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ABSTRACT

A major source of energy savings occurs on the thermal envelop of buildings, which amounts to

approximately 10% of annual energy usage in the United States. To pursue these savings, energy

auditors use closed loop energy auditing processes that include infrared thermography

inspection as an important tool to assess deficiencies and identify hot thermal gradients.

This process is prohibitively expensive and time consuming. I propose fundamentally changing this

approach by designing, developing, and deploying an Automated Rapid Thermal Imaging Systems

Technology (ARTIST) which is capable of street level drive-by scanning in real-time. I am doing for

thermal imaging what Google Earth did for visual imaging. I am mapping the world's temperature,

window by window, house by house, street by street, city by city, and country by country. In doing

so, I will be able to provide detailed information on where and how we are wasting energy,
providing the information needed for sound economic and environmental energy policies and

identifying what corrective measures can and should be taken.

The fundamental contributions of this thesis relates to the ARTIST. This thesis will focus on the

following topics:

* Multi-camera synthetic aperture imaging system

* 3D Radiometry

* Non-radiometric infrared camera calibration techniques

* Image enhancement algorithms
o Hyper Resolution
o Kinetic Super Resolution
o Thermal Signature Identification

o Low-Light Signal-to-Noise Enhancement using KSR

Thesis Supervisor: Alexander H. Slocum

Tile: Professor of Mechanical Engineering
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Chapter 1: Introduction

1.1 Thesis Motivation

This thesis originated from a vision to merge two scientifically rich topics, medical imaging and

energy diagnostics. I present a way to image buildings by scanning them from a vehicle on the

street, and assigning temperatures to points on surfaces. We refer to this as drive-by thermography.

We believe that this approach will be an important first step in analyzing the thermal performance of

buildings. The surface temperature maps will enable researchers in the future to perform heat-

transfer analysis and definitively determine the inefficiencies in the envelopes of buildings in a

scalable and inexpensive way. We do not perform heat transfer analysis in this thesis.

Specifically, we have designed, developed, and deployed an Automated Rapid Thermal Imaging

System Technology (ARTIST) based on commercial off-the-shelf technology. In my thesis, I

provide a scientific understanding of the technology, present challenges pertaining to both the

physics and the engineering of thermography, and describe a way to perform thermography at lower

costs and higher speeds.

1.2 Contributions of this Thesis

This thesis focuses on the following topics:

" Multi-camera synthetic aperture imaging system

* 3D Radiometry

e Non-radiometric infrared camera calibration techniques

* Image enhancement algorithms

o Hyper Resolution

o Kinetic Super Resolution

o Thermal Signature Identification

o Low-Light Signal-to-Noise Enhancement using KSR
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The thesis builds on a large body of previous work in thermography. However, drive-by scanning of

the type we present here has seldom been tried before. The physics of radiometry and radiation need

to be understood and combined to ensure that drive-by scanning is feasible. I present these topics as

well. The components are summarized below.

Hardwr Field Phase I Phase 11
platform research prototype prototype

3Moeng Angle Thermal detector Temperature Emissivity
Radiometry Ra dependence physics/engineering inference calibration

Imnage 3D) mldel Super Hyper Kinetic

Processing generation Resolution resolution ~-y super-
resolution

Figure 1: Automated Rapid Thermal Imaging Systems Technology

This research was conducted in the context of a larger team effort. The mechanical conception and

design, the camera hardware, the instrumentation, research of the physics and engineering or

thermography, and the error budgeting were principally my work. The data collection and software

were developed jointly with my colleagues, mainly Dr. Jonathan Jesneck, and at some points with

Dr. Liang Chen, Dr. Hui Kong and Professor Sanjay Sarma. In the thesis I acknowledge their

invaluable contributions where appropriate. I present the entire body of work here for

completeness.

1.3 Approaches to the Problem

There are tools and well-practiced methods to generating a good energy audit report such as LEED

Certification [1], but it is costly and time consuming. One very successful tool that has been used by
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energy saving practitioners is thermal imaging [2, 3]. Thermal cameras allow one to "see" the energy

leaks in the specific wavelength that heat emits thermal radiation. This is accomplished by visually

looking for hot spots or areas of large thermal gradients in the image and relating those areas to the

physical locations on the structures to identify energy leakage. The problem is that thermal cameras

are very expensive and time consuming to operate.

To approach this, I proposed to designed, developed, and deployed an Automated Rapid Thermal

Imaging System Technology (ARTIST). In my thesis, I provide the fundamental scientific

understanding behind the technology, present challenges and solutions, and show novel approaches,

methods, and applications in imaging and synthetic aperture camera design.

1.4 The Energy Problem

An increasing global population will need to fuel that growth with an increased demand for energy -

for the production of goods and services, transportation, food and fresh water production, and a

host of other energy demanding tasks that ultimately ends at the individual consumption level.

From 2004-2020, the projected annual growth rate for energy consumption will be 30% greater than

the realized annual growth rate observed between 1986 and 2004 according to the EPA.

Critical analysis has pointed towards 2 generalized solutions to the problem of energy production:

Find new sources of energy (finding megawatts) or finding new sources of efficiencies (finding

negawatts'). This thesis is a step towards finding negawatts.

Building energy consumption comprises 41% of the total annual US primary energy supply

according to EIA (2010) [4]. A TIAX [5] report suggests that the majority of buildings stand to

improve their energy efficiency by 20 - 30% [6-9]. With buildings responsible for wasting roughly

10% of our national energy supply, residential energy use has enormous savings potential of

approximately 6 quadrillion British Thermal Units (BTUs) by 2020 [10]. The reclaimable component

of residential energy use remains one of our greatest untapped domestic energy resources which can

1 The term "Negawatt" is theoretical unit of power representing an amount of energy (measured in watts) saved.
The term was coined by Amory Lovins in 1989.
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be used to offset our declining oil & gas reserves globally. This unclaimed "Negawatt" reservoir can

be viewed as an untapped oil or gas field and represents a substantial source of natural energy

supply.

It is estimated that the average home in the US loses up to 35% of the input energy through

inefficiencies on the thermal envelope of the building. The aggregate potential energy of all those

leaks occurring on the envelope totals approximately 10% of our total annual national energy usage

or $100B+ annually in financial terms [11]. The magnitude of this problem serves as further

inspiration to this thesis.

1.4 The Energy Audit

Theoretically and practically, it would be cost effective to search and generate negawatts through

energy efficiency initiatives. By reducing the need to use energy at the end-user (the home), all the

production, generation, and transportation of the same energy to the end-user would be removed.

One watt of power at the end-user may require three watts generated at the power plant, additionally

reducing environmental pollution and fuel requirements. "Negawatt mining" refers to the

methodical and systematic process of identifying the sources of negawatts and extracting them

through retrofit remedies, the negawatts that are most cost- and return on investment efficient.

The path to extracting negawatts begins with identifying the potential negawatt energy lost, through

energy evaluation processes such as 'energy audits'. Energy audits can come in many forms and

varying levels of details, analysis, and recommendations. The more detailed the analysis, the costlier

the energy audit becomes both from a financial and time investment point of view. A typical home

energy audit is part of a professional service that undertakers use to understand the energy efficiency

of house [12]. The audit evaluation process is completed by a professional using tools such as a

blower door test or a thermal infrared camera. The goal of an energy audit is to determine and

recommend the most efficient methods to improve the energy efficiency of home for heating and

cooling.

An energy audit of a home will involve analyzing the different areas of the building envelope, which

includes walls, ceilings, floors, doors, windows, vents, and chimneys [13]. Each of these
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components will have an effective area and thermal resistance to heat flow (R-value) [14].

Additionally, the leakage rate or air infiltration will be estimated through the blower door test [14].

An energy audit attempts to characterize a building's energy performance so that it's efficiency,

physical property and condition, and improvement performance can be reported.

1.4.1 Blower Door Test

A blower door machine is a device used to measure the air tightness of small to medium sized

buildings [15]. Blower door tests are typically used by energy auditors to determine the effective air

leakage of a home. A blower door is a powerful fan that mounts into the frame of an exterior door

[16]. The fan pulls air out of the house, lowering the effective air pressure inside while external air at

a higher pressure flows in through all unsealed cracks and openings. The tests determine the air

infiltration rate of a building. The pressure differences are tested in the range anywhere between 10

to 60 Pa, although the results are standardized to a difference of 50 Pa (using the standard of cfm50

- cubic feet per minute at a 50 Pascal pressure difference). The ranges of cfm50 are shown in the

table below.

House Leakiness Category dm50
Tight House <1,200

Moderately Leaky House 1,200-3,000

Very Leaky House >3,000

Table 1: Relationship between efni5O and leakiness of a house (Van der Meer) [171

Equipped with a house's cfm50, one can approximate the equivalent leakage area (ELA) [18]. The

correlation between cfm50 and the ELA in inches squared is about 0.1 [19], meaning that a house

with a cfm50 of 1200 would have an ELA of about 120 squared inches. Every air leak on the

building envelope contributes to total leakage area of a building. The ELA merges all the smaller

leaks into a combined or effect single opening. This value is presented in a way that assumes that

the opening is kept open 24/7, 365 days a year. A blower door test can take a few hours for setup

and additional for testing.
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1.4.2 Infrared Thermography Audit

The advent of high resolution thermography has enabled inspectors to identify potential issues

within the building envelope by taking a thermal image of the various surfaces of a building. For

purposes of an energy audit, the thermographer will analyze the patterns within the surface

temperatures to identify heat transfer through convection, radiation, or conduction. It is important

to note that the thermography only identifies surface temperatures, and analysis must be applied to

determine the reasons for the patterns within the surface temperatures.

For those who cannot afford a thermal inspection, it is possible to get a general feel for the heat loss

with a non-contact infrared thermometer and several sheets of reflective insulation. The method

involves measuring the temperatures on the inside surfaces of several exterior walls to establish

baseline temperatures. The best manner in which to do this is when the temperature differential

(AT) between the inside and outside of the structure is at least 20 degrees F [2]. During the

condition where the internal temperature of the house is greater than the external ambient

temperature, the building will experience various modes of heat transfer, mainly, conduction,

convection, and radiation. Dominant modes will become more visually apparent in the thermal

images while less dominant modes will exhibit lower surface temperatures. The act of

understanding and interpreting the thermal images is still an art. To better understand the problem

and develop effective solutions, more emphasis should be placed on a more scientific approach to

the problem as a whole.
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Figure 2: Sample infrared thermal image of home taken with a FLIR LWIR Camera

1.4.3 Aerial Thermography

The concept of using aerial thermography has previously been proposed as a tool to help find

sources of energy leaks in buildings during wide area scans. From above, an infrared camera system

would scan the surface of the Earth below and record the coordinates of the scan to create a

temperature map of the surface as shown in [20]. Hot areas would be identified as "hot spots"

triggering potential further investigations. It has also been proposed that unmanned aerial vehicles

be utilized for these tasks as to minimize the operational costs of gathering data. The use of UAV is

current impractical and brings up issues such as safety when operating in residential areas. In theory,

aerial thermography may sound like a good idea initially because of the wide area potential of the

system. However, upon closer examination, aerial thermography is limited by several reasons:

a. Spatial resolution of aerial thermography limited to ~ 3-4 meter/pixel (at 35,000 ft) down to

0.5 meter/pixel at closer distances, making it difficult to identify location of cause of leak.

b. Vertical viewing angle to the target object is limited to normal angle to the roof making it

difficult to see energy leaks located on the side of buildings, unless the airplane was very far

away from the object with the camera pointed towards the side. This would cause a decrease

in spatial resolution due to the longer distance.
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c. Long distances from camera to object surface makes atmospheric noise more prevalent.

d. Induced camera shake and image blurring effects from aerial thermography requires fast

thermal imaging systems, which requires cooled infrared camera system for high speed

imaging. This is both cost and operationally prohibitive.

Although aerial thermography does allow one to capture thermography data quickly and over a wide

area, issues such as poor spatial resolution, camera shaking and image blurring, and no direct view of

the building envelope on the side makes aerial thermography a very limiting method. Poor spatial

resolution ranging from several meters to several feet per pixel makes aerial thermography

impractical for detailed thermal inspections.

Airplane with Camera

Atmosphere

Roof - Top of House

Side of House Home

Figure 3: Aerial Thermography Diagram (Left) and Example of Aerial LWIR Image (Right)

1.5 A Case for 3D Radiometry

Thermographic imaging, the science of estimating the surface temperature from an infrared image is

poorly understood. At the core of a thermal imager are sensors that model the physical world into

photons and electrons that are used to interpret the thermal radiation effects of the environment

into a digital signal. LWIR imaging is a well modeled and well understood science from a two

dimensional (2D) imagery point of view. It is driven by Planck's law and approximated by the

Sakuma-Hattori equations [21] for band limited applications. Thermography is commonly
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understood to follow the Lambertian surface approximation, which relates to Lambert's cosine law, and

the conservation of radiance and etendue. However, some of these assumptions are overly

simplified and does not relate well to a real world environment. Emissivity, distance, viewing angle,

and surface area of interest are poorly quantified and can either over-magnify or under-estimate the

thermal related issues at hand resulting in poor scientific modeling of the actual problems.

Each camera manufacturer utilizes a diverse and specific combination of hardware, electronics, and

algorithms to interpret and display the long wave signals as a signal output from the camera. The

unique and proprietary nature of each component makes it difficult to understand infrared

technology from model to model and maker to maker. Because of the potential uses of the

technology, the US State Department has very tight ITAR [22] export controls on the equipment.

Due to this and the competitiveness in LWIR technology from different manufacturers, it is

extremely difficult to have intimate knowledge of the inner operations of common LWIR cameras.

Not all LWIR cameras are radiometric, meaning they lack the thermography capability of

interpreting the digitally measured observed radiance representation of each pixel into an estimated

temperature profile. FLIR, a dominant maker and distributor of thermal infrared camera

equipment globally, sells both radiometric and non-radiometric cameras according to their website.

FLIR's radiometric cameras have thermography features and price them differently by a factor of two

or more versus the non-radiometric cameras of the similar image quality.

Although there are many types of LWIR imaging technologies, the most cost-effective LWIR

technology is based on uncooled microbolometers [23-29]. Due to the high quality and low

production cost, uncooled microbolometer technology usage has become explosive in recent years

and can be found on most commercial off the shelf thermal cameras. For this thesis, we will focus

on microbolometer based LWIR imaging.

The focus of this thesis is primarily around thermography and thermal imaging for the purpose of

mapping surface temperature. Energy losses at the surface depend both on the local surface

temperature and on the heat transfer processes. Other research groups at MIT and elsewhere are

focused on studying heat transfer. I believe having accurate automated temperature mapping would

help contribute to future research on urban scale heat transfer studies.
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1.6 Layout of Thesis

The ARTIST system consists of 3 core components:

1. Hardware Platform

2. 3D Radiometry

3. Image Processing

In Chapter 2, I will give an overview of infrared theory and discuss both the physics and engineering

behind thermal detectors. In this Chapter, I will start with Planck's equation for spectral radiance

and show how the Stefan-Boltzmann law is not applicable for band limited (8000 nm-14000nm)

applications like infrared thermography. I will show how the Sakuma-Hattori equations, a Planckian

form approximation, represented by three variables is used in infrared imaging systems.

