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ABSTRACT

This thesis describes the basic workings of public housing tenant
assignment systems and presents the detailed assignment procedures
utilized by several public housing authorities across the United
States. Using these procedures as a guide, the theory of birth and
death processes is used to develop realistic models for the prediction
of applicant waiting times, tenant allocations, and project
compositions. These models are applied to real data from the Boston
Housing Authority to answer various policy questions.

A special case of tenant assignment occurs when large housing projects
are redeveloped and tenants must be relocated. Scheduling models are
derived for these redevelopment programs accounting for the fact that
tenants must always be assigned to appropriate units. An application
of the methods developed to a relocation problem in Boston is also
presented.

The thesis concludes with a discussion of both the policy implications
of the work reported, and areas deserving future research attention.
Thesis Supervisor: Dr. Richard C. Larson

Title: Professor of Electrical Engineering and

Urban Studies; Co~Director of the Operations
Research Center
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Chapter I

Introduction

Public housing authorities exist in almost every major American
city. The primary service of these authorities, the provision of
affordable, decent housing for low income households, is clearly in
heavy demand. One only has to examine applicant waiting lists to
realize that the demand for public housing far exceeds supply. For
example, there are currently about 10,000 households waiting for public
housing assignments in Boston (Boston Housing Authority computer
files). In Philadelphia, 15,000 applicants are on the waiting list
(letter from Philadelphia Housing Authority dated Jan. 24/84), while
over 40,000 applicants await public housing assignments in Baltimore
(letter from Housing Authority of Baltimore City postmarked Jan 19/84).

With such burdens being placed on public housing programs, there
is a clear need to develop means for effectively managing this demand.
The consequences of poor demand management impact both the level of
service provided by housing authorities and new applicants' perceptions
of public housing. For example, in their management review of the
Boston Housing Authority (BHA), Coopers and Lybrand report:

"The demand for low-income housing, as evidenced by the number
of applications received by the BHA, far exceeds the number of
units that the BHA can make available in acceptable condition in
its current situation ... it is estimated that the Occupancy
Department spends 1000 hours or more per month of staff time in
reviewing applications, interviewing applicants and determining
eligibility. This time is provided at the expense of processing

legitimate requests for transfer and assignment of existing
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tenants to acceptable units. Just as importantly, acceptance and

processing of applications probably creates a false sense of

encouragement in applicants that their housing needs will be

solved by the BHA and deters them from seeking other alternatives

to their present situation."

(Coopers and Lybrand, 1980, p.III 16-17)

This dissertation is concerned with techniques for managing public
housing demand. Our major contribution lies with identifying the
impacts that alternative tenant assignment systems have on service
quality (primarily expressed as waiting time for housing assignments)
and housing authority objectives (for example, the racial integration
of housing projects). Once housing authorities have the means to
examine the implications of their adopted policies, it should prove
easier for these authorities to develop policies which better achieve
stated goals. As so much of our work will involve the tenant
assignment process, we will briefly review the steps in this process as
they might apply to a new applicant for public housing in a typical

U.S. housing authority.

1.1 The Tenant Assignment Process

1.1.1 Arrival of New Applicant

The assignment process for a new tenant begins when that tenant
applies for public housing. The application form for the Housing
Authority of Baltimore City is shown in Figure 1.1; this form is
typical of those used in American housing authorities. The tenant is
asked to provide basic information necessary for determining the unit

type required (e.g. household size and composition); eligibility (e.g.
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Figure 1.1

For Otfice Use Uniy

Housing Authority of Baltimore City

1 3 - : . Date
| Application for Public Housing and Section 8 Programs ‘
} App. No.
?

f 1. Name of Head of Househoid - |
i Last Nama Frest Name Midale inival
| 2. Present Address . :
t Street Adcress Zip Cade
| 3. Telepnone Number _ Social Secunty Number
H 4. Is the nead of the housenold or the spouse 62 years of age or older? Yes ______ No

5. Are ail the members of your housenald over the age of 45?7 Yes _____ No _

6. |s the nead of the housenold or the spouse handicapped or disabied? Yes _____ No _

7. Have vou ever ived in public housing in Baltimore City betore? Yes _ No s

ERENL, 1|\ |

It so wnere did you ve?

8. How inany peopie, including yourself, wil be iving in the housenoia? ____
Number «n tameiv

9 How many peopie wng will be iving in the nousehold are under age 187

Numonr.—u‘n;:u;w;
10. How many peopie wna will be living in the housenold are female/! .

Number of temares

11 ‘What 1s the total income coming into the househaid at this time? S _ per

week, month. or year

12. Do you or anyone living n the housenold receive income trom any of the following sources?

Depanment ot Social Services (DSS)  Yes No _ __ Supplemental Secunty Income  Yes ___ No _ __
Social Secunty Yes _ _ No Other:Miscellaneous Yes ____ No ____
i Empioyment (full ime or part timel Yes __ No _

13. Please creck the spaces below of the piaces where you would like 1o tive.
‘We wil try to consider vau for the gevelopments ot your chaice.

___ Any famuy deveinpment Elderly and Handicapped Developments
&z Any rehabilitated fhiouse MOSt QEVROITIBNIS NAvE #ITH IB0CIBS AN LNE- DEITOON BaITMISN'S )
Any eiderty development ____ Bel-Park Tower®
| ____ Sheitered housing ____ Congregate Housing The Brentwood
i _____ Secton 8 Existing Program I The Broadway"
1 ___ Secton 8 Moderate Rehabiiitation \ ____ Chasa Hause
i — Secton 8 Regional Housing | Claremant Extension

Ellersiie Apartments

! i
| Family developments Number of Bedrooms | Govans Manor L
i Anderson Village 1,23 | —— Hoilander Ridge” |
I _ The Broadway 2.3.4.5 | P—— Hollins House * one bedroom only i
] _____ Brooklyn Homes 1,2.3 | ____ Lakewiew Towers® i
‘ ____ Cherry Hill Homes 1% 3.4, 58 l _____ Bernard E. Mason Apts. ® acne bedroom only }
I ______ Claremont Homes 1.2.3.4.5 | —— McCulloh Extension O. 1, & 2 bedroom”* {
‘ __ Douglass Homes 1.2, 3. | ____ Monument East Apartments :
i __ Fairfild Homes 1.2, 3 ! ___ Primrose Place ® one bedroom only** i
‘ _____ Flag House Courts 1,2,3.4,5 ; ____ Rosemont ® one bedroom anly }
L __ Giimor Homes 1,2. 3 | — The West Twenty” I
! ___ Holianger Ridae 1,2,3.4,56 | Wyman House 1
1 uhian Garden: 5 | * Shastaraa Housing availabie_** Congreqate Housing avails
; R sardens 3, cifa g avedenis - Uongregare fiausing gixe
Lafayette Courts 1,2, 3.4

] __ Latrobe Homes 1,2.3 Please mail this apphication by folding it on the dotted hines
' — Liexington Terrace 1.2,3.4 50 the 30dress on the Dack faces oulward or deiver it 10

___ MecCuiloh Homes 1.2 3.4 56

— :’;n“'" MMIREES 2 ":“:‘ ) Housing Authority of Baltimore City

oy T':m'ﬁw : g ) Housing Appiication Office
B “,.,, HT" ’ : 4 Amencan Buitding, Sth Finor
ason M

231 East Baiumore Street
i faltimora. Maryiand 21202

[

Fareing Animes
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income); assignment priority (e.g. handicapped or disabled status); and
desired location for residence.

1.1.2 Determination of Eligibility

The application form is reviewed, and certain facts are verified
by housing authority officials to determine whether or not the
applicant is eligible for the public housing program. Eligibility is
usually determined on the basis of income, though other attributes
(e.g. past criminal record) affect eligibility as well. If a household
is found ineligible, it is notified as such and dismissed from the
system. Otherwise, the applicant is entered onto the waiting list for
housing assignments.

1.1.3 Waiting List Processing

Essentially, eligible households wait until they are notified of
an available unit. The particulars of waiting list management can be
quite complicated, as housing priorities and tenant choices must be
taken into account. In addition, households may choose to drop out
while waiting for housing assignments, a wait that can take several
years. During the wait for an assignment, households may be contacted
periodically to reassess housing needs or to see if public housing is
still desired. The details of waiting list management are discussed in
Chapter 2.

1.1.4 Housing Assignments

Housing assignments are triggered by household moveouts from
housing projects. As the waiting lists for public housing units are
almost never empty, housing assignments can only occur when vacancies
appear due to moveouts. When such moveouts arise, the managers of the

relevant housing projects contact the central authority office to
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release those households next in queue for assignment from the waiting
list. TIf the unit offered to the household in question is acceptable,
a rental agreement is signed and the tenant occupies the unit shortly
thereafter.

There are a number of questions associated with the tenant
assignment process. First of all, it should be clear that the manner
in which a housing authority organizes the waiting list for housing
assignments greatly impacts the performance of the tenant assignment
system. How do authorities manage waiting lists? What are the
consequences of these management strategies for tenant waiting times?
How will these rules effect ultimate project compositions? What is the
role of tenant choice in a tenant assignment process? How long will
households wait for assignments before dropping out of public housing
waiting lists for a particular assignment scheme? These questions are

addressed in detail in this dissertation.

1.2 Guide to the Thesis

In Chapter 2, the tenant assignment policies used in ten large
U.S. housing authorities are analyzed in detail. The results of this
analysis enable a characterization of tenant assignment schemes in
terms of waiting list management, priority classes, methods for
implementing priority assignments, and tenant choice. We will argue
that the different assignment schemes reflect the different viewpoints
held towards the function of public housing as a social service system,
but that specific assignment systems may not be consistent with broader
policy objectives.

The different policies reviewed in Chapter 2 are carefully modeled

in Chapters 4 and 5. The idea is to develop a set of techniques which
18



describe the consequences of a particular tenant assignment policy.
The performance measures chosen include the waiting time from
application to assignment for a new applicant, the demographic
compositions of projects, and tenant allocations (numbers of tenants
assigned to different projects; number of dropouts). These models are
applied to real data from the Boston Housing Authority in Chapter 6.
Issues considered include the effects of changing from the current
assignment system in Boston to (i) a project based or (ii) a citywide
system, and the time necessary to integrate a particular project
following current policy. The models require various assumptions, and
some of these are verified empirically in a study of household
occupancy times presented in Chapter 3.

It is appropriate to mention the use of models at this point. The
models developed throughout this thesis are somewhat novel in that they
are designed to reflect the particulars of public housing operations.
The models enable the policy maker to describe the implications of a

particular policy without actually implementing the policy. This

stands in stark contrast to other modes of scientific enquiry, such as
social experimentation, which would require a tremendous effort in time
and money to obtain results comparable to the ones reported throughout
this thesis.

Thus far, we have focused on the problem of assigning new
applicants to housing units. A very different form of tenant
assignment occurs when housing projects are redeveloped. Here tenants
must be relocated to temporary and new permanent units while large
scale construction takes place. As these "relocation problems" are

starting to occur more often due to the deterioration of public housing
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stock, methods for addressing these problems could prove quite
valuable. A class of relocation models is developed in Chapter 7. The
application of these models to an actual redevelopment project is
described in Chapter 8.

The thesis concludes in Chapter 9 with a review of the
implications of the work presented. Areas for future research are
outlined, as are suggestions for implementing the research completed in

this document.

1.3 Public Housing as an Urban Service System

Before closing this introductory chapter, I would like to place
this work in perspective. Within the last fifteen years, operations
researchers have begun to analyze the operations of urban service
systems with an eye towards improving the quality of service these
systems offer. 1In areas such as policing (Larson, 1972) and fire
protection (Walker, Chaiken, Ignall; 1979), it is clear that this
research has had an impact on the provision of the said services. Most
of the major recommendations from these researchers were developed from
mathematical models of the service system studied.

I would like to view this work on managing public housing demand
as being in the same spirit as these earlier studies. Though I have
chosen to focus on tenant assignment and relocation problems, public
housing authorities have other logistical concerns such as the
maintenance of housing stock; the design of rent collection and tenant
accounting systems; and the provision of security to all public housing
occupants. The work reported in the following pages represents only a
sample of what could be learned from a detailed study of the
operational problems of public housing management.

20



CHAPTER II

TENANT ASSIGNMENT POLICIES IN U.S. HOUSING AUTHORITIES

At the heart of public housing operations lies a fundamental
resource allocation question: How are eligilble applicants to public
housing assigned to public housing units? More precisely, what is the
procedure used to determine which household is assigned to the next
available apartment? The manner in which a housing authority answers
these questions has far reaching consequences ranging from the
determinaton of the waiting time until assignment for a newly arriving
public housing applicant to the ultimate demographic compositions of
housing projects and the happiness of the tenants living therein.

We will refer to the collection of procedures and decision rules
used by housing authorities to assign households to housing units as

tenant assignment policies. Tenant assignment policies, more than any

other facet of public housing operations, reflect the true character of
a public housing authority. These policies illustrate (and implement)
the functions housing authorities perceive public housing programs to
serve. Indeed, the public housing population within an authority's
jurisdiction is a testimony to the tenant assignment practices (past
and present) of that authority.

As mentioned in Chapter 1, public housing authorities are faced
with demands for housing units that far exceed supply. This demand for
public housing is essentially managed via tenant assignment policies.
Tenant assignment policies dictate what form waiting lists will take,
what choices prospective tenants receive in the assignment process, how

prospective tenants are prioritized, and ultimately, how long
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prospective tenants are required to wait for a housing assignment.
Thus, a careful study of tenant assignment policies is necessary if we
are to understand the issues involved in managing public housing
demand.

To develop an appreciation for tenant assignment policies and
their attendant problems, it is useful to examine a range of assignment
policies currently utilized by major U.S. housing authorities. Towards
this end, I contacted sixteen large housing authoriites listed in the
Council of Large Public Housing Authorities (CLPHA) directory
requesting copies of their tenant assignment policies in whatever form
they exist; the text of the request is shown in Exhibit 2.1. From
these letters, I received detailed responses including stated tenant
assignment policies from the following ten housing authorities:
Baltimore, Boston, Cambridge, Chicago, Greensboro, Houston,
Minneapolis, Omaha, Pittsburgh, and St. Paul. For the remainder of
this Chapter, we will present an analysis of these policies, extracting
important features for future consideration as we proceed. The issues
raised in this chapter will form the basis for most our technical work

in Chapters 4 and 5.

2.1 Objectives of Tenant Assignment Policies

That housing authorities share the broad social goal of providing
decent, affordable housing for low-income households is evident from
the stated objectives of these authorities. Here are four such
statements:

"... provide decent, safe, sanitary, and uncongested rental
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Exhibit 2.1

OPERATIONS RESEARCH CENTER
ROOM E40-164
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139
(617)253-3601

November 25, 1983

The purpose of this letter is to request from you or a member of vour staff
some readily available information. As background, I am a doctoral candidate at the
Massachusetts Institute of Technology undertaking research in the operational aspects
of public housing occupancy policies. Much of my work, which to date has occurred
almost exclusively in Boston, involves the modeling of tenant assignment systems.
These models can be applied in day-to-day settings (e.g., to forecast the probable
waiting times for new applicants), or as policy analytic tools (e.g., to study the
effect of a tenant assignment scheme which prioritizes households on the basis of
ethnicity, income, or some other criterion). I have also constructed models which
aid in sequencing large redevelopment programs where tenant relocation is a major
concern; these models have been used by the Boston Housing Authority.

It is my hope that this research will result in a flexible set of techniques
specifically geared toward public housing occupancy planning and policy analysis.
Toward this end, I would be most appreciative if you or a member of your staff would
send me one or more of the following items:

1. A sample application form for public housing from your agency;

2. Any guidelines, directives, or procedures manuals pertaining to vour
agencv's approacnh to tenant assignment {(e.g., How are walting lists
managed--by develcopment? citvwide? When an apartment becomes avail-
able, how is the decision made regarding which household next
that apartment?).

In return, I would be delighted to provide you with a synopsis of my dissertation
and details pertaining to the modeling effort as they become available.

Thank you very much for your cooperation, and I look forward to hearing
from you.

Sincerelv,

Edward Kaplan
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housing for families with low incomes at rentals consistent with

their incomes." (Section 7113, Occupancy Standards, Chicago

Housing Authority)

"These policies are designed to meet the needs of limited-income
families for decent, safe, sanitary low-rent housing which
provides a suitable living environment and which fosters economic
and social diversity and upward mobility." (Section 1.0,

Occupancy Policy, Greensboro Housing Authority)

"The Tenant Selection and Assignment Policies have been designed
by the Agency to take into consideration the needs of individual
families for low income housing and the statutory purpose of
developing and operating a socially and financially sound
low-income housing program which provides a decent home and a
suitable living environment, and fosters economic and social
diversity in the tenant body as a whole." (Section 1, Statement

of Policy, Minneapolis Community Development Agency)

"... the basic objective, within a reasonable period of time, of
housing tenant families with a broad range of income,
representative of the range of low-income families in this
Authority's area of operation, as defined in state law, and with
rent-paying ability sufficient to achieve financial stability of

the project or projects."™ (Section 3.01 (D)), Resolution No. 27

of 1981, Housing Authority of the City of Pittsburgh)

The statements cited reveal other objectives besides the provision

of low-income housing. Both the Minneapolis and Pittsburgh statements
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mention the necessity of achieving financial solvency in their
authorities; such a goal necessarily requires a certain mix of incomes
among project occupants, and could lead to explicit income mixing
policies. The Pittsburgh statement makes reference to housing
households "within a reasonable period of time "; as assignment
policies have tremendous impacts upon waiting times, the Pittsburgh
objective should lead to an efficient (in time) assignment scheme. The
Omaha and Minneapolis statements mention "social diversity" as a policy
objective; this refers to achieving demographically mixed project
populations, and could lead to explicit racial mixing policies.

Towards this end, consider two of the stated objectives of the
Boston Housing Authority:

"... assure that no discrimination on the basis of race, creed,

color, religion, national origin, marital status, sex, or handicap

is practiced in the selection of applicants, assignment of

tenants, or the granting of transfers... promote racial

integration of public housing developments." Section IA and IB,

Tenant Selection, Assignment, and Tranfer Plan, Boston Housing

Authority)
To promote racial integration of projects, one would presumably
implement differential assignment rates for different racial groups.
Some may construe such differential assignment rates as a violation of
the notion that "no discrimination on the basis of race... is practiced
in the... assignment of tenants." The internal consistency of tenant
assignment policies is perhaps questionable.

The preceding discussion has illustrated the more common stated

objectives of public housing authorities to the extent that our ten
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responding authorities can be considered representative. We will now
proceed to examine the specifics of tenant assignment policies,
policies which presumably act to achieve the objectives mentioned
above, beginning with the issues of waiting list management and tenant

choice.

2.2 Waiting List Management and Tenant Choice

Much can be learned about an authority's tenant assignment process
by examining the means by which waiting lists are managed. Typically,
waiting lists are first differentiated by unit requirements. These
requirements usually refer to apartment size (e.g. number of bedrooms),
but may also include special features (e.g. apartments equipped with
aids to the handicapped).

Waiting lists are also prioritized, with households in higher
priorities receiving assignments before households in lower priorities.
However, as authorities vary greatly in both the attributes considered
to merit high priority status and the methods for implementing
prioritized assignments, we will discuss priorities in detail later on.

Finally, waiting lists vary by geographic scale, in that any
particular waiting list (already broken down by unit requirement and
priority status) may be applied to a single project, a group of
projects in a neighborhood or community, or all projects in the
authority. Within the bounds of geographic scale, priority status and
unit requirement, assignments are typically made in chronological order
of tenant application.

The geographic scale covered by a waiting list has direct
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implications for tenant choice in the assignment process, and for the
ultimate demographic compositions of projects. Consider the following
two extremes. On the one hand, an authority could operate a system of
project based waiting lists; each new applicant would select a single
project, and wait until an appropriate unit becomes available. Such a
system guarantees that all households are eventually offered units in
their chosen projects. Such a system also causes the authority to
abdicate control over the demographic design of projects, as tenants
decide where to live; the authority cannot route tenants to projects
to achieve some goal such as desegregation. Finally, a project based
system will produce unbalanced waiting times, with households
experiencing long waits at "popular" projects, and shorter waits
elsewhere.

At the other extreme, an authority could operate a citywide first
available unit system, where households are assigned to the first
apartments vacated regardless of their locations. This system does not
possess any guarantee that households will be offered units in
desirable locations; rather, there is only a probability that a
household will be assigned to a project viewed as desirable by that
household. However, assuming for the moment that tenants don't quit
the system, an assignment scheme of this form would integrate all
projects in the same ratios as found on the waiting list. Also, the
waiting times experienced by those on the waiting list would be much
more balanced.

These two extremes in geographic scale illustrate a basic trade
off that occurs in tenant assignment policies: one must balance

tenant choice in the assignment process against the authority's ability
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to influence the demographic compositions of projects. In assessing
this tradeoff, one must also remain cognizant of the waiting times
implied by the assignment process chosen, as excess waiting times will
cause tenants to quit the system.

The housing authorities in our survey practice assignment policies
which cover the range between the two extreme examples presented.
Recognizing that tenant choice is important for both continued
participation in the housing program and ultimate tenant satisfaction,
some of the authorities have devised mechanisms which grant prospective
tenants some degree of choice via the right to refuse a certain number
of offered units. Consider the following guidelines from the Housing
Authority of Baltimore City:

"Eligible applicants shall be offered suitable housing within the

location wherein the highest number of vacancies exist. Rejection

of three separate offers of suitable accomodations shall result in
the placement of the applicant's name at the bottom of the
eligible applicant list, unless the applicant shall prove undue
hardship or handicap to the satisfaction of the Authority..."

(Section IVG, Statement of Policies and Standards Governing

Admission To and Occupancy of Low-Income Public Housing Operated

by the Housing Authority of Baltimore City, Housing Authority of

Baltimore City)

A similar policy is followed in Houston:
"Tf there is a suitable vacant unit in more than one location, the
applicant shall be offered the unit at the location that contains
the largest number of vacancies. If the applicant rejects the

first offer, he/she shall be offered a suitable unit at the
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location containing the next highest number of vacancies. If the
applicant rejects three (3) such offers he/she shall be placed at
the bottom of the eligible 1list. The Authority shall make all
such offers in sequence and there must be a rejection of a prior
offer before the applicant may be offered another location.

(Section IV, Admissions and Continued Occupancy Policy, Housing

Authority of the City of Houston)
The assignment systems illustrated by the Baltimore and Houston

statements will be refered to as refusal systems. We can formalize the

notion of a refusal system through the following characterization: A

k strike refusal system is a tenant assignment system where eligible

applicants are offered up to k units, sequentially. Applicants may
refuse any (or all) of the first k-1 units offered with no associated
penalty. If an applicant refuses all k units, then the applicant must
return to the bottom of the waiting list. In other words, in a k
strike system, "k strikes and you're out." The Baltimore and Houston
policies are both three strike systems (i.e. k=3).

It is interesting to note how refusal systems can cover the range
from project based to citywide waiting lists. Suppose that an
authority is operating a citywide system with one strike refusal; this
situation gives tenants no choices other than accepting an offered unit
or retreating to the bottom of the waiting list (or leaving the
housing system altogether). Now, suppose that the authority offers an
infinite number of strikes. This would afford applicants the luxury of
refusing units without penalty until a desireable unit is offered, and
effectively would represent a project based scheme. Applicants could

decide a priori which projects to live in, and refuse offered units
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until an offer occurs in a desired project.

Eight of the authorities surveyed use refusal systems as a
mechanism for implementing tenant choice; these authorities are listed
in Table 2.1 along with the geographic scale of the waiting list
managed, and the number of strikes in the refusal system. Note that
city wide, one strike systems are in use. Consider the case of St.
Paul:

"Sujitable vacancies arising at a given time at any location shall

be offered to the eligible applicant first in sequence at such

time. The eligible applicant must accept the vacancy offered or
be moved to last place on the eligible applicant list." (Section

C, Tenant Selection and Assignment Plan, Public Housing Agency of

the City of St. Paul)
Thus, the degree of choice offered to new applicants via refusal
systems is quite varied in U.S. Housing Authorities.
The Boston Housing Authority (BHA) has a tenant assignment system
which is quite different from the refusal systems discussed above:
"Applicants shall be asked to name up to three preferred locations
for housing from among all BHA housing developments or leased
housing on a community-wide basis. ... The interviewer shall
explain to the applicant (1) that he/she will be offered only one
of his/her preferred locations; (2) that the offer will be made in
whichever requested development has the earliest appropriate
vacancy; and (3) that if the applicant refuses to be housed at
that location... his/her application will be treated as a

refusal..." (Section III B, Tenant Selection, Assignment and

Transfer Plan of the Boston Housing Authority, Boston Housing

Authority)
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Table 2.1

Eight Authorities with Refusal Systems

Geographic Scale Number of
City of Waiting List Strikes (k)
Cambridge Citywide 1
Greensboro Citywide 3
Baltimore Citywide 3
Minneapolis Citywide 2
Houston Citywide 3
Chicago Project Based 1
Omaha Project Based or Citywide 1

at Applicant's Choice

St. Paul Citywide 1
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The policy towards refusals mimics that of one strike systems (with
exceptions granted for various reasons).

Thus, the BHA system represents a different approach to tenant
choice. Applicants pre-specify a collection of up to three projects,
and the BHA guarantees that the unit offered to the applicant will fall
within one of the projects specified. If an applicant is interested in
only one project, the applicant can specify solely that project, so for
some prospective tenants the BHA functions as a project based tenant
assignment system. However, most new applicants specify two or three
projects, and for these prospective tenants, the BHA functions as a
multiqueue assignment scheme; households are on waiting lists at
several projects simultaneously.

The BHA system appears to heavily favor the tenant choice side of
the choice/project composition tradeoff discussed earlier, even more so
than project based waiting lists. Yet, as mentioned before, one BHA
objective is to promote the racial integration of projects. To achieve
this goal in a heavily choice based assignment system is difficult.

The way the BHA tries to integrate projects is through the use of
priority structures. All housing authorities studied here also use
priority structures, but for a variety of reasons. Let us now turn to
examination of the types of priorities evidenced by the authorities in
our survey; later we will consider the different methods used for

implementing these priorities.

2.3 Priorities in Tenant Assignment

Within a given waiting 1ist (broken down by unit requirements),

all applicants are not treated equally. Some applicants are viewed as
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more needy, or more deserving of public housing than others. When one
peruses the attributes which amount to different priority classes in
different authorities, one is left with the sense that these priorities
reflect the housing authority's view of its social mission. Consider
the followilng statement regarding priorities:
"1. Only those applicants who can pay a rent in the needed income
range will be considered. In the event that there are no eligible
applicants in this income range, the next highest range is used.
2. Within the applicants in this income range, displaced families
will be given preference over nondisplaced families.
3. Within this group of displaced families, the family with the
earliest date of applicaton will be selected.
4. TIf there are no displaced families, the nondisplaced family
with the earliest date of application within the income range will
be selected.
GHA reserves the right to waive any provisions within these
policies to meet emergency conditions; an emergency condition is
defined as a situation in which failure to supply immediate relief
would pose a serious threat to the health, life, or safety of the

applicant." (Section 4.5, Occupancy Policy, Greensboro Housing

Authority)
These statements clearly reflect the mission of public housing as
perceived by the Greensboro Housing Authority. Emergencies, those with
the greatest need, are housed as a top priority. After this, an income
mix is enforced to ensure that the authority remains solvent. Finally,
displaced families are prioritized over nondisplaced households, again

reflecting relative need. WNote that within priorities, assignments
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occur on a first come first housed basis.

The policies reviewed contain many different priority categories,
and different orderings of these categories. Most authorities reserve
their highest priority classifications for households exhibiting the
greatest need; these households are typically referred to as
emergencies or displaced households. Many authorities also attempt to
house elderly applicants before assigning "regular" households.

However, not all authorities grant emergency or displaced
households highest priority status. For example, the Chicago Housing
Authority's highest priority status is defined as follows:

"Both for initial occupancy and as vacancies occur in developments

initially made available subsequent to November 24, 1969, dwelling

units shall, depending upon bedroom size only, be offered first to
eligible applicants residing at that time in the community area in
which the development is located. This procedure is to be

followed to the extent that such area residents shall have a

priority to occupy 50% of the dwelling units in the

development..." (Section 7142, Occupancy Standards, Chicago

Housing Authority)
In fact, the application form for public housing administered by the
Chicago Housing Authority explicitly states:
"WE DO NOT HAVE EMERGENCY HOUSING, and you cannot be housed until
we have housed all other families, of the same size as yours that
are ahead of you on the waiting list." (Form CHA-315, Chicago

Housing Authority Registration-Family Housing, Chicago Housing

Authority)

Residency is also a factor in determining a household's priority in
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St. Paul, where applicants receive a large number of "points" if they
are either St. Paul residents, or are employed within the jurisdiction
of the Public Housing Agency of the City of St. Paul (we will discuss
the use of points in implementing priority schemes in the next
section).

Other attributes taken into account when determining priority
classifications include: household income (either for economic reasons
of financial solvency, or social reasons of income diversity in project
populations); transfers from other locatons in the public housing
system; household ethnicity (for purposes of integrating projects);
veteran or serviceman status; and relationship of rent at current
private housing unit to household income. Table 2.2 presents the top
four priority classes evidenced by the tenant assignment policies for
eight of the authorities surveyed; the two other cities (Omaha and
St. Paul) will be reviewed in the next section with scoring systems.

One thing is clear from Table 2.2; a given household with
particular characteristics could receive greatly varying treatment
from the different housing authorities owing to the different
definitions of priorities across cities. This isn't entirely
surprising, as the priority classes shown presumably represent the
varied objectives of the housing authorities studied. What is not
clear is whether or not the particular priority schemes used do in fact
achieve the objectives set out by housing authorities; we will return

to this issue at the end of this chapter.

2.4 Implementing Priorities

The last section described the different priorities housing
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9t

Assinnent Priorities

Table 2.2

in Eight U.S. Public Housing Authorities

Priority Pittsburgh Boston Cambridge Greensboro Baltimore Minneapolis Houston Chicago
1 Elderly Emergency, Emergency Emergency Elderly or Elderly Displaced Same
displaced or Emergency Displaced & Displaced by public neighborhood
sub-standard Transfer Disabled action or up to 50%
catastrophe| occupancy
2 Elderly Minority Displaced Necessary Other Other Substandard| Adjacent
Prefercnce income Displaced Displaced living ne ighborhood
range by public
action or
natural
disaster
3 Veterans or Displaced Intra- Displaced Elderly or Income Elderly Transfers
servicemen by pub:lic project Disabled, Range most from inside
displaced or action transfer not under- the
sub-standard displaced represented authority
4 other Veteraus Veterans - - Displaced Veterans Displaced
displaced or and and Veteran and and
sub-standard Serviceich Servicemen Servicemen Servicemen
Source Resolution Tenant Applicant Occupancy Statement of| Statement of Admission Occupancy
No. 27 of SelﬁEfi””‘ Selection Policy, Policies and| Policy, and Standards,
1981, Housing| Assigunuent | and Greensboro Standards Minneapolis Continued Chicago
Authority of and Transfer Housing Governing Community Occupancy Housing
the City of Transfer Plan, Authority Admission to| Development Policy Authority
Pittsburgh Plans, Cambridge and Agency Housing
Boston Housing Occupancy of Authority
Housing Authority Low-Income of the City
Authority Public of Houston
Housing...
Housfag
Authority

of Baltimore
City




authorities have established in their tenant assignment policies. 1In
this section, we will considr three different ways that authorities
implement these priorities: Categorical priorities, blend priorities

(or differential assignment rates), and score priorities.

