:

Period 1: Redevelop pairs 1 through 5

Period 2: Redevelop pairs 6 through 8

Period 3: Redevelop pairs 9 and 10

Period 4: Return households from off-site (i.e. Redevelop pair 11)

The rationale behind this sequence was that the building pairs are

geographically contiguous making it easy to move heavy construction

equipment from site to site.

Having determined a sequence, the issue of how to relocate

households arose. We wanted to arrive at a tenant assignment scheme

that did not require households to move more than once. To do this, we

took advantage of our decision that households of type k could occupy

units of type k or larger, and developed the following scheme.

For notation, let:

hi = number of type i households to assign from a particular
building; i=1, ... , K

uj = number of type j units available for occupancy in this
assignment round; j=1, ... , K

aig = number of type i households assigned to type j units

An allocation scheme aij for a given group of households hi, i=1, ... ,K

and a set of units uj, j=1, ... , K is feasible if the following four

conditions hold:
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() ai= 0 if i>j (8.2)

(ii) ai> 0 if i<j (8.3)

K

(iii) E . = h i=1 K (8.4)
j=1

K

(iv) a a . <u. j=1, ...,K (8.5)
i=1 '3 3

Conditions (i) and (ii) state that only feasible assignments can be

made. Condition (iii) states that all households are assigned to

apartments, while condition (iv) guarantees that the number of

apartments assigned does not exceed the number of apartments available.

Thus, to find a feasible allocation scheme, one solves the system

of inequalities (8.2) through (8.5) for aig. There are many ways to do

this, but one simple approach utilizes a technique known as the

northwest corner method. An algorithm for this approach is:

(1) set aij + 0 for all i and j

(2) set i + 0

(3) set i + i+1

(4) set j + i-1

(5) set j + j+1

(6) is uj = 0? If yes, go to (11)

(7) set aij = min(hi,ug)

(8) set hi + hi - a

(9) set uj uj - aij

(10) Is hi = 0? If yes, go to (13)

(11) Is j < K? If yes, go to (5)

(12) STOP - INFEASIBLE ALLOCATION

(13) Is i < K? If yes, go to (3)

(14) STOP - FEASIBLE ALLOCATION
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The algorithm just described is simple enough to perform by hand.

Using the algorithm, we were able to find an allocation scheme that

assigned all households in single moves - no households were required

to move twice (with the exception of the households initially relocated

off site). This result was quite pleasing especially to the tenant

task force.

8.5 Summary

The application of our relocation model in this instance verified

a sequence that had been previously selected by redevelopment planners.

Of course, it could be that in other applications, sequences selected a

priori could prove to be sub-optimal, or even infeasible! That the

model identified the desired sequence as an optimal schedule was a

great relief and confidence booster to the redevelopment team. As of

the date of this writing, the Boston Housing Authority's Redevelopment

Director for the Franklin Field project, David C. Gilmore, has stated

that construction is proceeding according to the sequence determined

and relocation is proceeding without difficulty (personal

communication, April 19, 1984).
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Chapter IX

Conclusions and Areas for Future Research

This thesis has addressed some problems associated with managing

public housing demand. From a review of tenant assignment policies

utilized by U.S. housing authorities, we were able to develop models

describing the impacts of these policies on household waiting times,

project composition, and tenant allocations. We also addressed the

problem of determining construction sequences in a redevelopment

project which guarantee that tenants are always assigned to appropriate

units. An explicit procedure for identifying sequences resulting in

minimum project time was developed and applied to an actual project.

In this concluding chapter, we will discuss some of the policy

implications of our work. Areas for future research will be identified

where appropriate.