Additionally, I will discuss the conservation of radiance with distance, how surfaces are non-

Lambertian, and show the dependence of viewing angle on emissivity and discuss why 3D

radiometry is important.

In Chapter 3, I will give a walk-through of a three step process for how I developed the hardware

system behind ARTIST. On the hardware platform, I will discuss my initial field research in infrared

imaging and show how I used insights gather to develop a Phase 1 prototype. For Phase 2, I sought

to maximize spatial, spectral, and temporal resolution by designing, developing, and deploying a

multi-camera synthetic aperture imaging system. I concluded that it was critical for ARTIST to

maximize resolution and showed how I developed a multi-camera synthetic aperture imaging system

to maximize resolution through spatial, spectral, and temporal domains. I show that the ARTIST

hardware platform is a plug-n-play system that can easily integrate with new components, software,

and techniques, that over time, will continually evolve depending on the needs of the constraints of

the future.

In Chapter 4, I will discuss the concept of 3D radiometry and show how ARTIST implements 3D

radiometry using drive-by-imaging data capture. In this Chapter, I show how we use motion

information to reconstruct a wireframe model using off-the-shelf optical flow algorithms. Through

the 3D models, we can extract distance and viewing angle information to help correct for directional
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emissivity. Additionally, I show a method for calibrating for material emissivity using a reference

emitter and steps for calibrating a non-radiometric infrared camera for interpreting temperature

from grey-scale camera output.

In Chapter 5, with the help of my colleagues, we have implemented several super resolution

algorithms (Hyper Resolution and Kinetic Super Resolution) and concepts useful for combining

motion-based multi-frame images to super-resolve for a high resolution image. Additionally, I

show two additional concepts, Thermal Signature Identification and Low-Light Signal to Noise-

Enhancement using KSR for improving imaging quality in low lighting situations.

In Chapter 6, I discuss uncertainty in the ARTIST system based on the following areas- scene

uncertainty covering emissivity, background reflections, sensor uncertainty in hardware, and motion

uncertainty during drive-by imaging. I will summarize which area of uncertainty is most critical to

focus on and discuss methods of mitigation for issues related to each uncertainty.

Chapter 7 concludes this thesis with a summary of contributions, topics of future work, and gaps in

the thesis.
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Chapter 2: An Overview of Infrared Theory

2.0 Introduction

During a typical operation of drive-by imaging using ARTIST, an IR camera is pointed at buildings

and records a video consisting of individual thermal image frames. The radiation emitted from a

source - buildings in the case of ARTIST - gets converted by the thermal detector inside an IR

camera into a corresponding temperature signal and subsequently displayed as a thermal image to

the user. The field of radiation thermometry has grown over the last few decades as a niche research

area and as an industry. Many manufacturers have developed radiation thermometers and infrared

cameras targeted at a growing range of applications. Manufacturers however provide little detail

behind how different IR cameras operate or how the temperature measurements in a particular

camera may be affected by properties such as emissivity. I will discuss the physics of IR

thermography and the engineering of IR detectors in this chapter. Next, I will show how users can

infer the temperature from thermal image output from IR cameras. I will clarify a few

misconceptions along the way and argue why emissivity estimation is important and why we must

pay close attention to the viewing angle. These insights will help us build a case for 3D Radiometry

that is implemented in ARTIST and discussed in Chapter 4. Finally, I will present a brief summary

of today's IR camera hardware.

2.1 Why are emissivity and viewing angle important?

Despite being around as an industry for a few decades, there are a few misconceptions about the

physics of IR detectors. One might assume that the radiance observed by the IR camera follows

Stefan-Boltzmann law. If it were true, then the radiance received would be proportional to the

emissivity and to the fourth power of temperature. Alternately, the estimated temperature would

depend inversely on the fourth-root of emissivity. Small variations in emissivity would then have a

reduced effect on the temperature measurement. However, if emissivity variation is large, as we will

show later in this thesis, the effect on temperature measurement would be significant. Hence,

emissivity measurement is important.
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In practice, Stefan-Boltzmann law only applies when all wavelengths are considered. For the IR

band, or any band-limited radiation detector, the original Planck's integral must be evaluated within

the wavelength band to estimate the radiance. This cannot be done in closed form, and "fitting"

functions have been proposed to relate the radiance received to the source temperature. The

radiance incident on the camera aperture is collected by the detector is converted into a voltage

signal. The voltage signal is correspondingly counted on an A/D converter. The camera calibration

charts specific to each manufacturer would relate the blackbody radiance to the signal count from

the A/D converter. Manufacturers deem the calibration parameters and the signal processing within

IR cameras proprietary and in such a 'black-box' model of operation, emissivity estimation becomes

important.

Next, we clarify some misconceptions about radiation physics. In particular we review the

assumption of a Lambertian surface. A Lambertian surface is an ideal diffuse emitter and the

radiance of a Lambertian surface is directionally constant. As a result, the emissivity of a Lambertian

surface would be directionally constant and under a Lambertian assumption, emitter angle would not

matter. Experimental evidence however shows that emissivity has a strong dependence on angle and

the angle of the emitter surface impacts the radiance. As a consequence, the Lambertian surface

approximation is not valid and we need to consider the 3D orientation of the various emitter

surfaces when we perform drive-by imaging using ARTIST.

In the initial sections of Chapter 2, we discuss the physics of IR detectors, point out some

misconceptions and show how the correct analytical model can only be implemented through

calibration. Later in this chapter, we will present an overview of IR detector hardware.
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Figure 4: An Abstract view of Infrared Radiation to Imaging

Thermography refers to the science of measuring infrared radiation. The process of thermography

is abstracted into three steps: (1) thermal electromagnetic radiation is emitted from a target source,

(2) the emitted radiation is detected by a camera sensitive to LWIR wavelengths, (3) output from

camera that can be interpreted to infer temperature. This is shown in Figure 4.

2.1.1 An Outline of the Theoretical Background

Planck's law of thermal radiation governs the radiation emitted by any surface. Planck's law relates

the spectral radiance of an ideal black-body to its wavelength and temperature. Spectral radiance is

the radiance emitted per unit wavelength per unit area of the surface. Planck's equation is given by

21thc2  I 1
MbA , T) = s c

e;Lkr T
(1)

where Mb (A, T) is the spectral radiance of the black body [W/m 2
. .m], T is the absolute temperature

[K], k is the Bolztmann constant is 1.3806488- 102 J/K, A is the wavelength [m], h is Planck

constant is 6.62606957-10 J-s, and c is the speed of light is 2.998-10 m/s [30-33].

Planck's law can be written concisely as:
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ci[1]
Mb(X, T) =- 

(2)

eXT - 1-

Where c1 is the first radiation constant (c1 = 2whc2 = 3.7418 x 10 8 W- 1 m m- 2) and c2 is the

htc
second radiation constant (C2 - = 14,388 im K).

Spectral radiance from a surface

Prendcs M , T 2hc2

)1 Mbi(A Td oT 4  P fun C

No dosed form solution

AT E(1,6) c <C

ClC

M

Max power at .T=2898 pm K

Calibration S(T ") s(T
embedded in IR -F
camera electronics (Sounders [MIknal

Figure 5: A conceptual walk of the theory behind IR imaging

For a black body, the radiance is independent of angle. Integrating over all solid angles yields the

monochromatic emission power which is 71 times the spectral radiance. To determine the radiance

over all wavelengths and all solid angles, we integrate Planck's equation over all wavelengths from 0

to oo and obtain Stefan-Boltzmann's law.

eb (T) =fwM (A, T)cUA 21hc2  1 ]L = 2  4 = uT4  (3)
fb f 5 hc 15c2h3

elkr - 1-
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eb (T) = aT 4 , for a black body

e(T) = EaT 4 , for a grey body with emissivity E (as well as

non-grey bodies)

Where eb (T) is the emissive power of the black body [W/m 2], o = 22t5kb4/1 5c 2h3 is the Stefan-

Boltzmann constant and have a value of 5.67x10 12 W/cm 2K 4 , E is the emissivity of the object.

However, LWIR detectors are only sensitive to radiation in the wavelength range of 8000 to 14000

nm. Stefan-Boltzmann's law is thus not applicable to IR thermography and one would have to

evaluate Planck's integral in a band-limited wavelength range. In IR thermography we have to use

the Planckian form,

fc 1S oc 2 d1 (4)

e -l

The above expression shows how the received radiance signal is proportional to the Planck's law

integral (rewritten using the first and second radiation constants by convention), and the wavelength

range of a detector determines the integral limits [21]. The Planckian form in a band-pass setting

such as IR thermography does not allow for a closed form analytical solution. Approximation or

numerical integration is required.

Within the Planckian form, we analyze further the effect of the term c2which is found in the
/IT

denominator. From the basics of heat transfer, we are familiar with approximations to Mb at extreme

values of C2AT

When ,>1
AT
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we obtain the Wien's law approximation. Under a Wien's approximation, the spectral radiance

function achieves a maximum at a wavelength Xmax such that T = 2898 ptm.K. Wien's law is used to

estimate the temperature of distant stars based on the radiance observed by narrow-band detectors.

When c2 «1
AT'

we obtain the Rayleigh-Jean's law where the spectral radiance depends linearly with temperature and

inverse fourth-power with wavelength. To date, there are no known applications of Rayleigh-Jean's

law.

For the range of temperatures that are common for street-level imaging and for LWIR band,
'AT

would evaluate to be approximately in the range of 1 to 6. As a result, neither Wien's law nor

Rayleigh-Jean's law approximations are vaid and we have to work with the Planckian form integral.

Sakuma-Hattori equations are numerical approximations to the Planckian form integral where the

integral is curve-fitted to the temperature using three calibration constants. The Sakuma-Hattori

equations were first proposed in 1982 as numerical approximation equations for Planck's integral in

IR regime [21]. In 1996, Sakuma and Kobayashi evaluated the accuracy of 10 different formulations

of such curve-fit equation expressions and found the Planckian form expression,

C
S(T)= C2

eAT+B)

to be most accurate [5] . The international standards organization for measurement, BIPM, has used

the above format in the uncertainty budget evaluation for its radiation thermometry temperature

standard ITS-90.

The calibration constants A, B and C are specific to each detector. A and B are shown to be related

to a detector' spectral responsivity function, i.e., the extent to which the detector is sensitive to

individual wavelength and C could be related to the emissivity of the detector material. Saunders has
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shown that the calibration constants in Sakuma-Hattori equations are related to mean wavelength of

the detector and the standard deviation of the spectral responsivity function [34].

Different camera manufacturers utilize different versions of the Sakuma-Hattori equations. Camera

manufacturers do not publish the calibration constant values for their particular detectors either.

There have been reviews of commercially available camera hardware indicating that nearly 16 camera

manufacturers have implemented a calibration similar to the Sakuma-Hattori equation shown above.

Minkina has also reported a similar, yet different calibration equation that could be used to calibrate

thermal detectors [35-37].

In practice, just like any digital camera, the calibration and the detector physics are built within the

electronics of the IR camera and its firmware. What the user sees as an output is a thermal image of

the scene (for an IR camera) or a temperature read-out (for an IR thermometer).

The output of a thermal infrared camera could have two possible formats:

1. An output file of the measured radiance signal(s) received by the detector

2. An output file depicting a false color map representative of the temperature profile of the

scene.

In the first case, if the output of a detector is purely a measure of radiance, a thermal model is

applied to interpret the measured radiance signal into an estimate of the remote object's surface

temperature. It is computed based on a number of variables that include the object's emissivity,

environment conditions, and factory calibrated parameters that are applied to the thermal model to

interpret the temperature. In the second case, a false color image will be produced depicting a color

map that is representative of the surface temperature profile, typically shown in linearized form. In

our experience, we find that camera manufacturers are very private about the type of radiance model

used and the associated calibration parameters. In the literature, we find references that show

different calibration models that are implemented currently in thermal detectors: (a) Minkina model

[35] and (b) Saunders model [34].
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The above detailed discussion of the detector physics is necessary to better appreciate the

importance of emissivity measurement in ARTIST. In a later section, I will correct another common

misassumption relating to Lambertian surfaces and show why viewing angle is important in

ARTIST. Combining these two arguments, I build a case for 3D Radiometry which is implemented

within ARTIST. Details of 3D Radiometry are in Chapter 4.

2.2 A Primer on Radiance

Source L
radiance [

dA1

x

Figure 6: Coordinate system for radiance and irradiance (From Rogalski [37], with permission)

2.2.2 Basic Definitions

Heat flux (D or radiant flux is the energy Q (J) radiated by a source per unit time in all directions

above the source:

dQ
dt

(6)
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The unit of radiant flux is in Watt. If this radiant flux falls onto a surface of body, that flux will be

absorbed ((I)o, reflected ((DO, and transmitted ((D.,) across the body of the surface. They are

defined as absorbance coefficient A, reflectance coefficient R, and transmission coefficient T:

"A 4R TTA= - R =-, TT= -

When radiant energy is incident on a surface, energy is conserved in the form of:

A+R+TT=1 (

The ratio of radiant power d(o to a projected area dA (from the source), is called the radiant

emittance (the term radiant emittance is used synonymously with radiant exitance when discussing

emitted radiation) M(,T):

T) d( (A, T )
MdCA, , )) (9 )d A

Where the radiant emittance M(2,T) is expressed in W/m 2.

2.2.2 Black body vs Grey body Assumptions

In dealing with Planck's law, we have assumed that the surface of the objects we are discussing are

black bodies where the emissivity is unity (eb - 1). In practice, the surface of real objects have

emissivity values < 1 which affects the amount of energy radiating from the object. For Planck's law

and black body assumptions, the radiant emittance for a fixed temperature and wavelength can be

calculated from the law's governing equations. However, under real conditions where F < 1,

Planck's law serves only to as an upper bound estimate of radiant emittance. Unfortunately, most

physical bodies have limited absorbing capacity and therefore, would not satisfy Planck's postulate

for a "perfect black body". In these cases, many are called 'grey bodies'. A grey body is surface that

emits radiation at the same spectrum as a black body at the same temperature but with less intensity

and emissivity E does not vary with wavelength k. For a surface, the ratio of diffuse grey body

emittance and black body emittance at the same temperature is defined as the monochromatic
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emissivity, which is dependent on A and T. When evaluated at a particular viewing angle, we get

monochromatic directional emissivity:

M(/I, T, 6 )grey
E (, T, ) = (0)

M (A, T )black

I summarize the key differences for a black vs grey body:

1. A black body is a body who's emissivity value = 1. A black body's emissivity is unity and is

invariant to wavelength and angle.

2. A grey body is a body who's emissivity value egrey-body < 1. A grey body's emissivity is

constant and is invariant to wavelength.

Black and grey body assumptions are based on ideal property assumptions just described. In

practice, materials do not exhibit black or grey body properties as described.

According to Kirchhoff's law of thermal radiation, directional emissivity and spectral directional

absorptance are equal for a grey body emitter.