2.4.1 Categorical Priorities

This method is the most common observed. Households are assigned
to a priority category on the basis of their attributes. For example,
a non-elderly, non-displaced household with an income in the range most
underepresented would receive a priority of category 3 from the
Minneapolis Community Development Agency according to Table 2.2. In a
categorical priority system, no households in a priority category j can
be assigned until all households in categories one through j-1 have
been assigned. Within category j, assignment is in chronological order
(i.e. first come first housed). Thus, our category 3 household in
Minneapolis would not be housed until all households in categories 1
and 2 (elderly displaced, or others displaced by public action or
natural disaster) are housed. In addition, newly arriving applicants
in categories 1 through j-1 will be housed before applicants in

priority category j initially present are housed. Completing our

example, a newly arriving household displaced by public action in
Minneapolis will be housed before a non-displaced, non-elderly
household in priority category 3, regardless of how long the category 3
household has been waiting.

While the implementation of such categorical schemes is
relatively straightfoward, these schemes do possess one problematic

feature. If the rates at which high priority applicants arrive are
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sufficiently high to guarantee that such applicants are always present
on the waiting list, then lower priority applicants will never be
housed. We have not been able to study statistics for authorities
across the country, but one could certainly conjecture that in some
housing authorities, certain eligible applicants are effectively barred
from receiving a public housing assignment due to the priority system

in use.

2.4.2 Blend Priorities

One way to prioritize which does not have the drawback of the
previously discussed categorical scheme is to assign different priority
groups differential admission rates. For example, if one is attempting
to integrate a predominantly non-white project, a means for doing this
could be: assign k white applicants for every non-white applicant
assigned to the project. If k is chosen to be very large, the effect
of such a blend priority scheme would mimic that of a categorical
scheme where white households are given highest priority, and non-white
households are given lower priority. However, choosing k to be smaller
(e.g. k=2 or 3) creates a situation where white applicants are being

assigned at a faster pace than non-whites, but non-whites continue to

be assigned. This form of prioritizing is being practiced in Boston
with respect to household racial characteristics (white, non-white) and
household incomes (above median income for family size, below median
income for family size) to achieve various racial and income mixes in

Boston Housing Authority projects (Price and Solomon, 1983).

2.4.3 Score Priorities

In two of the authorities studied, Omaha and St. Paul, applicants
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are actually assigned points on the basis of their housing need and

other characteristics. Let:

wij = points (or weight) assigned to attribute i,
i=1,...,1I
1 if household j possesses attribute i
Xij =

0 if not

Then the score for household j, s5° is given by the sum
I
s. = L w.x,. (2.1)

Households are assigned scores using equation (2.1); these scores are
then rank ordered from highest to lowest. The households are then
assigned in descending order of their scores. The attributes and
attendant points awarded in Omaha and St. Paul are shown in Table 2.3.
It is very interesting to compare these two scoring systems. In
Omaha, just under 50% of the total possible points is awarded to
attributes demonstrating lack of housing. In St. Paul, just over 50%
of the total possible points is awarded to residency/work location.
Clearly, these two authorities have differing views of their missions

as public housing agencies!

2.5 Impacts of Tenant Assignment Policies

The tenant assignment policies of a housing authority have direct
impacts on the waiting times for prospective tenants, the demographic
character of projects over time, and the ultimate allocations of
tenants to projects (or the number of tenants who drop out). We raised
the issue previously that tenant assignment policies are meant to
reflect the objectives of housing authorities. Yet, it is not

immediately clear that the policies reviewed here meet the objectives
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Table 2.3

Score Prioritie

s in Omaha and St. Paul

Omaha
Attribute Points
Displaced, about 100
to be displaced, no
housing, or about
to have no housing
through no fault of
applicant
Will move to a unit 45
where race is a
minority
Substandard housing 30-38
Rent above maximum
percentage of income 20
Veteran/Serviceman 10

or dependent

Source: Resident Selection and

St.

Assignment Plan, Omaha
Housing Authority

Housing and

1983,

40

Paul

Redevelopment

Officials, Public
Housing Agency of
City of St. Paul,

Attribute Points
St. Paul resident 64
or employed within
jurisdiction of

authority

Displaced by 32
government action

Without housing 16
Substandard housing 8
Rent above 30% of 4
income

Elderly, disabled or 2
handicapped

Veteran 1
Source: Memo to National

Association of



stated by the relevant authorities, nor is it immediately clear how one
could check to see if these policies are consonant with the stated
goals.

What is lacking is a set of well reasoned procedures which, when
used thoughtfully, have the ability to predict the consequences of a
given tenant assignment policy. Were such procedures available,
housing officials could view the impacts of their policies on measures
such as new applicant waiting times, project compositions and tenant
allocations to see if in fact the policies are performing as intended.
One could also assess the consequences of proposed changes to a tenant
assignment policy on the performance measures mentioned. Finally, one
could provide better information regarding waiting times to new
applicants to aid them in their decisions regarding public housing.

The next several chapters embark on the development of procedures
for addressing the issues raised here. Following an empirical analysis
of occupancy times in Boston public housing in Chapter 3, the broad
classes of tenant assignment policies reviewed in this chapter are
translated into mathematical models. In Chapter 4, we construct
detailed models for project based systems incorporating all three of
the priority schemes presented here. Chapter 5 broadens the models to
incorporate refusal systems, city wide first available unit systems,
and multiqueue systems as used by the Boston Housing Authority. These
models are applied to real data from the Boston Housing Authority in
Chapter 6 to conclude our study of tenant assignment systems and

models.
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Chapter III

Analysis of Household Occupancy Times
in the Boston Housing Authority

We have just completed a discussion of tenant assignment systems
used in U.S. Housing Authorities. It was clear from our analysis that
tenant assignment policies consist of rules for "front door" entrance
and assignment to housing projects. We argued that these rules have
long run impacts on the demographics of public housing projects among
other things.

To gain a feeling for the time scale involved in serving public
housing tenants, I conducted a study to examine the length of time
households actually spend in public housing. The data compiled and
analyzed in this study serve several purposes:

1) For the first time, basic estimates of occupancy time are
available. These estimates can be used to determine the time
necessary for projects to "turn over," and have implications
for the demographics of projects over time.

2) The data can be used to verify certain assumptions made in
models of the tenant assignment process; such models will be
developed in Chapters 4 and 5.

3) The data can be used to assess the stability of public housing
populations; are households spending more or less time in
projects now compared to ten or twenty years ago?

4) Certain issues regarding tenant flow and intraproject
transfers can be assessed.

5) The data should prove to be of interest in their own right to
general housing researchers. For example, how do household
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occupancy times in public housing compare to those for
comparable households in private housing? We do not pursue
such issues here, but these data could prove useful to the
housing research community in answering various questions.
The remainder of this chapter is devoted to the description,
presentation and analysis of the data collected in my study of

household occupancy times in the Boston Housing Authority (BHA).

3.1 Data Collection and Goals of the Study

The data analyzed in this report were collected during June 1983,
Six Boston housing projects were visited: Faneuil, Washington Beech,
Mission Extension, Mission Hill, Mary Ellen McCormack, and Charlestown.
These projects were chosen for two reasons. First, the necessary
records for data extraction were available at these projects.

Secondly, these projects are representative of the diverse physical and
social conditions that pervade public housing in Boston. 1In addition,
all of these projects are well established, the most recent of the
group having housed tenants since 1950,

The information collected pertains to household occupancy times in
project apartments. For every household that moved out of a project
apartment in the years 1975 through June 1983 inclusive, the following
data were recorded:

1) 1Identification of the apartment occupied

2) Bedroom size of the apartment occupied (i.e. number of

bedrooms)

3) Move in date to the apartment occupied

4) Move out date from the apartment occupied
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5) Transfer data (the bedroom size of the new apartment occupied
as of the move out date for internal transfers, or a code
indicating that the household left the project)

In addition, the move in dates and apartment bedroom sizes for all
households currently 1living in the projects studied were recorded.

The major sources for these data are the Space Inventory Cards
that are maintained at most developments (though some developments in
the BHA have not maintained these files). Space Inventory Cards are
meant to keep a history of the status of all apartments in a housing
project. Thus, move in and move out dates, rental adjustments, major
repairs, and rehabilitations are all examples of the data potentially
retrievable from the Space Inventory Cards.

In some instances, however, these cards are not always accurate.
Other data sources used include Tenant Status Review forms (TSR's), and
development specific "Bibles" (log books that chronologically track
move ins and move outs as they occur). When incomplete Space Inventory
Cards were encountered, these secondary sources were utilized. In a
few cases, however, it was not possible to reconstruct the required
information; such cases were subsequently discarded from this study.

The major variable of interest to this study is household
occupancy time, or length of stay (LOS) in public housing. For those
households who moved out in the period January 1, 1975 through June 1,
1983 (henceforth referred to as the "complete" population), LOS is
simply defined as the elapsed time between the move in and move out
dates. For current occupants (henceforth referred to as the "current"
population), LOS is defined as twice the elapsed time between the move

in date and the date of data collection. The logic behind this is
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simple: on average, current tenants are halfway through their current
LOS, thus an estimate of their ultimate LOS is given by doubling the
observed amount of time they have spent in their apartments thus far.
The properties of LOS for the complete and current populations are of
course quite different; much shall be said about this later on.

There are several questions about LOS which we want to answer.
First of all, we want to know how long households live in public
housing and whether or not this duration varies by bedroom size and
project. If LOS varies, how does it vary? This is a question of basic
interest, for it defines the time frame within which housing
authorities (like the BHA) serve their clients.

A technical question relates to the distribution of LOS. Models

predicting waiting times for public housing assignments make
assumptions regarding the LOS distribution, as do models of project
mixing (e.g. differential assignments according to minority preference
or income level). Are these assumptions warranted? This study will
try to find out.

Thirdly, we wish to know if the public housing population is
stable over time with respect to LOS. Are households spending the same
amount of time in public housing now compared to clients ten, twenty or
more years ago?

Finally, it is of interest (and practical utility for waiting time
models) to determine transfer rates. For example, what fraction of
households leaving two bedroom apartments transfer to three bedroom
apartments? What fraction leaves the project altogether? Given that
one policy under consideration by the BHA is the prioritization of

transfers, this information is important.
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3.2 Household Occupancy Times in Public Housing

The first step in analyzing LOS was to display the relevant data.
Frequency distributions for LOS broken down by project and bedroom size
may be found in Appendix 3.1 for both the complete and current
populations. From these histograms, it is evident that LOS varies
quite a bit.

The variation in LOS for the complete population is summarized in
Table 3.1. The shortest average occupancy time observed is on the
order of 3.5 years, while the longest observed mean occupancy times are
on the order of 10.5 years. Overall, the mean LOS for the complete
population (accounting for sampling variability) equals 5.2 years. To
further summarize these data, the following questions were posed and
answered:

1) How does mean LOS vary by bedroom size?

2) How does mean LOS vary by project?

3) Are these variations significant?

These questions were answered using weighted least squares. The

results of the analysis are as follows:

3.2.1 vVariation in LOS by Bedroom Size

LOS appears to increase with bedroom size from one to three
bedroom apartments, then decrease from three to five bedroom apartments
as shown in Table 3.2. However, the associated t-statistics indicate
that there is no significant difference between the bedroom adjusted
mean LOS and the overall mean occupancy time for any bedroom size (the
computed t-statistics would have to exceed 2.101 in absolute value to
reject the null hypothesis of no difference using a 5% level of

significance). In fact, the hypothesis that mean LOS is equivalent for
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Project

Faneuil

Wash.
Beech

Mission
Extension

Mission
Hill

Mary
Ellen

Charles-
town

Table 3.1

LOS for Complete Population: Summary Statistics

(LOS in years)

Bedroom Size

1 2 3 4
Mean LOS 8.14 9.34
St. Dev. —-—— 6.32 7.45 ——
Sample n 137 929
Mean LOS 8.27 5.54 5.17 6.10
St. Dev. 8.54 5.87 4.70 6.02
Sample n 67 178 85 16
Mean LOS 3.66 5.34 6.67 7.13
St. Dev. 4.07 4.66 5.32 7.48
Sample n 94 222 155 27
Mean LOS 3.36 4.39 5.70 5.13
St. Dev. 2.60 2.98 3.46 3.03
Sample n 210 403 180 70
Mean LOS 9.67 10.83 10.36
St. Dev. 8.94 9.06 8.41 -
Sample n 395 266 63
Mean LOS 5.59 5.49 5.89 5.70
St. Dev. 5.20 4.79 4.70 4.1
Sample n 404 442 213 74
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Table 3.2

LOS by Bedroom Size
(Complete Population)

t-statistic

(Mean-5.2)

Bedroom Size Mean LOS (years) St. Error St. Error
1 4.6 .661 -.01
2 5.2 .538 0.00
3 6.1 .827 1.09
4 5.4 1.393 0.14
5 4.9 3.465 -.09

Model: LOS = B3 + &

where Bi = LOS for bedroom size i; € = error term
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all bedroom sizes cannot be rejected (F=.569 with 4 and 18 degrees of
freedom; the associated significance level equals .688). Thus, one may
conclude that mean LOS in the complete sample does not vary by bedroom
size - however, this result will change modestly when different

projects are identified and explicitly considered.

3.2.2 Variation in LOS by Project

LOS varies greatly with the project under consideration. This is
clear from Table 3.3. Here, the t-statistics indicate that at a 5%
significance level, three projects (Faneuil, Mission Hill and Mary
Ellen McCormack) have mean occupancy times that differ from the overall
population mean. The hypothesis that all projects have the same mean
LOS is easily rejected (F=11.833 with 5 and 17 degrees of freedom; the
likelihood of obtaining a result this extreme under the null hypothesis
is essentially zero). Thus, we conclude that mean occupancy times are
significantly above average in the Faneuil and Mary Ellen McCormack
projects, significantly below average in the Mission Hill project, and
about average in the Washington Beech, Mission Extension, and

Charlestown projects.

3.2.3 Simultaneous Consideration of Bedroom Size and Housing Project

A more sophisticated model is presented in Table 3.4. Here, we
may note that controlling for project, one can no longer accept the
hypothesis that mean LOS is invariant over bedroom size (F=3.911 with 4
and 13 degrees of freedom; significance level is .027). However, the
maximum difference in mean LOS attributable to bedroom size is on the
order of 1.5 years; this variation is small compared to the differences

in mean LOS attributable to the various housing projects studied. We
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Table 3.3

LOS by Project
(Complete Population)

t-statistic
(Mean-5.2)

Project Mean 10S (years) St. Error St. Error
Faneuil 8.6 1.134 3.00
Washington Beech 5.8 .779 0.77
Mission Extension 5.3 .554 0.18
Mission Hill 4.3 .258 -3.49
Mary Ellen McCormack 10.2 .860 5.81
Charlestown 5.6 373 1.07

Model: LOS = Yj + Sj

where Yj = LOS for project j; €j = error term
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Table 3.4

LOS by Bedroom Size and Project

MODEL: LOS = & + By + Y5+ &5
j

where @ = common term

e
[
]

effect of bedroom size i (Bg=5BR effect = 0)
Yj = effect of project j (Yg = Charlestown effect = 0)

eij = error term associated with bedroom size i, project j

Coefficient Value St. Error t-statistic
(value/St. Error)

a 5.802 1.445 4.016
B4 (1BR) - .909 1.436 - .633
B> (2BR) - .173 1.424 - .122
B3 (3BR) .664 1.445 .460
B4 (4BR) .390 1.517 .257
Y1 (Faneuil) 2.635 .938 2.810
Yo, (Washington Beech) - .076 .684 - 112
Y3 (Mission Extension) - .384 .522 - .736
Y4 (Mission Hill) -1.262 .354 -3.562
Ys (Mary Ellen McCormack) 4.841 .735 6.586
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thus conclude that the major variation in LOS is project specific;
differences in LOS due to bedroom size can largely be ignored. This
finding will greatly simplify future work, as it will not be necessary
to differentiate between apartments on the basis of bedroom size when

estimating occupancy times.

3.3 The Probability Distribution of 10OS

When working with statistical data, it is often convenient to
assume that the data come from a particular probability distribution
(e.g. Normal, Poisson, exponential, gamma, etc.). Such an assumption,
if warranted, greatly simplifies more detailed mathematical analysis,
and can also provide an explanation of the process generating the data.

It is of particular interest to see if the household occupancy
times correspond to the exponential probability distribution. One
purpose for collecting LOS data, as previously mentioned, is for the
estimation of waiting times for public housing assignments. The best
understood models of this sort (known as queueing models) often assume
that the service times (in our case, household LOS) are exponentially
distributed. A second use of the exponential distribution will be
demonstrated in the next section where we estimate mean cohort LOS
assuming exponentiality. 1In this section, the appropriateness of the
exponential assumption shall be examined.

The probability density function for an exponential random
variable x is given by

£(x) = Pe~tx x>0, W>0. (3.1)

Here, x could represent household length of stay; the mean length of
stay would then be given bylﬁ. A graph of the exponential density is

shown in Figure 3.1.
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Figure 3.1

An Exponential Density

for

Length of Stay

Probability
Density

X

= E(x) Length of

2
u

Stay
h

Mean Lengt
of Stay

53



The LOS histograms for the complete population are shown in
Appendix 3.1, and many of them do appear to have the shape of the
exponential density. To see if these lengths of stay do in fact follow
the exponential distribution, X2 tests were computed for each of the
histograms shown. Testing the null hypothesis that the LOS data for
the complete population came from exponential distributions yields
mixed results. At a significance level of 5%, this hypothesis cannot
be rejected for 9 out of 19 tests. In certain projects (notably Mary
Ellen McCormack), the exponential distribution fits the LOS data
remarkably well, while in other projects (notably Mission Hill), the
exponential model does not work well at all. The results of these
tests are shown in Table 3.5.

That the exponential distribution fails for Mission Hill is not
entirely surprising; this project has undergone numerous physical
transitions (including the closing of buildings) which would alter the
"natural" move out dates of public housing tenants. The same is true
to a degree at Mission Extension.

It would seem, then, that it would not be entirely misleading to
treat 1LOS as an exponential variable. Practically, this is of great
utility for future data collection: rather than painfully collecting
move in and move out dates as in this study, the exponential model
requires only the move out rate for estimation purposes. Thus, the
number of move outs per apartment per year is all that needs to be
computed to use the exponential model. A corresponding estimate of

mean cohort 1OS is then given by the reciprocal of the move out rate.
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Table 3.5

Chisquare Tests for Exponentiality

Project Bedroom Size Sample Size Degrees of Freedom Chisquare Significance
Faneuil 2 137 9 12.4 0.192
Faneuil 3 99 6 17.8 0.007
Wash. Beech 1 67 3 12.7 0.005
Wash. Beech 2 178 9 12.5 0.187
Wash. Beech 3 85 5 3.6 0.608
Mission Ext. 1 94 5 5.7 0.337
Mission Ext. 2 222 10 19.1 0.039
Mission Ext. 3 155 9 23.1 0.006
Mission Hill 1 210 7 43 .6 0.000
Mission Hill 2 403 11 78.6 0.000
Mission Hill 3 180 9 67.0 0.000
Mission Hill 4 70 4 14.9 0.005
Mary Ellen 1 395 19 13.8 0.795
Mary Ellen 2 266 16 19.9 0.225
Mary Ellen 3 63 1 1.1 0.294
Charlestown 1 404 13 38.3 0.000
Charlestown 2 442 13 14.0 0.374
Charlestown 3 213 10 12.8 0.235
Charlestown 4 74 4 1.3 0.023
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3.4 Stability of Household Occupancy Times

The analysis of the last two sections focused on the complete
population: households who have completed move outs within the study
period. To see if those currently living in public housing are
following the same distributions of LOS evidenced in the complete
population, occupancy times for the current population were compared to
what would be expected based on the complete population using the
following method.

Let f(x) refer to the probability density of LOS from the complete
population, and h(x) be the probability density from the current
population. If household occupancy times are equal, then arguments
based on the theory of random incidence show that these two densities
are related by (see Drake (1967, p. 157))

x£f(x)

h(x) = E(x)

(3.2)

From (3.2), it is easy to show that the mean occupancy time for
those in the current population, Eh(x), is related to the first two
moments of occupancy time in the complete population, Ef(x) and Ef(xz),
by the equation

Ep(x) = Ef(xz)/Ef(x) (3.3)
Also, the second moment of occupancy time for the current population is
given by

Ep(x2) = Eg(x3)/Eg(x) (3.4)
Thus, the variance of occupancy times for the current population
varhp(x) equals

3 2
E_(x) E_(x7)
£ £ ]2 (3.5)

var, (x) = -
h Ef(x) Ef(x)
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To see if the current population is actually related to the
complete population via equations (3.3) to (3.5), we compute the
observed first three moments Ef(x), Ef(Xz) and Ef(x3) of the complete
population, and treat these as known. We then estimate the mean
occupancy time ;h from the current population, and construct the

statistic

_ 2
x, - E_(x )/E_(x)
z = h £ £ (3.6)
4 3 2
E_(x) E_(x7)
£ £ ]2)/ n

Ef(x) Ef(x) h

where np is the sample size taken from the current population. The
z-statistic thus computed will roughly follow a Normal distribution
with mean 0 and variance 1.

Table 3.6 summarizes the LOS data for the current population,
while Table 3.7 shows expected information for the current population
assuming that the trends of the complete population were followed.
Finally, Table 3.8 presents the z-statistics which test whether or not
the data shown in Table 3.6 match the expectations of Table 3.7.

The implications of Table 3.8 are clear. With few exceptions, the
current and complete populations have significantly different mean
lengths of stay (at a significance level of 5%, a z-statistic with
absolute value greater than 1.96 is significant). Almost all of the
z-statistics are positive. This indicates that the current population
has longer mean occupancy times than would be expected according to the
complete population.

A notable exception to this trend is found at Washington Beech.
Here, current LOS's are less than would be expected for 1 and 2 bedroom

apartments, more than would be expected for 3 bedroom apartments, and
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Project

Faneuil

Wash.
Beech

Mission
Extension

Mission
Hill

Mary
Ellen

Charles-
town

Table 3.6

10S for Current Population: Summary Statistics

(LOS in years)

Bedroom Size

1 2 3 4
Mean LOS 16.17 18.45
St. Dev. - 17.03 18.30 -——
Sample n 124 119
Mean LOS 8.75 6.38 12,93 11.76
St. Dev. 10.17 7.04 12,03 7.60
Sample n 45 103 64 11
Mean LOS 10.85 15.80 15.94 25.33
St. Dev. 12.17 16.16 16.15 15.82
Sample n 31 38 31 13
Mean LOS 6.18 9.61 13.22 12.03
St. Dev. 6.10 9.33 11.22 9.39
Sample n 70 146 166 73
Mean LOS 15.79 24,71 26.18
St. Dev. 16.30 21.72 18.69 -———
Sample n 409 431 149
Mean LOS 12.23 15.06 19.06 15.44
St. Dev. 11.96 13.38 12.78 13.53
Sample n 273 283 156 51
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Expected Summary Statistics for Current Population LOS

Iable 3.7

Project

Faneuil

Wash.
Beech

Mission
Extension

Mission
Hill

Mary
Ellen

Charles-
town

Mean LOS
St. Dev.

Mean LOS
St. Dev.

Mean LOS
St. Dev.

Mean LOS
St. Dev.

Mean LOS
St. Dev.

Mean LOS
St. Dev.

(LOS in years)

17.09
8.68

17.93
11.31

10.42
5.66

59

13.05
6.99

11.75
7.35

18.40
10.44

Bedroom Size

15.28
7.59

9.443

5.81

10.90
6.56

17.17
11.10

12.05
7.63

14.97
7.43

10.65
3.72



Table 3.8

Z-Statistics for Stability Tests on Current Population LOS

Project

Faneuil

Washington Beech
Mission Extension
Mission Hill

Mary Ellen McCormack

Charlestown

-6.44

2.31

1.99

-3.83

5.26

-7.42

6.78

11.63

12.54

18.35
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Bedroom Size

4.55

4.81

4.27

20.03

9.89

25.48

-0.12

5.01

14.41

11.07



about what would be expected for 4 and 5 bedroom apartments. It is
unclear why this is so.

Now suppose that incoming public housing tenants have occupancy
times consistent with the current population. A reasonable question to
ask is: how long can an entering household be expected to stay in
public housing? In other words, what would be the mean LOS for a
cohort of households entering public housing now (as opposed to the
mean LOS for those already living in public housing). 1In the last
section, we supported the assumption that occupancy times are
exponentially distributed. If we assume that an incoming cohort has
exponential lengths of stay, then it is simple to estimate the implied
mean cohort occupancy time based on the mean occupancy times for the
current populaion.

For the exponential distribution, the first two moments of

occupancy time are given by:

Ef(x) 1/0 (3.7)

Ef(x2) = 2/p2 (3.8)

Substituting these results into equation (3.3) yields

E,(x) = -f—j—ﬁ-z = 2/B (3.9)
Thus, the mean cohort occupancy time equals En(x)/2, and we estimate
this by

Mean Cohort Occupancy Time = ;5/2 (3.10)
These mean cohort occupancy times are presented in Table 3.9, along
with the mean occupancy time from the complete population.

It appears that households are staying about two years longer in

public housing when compared to the complete population, although there
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Table 3.9

Observed Mean 1OS for Complete Population and
Estimated Mean Cohort LOS for Current Population

(LOS in years)

Bedroom Size

Project 1 2 3 4
Obs. Mean LOS ——— 8.14 9.34 ———
Faneuil Est. Mean LOS 8.09 9.23
Wash. Obs. Mean LOS 8.27 5.54 5.17 6.10
Beech Est. Mean LOS 4.38 3.19 6.47 5.88
Mission Obs. Mean LOS 3.66 5.34 6.67 7.13
Extension Est. Mean LOS 5.43 7.90 7.97 12.67
Mission Obs. Mean LOS 3.36 4.39 5.70 5.13
Hill Est. Mean LOS 3.09 4.81 6.61 6.02
Mary Obs. Mean LOS 9.67 10.83 10.36 —_—
Ellen Est. Mean LOS 7.85 12.36 13.09
Charles- Obs. Mean LOS 5.59 5.49 5.89 5.70
town Est. Mean LOS 6.12 7.53 9.53 7.72
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are exceptions (notably Faneuil and Washington Beech). It should also
be mentioned that Table 3.9 does not totally agree with Table 3.8; in
some cases, the z-statistic indicates that mean LOS has increased where
Table 3.9 suggests a decrease. These discrepancies can be explained by
the fact that the exponential approximation is not always warranted,

thus the results from Table 3.8 are more reliable.

3.5 Transfers and Termination of Occupancy

Finally, one of our stated goals was to investigate internal
transfer rates. The observed transfer probabilities for the complete
population are summarized in Table 3.10. The most noticeable feature
of this table is that the vast majority of apartment occupancies
terminate with the household leaving the project. However, in many
projects and bedroom categories, over 10% of all occupancies end with a
transfer to another on site apartment.

The two projects with the highest transfer probabilities (or
equivalently the lowest exit probabilities) are Mission Hill and
Mission Extension, where transfer rates are typically over 20% and
often over 30%. However, these transfer likelihoods are artificially
high due to the physical transitions at these projects; this is also
consistent with the poor fit of the exponential model to household
occupancy times at those projects. At the other projects, transfer
probabilities are rarely higher than 15%.

One slightly disturbing feature is the regularity with which
transfers occur between apartments of the same size. This is not

supposed to occur (except in emergencies or for medical reasons), and
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Table 3.10

Transfer Probabilities

To: Bedroom Size

Project From 1 2 3 4 5 Exit Sample n
(BR Size)
2 —— .081 .059 —-— - .860 136
Faneuil 3 — —-— .051 -—— ——- .949 98
1 .015 .015 —-_— —— —— .970 67
2 .039 .056 .028 —-—— -—— .876 178
Washington 3 .012 .012 .035 - .012 .929 85
Beech 4 —— .063 -—— -— ——— .937 16
5 —— -— —— -—— --=- 1.000 14
1 .032 .160 .053 —— ——— .755 94
Mission 2 .023 .081 .091 .009 —— .796 221
Extension 3 .026 .039 117 .058 .013 .747 154
4 .037 .037 — L1111 - .815 27
1 .091 177 .034 —-— —— .699 209
2 .020 112 .169 .020 .002 .677 403
Mission 3 .039 .039 .050 .106 -—— .765 179
Hill 4 .057 .071 .014 .071 .043 .743 70
5 —— - -— .200 -— .800 5
Mary 1 .046 .046 .003 — - .906 395
Ellen 2 .030 .053 .026 - ——— .891 266
McCormack 3 .048 . 191 .095 —— —— .667 63
1 .064 .035 .005 .003 - .894 404
2 .027 .109 .048 .011 -— .805 442
Charlestown 3 .014 .033 .132 .033 -—— .788 212
4 — .014 .068 .054 .014 .851 74
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cannot be explained at present for all projects. The physical changes

at Mission Hill and Mission Extension would have something to do with

this phenomenon at those projects, however.

3.6 Summary of Findings

This chapter described the analysis of household occupancy times

in six Boston Housing Authority projects (Faneuil, Washington Beech,

Mission Extension, Mission Hill, Mary Ellen McCormack, and

Charlestown). The results of this analysis are detailed in the body of

the chapter along with the methodology employed. The main results of

the study may be summarized as follows:

1)

2)

3)

4)

5)

Mean occupancy times do not appear to vary by apartment size
from the overall mean occupancy time of 5.2 years.

Mean occupancy times vary greatly by project, from a minimum
of 4.3 years at Mission Hill to a maximum of 10.2 years at
Mary Ellen McCormack.

Household occupancy times are often exponentially distributed.

Thus, the properties of occupancy time distributions can be
inferred from move out rates. Also, the assumption that
occupancy times are exponential, used in models for assignment
waiting times, can be justified in several instances.
Household occupancy times appear to have increased. In other
words, households entering public housing today can be
expected to remain longer in their apartments than households
who entered several years ago, often by as much as two
additional years.

Internal transfer probabilities are between 10% and 15% for

most cases of interest. A non-negligible fraction of
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transfers occur between apartments of the same size. It is
unclear why this is so.