Many of our results relate to models which predict the waiting

times for new applicants to public housing; indeed, the detailed

analysis of Chapters 4 and 5 is devoted to this problem. A major

reason for modeling waiting times relates to the attempt to provide new

housing applicants with the best information available regarding

housing options. One would think that waiting times would play a major

role in a prospective tenant's decision regarding which housing

projects to choose for potential assignment, or whether to remain

interested in public housing at all. New applicants should receive

waiting time estimates along with the other information typically

presented (e.g. location of projects; unit mix; project populations and

demographics; age of project etc.). Indeed, waiting time estimates

would reduce the level of uncertainty involved in the new applicant's
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decision; certain projects may be instantly disregarded due to long

waiting times, for example.

For our work to be truly useful in this regard, it is necessary to

encode the models we have developed into user friendly computer

programs that could be operated by people with no computer knowledge.

The situation would be akin to an automatic teller machine at a bank

where customers make requests by answering simple questions presented

on a screen display. In the public housing context, new applicants

would enter information regarding their development choices and

household status by providing the answers to simple questions. For

example, questions regarding household size and composition would

provide the necessary information to determine a unit requirement.

Questions regarding income and ethnicity could extract information

pertaining to priority status. Applicants could then receive estimated

waiting times by development; these waiting times would be computed

using a model reflecting the particular rules of the housing authority

involved. The data for the models could be obtained directly

from housing authority computer files and would thus provide waiting

time estimates using the most recent data available. By using our

models in this fashion, new applicants could make a decision regarding

development choice taking waiting time into account. Applicants could

also formulate realistic expectations of waiting time for the

particular decision made.

The idea presented here is indeed feasible for most of the waiting

time models considered. Only the multiqueue system used by the Boston

Housing Authority requires a model too complex for implementation on a

microcomputer. Yet, it should be possible to develop good
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approximations to the multiqueue simulation model which could be

efficiently programmed on small computers. The development of a menu

driven, user friendly software package for implementing the waiting

time models developed in this thesis is one pragmatic area for future

work.

At the research level, it is unknown just how important a role

waiting times play in the decision to request assignments at specific

projects. Conceptually, one may imagine a utility function for

housing. The attributes of this utility function include site

amenities (such as location, demographic characteristics of the local

population), cost (i.e., rent) and waiting time. This utility function

could apply to both public and private housing. If new applicants to

public housing were given waiting time information, it would then be

possible, by observing the decisions made by these applicants, to

determine the extent to which waiting times actually effect housing

decisions. The results of such an experiment could have direct policy

implications. For example, if waiting time is not viewed as important,

then the policy of using reduced waiting times as an incentive for

achieving social goals such as project integration will undoubtedly

prove to be ineffective. Should waiting times prove important in

housing decisions, then it would become possible to "market" projects

on the basis of their waiting times.

Another pragmatic use of waiting time data relates to waiting list

management. If the waiting times at certain projects are sufficiently

long, say several years, then perhaps applications for residence at

those projects should be refused until expected waits subside. Given

the amount of authority effort necessary in the processing of
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application forms (e.g. reference checking, applicant interviews) such

a policy could free up staff time for other tasks. The closing of

certain projects to new applicants would also erase any possibility of

tenants feeling incorrectly secure about future housing assignments at

the projects in question.

As another application, tenants with projected waiting times

longer than a certain threshold could be referred to housing elsewhere

as a matter of policy. Thus, housing authorities could maintain a

standard of housing applicants within a given time period, or not

accepting applications for assignments. Again, this sort of policy

would more realistically reflect the ability of housing authorities to

respond to the excessive demands currently experienced.

Our waiting time models could also be used to question and perhaps

revamp the priority structures currently existing in some authorities.

For example, many housing authorities claim to house emergencies as a

top priority. However, imagine the following situation: an emergency

household applies for housing, but an appropriate unit only becomes

available after a six month wait. Several questions arise. How much

of an "emergency" still exists after six months? Should this

"emergency" be granted an assignment instead of a regular applicant,

who may have waited several years for an assignment? If our models

predicted that the mean wait involved for a high priority applicant is

so long that by the time a unit could be offered, the applicant's

priority status could be questioned, then perhaps it is unwise to

assign a high priority to the new applicant initially. On the other

hand, households with very low priorities may well face waiting times

that exceed their expected lifetimes! Surely such households should
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not be encouraged to apply for public housing assignments.