E (0,q)p) = a (0,qV)(1

Where 6 and V are the angular coordinates. Energy conservation and the assumption of zero

transmissivity means that the sum of absorptance and reflectivity is 1. Therefore, the sum of the

emissivity of a material, at a given temperature and the directional hemispherical reflectivity equals

one. In the general form of Kirchhoff's law:

e(A, 0, ) + ra(A,6, V) = 1 (12)

Where A is the wavelength. As an engineering approximation for LWIR, we write:

e+r=1 (13)

Where the respective terms are likely averaged over the wavelength band of the camera. This

approximation does not hold in general, if we consider the effects of transmissivity.
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2.2.3 Conservation of Radiance

Long wave infrared cameras measure radiance. Radiance is defined as the radiant power per unit

source area, per unit solid angle that the detector subtends at the source (the term radiance is

synonymously used as 'intensity' in heat transfer). Radiance is also defined as the radiant power

entering the detector, per unit detector area, per unit solid angle subtended by the source at the

detector. Radiance can be written as:

Radiant FlUXdetector[W]

Areadectector [I 2 ] ' fsource [sr]

Where radiance is the what the camera measures [W/m 2 sr], radiant flux is in [W], Areadeteeto, is the

foreshortened or projected area of the detector [m2], and Gu2 is the solid angle subtended from the

source to the detector [sr]. The foreshortened area is related to the actual area by the cosine of the

viewing angle 0. It is well-known in radiation physics that radiance is conserved. In Chapter 4, I will

present data from our experiments where we find evidence that radiance is conserved in Figure 96.

We discuss the conservation of radiance below.

As the source moves further away from the detector, the radiant flux from the source arriving at the

detector decreases by inverse square law. At the same time, the solid angle that the source subtends

at the detector also decreases with the inverse square of distance (by definition). As a result, the

effects of the inverse square law on radiant flux and solid angles between the source and detector,

cancels out, making observed radiance distance invariant and is unaffected by distance. Hence, we

say that radiance is conserved.

Conservation of radiance implies that, barring losses from transmission, there is no distance

dependency for the radiance signal that an IR camera receives from an object.

Next, I will describe the concept of etendue [38] which is a property of the optic system, also called

the AQ product or the collecting power of the optic system
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2.2.4 Etendue

Etendue equals the foreshortened or projected area of the source times the solid angle subtended by

the detector. Etendue is also equal to the foreshortened or projected area of the detector times the

solid angle subtended by the source. The foreshortened area is related to the actual area by the

cosine of the viewing angle 0. This is often referred to as the conservation of etendue. Although the

terminology may be unfamiliar to many, the conservation of etendue shows up as the law of

reciprocity of view factors in heat transfer theory.

Let us consider a source of light from a focal plane, whose area A uniformly emits radiations of

intensity I. (W/sr), the flux at a given wavelength per solid angle, with a frequency band of 6v.

The total amount of energy per second Wreaching the entrance of pupil of foreshortened area A

[M 2 ], positioned at a distance d [m] from the source, which is represented by the inverse square law

is:

A-
W = d 2 In(14)

The solid angle fl represents the field of view:

S= d(15 )

Therefore, total energy W becomes:

W = A1I,,Sv (16)

The product of Afl is called optical Etendue which is an invariant quantity through a perfectly

transmissive optical system. The etendue, E is invariant:

E = Af = Al (17)
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Where A is the focal plane area, fl is the aperture solid angle, A is the pupil area, and fl is the field

solid angle.

Aperture
Solid angle

Focal plane
area

Pupil area Field solid
angle

A

A = A1

Figure 7: The optical Etendue invariant through a perfect system

2.3 Angle Dependence and Emissivity Modeling

2.3.1 Specular vs Diffuse Surfaces

All electromagnetic waves follow the law of reflection. For specular reflection, an electromagnetic

wave will reflect in a manner that the angle of incidence is equal to the angle of reflection. This

behavior exhibits a mirror-like reflection of waves from a surface and produces similar effects for

light rays as well as electromagnetic waves and non-electromagnetic waves.

Another mode of reflection is 'diffuse reflection' where the incoming light or electromagnetic wave

is reflected in a broad range of directions. The most direct way to think about the difference

between specular versus diffuse reflection would be to compare the difference between glossy and

matt paints. Glossy paints exhibit both specular and diffuse reflection while matte paints exhibit

primarily diffuse reflection.
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Figure 8: Radiant flux for a specular reflective surface
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Figure 9: Radiant flux for a diffuse reflective surface

In reality, most objects and surfaces exhibit a mix of specular and diffuse reflective properties.

2.3.2 Lambert's Cosine Law & Lambertian Surfaces

In many cases, the term "Lambertian surface" and "Lambert's cosine law" is often used to

inadvertently and perhaps incorrectly, describe long wave infrared imaging and its underlying

principles. Lambert's law states that when viewed from any angle, a Lambertian surface will exhibit

the same radiance. The corollary of a Lambertian surface assumption is Lambert's cosine law, which
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states that radiant flux [W] depends on cos 9, where 6 is the observed emission angle. Lambert's

law assumes an ideally diffuse surface, which is the case for both black and grey bodies by definition.

In this section, we will clear up some confusion regarding these assumptions.

A Lambertian surface has constant radiance, which is independent of viewing angle and follows

Lambert's cosine law for radiant flux (W). Lambert's cosine law is not universal; it is only applicable

to Lambertian surfaces. As described earlier in Section 2.2.2, a black body is an ideal surface where

the emissivity E = 1, is Lambertian, and has constant radiance which is independent of viewing

angle. A Lambertian grey body is follows a black body assumption, except its emissivity E < 1, is

Lambertian, and has constant radiance independent of viewing angle. The only difference between a

black body and a grey body is that a black body's emissivity is unity while a Lambertian grey body's

emissivity is less than 1. All black bodies are Lambertian, but a Lambertian surface need not be a

black body.

In practice, most surfaces exhibit a radiance that has angle dependence; hence, the Lambertian

surface assumption is not valid. The angle dependence of radiance does not violate the law of

conservation of radiance as the conservation law primarily deals with the effect of distance. In order

to capture the deviation of radiance with angle as compared to an ideal black body's radiance, the

parameter called emissivity (normal or directional, as appropriate) is introduced. Directional

emissivity is a parameter that captures the variations in radiance of common surfaces with respect to

the equivalent black body radiance at specific angles. Normal emissivity alone can be regarded as a

material property as it has been shown with experiments to be repeatable with a finite error band.

Directional emissivity shows considerable variance in the angle from 60 to 90 degrees, as we will

discuss in the following section in the Chapter.

Lambert's assumption and its limitations have been reported in textbooks [39-41]. However, instead

of providing more discussions on the angle dependence of emissivity, many authors instead talk

about Lambertian surfaces and the analysis of Lambertian surfaces. This might be because the math

for Lambert's cosine law allows for a more simplified modeling.
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I would also like to clarify the difference between emissions, which refers to radiant flux (W) vs

radiance (W/m 2 sr). Emissions for Lambertian surfaces alone, follows Lambert's cosine law while

radiance is constant. The signal measured by infrared detectors is radiance, not radiant flux.

Directional Emissivity [0-1]
90

. .. . Black Body

- - - Lambertian Grey Body (E=0.95)
Experiment

60

30

---------- ---------- -- - 0
Viewing Angle [Theta]

Figure 10: Black Body, Lambertian Grey Body, and Observed Non-Metal Direction Emissivity vs Viewing Angle

The Figure 10 above describes three situations: black body (E = 1), a Lambertian grey body (E

0.95), and observed emissivity for a non-metal material (En.., 0.95) vs viewing angle. The

important insight from this is that the material does not behave uniformly for all viewing angle as

expected for a grey body assumption. It can be considered reasonably uniform for viewing angle 0

< 600 and non-uniform for viewing angle 0 > 900.
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2.3.3 Directional Variation in Emissivity

According to research done by Schmidt and Eckert 1935 [42], Fehiman and Hinders 2009 [43], and

Cardone & Ianiro 2011 [44], there is an element of directional emissivity, shown in their data. In

Figure 11, Schmidt and Eckert showed directional emissivity as a function of angle 0 for different

materials and thus, c(0) = varies. As shown in the Figure, at angles 0 < 600, non-metal materials

have an almost constant emissivity. At 0 > 60*, emissivity drops significantly, with respect to angle.

Most infrared camera calibration experiments are done where 0 ~ 0* or normal to the surface, thus,

this can be defined as normal emissivity. However, others including Fronapfel & Stolz 2006 [45],

have conducted and written experiments where 0 = 0, 45, 60, and 75* viewing angles and have

confirmed the presence of angular emissivity variations. Commercial off-the-shelf infrared cameras

have optical field of view between 100 to 400.

0

(A)

80

1.0 0.8 0.6 0.4

E

(B)
60

70

80

0, degrees
50 40
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0.2 0 0.2 0.4 0.6
E

0, degrees
20 0 20 40 50

0.8 1.0
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0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
E

Figure 11: Directional emissivity variation with angle 0 for (A) non-metal surfaces (B) metal surfaces. (From Schmidt &
Eckert 1935 [6], with permission from Publisher)
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Figure 12: Directional emissivity predicted from electromagnetic theory from Siegel & Howell [461

Figure 11 shows the importance of understanding how e(0) varies. This is necessary in situations

when working at high angle O's where the understanding between c and 0 must be accurately

known. We will take a closer look at the topic of directional emissivity in Chapter 4: 3D

Radiometry.

From Figure 11, the important insight is that from an emissivity perspective, materials behave

differently for metals versus non-metals. From Figure 11(A), a chart of non-metals, which includes

materials such as paper, aluminum oxide, wood, glass, clay, copper oxide, and ice, directional

emissivity decreases from the normal emissivity value (0 = 00). However, for metals in Figure 11

(B), such as polished nickel(Ni), dull nickel(Ni), aluminum(Al), manganese(Mn), and chromium(Cr),

directional emissivity seems to increase with angle (0 > 40*) vs the normal emissivity.
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'77

Figure 13: Normalized emissivity -..y for non-metal and metal materials.

(From Schmidt & Eckert 1935 [42], with permission from Publisher)

One important insight in the Schmidt & Eckert paper [42] that is commonly overlooked is a second

chart (Figure 13) that shows the normalized em-issivity -- which is consistently uniform for non-
EN

metals (within 6%) and varies widely for metals (> 30%):

f'r Ee cos 0 d-
0 r0.94 - 1.00, Non-Metals(1)

fo ENdO

' Eg cO dO
4, . =qr 1.10 - 1.30, Metals (19 )

For non-mnetals, there seems to be a geometric consistency in the impact of for directional emission

variation. In Figure 12, we show a chart from Siegel & Howell [46] for predicted directional

emissivity from electromagnetic theory. Here, directional emissivity is shown as a function of the

ratio of refractive indices at an interface. Schmidt & Eckert's [42] results were based on

experimental data while Siegel & Howell [46] showed theoret ichlly derientpritions. The results

of between observed and predicted seems to confirm one another and suggests that directional

emissivity can be predicted for ideal surfaces.
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A table of normalized emissivity values for common building surface materials is attached in

Appendix A for 126 common building materials. From an initial analysis, a histogram chart was

created to show the distribution of normalized emissivity values in Figure 14. The insight from this

analysis shows that a majority, over 80%, of common building materials have relatively high

emissivity values above Ehigh> 0.70. Only about 10% of the materials listed have emissivity values

below slow > 0.50.

45

E

0
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35-
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Histogram of Emissivity Values
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Emissivty Values
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Figure 14: Histogram of normalized emissivity values based on 126 common building materials listed in Appendix A

2.3.4 A Case for 3D Radiometry

We find in many instances in recent literature and industry practices that thermography is based on

2D radiometry principles- which can be simplified into two core assumptions: (a) the use of a

constant emissivity value for all points on a long wave infrared image and (b) a fixed distance to all

points on an image, regardless of geometry. Although we have discussed the conservation of
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radiance, making radiance distance invariant, the surface area of the target surface must be

normalized using viewing angle and distance information. 2D radiometry assumptions can fail in

situations where the scene is complex and view is not normal to the surface. We will discuss this in

detail and show examples in Chapter 4: 3D Radiometry.

From the discussion thus far, we summarize the following:

1. Angular dependency of emissivity has been reported in the literature. The most often cited

reference dates back to 1935, based on the experiments by Schmidt and Eckert.

2. The Lambertian surface approximation is not valid for all situations.

3. Drive-by imaging of an urban environment involves 3D scenery both in the buildings, the

ambience and their orientation.

Therefore, to properly model the three dimensional environment, I develop the concept of 3D

radiometry and how it is implemented within the ARTIST in Chapter 4. 3D radiometry refers to the

process of modeling the 3D environment using sources like drive-by imaging to extract viewing

angle and distances from the model. In doing so, we can correct for the effects of directional

emissivity and normalizing surface areas.

2.4 Thermal Detector Physics

Thermal detector physics refers to the physical modeling of the electromagnetic waves from the

source to target detector. For thermography applications, the sensors and sensor components are

specifically chosen to operate at wavelengths sensitive in the 8000-14000 nm range. LWIR has

higher sensitivity to radiance from objects at or near the ambient temperature and much better

transmission through mist and smoke. From Figure 15, we show the emittance ratio M18 12 FLm/M[3

5m] against temperature for ranges from 270*K to 400"K. One can see that at ambient temperatures

near 300"K, LWIR [8 - 12 iim] has a higher emittance vs MWIR [3-5 rim] emittance by a ratio of

over 20 to 1.
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Figure 15: Emittance Ratio Ms-. 1n/Mp-syi against temperature based on Planckian form integral.

2.4.1 Planckian Form is necessary to model IR thermography

In IR thermography, we use the generalized form of Planck's equation for band limited applications

(typically operating in wavelengths of 8000-14000 nm) based the Sakuma-Hattori equations [21]:

C2Mb(T, A) = c2
A. IefT _ i] (20)

Sob = f 2  MA)M(TA)dA 
(21)

Where Mb(T, A) is expressed in [W/m 2 sr im], the first radiant constant c, = 2ghc2 = 3.741.1016

Win 2, and the second radiant constant c2 = hc/k = 1.438-10.2 nK, and R (A) is the spectral

responsivity of the detector.

As a recap from earlier in this chapter, I show below the two well-known approximations based on

the limits of the value for 2, and how they are not applicable. The IR detector sums up the emittedA*T
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irradiance of the source for the wavelength range of LWIR (8000-14000 nm). For thermal

imaging, the temperature range varies for buildings, T ~ 300*K (ambient) - 1000*K (industrial

applications).

The wavelength range for LWIR is 8000 nm to 14000 nm. At this range:

C2

A -Tmax

C2

A Tmin

0.01438 m - K

8 - 10-6 m - 300K

0.01438 m -K

14 -10-6 m- 1000K 1.0

For thermal imaging applications, the resulting values
- E (1,6) are outside of those required for

Wien's law or Rayleigh-Jeans law approximation.