We have discussed the features of tenant assignment policies in
Chapter 2, and the timing of household occupancies in this chapter.
With this background material in mind, we are now prepared to develop
detailed tenant assignment models. We will begin with single project

models in the next chapter.
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APPENDIX 3.1 EMPIRICAL DISTRIBUTIONS OF LOS

Part 1: Complete Population
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LOS (yrs) Two Bedroom Apartments at Mary Ellen McCormack
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LOS (yrs) Three Bedroom Apartments at Charlestown
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Part II: Current Population
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Two Bedroom Apartments at Faneuil
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LOS (vrs) One Bedroom Apartments at Mission Extension Frequency
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Cne EBearoom Apartments at Mary Ellen McCormack Frequenc™
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CHAPTER IV

TENANT ASSIGNMENT MODELS

In this chapter, we begin to develop models which describe major
features of the tenant assignment systems discussed in Chapter II. We
will begin with an overview of a generic tenant assignment system for a
single project, and present some mathematical results which will prove
useful in our later work. Following this, we will examine various
aspects of single project tenant assignment systems; gradually we will
incorporate dropout and prioritized assignment structures. By the end
of this chapter we will have developed applicable models for single

project assignment policies.

4.1 A General Assignment System

A simplified assignment procedure is diagramed below in Fig. 4.1.
New applicants are assumed to arrive at a housing project in accordance
with a Poisson process with rate M. 1In any time period of length
L, the probability that exactly k new appliants arrive is assumed to

equal

AL
(M) Ke

pri{k applicants in period of length & } = "

Upon application, households are assigned a unit requirement, or they
are deemed ineligible. Unit requirments typically refer to apartment
sizes, but they could also include special features such as aids to
the handicapped or mobility impaired. All decisions regarding unit

requirements and eligibility are assumed independent, thus the
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Figure 4.1

A Tenant Assignment System
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effective arrival rate for new households with unit requirement i
K

equals Ay, andiz1 Aj + My = A, where My equals the arrival rate for

ineligible applicants, and K is the number of unit types.

Eligible households then join a waiting list for their unit

requirement. At time t, the number of households waiting for type i
units equals nj(t). Waiting lists may function as a simple accounting
of those in queue for housing; they can also be prioritized in several
ways. For example, "emergency" households may receive priority over
standard applicants, while social goals such as racial integration may
grant priorities to specific households. We will always assume that
within unit requirements and priority structures, households are
assigned to public housing on a first come, first served basis.

One more assumption is key regarding waiting lists. We will
assume that waiting lists are never empty, that is, nj(t)>0 Vi,t. This
assumption is almost always true empirically, and it has the following
implication: the rate at which tenants are assigned equals the rate at
which tenants leave the project; more succintly, the assignment rate
equals the moveout rate. This result will greatly simplify our
analysis.

Two things can happen to a household once it has been placed on a
a waiting list; the household is eventually assigned to an apartment,
or the household eventually drops out of the system. Dropout is an
important feature of tenant assignment systems, as typical waiting
times are sufficiently long to enable many of those waiting for public
housing to find housing elsewhere. It is often the case that
households are more likely to drop out than to receive an assignment.

In our work, we will assume that the rate at which households drop out
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is proportional to the number of households waiting for assignments.
Though this seems like a simple assumption, it will complicate our
modeling effort. This complication is necessary, however, if we are to
develop realistic tenant assignment models.

We earlier established that due to non-empty waiting lists, the
rate at which tenants are assigned equals the rate at which tenants
move out of the housing project. 1In Chapter 3, we presented evidence
which suggested that the amount of time individual households live in
public housing is approximately exponentially distributed. This being
the case, the time between successive moveouts will also be
exponentially distributed. If the project contains m units, and house-
holds live in public housing apartments for a mean of R time periods,
then our assumptions imply that the length of time between succesive
moveouts will be exponentially distributed with mean R/m. This in turn
implies that the moveout process is Poisson with rate U=m/R. Finally,
due to the equivalence of assignment and moveout processes, we see
that the actual assignment process is Poisson with rate M.

It should be mentioned that in order for the moveout process to be
considered as Poisson, it is not necessary for individual household
occupany times to be exponentially distributed. If the number m of
apartments is sufficiently large, then the moveout process will
approach a Poisson process, irrespective of the underlying distribution
of household occupancy times. This is due to the fact that the pooled
output from a large number of "renewal processes" approaches a Poisson
process as the number of individual processes in the pool becomes large

(see Cox (1970, p.77-79)). 1In our case, the individual processes are
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household specific moveouts, while the pooled process consists of the

moveouts generated by the project as a whole.

We

1.

summarize our main assumptions as:

New applicants for type i units arrive in accordance with a
Poisson process at rate M.

The waiting list for type i units is never empty; that is,
nj(t)>0 V i,t. This implies that the assignment rate equals
the moveout rate.

Households waiting for type i units drop out of the system at
a rate proportional to the number of households in queue; if N
such households are waiting, the dropout rate is assumed to
equal N5, where 0 is the household specific dropout rate.
Households in type i units reside in projects for exponentially
distributed lengths of time. At 100% occupancy (which is
always the case by assumption), a mean residency of length R

in a project with m units implies that the lengths of time
between successive moveouts are exponentially distributed with
mean R/m. Equivalently, the moveocut and tenant assignment

processes are Poisson with rate U=m/R.

In studying tenant assignment systems, we will be interested in

describing how the system looks to a newly arriving eligible applicant.

In particular, we will try to answer the following questions:

1.

Suppose a newly arriving eligible applicant finds N households
waiting for housing assignments. How long will our household
have to wait for a housing assignment?

While our household is waiting for an assignment, how many of

the N households originally waiting will also be assigned?

How many will drop out?
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The answers to thse seemingly simple questions are usually quite
difficult to derive, yet when we know this information, we can say a
lot about tenant assignment. First of all, the estimation of waiting
times for public housing should be basic to any housing authority .
When potential public housing residents try to decide whether or not to
remain in queue for housing, let alone choose which projects to live
in, the amount of time required to wait could be a major factor
impacting the decision. Thus, using models to be developed, new
applicants can be informed of how long they can expect to wait for a
housing assignment under the relevant tenant assignment policy. That
the provision of this information will enable prospective tenants to
make better decisions is sufficient to warrant our modeling effort!

Aside from this day to day application, our models will supply
housing planners with important information. For example, one will be
able to determine the length of time necessary to process all
households waiting as of some given time (typically the end of a
month), and the numbers of those waiting who will ultimately be housed
or drop out. In addition, planners will be able to study the effects of
alternative tenant assignment policies on the demographic compositions
of projects, and determine how much time is necessary to achieve
various social goals such as racial integration or income mixing.
Another useful feature our models will provide is the ability to com-
pare and contrast alternative tenant assignment policies such as those
discussed in Chapter 2.

Throughout this chapter, we will develop models which predict
waiting times and allocational quantities (such as the number of

assignments and the number of dropouts) for various tenant assignment
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schemes. Most of these models will make use of some mathematical

results associated with so called birth and death processs; these

results will be summarized for later application. Following this, we
will engage in the details of models for tenant assignment. We shall
derive the necessary mathematical results, discuss statistical issues
associated with using the models, and present numerical examples where

relevant. Our work is reviewed at the end of the chapter.

4.2 Birth and Death Processes

Imagine a system characterized by a random variable which at any
time can take on only non-negative integral values. One example of
such a system is the number of households waiting for housing
assignments at a given time. Denoting our random variable by X(t), we
say that the system occupies state n at time t if X(t)=n. Continuing
with the tenant assignment example, the system would be in state n
whenever n households are waiting for housing assignments.

Suppose we know that at some time t, the system is in state n,

that is,X(t)=n. Our system corresponds to a birth and death process if

the only possible states the system can next occupy are states n+1 (a
birth), n-1 (a death), or n (a return). For tenant assignments, a
birth corresponds to a new addition to the waiting list; a death
corresponds to either a tenant assignment or a dropout, and a return
corresponds to no change.

To make our process operational, we make the following two
assumptions:

1. Occupancy Times are Exponentially Distributed

Given that the system enters state n at time t, the length of time

the system will remain in state n, T,
» 1s an exponentially distributed
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random variable with mean‘Eh. Note that the length of time spent in
state n, while dependent on n, is independent of time - Tn does not

depend on t.

2. State Dependent Virtual Transitions

Given the system enters state n at time t, the probability that

the system next occupies state j (at time t + T, ) is given by

dn j=n-1

Tn j=n (4.2)
Prob {n » j} =

Pn j=n+ 1

0 all other values of j

Also, we insist that p, + r, + qp = 1 for all states n.

Equation (4.2) implies that the only state to state transitions
allowed correspond to births, deaths, and returns. Note that the
transition probabilities (p,,rn,qp) are state dependent, but
independent of time. Also note that by including a return probability

Yn, we allow for virtual transitions - the process, upon leaving state

n, returns to state n at time t + T, with probability rj,.

Assumptions 1 and 2 lead to the following description of our
process: having entered state n at time t, the system remains in state
n for T, time units, where T, is an exponentially distributed random
variable with mean ;h. At time t + T, the system moves to state n-1
with probability gp, returns to state n with probability r,, or moves
to state n+1 with probability p,. This processed is summarized in the

state transition diagram shown in Fig. 4.2.
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State Transition Diagram for the Birth and Death Process

Figure 4.2
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In our work, we will typically be interested in the random
variable wp, the amount of time necessary to first enter state 0 given
that the system starts in state n. The variable w, will describe the
length of the time necessary to process n households on a waiting list,
where a household is processed if it is assigned or if it drops out.

We will most often wish to compute the mean and variance of wp.
To do this, we make use of the fact that both the mean E(w,) and the
second moment E(wnz) can be found as the solution M, of the difference
equation.

Mn = Pn Mp4q + Tn Mp + ap Mp.q + 9p (4.3)
To obtain E(wp), one sets

9n = Tn (4.4)
and solves (4.3) for M.

The interpretation of this is straightforward. Having entered
state n, the process spends Eh units of time, on average, before
changing states. With probabilities p,,r, and q,, the process jumps to
state n+1, n, or n-1, The expected times to reach state 0 from each of
these states are E(wp41), E(wy) and E(wp.q), respectively. Thus, the
expected amount of time required to reach state 0 from state n equals
the sum of the expected time spent in state n, plus the
probabilistically weighted sum of the mean times to reach state 0 from

each of states n+1, n, and n-1.

To obtain E(wp2), one sets

E( )1

(4.5)

2 — — —
= T T T T
gn E( n) + 2 [pn n+1 E(wn-M) *+ rn n E(wn) + qn n-

1 “Wnoq
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and solves (4.3) for M. This result is not obvious; for its
derivation see Howard (1971 b; p. 735). The approach is useful; in
every case of interest to us, equation (4.3) can be solved.
To see this, rewrite the left hand side of (4.3) as
(pn + rn + qn)Mp, and re-express the equation as
Pn(Mp+1 = Mp) - an(Mp = Mp_q) = -gp (4.6)
Next, define U, to be the first difference of M,, that is
Up = Mp - Mp-q (4.7)
Recall our definition for wy:; it follows that wg = O. Thus,

Mg = O (since E(wgp) = E(woz) = 0), and we have the relationship
n
M = I U (4.8)

It will sometimes be the cause that p, = 0 ¥n. When this is true,

(4.6) may be written as

g
u == (4.9)
9n
and we find using (4.8) that
M = & 93 (4.10)
"oi=1q
i
for this case.
When pp, # 0 ¥n it will be true that pp > O Vn.
Dividing through (4.6) by p, we obtain
q g
u -y =2 (4.11)
n+1 P n
n n

This is a first order, linear difference equation with non-constant

coefficients; it has the solution (Levy and Lessman, 1961; p. 153)
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- g k q.
: (2, @ ;1)] (4.12)

For all of the models we will consider, the following conditions will

always hold:

1) 1lim —_—=®
n* i=1 Pi

2) 1imuU =K 2 0

n>®

These two conditions enable the initial term Uy to be expressed as

i q.
u, = (=, 1 ;lJ (4.13)

i i q.
U = (=2, nm ) (4.14)

n ® g i q,
M = 2 % (= ,0 ) (4.15)
m =1 i=k Pi 3=k Pj

Our approach will provide us with the first two moments of wp
irrespective of the complexity of the transition probabilities

{Pn» Tn, 9n). This approach will always work provided the stated

conditions
n qi
(1im —= ==, lmy =x> 0)
n>e j=1 Pj n>®

hold. Having presented the necessary results from birth and death
processes, we can now return to the problems of modeling tenant

assignment systems.
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4.3 Tenant Assignment Models

All of the models we will develop will be variations on the
following scenario: a new household (or "test applicant") applies for
public housing and is found eligible. Upon joining the waiting 1list,
the applicant finds N households already waiting for housing
assignments. Each of these N households will either receive a unit or
drop out of the system; once a household is assigned or drops out, the
household is said to have been processed. All N households must be
processed before our new applicant can be housed. The time necessary
to process the N households found on the waiting list will be denoted
by wy.

The major purpose of our modeling effort is to predict the length
of time households will have to wait until they receive public housing
assignments. Thus, we will assume throughout that our new applicant
will not drop out, but will wait whatever amount of time is necessary
to receive an assignment. The length of time our applicant must wait
from the time the Nth household originally present leaves the waiting
list until the applicant is assigned an apartment will be denoted by

w*. The total amount of time our new applicant must wait from arrival

*
until assignment, wy, is thus given by

W, =w_+ W (4.16)
Most of our attention will focus on obtaining the mean and variance of

wN* and related quantities.

4.4 Single Project, No Dropout, No Priorities

We begin our analysis with a simple case. Suppose that there is a

single housing project, filled to capacity, consisting of m identical
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units. A new eligible applicant chooses this project, and finds N > 0
households already waiting for housing assignments. All households are
willing to wait as long as necessary to receive assignments (i.e. there
is no dropout), and no new applicants will be housed before our test
applicant is assigned (i.e. there are no priorities).

Based on our empirical results from Chapter 3, we can reasonably
assume that the length of time any household resides in the project (in
the absence of household specific information) is exponentially
distributed. If the mean length of project residency is given by R,
then the lengths of time between successive household departures from
the project will be independent and exponentially distributed with mean
u=1 = R/m , as shown in Figure 4.3. This system and its attendant
assumptions are summarized in Figure 4.4.

Under these assumptions, it is easy to show that wy, the time to
assign the N households found on the waiting list, follows the nth
order Erlang distribution with the density function

) HN wN-1 e-pw

(N-1)1!

f (w)
W,

w >0
>0 (4.17)
N 1

y 2, eee

2

Also, the additional time our new applicant must wait, w*, equals the
time between two successive moveouts. The variable w* is thus
exponentially distributed as shown in Figure 4.3:

-Hw

£4* (W) = Ve

>0
s 0 (4.18)

w
V)
From (4.17) and (4.18) we can easily obtain the mean and variance of

the waiting time for our test applicant:

N + 1
U

E(wN*) = (4.19)
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Figure 4.3
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Figure 4.4

The Single Project, No Dropout, No Priorities System

Test
Applicant Waiting List Project Residency
[ |
1 |===——- > N>0 = |eee———- > R |e==—=- >

Assumptions

1) N > 0 households are found waiting for housing assignments by
a newly arriving test applicant.

2) Households are assigned in order of application.

3) No households drop out, and no new applicants are assigned
prior to the test applicant.

4) The lengths of time between successive moveouts are
exponentially distributed with mean MW~'=R/m. Equivalently,
households are assigned to the project from the waiting list

according to a Poisson process with rate U.
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var(w_*) = X+ 1 (4.20)
N 2

Thus, a newly arriving applicant could expect to wait
(N + 1)/b = (N + 1)R/m time units until assignment.

While these results are easily obtained directly, it is useful to
derive them using the birth-and-death process described earlier. For
this system, we have:

1) ™n is exponentially distributed with mean u"; n=1,2,3, ...

2) pp=0, 1, =0, 9y = 1; n=1,2,3, ...

From the discussion following equation (4.9), we see that

noq
M = L — (since p = 0 for all n).
n . g, n
i=1 “i
- 1
=T = e =
To obtain E(wy), we set gn n m and 94 1 to obtain
N
-1 N
= I = = .
E(wN) i [ m (4.21)

Similarly, to obtain E(wNz), we set

2 1 n-1 2n
g = o o D o e = e (4-22)
n p‘2 L p12
and thus
5 N 2i N(N+1)
= 2 =
E(wN ) . " /1 p? (4.23)
i=1
yielding
_ 2y _ 2
var(wN) = E(wN ) [E(WN)]

N(N+1) Ny2 _ N
> - (u) = = (4.24)
2 b

Since E(w*)=u~1, var(w*)=u~2, and wy and w"* are independent we finally

have
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v N1 N+
E(wg) = TR Rl (4.25)
var(w;) = Eé-+ 15 = Ei% (4.26)
) [ 2

These results agree with our earlier results obtained directly.
Formula (4.25) corresponds to a method often used by housing
authorities to calculate waiting times. The parameter U is set equal
to the annual moveout rate from the apartment in question, and N is

taken as the length of the current waiting list. Of course, this
formula is simplistic in that:
(i) Dropout is not considered.
(ii) Priorities are ignored.
(iii) Tenant choice is dismissed - households must accept an
offered unit.

We will address these shortcomings in subsequent models.

4.4.1 Statistical Issues

To use the model outlined in this section, one needs to estimate
the unit turnover rate M. Since we have reasonably assumed that the
size of the waiting list is always positive, and the length of time
between moveouts is exponentially distributed, it follows that the
distribution of the number of moveouts (which equals the number of
housing assignments) that occurs in a time period of length % is

Poisson with parameter M&; that is

-ul
Pr(number of moveouts in a period of length 2=k) = (uk)ke s
k!
L>o0 (4.27)
L0
k=0, 1, 2, ...
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The expected number of moveouts in a period of length 2 simply equals
pl, Thus, a simple (and good) estimate of W is the empirical moveout
rate. If M moveouts are observed during a period of length L, then one

estimates M using
b= M/R (4.28)
The estimator M has other appealing properties in addition to its

simplicity. First, the estimator is unbiased, that is, E(W) = U.

Secondly, the estimator is very stable for large time periods L; this
follows from the easily proven fact that var(H) = w. Typically, one

might set 1 equal to one year, and update ﬁ on an annual basis; more
frequent re-estimates are of course possible.
4.4.2 An Example

Suppose that the annual moveout rate at a project equals 20
households per year. Fiqures 4.5 and 4.6 report the values of E(wN*)
and var(wN*) for this example as functions of N, the size of the
waiting list encountered by our test applicant. We will continue to

build upon this example as our model becomes increasingly complex.

4.5 sSingle Project, Dropout, No Priorities

4.5.1 The Incorporation of Dropout

Our first improvement on the pure assignment process discussed is
the incorporation of dropout. We maintain all previous assumptions
from before, and in addition we postulate that if n households are
waiting for housing assignments at time t, then the probability that
one of these households drops out of the system in the interval

(t, t+At) equals nOAt. We refer to O as the household dropout rate.
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Figure 4.5
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This system and its assumptions are summarized in Figqure 4.7.
We will first derive the moments of wy, the time necessary for the
N households ahead of the test applicant to be housed or drop out.
Given that n households are waiting, the expected time until a
household either drops out or is assigned is given by (n6+u)'1. Thus,
the expected time necessary for all N households to leave the waiting
list is given by
N
E(wy) = I g (4.29)
n=1
Similarly, the variance of the time until a household either drops out
or is housed is given by (nd+u)=2. Since all processing times are
independent, we have for the variance of the time necessary to process
all N households found waiting

1
n=1 (nb+p)?

M2

var(w_) =

N (4.30)

Once all N households found waiting have been processed, our test
applicant must wait for the next moveout to occur before assignment
takes place. The amount of time necessary, w', is exponentially

distributed with mean, u’1, thus

E(w') = - (4.31)
w =T .
* 1
var(w ) = — (4.32)
2
i)
Combining our results we obtain
1 N 1
*) = — X 4,
Bt Ty vt P T (4-33)
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Figure 4.7

The Single Project, No Priorities System With Dropout

Apiiizant Waiting List Project Residency
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Dropout
N
Assumptions

1) N > 0 households are found waiting for housing assignments by
a newly arriving test applicant.

2) Households are assigned in order of application.

3) Dropouts occur at rate nd when n households are waiting for
housing assignments; the test applicant will not drop out with
certainty.

4) The lengths of time between successive moveouts are

exponentially distributed with mean p=1=R/m. Equivalently,
households are assigned to the project from the waiting list

according to a Poisson process with rate U.
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N
var(wN*) = l§-+ X _—_l——E
i) n=1 (nd+u)

(4.34)
as the first two moments for the amount of time the test applicant must
wait to receive a housing assignment.

We can also derive these results using our general method based on
the birth-and-death process. As was the case with the pure assignment

process, we set pp=rp=0 and gp=1. However, the state occupancy time T,

is now exponentially distributed with mean (n&+p)-1. Since Pn=0, we

M3

use the result Mn = gi/qi .

i=1

To obtain E(wy), we set gn=T,=(nb+p)=1 which yields

E(wN) = ' i5vn (4.35)

Similarly, to obtain E(wNz), we set

n-1
9 = (:g:i-); + 2 (m j; ﬁ (4.36)
yvielding
B = 3 —2 43 3 e "3 (4.37)
N et b2 ey (DS 35

From (4.36) and (4.37), the formula var(wy)=E(wy2)-E(wy)2 yields
equation (4.30) after some algebraic manipulation. Equations (4.33)
and (4.34) then follow as has already been shown.

While the formulas for E(wy) and var(wy) are not terribly
complicated, we can obtain a simple approximation that eliminates the
summations involved. Let f(n)=(nd+u)~1. Since £(n) is strictly

decreasing, we know by the mean value theorum for integrals
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(Purcell (1972), p.275) that there exists some number u such that:

i) n < u < n+1

ii) £(n) > £(u) > £(n+1)

111) ™' f(x)dx = £(u)
n

Conditions (ii) and (iii) together imply the inequality

£(n) > /™ g(x)ax > £(n+1) (4.38)
n
and thus
N N N
2 ofm) > ™ fax = M f(x)ax > I £(n+1) (4.39)
n=1 n=1 n 1 n=1

Using the inequality (4.39) we establish that

N
f(x)ax < = f£(n) < /¥ £(x)dx + £(1) (4.40)
1 n=1 1

IN+1

Now, the integrals involved are easily evaluated:

N 1 1 NO+1
{(-1 x0+ 1t dx =3 1°g[’5+u ] (a-41)
N
Note that I f£(n) = E(wN) .
n=1
We thus have the bounds
1 ((N+1)5+u) 1 (N6+u) 1
5 log T < E(WN) <% log AT + i (4.42)

and can simply approximate E(wy) by averaging these bounds, that is,

1 log{ LMD O+pIING+T - 1 ] (4.43)

E(w_) = 5
N 2 (5+H)2 + [

To approximate var(wy), we set f(n)=(n6+P)'2. Following exactly

the same line of reasoning illustrated above, we obtain

171 [ 2 1 1 1
var(w_) z-—Eg { - 5 - 5 } + ] (4.44)
N 2 O+ 1t NO+1  (N+1)O+u (<S+u§
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The approximations (4.43) and (4.44) are typically accurate to three
decimal places for common values of & and M.

For planning purposes, it is useful to know the number of
households that are actually assigned to the project. Since the
assignment process is Poisson, we know that in a period of length l,
the mean and variance of the number of assignments equals M. Now,
suppose we want to estimate the number of households assigned to the
project from the N households originally found on the waiting list by
our test applicant. The expected length of time to process these
households is E(wy), thus we obtain

E(number housed from waiting list of size N) = UE(wy) (4.45)

An alternative derivation argues as follows. When a household is
processed given n households waiting, the likelihood of an assignment
equals u(nd+p)-1. Thus, the expected number assigned equals the sum of
the assignment likelihoods; this is the same as (4.45).

This second line of reasoning also yields the variance of the
number assigned from those found waiting. Formally, let

next household processed is assigned given
1 n households waiting
%y = 1 (4.46)
0 next household processed drops out given
n households waiting
Probabilistically, we have the mass function
1 with probability K(n8+p)-1
Xp = (4.47)
0 with probability n&(n&+p)=1

Let Np equal the number of households assigned from the initial

group of N households found waiting. Clearly,

N
= .
NA xn (4.48)
n=1
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Thus, we have for the mean of N
N N

E(NA) E(xn) EYSrT) U'E(WN) (4.49)
n=1 n=1

as already mentioned. Now, the variables x, are mutually independent,

each with variance bn&(nS+p)-1, Thus,

g pnd

ey (4.50)

N
var(N_) = X var(x ) =
A n
n=1 n=1

Finally, we note that having estimated the number of assignments,
we can also estimate the number of households initially waiting that
drop out. If Np is the number of households from the N initially found
waiting who drop out, then we must have,

Np = N - Np (4.51)
Thus, the moments of the number of dropouts are given by

E(Np) = N - E(Np) (4.52)

var(Np) = var(Np) (4.53)

4.5.2 Statistical Issues

To use the dropout model we have discussed, one needs to estimate
the household dropout rate §. Depending upon the information at hand,
one can obtain estimates with varying degrees of precision. 1Ideally,
one would estimate & by observing a cohort of applicants entering
public housing at time t,, following this cohort until some fixed time
T, and then determining:

i) The time ty at which household j is assigned to an apartment;

JEA where A is the set of households assigned; tg < ty <,
ii) The time ty at which household j drops out; JFED where D is the

set of households that drops out; tg < t5 €T
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iii) The number of "censored" households nc who have yet to receive
an assignment or drop out by time T, the end of the study
period.

The likelihoods associated with (i) - (iii) are easily determined. If
an assignment occurs at time tj, we know that a dropout did not occur
in the interval (tg, tj). The probability that a household does not

-8(t, -t )
j o

drop out in (tq, tj) equals e , and hence the contribution to

the likelihood of the abserved data from assigned households equals

=8(t, -
L, =0 e (tj t.)
1 jea

(4.54)

If a dropout occurs at time tj, its associated likelihood is

) -
de (tj to). Thus, the contribution of dropouts to the 1likelihood is
) -
L = I 800t -ty) (4.55)
D .
1 jéeb

Finally, for those who have yet to drop out or receive assignments by
time T, the contribution to the likelihood equals
-n_8(T-t )
c o
L = e (4.56)
The overall likelihood function is given by the product of (4.54)
through (4.56):
-n_&(r-t )
-6 - =8 - n
=1 e (t5-t) 1 8e7°(tytg)e © 0 (4.57)
jea j€D
Maximizing (4.57) with respect to 0 yields the maximum likelihood

estimate of the household dropout rate

I1
§ - jeD
1 T (t,-t. )+ L (t.,-t.) + n (T-t.)
sen 0 56D 0 c 0
o
=0 (4.58)
EX
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where np equals the observed number of dropouts, and Tgx equals the
total exposure time for all households in the cohort.

Unfortunately, the exact times of dropout are rarely known. One
usually discovers dropouts when they are contacted for assignment. We
will therefore consider some simpler estimates which do not require the
precise times at which dropouts occur.

Suppose that at the end of the observation period, one knows the
times tj,jEA at which households were assigned, the number of dropouts
np, and the number of households who have yet to drop out or be
assigned no. The probabiltiy that np households drop out in the
interval (tg,T) is given by

=8(r-t ) nD

L = [ 1-e °1 (4.59)

thus the total likelihood associated with the observed data is

-8(T-t ) n =8(t,-t ) -n O(rT-t )
L= [1-e [} ] D e j o o c (o} (4.60)
2 .
jea
Maximizing this with respect to ) yields
~ n (T-t
& = ; log [1 + D( 0) ]
2 T-t n (T-t ) + Z (t,~t ) (4.61)
o c o . o
jEa

A

The estimate 52 is useful if one knows the times at which tenants are

assigned, but only the number of dropouts in some interval (ty,T).

Finally, if the only data available consists of the number of
dropouts np in some interval (t,,T), and the number of households N in
the cohort at time ty, we have for the likelihood function

-6(T-to) ng -(N-nD)é(T-to)

L, = [1-e ] e (4.62)
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The maximum likehood estimate in this scarce data situation equals

5 - _1_ 1
3 =17 o9l
o

- ] (4.63)
-

N
For small values of the ratio np/N, (4.63) can be approximated by

" nD
3 N—-—N(T-to) (4.64)

By way of example, if np/N = .25, log [—l— ] = .29, a small

difference.
We have covered three approaches to estimating the household

dropout rate 8. If one knows precise times of assignment and dropout

from sample cohort data, the estimator 51 of (4.58) is appropriate,.

If the times of dropout are unknown but assignment times are, the
estimator 52 from (4.61) can be used. Finally, if only the number of
dropouts are known, the estimator 83 from (4.63) or (4.64) is

appropriate.

4.5.3 An Example

Continuing with the example from before, we assume an annual
moveout rate of 20 households per year. Figures 4.8 and 4.9 plot
E(w;) and var(w;), the mean and variance of the waiting time
experienced by a test applicant, for various values of the household
dropout rate 5. For example, at 5=.1, households will wait, on average,
10 years before dropping out. With N=100, E(w;) has been reduced from

just over 5 years to just over 4 years, almost a 20% reduction.
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Figure 4.8
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4.6 Blend Priorities

Our next improvement on the tenant assignment model reflects the
often stated goals of cresting project communities with specific
demographic characteristics. Racial integration is one case in point.
As another example, the Boston Housing Authority intends to assign two
"moderate" income households for every "low" income household at
housing developments where the low income population comprises over 50%
of the total project population; it is hoped that a more diverse range
of incomes will help to stabilize public housing populations (Price and
Solomon, 1983). In other cities, income mixing may be invoked to
achieve financial solvency (e.g. Greensboro, North Carolina).
Assignment policies such as those mentioned which attempt to "design"
the demographic characteristics of housing developments often invoke a

method we will refer to as a blend priority system.

Formally, a blend priority scheme assigns a probability by to the
assignment of the next household in queue from group j on any tenant
assignment. Groups may be defined in a variety of ways to reflect the
particular policies of a given housing authority {(e. g. low income
whites, moderate income blacks). Within groups, households are
processed in chronological order of application. The higher the value
of bj, the higher the priority given to group j. Also, as every

household assigned is the member of some group, we must have L b =1.
J

A simple model demonstrates the consequences of employing blend
priorities. Assume that a project is always filled to its capacity of
H households; again all households are taken to require similar units.

Let hjm be the expected number of group j households in the project
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after the mtM tenant assignment from the time when blend priorities

were implemented. We can model hjp as:

hj,m+1 = hypy + Pr{household of type j is assigned on move in}

- Pr{household of type j leaves the project on move

out}
(4.65)

The likelihood that a group j household is assigned on move m is the
blend probability bj. If we assume that the likelihood of a group j
household leaving the project is proportional to the expected number of
group j households present, then the probability of a group j departure
equals hjm/H. Equation (4.65) thus becomes:

hy me1 = hyp + by = hyp/H (4.66)
This equation has the solution

hyp = Hbj + [hyo - Hby1[1 - 1/H]M m=20,1, 2, ... (4.67)
where hjo is the number of group j households present in the
development when blend priorities are implemented. Equation (4.67) is
shown graphically in Figure 4.10.