The past several arguments all point to a basic use of our waiting

time models: households with excessively long expected waiting times

are essentially not able to be housed by a public housing authority.

These long waiting times could be due to tenant choices (e.g.

insistence on assignment to a very popular project), or due to the

particular priority structure of a tenant assignment policy (e.g. a

household in a low priority class may receive an infinite expected

wait). As every application to public housing requires authority staff

time to process, every application has a cost. Only applications

resulting in housing assignments may be thought to have some benefit.

It seems clear that one would only wish to incur the cost of processing

an application if some benefit is accrued.

Our waiting time models provide a method for identifying

applicants with little to no chance of receiving an assignment. It

should be possible to dismiss such applicants from the system before

processing their applications on the grounds that following current

authority policy, such households could never be housed. This use of

our models would preclude the cost involved in processing applications

of zero benefit and could actually serve to redirect hours of

potentially wasted authority staff time to more useful tasks.

Our models of tenant assignment have been descriptive, but they

could be developed for prescriptive use if the characteristics of

"good" tenant assignment policies could be made explicit. For example,

if one wishes to integrate a project within a certain time frame, an

objective could explicitly state: assign tenants such that X% of the

project population consists of Group G tenants with T time periods.
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Using the models of blend priorities from Chapter 4, one could

determine the differential admission rates required to achieve this

policy or conclude that the policy is in effect infeasible.

As another example, one could formulate models which assign

tenants to projects in order to achieve certain objectives. Within the

context of a multiqueue system, one could guarantee assignment to one

of the projects in an applicant's choice set, but prescribe assignment

probabilities to achieve some objective (such as the minimization of

waiting time, or the equalization of racial balance). I have

formulated a small number of models which begin to address these

issues; their further development is a topic for future work.

More work remains to be done with our relocation model from

Chapter 7. The most practical starting point is to see if the

approximation procedure suggested works well in a wide variety of test

cases. If so, this procedure can be coded and distributed to housing

authorities for use on a microcomputer.

The relocation model is primarily useful for generating cost

effective construction sequences. The results from analyses using our

model can be used as standards to which proposed schedules received

from bidding construction firms can be compared. Indeed, the model can

be used to dictate sequences as it stands now.

The model could be made more realistic, however. The actual costs

involved in a redevelopment project could be incorporated. For

example, the cost incurred due to project duration is not the only cost

involved; initial vacancies also cost money. In addition, one could

envision a cost incurred due to the presence of unoccupied units

throughout the redevelopment process. A better model would determine a
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sequence which minimizes total project cost. The results of this model

could include the optimal number of initial vacancies to provide, in

addition to the optimal construction sequence.

Finally, the impacts of a redevelopment project on tenants could

be quantified and included in a relocation model. For example, one

could consider the length of stay in temporary housing as a measure of

discomfort to project residents; this measure could have a cost (albeit

psychological) attached to it. In extreme cases, certain tenants felt

to be disadvantaged could be offered monetary compensation for each day

spent in temporary housing beyond some threshold. This form of cost

could be incorporated. Another example relates to the relative

composition of project buildings at the completion of a project. It is

unlikely that a relocation plan which results in the break up of social

groupings within the project (e.g. neighborhoods) will be well

received. This sort of outcome should be considered.

These then are some ideas which remain to be explored within a

larger research context. The particular issues raised in this thesis,

and the extensions to these issues mentioned in the past few pages,

have not by any means exhausted the research agenda relating to tenant

allocation issues in public housing. However, this work could result

in some reassessments of public housing policy. At a minimum, I hope

that the contents of this thesis generate some interest by others in

the issues involved with managing the demand for public housing.
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