Case 1) > 1 : Wien's displacement law

Mb(A, T) = C2 , with a peak at Amax such that

AmaxT = 2898 ymK

Case 2) 2 << 1 : Rayleigh-Jean's law

Mb (A,T) ;:
Cl

As . IC2t+ 1 (L c22+ -- |
IAT 2!\AT)I

c1 T

c2 A4

For Case 1, Wien's law and deals with the wavelength at which the function Mb (A, T) law

approximated from Planck's law (when c2/kT >> 1), is at a maximum:

dMb (A, T)

dA

d c] 0

dALAs . 2
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This will determine the wavelength 2. for the radiant emittance of a black body at a given

temperature T reaches a maximum. The equation can be solved to obtain:

AmaxT = 2898 ymK (25)

Where Am is the peak wavelength, T is the absolute temperature of the black body, and b = 2898

pmK is a constant of proportionality, also called Wien's displacement constant. Wien's law is

commonly used to estimate the temperature of a distant star using it's spectral radiance.

For Case 2, The Rayleigh-Jeans law is a further approximation of Planck's law for conditions where

AT>> c2 . In this situation, Mb (A, T) is expanded into a series:

c2_ c 1 2 2
eT - 1 - + (26)

AT 2! AT

When the higher order terms are neglected, the following Rayleigh-Jeans formula expresses the

radiant emittance of a black body when AT >> c2 :

Mb(A,T) -z.: (27)

Although Rayleigh-Jeans law allows for a simplified equation for Mb (1, T), there are not many direct

applications for Rayleigh-Jeans law.

As a result, we have to use Planck's equation or its alternate Planckian form in IR thermography.

The observed radiance detector signal is:

2  R_(A)cdA

S(li,1A2) OC C2 (28)

Where S(i, 12) is the observed radiance detector signal received from the infrared camera. The

integral on the right can only be numerically evaluated.
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According to Dewitt and Nutter [47] and Saunders 2008 [34], one can show the approximate

dependence of spectral radiance on temperature, as proportional to an exponent x of the

temperature:

Mb (A, T) oc Tx

Where the exponent x is given by the following expression:

C2X ~ -c2i

AT [1 - e[7a&]

We evaluated this expression for x to show the following relationship between C and the exponent.

In this chart, we also show, the typical LWIR regime and the two approximations at the extremes.

C2
Spectral radiance depends on TK, where the exponent x depends on -

AT10

8 -..-.- - - - -- ------ ---- --- -- ----- ---- -- - - --- W ie n s L w l

8 - --- ---- - - --- - --- - --.. .-- ..- ..-

............. 5 -.......... -.... -...... - ------------ - ------ ------ ------ -

*

ITypical Range for IR Thermography of -

40 1 .2. 3..5.6.78.9.1

C2

AT

Figure 16: Temperature (x) relationship vs
AT
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2.4.2 Sakuma-Hattori Equations Approximation

The Sakuma-Hattori equations are commonly used as a numerical approximation to the Planckian

form and is commonly used in many LWIR cameras today [21, 34]:

SC
S(Tmeas) = meas + S( Ta) Cinst e (C/A -Tmeas+B) __ 1 (29)

(The details of this expression is fully explained in Chapter 4: 3d Radiometry) This form, presented

by Saunders 2008 [34] has been reported to be implemented for 16 different IR camera makes and

models. We find that the Sakuma-Hattori equations [21] is indeed commonly used for IR

thermography according to Saunders [34], Vellvehi [48], and Liebmann [49].

T(4)= 500K

LWIR Wavelength Band
(8000 nm - 14000 nm)

T(3) = 450K

T(2) =400K

T(1) = 350K

T(0)= 300K

2Nm 4M - I 10 16000ar

Figure 17: Planckian form of Sakuma-Hattomi equation [211 for temperature 300K to 500K

2.4.3 Minkina Approximation

Another approximation to the Planckian form is:
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R
SO = e (BToO - F

(30)

presented by Minkina 2009 [35], Fehlman & Hinders [43], Rogalski [37] as another commonly used

approximation model for monochromatic infrared detectors. In this thesis, we will focus our

discussion on the Planckian form and the related Saunders model [34]. Although we know the

general curve fitting models for interpreting observed radiance signal into temperature estimates,

very little specific details of the calibration parameters have been published by any manufacturers.

For illustrative purposes, we plot below the numerical integration of the Planckian form using

Mathematica. We note that the Sakuma-Hatori equations are numerical approximations to the curve

shown in Figure 18 using three calibration constants.

'L)

of

0~

Integral of Planckian form from 8 microns to 14 microns

320
Temperature (K)

370

Figure 18: Integral of the Planckian form from 8 km to 14 km (Courtesy of Isaac Ehrenberg)
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Figure 19: Slope of log-log plot of Sakuma-Hattori Integral (8-14 microns) vs Temperature

As pointed earlier, the observed radiance would depend as an exponent (x) of temperature as shown

above in Figure 19. The exponent itself depends inversely with temperature.
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Figure 20: Theoretical modeling of Infrared Applications
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2.5 Thermal Detectors vs Thermal Cameras

In this section, we will contrast thermal detectors vs thermal cameras based on the information

content. The total amount of radiation received from any object is the sum of the emitted, reflected,

and transmitted radiation. Objects where the c < 1 emit only a fraction E(X) of the equivalent black

body radiation. The remaining fraction of 1- c(k) = r is reflected. A thermal image is created when

there are temperature variations or differences in emissivity (for the same temperature) in the scene.

Thermal contrast is an important parameter in characterizing IR imaging devices. It represents the

ratio of the derivative of the spectral radiant emittance to the spectral radiant emittance.

O M (A, T)/OT
C (31

M(A, T)

0.060
3.5-4.1 pm

- --- 3.5-5.0 pm

0.050 --- 4.5-5.0 pm
-- 8.0-12.0 pm

E 0.040-

0.030-

0.020

0.010, L 1 1
250 270 290 310 330 350

Scene temperature (K)

Figure 21: Spectral photon contract in MWIR and LWIR [50]

From Figure 21 above, we see that the smaller the wavelength, the greater the thermal contrast at a

particular temperature. The greater the temperature, the lower the thermal contrast for a particular

wavelength which will affect the marginal performance of the infrared camera system at high

temperatures.
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2.5.1 Thermal Detectors - History

I begin with a brief history of thermal detectors.

Although we focus on long wave infrared, there are many other types of infrared cameras: short

wave infrared (between 2 and 5 lim), longwave infrared (between 8 and 14 pm), and even mid-wave

infrared for wavelengths in between. Additionally, there are also detectors which work in the near

IR (0.8 - 1.5 tm) which are based on quantum and photoemissive detectors and detectors that work

in the far IR (8 - 14 rim) which are considered thermal detectors. The 8-14 jim band is appropriate

for high performance thermal imaging. It has higher sensitivity to ambient temperature objects [36]

and much better transmission through mist and smoke environments [35].

Another way to classify the detectors is based on detector cooling: cooled detectors containing

cryocoolers and uncooled detectors, which operate using ambient air temperature. The cooler

allows the camera to reduce locally induced radiant noise to a level that is below the target signal

being imaged. Cooled cameras exhibit the most sensitivity to small differences in scene temperature.

Prior to 1997, virtually all thermal detectors built where equipped with cooling units which typically

operated between -70* to -200* C. Cooled detectors are much more expensive due to the

cryocooling hardware, electronics, and sensitive components [37].

For thermography, manufacturers of thermal detectors offer measurement IR cameras which are

calibrated at the manufacturer and used for temperature measurements. For non-thermography

based applications, a basic IR imaging camera typically show only a false color map of the

approximate temperature gradient. They do not include the software package required to interpret

the signals into corresponding temperature estimates. Basic imaging IR cameras are much cheaper

as they are produced in higher quantities and offered to a broader non-scientific environment.

Thermographic cameras are sometimes referred to as 'radiometric' whereas basic cameras can be

referred to as 'non-radiometric'.

Thermal IR detectors are generally divided into two types: (a) single point detector or (b) a linear and

array detector (based on Focal Plane Array) which are built on matrices of single point detectors, for

example a 320x240 array consisting of 320x240 individual detectors.
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Single point detectors are often based on scanners, which are optomechanical scanning systems

consisting of rotating, oscillating mirrors, or scanning prisms. The typical scanning rates of these

systems are 25-60 Hz. In a single detector design, the image of the observed area is built, point by

point at sequential time instants. The radiation arriving at the detector is based on the observed

radiance of the individual points in the image and transduced by the detector into electrical signals.

These type of systems were utilized for a better part of the last 20 years or so after they were

originally invented and were limited by the thermal and spatial resolution of the type of scanner.

One distinguishing feature of a single point detector is the uniformity of the thermogram, as all

points in the image are derived by a single point on the same detector. Beyond single point, ruler or

linear scanners utilized the same concept and that the scanner was either correspondingly vertical or

horizontal oriented, depending on the mounting configuration [23, 26, 35-37, 50].

Since 1993, focal plane array detectors were introduced and became more common. A typical array

may consist of 640x480 detectors which is 307,200 individual pixels. With these systems, there

were no mechanical or moving parts.

In 1997, further development in IR technology introduced the first IR camera with a

microbolometer array with an un-cooled detector. The elimination of moving systems and cooling

needs in microbolometer technology made the operational parameters much more diverse, allowing

for more reliable and faster operations. In this thesis, we will focus exclusively on microbolometer

technology. It is based on a tiny vanadium oxide resistor that has a large temperature coefficient on

the silicon element of large surface area exhibiting low heat capability and good thermal isolation

[26]. The changes in the scene's temperature will cause a change in the bolometer temperature,

which is converted directly into electrical signals and processed into an image. Uncooled cameras

are typically less expensive than their cooled counterparts because the manufacturing economics of

scale and the exclusion of the cryocooler, which is costly to produce and operate. They also have a

longer service life based on the reduced wearing of parts. Therefore, the inherent advantage of

lower cost, longer life, and less operational overhead makes uncooled thermal imaging cameras a

prime choice for use in the ARTIST system.
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2.5.2 Engineering of Thermal Detectors

We will model a single detector which could be projected into a line array or focal array. At the core

of every infrared sensor array is a single detector that can be modeled according to the following

Figure.

Absorber Link, Gth

Signal
Radiation

.- Thermometer

Thermal Insulation

Figure 22: Thermal detector mounted via lags to heat sink

According to Rogalski [2009] [37] , the simplest representation of a thermal detector is shown in

Figure 22 and is represented by the following differential equations:

dAT
Ct dt + GthAT = E(

Where Cth is the thermal capacitance, Gth is the thermal conductance, AT is the temperature

difference due to radiant emittance signal (P between the detector and its surrounding physical

environment within the enclosure, and - is the emissivity of the detector.

Since radiant power is modeled as a periodic function,

(1) = cp)e it
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Where C00 represents the amplitude of the sinusoidal radiation emittance. The solution to the

differential heat radiation is:

_ (Gth/) EI ei6t
AT =ATOe ceh th- 1 - Gfhoe th (34)

Gth + i&)Cth

The first part of the solution is the transient response and can be removed when analyzing the

steady-state response due to the incident radiant flux. This can be summarized into the following:

AT =3D)
(Gth + )2 C )

Thus, in infrared detection and sensing, it is advantageous to make AT as large. To accomplish this,

one must minimize the thermal capacity of the detector Cth and Gth. To maximize AT , the incident

radiation received on the thermal detector is maximized, due to source and geometry, when the

thermal contacts with other parts of the system is minimized. This is why individual thermal

detectors have small mass and very fine wires connecting to the heat sink.

A characteristic thermal response time for the detector can be generalized and defined as the

following:

Tth = = CthRth (36)
Gth

Where Reh= 1 /Gt, is the thermal resistance. The typical thermal time constant for infrared

detectors is on the order of milliseconds. This is much slower than the response time of a typical

photon detector.

Summary of insights to improve performance:

1. Design for low thermal capacity C and thermal conduction G.

2. Increase thermal integration frequency fb., , by reducing u, the thermal time constant of the

bolometer.
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3. Minimize Rb.I , the resistance of the bolometer thermistor.

2.5.3 Cost versus Resolution Trade-Off

Infrared technology is inherently costly due to several main factors:

1. The raw material costs in the optical lens and detector (e.g. thermopiles) is relatively high

compared to other components in the system.

2. The economies of scale in manufacturing and production is relatively low compared to the

scale of production for modem day digital SLR.

3. Market competition is relatively low, there is only a limited number of LWIR camera

manufacturers in the world.

Many of the high performance systems are solely developed for military and scientific usage.

Mainstream usage of high performance LWIR systems is typically very limited to small scale

application specific needs. To boost performance in resolution, the focal plane array (FPA) must be

compressed and reduced in size. However, there are limited factors preventing such actions,

mainly, the wavelength of the electromagnetic radiation. Since long wave infrared operate in the

8000-14000 nm, this equates to the wavelength being of the order of 8 - 14 microns. LWIR FPA

technology is manufactured of the order of 17 microns per pixel, operating near the wavelength of

the long wave infrared electromagnetic wave. As a result of these physical limits to the pixel size, we

may not be able to shrink the pixels further in order to enhance resolution. Operationally, you can

not make a detector size smaller than the wavelength of the electromagnetic wave you are

attempting to detect [51].

To increase the resolution of LWIR cameras, we must employ a larger FPA array and increase the

size of the optical lens system. Both of these actions are prohibitively costly due to material cost and

low volume manufacturing.

2.6 Temperature Inference

As previously discussed, the output of a LWIR camera comes in two forms:
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1. An output file of the measured radiance signal(s) received by the detector

2. An output file depicting a false color map representative of the temperature profile of the

scene.

The term 'radiometric cameras' in the IR camera industry refers to infrared cameras that include a

software or algorithm that interprets the output radiance reading into a temperature estimate of the

target. Not all LWIR cameras are calibrated and sold with the radiometric feature. In fact, many

off-the-shelf infrared cameras do not come with radiometry features. In this section, we will discuss

how one can interpret the camera signal output (pixel intensity) to estimate temperature.

2.6.1 Infrared Camera Signal Processing

An infrared detector array contains a number of individual pixel detectors. Each of these detectors

have slightly different characteristics and thus, different processing applied by the manufacturer. It

can be modeled as:

sj =f(M) (37)

Where s is the output signal output (pixel intensity) and M is the observed radiance intensity.

Initially, at power on, an internal calibration procedure is performed automatically and after that

power on, additional algorithms are utilized to compensate for detector signal non-uniformity.

According to Minkina [35] who utilized the TOOLKIT IC2 (described in his book), compensation

is performed using the following formula:

absPixel = globalGain -LFunc (imgPixel) + globalOffset (38)

Where absPixel is the value of the pixel post-compensation, LFunc is the value of processing

characteristic of a linearized function for the raw value of imgPixe, and globalGain and globalOffset are

constants representing the parameters of the camera's amplifiers in the signal processing path.

LFunc is a linearization function based on two coefficients, Obas, which is the base offset used in a

nonlinear conversion, and L, the calibration constant linearizing the raw pixel values. According to

Minkina [35], LFunc is defined as:
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p - Obas
LFunc = (39)

1 - L - (p - Obas)

where p is the raw pixel value.