This model is quite useful in analyzing the consequences of
various priority schemes. For example, if one wishes to racially
integrate a project, the model can evaluate the time frame necessary to
achieve the desired level of integration for alternative blend
probabilities bj. A practical scheme might take the form "admit k
group 1 tenants for every group 2 tenant assigned"; the resulting blend

R

1 k+1 ' 72 k+1

probabilities for this example would set b

Using these values for bj, one can "follow" the changing demographics
of the project using a graph similar to Figure 4.10. Although the

model has been formulated in terms of the number of assignments
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Figure 4.10
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required to achieve a desired demographic composition, one can
associate an expected length of time between tenant assignments with
each moveout, resulting in a model where demographics change over
chronological time. Finally, the model demonstrates the equivalence
between specifying blend priorities probabilistically and designing the
ultimate demographic composition of a housing project.

To forecast waiting times for new applicants in a blend priority
setting, we argue as follows: tenant assignments occur according to a
Poisson process with rate M, the moveout rate from the project. When
an assignment occurs, the probabiltiy that the household chosen is from
group j equals bj. Thus, tenant assignments from group j occur
according to a Poisson process with rate uj=bju, as long as successive
assignments are assumed to be independent.

Having established this result, we may use the models already
developed to forecast waiting times; a system diagram and attendant
assumptions appear in Figure 4.11.

When an arriving group Jj test applicant finds N3 group j households
waiting for housing assignments, equations (4.33) and (4.34) apply

after substituting uj for U and Ny for N yielding

N,
* ZJ 1 1
E(WN,) = m + m (4.68)
J n=1 j J
N
* 1 o
var(wN y = X +— (4.69)

2
j =1 (nd+p, M,
3 n (n J) 3

as the mean and variance of the waiting time for our test applicant.

One can also use the approximations found in equations (4.43) and

(4.44) for quick estimates.
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Figure 4.11

The Single Project, Blend Priority System With Dropout
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Assumptions
1) Ny > 0 group j households are found waiting for housing
assignments by a newly arriving group j test applicant
2) Within groups, households are assigned in order of application
3) Within groups, dropout occurs at rate nd when n households are
waiting; test applicants will not drop out with certainty
4) Tenant assignments take place according to a Poisson process
with rate L. On any assignment, the probability that a group
j tenant is assigned equals bj. Successive assignments are
independent, thus group j tenants are assigned acccording to a
Poisson process with rate uj=bju_
5) The probability that a departing household is from group j is

proportional to the expected number of group j households in
the project.
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4.6.1 An Example

Again we consider a project with an annual moveout rate of U=20
households per year. We will fix the household specific dropout rate
to 5=.1, and consider two blend groups. Group 1 applicants receive
assignments with probability b¢=.33, while group 2 applicants are
assigned with probibility by=.67. The mean and variance of the waiting

time for an arriving group i test applicant are shown in Figures 4.12

and 4.13.

4.7 Categorical Priorities

In every tenant assignment policy reviewed in Chapter 2, we
discovered that housing authorities give absolute priorities on
assignment to certain classes of households. Typical of this is is the
policy in Minneapolis where "Individuals and Families displaced by
public action or a natural disaster while residing within the
jurisdiction of the Agency shall have preference over other individuals
and Families." (Minneapolis Community Development Agency (1983, p.1)).
Whenever households in such a priority class are present (i.e. waiting
for an assignment), they are assigned before other households,
regardless of the waiting times of these other households. We will

refer to tenant assignment systems of this form as categorical priority

systems, and will generalize our models to accomodate such schemes.
Actual categorical priorities for several U. S. authorities were
discussed in Chapter 2.

To model categorical priorities, we assume that there are J
priority categories in the system, and a test applicant in category j
arrives. The test applicant finds nj households waiting in priority

category i, i=1, 2, ..., j. All households have the same expected
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Figure 4,13
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project residency R; as usual, the household assignment process is
Poisson with parameter U=m/R where m is the number of units in the
project.

We further assume that households in priority category i arrive in
a Poisson manner with rate Aj, i=1, 2, ..., J. Initially, we will
suppose that no households drop out; this assumption will be relaxed
later. Of interest is the mean and variance of the time our test
applicant will wait until assignment. The system diagram and a summary
of our assumptions for this model are found in Figure 4.14.

Upon arrival, the total number of households found waiting by our

test applicant in priorities 1 through j equals

N. = Zn, >0 (4.70)
Iy d
In addition to waiting for these Nj households to be assigned, our test
applicant will be superseeded by newly arriving households in
priorities 1 through j-1. These households arrive in Poisson fashion

with rate
Y. = Z A (4.71)

We assume that Yj<H.

Suppose that at some unspecified time, there are n households (not
including the test applicant) waiting for housing assignments in
priorities 1 through j. One of two events can next occur: a household
will be assigned, reducing the number of households waiting to n-1, or
a new household in one of priorities 1 through j-1 will arrive,
increasing the number of households waiting to n+1. The probability

that the former event will next occur equals u/(H+Yj), while the

probability that the latter event will next occur equals Yj
/(W’Yj
).
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Figure 4.14

The Categorical Priorities, No Dropout System

Poisson Arrivals

(1)

(2)

(3)

(4)

M
.............. NV
' |
' ' Project
' 1 Residency
1] ]
hj_1 ] u
—————————————— F| Mg [mmmmmmmmme e R -—==-3 Exit
| I l
Yz
]
| |
1 crmmrmeee > nj |=---=--=--
l l
Nj > 0

AssumEtions

nj priority i households are found waiting for housing
assignments by a newly arriving priority j household,

i=1,2, ..., 3.

Priority i households arrive according to a Poisson process
with rate My, i=1,2, ..., J. The arrival rate of class 1
j=-1
ot

.
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These probabilities arise from the Poisson nature of the assignment and
priority arrival processes. In additiion, the length of time between
successive events (assignments or arrivals) is exponentially
distributed with parameter H+Yj; this result also follows from the
Poisson processes involved.

We are now ready to apply the results from birth-and-death

processes derived earlier. Let:

Pn = Y5/(F + Y5) (4.72)
ry, = 0 (4.73)
an = H/(B + Yy) (4.74)

To obtain E(wy ), the expected time until the Ny households found by
3

our test applicant in priorities 1 through j are assigned, we set

gn = E(T) = 1/(8+Y5) (4.75)
Using these values for pp, In, dn, and g in equation (4.15) results
in

N.
- S
MNj E(wy ) =) Yy < B (4.76)

Similarly, we obtain the second moment of wy. by setting

J

E(Th2) + 2[PnTns1E(Wne1) + InTE(wp) + qnTn-1E(wp_q)]

9n

Y
2 3 1 n+ b1 n-
= 2 * z[uw. e u-Y.]
(P+Yj) J J ] J J ]
, ey
= , u-?J - n Yy< b (4.77)
(b)) j

Again, we use equation (4.15) to obtain
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N, P+Y NT,

2 J 3 J
M = E(w ) = . + Y.< U (4.78)
N, N, 2
3 3 (-v0% F Y5 ey ]
3 J
Combining (4.76) and (4.78) we obtain the variance of WN
J
5 5 Nj H+Yj
var(w_ ) = E(w ) - E(w,_ )" = Y.< U (4.79)
N N
3 3 Ny (u—Yj)2 =Yy 3

The additional time our test applicant must wait, w*, is clearly
the same as wq, the length of time necessary to house a solitary
household found waiting in priorities 1 through j. Thus we can use
(4.76) and (4.79) to obtain

o oo 1
E(w') = u_yj (4.80)

. b,
var(w*) = . J (4.81)

(u—Yj)2 b=Y5

Finally, we can combine our results to obtain the mean and
variance of the waiting time for a newly arriving priority j test

applicant given that Nj households are found waiting in priorities 1

through j:
E(w. ) = 5 4.82
i) = T, (4.82)
]
. N_.+1 U+Y
var(wg ) = —— - =4 (4.83)
j (H-Yj) 3
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A simplistic (but not entirely correct) interpretation of (4.82) is
that the assignment rate I has been reduced by the amount Y5 - of the U
apartments available per unit time for assignment, Yj must be allocated
to newly arriving households in priorities 1 through j-1. Thus, the
"effective" assignment rate is H—Yj, and equation (4.82) is the same as
equation (4.25) for the pure service model with U replaced by B=Y5.
However, we see from (4.83) that the effect of priorities is more
complicated than a simple adjustment to the assignment rate. If the
only effect of categorical priorities was to reduce M to P=75, then the
variance of the waiting time for our test applicant would equal
(Nj+1)/(u-Yj)2. The actual variance, given in equation (4.83),
inflates this amount by the factor (H+Yj)/(u~Yj). As the arrival rate
of priority applicants approaches the assignment rate, this inflation
factor becomes quite large. Thus, a major impact of categorical
priority schemes on waiting times rests with the increase in the

variability of the time until assignment.

4.7.1 Statistical Issues

The model of this section has introduced a new group of quantities
which require estimation - the arrival rates of applicants in various
priority categories. By assumption, these arrival processes are
Poisson, thus a reasonable estimate of Ki, the arrival rate of priority
i applicants, is given by the observed number of priority i applicants

arriving in some time period divided by the length of the time period:

}\.i = Ai/l (4.84)

where A; is the number of priority i arrivals in a time period of
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length 1. This estimator has the same properties as the assignment

rate estimator ﬁ discussed earlier in equation (4.28).

To estimate the arrival rate of new applicants in priority
categories 1 through j-1, Y4, we merely sum the individual category
arrival rate estimates; that is

A 31 .

Y =2 A (4.85)

3oy 1

A

As Yj is also the parameter of a Poisson proces, Yj possesses the

same properties is U and ki- The estimation of Yj should not pose any

special problem for housing administrators.

4.7.2 An Example

As with our previous examples, we assume a project with an annual
moveout rate of U=20 households per year. However, we now consider a
situation where applicants in priorities 1 through j-1 arrive at a rate
of Yj households per year for various values of Yj. The corresponding
mean waiting times appear in Figure 4.15. Figure 4.16 plots the
variance. In the absence of dropout, both of these quantities grow
linearly with Ny, the number of househoulds in priorities 1 through j
found waiting by our test applicant. The effect of increasing Y3 on
waiting time is clearly seen from these plots.

4.7.3. Applications of Categorical Priorities: Multiple Unit Types
and Transfers

The analysis performed thus far has assumed that every household
requires the same unit type, and all project units are identical. 1In

fact, our analysis is valid for multiple unit types if we treat unit
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Figure 4.16
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types independently of each other. If w(k) is the moveout rate for
type k units, Yj(k) the arrival rate for applicants in priorities 1
through j-1 requiring type k units, and Nj(k) the number of households
in priorities 1 through j requiring type k units found by a newly
arriving test applicant in priority j who also requires a type k unit,
all of our previous results hold; the analysis is simply interpreted to
be conditional on households who require type k units. This approach
assumes no interaction between different household unit requirements.
For example, a household which applies for a type k unit, cannot change
its unit requirement to some other type X. This is not a major problem
in as much as such unit type changes are relatively infrequent. Also,
if the model is frequently used, a household requiring a type k unit in
one month, but a type ¥ wunit in some subsequent month (perhaps due to
a change in family size) will appear on the type X waiting list (and
hence in the data base for a "type 2 model") in that subsequent month;
as our analysis is always conditional, this change in unit requirements
can be incorporated into a new waiting time forecast.

In certain tenant assignment systems, intra project transfers from

type k to type L units receive categorical priorities over new
applicants. Suppose that when a household terminates a period of
residency in a type k unit, the household transfers to a type £ unit in
the same project with probability qxf. We let gkxo represent the
likelihood that a household leaves the project after residency in a
type k unit (gkxe is referred to as the "exist" probability), and since
all households leaving type k units must go somewhere, we require

L qge=1.
=0
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Suppose that there are two priority categories: intra-project
transfers and new applicants. To obtain the "application rate" for
intra-project transfers into type L units, we set

YA = 5 plk) g (4.86)

k=1
and proceed as before. Extension to the case where intra-project
transfers represent the jth priority category is straightforward.

Though equation (4.86) is correct if we focus our attention on
type X units, there is a problem of dependence between moves -a
transfer from a type k unit to a type % unit necessitates a new
assignment (or perhaps a new transfer) into the type k unit being
vacated. In fact, that new type L vacancies triggering transfers from
type k units cause new assignments of type k to be made destroys the
Poisson assignment process to type k units. However, we choose to
ignore this difficulty for the sake of modeling simplicity. As long as
the intra-project transfer probabilities qu,1>0 are low relative to
the exit probabilities qko’ such dependence should not cause any major
changes to occur in our results. Table 3.10 presents empirical
intra-project transfer probabilities for six housing projects in
Boston. Note that the exit probabilities are typically over 70%, and

are often over 80%.

4.7.4 Applications of Category Priorities: Score Priorities

In Chapter 2, we noted that two of the cities in our survey of
tenant assignment practices, St. Paul and Omaha, assign points to new
applicants; these points reflect the priorities assigned by the housing

authorities to the households. Applicants are processed in the order
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of their scores, form highest to lowest, with ties being broken by date
of application (for a discussion of the specifics of the St. Paul and
Omaha systems, we Chapter 2).

We will now show that the assignment of scores to applicants is
just a special case of the category priority model we have been
discussing. Let S be the random variable representing the score
obtained by a randomly chosen applicant. We assume that the
probability law of S is characterized by the (known) density function
fg(s). Let s* be the score assigned to a newly arriving test
applicant, and let N(s*) be the number of households found on the

waiting 1list by the test applicant with scores greater than or equal to

*
s .

Suppose now that new applicants arrive according to a Poisson
process with parameter N. Some of these households will receive scores
that are greater than s*; the fraction of new applicants in this

situation equals

pris > s*} = Iw fs(s)ds (4.87)

S*

Thus, the arrival rate of new applicants with scores greater than gi.is

given by

Y(s*) = Mris > s*} (4.88)
The score priority system is thus a categorical priority system, but
with continuous categories. The mean and variance of the waiting time

for our test applicant is given by equations (4.82) and (4.83)

substituting N(s*) for N3 and Y(s*) for Yj. It should be noted that in
practice, the integral in (4.87) would be replaced by the sum

* smax
pris>s } = I £ (4.89)

*
s=s +1

145



where f4 is the relative frequency at which a score with value s

occurs, and spay is the maximum possible score.

4.8 Merging Dropout and Categorical Priorities

Thus far, we have presented models which exhibit specific features
of tenant assignment systems; the analysis of this section will begin
to consolidate these features into realistic tenant assignment models
suitable for use by public housing authorities. Our first step is to
merge our earlier model of dropout with the categorical priority
systems just discussed. Figure 4.17 provides a graphic depiction of
the system and a listing of its attendant assumptions.

The situation is as follows: a newly arriving test applicant in
priority j finds Nj>0 households in priorities 1 through j waiting for
housing assignments. New applicants in priorities 1 through j-1 arrive
in Poisson fashion with rate Yj. As usual, the tenant assignment
process is Poisson with rate L. Finally, in a manner similar to our
earlier dropout model, we assume that when n households in priorities 1
through j are waiting for assignments, the dropout rate for the system
equals n5; these n households are ahead of our test applicant, and the
test applicant by assumption will not drop out.

Suppose that at some unspecified time, n households await
housing assignments in priorities 1 through j. A household could be
assigned, or a household could drop out, reducing the number of
households waiting to n-1. Alternatively, a new household in one of
priorities 1 through j-1 could arrive, increasing the number of
households waiting to n+1. The probability that the next event to
occur is a tenant assignment or a dropout equals (n5+u)/(n5+H+Yj),

while the probability that the next event is the arrival of a new
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Figure 4.17

The Categorical Priorities System With Dropout
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Assumptions

1) nj priority i households are found waiting for housing
assignments by a newly arriving priority 3j household,
]
i=1,2,...,3. Ns:= I n >0.

J
i=1 1

2) Priority i households arrive according to a Poisson process
j-1
with rate Ay, i=1,2,...,3. Y, =L hi= the arrival rate of
I 4=1
households in priorities 1 through j-1.
3) A priority i household is assigned only if no households in

priorities 1,2,...,j-1 are present. Within priorities,

assignment is in order of application.
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4)

5)

Dropouts occur at rate nd when n households are waiting for
housing assignments in priorities 1 through j. The test
applicant will not drop out with certainty.

Tenant assignments take place in a Poisson fashion with rate

u.

148



applicant in one of priorities 1 through j-1 equals Yj/(n5+H+Yj).
These probabilities follow from the Poisson arrival, assignment, and
dropout processes involved. In addition, the length of time between
successive events (assignments, dropouts or arrivals) given n
households waiting is exponentially distributed with parameter nd+u+Yj.

Returning to our results from birth and death processes, we set

Pn = Y4/(nd++Y3) (4.90)
an = (n&+1)/(nd+p+yy) (4.92)

To obtain E(wN ), the expected time until all Nj households found by
J

our test applicant in priorities 1 through j are assigned or drop out,
we set

gn = E(Tp) = 1/(nd+p+vy) (4.93)
Using these results in equation (4.15) we obtain

N3 i-k |, &
M. o=Ew_ ) = 23 % (vyITF/ masew) (4.94)
j j k=1 i=k 7 2=k

Once one computes the values of E(wN ) using equation (4.94), the

J
second moment E(wﬁ ) is found by setting
J
Y
—_—2 j 1
% ~ + 2[ E(w )
" (n6+u+Yj)2 n5+“+7j (n+1)5+u+Yj n+1
n5+u 1
* nb+u+Yj (n-1)6+u+Yj E(Wn_1)] (4.95)

and using this result in equation (4.15). As one can see, the analytic

results become messy; computationally, there is no problem in obtaining
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E(wﬁ ). The variance of wN is then found by subtraction.
] 3

The additional time w* our test applicant must wait is not equal
to wq, the length of time necessary to house a solitary household found
waiting in priorities 1 through j. This is due to our assumption that
the test applicant will not drop out. To handle this scenario, we
modify the dropout rate to (n-1)8 when n households, including the test
household, are waiting for assignments. In this manner, when n equals
1 (i.e. when only the test applicant is waiting), the dropout rate
equals zero (i.e. the test applicant cannot dropout). Utilizing our
previous arguments, we obtain for the mean additional waiting time

* . i
E(w )= 1 (Y?“/ M {(R-1)8+p}) (4.96)
1=t 1 2=
To find E(w*z), we set g, as in equation (4.95), but we substitute a
dropout rate of (n-1)8 for nd throughout. This also involves a
recalculation of the equivalent "mean" waiting times E(wp); equation
(4.94) may be used, but again the dropout rate 286 must be modified to
(2-1)8,

An entirely equivalent (and perhaps less confusing!) procedure is

* *
to compute E(wN ) and E(wNz) directly by initially adjusting the
| J
dropout rate to (n-1)® and re-setting Ny to Nj+1. This approach
directly yields

Nj+1 i
@ TR
E(ug ) = I T (viT/ 0 {(2-1)8+p}) (4.97)
j k=1 i=k J =k
as the mean waiting time for our test applicant. The second moment is

obtained by setting gn as in equation (4.95), correcting nd to (n-1)9,
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* *
and setting E(wp4q) to E(wp™), and E{w,_q) to E(w _,) where E(wn) is

conputed using equation (4.97).

This model appears complicated, but it is the first model with
sufficient realism to be of actual use. We have already seen that
categorical priority systems can be construed to represent a range of
different assignment policies (including transfers and point scoring
systems). The addition of dropout to this model, while increasing the
difficulty of the analysis involved, provides us with a reasonable
approach to forecasting waiting times. Implementation of this model on
a digital computer poses no special difficulties, as the following

example demonstrates.

4.8.1 An Example

Again we assume a project with an annual moveout rate of I=20
households per year. We fix the arrival rate of new applicants in
priorities 1 through j-1 to Y4=10 households per year. The mean and
variance of the waiting times for a test applicant are shown for
various values of 0, the household specific dropout rate, in Figures
4.18 and 4.19. Note the dramatic effect of increasing & on the waiting
time. It appears that mean waiting time grows logarithmically with the
size of the waiting list for positive values of O; the variance of
waiting time appears to approach a limit as the waiting list becomes
large. In housing authorities where categorical priorities more or
less define the entire tenant assignment system, graphs such as Figures
4,18 and 4.19 could be used to conveniently forecast waiting times for

new applicants.
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Figqure 4,19
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4.8.2 A Balance Eguation

In accounting for tenant flow, housing officials are sometimes
interested in the number of tenants housed, the number of dropouts, and

the number of new applicants in a given time period. If we define

NAj = number of households assigned in priorities 1 through j

NDj = number of households who drop out in priorities 1 through j
Nyj = number of new applicants in priorities 1 through j-1

Ny = number of households found waiting by a newly arriving

priority j test applicant
we see that over the period of time until our test applicant is housed,
we must have

Na, =1+ Ny + Ny - Np (4.98)
] J ]

where the "1" refers to the certainty of our test applicant being

assigned. As this equation must hold in expected value, we obtain

* *
uE(wNj) =1 + Nj + YjE(WNj ) - E(NDj) (4.99)

where we have taken advantage of the Poisson assignment and priority
arrival processes, and the known quantity 1+Nj.

We have argued that

*
E(NA.) = uE(wN') (4.100)
h | 3
*
E(NYj) = YjE(wNj) (4.101)

and using equation (4.99) we find that

*
E(NDj) =1 + Nj + (Yj - P)E(wNj) (4.102)
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Note that if Yj>M (a possibility for this model), the expected number
of dropouts will be larger than the number of households originally
waiting; if Yj<u, the expected number of dropouts will be less than the
size of the initial waiting list. This result holds even for very
small dropout rates; in fact, the result does not depend on the
specific dropout model we have assumed - any dropout process will yield

equation (4.102).

4.9 Categorical Priorities, Blend Priorities and Dropout

We conclude our discussion of single project tenant assignment
models by considering a realistic system with categorical priorities,
blend priorities and dropout. The system is depicted graphically in
Figure 4.20; a list of assumptions is also shown. Though this system
appears complex, it follows quite naturally from our earlier work.

As usual, we are interested in the waiting time faced by a test
applicant; in this case, our test household is a member of blend group
i and categorical priority j. Our test applicant finds Nj 5 households
waiting in categorical priorities 1 through j who are also members of
blend group i. Households in categorical priorities 1 through j-1
arrive according to a Poisson process with parameter Yj. Of these new
arrivals, a fraction O35 will be members of blend group i, ieij=1.
Thus, the arrival rate for new blend group i households in categorical
priorities 1 through j-1 equals Ginj.

Tenant assignments take place at rate UK. However, on each
assignment, the probability of assigning a blend group i tenant is set
equal to by, the desired fraction of group i tenants in the project.
Therefore, blend group i tenants are assigned according to a Poisson

process with rate bjl.
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Figure 4.20

Categorical Priorities, Blend Priorities And Dropout
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1) njj categorical priority j households in blend group i are
found waiting for housing assignments by a newly arriving

categorical priority j blend group i household.

)
ij=k=1nik'

N

2) Categorical priority k households arrive according to a
j-1
Poisson process with rate Xk. Y.= 2% %k= arrival rate of all
) k=1
households in categorical priorities 1 through j-1.

3) The probability that a newly arriving household in categorical

priorities 1 through j-1 is also in blend group i equals 91j7

B

L © =1 where B equals the number of blend groups.
., 13

i=1
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4)

5)

6)

7)

A categorical priority j household is assigned only if no
households in categorical priorities 1,...,j-1 are present.
Within categorical priorities, a household from blend group i
is assigned with probability bj, IZbj=1. Within categorical
and blend groups, assignment is in order of application.
Dropouts occur at rate n® when n households (not including the
test applicant) are waiting for housing assignments. The test
applicant will not drop out with certainty.

Tenant assignments take place in a Poisson fashion with rate

U; tenants from blend group i are assigned at rate bjl.
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Finally, dropout is assumed to occur at a rate proportional to the
number of households waiting. The test applicant does not drop out by
assumption.

For our test applicant, the relevant facts are:

1) Nj 5 households are already waiting.

2) Assignments take place at rate bjl.

3) Higher priority applicants arrive at rate Ginj.

4) Dropout is proportional to nd when n households in blend group

i, categorical priorities 1 through j are waiting ahead of the

test applicant.

*
We can therefore use our earlier results to obtain E(wN ), the
ij

expected waiting time for our test applicant from arrival until
assignment, by making the following adjustments in equation (4.97):

1) Substitute Nj4 for Ny. (initial waiting list)

2) Substitute bjl for M. (assignment rate)

3) Substitute Oinj for Yj. (categorical priority arrival rate)

These changes yield

Nij+1 m

* =] -

Ewg )= T 2 (10, v1" K/ 01218 + b, #1) (4.103)
ij k=1 m=k 9 I =k

The second moment of w; is obtained from the arguments following

ij
equation (4.97) making the substitutions indicated above. As long as

the probabilities eij can be estimated, the implementation of this
model should pose no special problems. As presented, the model is

quite rich in the variety of situations that can be studied.
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4.9.1 Statistical Issues

This section has introduced the new quantity Oij! the likelihood
that a new arrival in categorical priority 1, 2,..., j=1 is a member of
blend group i. Rather than estimating eij directly, we will choose an
indirect approach that is easily understood. Let Bij represent the
probability that a newly arriving household in categorical priority j
is in blend group i, iﬂij=1. Then the likelihood that an arrival in

one of categorical priorities 1 through j-1 is in blend group i equals

pr{arrival in blend group ijarrival in one of categorical
priorities 1 through j-1

= I Bik Priarrival in categorical priority k|arrival in one
k=1 of categories i through j-1

(4.104)
by the laws of conditional probability. However, since categorical
priority j applicants arrive according to a Poisson process with
parameter Kj, we have

priarrival in categorical priority k]arrival in one of priorities
1 through j-1}
j=-1
=N/ I A (4.105)
L L

Thus, we can express 9;4 as

j-1 3-1

LB. N/ I A
2

k=1 KK g,

<D
|

iy

1

j..
1
— I B, A (4.106)
Yj ey 1K K

Now, the quantities Xk and Yj are easily estimated as has already been
discussed in equations (4.84) and (4.85). Also, to estimate Bjx, one

merely observes the fraction of newly arriving categorical priority k
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households who are also members of blend group i. These estimates may

be denoted by Bjy, and we can thus estimate eij by

=1,
— I
Y, k=1

3

8§ -1

A
ij (4.107)

ik k

4.9.2 An Example

As before, we consider a project with an annual moveout rate of
U=20 households per year. New households in categorical priorities 1
through j-1 arrive at a rate of Yj=10 per year. We assume a household
specific dropout rate of 8=,1. 1In addition, we consider two blend
groups; group 1 tenants receive 33% of all assignments, while group 2
tenants receive 67% of all assignments. Of those households arriving
in categorical priorities 1 through j-1, 50% are from blend group 1,
and 50% are from blend group 2.

The expected waiting time faced by an arriving group i test
applicant who finds Njj group i households waiting for assignments is
plotted in Figure 4.21; the corresponding variances are shown in Figure
4.22. Note the long waits for group 1 applicants; this is due to the
fact that the effective arrival rate 91ij is close to the effective
service rate bql. In addition to longer mean waits, the uncertainty
associated with waiting time is relatively higher for group 1 than

group 2 applicants, as is clearly seen from Figure 4.22,

4.10 Summary

This chapter has developed a variety of models for studying tenant

assignment policies in single project housing systems. The models are
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Figure 4,22
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rich in that they incorporate:

-- project moveout rates

-- dropout

-~ Dblend priorities (e.g. racial integration)

-- categorical priorities (e.g. emergencies)

-- the number of households waiting for assignments

The major focus has been on modeling the time from when a new
applicant arrives until that applicant is housed. We also examined
allocational quantities such as the expected number of households
assigned and the expected number of dropouts.

The models assume that there is no interaction among unit types;
the models can account for transfer policies within the context of
categorical priorities. More importantly, the models reflect single

project, no choice assignment systems. They are not immediately

applicable to multi-project schemes or systems with an appreciable
degree of tenant choice. In the next chapter, we will build on the
work just completed to design models for multi-project systems with

various degrees of tenant choice.
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Chapter V

Assignment Models with Tenant Choice

One characteristic that distinguishes many tenant assignment
schemes from other queueing systems is the choice given to the tenants
(customers) regarding which project (server) they are assigned to
(receive service from). From our review of tenant assignment policies
in Chapter 2, we can identify two systems for addressing the issue of
tenant choice: refusal systems and multi-queue systems. We will
briefly discuss each of these before modeling waiting times for these

classes of tenant assignment systems.

5.1 Refusal Systems

In many cities, when a household is offered an apartment, the
household can refuse to accept the apartment, for whatever reasons,
without penalty -~ to a point. For example, a household might be
allowed three offers; if the household rejects all three offers, then
it must retreat to the back of the waiting list. If an apartment is
rejected by a certain household, it is immediately offered to the next
household on the waiting list.

Refusal systems allow households some degree of choice, albeit by
after-the-fact rejection as opposed to before-the-fact selection. The
higher the number of refusals allowed, the more flexible the system is
from the prospective tenant's standpoint. Of course, the ability of
the authority to maintain control over the composition of housing

projects decreases as the number of allowed refusals increases.
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5.2 Multiqueue Systems

Multiqueue systems, while difficult to analyze, are in many ways
the fairest tenant assignment processes from the prospective tenants'
viewpoint. In a multiqueue system, tenants specify a number of
projects (up to some maximum) in which they are willing to reside. The
household's name is placed on a waiting list at every project in the
relevant choice set - the set of projects under consideration for
residency. The household is assigned to that project in the choice set
where a unit becomes first available. Thus, households are guaranteed
to be offered a unit in a project of their own choosing. If a
household is very choosy, they need only specify a single choice -
guaranteeing an assignment to that choice.

The drawbacks to such a system are twofold. First of all, since
some projects will be more "popular" than others, waiting times will
become unbalanced. Secondly, the housing authority loses a good deal
of control over project composition in such systems. Even though
priorities may be instituted to promote social goals such as racial
integration and income mixing, these priorities may never gain the
chance to be enacted if households choose projects strictly along

ethnic or other socioeconomic lines.

5.3 Models for Refusal Systems

We will now proceed to modify some of our results from Chapter 4
to incorporate the possibility that households may refuse offered
apartments. The essential addition to our models is the probability
that a prospective tenant will accept an offer. As noted in Chapter 2,
refusal systems differ according to the number of apartments tenants

are allowed to refuse without penalty. It is very difficult to model
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an assignment scheme with an arbitrary number of "strikes" but two
special cases which bound all possibilities are tractable and of
considerable interest:
(i) Infinite Refusal - tenants may refuse offers indefinitely
until accepting an apartment
(ii) One Strike Refusal - tenants are required to either accept
the first apartment offered or face dismissal from the
system.
As refusal models become complicated, we will focus our attention
solely on mean waiting times. To clarify the notion of choice by
refusal, we first consider models which ignore dropout and priority

structures; these features will be reinstated later on in the chapter.