S

AS - -- -- -- -- -- --

T1 T2

Figure 23: Calibration process of pixel detector's static processing characteristics S; = f(M;) [35]

2.6.2 Output Color Mapping

After the initial signal processing, the next task of a camera system is to display the recorded data as

a false color map of the thermogram. For this, the camera applies an imaging procedure which

maps the temperature readout to values defined by the color map based on a color palette. The

histogram matching algorithm is applied, the number of colors per internal is calculated, and then

each pixel is mapped to a corresponding index in the defined color map table. The color palate is

typically carefully chosen based on the specific application and visual needs of the application. At

times, the color mapping of the camera signal output (pixel intensity) may not be linear to

temperature for all applications.
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Figure 24: Isothermal colorizing algorithm for FLIR Cameras (top) Histogram colorizing algorithm

2.6.3 Modeling of Measurement with Infrared Cameras

In this section, I will discuss the temperature inference modeling behind infrared imaging hardware.

As a recap, the two generalized temperature calibration models in IR detectors are reviewed by

Minkina [35] and Saunders [34].

At the detector, the following heat fluxes are considered:

Pob = Eob(Tob)TTatm(Tatm)Mob(Tob) (40)

Vrefi = [1 - Eob(To)]Eo(To)TTatm(Tatm)Mo(To) (41)

Patm = - Patm(Tatm)]Matm(Tatm) (42)

Where Pobis the flux emitted by the target object, 9 ref1 is the flux emitted by the ambient

background and reflected from the target object, and Patm is the flux emitted by the atmosphere,

Eob is the band emissivity of the target surface, Matm, Mob, M0 are the radiant emittance of the
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atmosphere, target object, and ambient background, TTatm is the band transmittance of the

atmosphere, Tatm, Tob, To are the temperature of the atmosphere, object, and ambient background

[K]. Other fluxes emitted by the optical components of the imaging system and its relative

influences are negligible.

When accounting for all the heat fluxes into the detector, the following output signal of the camera s

is observed:

S ~ C(Pob + fPref 1 + 'Patm) (43)

Where C is a parameter that accounts for the atmospheric damping, the camera's optical system, and

the detector's properties.

object(ob) atmosphere(atm) Camera

Eob' Tatm' 4b

0 TTatm(1- ob Co *M

(1 TTatm Matm

TTatm,
Tatm

TO, Mo
go= I

ambient( o)

Figure 25: Radiation flux model with an infrared camera

Therefore, the signal output of the camera can be expressed as the following:

S = Eob TTatmSob + TTatm '(1 - Eob)So + (1 - TTatm)So (44)

Where s is the observed radiance corresponding to the total camera signal output (pixel intensity)

arriving at the detector, s5 b and s. are observed radiance signals that corresponds to the target
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object's heat radiation intensity and an ideal black body heat radiation intensity at ambient

temperature( assumption: background radiation is black).

The Planckian form of signal s. based on the Sakuma-Hattori equations [21] can be summarized as:

C
so (Tmeas) e(C2/A-Tmeas+B) 1(45)

Where A, B, and C are constants associated with the camera calibration characteristics. These

parameters are stored in the camera's microcontroller and used to account for emissivity of the

target object, atmospheric temperature, ambient temperature, camera to object distance, and

atmospheric relative humidity. Modem day infrared cameras have built-in hardware to measure and

approximate these values, and then automatically choose the correct parameters to apply in real-

time. However, more advance cameras will give users the option to manually change the parameters

on demand. Considering all these variables, we can summarize and model the radiant flux density at

the detector signal level as:

1 1 - Eob C 1TTatm C
So ob atm- ob (2ATmeas+B) + Eob ' TTatm e(C2/ATmeas+B _ ] (46)

The coefficient TTatm is represents the absorption of the infrared radiation by a layer in the

atmosphere. It is important and is caused by the water molecules (H 2 0), carbon dioxide (CO2), and

ozone (03). These atmospheric components are functions of the weather, climate, season, and

geographic location.

The simplified expression for atmospheric transmission TT,,,,, considers relative humidity (o,

camera-to-object distance d, and atmospheric temperature T,,,,,:

TTatm = f (w%, d, Tatm) (47)

In practice, TTat, is very complex to model fully as it has considerations for more than nine other

coefficients according to Minkina.
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The final model to represent the object's temperature based on the Saunders model [34] is expressed

as:

Tob= C2____ B

A - n (C +1) A (48)
\Sob

It can be further expressed as function of the following major variables:

Tob =f(Eob, Tatm, To, a) d) [K] (49)

It must be emphasized that this model is a simplified way of looking at how to interpret infrared

signals into temperature maps. In practice, the detector receives radiation from different sources

including radiation from the clouds, buildings, ground sources, and from the atmosphere. All these

radiation sources have influence that is relative to one another and will depend on the exact nature

and situation of the scenario. To account for these external influences, we need to develop a more

analytical and systematic approach to determine the correct assumptions to apply to the model and

correct for errors that may otherwise propagate in our estimation. In Chapter 4, I will present 3D

Radiometry and ARTIST based methods for reconstructing the 3D environments of a scene. In

doing so, we start to consider the influences of the surrounding environments and its effects on the

target surface.

2.7 Conclusion

In this Chapter, we have presented a broad overview of radiation theory and how it relates to

infrared imaging systems and thermography. The major insights in this Chapter include the

following:

1. Planck's law is the most common analytical form representing radiation.

2. Stefan-Boltzmann law is valid only for full spectral applications and not for band limited

applications like long wave infrared.

3. In Planckian form, the Sakama-Hattori equation approximation has been shown to be the

most applicable fit for long wave infrared applications.
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4. Most material surfaces are not Lambertian. Lambert's law states that when viewed from any

angle, a Lambertian surface will exhibit the same radiance. Lambert's law is based on a black

body assumption, whose emissivity is wavelength invariant and angle invariant, and is an

ideal diffuser.

5. Commonly published emissivity values are based on normalized emissivity and often

overlook angle dependency. Angular emissivity is assumed to be constant from incidence

angle 0 < 60* and varies for angle 0 > 60* based on observations as far back as 1935 based

by Schmidt and Eckert [42]. Emissivity is variant depending on the material, surface, and

incidence angle.

6. In thermal imaging, the conservation of radiance dictates no dependence on distance.

Radiance is equal to radiant flux over etendue. Radiance is invariant for a perfectly

transmissive optical system.

These fundamental insights will be useful for the later Chapters when we discuss concepts related to

3D radiometry.
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Chapter 3: Multi-Spectral Synthetic Aperture
Imaging System

3.0 Introduction

In Chapter 2, I presented the physics behind thermal imaging. In this Chapter, I will summarize a

field study on the use of a FUR thermal infrared camera for manual street-level thermography. I will

discuss the challenges of this approach and based on lessons learnt, will show a two phase design

approach for the ARTIST hardware system. In Phase 1, we develop a prototype rapid thermal

imaging data collection system using the FRDPARRC design methodology, Slocum [52, 53], and

then in Phase 2, introduce refinements to the idea to show the development of a multi-camera

synthetic imaging system. This entire process will walk us through the how the ARTIST hardware

system was designed, developed, and deployed.

ARTIST was originally designed to be a wide area thermal mapping system. Towards achieving this

capability, I developed three specific modular system components:

a. Hardware module - Developing an approach to collecting large scale, high through thermal

imagery. This will require the combination of hardware, software, and system product

design.

b. Image Processing module - Contributions to methods that can increase thermal imaging

resolution and capabilities.

c. 3D Radiometry module - A generalized approach examining 3D thermal imagery and its

importance and significance to leading the way to a more quantitative and accurate approach

to modeling heat transfer, energy diagnosis, and potential applications in non-energy related

fields.

For the remainder of this Chapter, we will focus on the (a) Hardware component of ARTIST. The

end-product is a portable multi-camera synthetic aperture camera system.
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3.1 Initial Field Study

In the Introduction in Chapter 1, we discussed that energy auditors use thermal imaging as a tool to

help assess thermal deficiencies through visual inspections. By inspecting areas of high thermal

gradients in the images, auditors use these images to show evidence of thermal leakage and make

expert interpretations of the images from their own user based experiences. The handheld thermal

imagers are typically battery-operated handheld devices that allow the user to capture images of

radiant leaks at wavelengths of 8000-14000 nm, the long wave infrared (LWIR) band. Thermal

imagers are based on uncooled microbolometer technology, which is cost effective when mass

manufactured. Energy auditors use these devices, which can be as small and portable as a digital

multimeter to something that can be as large and heavy as a large camcorder video recording system.

In a typical use case, an operator carries these handheld infrared systems in the two potential

settings:

a. Internal operation - the user carries the device intemally into the building to areas like a

basement, attic, HVAC system, or any internal area where there can be significant energy

leak which can be identified by the thermal imager. This can be done during the day or

night.

b. External operation - the user carries the device externally to the building, focusing on

examining for energy loss on the thermal envelop of the building. This is typically done

only at night, to avoid the effects of solar radiation in the images.

This part of the field research study was conducted in the Winter of 2009-2010 by me along with

MIT researchers Dr. Jonathan Jesneck, and Thomas Piper.

3.1.1 FLIR Camera Rental

With support from Professor Sanjay Sarma and the MIT Field Intelligence Laboratory, I performed

an initial feasibility and proof-of-concept study utilizing an off-the-shelf FLIR camera. The camera

was used to image and subsequently analyze energy leakage snapshot images of the thermal

envelope. The goal of the field study was to mimic an energy auditor's thermography work to
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provide insight into how data is collected, processed, and analyzed for determining heat flow out of

a home. A broader goal was also to estimate feasibility of performing manual thermal imaging over

an entire neighborhood and at city-scale.

The most prohibitive component of an infrared imaging field study is the cost of the camera system

itself. At the time of the field study, the most commonly used off-the-shelf infrared camera system

was the FLIR model P-660 camera. The system has a retail price of $40,000 with additional costs

for accessories. The main specification of the camera is the imaging capability of 640x480 pixel

images using a 38mm lens, 24* field of view. In order to operate under limited budget, I decided on

a lease/rental unit that was available from FLIR at a cost of $1500/8 nights.

Figure 26: FLIR Model P-660 Thermal Infrared Camera

3.1.2 Data Collection

Upon receiving the FLIR P-660 camera, we conducted 8 nights

the course of the following 7 nights, imaging data the following

Description

1. Night 1: Somerville, MA

2. Night 2: Somerville, MA

3. Night 3: Somerville, MA

4. Night 4: Belmont, MA

5. Night 5: Lexington, MA

Date

1/13/2010

1/14/2010

1/15/2010

1/16/2010

1/17/2010

Images

1115

526

843

831

771

MeanT

22

27

39

40

36

of data collecting to perform. Over

cities were collected:

MaxT

30

33

46

48

41

MinT

14

21

31

32

31

Conditions

Scattered Clouds

Scattered Clouds

Overcast

Partly Cloudy

Light Rain
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6. Night 6: Lexington, MA 1/18/2010 813 33 34 31 Light Snow/Freezing Rain

7. Night 7: Cambridge, MA/MIT 1/19/2010 345 34 36 31 Light Rain

Table 2 Field Study Summary for 7 Nights of manual data gathering using a FLIR P-660 LWIR camera

Every evening, the team would gather at around 6 pm and collected data until about 2 am in the

morning. The first night was spent learning how to use the camera system, how to make

adjustments to for better image quality, and learning the capabilities and limits of the system in

general. Even on the first night, it became clear that one can indeed "see" the thermal leakage

visually. The images were powerful visually in that common issues such as air leakage, thermal

bridges, and poor insulation were all visually evident on the thermal envelop of the building. It was

the first time that anyone on the team has utilized or experienced how to use a thermal infrared

camera system. The operation of an infrared camera system is intuitive and similar to how one

operates consumer digital cameras:

a. Point at scene

b. Press auto-focus button

c. Press auto-gain lock to adjust for image brightness

d. Click on button to capture image

e. Repeat
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Figure 27: Example 640x480 Pixel Image of a Home in Cambridge taken with a FLIR P-660 Camera.

Each night, thousands of infrared images were captured of homes, building, and various parts of a

city. The average time to capture each was approximately 30 seconds and every home required

multiple images taken from a single point of view and subsequent manual tiling process to image the

entire surface of house. The average home required 10-15 minutes of operation to capture one full

frame using the tiling method. The FLIR P-660 was a fairly heavy camera weighing approximately

4.5 pounds and required operations without glove because of the small size of the control buttons.

Operator training and a good amount of dexterity is required to successfully operate the infrared

handheld camera on a repeatable, consistent basis.

To estimate the time it would take to capture one full image per home for a small city like

Cambridge, with 22,000 homes.

Total time = Time per home x Number of Homes

min
Total time = 15 hm x 22,000 homes

home

Total time = 330,000 minutes = 5,500 person hours = 229 person days
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I estimate that it would take a total of approximately 5,500 person hours or 229 person days to

gather all the data for each of every residential home in Cambridge, MA.

3.1.3 Image Tiling & Digital Stitching

Image tiling is an on-site manual camera operational process used to move the camera stepwise in a

Cartesian grid of the scene. Using a tiling process can virtually extend a camera's field of view and

resolution but can be a very time consuming and tedious process to complete. In our case, we used

on-site image tiling because of the limited field of view and limited resolution of a single camera

system. The tiling process begins with an overall selection of a scene, starting from one end of a

corner, and methodically moving the camera frame by frame to create a virtual mosaic of the scene.

An outline of the steps to capture images of home:

1. Find desired home to image

2. Find reasonable distance to stand from the home

3. Align camera to take an image

4. Focus and lock the thermal setting onto the scene

5. Capture the image in the selected area

6. Move the camera slightly to the next scene with partial overlap over the original scene

7. Repeat steps 5-6 until entire scene of home is captured

8. This entire process will take about 10-15 minutes per home.

Example of tiling of images to create a stitched mosaic of a single home is shown in Figure 28.
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Figure 28: On-site image tiling process to increase field of view and resolution of the camera. 12 Raw Images (Top)
Manual tiling process (Bottom)

After the infrared imaging data is collected, the next step is to process the images of each house by

using a commercial panorama software program like PTGui. PTGui allows for manual stitching

using accurate cross photo markers and positions. Although not perfect, the software is suitable for

digital image stitching with the manual help of the operator. The most unique challenge of

computerized mosaic is the placement of unique markers used to identify locations matches between

two images. Infrared images contain less color density and unique features compared high

resolution electro-optical (EO) cameras. Therefore, mosaicking from tiled images is more difficult

and challenging to accomplish.
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Figure 29: Post-processed fully mosaicked example of Home A in Belmont, MA

Figure 30: IR image showing high gradient regions that are easy to identify in Home A

Figure 31: Another example of a post-processed infrared image of Home B in Belmont, MA
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Figure 32: Post-processed image of a commercial building. Building 35 at MIT, Cambridge, MA

Figure 33: Post-processed image of a commercial building. MIT Student Center, Cambridge, MA
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Figure 34: A unique 3600 view of the Massachusetts Institute of Technology in LWIR

This image was taken with a FLUR P-660 LWIR Camera using 4x360' rotations through manual on-site tiling

method and manual digital stitching and image correction.
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3.1.4 Insights & Summary of Initial Field Study

Upon careful examination of the FLIR formatted digital thermal imagery .jpg files, the following is

observed:

1. The FLIR file size is unusually large and contains about three times the amount of data for

an equivalent image of that pixel size and color depth.