5.3.1 Infinite Refusal: No Dropout, No Priorities

The situation developed in this model is similar to the model in
equations (4.19) and (4.20), the only difference being the
incorporation of refusal. A newly arriving test applicant finds N>0
households waiting for housing assignments at a given project.
Households leave the project in Poisson fashion at rate U. Whenever a
household leaves the project, the apartment vacated is immediately
offered to the first household on the waiting list. This apartment is
accepted with probability @, 0€a<1, If the apartment is refused, it is
offered to the next household or the waiting list; this next household
also accepts with probability &.

Thus, we have a situation where all households are assumed to
accept offered apartments with the same acceptance probability &,
independently of the actions of other households. We make one

exception to this rule: our test applicant will not accept any
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apartment that has been offered to other households; when our test
applicant is offered a "fresh" unit, the offer is accepted with
probabiltiy . The justification for this assumption lies in the
resulting mathematical simplifications introduced; the actual impact of
this assumption on numerical results is negligible.

We make one additional assumption. If at some time there are n
households waiting for assignments ahead of our test applicant, and a
unit is offered and refused, by all n+1 households of interest on the
waiting list, the unit is then automatically filled by a household from
a backup list of infinite size. This assumption preserves the identity
between moveouts and tenant assignments, and is made for that purpose.
A diagram of this system and a list of its attendant assumptions are
found in Figure 5.1.

As in the models of Chapter 4, we let wy denote the time necessary
to process the N households found waiting by our test applicant. The
assumptions of our process lead to the following equation for the mean

of wy:

+ (1= ) VB + 11=-01- )N Bl ) (5.1)

=1
E(wN) =1

1
This equation is of the form described by (4.3) with:

Pn=0, rp=(1-0)0, gp=1-(1-2)", gy=p-1
Since p,=0 Vn, we see from (4.10) that the solution of (5.1) is given

by

™M 2

1

E(w. ) = —_—
i=1 1-(1-0y%

1
. m (5.2)

Now, the additional mean time E(w*) our test applicant must wait
clearly equals E(wq), the time necessary to assign a single household

found waiting. From (5.2) we have
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Figure 5.1

Infinite Refusal: No Dropout, No Priorities

Test
Applicant Waiting List Assignment Residency Exit
I [1-(1-0)Njp B
1 e > | N> 0 |emmmm e 2 S . >
—F ¥
(1-0)N, Assignment
(1-a)N,
Refusals Backup
List

Assumptions

1) N>0 households are found waiting for housing assignments by a
newly arriving test applicant.

2) Households are offered units in order of application.
Households accept units with probability &, independently of
the decisions of other households. The test applicant refuses
any unit previously offered to another household, and accepts
"fresh" units with probability &,

3) No households drop out. If all households (including the test
applicant) refuse an offer, the unit is assigned to a
household from a backup list.

4) Households leave the project according to a Poisson process

with rate I.
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E(w) =11 (5.3)

=l

Combining (5.2) and (5.3), we find for the mean time to house our test
applicant from arrival given that N households are found waiting:
N

1 1
G+ T ——] (5.4)

*
E(w. ) = .
N i=1 1-(1-a)1

1
u
Note that if @, the acceptance probability, equals one, (5.4) reduces
to (N+1)/l, the same result obtained for our simplest model of Chapter
4 in equation (4.19).

Using the arguments based on the mean value theorem developed in
equations (4.38) through (4.40), we can approximate (5.4) by a closed

form expression. Noting that

| 1 log[1-(1-a)%]

dx = x - log[1-a]

= + constant (5.5)
1-(1-Q)

we have the approximation

n 2
1 1 1 1 o
L e— = [2n—1+ — 4 =———————— ]0g { }]
a —0
1=1 1-(1-t 2 logt1-8) [-(1-0™ - (1= ™)
(5.6)
Using this result in (5.4) yields
171 1 1
E(WN*) N—p' ['&4-'5 [2N-1+'&

2

1 o
+ log{ }]] (5.7)

-0 N+1 N
1eg(1=®) = (- ™ - (1o
As N becomes large, (5.7) tends towards
111 11 log «
*) N — |—= - — _— ——
E(WN ) m [a N -5t 3R 1og(1—a)]
N

= 2 5.8
S+ C (5.8)
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where

=13 .1, log®
C=1 [ e~ 3" log(1-a)] (5.9)

N

Thus, the expected waiting time for our test applicant grows linearly
with the number of households found waiting for assignments. Note that
as @, the acceptance probability, approaches 1, the constant C
approaches W~!, yielding E(wy*) = (N+1)/1, as expected.

Although the analysis of this section has assumed that prospective
tenants have the right to refuse an infinite number of offers, the
results may serve as approximations to systems offering small numbers
of units for consideration, providing the acceptance probability @ is
relatively high. For example, if a system allows for 3 strikes, and
@=.8, the likelihood that a tenant is dismissed from the system equals
(1—.8)3=.008. This is rather close to zero, the corresponding
dismissal probability in an infinite refusal system. Therefore, we
feel that infinite refusal models offer a reasonable approximation to
finite strike systems as long as the acceptance probability is
relatively high. Unfortunately, we currently have no estimates of &;
methods for estimating & will follow our discussions of one strike

systems.

5.3.2 One Strike Refusal: No Dropout, No Priorities

In a one strike system, a household is offered exactly one unit.
If this unit is refused, the household is immediately dismissed from
the system. To analyze one strike schemes, we assume that households
accept offers with acceptance probability &, and that an available unit
is offered until it is accepted. We will now consider the case where a

newly arriving test applicant finds N households.
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The process realized by one strike refusal is not of the birth and
death type described in Chapter 4, so our usual methods no longer
apply. The state transition diagram associated with one-strike
assignment is shown in Figure 5.2 for the case where N=2, and our test
applicant is thus the 3rd household on the waiting list. The "states"
of the system indicate the number of households waiting for housing
assignments. Once a state is entered, the system remains in that state
for a period of length 7, where T is exponentially distributed with
mean B~!. Households are dismised from the system whenever an offer is
refused; units are offered until they are accepted.

Defining wp to be the time necessary to process the first n
households on the waiting list, we obtain the following equation for
the mean wait:

n-1

+ Z a(1-a)k'1E(w
k=1

) (5.10)

==

E(wn) = n-k

Given that n households are waiting, the likelihood that the next
unit offered is accepted by the kth household in queue equals
a(1_a)k-1, When this event occurs, (k-1) households are dismissed for
refusing an offer, while an additional household (the kth) is assigned.
Thus, there are n-k households remaining to be processed. Of course,
the time to process zero households is zero, while the mean time
between successive unit offers equals w=1. These arguments taken
together produce equation (5.10).

This equation can be solved by induction to yield

E(wn) = [1+(n-1)0Q] (5.11)

1
o
as the expected time necessary to process n households. Now, when our

test applicant discovers N households waiting, our applicant becomes
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‘nits are offered until thev are accented. I1f a housenold
rafuses an offer, it is disrmissesd frem the svstem.

2) The lencth of time between successive moveouts, T, is

exponentially distributed with mean et
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the (N+1)St household in queue. Using (5.11), the expected waiting

time for our test applicant is seen to equal

E(WN*) = [1+NQ] (5.12)

1
B

This result has a simple interpretation. Since @ is the
acceptance likelihood, N® is the expected number of units accepted by
those households found on the waiting list. The quantity N is also
the expected number of units offered to the N households found by our
test applicant. Our test applicant is guaranteed to receive an offer,
thus the total number of units offered equals 1+N® in expectation. As
the mean time between offered units equals =1, the time necessary to
process our test applicant equals (1+N@)p~1., Note that this result
requires no assumption about the acceptance or rejection of a unit by
the test applicant based on decisions made by other households.

It is interesting to compare (5.12) to the equivalent result for
infinite strike systems developed in (5.4) through (5.8). As expected,

the two schemes are equivalent when ®=1; both yield a mean wait of

Hﬁ; time units. As @ decreases, the mean wait increases for infinite
strike systems, and decreases for one strike systems. For any
particular finite strike refusal system, the mean waiting time can be
bounded from above by the infinite refusal model, and from below by the
one strike model. If @ is relatively high, these bounds are fairly
tight. the situation is illustrated graphically in Fig. 5.3 where

equations (5.8) and (5.12) are graphed as functions of N for various

values of & with U=20.
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5.3.3 Estimating the Acceptance Probability

To use the models described, one needs to estimate the acceptance
probability ®. Perhaps the easiest approach to this problem is to
count the number of offers required for each newly available unit to be
assigned. Regardless of the number of strikes in a refusal policy, the
probability that a newly available unit will be assigned on the xth
offer is given by

Pk = %(1-a)yk-1 k=1,2... (5.13)
Thus, the likelihood of observing a sample of n units where unit i
required k; offers until acceptance, i=1, ..., n is given by

n k=1 Zki-n
L =1 a1-a) = @ (1-0) (5.14)

Maximizing this expression with respect to @ yields the maximum

likelihood estimate

(5.15)

Of course, « is the well known maximum likelihood estimate for the
"success" probability when sampling from the geometric distribution.

To estimate @ then, one merely counts the total number of offers
required to fill a pre-selected set of newly available apartments, and
divides this into the number of units in question. As mentioned, this
procedure will work for refusal schemes of any number of strikes, as
long as the assumption of a constant acceptance probability is met. 1In
fact, one could test the validity of this assumption by seeing if the
observed numbers of offers required to assign units follows a geometric

distribution, but we have not yet obtained sufficient data to do so.

175



5.4 Refusal Models with Dropout and Categorical Priorities

The models of the previous section have served to illustrate the
effect of introducing choice by refusal into tenant assignment systems.
However, to return to a more realistic modeling scenario, we will
reintroduce dropout and categorical priorities as introduced in Chapter
4. The incorporation of blend priorities is relatively straightforward

and will therefore be omitted from the ensuing discussion.

5.4.1 Infinite Refusal with Dropout and Categorical Priorities

We assume that new applicants in categorical priorities 1 through
j=-1 arrive according to a Poisson process with parameter Yj. Our newly
arriving test applicant finds Nj>0 households waiting in priorities 1
through j. Households drop out of the system at rate nd when n
households (not including the test applicant) are waiting for
assignments; by assumption, the test applicant will not drop out. As
usual the assignment process is Poisson with rate W. 1In addition, we
assume that households independently accept offered units with
acceptance probability &, and that households may indefinitely refuse
units before accepting an offer. Finally, we assume that our test
applicant will not accept an apartment that has been previously refused
by another household. This model is diagrammed in Figure 5.4.

These assumptions define a birth and death process, thus the
methods of equations (4.2) through (4.15) apply. It is easiest to
solve first for the expected value of wNj, the time necessary to
process the Nj households found waiting. We will then find E(w*), the

additional mean time until our test applicant is housed. Consistent

with our general formulation for birth and death processes, we set:
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Figure 5.4

Infinite Refusal with Dropout and Categorical Priorities
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Py = EBT. (5.16)

J
_ (1-x;Tu
"n T nbemeT, (5-17)
_né + (1-(1-)™)p
qn = n5+u+Yj (5.18)
To obtain E(wy ), we assign
J
N (5.19)
% ~ n5+u+vj .
and obtain from equation (4.15)
N
j @ _ i 2
Etw ) =2 % (vi*/m {884 (1-(1-eyMyu}) (5.20)

j k=1 i=kx J R=x
Now, to obtain E(w*), we correct the drop out rate to (n-1)0 to reflect
the assumption that our test applicant doesn't drop out. This yields
© i
* =1 2
E(w ) = % (Y; /0 {(2-1)8 + (1-(1-0)")p}) (5.21)
i=1 =1

Combining (5.20) and (5.21) we obtain

* *
E(wNj) = E(wNj) + E(w ) (5.22)

as the expected time until our test applicant is assigned.

Though (5.20) and (5.21) represent the most complica£ed instance
of our general results from equation (4.15) this model is easily seen
to reduce to some special cases we have already studied. For example,
setting %=1 in (5.20) and (5.21) yields the same results as equations
(4.94) and (4.96). If we assign zero to both & and Y5 in (5.20) and
(5.21) these equations reproduce (5.2) and (5.3) if we interpret 0° to

equal 1. Finally, if we set & equal to zero, (5.20) produces the mean
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time until alil Nj households found waiting drop out (as ®=0 implies no
assignments are made), while (5.21) equals infinity. If we assume that
our test applicant does not drop out then the waiting time for the

applicant is infinite when @=0,

5.4.2 An Example

For a numerical example, we assume a project with a turnover rate
of =20 apartments per year. Higher priorities arrive at rate Y=10
households per year, while the household specific dropout rate is fixed
at 0=.2. We consider three cases for infinite refusal: x=,1, @=,5 and
G=1. The resulting expected waiting times as calculated from (5.22)
are shown in Figure 5.5. Note the long waits associated with 0=,1;
this is expected as most offered units are refused. Also, note how
similar the waiting times are for @=.5 and 0=1. The small difference
in mean waits for these cases is owed to the low likelihood of all
households present rejecting an offered unit. Thus, for the infinite
refusal model, expected waiting times are not terribly sensitive to the
acceptance probability & once this probability reaches an appreciable

magnitude (e.g. @=,5).

5.4.3 One Strike Refusal with Dropout and Priorities

We will now generalize our earlier work on one-strike models to
include the effect of dropout and categorical priorities. Summarizing
our assumptions, we postulate:

(i) New applicants in categorical priorities 1 through j-1 arrive

according to a Poisson process with parameter Yj

(ii) A newly arriving test applicant finds Nj>0 households waiting

in priorities 1 through j
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(iii) The system dropout rate equals nd whenever n households (not
including the test applicant) are waiting for assignments;
the test applicant does not drop out by assumption

(iv) Households are assigned from the waiting list in Poisson
fashion with rate M
(v) Households independently accept offered units with acceptance
probability «
(vi) Households receive only one offer; if this offer is rejected,
they are dismissed from the system
These assumptions define a rather complicated stochastic process;
the associated state transition diagram is shown in Fiqure 5.6. We can
write down an equation for the mean of w, the time necessary to process

n households found on the waiting list as

_ 1 nd
E(Wn) - nf>+ll+Yj * nb+u+Yj E(wn-1)
b -t k-1
Toa(f-a)y"
s (1-0*" E(w__ ) (5.23)
j k=1
Y

+ nd H+Yj E(wn+1)

Unfortunately, this infinite set of equations does not possess a closed

form solution comparable to equation (4.15). However, we can rewrite

(5.23) as
n+1 1
z = .
a E(wi) Y T (5.24)
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Figure 5.6

State Transition Diagram for the
One Strike Refusal Model with
Dropout and Categorical Priorities

Yj Yj Y
(n—2’6+U+Yj (n—l)6+u+yj n6+u+yj

S4u
6+u+Yj

QA o okl wusmianch®

(1-a) " u
n6+u+yj

182



Af1_a n-i-1
“r(‘éin i=1,2,..., n-2
(nd+pa)
where a; = - normy i=n-1 (5.25)
1 i=n
- Y. .
J i=n+1
n6+u+vj

As n, the number of households on the waiting list becomes large, the
probability that the next event to occur is a high priority arrival
approaches 0. This suggests that one may presume a maximum size for
the waiting list, and assume that once the waiting list reaches this
size, the next event to occur must be a dropout or a tenant assignment.

Formally, we assume that when n equals a maximum size M, we have

N=-i-1
af1-a
e (1n51u i=1,2,...,M-2
- L%g:;& 1=T1 (5.26)
1 i="n
0 -1
and X an; E(w,) = (nd+u) .
11 i i

Using (5.25) and (5.26), we can define a finite set of linear
simultaneous equations for E(wq) through E(wnm) by allowing n to run
from 1 through 0.

This set of equations can be efficiently solved, as the
coefficient matrix obtained from (5.25) and (5.26) is nearly in echelon
form; an algorithm based on the LU factorization of the coefficient

matrix is described in Appendix 5.1.
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To obtain the mean additional time required to process our test
applicant, E(w*), we condition on whether or not the applicant
immediately preceding our test applicant has accepted an offered unit.
If the preceding applicant has accepted an apartment, then we must take
into account the probability of a higher priority applicant arriving
during our test applicant's wait for a new unit. Otherwise, the test
applicant is either housed or leaves the waiting list. More formally,

we have

*
E(w ’ acceptance by preceeding applicant) =

Y,
J N *
=) * HY E(w,+w )

(5.27)
*
E(w | rejection by preceeding applicant) = 0 (5.28)

By assumption, all applicants accept units with probability ®. Thus,

the unconditional mean of w* is given by

Y,
* _ 1 *
E(w ) = a{mvj + —-J——MYj E(w+w )} (5.29)

and upon solving for E(w*), we find that

o’y a(1+YjE(w1))
vo= B+ (1=

(5.30)

Using the system of equations developed in (5.24) through (5.26) with
equation (5.30), we can set the expected waiting time until our test
applicant is either housed or dismissed from the system equal to the

sum of E(wy ) and E(w").
j

5.4.4 An Example
We again examine a project with a moveout rate of H=20, priority

arrival rate of Y=10, and a household specific dropout rate of 6=.2.

The expected waiting times (solved using the finite state
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approximation) for the one strike model are presented for the cases
@=.1, &=,5, and =1 in Figure 5.7. Unlike infinite refusal models,

the waiting times for one strike models are heavily dependent on &, the
acceptance probability. It is evident that most applicants are

dismissed from the system as @ decreases from 1.

5.5 Multiproject Models

The modeling effort thus far has focused exclusively on single
project tenant assignment systems. As noted from our review of
currently used tenant assignment schemes, several cities operate city-
wide waiting lists where assignments are made on a first available
unit basis, regardless of the particular project involved. 1In this
section, we will show how single project models are easily adapted to
multiproject systems of the form described.

Suppose that for a particular unit type, the assignment process at
project i is Poisson with rate By, i=1,...,I. the overall assignment

process for the entire housing authority will also be Poisson with rate
I
= I p (5.31)

since in first available unit systems, assignments at projects are
mutually independent. Thus, one can consider the entire authority to
function as a "mega-project" with respect to housing assignments.

One such situation is demonstrated schematically in Figure 5.8.

The prediction of waiting times in multiproject first available
unit systems is therefore rather straightforward. One only needs to
substitute “sys for I in the relevant single project tenant assignment
model to obtain estimation of the mean waiting time (or the variance of

waiting time) for a newly arriving test applicant. The features of
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Figgre 5.8

A Multiproject First Available Unit System
with Categorical Priorities and Dropout
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Assumptions

1) Nj households in categorical priorities 1 through j are found
waiting by a newly arriving priority j household.

2) Households in categorical priorities 1 through j-1 arrive in a
Poisson process with rate Y5

3) Tenant assignments at project i occur in Poisson fashion with
rate M. The overall system assignment rate is given by

I
Poys=Z By.

i=1
4) Dropout occurs at a rate proportional to the number of
households waiting; the test applicant does not drop out by

assumption.
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blend priorities, categorical priorities, and tenant refusal can all be
incorporated in this framework.

Of additional interest is the number of households who will be
assigned to specific projects. These quantities are easily obtained
from the product of the project specific assignment rates with the mean
waiting time:

E(number housed at project i) = MiE(wN*) (5.32)
where Mj is the assignment rate at project i, and wN* is the time
necessary to process a test applicant who finds N households waiting
for assignments (note that the waiting list may be prioritized).

One rather unrealistic feature of our multiproject analysis
surfaces when refusal systems are considered. It is difficult to
imagine an authority where the likelihood of a household accepting a
unit is independent of the project in which the unit is situated. A
more realistic model would assign a project specific acceptance
probability @®; to the acceptance of an offered unit located in project
i, Unfortunately, such a model is too complicated to consider at the
present time; the development of refusal models with project specific
acceptance probabilities could prove to be an interesting topic for

future research.

5.6 Multiqueue Systems

Refusal systems offer one means for allowing tenants some degree
of choice in an assignment procedure. An entirely different approach
would be to guarantee tenants assignment to a member of a pre-chosen
group of projects. A system of this form is currently used by the
Boston Housing Authority. The advantage of such a system is that

tenants can indeed specify where they are willing to live. The
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disadvantage is that the authority using this system relinquishes
control over the demographic composition of housing projects.

To model the waiting times for such systems, we must take into
account the detailed choices and positions of all tenants on the
waiting list. We can summarize tenant choices via the notion of a
choice set. Formally, the choice set Cj consists of all projects
chosen by tenant j as acceptable for assignment. Thus, tenant j can
only be assigned to project i if i € Cj-

The positioning of tenants on the waiting list is arranged in
order of application date. However, as tenants' choice sets overlap,
one may think of the waiting list as a number of queues, one for each
project, with a tenant appearing in all queues for projects in his or
her choice set (hence the term "multigueue"). An example is shown in
Figure 5.9 for a simple system with three projects and two choices per
choice set.

The tenant assignment rule for a multiqueue system (ignoring
dropout and priorities) states that a newly available unit at project i
is assigned to the household at the front of the waiting list for
project i. The household assigned is then removed from all other
project waiting lists. Thus, in a multiqueue system, tenants are
assigned to that project in their choice set in which the first
available unit appears. An example of an assignment sequence using the
waiting list in Figure 5.9 is shown in Figure 5.10. Note that the
households are not assigned in strict chronological order; this is due
to the restriction of assignments to choice sets. Also, note the
dependence of the waiting list at one project on assignments that occur

at other projects. In the example of Figure 5.10 household 4 is
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Figure 5.9

A Multiqueue Waiting List

Tenant ID (j) Choice Set (Cjy)
1 1,3
2 2,3
3 1,2
4 1,3
5 2,3
6 1,2
7 2,3
Project (i) Waiting List (By Tenant ID)
1 1,3,4,6
2 2,3,5,6,7
3 1,2,4,5,7
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Figure 5.10

A Sample Assignment Sequence for the Multiqueue
Waiting List of Figure 5.9

Project with New Available Unit Household Assigned
2 2
3 1
2 3
1 4
1 6
3 5
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assigned to project 1 on the first assignment made to project 1, even
though household 4 is initially third in queue at project 1. Of
course, this is due to earlier assignments made at other projects.

Before continuing, it is worth noting that we have already
considered two special cases of multiqueue assignment systems. If the
choice set for every tenant consists of a single project, then the
entire assignment system decomposes into a series of independent single
project first come first serve waiting lists. This situation has been
discussed in detail in Chapter 4 and the early part of this chapter.
Alternatively, if the choice set for every tenant consists of all
projcts in the system, then the situation is the same as the
multiproject first come first serve assignment scheme considered in
the previous section.

The last concept we need to introduce before formulating a model
for multiqueue systems is that of a "state." Previously, it was
sufficient to know the number of households on the waiting list in
order to make probabilistic statements about future events (e.g. an
assignment, a dropout). Now, it is necessary to know the configuration
of all households in the system on the multiqueue waiting list after
each assignment is made. Each distinct, possible configuration will be
referred to as a state. The actual state transitions for the
assignment sequence in Figure 5.10 are illustrated in Figure 5.11.
Note that these states represent the particular sequence that was
observed; they do not represent all possible states.

We are now ready to model the multiqueue system. As usual, we
assume that the moveout (and hence the assignment) rate at project i

equals Hj; and that the assignment process is Poisson. If we set
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Figure 5.11

State Transitions for the Assignment Sequence of Figure 5.10
State 0: Project 1 1,3,4,6

2 2,3,5,6,7

3 1,2,4,5,7
State 1: Project 1 1,3,4,6

2 3,5,6,7

3 1,4,5,7
State 2: Project 1 3,4,6

2 3,5,6,7

3 4,5,7
State 3: Project 1 4,6

2 5,6,7

3 4,5,7
State 4: Project 1 6

2 5,6,7

2 5,7
State 5: Project 1 -

2 5,7

3 5,7
State 6: Project 1 -

2 7

3 7
State 7: Project 1 -

2 -

3 -
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“sys=?ui, then the probability that an assignment is made to project i
i

on any transition is given by

My

Pr {Assignment made to project i} = m (5.33)

sys
Now, suppose the system currently occupies some state k, where all
possible states have been arbitrarily numbered from O (the initial
state, or starting configuration) to D, (the first state in which all
households present in state 0 have been assigned). We define
ak1 = Pr {System next occupies state 2| (5.34)
System currently occupies state k!

k, =0
k#L

«.eyDg
If we let G4 be the group of projects which would carry the system
from state k to state L if an assignment is made at any project in the

set Gk, then we see that

Qg = I B (5.35)

Finally, we define pjj(n|Sk) to be the n-step transition
probability for the assignment of household j to project i given that
the system is currently in state k. This probability gives the
likelihood that household j will be assigned to project i in exactly n
assignments, given that the system is currently described by state k,

and is computed recursively as

D
o]
..(n|s, ) ={ Z . (n-1]s 5.36
plj(nl » N G ePyy (0 Isy) %e(_J ( )
0 'bé(Cj

for each project i and household j on the waiting list.
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Once these n-step probabilities have been computed, we can easily
compute the mean length of time necessary to house all those initially
present on the waiting list, and the expected number of assignments
that will occur at each project. First, we compute the ultimate
probability of assigning household j to project i, given that the

system is initially in state 0 as

@

=}z
pij(so) = pij(nlso) iec, (5.37)

0 ige,
J
The expected number of households assigned to project i of those

originally present initially is then given by

E (Assigned to project iISO) = pi.(So) (5.38)

Finally, the expected time necessary to assign those who ultimately are

assigned to project i is given by

™M2Z

i
E(wNISO) = p;;(S,) (5.39)

1
My 1 4

j=
If a test applicant choosing only project i were to enter the housing
system in state 0, the mean waiting time for our test applicant would
equal

Bl s =1 4+ Ewis ) (5.40)
N o Hi N'"o :

Once one is familiar with the notion of state in the multiqueue
context, the formulation just presented is rather straightforward.
Unfortunately, the concept of state also serves to make the preceding
analysis unworkable for all but the most trivial problems. The number

of possible states explodes geometrically with the number of projects
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and the size of the waiting list, and combinatorically with the number
of projects allowed in a choice set. For example in the simple system
of Figure 5.9, enumeration yields a total of 24 possible states. In a
system such as the Boston Housing Authority with up to three projects
per choice set, over fifty projects, and waiting lists of over 2000
households for most bedroom sizes the number of states attainable is in
the billions. These realities render our approach inoperable.
However, it is not al all difficult to simulate the operations of
a multiqueue tenant assignment scheme. A simulation would generate
events in a manner consistent with the process as it has been
described, and calculate statistics such as waiting times and the
number of project specific assignments based on several "realizations"
of the system. We will now describe an algorithm for simulating a
multiqueue assignment scheme (ignoring dropout and priorities), and

present some examples.

5.6.1 Simulating Multiqueue Systems

A simple method for simulating multiqueue systems involves
generating exponential inter-moveout times, and assigning households to
projects in a manner consistent with the given choice sets for the
households on the waiting list at these simulated moveout times. We

will describe an algorithm to do this using the following notation:

=
[
I

= moveout rate at project i

Sjk = time elapsed between the (k-1)st and the kth moveout at
project i

wix = time at which the kth moveout (and hence the kth assignment)
occurs at project i

t = time at which the Ath tenant assignment occurs (system wide)
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i() ID of the project where the Ath tenant assignment occurs

Cj = set of projects chosen by household j (i.e., the choice set
of household j). Households are ordered by application date
(i.e., in order of arrival).

Yj = 1 if household j has been assigned

0 if not

N; = number of households assigned to project i

T3 = time necessary to assign all households ultimately assigned
to project i

The simulation proceeds in three major blocks:

Block 1: Generate Inter-moveout Times, Compute Assignment Times

1) For every project in the system generate K random inter-
moveout times Sjk, k=1,...,K using an exponential distribution
with parameter l; for project i
2) For every project in the system, compute k assignment times
using the recursions
Wik=Wj k-1 * Sik; Wio = 0; k=1,...K
At the end of Block 1, the simumlation has generated K assignment times
for each project in the system.

Block 2: Sort the Assignment Times to Obtain a System Assignment
Sequence

In this block, all of the project assignment times wjx are sorted
in ascending order, and stored in the variable t . Thus, the time at
which the Ath system wide assignment occurs is given by tl' While
sorting, the project ID's associated with each assignment time are
saved. At the end of Block 2, the variable i(1) identifies the project

at which the Ath system wide assignment occurs.
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Block 3: Allocate Households to Projects and Compute Project Specific
Waiting Times

(1) Set T;=0 and N3j=0 for every project i.
Set Wj=0 for every household j.

(2) set =0,
(3) set Aeat?

(4) Find min j such that i(L)ecy and ¥5=0.
If no such j, go to (6).

(5) set ¥j3¢1; Ti(l)"tl; Nj(R)“Nj()+1.

(6) 1Is Wj=1 v3? If yes, go to (7).
If no, go to (3).

(7) STOP.

Block 3 performs the allocation of households to projects. After
initializing the variables Tj, N; and Wj, the algorithm locates the
household that is first in line for each new unit that occurs; assigns
the household to the relevant project; removes the household from
consideration at other projects; updates the number of households
assigned and the waiting time for the relevant project; and checks to
see if all households have been assigned. When all households have
been assigned, the routine is complete. To compute the expected number
of households assigned and the average waiting times at each project,
the entire algorithm (Blocks 1 through 3) is repeated severalbtimes,
and the resultant values of Ty and Nj from the various runs are
averaged to compute'Ei and<ﬁi; the mean waiting time and mean number of
households assigned at project i. As an example, a simulation
allocating 100 households to five projects in a 2 project per choice
set multiqueue system was performed for various values of Uy, the
moveout rates, and various combinations of project choices. A computer

coding of the model may be found in Appendix 5.2.
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Project choice sets were generated by sampling without replacement
from the pool of five projects according to predetermined
probabilities. Each household was given an initial probability pj of
selecting project i, i=1,...,5. Having selected project i, the
conditional likelihood of selecting project i' equals

Pr{choose i'|chosen i} = pi+/(1-p3) 1i,i'=1,...,5 (5.41)
it#i

Thus, the probability that the choice set for any household consists of

projects i and i' equals

Pri{choice set contains i and i'} = Pibi: [11p + 7 ;, ] (5.42)
i i

i,i'=1,...,5
i#it

A total of 18 experiments were performed. In each experiment,
choice sets generated by a particular set of pj's were combined with
moveout rates given by a particular set of Ui's to compute the mean
time to house all assigned households by project, and the mean number
of households assigned to each project. For each experiment, the
simulation model was run 100 times; choice sets were not regenerated
with each run for a given experiment. Table 5.1 shows the parameters
used in generating the experimental runs, while Table 5.2 presents the
resultant mean numbers of assignments and average waiting times by
project.

In the first experiment, where assignment rates and project
desirability are homogeneous across projects, the resulting tenant
allocation and waiting times are also invariant. Both the assignment
rates and the choice structures have been systematically varied in the

successive experiments. It is interesting to note the interaction
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Table 5.1

Parameters for the Simulation Experiments

Project Choice Probabilities

Case B I > S - .
A 1/5 1/5 1/5 1/5
B 1/8 1/8 1/8 1/8
C 1/15 2/15 3/15 4/15

Yearly Moveout Rates

Case e T . . . 1
1 10 10 10 10
2 10 10 10 10
3 50 10 10 10
4 10 20 20 50
5 50 50 20 20
6 10 20 30 40
7 50 40 30 20

200

1/5
1/2

5/15

10
50
10
50
10
50

10



Mean Number of Households Assigned

Experimental Results

Table 5.2

Mean Time to Assign

Project Moveout

Choice
Case

A

Rate
Case

Ny
19.5
20.6
15.1
14.4
12.2
1.0
34.7

19.5

6.6
29.3

17.4

29.8

17.6

N2
20.2
21.4
20.4
14.8
10.9
12.4
17.9
19.2
14.2
15.1
13.6
31.7
28.2
14.0
14.5
13.6
28.7

26.7

N3
20.7
17.4
21.7
15.5
10.3
12.7
14.1
20.6
16.0
13.5
14.2
15.0
21.1
21.6
17.6
20.5
18.4

25.2

19.8

19.0

21.0

14.8

11.0

11.8

15.1

20.1

30.9

24,2

32.0

15.0

21.9

26.5

22.8

25.8

14.5

20.3
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19.8

21.7

21.8

40.5

55.6

52.1

18.3

20.6

31.8

38.7

33.6

1.3

31.1

36.9

33.5

10.2

1.94

2.07

1.52

1.44

1.22

1.04

0.70

0.56

0.60

0.35

all Households

1.70

1.91

0.69

0.70

0.66

0.61

0.67

0.69

0.67

1.94

1.80

1.98

1.42

1.01

0.68

0.62

0.76

0.98

1.96

1.86

2.09

1.45

1.04

1.14

1.48

1.96

0.62

0.48

1.91

2.25

2.09

0.81

1.13

1.05

1.83

1.99

0.63



between choice structure and assignment rates. For example, in the
fourth experiment, using a homogeneous choice structure, an average of
40.5 households were assigned to project 5; in the fifth experiment
using the same assignment rates of 10 for projects 1 through 4 and 50
for project 5, an average of 55.6 households went to project 5 with the
choice structure biased in favor of project 5. Now, the same choice
structures used in experiments 4 and 5 were also used in experiments 1
and 2, but with homogeneous assignment rates. Here, the number
assigned to project 5 increased from 19.8 to 21.7 on average - hardly
the same as the increase from 40.5 to 55.6 noted earlier.

An informal analysis of these results leads one to conclude that
the interaction between choice structures and assignment rates is
complex. Certainly, projects with higher assignment rates will house
more tenants; projects which are more likely to be chosen are more
likely to house tenants as well. Beyond these almost trivial
observations, it is difficult to characterize the behavior of
multiqueue systems.

That the choice aspect of multiqueue systems combined with the
exact ordering of tenants on the waiting list is critical to the
outcomes of the assignment process is illustrated by the following
example. Imagine a system with two projects, both with equal
assignment rates. Also, imagine 100 tenants to be housed; 50 will
accept either project 1 or 2, the other 50 will accept only project 1.
If the waiting list is such that the fifty households willing to go to
either project are the first fifty tenants on the list, then one would
expect 25 of these tenants to be assigned to the first project, and 25

to the second. The remaining 50 tenants, having chosen only project 1,
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would be assigned to project 1, yielding a final tally of 75 households
assigned to project 1 and 25 assigned to project 2.

Alternatively, if the 50 households choosing only project 1 were
processed first, then any new units opening up at the second project
will be assigned to households who are indifferent to living in either
project (since the 50 households in the first half of the list will
only accept project 1). Thus, by reversing the order of the waiting
list, one would expect a final tally of 50 households assigned to
project 1 and 50 households assigned to project 2. Clearly, choice and
order are important in the outcome of a multiqueue assignment process.

While we have developed a simulation model for calculating the
mean times to "clear" waiting lists and the expected number of project
assignments for multiqueue systems, we have not really succeeded in
understanding the qualitative features of these assignment schemes.

The simulation model will prove useful for actually forcasting waiting
times in a multiqueue system (once modified to incorporate dropout and
priorities, for example). However, the development of analytic models

for the multiqueue model poses a difficult research problem.

5.7 Conclusions

This chapter extended the analysis of Chapter 4 to incorporate
certain aspects of tenant choice found in the tenant assignment schemes
of U.S. Housing Authorities. We examined the notion of refusal
systems, and developed models for the cases of one-strike and infinite-
strike refusal. The applicability of our models to multiproject first
come first serve assignment schemes was demonstrated. Following this,

we developed a simulation model for application to multiqueue systems,
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and presented the results of some preliminary experiments with this
model.

We have devoted a great deal of time to the development of tenant
assignment models. In the next chapter, we will use these ideas to
analyze some real data from the Boston Housing Authority in an attempt
to demonstrate the utility of tenant assignment modeling in a policy

analysis setting.
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Appendix 5.1

An Algorithm for Obtaining E(wy) in the One Strike Refusal
Model with Dropout and Categorical Priorities

Define:
-ua(1-a)i'j'1/(16+u+Yj) 3=1,2, ..., i-2
-(ua+15)/(16+u+Yj) j=1-1
1 j=1
(1) 233 -Yj/(i<3+u+Yj) J=i+1
0 9> i+1
i=1,2, ..., N-1
N-5-1 .
-pa(1-a) /(nd+p) 3=1,2, ..., M2
(ii) an; = -(Bo+nd) /(nd+p) J="-1
1 j=n
(iii) by = 1/(18+p+vy) i=1, ..., ™1
(iv) bq = 1/(nd+p)

The expected waiting times E(wy) are given by the solution to the
set of M simultaneous linear equations

E(wj) = b

n
=2 a5 i i=1,2, ..., M

j=1
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Owing to the special structure of the coefficients ajj these equations
are easily solved by the following algorithm:

1) bq € by/aiq

2) wvq ¥ arp/an

3) FOR i=2 to N

4) 2o < aji

5) by € by - &by

6) IF i=2 THEN GO TO 12)
7) FOR j=2 TO i-1

8) % *ajy - Lovy
9) by * by - A4bj
10) %5 < X4

11) END j

12) Ay € agy - Aoviog
13) bj € b3/%

14) vy *ag 541/t
15) END i

16) E(wn) « bn

17) FOR i="-1 TO 1
18) E(wi)=bj-vibjsq

19) END i
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Appendix 5.2

TOL WSLINIT, HOSOURCE

SIPULATION OF EFFE

cT QUELE LENGTHS
FIVE QUEUES, TWO CH

ivE ) RATIVYE QUEUES
OICES PER TEnmM, FIXED STR

UCTURE

DIMENSION X<S5,2003, T<S,300,3TC3000, IFACI3000),IQvS,300),L<S)Y,
ALALS 2, WS ), AYGLIS ), AYGL2C S AYGHE S ), AYGUS( S ), TSERVEC 200,
*LHMBDACS ), LOLDES 2, N S, 3005, N3TARY 5, 3G60),0L0STR. S, 300,
*LICS,L2¢5)

REAL LAMBDA,L,NSTAR,LOLD,L1,L2,LL

INFUT PRRAMETERS

DISPLAY "ENTER % PRUOJECTS, # HOUSEHOLDS. # SLOTSY
ACCEFT HPLHH,NT

DISPLAY "ENTER SERYICE RATES"

HUCEPT « LAMBDRC T >, [=1,1F)

DIZPLAY "EHTER BRERKPOINTS FOR CHOICE STRUCTURE"
SCLEPT Bt , 22,83, 84

INITIALIZE FOR CHOICE STPUCTURE SEMNERMTION

00 T Ia1, NP
D) = J=1.HH

RO G E D

Tae T, 00=0

CGHTTHUE

DISPLAY “"ENTER SEED”
HCCEFPT SEED

SEHERATE CHOICE STRUCTURE

O 10 J=1 ,nNH

CALL LHOICECIT,B1,B2,B3,64 3EED -
CLhll CHOICELTI2.81,82,83.,64, ZEED
IF'I1.E@.IZ) GO TO 11

AT, =

A l2, Jo=

CONTIHUE

BUILD NRIGINAL QUEUES

DO 1S I=1 NP

15=0

00 1S5 J=1,NH
IFCH¢1,J).EQ. 0> GO TO 15
Is=13+1

Igc !, [5)my

CONTINUE

WRITE ORIGINAL QUEUES TO FILE 3
0O 20 I3=i,HH

Lo 25 I=1.NP
IFCIOCILIZY.GT. 00 GO TO 21

CTACT, IS, I=1, NP

+

[3.1%5,

FORMRTL Sy
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20

(el v ]

45

S0

50

23

CONT InNUE
CUONT InUZ

INITIALIZE SIMULATION LOOP

DISPLAY "ENTER OESIRED HUMBER OF
RCCEFT NSIM

Lo 30 I=1 NP

AYGLL T X=0

AVGLEC I =9

AVLUCT »=0

v Gldes I =0

LUONT INUE

0O t000 KSIM=1,N3IM

INITINMLIZE 3SIMULATION YARIHMBLES

Lo 35 I=1(,HP
L Img

Lo D=1
i, [ =01

0O 44U k=1 ,NT
TCL.K»=n
COHT I
CUNTINHUZ

0o 45 J=1.HH
ISERPYE{ J2=0
CUNT IHU=Z

LGEMERHTE SERVICE TINES

DO S0 I=1,NP
T, s==ALOGE RANDCSEED 2 ) /LAMBDAS I
DOoS0 K=2 NT

SIMULATIONS®

)

Tol,KoaTi D, K=12=AL0GCRANDS SEED 1 /1 LAMBDA 1)

CONTINUZ
SORT THE SERVICE TIMES

Kk =1

DO SS K=1.NT

Do S5 I=1.NFP
KEKK=KKK+1

STOREK =TI KD
IFAC{KKK)=]

CONTIHUZ

MHTT=HP*NT

ICHECK=9

DO &5 kKK=2,NHTT
IF¢STCRKK=1),LE.ST(KKK)) GO TO &5
ICHELK=]

SWrF=STCEKK 2
EarP=TFACCEEKK)
STEKKKEY=STOKKK =1
IFRLL KKK J=TFACCKKK =1
ST FRK =1 3= 5UnP

[FHL r k=1 s=k3WRP
COHTINUE

IF ICHEL® ,E0.1) G0 TQ »y
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v e

200
110

-y

279

ang

280

=30

COUNT THE TRUE EFFECTIVE QUEUE LENGTHS

DO 100 K=1,HNTT

I=IFACCKD

IFCLOCI Y. EQ.HHY GO TO 100
DO 200 J=LACI),HNH
IFCHCI,J).EQ.0.0R.ISERVYEL J)>,GT.0) GO TO Z00
Lol o=t I+t

ISEFVECJo=]

W L o=sTor

Lo I i=d+n

G0 T 100

CONTINUE

CONT [Hus

SECOPD QUEUE LENGTHS pRNHD TOTAL AITS ON FILE 3

RITECS 280 eI, Wel o [=1,NP
FORMHTISIFG . 0,2X,F7. 2,243

JPOHTE MEHAN WND MERN SGURRE STATISTICS

00 270 I=i,HP

=GR To=ayGhe o+l

MG T o=R Gl [ o+we ]

L Z T r=avinlac Torln IosLc I
AVGLy [ r=aviggs o+ I oewe [ )
COHTINUE

EnD SIMZLATIGCN LOUOP
CoHT IHWE
COMPUTE ZUMMARY STATISTICS

DO 230 I=1 NP

AYGLy D2=AavGLls [ )/FLOAT HSTIM)
AVGUE T o=RVGC T D/FLOATOHSIM »
FYGLICT )=V GL2C T O/FLOATONSIMD
VLI T y=RYGWal T O/FLOATONSIM D
CONTINUE

UISPLAY AYERAGE RESULTS

WRITEC10,284)

FORMATC " SIMULATION RESULTS")

WRITEC 10,236

FORMATC " QUEUE L L#w2 1] W 2™ 5
OISPLAY "HYERAGE FESULTS FOR ERCH QUEUE"
UISPLAY "QUEUE", "L", "Lew2" By, "ee2"

00 230 [=1 ,HP

DISPLRY I AVGLC I AVGL2C(T >, AYGWC I ) AVYGUII T »
WRITEC1O, %) [,AVGLY 1), AYGL2 1), AYGHS T), AviGlzc T
CoHTIMJE

EHU DF SIMULKTICH
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SUBROUTINE SETS UP nsSfl

GHMENTS ~QOR ChQICE 3

SUBROUTINE CHOICE(I.B1 BZ,B3,B4, {EED -

FLIP=RAND{ SEEDD
IFCFLIP.LE.B1)Y 1=

IF Bt .LT.FLIF.AND.FLIP.
IFCB2.LT.FLIP.RND.FLIP.
IFCB3.LT.FLIP.AND .FLIP.
IF{B4.LT.FLIP)Y 1=5
RETURN

END

LE.B2) I=2
LE.B3) I=3
LE.Bd) I=a
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Chapter VI

Using Tenant Assignment Models: Examples from Boston

The Boston Housing Authority (BHA) administers over 14,000 public
housing units in 69 family and elderly developments (including leased
housing). As of November 1983, about 8,000 households were waiting for
project assignments in the one through five bedroom apartment range.
The BHA assigns tenants using the multiqueue assignment scheme
discussed in Chapter 5. However, the authority is considering changes
in its tenant assignment policies.

As a preliminary application of our tenant assignment models, the
BHA was interested in forecasting waiting times and tenant allocations
under the current system and making these predictions known to newly
arriving applicants. Additional policy questions address the addition
of newly rehabilitated units to the system; the institution of income
and racial mixing priorities; and the implementation of an alternative
tenant assignment scheme (e.g. single project or citywide first
available unit systems). In this chapter, we will utilize many of the

techniques developed in Chapter 4 and 5 to study some of these issues.

6.1 Simulating BHA Tenant Assignments

In order to analyze BHA waiting lists, the simulation model
described in Chapter 5 was modified to incorporate the effect of
dropout. An initial decision to treat emergency applicants as regular
applicants was made due to the relatively few numbers of emergency
applicants in the system. To include dropout, we modify Block 1 of the

simulation by including the following step:
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For every household in the system, generate a random time until
dropout using an exponential distribution with parameter 5.

In Block 2 of the simulation, these times until dropout are sorted,
saving household identifiers, along with the assignment times generated
in Block 1. Finally, Block 3 is modified such that possible tenant
assignments include dropouts; if the "project" identified in step 4 of
Block 3 corresponds to a dropout, and the household has yet to be
assigned, then the household drops out, and the number of dropouts is
incremented. A complete computer listing of the simulation model used
for the BHA analysis is found in Appendix 6.1.

The data analyzed in this chapter all stem from BHA computer
files. The November 1983 waiting list, replete with project choices
for each household listed in order of application date, was obtained.
This list reflects all households waiting for housing assignments in
BHA projects as of November 1983. Table 6.2 shows the breakdown of
households on the waiting list by bedroom size and project choices; as
households can choose up to three projects in the BHA assignment
system, the project figures in Table 6.1 overstate the true number of
households waiting. The true size of the waiting list for each bedroom
size is indicated at the bottom of Table 6.1.

Two sets of parameters need to be estimated in order to implement
the model; the moveout rates for each project by bedroom category, and
the household specific dropout rates, also estimated by bedroom size.
The moveout rates were estimated by observing the actual one year
moveout rates from January 1 through December 31, 1983 for each project

with available data by bedroom size; moveout rates were unavailable for
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Project

Charlestown
Mission Hill
Lenox Street
Orchard Park
Cathedral
Maverick
Franklin Hill
Whittier St.
Beech St.

Mission Extension

Columbia Point

Mary Ellen McCormack

014 Colony

West Newton St.

Rutland
Collins
Annapolis
Ashmont
Holgate
Foley Apts
Groveland
Davison
Washington
West 9th St.
Carrol Apts.
Meade Apts.
Warren Tower
Eva W. White
Walnut Park
Tremont St.
Amory St.
Warren Apts .
Torre Unidad
Rockland
Codman Apts.
Heritage

St. Botolph
Pasciucco
Lower Mills
Ausonia Homes
Hassan

West Roxbury

Washington Cory
Cliffmont Roslindale

Bellflower
Peabody Square
Northampton

Table 6.1

Waiting Lists by Bedroom Size

ID_ 1BR 2BR 3BR 4BR 5BR
101 58 11 115 28 9
103 138 342 300 111 27
104 175 454 322 - -
105 56 167 150 52 10
106 145 330 317 91 -
108 57 180 140 27 7
109 119 301 267 80 -
11 108 323 228 71 -
113 89 267 190 61 14
114 118 192 129 38 16
120 3 14 6 10 2
123 283 316 219 - -
124 223 268 176 21 5
158 242 532 379 105 19
174 125 271 186 - -
226 21 7 - - -
227 4 2 - - -
228 22 8 - - -
229 9 1 - - -
230 156 - - - -
232 8 4 - - -
234 17 - - - -
235 155 8 - - -
236 132 7 - - -
237 127 7 - - -
238 7 8 - - -
240 21 - - - -
241 21 1 - - -
242 16 7 - - -
244 32 - - - -
245 24 2 - - -
247 27 5 - - -
249 43 - - - -
250 24 - - - -
251 21 8 - - -
252 84 8 24 14 -
253 38 - - - -
254 12 - - - -
257 45 8 - - -
261 115 5 - - -
262 23 4 - - -
270 61 13 - - -
271 176 16 - - -
272 9 2 - - -
277 54 3 - - -
283 52 1 - - -
298 23 - - - -
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Table 6.1 (con't)

Waiting Lists by Bedroom Size

Project ID
1701 Washington St. 299
Broadway 501
Camden St. 502
Commonwealth 503
Faneuil 504
Fairmont 505
Archdale 507
Orient Heights 508
Gallivan Blvd 510
Franklin Field 511
South St. 512

Franklin Elderly I 601
Franklin Elderly II 602
L St. 603
Summer St. Hyde Park 605

ACTUAL

TOTAL

(True number of
Households
Waiting)

1BR 2BR 3BR 4BR 5BR
21 - - - -
8 15 9 1 -
70 243 162 - -
11 9 19 7 -
- 246 172 - 16

1 199 162 - -
79 249 222 59 6
41 222 145 43 6
- 485 455 11 -

4 13 24 15 -
100 266 224 72 -
- - 2 - -

1 - - - -
185 1 - - -
37 - - - -
2092 2783 2150 493 74
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four projects. These rates are shown in Table 6.2. For projects with
waiting lists but no observed moveouts, the moveout rate was

arbitrarily set to .1.
The estimation of dropout utilized the simple estimator 53 presented

in equation (4.64). All households who applied for public housing in
August 1982 were examined at the end of a one year period. Those
households who withdrew or were found to be ineligible during the one
year period were considered to have dropped out. The data used to
estimate household specific dropout rates, along with the computed
estimates of 0 and the estimated mean time until dropout for each bedroom
category appear in Table 6.3.

Expected tenant allocations and depletion times were estimated from
100 runs of the simulation model. Households choosing one of the
projects with missing data were treated as though they has not chosen the
project involved, and households choosing only projects with missing data
were deleted from the analysis. In addition to computing the expected
number of tentants assigned to projects and the associated mean time to
assign these tenants, the model computed the standard deviations of the
number of tenants assigned and the time to deplete the initial waiting
lists. The model also computed the mean and standard deviation of the
number of dropouts that occurred over the 100 simulation runs. These
results are presented in Tables 6.4 through 6.8.

In reviewing these results, a number of features are evident.
First, there is a tremendous variability in the number of households
assigned to the different housing projects. This reflects both the

differences in project popularity (as evidenced by the figures in Table
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Project

Charlestown
Mission Hill
Lenox Street
Orchard Park
Cathedral
Maverick
Franklin Hill
Whittier St.
Beech St.

Mission Extension

Columbia Point

Moveout Rates by Bedroom Size (1982)

Table 6.2

101
103
104
105
106
108
109
11
113
114
120

Mary Ellen McCormack 123

014 Colony

West Newton St.

Rutland
Collins
Annapolis
Ashmont
Holgate
Foley Apts
Groveland
Davison
Washington
West 9th St.
Carrol Apts.
Meade Apts.
Warren Tower
Eva W. White
Walnut Park
Tremont St.
Amory St.
Warren Apts .
Torre Unidad
Rockland
Codman Apts.
Heritage

St. Botolph
Pasciucco
Lower Mills
Ausonia Homes
Hassan

West Roxbury

Washington Cory

124
158
174
226
227
228
229
230
232
234
235
236
237
238
240
241
242
244
245
247
249
250
251
252
253
254
257
261
262
270
271

Cliffmont Roslindale 272

Bellflower
Peabody Square
Northampton

277
283
298

1BR 2BR 3BR 4BR 5BR
75 56 6 7 .
18 35 12 6 1
23 9 . - -
25 23 17 1 .
39 25 13 . -
11 18 13 3 1
7 26 7 1 -
.1 13 3 1 -
16 36 13 4 1
25 19 4 3 .
1 13 8 2 g
56 27 5 - -
33 22 9 5 X
8 .1 . .1 .
2 5 4 - -
5 .1 - - -
3 1 - - -
4 1 - - -
6 A - - -
5 - - - -
.1 .1 - - -
7 - - - -
11 2 - - -
10 . - - -
9 1 - - -
1 .1 - - -
8 - - - -
8 . = - -
4 2 - - -
3 - - - -
8 3 - - -
4 . - - -
2 - - - -
1 = - - -
4 .1 - - -
14 3 . .1 -
5
4
3
3

.
S e e = T |



Table 6.2 (con't)

Moveout Rates by Bedroom Size (1982)

Project ID 1BR 2BR 3BR 4BR 5BR
1701 Washington St. 299 2 - - - -
Broadway 501 .1 1 1 2 -
Camden St. 502 7 3 2 - -
Commonwealth 503 .1 2 1 .1 -
Faneuil 504 - 25 14 - .1
Fairmont 505 .1 3 1 - -
Archdale 507 5 30 8 1 .1
Orient Heights 508 6 31 19 1 o1
Gallivan Blvd 510 - 3 1 1 -
Franklin Field 511 2 7 2 .1 -
South St. 512 3 2 5 .1 -
Franklin Elderly I 601 1 3 -1 - -
Franklin Elderly II 602 3 .1 - - -
L St. 603 2 .1 - - -
Summer St. Hyde Park 605 7 1 - - -

SYSTEM 576.6 470.4 168.4 38.6 3.9
ASSIGNMENT

RATES
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Table 6.3

Estimation of Household
Dropout Rates (Aug. 82 - July 83)

ESTIMATED MEAN

BEDROOM NUMBER INITIAL ~ TIME UNTIL
SIZE DROPOUTS SAMPLE SIZE 6 DROPOUT (YEARS)
1 64 183 .3497 2.86
2 40 232 .1724 5.80
3 28 183 .1530 6.54
4 9 40 .2250 4.44
5 1 6 .1667 6.00
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AGGREGATE SYSTEM RESULTS

PROJECT
ID

101t
103
104
105
106
108
109
AR R
113
114
120
122
124
158
174
226
227
228
229
230
232
234
238
236
237
238
240
241
242
244

507
508

LR
512
602
603
605

MEAN NUMBER SERVED Std. Deviation

51

43
55

40.
82.
22.
21,

(]

39.
56.

- UNIT TYPE

EXPECTED NUMBER OF DROPOUTS= B66.17

MRNONG NUWOOWO“NWN-—WLWNUN-RNE—ONNNN«NNCARLPNOW=-NONNASD COAQWWWNWOAULN

.52

59

Table 6.4

1 2092 HOUSEHOLDS PRESENT AT START

Std. Deviations=

70

NAOAD NNO=RN4N-aPBNIURN - DIWANW-A-WRWAN 4«2 NUWWU=0s2RNO=«WANNSNNRNONRANRND
N . h
I

20.26

219
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AGGRFGATE SYSTEM RESULTS

PROJECT
D

101
103
104
108
NG
108
109
111
113
118
120
123
124
158
t74
226
227
228
229
232
235
236
237
238
24
242
245
247
251
252
257
261
262
270
271
272
277
283
501
502
503
504
505
507
508
510
s1t
512
603

MEAN NUMBER SERVED

94
145
61
a2
109
63
112

133
7R

10.

139

& o
G-

o
WHWO 20 4+ =20NNANQO~aJ0NONDO0 W -0

Q9
ot

- UNIT TYPE

WA UDUR B 20000002200 -00=-0-00=+0C0R=-P-~BOND~NDNDBW

EXPECTED NUMBER OF DROPOUTS=1042. 50

Std. Oeviation

e

70
37
L
3
23
30
T4
54
32
54
a4
26
"7
24
83
36
30
46
0
26
7
13
7%
41
24
55
86
36
18
09
86
81
s
83
67
80

14
1"
82
20
40
73
91
06
89
40
84

.07

2 2783 HOUSEHOLDS PRESENT AT START

Std. Deviations=

Table 6.5
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220
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AGGREGATE SYSTEM RESULTS

PROJECT

ID

101t
103
104
105
106
108
109
1
13
114
120
122
124
158
174
252
501
©02
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504
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508
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St
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MEAN NUMBER SERVED Std. Deviation
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AGGREGATE SYSTEM RESULTS

PROUECT
ID

101
103
105
106
108
109
1
113
114
120
124
158
252
SOt
503
s07
508
s10
1
S12

MEAN NUMBER SERVED

16
38.

8
1

10.
9.
9.

23.

16

6
AR

-s3swc00 -

UNIT TYPE

Std. Deviation

£APECTED NUMRER OF DROPOUTSs 307 52
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.82
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6.1), and the differences in project assignment rates (as evidenced by
the figures in Table 6.2).

For the same reasons, there is a large variability in mean depletion
times. These numbers have the following meaning: if a test applicant
choosing only project i applied for public housing, and this applicant is
guaranteed not to drop out, then the expected time until the test
applicant is assigned would equal

E(w;*) = E(depletion time at project i) +-%7 (6.1)
i

As the mean depletion times vary from well under six months to well over
six years, one would expect that making this information available to new
applicants would influence their decisions as to which projects to
choose.

Another interesting feature of these results rests with the large
number of households who are predicted to drop out. By bedroom category,
we have:

1 Bedroom - 41.40% expected to drop out

2 Bedroom -~ 37.46% expected to drop out
3 Bedroom - 49.20% expected to drop out
4 Bedroom - 62.38% expected to drop out
5 Bedroom - 62.26% expected to drop out

These dropout percentages seem high, considering the magnitudes of the
household specific dropout rates in Table 6.3. However, when one
considers the product of the household dropout rates with the number of
households waiting for assignments, it becomes clear that for many

projects, the aggregate dropout rate for all households waiting is higher
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than the project assignment rate. This yields the large numbers of
dropouts observed.

We have shown the simulation model to be useful in predicting the
implications of the BHA's multiqueue tenant assignment system for tenant
allocations and waiting list depletion times. To place these
consequences in some sort of comparative context, we will reanalyze the
BHA data under the following two schemes:

1) Suppose each household is allowed only 1 choice (arbitrarily

chosen to be the first one listed on the application form).
This represents a series of single project assignment schemes.
2) Suppose all households are assigned on a first available unit
basis citywide, and that households are indifferent among
projects. This represents a system-wide multiproject assignment
scheme.
As the analysis is the same for all bedroom sizes, we will focus our

attention on those households requiring 3 bedroom units.

6.2 sSingle Project Assignment Scheme

To model the implications of a single project scheme, we recall that
for a system with dropout but no priorities, the expected amount of time
to process a waiting list of size N is given by
N
Z

E(WN) = ey ] (6.2)

n=1
The mean number of households assigned then equals ME(wy). The expected
number of dropouts, E(Np), is then computed as
E(Np) = N - PE(wy) (6.3)

following the reasoning of equation (4.51).
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Table 6.9 shows the three bedroom unit moveout rate for each
project, along with the number of households who listed that project
first on their application form. The mean number of assignments,
expected depletion times and numbers of dropouts were computed using the
equations above. As some 159 households listed a project for which no
moveout information was available as a first choice, the total number of
households considered reduces from 2150 to 1991.

Compared to the multiqueue system, the single project scheme creates
even more variability in tenant allocations and waiting list depletion
times. This is to be expected, as unlike the multiqueue system where
assignments at one project effect assignments elsewhere, tenant
allocations in the single project scheme are independent across projects.
Thus, the single project scheme creates maximum variability in tenant
allocations and waiting times across the entire system.

In considering dropout, it is clear that those projects with lower
assignment rates will induce relatively larger numbers of dropouts.
Systemwide, the expected number of dropouts equals 1123.51, or 56.43% of
those initially waiting for assignments. This represents a noticeable
increase from the 49.2% of all three bedroom households expected to drop

out under the multiqueue system.

6.3 Citywide First Available Unit System

To model the implications of a citywide assignment scheme, we use
the multiproject approach of Chapter 5. First, we set

p‘sys = 2“’1 = 168.4 (6.4)
i

as the system wide annual assignement rate for three bedroom units. From
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Table 6.9

Results from Single Project Assignment Scheme

PROJECT

Charlestown
Mission Hill
Lenox Street
Orchard Park
Cathedral
Maverick
Franklin Hill
Whittier St.
Beech St.
Mission Extension
Columbia Point
Mary Ellen McCormack
01d Colony

West Newton St.
Rutland
Heritage
Broadway

Camden
Commonwealth
Faneuil

Fairmont
Archdale

Orient Heights
Gallivan Blvd
Franklin Field
South St.
Franklin Elderly

-
wwg

-

—
S U - O® = D)= = h= O 0O

69
179
128

76
127

73
104

74

68

45

144
65
127
26

35
1
79
67
71
53
253
15
88

Mean
Number E(wy)

Assigned (years) E(Np)
39.48 6.58 29,52
92.88 7.74 86.12

3.07 30.65 124.94
57.63 3.39 18.37
77.35 5.95 49.65
52.52 4.04 20.48
53.90 7.70 50.10
30.27 10.09 43.73
49.79 3.83 18.21
25.84 6.46 19.16

2.88 0.36 .12
54.75 10.95 89.25
43 .56 4.84 21.44

3.06 30.60 123.94
17.80 4.45 8.20

1.26 12.60 5.74

1.63 1.63 .37
16.66 8.33 18.34

6.15 6.15 4.85
56.70 4.05 22.30
15.38 15.38 51.62
44.56 5.57 26.44
44.08 2.32 8.92
23.59 23.59 229.41

9.72 4.86 5.28
42.35 8.47 45.65

.64 6.42 1.36



equation (6.2) we obtain the expected time to process all 2150 households

awaiting assignments as:

2150 1

= X _
) n=1 (-153n + 168.4) 7.08 (6.5)

E(v, 150

This result is somewhat astonishing in its own right. Ignoring the
possibility of priority assignments, and assuming that households would
accept whatever units are offered whenever they are located, it would
take about 7 years to house all three bedroom households waiting for
assignments as of November 1983. This represents the shortest amount of
time in which these assignments could occur! The result suggests that
waiting lists should be closed, at least for some projects, owing to
excessive waiting times.