2. My hypothesis was that a FLIR file contained multi-layers of data, which I later confirmed.

The first layer is a jpeg formatted color mapped thermogram representing a post processed

S1 signal.

3. From the information that was gathered, the layered data is encrypted and is likely to contain

the raw signal s of the camera system along with localized variables Eob, Tatm> To, a, d along

with the internal calibration settings of the camera related to the R, B, and F constants used

to determine the precise conditions of the camera at the time the thermal image was taken.

My attempts to understand this process in more detail were rejected by FLIR, citing

proprietary nature of their technology. I supposed that the data is encrypted with

proprietary and complex radiometric data.

4. The only method to extract a temperature interpretation of the image required utilizing a

FLIR originated software where it could unencrypt the data beneath the jpeg data which

allow porting a temperature table to an external program such as Microsoft Excel. FLIR

does provide a free version of this software called Quick Report, but it is limited in features

and will only allow one image at a time to be converted.

The result of the field study over 8 nights of operating the FLIR P-660 camera in varying weather

conditions yielded many observations, an illustrative sample of which include:

e Over 100 homes were imaged, many times, multiple times per night and at different

locations and field of view to the building.

* It was extremely time consuming to manually gather the images. Each image took an

average of 30 seconds to acquire and each home required anywhere from 4 - 16 images per
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mosaic. Manual mosaicking each home was not efficient. The average home required at

least 5 minutes or more to completely image.

* The task was both tedious and physically painful - both from dealing with the cold weather

and physical and emotional duress of working in such extreme weather conditions.

* The images were insightful in allowing one to "see" the energy leaks from the building

allowing one to visualize problems with air leaks, poor insulation on the doors, windows,

roofs, sills, and many other problems on the thermal envelope of the building.

* The manual process of gathering data by walking from home to home would NOT be

scalable and was subject to high degree of inconsistency from home to home, from

neighborhood to neighborhood.

* Weather variations such as rain and snow affected the quality and operation of the camera

and images.

* The average number of homes per night would be approximately 20-30 homes.

* Post data mosaicking was slow and time-intensive.

* Commercially available FUR Thermal Camera Systems are can only be modeled as a

blackbox that must use FLIR's proprietary software to operate the thermal radiometry

feature of the camera.

* Eob, Tatm, To, to, d data is encrypted as a layer on FUR jpeg images along with R, B, and F

constants used for mapping temperature information for the P-660 model.

* The feedback and conclusions drawn by the researchers will be utilized as part of the system

design process to in developing a more methodical, systematic, and scalable way to collect

thermal imagery data.

These insights will be utilized in the next section as we develop a formal system design

methodology.

3.2 Design Framework for ARTIST

ARTIST stands for Automated Rapid Thermal Imaging Systems Technology - it was conceived to

help overcome the challenges of manual infrared imaging data collection process, which we have

shown in the last section to be a challenging task. We used the field study in the previous section to
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help us better understand the challenges of image data collection. Now, we will use the remainder of

this Chapter to help us design a better thermal image data collection system. The central concept

behind ARTIST is to do for thermal mapping what Google Street View did for visual imagery.

Today, Google Street View has the technology to deploy fleets of vehicles to quickly and efficiently

map an entire city, state, or even country. Their technology is capable of being deployed on a global

scale. There is no such system for thermal imagery. Therefore, we propose to build such an

automated system. We begin by focusing on the hardware design of the ARTIST system and will

develop the same in two phases:

Phase 1: Initial proof-of-concept device to explore the concept of wide area thermal mapping

Phase 2: Develop and refine hardware for an advanced multi-camera synthetic aperture system

The goal of this section is to give the reader a conceptual and technical understanding of how

hardware product development is progressed for an idea such as ARTIST.

3.2.1 Phase 1: Proof of Concept Device

Based on the challenges we faced during the field test of a manual infrared data collection process,

we go to straight to the drawing board to think of how to address some of those key challenges

using a proof of concept device system. In Phase 1, we apply a FRDPARRC design approach to

develop a proof-of-concept device. I proposed the use of a hardware mounted conventional vehicle

system to capture thermal imagery. The sequenced thermal images can be mosaicked into a single

panoramic frame allowing one to take a single stitched panorama of an entire street. Such an image

would be powerful and would demonstrate the ability to map entire neighborhoods quickly and

efficiently. This process would provide an initial framework to thermally map large areas in a short

period of time. The "drive-by" approach is highly desirable as it confirms to existing road networks,

is non-conspicuous, and is an acceptable form of imagery data capture based on Google Streetview's

precedence in the space. According to court records, it is legal to capture imagery data from any

publicly accessible road [54].
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3.2.1.1 FRDPARRC Design Approach

FRDPARRC is an acronym for Functional Requirements, Design Parameters, Analysis &

References, and Risks & Countermeasures. Each part will be detailed in the following sections as we

work through the exercise for the design. This process was chosen because it is a well-known

approach in design pedagogy.

3.2.1.1.1 Functional Requirements

We initiate the design process with a vision of the product - a multispectral system that can record

data in 3 wavelength bands, EO, NIR, and LWIR bands - this is also referenced as multi-band

imager. This system would be vehicle mounted and driven at normal speeds on the road.

1. Multispectral imaging system:

a. Capable of Electro Optical or EO imaging(350-700 nm)

b. Capable of Near infrared or NIR imaging(700nm-1200nm)

c. Capable of Long wave infrared or LWIR or FarIR imaging(8000-14000nm)

d. Capable of using forward lateral motion to target object (a house), through forward

motion of vehicle, so that a scan be completed at different locations along a building.

e. Capable of application of ±2 pixel motion for demonstrating the application of

Kinetic Super Resolution2 (to be discussed in a later Chapter)

f. Operable in near-infrared, low-lighting conditions, in areas of limited or zero natural

or street lighting conditions.

2. Ability to operate in both day and night conditions

3. Imaging system must be mounted atop a vehicle, with sufficient stability and fixturing.

Minimize motion of imaging system during transport and road use.

4. Relatively lightweight for ease of installation and removal

5. System must have low power consumption, capable of drawing power directly from existing

car battery system.

2 MIT ID#14538: Kinetic Super Resolution Imaging (J. Jesneck, L. Phan, S. Sarma)
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6. Imaging system must meet 10 feet vertical elevation from the ground to avoid viewing other

obstructive objects, such as other vehicles, directly.

7. Geo-location logging capable with GPS logging capability for pro-processing GPS tagging.

3.2.1.1.2 Design Parameters

Towards addressing the functional requirements for the relevant design parameters and alternate

component choices are:

1. Imaging System

a. Modified Sony HDR-XR550 HD Capable 330nm-1200nm functional camcorder

with recording capabilities

b. FUR Photon 320 Camera + Accessories (320x240 pixel) IR Imager 8000-14000 nm

with local PC storage capabilities

c. Reliable enclosure and mount for both cameras

2. Structural Mounting on Vehicle

a. Bike rack mount, snowboard mount or professional suction cup design and must be

able to withstand significant shake & movement from moving vehicle

b. Centralized cabling system from inside the vehicle to the imager/equipment

c. IR illumination in the ~800nm range through the use of infrared LED flood lighting

3. Power Requirements

a. 12v DC > 120v AC power conversion in vehicle for powering the equipment

4. Data Logging

a. Real time GPS logging capabilities for imagery geotagging

These are the sequence of actions while operating the device:

1. Drive-by imaging of buildings on the street-side to create a street mosaic

a. Utilizing daylight to capture EO Video (300-700nm) with HD Sony Camcorder

b. Utilizing IR floodlamps to capture Near IR Videos ~800nm with HD Sony

Camcorder
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c. Utilizing FarIR/NearIR coupled mode to simultaneously record NearIR and FarIR

videos

2. Application of sufficient motion to image to attain ±2 Pixels Movement for Kinetic Super

Resolution

3.2.1.1.3 Analysis & References

We need to consider the motion of the vehicle parallel to the homes and buildings. We will

estimate the upper bound on the vehicle speed based on the field of the view of the components of

imaging system is and the sampling rate of the imaging system in frames per second (FPS) that will

minimize motion blurring from in the imagery from vehicle motion. While a wide angle camera will

encapsulate a larger area of coverage in the image, a smaller field of view will limit the speed of

vehicle and cause significant motion blurring due to relative motion of the imaging system.

In this section, we will focus on the system design of the prototype of a low cost multi-spectral

imaging system and forgo the discussion concerning motion blur in particular. Imaging motion will

be discussed in a later chapter and a method will be presented to take advantage of camera motion

for post imaging processing for producing resolution enhancement through super resolution

methodologies. For now, we will focus on the constraints of minimizing motion blur through

design and maximizing imagery capture of a scene.

The vehicle motion limits is based on 3 possible conditions:

1. Overlap of successive image frame (minimum percentage overlap)

2. Pixel Velocity limits based on optical flow algorithms (pixel/frame)

3. Camera integration time to avoid blur (- integration time)

Of the 3, we have observed (2) to be the most important and we will discuss it in more detail in

Chapter 6. LWIR camera integration times were found to be approximately ~ 8 ms. Next, we will

analyze and discuss (1) Overlap of successive image frame.

Vehicle Motion Imaging Considerations:
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FLIR Photon 320 Camera with 14.250 Lens: 46' Horizontal x 36* Vertical, 320x240 (H x V) Pixels,

30 fps

Assuming the distance to the object is typically between 5 - 10 m and the camera is placed on a

landscape mode during imaging. We want to estimate the upper limit of the motion we can we

apply to the imaging system given the hardware constraints.

Maximum Lateral Motion Distance = 2 x Distance to Object - sin (FO V/ 2)

Maximum Lateral Motion Distance = 2 x 5 m - sin (460/2) = 3.9m between frames @ 5m distance

Maximum Frame Rate = 1/30 sec

Maximum Lateral Motion Speed = 3.9m/ (1/30 sec) = 117 m/ s ~ 262 mph

What this means is that if a car moves 262 mph, it can traverse laterally/parallel to the house at a

rate of 3.9 m in between full frames of 1/30 of second between each frame. However, in reality,

we want to create a virtual panoramic image of the neighborhood and require each frame to

have *some* information from the last frame. If we say, we want each corresponding imaging

frame to have 90% of the information from the last frame, we limit the lateral speed of the

camera by 9 / 10th of the maximum speed. Thus, the vehicle must move at speeds of 26.2 mph

or less if we wish to create a virtual stitch of the entire neighborhood. This is an upper limit

constraint for motion estimate.

In reality, a vehicle moving at 26.2 mph will introduce motion blur to the captured thermal

images. Thermal imagery has limited pixel integration times unlike the conventional visual band

during daylight conditions, and therefore, is inherently frame rate limited. Uncooled

microbolometers are particularly vulnerable to these limits. The solution therefore is (a) faster

frame rate and pixel integration time by utilizing a cooled infrared system or (b) slow the vehicle

down.
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Figure 35: Operational diagram depicting displacement of imaging system and projected image.

Vehicle Vibration modeling:

We are primarily concerned with vehicle vibration due to vehicular motion and road obstacles that

will ultimately translate into unstable vibrations for the imaging system, causing damage or unstable

operations. The effect of vehicle motion on the ARTIST system can be analyzed in two main

categories:

1. Steady vehicle motion and its effect on the optical flow algorithm and on motion blur

2. Vibration induced uncertainty on the imaging system overall.

Vehicle motion and vibrations are a well understood topic. I refer to literature for quarter-car

modeling [55-57]. For this purpose of this project, we are not principally concerned with motion

inside the vehicle, but more concerned with residual harmonic vibrations that can damage the

sensitive imaging equipment at the top of the vehicle. Fortunately, for this project, we have access

to a brand new Acura RDX light SUV vehicle, with good suspension systems. The design of the

vehicle has incorporated vibration minimization design during its development, testing, and
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construction process. Additionally, we will assume that the device is fully coupled to the top of the

vehicle through a secured mounting device with a low center of balance. Therefore, we believe that

with a well rated new vehicle, uncontrolled harmonic vibration will not be an issue

Small Camera Motion required for Kinetic Super Resolution Process

Without getting into the specific of the motion induced resolution enhancement algorithm, lets

lightly discuss another use for this device. I, and other colleagues at the MIT Field Intelligence

Laboratory have developed an algorithm called Kinetic Super Resolution, which can enhance the

resolution of an imaging system by an order of magnitude or more. This is done through a method

called Multi-Frame Super Resolution. The general idea is that by imaging multiple low resolution

frames together, we have the ability of infer a high resolution image. It is one the goal of this

prototype to develop a demonstration of how KSR can be applied to a vehicle motion for resolution

enhancement, particularly in the far infrared range (8000-14000nm) where LWIR technology is

financial costly and resolution limited.

To achieve KSR, the imaging system requires multi-frame images with shifts on the order of ±2

pixels, stochastically derived through random motion. Thus, motion is critical to the success of this

project. The key question is: how much source translational motion would be required to achieve

±2 pixels stochastic random motion in the imaging system, we attempt to model the magnitude of

physical lateral and angular displacement to achieve this.

The FLIR Photon 320 Camera with 14.250 Lens: 460 horizontal x 360 vertical field of view, 320x240

(H x V) pixels, 30 fps

320 pixel, 46 degree Field of View = 6.9 pixels/degree Horizontal

240 pixel, 36 degree Field of View = 6.6 pixels/degree Vertical

Thus, for +2 Pixels, we are looking to achieve 0.3 degree FOV angular displacement in both the

horizontal and vertical directions.
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For objects that are 10 m away from the imaging system, that equates to ~ 10m x sin (0.30) ~ 0.05

m - 2 inches. Given this constraint, the requirement for KSR to achieve success is the application

of motion so the imager sees 2 inches of imaging displacement on the scene at distances to target

object of 10m or 0.30 angular displacement at the base of the camera imaging system.

3.2.1.1.4 Risks & Countermeasures

Risks:

1. Movement of vehicle/imaging system which can cause destructive motion of

camera/mounts.

2. The loosening of mounting structure, nuts, bolts, and clamps holding the system together.

3. Cable disconnection issues due to shake

4. Weather corrosion and damage.

Countermeasures:

1. Ensure all joints and mounts are securely fastened. Consider permanent or extreme locking

procedures. Reduce all slack within system. Use rigid material selection process.

2. Design using proven mounting systems that have been well tested in actual operating

conditions. Consider reliable off the shelf solutions.

3. Manage cable system properly through proper cable management system. Reduce the

ability of the cables to get jammed or locked during setup and operation. Considering tubing

and cable tie locking in critical areas.

4. Build durable hardware enclosure. Ensure that enclosure can withstand significant physical

usage and shock resistance to small damage.