In a first available unit system, mean depletion times are equal at
all projects. Recall that the expected number of households assigned to
project i simply equals MY4E(wy). These figures are presented in Table
6.10. All variability in tenant allocations can now be attributed to the
different assignment rates at the different projects. As such, the
citywide first available unit system demonstrates the smallest
variability in housing assignments among tenant assignment systems for
our data.

The expected number of dropouts in the citywide system is given by
equation (6.3) using Ugyg and the total number of households waiting
citywide for three bedroom units; the actual figure equals 2150 - 168.4 X
7.08 = 957.73. Thus, one would expect 44.55% of all households to drop
out. This represents a decrease from the 49.2% of all households that

are expected to drop out in the multiqueue system.
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Table 6.10

Results from Citywide First Available Unit System

Project

Charlestown
Mission Hill
Lenox St.
Orchard Park
Cathedral
Maverick
Franklin Hill
Whittier St.
Beech St.
Mission Extension
Columbia Point
Mary Ellen McCormack
0l1d Colony

West Newton St.
Rutland

Heritage
Broadway

Camden
Commonwealth
Faneuil
Fairmont
Archdale

Orient Heights
Gallivan Blvd
Franklin Field
South St.
Franklin Elderly

Moveout Rate
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6
12
.1
17
13
13

7

-
w

-T2 OO a2 = h = OO0 0NW

-—

—

Mean Number Assigned

42.48
84.96
.71
120.36
92.04
92.04
49.56
21.24
92.04
28.32
56.64
35.40
63.72
.71
28.32
.71
7.08
14.16
7.08
99.12
7.08
56 .64
134.52
7.08
14.16
35.40
.71



An interesting question to consider ' relates to the number of
households in a citywide first available unit system who would have
received an assignment to a project in their choice set. If this
figure is relatively high, one would not expect to encounter major
objections from tenants if a switch to a citywide system was proposed.
If this figure is low, then a change to a citywide system could have
the effect of causing many would be tenants to drop out of public
housing rather than accept a unit in an undesirable location.

To calculate the likelihood that a tenant is assigned to a project
in their choice set under a citywide assignment scheme, we note that

Pr{assignment to a unit} = Pr{assigned unit is in assignment}

in choice set a choice set occurs

X pr{assignment occurs} (6.6)
The probability that an assignment occurs is simply the dropout

probability subtracted from 1. For our data,
Pr{assignment occurs} = 1 - .4455 = .5545 (6.7)
Now, the probability that an assigned unit is in a choice set given
that an assignment occurs can be estimated by

Pr{assigned unit is in | assignment} =

a choice set occurs

1 N household j is assigned a household j

5 I priunit in the choice is assigned} (6.8)
j=1 set Cj

In words, we will estimate the conditional likelihood of an
assignment occuring in a choice set by averaging the household specific
likelihoods of this same event. These household specific probabilities
are easy to obtain:

household j is assigned a household j
Pr{ unit in the choice set Cj | is assigned }
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= i€C, ui (6.9)
_—
Y
1

where the lj's represent the assignment rates at the various projects.
Thus, we estimate the conditional probability of an assignment belonging

to some choice set given an assignment occurs as

by
igned unit is i i t 13 iec 'y
pr{ @ssigned un s in | assignment ; 1 ¢ ] (6.10)
a choice set occurs N 5=1 z “1

i
For our data, application of equation (6.10) yields a conditional
probability of assignment to a choice set given that an assignment occurs
of .0855. Combining our results, we obtain
assignment to a

Pr{ unit in a choice set} = .0855 X _5545 (6.11)

.0474

A switch to a citywide first available unit system would result in less
than 5% of the 2150 households waiting as of November 1983 for 3 bedroom
apartments receiving assignments in desirable projects. Given this
result, any attempt to change from the current multiqueue system to a

citywide first available unit system must be viewed as unwise.

6.4 Other Issues

We have focused on the impact of changing the current multiqueue
system to either a single project assignment scheme or a citywide first
available unit system. There are a number of other issues one could
address using the methods we have developed; two of them shall be briefly

mentioned.
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6.4.1 Categorical Priorities

Our models ignored the effect of prioritized arrivals as these
represent a small percentage of all applicants for BHA housing units.
However, given the relatively long waiting times for housing assignments,
the effect of priorities (such as emergencies) could have a major impact
upon the waiting times for standard applicants, and hence upon the number
of dropouts from the system. We already know how to incorporate the
affect of categorical priorities into single project and citywide first
available unit systems. The simulation model could also be modified to
incorporate the effect of priorities on tenant allocations and waiting

times.

6.4.2 Blend Priorities

Iwo major policy reforms are currently being reviewed by the BHA.
The first involves income mixing, while the second involves racial
integration. In both cases, the BHA has specified the desired project
compositions, in terms of racial and income mixes, for most projects in
the authority. Models of blend priorities could be used to determine the
time necessary to achieve these goals, and the impact of these policies
on tenant waiting times.

As an example, the Gallivan Blvd. housing project currently
possesses a racial mix of 46.4% white households and 53.6% non-white
households (from BHA records). The new racial mixing plan calls for two
white households to be admitted for every non-white household, implying a
target mix of 67% white households, and 33% non-white households. The
project is comprised of 250 households with a total moveout rate of 5
households per year across all apartment types. From equation (4.67) of

Chapter 4, we see that if current trends continue, the expected number of
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white households in Gallivan Blvd. on the mth move after implementing the

stated racial blend priority equals

hyhite,m = 250 X .67 + (250 X .464 - 250 X .67)(1 - 1/250)0
m=0,1,2,...

167.5 - 51.5 (.996)1 (6.12)

]

At a pace of roughly five moves per year, we see that after 10 years (or
50 moves), the expected number of white households in Gallivan Blvd would
equal (using m=50 in equation (6.12)) 125, or 50% of the total project
population. After 20 years {(or 100 moves), the mean number of white
households would equal 133, or about 53% of the project population. The
process could only move faster if the moveout rate increased, or if the
blend probabilities were changed to favor white households more heavily.
While these results are hardly exact, they should serve to convince the
reader that the integration of the Gallivan Blvd project will take a long

time to achieve.

6.5 Summary

This chapter has illustrated a number of useful points. Fist, we
showed that one can predict waiting times and tenant allocations in a
complex system like the BHA using our models. Secondly, we showed how
one can perform various policy analyses using the models developed in
Chapters 4 and 5. We examined the impacts of single project and citywide
first available unit systems on housing assignments and waiting times,
and also considered the choice effects associated with a citywide scheme.
Finally, we mentioned some other issues that could be studied, such as
the impact of categorical priorities, and the impact of racial and income
mixing on tenant allocations, waiting times, and project compositions.

While we have not tried to be exhaustive, this chapter has hopefully
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served the purpose of demonstrating the potential usefulness of tenant

assignment modeling in a policy context.
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Appendix 6.1

This program simulates a tenant assignment System whera tenants are
assigned on a first come first serve Dasis within choice serts Oropout
18 1ncorpnrated into the model. The mode! computas housenold specific
measur=s, as well 3s system wice 3tatistics This program is the
property of Ed Kaplan, Dept. of Urban Studies and Plarning. MIT

ononnononon

double precision dseed
comman proj (33,3000}, x(3,3000),wt3,3000),drep( 1000}, tdrop( 3000) . 1servel( 30001, avgl(70) . avglsal 70).s1g1(70), avgwal 70) . 519w 70} . p(
3).,avgwi3)

common rl{70), r1sq(70) . risum(70) wiot{70) wtotsal 70}, rwsumi 700, ratalS0) . avawsal 70,
Bihsnidl 70, 160001, rmut 7O, nQl 70), 1al( 70) ., tT13000) ., 1fac(3000), Iservel 70} .1p(9000)

common t_ tally dAmu,dropn,drapn , drpsum,. np.on.nc,.nsim ksim, c . ntypes, itype.dseed

integer c.proj.tally

N

a

here 15 the main ~calling sequence

f

call rnout
catl it
40 10 ksim=1 nsam
ifFlksim/ 1010 . 2q. ks m} print, “roung” ksim
call servi-a
call update
10 continue
call report
stop
end

subroutine 1NPUt

double precision dsaed

common crojpl3, 30000, «(3,3000) . w(3,3000).dropl 30001, tdropt J00O}. iservei3000).avgl(70) avgisal70).s1gl(79) avgwal 70} s1gwi 701, pl
3).avgwi 1)

common r1(70) risal 701, lsum{70) wtot(70) . wtotsat 701 . rusumi 701 . ratel S0}, avawsal 70},
Bi1hsniAl 70, 1700 ) . rmul 7T0) . ngl 701, 1a(T9), 11(3000) ., 1fac(3000) . iservai 70), ip( 9020}

common t. tally, amu, aropn,dropn, drpsum.np,.nn.nc. nsim ksim. c, ntypes. i type.dseea

intager c.proj.tally

This routine inputs data from the terminal and from files 7 and 8.

ono

rewind 7
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rewind 8

c Input parametsrs from terminal
print, Input number of unit types, tvoe desired for this run,®
print, “seead for random number generator.”
print, “numoer of choices allowad. and numper of simulations.”
read. ntypes.itype. dseed.nc,nsim
(< read in project information
i=0
10 hEred
read(7.15 end=10) 1al i) (ratelk) k=1 ntvoes)
15 formariv)
iftt1l1} e1.0) qo to 20
rmut s 1=ratel 1typel
go t2 10
-] set up dropcut -ate
20 np=1-t
dmuTratel t pea)
go to 40
A praint “freor on rput - project faile funit nT)**
stop
o reaag 'm inaivioual 1ntarmat 1on
40 =0
50 jEye!
readi®. 15 ann-hO) Iprojic,ji.c=1 ncl
c check 'o sea& that ar least one choice 'S a real project
do 42 i=1.np
g0 42 c=1 nc
Vfiprojic. 1) ag. 1l 1)) go to 50
42 continue
o Bl
go ta 50
B0 nh=jp-i
praint, “nntt on
rerurn
and
subroutine 1Nit
doubla pracision dieeg
common projl3,3000). <1 3.3000),w(3,3000).dropl 3000) . taropl 30001}, isarve(3000).avgl (70}, avglsal 70).s51gl(70), avgwal 70} s1gwi T
3).avgwi 3}

common ri(70) risal 70).risumi 70) .wtot{70) . wtotsal 7O} . rwsum( 70).rate(50) . avgwsql70).
6|hsn!dl?0.‘Ouol.rmu|701_nqt?G).|a|?0!,1:19000).\!ac19000].ls-rvel?Ol,|ol9000l

=

cammon t,tally.umu.arocn.crann!.urpsuu.no,nh.nc.nlln_ksIm.c.n!vn.s.ltyno.ds

integer c.proj.tally
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20

40
10

this routime 'nitializes simulation variables
initialize aggregate variables

do 10 i=1t.mp
ri(ti)=0
risqgti)=0Q
risum(1)-0
wtot( 4 1=0
wtatsai i h=0
rwsuml v p =0
nai =0
Tservel i1
continue

initialze aropout measures
dropn=)

Arapng T

drosums=’}

imitialre counter

tally=)

initialize housenold vartaoies

ao 20 j=1.nh

tarepl )=
isarvai )=
do 20 c=1. nc
{c.))=0
wic, 1 ¥=0
continuae

farm 1nitral queues at projacts

ao 10 f='.rn

dgo 40 -t N

do S0 vt ~n

iffprojte. ) ne dli}) go to 50O
nat i) snacy st

TRshidgl . nal vy

go to 40

cant inue

continue

cont inue

return
end

subroutine service
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double precision dseed
comman pro)(3, 30001, %(3,3000).w{3,3000) . dropl 3000}, tarop( 3000} 1sarve({3000),avgl {70}

3),avgui3)

50

S1

52

53

common r1170),r15a(70),risum(70),wtotl 70), wtotsal 70). rusumi( 70} . ratel( 50}, avowsal 70},
l|nsh|al1o,|000).rmul70l.nq(701,iulTo)_ltlQQOOi.|fac(9000|.lsarv-~Tol.tp(9000!

common !.tn|lv.1mu.aropn,oronn:.urpsu-.nn.nh,nc,nsln,h:In,c_ntypn:.|tyo¢.ds.ld

integer c.proj.tally

This 1s a service/allocate routine that generates, sorts and
locates service/drcpout times

set up the vector of transition times

kkk =0

do 10 v=1.mp

ifirnal1) eq.0) go to 10

=0

do 20 k=1 nali)
t=r-aloglgguofsidsaed)), rmul 1)
Wik TRkt

Ttlkku=r

Ifactiuk )=y

cont tnae
continue

generate dropout timas

do S0 1=t . nn

Kkk =mkks

trlkkki= -aloglagunfs{dseed))/amu
Ifacikkk l=np+)

continue

sort the transition times using shall sort

fgap=kkk
1gap='9ap/2

AMgEk Kk - 193D
do 23 (121 nmg
11211410930

f1=11

sflrriyy) ‘e o rt{1i)) go to S3
swap=tti i1}

te( it )=ttty

tt()))=swap

iswapsifactii)
1factirvi=rfacljy)
ifactjj)=iswap

1=y}

11=3}4-1gap

1F11) ge. ') go to 52
continue

if(igap.gt.1) go to S1
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< allocate housenolds

do 7O kkwi,kkk
if(tally eq. nn) return
f=1racikk)

c check for dropout

if(i gt.np) go to BO

iftiserve(il) . gt.nati)) go to 70

do 65 k=lserve(i) nalt}

J=insnidi k)

1f(}) gt.nn) print, "ERROR - j>nh* kk, 1fac(kk), j ksim
ifl) gt nn) stop

ifliservel )} eq.!) go to &6

Iservel 1)=k+1

iservaf )=t
tEr ik )
tally=rallvet
c assign to project, update measures

risumit)=risum( i)+
rwsumiyi=t
do 40 c-V.nc
tflproiic.)) ne 1ali)) go to 90
x(c jlertc,jIed
wilc jl=wic.jlet
go tn 7
90 continue

print. "ERROR - HSHLD ASSIGNED TO ILLEGAL PROJECT!I®
stop

66 continue

c saet project out of process
Isarvel i jznal i)+
go tn 70

< process dropout

BO j=i1-np
iflisarvel)). aq.1) go ta 70
tallustally+d
tertlkici
fserver1=1
drpsumsarpsums 1
droci ) Y=droot | )+
tdropt ; V=rdropl jiet
70 continue

return
end

subroutine update

double precision Aseed
cemmon proj(3,3000),x(3,3000),w(3,3000).drop(3000), tdrop(3000), iserve(3000) avgl (70}, avglsql70),5igl{70).a
3).avgwil)

wa{ 70) . 51gw(70) . pl
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3

common r1170),rtsai70) . risum(70) . wtot(70).wtotsql 70) . rusum(70)  rate{S0) avgwsalT0),
Aihsnial 70, 1000), reut 7O}, nal 70}, 1a( 70), tt(S000), 1 fFaci 2000), I servel 70}, 1013000}

common t, tally, dmu, dropn,dropn? . drpsum,.np,nh, nc . nsim ksim,c . ntypes, {type. dseed

integer c.proj,tally

this routine updates all counters after each simulation run
update dropout counters

dropnsar-pnsarnsoam

darepnd sdroon2+drosums <2

drpsums=:)

update project info

90 10 i*\.rp
FIE TR E g ber i sumd 1)
rlsatsi=risatadertisumg)es
rlsumt b9
Wttt dzwretl s herasoami + )
wtotsal s cetotsal v irrwsumi 1 jee
Fwsuml 1)
ilg@aryei 11
10 continue
upoate tally
tally=0
update iserve
do 20 =Y. .nn
isarvat =0
20 continue
return
end
sSubroutire report
double precision Ase&aq .
comman projtd, JoC0) ., xt3,30001,w(3,3000) . dropl 3000) , tdrop(3000) . iserve(3000) . avgl170).avgisal 70).s1gl( 70} avguql 10}, 819wl 70}, Pt
.avgwi d}

common r1(70) . risal 70),risumi 70) Wtot(70) wtotsa(70).rwsum{ 70} . ratal 50} avgwsal 70),
&ihsnial 70, 1000) ,rmu( 70) .nqi 701, 1a1 70}, tt(3000) . 1 faci 9000} . isarve( 7Q), 1p(9000)

common t.tally,dmu.gropn.dropn. drpsum. np.nh. Nc.nsim. ksim. c, ntypes, itype dseea

integer c.proj,tally
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this routine computes the final system statistics and proguces reports

process aggregate measures - first dropouts
rasfloatinsim)

avgarpsdropn/rn

avgarplrdrapn2/rn
S1garpasartiavgarp2-avgarps+2)

process project informaticn

do 10 1=1 . np
avglill=ritilirn

avgisa v )=risali1l/rn
sigifit=sartlavgisal1l-avglli)se2)
avaeat 1 lawtnti 1]l irn
avowsat 1 lsutorsal i i/en

si1awi ' 1=sartiavgwsal 1) -avgwgl i hee2)

continue

process housennld informaton

prant out indiviaual reports

writaiti, 205)
farmac! “IMDIVIOUAL RESULTS®)
wrrtag il 2060

206 formati/  “HOUSEHOLD® t1S, "WRAR® *20, “PREF1°

207

3

30

25

20

201

202

&ta0 “SREF2™ r47 ‘Prob ', tS4, “Wairt" t60, “PREFI"

t27."Prob. " t34, "Wait1",

Bt8N . “"rop Drapaur® +A7 *8vg Time tn Orapout®/’)

formatidx. 14,15 . F5 1,120,2x.13.t27 5 3.tJ4 £5. 1,

167, "Prop

t40 2x,

S.t74, "wadtt,

i3,147,

&FS5.3,154,F5.1,t60.2x.13.167.¢f5.3.t74,F5.1,t80.4x_f5.3,t97.5x,F5.1)

do 22 )=1.nh

pdrop=dropi | 1/rn

ataroo=u

iftarcoi ) gt. O} atdrop=tdropol j)/dropt )

whar )

do .nec

plcisvin gb/rn

avawl=)an

1ftelc, 1) @aa Q) go to 35

avgwinbswia 1/« b

whar Twrar+plelravgwicl

continue

ifiparco ea. 1) go to 25

wbarswnar/{1 -paroo)

wr
Bprojll.1).pi3).avgwid), parcp.atdrop

cont irue

(11.207) y.«nar projli1.)).p{1) avgwii) . prof(2,)).p(2).avgw(2).

produce output - first report - aggregate results to filalC

writel( 10, 701) ftype. nh.nsim

format{ “AGGREGATE S/STEM RESULTS - UNIT TYPE" 1x,13.5x, 14, HOUSEHOLOS

writel 10,2021

farmati,; “PROJECT®" t10Q.“MEAN NUMBER SERVED",tJ0,"Std. Deviation® 150,
&"MEAN DEPLETION TIME® t70.°Std. Deviation®//)
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203
Ele]

204

g0 S0 =% np
ifirnaiy) eq. Q) go to SO
writel 10.203) +a(i),avgl(1) siglli), avgwal i) . sigwti)

Formati2«, 13.110,5x.¢6.2.¢30. 4% ,f6.2,150,5%.F6.2,170.4x,f6.2)

cont inue
write out dropout info

writa{ 13, 204) avgdarp.sigdrp
format!//“EXPECTED NUMBER OF DROPOUTS=",f7.2 4x,. "Std

return
ena
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Chapter VII

Relocation Models for Public Housing Redevelopment Programs

A very different type of tenant assignment issue arises in the
context of project redevelopment programs. Given that many public
housing projects were constructed in the period following World War II;
these projects have literally come of age. In the Boston area alone,
four major housing projects are undergoing physical redevelopment at
tremendous expense; some relevant data are shown in Table 7.1. Given
these expenses, public housing authorities must be able to determine
how large developments can be rehabilitated within cost, time,
occupancy and other constraints.

Clearly, there are many complex issues involved in any
redevelopment process, including physical design problems, financing
techniques, tenant participation in program planning, construction
management, and overall program control. One issue central to all
public housing redevelopment efforts is the relocation problem - in
order to redevelop public housing stock current tenants must be
relocated to temporary quarters, and assigned to upgraded housing units
once these units are available. Relocation problems involve two broad
classes of issues. First, it should be clear that when relocating
tenants in a large public housing project, one is dealing with a large
population and its associated set of heterogeneous social concerns.
Some tenants may have occupied their current units for several years,
and could be understandably reluctant to move. Other groups of tenants
might insist on being moved together to neighboring units (e.g. an
elderly parent and his/her extended family). In implementing

relocation programs, these idiosyncracies cannot be ignored.
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Project

Commonwealth
Jefferson Park
West Broadway

Franklin Field

Source: New Lives for 0l1d Projects:

Table 7.1

Boston Area Redevelopment Projects

Total Redevelopment Number of Units

Cost per Unit

Costs

$31,566,275 392
$12,500,000 175
$29,176,000 341
$32,780,000 346

$80,526
$71,429
$85,560

$94,740

Revitalizing Public Housing,

Public Housing Research Group, MIT, 1983.
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On the other hand, there are the technical issues relating to
project feasibility. For example, it must be possible to relocate all
households from a building before that building can be constructed;
this must be true for all buildings. From a technical perspective,
there are three major components to any redevelopment project: a
design which dictates the distribution of completed apartments (by
type) across the housing project; a sequence which dictates the order
in which buildings are to be redeveloped; and a relocation plan which
dictates where tenants will move temporarily (permanently), when these
temporary (permanent) moves will occur, and the "rules" which govern
these moves.

Methods for surfacing relocation strategies should be of major
interest to public housing officials, yet to date, no proposals for
systematically attacking relocation problems are evident. In this
chapter, I discuss some technical aspects of relocation planning. We
will begin with the formulation of a scheduling model for a
redevelopment program at a project with a homogeneous tenant
population. The properties of this model are examined via a numerical
example. As the procedure for solving the model is computationally
complex, we propose some approximations. We close by considering a
number of improvements to the model formulation aimed at incorporating

more realistic aspects of relocation problems.

7.1 The Basic Relocation Problem

The notation used in this section is summarized in Table 7.2. We
begin by considering a homogeneous project consisting of B buildings.

Each building b in the project initially contains np households, b=1,2,...B.
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np

ap

Table 7.2

Notation for the Basic Relocation Model

number of households initially 1living in building b

number of apartments to be contained in building b as a result of
the redevelopment program

length of time necessary to redevelop building b
number of buildings in the project

{1 if building b undergoes redevelopment in week t
0 if not

number of households relocated from their initial homes in week t

number of new apartments completed and available for occupancy
project wide in week t

number of vacant units available for occupancy in week t
project duration

maximum feasible project duration
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All households in the project require the same unit type, and all
apartments in the project are of that required type.

The proposed redevelopment design for the project calls for ap
apartments to be present in building b after building b has been
redeveloped. Note that if building b represents a new building not
previously present, then np=0. Also note that if building b is to be
demolished, then ap=0. In general, ap can be greater than, equal to,
or less than np. Of course, a necessary (but not sufficient) condition
for the feasibility of the relocation design is that

B B
b=1 © =1 D

(7.1)

We assume that the time necessary to redevelop building b is known
and equal to Lp. Building b cannot undergo redevelopment until all
occupants of the building have been relocated. If building b undergoes
redevelopment in week t, then the work is completed in week t+Ly-1, and
the building may be reoccupied in week t+Ly.

Suppose that the building populations np and new apartment
allocations ayp are such that it is feasible to redevelop the project;
all buildings can be rehabilitated while all households are guaranteed
to be housed throughout the entirety of the project. The maximum

amount of time necessary to redevelop a feasible project equals

M= Z 1 + 1 (7.2)

This follows from the fact that the longest feasible schedule is given
by redeveloping buildings one at a time with no overlap in the

redevelopment process.
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We now define the indicator variable xu4 as

{ 1 if building b undergoes redevelopment in week t

Xt = ' 0 if not (7.3)

b=1,2,...,B
t=1,2,...,M-1}

The variable xpy will inform us of when building b begins to be
redeveloped. Clearly, we only need to consider starting weeks up to
M-Lp, as the project, if feasible must be completed by week M, and a
start date for building b beyond week M-Lj, would imply a project
completion date beyond week M, a contradiction. We also note that the

variables xp{ are constrained by

Z )(bt = 1 . b=1,2,...,B (704)

This result simply ensures that all buildings undergo rehabilitation
exactly once.

Once the decision variables xp+ are determined (we have not yet
stated how), several other interesting quantities may be defined.
First of all, we may define the number of households relocated from

their initial homes in week t, N¢, as

= % = -mi
N n X . t=1,2,...M-nin L (7.5)

b=1 b b
since when xpt equals 1, np households must be relocated from building
b. Similarly, we define the number of new apartments available for

occupancy in week t, Ay, as

B

A = L n
t~ b xb,t—Lb

t=1,2,...,M (7.6)
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since when xb,t_Lb equals 1, building b undergoes redevelopment in week
t-Lp, and hence is available for reoccupancy in week t. Upon
availability for reoccupancy, building b contributes ap new apartments
for assignment.

Finally, we define V{ to be the number of vacant units in the
project in week t. This quantity is clearly given by the balance
equation

Vi = Vg1 + Ap - Ng t=1,2,...,M (7.7)
The number of vacancies in week t equals the number of vacancies in
week t-1 plus the number of new apartments available for occupancy in
week t, minus the number of households relocated in week t. The
redevelopment program is assumed to start with an initial endowment of
vacancies V,. Also, to guarantee that all households always are housed
in every week of the redevelopment program, we require that

Ve 20 . t=1,2,...,M (7.8)
The number of vacancies is never allowed to become negative.

We are now able to formulate our basic relocation model. The
objective will be to find a sequence of construction which minimizes
the total time necessary to redevelop the project, subject to the
constraints that all households are always housed throughout the
redevelopment program. Let D be the duration of the redevelopment
project. We formulate the model as:
minimize D (7.9)

subject to:

(i) b} tx + L <D b=1,2,...,B
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b
(i1) pX X =1 b=1,2,...,B
=1
B
(iii) N, = X nX . t=1,2,...,M-min Ly
b=1 b
B
(iv) A =1L a t=1,2,...,M
t bxb,t—Lb
(V) Vt = Vt_1 + At - Nt t=1,2,...,M
(vi) veg 20 t=1,2,...,M

(vii) Xpt = 0 or 1 =1,2,...,M=Lp
=1,2

t
b=1,2,...,B

(viii) Vo is given

The model minimizes project duration subject to a set of
constraints. Constraint (i) states that all buildings are completed
within the project duration, and in fact defines the project duration.
Constraint (ii) ensures that all buildings are constructed exactly
once. Constraints (iii) through (v) define the number of households
relocated in week t, the number of new apartments available for
occupancy in week t, and the number of vacancies in week t. Constraint
(vi) insists that the number of vacancies remains non-negative
throughout the life of the redevelopment program; this guarantees that
all households are always housed. Constraint (vii) merely enforces our
coding device for identifying start times for buildings, while
constraint (viii) identifies the initial endowment of vacancies.

As formulated, the model is an integer program. Various integer
programming codes could be used to implement this model; the program I
used is a zero-one code from the University of Illinois at

Urbana-Champaign named ILLIP-2 (Young, Liu, Baugh, and Muroga (1977)).
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To demonstrate the properties of this model, we will consider a

numerical example.

7.2 A Numerical Example

As a numerical example, we will consider a project consisting of
five buildings with building populations np, apartment distributions
ap, and redevelopment times Lp as shown in Table 7.3. It appears that
the project is conceivably workable, depending upon the initial number
of vacancies V,, as there are enough new apartments being created (57)
to house the initial project population (54). Using the integer
program developed, we determined optimal construction sequences for
values of V5 ranging from 8 to 54. For V, less than 8, it would be
impossible to evacuate any building, while for V5 greater than or equal
to 54, all buildings may be emptied instantaneously.

In Figure 7.1, the optimal project duration is plotted as a
function of the initial number of vacancies V,. The first fact noticed
is that the minimum project duration monotonically decreases with the
initial vacancy endowment. However, the relationship between D and Vg
is not continuous; rather, there are many ranges of Vo within which D
remains constant. For example, any value of V, in the range 42 to 53
inclusive yields a minimum project duration of 11 weeks. If these data
represented a real project where initial vacancies could cost $10,000
per unit to provide, the analysis in Figure 7.1 could conceivably save
over $100,000 of needless expenditures by noting the ineffectiveness of
providing additional vacancies in the cited range.

Secondly, it is interesting to note that the minimum number of
vacancies necessary to guarantee project feasibility is 10 even though

building 2 only contains 8 households at the start, and building 5
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Data for the Relocation Example

Table 7.3
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contains only 9 initial households. Let us see why this is true.
Suppose V, equals 8. We could begin by clearing building 2; upon
completion of building 2 we would now possess 12 vacancies (8 initial
vacancies minus 8 households cleared plus 12 new units). With 12
vacancies, we could clear either building 1, building 3 or building 5.
Building 5 does not effect the vacancy pool, as ng=ag=9. However,
clearing either building 1 or building 3 will dictate a net loss of
vacancies. Suppose we clear building 3 first. After finishing 3, we
are left with 10 vacancies, sufficient for clearing building 1.
Unfortunately, after finishing building 1, there are only 8 vacancies
left, an insufficient number to clear building 4. Thus, the sequence is
infeasible. Had we cleared building 1 before building 3, we would have
become stuck even earlier. We have just shown that no sequence is
feasible for V,=8. Similar reasoning shows that Vo=9 also dictates an
infeasible project.

With respect to the actual sequences resulting from the minimum
project time criterion, there are often multiple optima for given values
of V5; this is especially true as V, increases. This has important
implications in practice; some construction sequences may be preferred
to others for reasons of geographic proximity, ease of movement or
access, etc. The changes in sequence (and project duration) occur when
new possibilities for emptying buildings arise. For example, at Vo=14,
the building sequence 2-3-4-1-5 is optimal and yields a project duration
of 25 weeks. When V, increases to 15, the building sequence 4-2-5-1-3
is optimal and yields a project duration of 20 weeks. This shift is
attributable to the fact that at Vo=15, it is possible to clear building

4, a feat not possible if Vg<15.
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A feature of good sequences is that they efficiently utilize the
initial vacancies provided, and efficiently allocate new units as they
become available. To see this, one can examine V¢, the number of
vacancies available in week t (i.e. the number of unoccupied units).
Figure 7.2 plots Vy as a function of time for the building sequence
4-2-5-1-3 with Vo=15. Note how efficiently units are utilized. For the
first nine weeks of the project, no units are unoccupied. For the next
five weeks, a single unit is left vacant; there are no vacancies for the
ensuing five weeks. All buildings have begun redevelopment by week 15.
Vacancies only accumulate at the end of the program as buildings become
complete.

This example also demonstrates the amount of overlap possible in an
efficient sequence; this is summarized in Figure 7.3. From weeks 9
through 19, there are always two buildings simultaneously being
redeveloped. Note how the completion of some buildings triggers the
beginning of redevelopment for others; the completion of building 4
enables the start of buildings 2 and 5, the completion of 5 enables the
start of building 1, and the completion of building 2 enables the start
of building 3.

As this example has demonstrated, our model is quite useful in
determining redevelopment sequences and analyzing the consequences of a
particular sequence. However, the integer programming solution is
complicated; most housing authorities do not have the capability to
routinely solve large mathematical programs. Therefore, it is useful to

consider some approximations; these are the subject of the next section.
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Figure 7.3

Redevelopment Sequence
4-2-5-1-3 with Vgo=15

Building
4 € ———————— >
2 € o e e e e >
5 e —— >
1 e >
3 e e >
Number
of Buildings
Under
Redevelopment _
2—-
| |
1 _ I |
I I
NS I I N N N Y A A A A O O O
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

257

Time in Weeks



7.3 Approximations to the Relocation Model

7.3.1 Linear Programming Relaxation

Perhaps the most obvious modification to our procedure involves
relaxing the integrality constraint (vii) on Xpt in the formulation
(7.9). Such a relaxation would allow our model to be solved as a linear
program rather than as an integer program, and linear programs are much
easier to solve. If the values for xp,t produced by a linear program
were almost always O or 1, then one could still contruct useful
schedules from the approximate results. However, if the resulting
values of xht are heavily fractional, the linear programming approach
would not prove useful.

As an experiment, I ran our model as a linear program using the
package available through the Consistent System (Klensin and Dawson,
1981) for the data presented in Table 7.3 using values of 8, 12 and 20
for Vo. The results were not at all encouraging. The values for Xpt
were not only fractional; they were not even closely linked
chronologically.

As an example, consider the case where V, equals 8. From our
previous work, we know that this case represents an infeasible project
(i.e. D=w). Yet the linear program computes a project duration of
21.16 weeks. As for the values of xpht, consider the "fractional
starting dates"™ for building 1:

X1,14 = .0347

X1, 15 = .5698

X1,16 Y

X1,17 = .1928
X1,18 = 0
X1,19 = .2027
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The results say that about 3.5% of building 1 starts in week 14, 57%
starts in week 15, 19% starts in week 17, etc. The results for other
buildings and the other values of V, mentioned are no better. Thus,
despite the simplicity involved in removing the integrality constraint,
linear programming does not represent a useful approach to approximating

our model.

7.3.2 Myopic Algorithm

A very different approximation can be developed based on physical
reasoning. One would suspect that to efficiently complete a relocation
schedule, one wants to "produce" new apartments as quickly as possible.
For building b, the rate at which apartments are produced is given by
ap/Lp, the ratio of the number of apartments created to the
redevelopment time for the building. Thus, a reasonable criterion to
use in determining which buildings to initially redevelop is

B a
maximize I (EE) X1 . (7.10)
b=1 b
This objective function attempts to maximize the rate of production of
new apartments project wide.

Of course, not all buildings can be selected. We still have to
satisfy an occupancy constraint of the form

%

o n X < v . (7.11)
Constraint (7.11) states that the number of households relocated in the
first week cannot exceed the available number of vacancies available.

Combining (7.10) and (7.11) with the integrality constraint xp1=0

or 1, we have a procedure for deciding which buildings to begin in the

first week, namely:
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B ab
maximize b (E—) X1 (7.12)
b=1 b
B
i z <
subject to nbxb1 Vo
b=1
Xp1 = 0 or 1 b=1,...,B

The program (7.12) is a knapsack problem (for example, see Shapiro

(1979, p.116)), and can be easily solved using dynamic programming.

Let CB(V) be the solution to the partial problem

Bab
maximize z %:—) X1 (7.13)
b=1 b
B
5 X <
subject to nbxb1 V0
b=1
Xp1 = 0 or 1
Then a recursion relating CB(') to C () can be defined as
+1
2841
CB+1(V) = maximum (CB(V_nB+1xB+1,1) + IE:: XB+1,1) (7.14)

*Be1,1

As X 41,1 can only take on the values 0 or 1, the recursion simplifies

B

to

a
CB+1(V) = maximum (CB(V-nB+1) + B+1

T , Cg(v)) (7.15)
B+1

If we define Co(v)=0, recursions (7.14) or (7.15) can be iterated until

CB(V) has been tabulated. The optimal value of the objective function

C;(Vo) yields the maximum apartment production rate attainable, while

the optimal mix of buildings to begin in the first week is given by

those values of b for which xp1=1. This procedure could easily be

programmed on a microcomputer, or performed by hand for small problems.
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We have outlined an approach for making an initial decision. To
schedule an entire project, we can use our approach sequentially. After
a set of buildings has been chosen for redevelopment, we use the
knapsack model to decide which buildings should next be redeveloped. To
do this, we determine the earliest date at which the pool of vacancies
will change, and update the vacancy pool at that time. We can then
reapply the knapsack model to the buildings not chosen in the first
round, using the updated vacancy pool as a constraint. This process is
repeated until all buildings have been scheduled for redevelopment, or
until a particular knapsack attempt proves infeasible. This "myopic

algorithm" is formally described below:
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1)

2)

3)

4)

5)

6)

7)

8)

9)

Myopic Algorithm

Initialize v = Vg5, t=1, all xbj's=0 b=1,...,B
j=1,...,M-Lp
t-1
Define the set F_ = {b| I X = 0}
t j=1 J
(Note that Fq contains all buildings)
b
Solve maximum X —
per Lp Pt
t
% < = €
Subject to nbxbt v ’ xbt 0 or 1 b Ft
bEF
t
Xp = 0 beFt

*
Call optimal solution Xy 0 OF STOP if infeasible.

< % *
v V = n
Ler b bt

t
t *
i L = b 3
For each building b, set b . (J+Lb) xbj
j=1
set L «min {& |% >t}
b
Set t < %
B *
vtv+ I a
- bxb,t—Lb
t *
Are there any b such that X Xy = 0?

3=1

If yes, go to (2)

*
If no, STOP. xbj's give optimal schedule, D = most recent value of t.
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The steps of this algorithm will now be briefly summarized. Step 1
initializes the number of vacancies to V,, sets the time counter to 1,
and enables all buildings available for redevelopment. Step 2 identifies
all buildings that have yet to undergo construction, while Step 3 chooses
those buildings to redevelop next on the basis of apartment production
rates or determines that the sequence being proposed is infeasible and
halts the process. Step 4 updates the vacancy pool by accounting for
newly relocated households. Steps 5 and 6 determine when the next
building completion occurs, and Step 7 sets the time counter to that
event in time. 1In Step 8, the vacancy pool is updated to reflect new
apartments just completed. Step 9 checks to see if all buildings have
undergone redevelopment; if not, the process returns to Step 2. If all
buildings have been assigned starting dates, the algorithm halts with the
"optimal" schedule and project duration.

This myopic algorithm was applied by hand to the data from Table 7.3
for the cases Vo=8, Vo=12 and Vo=19. For V,=8, the algorithm terminated
with an infeasible sequence, as expected. At Vo =12, the algorithm
produced the building sequence 2-4-1-5-3 for a project duration of 25
weeks; this sequence is in fact optimal. At Vo=19, the algorithm
produced the sequence 2-5-1-3-4 for a project duration of 20 weeks. This
sequence is also optimal. It cannot be concluded that the algorithm will
always produce optimal results, but these examples are certainly

encouraging and warrant further study of the myopic approach.

7.4 Generalization of the Relocation Model

We have invested a good deal of effort in analyzing the properties
of a basic relocation model. We will now consider a few modifications of
the model which should render it more realistic at least in its

formulation.
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7.4.1 Labor Force Considerations

As our model is currently formulated, we could achieve some
paradoxical results. Suppose there are two buildings, 1 and 2, with
ni=ai=nz=a2=5, and Lq=L=10. Also, suppose that building 3 has n3=a3=10
and L3=20. If V,=20, the three buildings would be completed 20 weeks
after starting, as all buildings could be cleared.

Suppose Vo=10. Either building 3 could be emptied, taking 20 weeks
to produce 10 units, or both buildings 1 and 2 could be cleared, also

producing 10 units, but in only 10 weeks. Something is wrong - the

hidden factor is that twice the effort is required to actually work on
the two small buildings compared to the one large building. Our
formulations have, in effect, assumed an "infinite labor force” which can
be used at will.

If we insist that some maximum number of apartments under
construction, say %;,,, cannot be exceeded in any week, then a reasonable
constraint is given by

B 3 a

DR (=) x, ¢ §=1,2,....M (7.16)

L
= = - +
b=1 t=j Lb 1 b

This constraint says that the total number of apartments under
construction per week cannot exceed Op.y,. Note that the limits of
summation run from j-Lp+! to j. This is consistent with our postulate
that buildings take Ly, weeks to be redeveloped. Also note that the
number of apartments being redeveloped in a given week is estimated by

ap/Lp, the same production rate measure used in our myopic model.
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7.4.2 Sequence Constraints

It may be in a particular application that certain constraints are
posed on feasible sequences. For example, it may be that two buildings b
and b' must follow in order, that is, building b must precede building
b'. This is easily coded as

M-L M-~L

b b!
T ¢ < L t (7.17)
et *vt et *pre

7.4.3 Multiple Unit Types

Perhaps the most obvious deficiency to our model is that it fails to
distinguish different unit types. Suppose that households of type k are
now matched to units of type k, k=1,...,K. Types could refer to size,
special features for the handicapped, or other attributes. The initial
building populations would now be denoted by npx, the number of type k
households in building b. Similarly, the number of created apartments of
type k in building b would be denoted by apk. Finally, the initial
number of type k vacancies could be denoted by Vgk.

Using an obvious notation, we could define the number of type k
households relocated, type k apartments made available, and type k

vacancies in week t as

B
Ny = by noX, =1,...,K (7.18)
b=1
B
A. = L a k=1,...,K (7.19)
N *p,t L,
Vek = Vt-1,k AL - N k=1,...,K (7.20)

and insist that Vtk>0 for every week t and unit/household type k.
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If the unit type classifications strictly refer to size, then it is
acceptable to place type k households into type k, k+1, ..., K units;
households must be housed in units that are of sufficient size. This
formulation requires us to define N¢x, Atx and V¢ in terms of the number
of households relocated, apartments created, and vacancies available in
week t for households requiring units of type k or larger. Our

constraints would become

K B

Ntk = xfk bf1 LN (7.21)
K B

A = lfk bi a g xb’t_Lb (7.22)

Vix would remain defined as before. This particular formulation will be

demonstrated within the context of an actual redevelopment effort in

Chapter 8.
7.5 Summary

This chapter has developed some theory for determining schedules for
public housing redevelopment programs. The key to our approach has been
to recognize that all tenants must always be assigned to appropriate
housing units. A basic model was developed in detail, and a promising
approximation was also presented. Modifications to our basic model aimed
at incorporating more of the realities of relocation problems were also
considered.

While more work remains to be done with models for relocation
programs (particularly with the approximation procedure), the models are
sufficiently developed for application to real problems. Such an

application is illustrated in the next chapter.
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Chapter VIII

Applying Relocation Models: The Franklin Field Project

8.1 Background

Franklin Field is a housing project operated by the Boston Housing
Authority. The project, initially occupied in 1954, was designed to
house 504 households in nineteen buildings. The original unit mix
consisted of 150 one bedroom, 179 two bedroom, 100 three bedroom and 75
four bedroom apartments.

For a variety of reasons, the physical condition of the Franklin
Field project has become problematic. According to the MIT Public
Housing Research Group,

"The buildings are, in general, deteriorated. The shared entries
and halls, for example, receive excessive use/traffic by families
with many children. A single entry commonly serves 12 units.
Security cannot be maintained since apartments are too small and
stairway access is uncontrolled. Thus common areas become play
areas."
"The apartments are small and poorly laid out and do not
adequately house the activities of family 1living. The livingroom
in a typical unit is laid out to work as a corridor, kitchens
and bathrooms are small, dining rooms are lacking, storage is
inadequate, bedrooms are too small for double occupancy, and
there is only one bedroom in large units."
(Public Housing Research
Group, 1983, p.66)
Issues such as these led to the current drive to redevelop the

Franklin Field project. Beginning in 1978 with a $3.5 million

modernization grant from the Massachusetts Executive Office of
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Communities and Development (Franklin Field is owned by the
Commonwealth of Massachusetts) to renovate 48 apartments, the
redevelopment effort now involves some $32,780,000 in both state and
federal monies. The original unit count of 504 is being reduced to 346
redesigned apartments; thus the redevelopment program is costing about
$94,740 per unit.

In reducing the number of units from 504 to 346, the Public
Housing Research Group notes that

"The primary goal of the redevelopment program is the adequate

housing of those families who currently live in Franklin Field.

Of the 346 proposed redesigned units, 26% are either duplex or

triplex to provide larger families with greater privacy and

separate entries and to thus reduce the use of shared entries and

enhance security for both shared and private entries.

«.+. The proposal calls for all units to increase in size and to be

designed to better facilitate their use by family members."

(Public Housing Research
Group, 1983, p.66)

To implement the redevelopment project, it was necessary to
determine a sequence of construction that allowed for the feasible
relocation of those households already living in the project. The
redevelopment planning team (consisting of Boston Housing Authority
planners, representatives of Carr, Lynch Associates and Wallace, Floyd
Associates, redevelopment architects, and the Franklin Field Tenant
Task Force) initially moved the occupants of nine buildings (some 93
households) off-site leaving 198 households on-site. It was at this

point that I was contacted to aid in determining a feasible
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construction sequence and relocation strategy for the Franklin Field
redevelopment program.

In the next few sections, I will describe how this problem was
approached. The data involved will be presented, and the particular
version of our relocation model from Chapter 7 used for this project
will be discussed. Finally, a quick method used for allocating

households to units will be described.

8.2 Data for the Franklin Field Project

The first issue faced was the identification of the scale of
construction to take place. As buildings in the Franklin Field project
fall into rather natural groupings, it was decided that with the
exception of a single building, all construction and reoccupancy would
take place according to building pairs. As the project buildings are
roughly the same size and require comparable amounts of work, it was
also decided to assign equal redevelopment times to all pairs of
buildings. It was felt that each building pair would require roughly
six months of work. However, given the assumption that all building
pairs require equal redevelopment times, the actual time involved
becomes immaterial to the determination of an optimal construction
sequence. Thus, without loss of generality, the times for all building
pairs were assigned the value 1.

The Franklin Field redevelopment plan calls for the creation of
some 31 distinct unit types. For occupancy purposes, the design
distinctions between many units become unimportant. The project staff
from Wallace, Floyd Associates therefore reduced the number of unit
types necessary to consider from 31 to 11; the characteristics of these

unit types are shown in Table 8.1.
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Unit Type Bedrooms
1 1
2 1 .1/2
3 1 .2/2
4 2
5 2 1/2
6 3
7 2 2/2
8 3. 1/2
9 4
10 3 2/2
1 5
Source:

Table 8.1

Unit Types for the Franklin Field

Redevelopment Program

Number of Occupants

2

3

10

Memo from Wallace, Floyd Associates, February 11, 1983.
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T2

Unit
Type (k)

10

11

nk altk
0 0
0 0
0 0]
0 7
0] 4
0 2
0 1
o 1
0 0
0 1

2
n2k azk
0 6
0 ]
0 0
o0 10
0 6
0 1
0 1
0 1
0 3
0 1
0 0

3
N3k a3sk
0 4
0 4
0 0
0 8
0 4
0 4
o o
0 4
0 2
0 0
0 2

Table 8.

2

Distribution and Demand for Units

by Type for the Franklin Field

4
N4k a4k
0 2
0 2
0 0
o 1
0 5
0 4
0 1
0 2
0 1
o 1
0 1

Redevelopment Program

Building Pair (b)

5
nsx ask
0 2
0 2
0 0
o 11
0 6
0 4
0 1
0 3
0 1
o 1
0 1

6
ek agk
12 14
10 0

5 6
0] 2
5 10
0 12
7 0
4 0
0 4
3 0
1 0

N7k a7zk
4 8
9 2

10 ]
o] 6
5 5
o 11
4 0
2 2
0 4
1 0]

8
ngk agk
3 4
7 4
9 0
0 8
3 4
2 4
1 0
1 4
0 2
1 0
0 2

9
ngk agk
4 4
13 4
13 0
0 8
4 4
0 4
4 0
0 4
0 2
1 0
0 2

10
n10k 410k
2 2
25 26
14 0
0 4
4 2
0 2
3 0
0 2
0 1
1 0
0] 1

11

(off-site)
ni{1k a11k
10 0
27 0
25 0
3 0
9 0
5 0
12 0
2 0
0 0
0 0
0 0



Table 8.3

Vacancies by Type Resulting from the
Completion of Building Pairs 1 through 5

Unit Type (k) Number of Vacancies (vok
1 14 149
2 8 135
3 0 127
4 47 127
5 25 80
6 25 55
7 4 30
8 11 26
9 7 15

10 4 8
11 4 4

Source: Table 8.2
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Having identified these 11 unit types, the next step was to
determine the distribution of created units by type across building
pairs and to determine the number of households in each building pair
(and off-site) requiring at a minimum particular unit types. This
information was also compiled by the Wallace, Floyd Associates team
and is present in Table 8.2 using the notation of Chapter 7.

As mentioned previously, several buildings were initially emptied,
and their occupants were temporarily relocated off-site in other
available public housing units. The buildings vacated (represented by
building pairs 1 through 5 in Table 8.2) were initially redeveloped.
Upon completion, these buildings provided a pool of vacancies for the
relocation of the remaining residents of the Franklin Field project.
Table 8.3 reports the number of vacancies available by type resulting

from the completion of building pairs 1 through 5.

8.3 Model Formulation

As the unit types house monotonically increasing household sizes,
it was decided that households determined to require a type k unit
could be legally assigned to units of type k, k+1, k+2, ..., 11 for
k=1,2, ..., 11. Thus, the model formulation presented at the end of
Chapter 7 is applicable. The initial numbers of vacant units of type k
through 11, V5, have been tabulated in Table 8.3. We can now
formulate the model used in Franklin Field using the notation of

Chapter 7:
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minimize D (8.1)

6

subject to % tx o+ 1 <p b=1, ..., 6
=1
6

z X = 1 b=1, ..., 6
=1

11 6
N. =21 L n =1, ..
l ? .y
tk gk b=t P “pt k=1, «o., 11
11 6
A. = X I a t=1 7
2 - 9 ess ey

B gk peq  PAD - k=1, ..., 11

V. =V +A. -N t=1, ..., 7

tk t-1,k tk tk k=1 e 11

\Y 20 t=1, ..., 7

th k=1, ..., 11

=0 or 1 b=1, ..., 6

bt t=1, ..., 6

Vok are given in Table 8.3.
Note that in formulating this model, we have:
(i) set B=6, representing building pairs 6 through 10 and the
households initially moved off-site
(ii) set Lp=1 for b=1, ..., 6
6
(iii) set M=7= X L + 1
b
b=1
(iv) set K=11
This model was solved using the data in Table 8.2 for npy and ap, using

the ILLIP-2 program mentioned in Chapter 7 (see Young, Liu, Baugh and

Muroga, 1977).
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8.4 Model Results

The ILLIP-2 program located 10 optimal solutions (there could well

be more).

However, one of these solutions corresponded to a sequence

that the redevelopment planning team had hoped to implement a priori.

This solution was:

Period 1:
Period 2:
Period 3:

Period 4:

Redevelop pairs 1 through 5
Redevelop pairs 6 through 8
Redevelop pairs 9 and 10

Return households from off-site (i.e. Redevelop pair 11)

The rationale behind this sequence was that the building pairs are

geographically contiguous making it easy to move heavy construction

equipment from site to site.

Having determined a sequence, the issue of how to relocate

households arose. We wanted to arrive at a tenant assignment scheme

that did not require households to move more than once. To do this, we

took advantage of our decision that households of type k could occupy

units of type k or larger, and developed the following scheme.

For notation, let:

hy =

uy =

number of type i households to assign from a particular
building; i=1, ..., K

number of type j units available for occupancy in this
assignment round; j=1, ..., K

number of type i households assigned to type j units

An allocation scheme ®j3 for a given group of households hj, i=t1, ...,K
i3

and a set of units Uy, j=1, ..., K is feasible if the following four

conditions hold:
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(1) aij = 0 1if i>j (8.2)

(ii) %5 2 0 if i<j ‘ (8.3)
K
(iii) Z aij =h, i=1, ..., K (8.4)
j=1
K
i I o« < s
(iv) o 15 uj j=1, ..., K (8.5)

Conditions (i) and (ii) state that only feasible assignments can be
made. Condition (iii) states that all households are assigned to
apartments, while condition (iv) guarantees that the number of
apartments assigned does not exceed the number of apartments available.

Thus, to find a feasible allocation scheme, one solves the system
of inequalities (8.2) through (8.5) for %jj- There are many ways to do
this, but one simple approach utilizes a technique known as the

northwest corner method. An algorithm for this approach is:

(1) set %;5 < 0 for all i and j
(2) set i <0

(3) set i <« i+1

(4) set j < i-1

(5) set j € j+1

(6) 1is uy 0? If yes, go to (11)
(7) set 34 = min(hj,uy)

(8) set hj € hjy - Q4

(9) set uj Cug - &4y

(10) Is hy = 0? If yes, go to (13)
(11) Is j < K? If yes, go to (5)

(12) STOP - INFEASIBLE ALLOCATION

(13) Is i < K? If yes, go to (3)

(14) STOP - FEASIBLE ALLOCATION
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The algorithm Jjust described is simple enough to perform by hand.

Using the algorithm, we were able to find an allocation scheme that
assigned all households in single moves - no households were required
to move twice (with the exception of the households initially rélocated
off site). This result was quite pleasing especially to the tenant

task force.

8.5 Summary

The application of our relocation model in this instance verified
a sequence that had been previously selected by redevelopment planners.
Of course, it could be that in other applications, sequences selected a
priori could prove to be sub-optimal, or even infeasible! That the
model identified the desired sequence as an optimal schedule was a
great relief and confidence booster to the redevelopment team. As of
the date of this writing, the Boston Housing Authority's Redevelopment
Director for the Franklin Field project, David C. Gilmore, has stated
that construction is proceeding according to the sequence determined
and relocation is proceeding without difficulty (personal

communication, April 19, 1984).
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Chapter IX

Conclusions and Areas for Future Research

This thesis has addressed some problems associated with managing
public housing demand. From a review of tenant assignment policies
utilized by U.S. housing authorities, we were able to develop models
describing the impacts of these policies on household waiting times,
project composition, and tenant allocations. We also addressed the
problem of determining construction sequences in a redevelopment
project which guarantee that tenants are always assigned to appropriate
units. An explicit procedure for identifying sequences resulting in
minimum project time was developed and applied to an actual project.

In this concluding chapter, we will discuss some of the policy
implications of our work. Areas for future research will be identified
where appropriate.

Many of our results relate to models which predict the waiting
times for new applicants to public housing; indeed, the detailed
analysis of Chapters 4 and 5 is devoted to this problem. A major
reason for modeling waiting times relates to the attempt to provide new
housing applicants with the best information available regarding
housing options. One would think that waiting times would play a major
role in a prospective tenant's decision regarding which housing
projects to choose for potential assignment, or whether to remain
interested in public housing at all. New applicants should receive
waiting time estimates along with the other information typically
presented (e.g. location of projects; unit mix; project populations and
demographics; age of project etc.). Indeed, waiting time estimates

would reduce the level of uncertainty involved in the new applicant's
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decision; certain projects may be instantly disregarded due to long
waiting times, for example.

For our work to be truly useful in this regard, it is necessary to
encode the models we have developed into user friendly computer
programs that could be operated by people with no computer knowledge.
The situation would be akin to an automatic teller machine at a bank
where customers make requests by answering simple questions presented
on a screen display. In the public housing context, new applicants
would enter information regarding their development choices and
household status by providing the answers to simple questions. For
example, questions regarding household size and composition would
provide the necessary information to determine a unit requirement.
Questions regarding income and ethnicity could extract information
pertaining to priority status. Applicants could then receive estimated
waiting times by development; these waiting times would be computed
using a model reflecting the particular rules of the housing authority
involved. The data for the models could be obtained directly
from housing authority computer files and would thus provide waiting
time estimates using the most recent data available. By using our
models in this fashion, new applicants could make a decision regarding
development choice taking waiting time into account. Applicants could
also formulate realistic expectations of waiting time for the
particular decision made.

The idea presented here is indeed feasible for most of the waiting
time models considered. Only the multiqueue system used by the Boston
Housing Authority requires a model too complex for implementation on a

microcomputer. Yet, it should be possible to develop good
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approximations to the multiqueue simulation model which could be
efficiently programmed on small computers. The development of a menu
driven, user friendly software package for implementing the waiting
time models developed in this thesis is one pragmatic area for future
work.

At the research level, it is unknown just how important a role
waiting times play in the decision to request assignments at specific
projects. Conceptually, one may imagine a utility function for
housing. The attributes of this utility function include site
amenities (such as location, demographic characteristics of the local
population), cost (i.e., rent) and waiting time. This utility function
could apply to both public and private housing. If new applicants to
public housing were given waiting time information, it would then be
possible, by observing the decisions made by these applicants, to
determine the extent to which waiting times actually effect housing
decisions. The results of such an experiment could have direct policy
implications. For example, if waiting time is not viewed as important,
then the policy of using reduced waiting times as an incentive for
achieving social goals such as project integration will undoubtedly
prove to be ineffective. Should waiting times prove important in
housing decisions, then it would become possible to "market" projects
on the basis of their waiting times.

Another pragmatic use of waiting time data relates to waiting 1list
management. If the waiting times at certain projects are sufficiently
long, say several years, then perhaps applications for residence at
those projects should be refused until expected waits subside. Given

the amount of authority effort necessary in the processing of
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application forms (e.g. reference checking, applicant interviews) such
a policy could free up staff time for other tasks. The closing of
certain projects to new applicants would also erase any possibility of
tenants feeling incorrectly secure about future housing assignments at
the projects in question.

As another application, tenants with projected waiting times
longer than a certain threshold could be referred to housing elsewhere
as a matter of policy. Thus, housing authorities could maintain a
standard of housing applicants within a given time period, or not
accepting applications for assignments. Again, this sort of policy
would more realistically reflect the ability of housing authorities to
respond to the excessive demands currently experienced.

Our waiting time models could also be used to question and perhaps
revamp the priority structures currently existing in some authorities.
For example, many housing authorities claim to house emergencies as a
top priority. However, imagine the following situation: an emergency
household applies for housing, but an appropriate unit only becomes
available after a six month wait. Several questions arise. How much
of an "emergency" still exists after six months? Should this
"emergency" be granted an assignment instead of a regular applicant,
who may have waited several years for an assignment? If our models
predicted that the mean wait involved for a high priority applicant is
so long that by the time a unit could be offered, the applicant's
priority status could be questioned, then perhaps it is unwise to
assign a high priority to the new applicant initially. On the other
hand, households with very low priorities may well face waiting times

that exceed their expected lifetimes! Surely such households should
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not be encouraged to apply for public housing assignments.

The past several arguments all point to a basic use of our waiting
time models: households with excessively long expected waiting times
are essentially not able to be housed by a public housing authority.
These long waiting times could be due to tenant choices (e.gq.
insistence on assignment to a very popular project), or due to the
particular priority structure of a tenant assignment policy (e.g. a
household in a low priority class may receive an infinite expected
wait). As every application to public housing requires authority staff
time to process, every application has a cost. Only applications
resulting in housing assignments may be thought to have some benefit.
It seems clear that one would only wish to incur the cost of processing
an application if some benefit is accrued.

Our waiting time models provide a method for identifying
applicants with little to no chance of receiving an assignment. It
should be possible to dismiss such applicants from the system before
processing their applications on the grounds that following current
authority policy, such households could never be housed. This use of
our models would preclude the cost involved in processing applications
of zero benefit and could actually serve to redirect hours of
potentially wasted authority staff time to more useful tasks.

Our models of tenant assignment have been descriptive, but they
could be developed for prescriptive use if the characteristics of
"good" tenant assignment policies could be made explicit. For example,
if one wishes to integrate a project within a certain time frame, an
objective could explicitly state: assign tenants such that X% of the

project population consists of Group G tenants with T time periods.
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Using the models of blend priorities from Chapter 4, one could
determine the differential admission rates required to achieve this
policy or conclude that the policy is in effect infeasible.

As another example, one could formulate models which assign
tenants to projects in order to achieve certain objectives. Within the
context of a multiqueue system, one could guarantee assignment to one
of the projects in an applicant's choice set, but prescribe assignment
probabilities to achieve some objective (such as the minimization of
waiting time, or the equalization of racial balance). I have
formulated a small number of models which begin to address these
issues; their further development is a topic for future work.

More work remains to be done with our relocation model from
Chapter 7. The most practical starting point is to see if the
approximation procedure suggested works well in a wide variety of test
cases. If so, this procedure can be coded and distributed to housing
authorities for use on a microcomputer.

The relocation model is primarily useful for generating cost
effective construction sequences. The results from analyses using our
model can be used as standards to which proposed schedules received
from bidding construction firms can be compared. Indeed, the model can
be used to dictate sequences as it stands now.

The model could be made more realistic, however. The actual costs
involved in a redevelopment project could be incorporated. For
example, the cost incurred due to project duration is not the only cost
involved; initial vacancies also cost money. In addition, one could
envision a cost incurred due to the presence of unoccupied units

throughout the redevelopment process. A better model would determine a
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sequence which minimizes total project cost. The results of this model
could include the optimal number of initial vacancies to provide, in
addition to the optimal construction sequence.

Finally, the impacts of a redevelopment project on tenants could
be quantified and included in a relocation model. For example, one
could consider the length of stay in temporary housing as a measure of
discomfort to project residents; this measure could have a cost (albeit
psychological) attached to it. In extreme cases, certain tenants felt
to be disadvantaged could be offered monetary compensation for each day
spent in temporary housing beyond some threshold. This form of cost
could be incorporated. Another example relates to the relative
composition of project buildings at the completion of a project. It is
unlikely that a relocation plan which results in the break up of social
groupings within the project (e.g. neighborhoods) will be well
received. This sort of outcome should be considered.

These then are some ideas which remain to be explored within a
larger research context. The particular issues raised in this thesis,
and the extensions to these issues mentioned in the past few pages,
have not by any means exhausted the research agenda relating to tenant
allocation issues in public housing. However, this work could result
in some reassessments of public housing policy. At a minimum, I hope
that the contents of this thesis generate some interest by others in

the issues involved with managing the demand for public housing.
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