3.2.1.2 Total Cost Estimate, System Parts, & Other Design Considerations

The proposed budget for the imaging system was approximately $18,500. The most expensive

components of the system were the camera systems, which accounted for over 70% of the total

prototype budget.
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System
Num

1

2

3

4

5

6

7

Description

EO/Near IR HD Camcorder

Far IR Camera Far IR Camera

Far IR Accessories

Additional Design Considerations:

The design requirements lead to the purchase of modified Sony HD-550V (NIR capable) camcorder

with 240gb of local disk storage. The goal was to minimize the data transfer requirements for

extended imaging times. This camera was specifically modified to extend the imaging capability of

the original manufacturer specification with capabilities to capture images which extend between

300-1200nm. Most conventional camcorders are sold with 350-700nm, which is the visible

wavelengths. Beyond this wavelength is infrared, which is considered noise to imaging systems.

Conventional CCDs have a thin layer of IR filter film to remove signals beyond 700nm. For our

specific need, we wanted to be able to do drive-by imaging at night. Thus, we needed night imaging

capabilities. For this to be possible two things needed to be accomplished:

1.

2.

Remove IR filter from camera

Provide an additional source of IR illumination.

Thus, our intention is to provide IR illumination by use of an IR illuminator thereby allowing us to

"see in the dark". This makes night imaging much less intrusive and totally passive and invisible to

the naked eye. Hardware power requirement was provided by a 12V DC/AC power inverter using

the car's existing power plug to power the entire system which includes imaging, illuminator, and

portable computer

Automated Rapid Thermal Imaging Systems Technology

Components & Parts:
Item

Sony HDR-XR550V

Flir Photon 320

Flir Photon 320

Car Bike Rack/Mount System

Mid-High End Laptop Data Capture Machine

Near IR Flood Light 800-1000nm LED Floodlights

Misc Accessories/ Cables/Mounts/Hardware
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3.2.1.3 Design Review

A key design parameter to consider is the primary method for which the device can be mounted to

the vehicle for easy installation and removal; yet maintain a high standard of stability and rigidity so

that the imaging equipment is protected from being damaged while the vehicle is in motion. The

total value of the equipment to be protected through the mounting device is substantial so it is

critical that the mounting interface performs to specifications to protect the imaging equipment

from physical damage. To achieve this, the following approaches were considered:

Approach 1: Use of existing vehicle mounted "jib" devices that's used in Hollywood movie

production and car photography projects

Approach 2: Use of suction devices (single or multiple) that can fasten to the car

Approach 3: Off-The-Shelf ski/snowboard rack mounting devices that you can purchase for

vehicles

Approach 4: Build your own mount from scratch

C)

U
cr)

C
4

C
C)

Jib

Suction

Rack

Build

0

0

+±

0 0

- +±

± +±

- 0

C)

0
C)

C)

0

+

0

0

+

0

0

0

0

-)

+

0

+1

+4

-3

Table 3: Pugh chart selection process for imaging system vehicle mount.
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A pugh chart design selection process was utilized to determine which approach is most appropriate

for proposed needs of the system. It was determined through this selection process that utilizing an

off-the-shelf ski/snowboard rack mount presented the most benefit given the operating constraints.

Off-the-shelf racks are a proven technology that many recreational sports enthusiast use to mount

their equipment while traveling at high speeds on the highway. Thus, using such a device would

help ensure the imaging system's stability requirements would be met.

3.2.1.4 Construction of the System

For the vehicle selection, a 2011 Acura RDX was selected as the default choice mainly because it

was my personal vehicle. The RDX came with factory installed roof rack rails integrated on the top

of the vehicle. The roof rack rail is rigidly mounted and bolted onto the frame. The rails were

designed to mount skis or snowboards mounts directly onto the top of the vehicle via clamps with

rubber cushions. The goal then is to design a snowboard-like platform for the device that can be

easily mounted and removed with minimal effort, yet provides a stable and secure platform for the

imaging system while vehicle is operational.

SjA Locking Mechanism

Figure 36: Acura RDX Roof Rack Mount for winter sport gear [581
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When closed, the compression force of the rubber pads will provide sufficient cushioning and

rigidity to hold the snowboard aluminum panel in place. The imaging system will then be securely

mounted onto the snowboard plate. This simplistic design easily removable and will be easy to

operate for mounting and removing the imaging system on/off the vehicle. After considerable

searching at various mountain sports stores, the following were concluded:

1. A majority of skis and snowboard did not provide the stiffness requirement for the needs of

the systems.

2. Adult Snowboards are large, much bigger in size and length than is required for mounting

the imaging hardware.

Fortunately for the project prototype, the youth section of Sports Authority provided a selection

environment that was sufficient and the selection of a small snowboard made of 100% plastic

demonstration a very stiff platform for the system. The top of the board is curved while the

bottom of the board is flat. A modified version of the board would fit our needs of the systems.

The solution to increasing stiffness is to sandwich the plastic board along with a plate of aluminum

together (combined weight is less than a comparable aluminum the size of the snowboard and make

it easier to transport).

The next part of the phase is to design a method for the imaging cameras to be mounted and

removed quickly. An adapted concept from photography was considered and utilized where one

can quickly mount and remove a camera from a tripod securely. The chosen method was to use a

Manfrotto Quick Connect adapter. It has a dual locking mechanism for a quick release and a smaller

gold lock provide double security to ensure the equipment does not get released prematurely. This

is all bolted with a " screw. Multiple core base units are used so the imaging equipment is

interchangeable and configurable. Additionally, the Manfrotto adapter was utilized allow the

change in orientation of the imaging system into portrait mode, thus, allowing the cameras to orient

the imaging system vertically as to capture a wider field of view. This crucial design component was

important because many homes are multi-story height requirements. Using the cameras in

conventional landscape mode will reduce the vertical field of view and would limit the full view of a

home. THIS MOUNT DESIGN IS A CRITICAL COMPONENT. With this new mount; one can
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adjust, configure, and remove the camera easily. All imaging data from the camcorder needs to be

retrieved at the end of a run.

Lock Nut + Bolt = B

Aluminum Plate B BB B B B B

Plastic Snowboard

Figure 37: Snowboard & Aluminum Plate Mount Design

Figure 38: Finished Phase 1 Prototype of Multi-Spectral Imager.
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FUR Photon 320 LWIR Camera

Manfrotto Quick Connect

Figure 39: Finished Phase 1 Prototype of Multi-Spectral Imager with details.

3.2.1.5 Operating the System

Once the device was prototyped, it was able to demonstrate full operation by driving through

Cambridge and Somerville, MA. The neighborhood chosen to complete the imaging is one that

was familiar with because the previous field research using a handheld infrared camera was

conducted in the same area. The goal of the Phase 1 proof-of-concept prototype was to

demonstrate the ability to conduct high throughput wide area multi-spectral (mainly LWIR) scans.

This was successfully demonstrated using the prototype system. The vehicle was able to use drive-

by imaging to gather infrared, near-infrared, and EO images. The imager showed stability both in

extreme weather and through normal street driving conditions. Even with the potholes and

excitations, the system did not fall apart or break down at any point during the field test and actual

use of the device.

Furthermore, upon completion of the prototype, the system was utilized to fully map the City of

Cambridge, MA where MIT and Harvard reside. Additionally, at the request of the Army Corps of

Engineers, the system was successfully demonstrated on an Army Installation.
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Figure 40: Finished Phase 1 Prototype Demonstrated with Mount on Vehicle

EO Near IR Far IR

Figure 41: Tri-Band multi-spectral sample images of a single home in Somerville, MA

The data is captured and stored in real time on a portable laptop PC. Each frame is saved

separately as an individual bitmap image and time synced to the laptop's system clock. The laptop

system clock is regularly synced to the atomic clock to maintain accuracy. Separately, the laptop is

also storing real time GPS coordinate data through a USB enabled device at 10 hertz. In a post

processing procedure, each individual frame is synced and geotagged with the GPS data. The data

can thus be post processed using a GIS framework to map the infrared images into a visual database

and overlaid onto mapping systems like Google Map. In Figure 41, we show that the prototype
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system can be used to gather EO, NIR, and LWIR images and relocated on a map. Each

wavelength details different visual information that can be used later in a multi-spectral image

processing framework.
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Figure 42: Full Street Thermal Scan of both sides of a street (constructed from thousands of images) in Somerville, MA
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The images above were created by mosaicking thousands of individual images together to create the

world's first full thermal street scan. This image is of Burnside Avenue, Somerville, MA.

3.2.1.6 Demonstrating the Results

The prototype was successfully demonstrated for the purpose of Phase 1. The key measure of

success was that the system was able to acquire several types of imagery using vehicle motion; EO,

NIR, and LWIR images at 30 fps on all bands with the ability to geotag reference the location of all

the images. This will allow post processing of all the information to be explained in the later

Chapters.

An early demonstration of the results is in Figure 42. Utilizing a multi-frame image stitching

algorithm through translational image registration developed at the Field Intelligence Laboratory, the

research team was able to demonstrate a wide area 2D reconstruction of an entire street. The

algorithm is similar to that presented by Levin, Zomet, and Weiss. It will be explored further in the

following Chapters.

The image processing required to demonstrate this is extremely complex and will explained later

with the introduction of 2D to 3D object reconstruction and how it relates to infrared imaging. For

now, the focus will be in examining the results of the multi-spectral imagery collection process. We

will note that there are significant observed challenges when dealing with drive-by imaging. These

include but not limited to the following:

1. Translational and rotational effects of the vehicle relative to the objects (buildings)

2. Relative motion of varying distance of objects, closer objects move faster, further objects

move slower.

3. Optical warping of lens through non-uniformity, particularly the LWIR lens

4. Motion blur introduced from moving vehicle/imager

5. Objects such as trees and cars blocking the view to the target object.
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3.2.1.6.1 Image Analysis

An initial first order image processing analysis was performed on the Cambridge, MA data. The

following sequences of post processing steps were taken to analyze the thermal images:

1. Aggregate all thermal images onto one source

2. Geotag each image with the GPS coordinate of the location of the vehicle

3. Place all data onto a GIS map database to organize the data into a spatially accessible map of

all the images.

4. Individually apply object detection algorithm to automatically segment thermal leaks based

on gradient and camera signal output (pixel intensity) information on the images.

5. Apply a generic scoring system to qualify an energy score

This initial analysis was only utilized to obtain very preliminary results for a spatially variant energy

map for the City of Cambridge, MA. As one can see in the following example, the leaks are not

distance and viewing angle normalized, which means the score is based on an absolute scale and has

significant limitations and value in interpretation. This early preliminary finding inspired further

research into 3D modeling and image reconstruction in the following Chapters. However, the

preliminary results were very encouraging and served to show that it is possible and valuable to be

able to map and find energy leaks, albeit at a very crude first pass at quantifying energy losses

through analysis wide area thermal imagery.

n=N

energy scorebuilding = I f (Area, Luminosity Intensity, Radial Location on Map) (50)
n=0
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Figure 43: LWIR image of Home A (left) and post-segmented for thermal gradients (right). Courtesy of Dr. Jonathan
Jesneck, Research Scientist, MIT.

Figure 44: LWIR image of Home B (left) and post-segmented for thermal gradients (right). Courtesy of Dr. Jonathan
Jesneck, Research Scientist, MIT
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3.2.1.6.2 Leak Size Analysis

In this analysis, we will quantify the size of each of the segmented pixel area identified as having a

high thermal gradient, as identified by the segmentation algorithm. Although an area may be

identified as a high thermal gradient, it need not be thermal leak, e.g. it may be a warm street lamp or

a hot vehicle. The thermal gradients of interest refer to 'energy leakage', which may fall into one of

two categories: (a) conduction losses due to poor insulation, such as a poorly insulted wall or (b)

convection losses due to air leaks, such as a small gap under the door.
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Figure 45: Histogram of synthectic energy leak size (based on gradient analysis) vs quantity for City of Cambridge, MA

From analyzing all the images from Cambridge, MIA, we were able to segment and quantify the size

of each hot thermal gradient (pixels) based on high thermal gradients. We have not identified the
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nature of the thermal gradient, such as conduction due to poor insulation or convection due to air

leakage. Size quantification of the hot thermal gradient is seen as a crude but effective way of

quantifying the relative number and size of the problems from a macro urban scale. In Figure 45,

we show a histogram of this analysis. What this histogram signifies is that there are a significantly

greater number of small thermal gradients identified in Cambridge than large ones. The results

resemble a Pareto 80/20 diagram, where 80 percent of the problems occur in 20% of the solutions.

Therefore, if we take a similar view of the problem, 80% of the problems occur in the smallest 20%

of the leaks. However, to be more precise, this number looks to be about 70/20, where 70% of the

problems occur at the smallest 20% of leaks. At least from a preliminary point of view at this point,

size does matter, specifically "small" leaks. This brings up more questions than answers:

* Why are there so many small leaks (by thermal gradient) ? Is it leaks on the envelope of

buildings or foreign objects?

* What about distance to the object, does it matter?

* What about viewing angle to the object, does that matter? How to account for this?

* What are the limits of detecting small leaks? Does improving resolution help? Why?

These are some of the common questions that came up at the end of this initial research study. The

conclusion points to the fact that it is important to be able to perform detailed analysis on small

leaks, mainly due to the fact that there are so many small leaks compared to large ones. Imaging

resolution does matter and thinking of higher resolution infrared imaging will be critical to detecting

small leaks.

3.2.1.6.3 How to Increase Resolution

Understanding that maximizing imaging resolution will be critical to understanding and detecting

small leaks, there are three areas of resolution enhancement in the system: spatial, spectral, and

temporal resolution. In the ARTIST system, we are targeting to maximize resolution in all 3

domains using the following methods.
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Spatial

Spectral

Temporal

Hardware

Multi-Camera Synthetic Aperture

EO-NIR-LWIR Bands

30 FPS Real-time

Software

Hyper Resolution/KSR

none

none

3.2.1.6.4 Energy Score Mapping
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Figure 46: GIS mapping of synthetic energy score for City of Cambridge, MA 3

3 Courtesy of Dr. Jonathan Jesneck, Research Scientist, MIT

Automated Rapid Thermal Imaging Systems Technology Page 120



Histogram of gusher score

I I I I

0 1000 2000 3000 4000 5000

Gusher score

Figure 47: Histogram of synthetic energy scores for City of Cambridge, MA4

The result from analyzing the City of Cambridge infrared imagery data plotted onto a GIS map

showing the raw score (not normalized) for individual buildings on the map. Red signifies "energy

gushers", high scores, and blue signifies "non-gushers", low scores. This is presented as a simple

way to allow one to visualize "negawatt" potential within a city based on first order analysis of

thermal imagery. Additionally, an online demo was created to show the ability to zoom into a

particular building in the city to display the infrared imagery of that building via the web.

3.2.2 Phase 2: A Synthetic Aperture Multi-Spectral Imaging System

A synthetic aperture imaging system is a virtual camera system that extends the total capability of

system beyond the native capability of the single camera. It is "synthetically" creating a camera

system beyond the native capabilities of a single camera. Through digital manipulation and image

processing, it is now possible to create a virtual camera system by combining two or more cameras

together in a configuration that mimics camera tiling, like we demonstrated in the previous sections.

By tiling the cameras in a synthetic configuration, the system overcomes the need to manually move

4 Courtesy of Dr. Jonathan Jesneck, Research Scientist, MIT
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the camera after each successive frame to increase the total field of view. The new synthetic

effective field of view (FOV) is the sum of the field of view of each in individual camera minus the

overlapping pixel areas. In essence, the total field of view of the system can be extended through

this virtual tiling method. Additionally, but mounting the system onto a platform like a vehicle, we

can additionally use the vehicle's forward motion for further enhance the total field of view or

"aperture" of the system. Together, these two concepts make the synthetic aperture idea appealing.

c=N c=N

Effective FOV (H, V) = FOV of Single Camera (H, V) - FOV of Overlap (H, V)
c=1 c=1

(51)

FOV(H)

Position A (t) Position B (t + 1)

- FOV(V) [Ca 1

Forward Motion

I Vehicle I

Figure 48: Vehicle & camera system displacement showing motion of single sided synthetic aperture system (3 camera
design).
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Camera A

Camera B

Camera C

Figure 49: An initial prototype of the multi-camera synthetic aperture mount design with corresponding projected image.

Additionally, we should also consider the benefit of extending this capability into multiple

wavelength imaging bands to create a multi-spectral system. From Phase 1, we demonstrated that

the system can take images in EO, NIR, and LWIR wavelengths. By doing so, we can see

information at surface that may include color, texture, reflections, and temperature. By fusing this

information together, we can consider the possibility that artificial intelligence or learning algorithms

can be used to predict the nature, type, and morphology of each energy problem.

3.2.2.1 Lessons Learned from Phase 1

In Phase 1, the prototype was able to provide a significant amount of insight and lessons learned.

However, there were inherent limitations on the system because it was only meant to be a proof-of-

concept prototype. Some of the limitations of the prototype system were:

1. Limited Resolution on LWIR (320x240)

2. Limited vertical field of view

3. One side of vehicle only

4. Not cost effective (LWIR imager ~ $10,000 with accessories)

5. Required continuous portable computing support for imagery and GPS recording

6. No thermography capability, Non-radiometric LWIR camera
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7. Auto-gain control and gain-locking features very difficult, control requires portable PC

These limitations allow us to refactor these variables into the design of a new system. The biggest

limitation on the system was (a) resolution and (b) field of view. The limited resolution of the

prototype system made it difficult to classify the nature of many of the leaks. The low resolution

made difficult to determine what exactly was the type of problem, what type of heat transfer is

happening at the area of interest, and makes it difficult to track and re-identify the problem in a

follow up scan.

Therefore, we determined ultimately the system's performance was driven primarily by resolution.

There are three types of resolution:

1. Spatial resolution

2. Spectral resolution

3. Temporal resolution

For our new system, we are interested in maximizing all three. Increasing spatial resolution will

allow us to see more details in a particular area of interest. Increasing spectral resolution, through

multi-spectral imaging, will allow us to see more details in different spectral wavelengths.

Increasing temporal resolution will reduce motion blur and provide more frames to analyze at any

particular spatial mapping area.

3.2.2.2 New Design Parameters

The limiting factors of the original prototype made the design of the next prototype significantly

more challenging. Immediately following the winter of 2011, a complete redesign was initiated to

solve some of these challenges. In the Phase 2 design, the following functional requirements and

considerations are taken into account:

1. Increase total imagery spatial resolution of the system

2. Increase the total field of view, FOV

3. Be able to see both sides of the streets

4. Must be cost-effective to develop and manufacture
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5.

6.

7.

Requires no support from portable computing systems

Easy camera control for controlling gain settings

Thermography capability a MUST

Most importantly, of all these design parameters, the system must have a wide field of view and be

able to see an entire view of a home or building of 4 stories or higher at a reasonable distance from

the vehicle. Assuming each level of home is approximately 4 stories, or 40 ft. The problem with the

Phase 1 prototype imager is that it was based on one thermal camera with a specific lens, which

provided a field of view of 400 by 30', the widest angle available for commercial thermal lens. Based

on a single thermal imager alone, it was not possible to meet the wide field of view objective unless

one wanted to reconsider mechanical mirror systems based on single line scanners. Therefore, an

entirely new approach had to be considered for the next and final prototype of Phase 2.

3.2.2.3 Spatial Resolution Analysis
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Figure 50: Spatial Resolution vs Distance for FLIR Photon 320 camera
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Figure 50 above illustrates the spatial resolution transformation table that shows the spatial

resolution per pixel at various distances to the camera. At 10 meters, which is about 32 feet, a

typical distance to a residential building, the spatial resolution is ~2.2 cm/pixel. This is relatively

poor spatial resolution since a majority of air infiltration leaks on buildings are much smaller than 2.2

cm, making it very difficult to detect in post-processing.

One way to improve the spatial resolution is to increase the camera's resolution. Commercial off-

the-shelf LWIR systems are inherently limited by costs, resolution, and frame rate. The FLIR

Photon 320 is a 320x240, 30 FPS, and costs about $10,000 (accessories included). It is an uncooled

LWIR camera, which means it does not have to be cryocooled and thus, suffers from the inherent

limitations of detector sensitivity due to local radiant noise.

3.2.2.4 System Goals & Solutions

Based on the goals outlined at the beginning, the proposed design parameters and solutions is the

following:

Problem Solution

e Increase total imagery spatial resolution
of the system

e Increase the total FOV

* See both sides of the streets

* Design for manufacturing

* Requires no support from portable
computing systems

* Easy camera control for controlling gain
settings

* Thermography capability a MUST

* Use higher resolution 640x480 uncooled
microbolometer LWIR cameras

" Array multiple cameras into a
configuration that will cover a wider
FOV

* Place camera system on BOTH sides of
the vehicle

* Apply design for manufacturing
techniques, be able to outsource future
production

* Develop non-portable computing
storage mechanisms

* Develop independent camera control
system

* Develop new calibration techniques for
thermal use for non-radiometric cameras
(No thermal features).

Automated Rapid Thermal Imaging Systems Technology Page 126



At the end of winter 2011, the project managed to recruit several students and volunteers to help

build the next version of the prototype. Joshua Siegel (MIT SB, '11), Mark Nuykens (High School

Summer Intern), and Napoleon Phan. Together, the team helped to redesign and build of a new

alpha prototype of the multi-spectral imaging system.

3.2.2.5 System Components

We start to design the new layout of the multi-camera synthetic aperture system. To accomplish

this, we designed a multi-camera array comprising of 3 LWIR cameras each side of the video and 2

EO/NIR cameras facing the front and 2 facing the rear, on each side of the vehicle. In total, the

system contains 6 LWIR Cameras, 8 EO/NIR Cameras, and has a much more sophisticated

controller/vehicle position recording system.

Multi-Camera Synthetic Aperture Imaging System

Figure 51: The ARTIST Hardware Design Layout of the Multi-Camera Multi-Spectral Imaging System
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3.2.2.5.1 LWIR Camera: DRS UC640-17

For the infrared camera, we considered a number of different camera models from a group of

different manufacturers. At the conclusion of the LWIR selection process, the DRS UC640-17

camera was chosen. It had excellent price performance profiles and was highly recommended by

many of the LWIR distributors [59]. The introduction of the DRS 640 camera brings and

immediate spatial resolution improvement from 2.2 cm/pixel to 1.1 cm/pixel at a distance of 10 m.

The DRS UC640-17 is a long-wavelength (8 - 14 microns) uncooled VOx Microbolometer camera

designed for infrared imaging applications, is built for high resolution, small size, light weight, and

low power consumption. The UC640-17 is available in two configuration formats: a ruggedized,

environmentally sealed OEM (housed) and SC (open frame split electronics) configuration. It

comes with a variety of lens focal length options. The UC640-17 camera is designed for "volts-in,

video-out" capability. The introduction of the DRS 640 camera into the new design brings an

immediate spatial resolution improvement from 2.2 cm/pixel (Photon 320) to 1.1 cm/pixel at a

distance of 10 m. Some additional specifications for the DRS UC640-17 camera:

- Local Area Processing (LAPTM) image enhancement technology
* Resistance to solar damage
- Configurable SMPTE-170/PAL Analog Video Format
- Commercial digital frame grabbing (Camera Link)
- 14-bit front end resolution
- Frame synchronization capability

Figure 52: DRS UC640-17 Microbolometer LWIR Imager
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3.2.2.5.1 EO/NIR Camera: TPS-QLBAZ1

Next, we made a selection process for the EO/NIR based, which came from a security camera

apparatus. The EO/NIR camera was chosen to we replaced the modified Sony Digital camcorder

with an off-the-shelf solution using a night vision camera Model # TPS-QLBAZ1. This is a high

performance camera meant for security related applications with the following specifications.

The main specifications for the camera Model # TPS-QLBAZ1 is:

* 1/3 inch Sony High Resolution Superhad CCD

e 650 TV Lines, Super High Resolution

* Minimum Illumination 0 Lux

e 12V DC/24V AC

e Current Consumption 80mA

e Dimensions 3.5 inch(w) x 8.5 inch(l)

e Operation Temperature -4* ~ 140'F

* Weight 3.5 lbs

Figure 53: Model TPS-QLBAZ1 EO/NIR Night Vision Security Camera
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3.2.2.6 Design Notes

4MM

~Q. -7

Figure 54: Notes from initial design of new camera layout (Courtesy of Mark Nuykens, Summer 2011)

CC ' 5~

Figure 55: Notes from initial camera mounting system (Courtesy of Mark Nuykens, Summer 2011)
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Figure 56: Camera arraying design consideration (Courtesy of Mark Nuykens, Summer 2011)
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3.2.2.7 Constructing the System

With the combined efforts of the research team, the team was able to design and construct the entire

Phase 2 system over the course of 6 weeks in the summer of 2011. Together, the individual

members worked on the following components:

* Designed layout of new system

e Purchased and gather parts

* Waterjet cut major parts

* Assembled components into the imager

" Designed wiring system

* Designed and developed navigational electronics and LWIR control system

* Made cabling components for each individual camera and designed tubing system and

enclosure for the entire system.

* Individually test each sub-system

* Integrated all systems together to create a working prototype.

* Mounted on a 2011 Ford Explorer vehicle

* Implemented Increased Spectral & Temporal Resolution:

o 6 x Long Wave IR Cameras, 640x480

o 8 x EO/NIR Cameras, 640x480

o 30 FPS Real-Time Recording

Upon completion of the system, it was rigorously tested in the field during the summer of 2011. In

total, the system operated successfully for hundreds of hours of field test and thousands of miles of

driving while successfully surviving the rigors of road usage. Among the most complex part of the

system was the cabling. Each individual camera required its only set of power, video signal, and

camera control signal. In the case of long wiring, attenuation of noise through the wiring system

require correct grounding of and proper shielding. In certain cases, the wiring became loose over

time and required the cabling system to be redone for that specific camera. Additionally, the DRS-

640 cameras required a specific type of connector that was both costly and very challenging to work

with due to the extremely small size and double coloring system.

Automated Rapid Thermal Imaging Systems Technology Page 132



Figure 57: Partially assembled ARTIST Phase 2 prototype of hardware imaging system

Figure 58: Fully assembled ARTIST Phase 2 prototype of hardware imaging system
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Figure 59: Research team mounting of ARTIST Phase 2 prototype on 2011 Ford Explorer

Figure 60: Road test ARTIST Phase 2 prototype in front of MIT Building 35
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3.2.2.8 Vehicle Data Recorder

In the Phase 1 prototype system, we used USB based GPS data logger that required a PC to operate.

During the alpha prototype design, it was critical that the GPS and IMU logger be capable of

operating without a PC. For that purpose, a designed was chosen to have a completely independent

data recorder, similar to blackbox flight recorder, except this is a vehicle data recorder used to log

vehicle data. The focus was to build a highly accurate GPS recorder with high sampling rate. This is

necessary because the imagery data being recorded is captured at 30 fps. 10 hz GPS recording is the

highest speed commercially available cost effective solution. Combined with the Razor IMU, the

system is capability of very high resolution positioning of ± 3 ft. The primary components for a

vehicle blackbox recorder are:

1. Arduino Mega 2560 R3 microcontroller

2. MediaTek MT3329 GPS 10Hz

3. 9 Degrees of Freedom - Razor IMU

4. Arduino Ethernet Shield

The components were assembled into single integrated vehicle blackbox recording system.

Arduino Mega 2560 R3 MediaTek MT3329 GPS 10Hz

9 Degrees of Freedom - Razor IMU Arduino Ethernet Shield

Figure 61: Individual hardware components of vehicle blackbox recording system
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Figure 62: Fully assembled vehicle blackbox recording system- allows operation of imaging system without the need for a
portable computer for recording GPS/IMU data and camera calibration.

Specifications of components:

e Arduino Mega 2560 R3 microcontroller [60]

* ATmega2560 microcontroller

* Input voltage - 7-12V

* 54 Digital I/O Pins (14 PWM outputs)

* 16 Analog Inputs

* 256k Flash Memory

* 16Mhz Clock Speed

MediaTek MT3329 GPS 10Hz Specifications [61]

e Li Frequency, C/A code, 66 channels

e High Sensitivity:Up to -1 65dBm tracking, superior urban performances

e Position Accuracy:< 3m CEP (50%) without SA (horizontal)

e Cold Start is under 35 seconds (Typical)

* Warm Start is under 34 seconds (Typical)

* Hot Start is under 1 second (Typical)
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" Low Power Consumption:48mA @ acquisition, 37mA @ tracking

* Low shut-down current consumption: 1 5uA, typical

* DGPS(WAAS, EGNOS, MSAS) support (optional by firmware)

* USB/UART Interface

9 Degrees of Freedom - Razor IMU Specifications [62]

e ITG-3200 - triple-axis digital-output gyroscope

* ADXL345 - 13-bit resolution, ± 1 6 g, triple-axis accelerometer

* HMC5883L - triple-axis, digital magnetometer

Arduino Ethernet Shield [63]

The Arduino Ethernet Shield allows an Arduino board to connect to the internet. It is based on the

Wiznet W5100 ethernet chip providing a network (IP) stack capable of both TCP and UDP. The

latest revision of the shield adds a micro-SD card slot, which can be used to store files for serving

over the network.

3.2.2.8.1 Extended Kalman Filtering for Navigation Analysis

The GPS sensor and IMU were built fully integrated enclosure, fully coupled into a rigidly mounted

enclosure. The GPS is a low frequency sensor, providing state information at relatively low update

rates [10 hz]. The errors in GPS positioning occurs when the GPS carrier signal undergo multipath

errors in an urban environment. Hence, the term "urban canon" used to describe such situations.

Specifically, these errors occur when the GPS signal is reflected off of one or more surfaces before it

reaches the GPS receiver antenna. The slight increase in time delay for the signal to reach the

antenna will affect the GPS fix and as it alters the phase of the signal being used to calculate

position. Another possible can error, although much less often, is when the GPS changes satellite

configuration due to geometry of the observed satellite signal fix. Thus, errors in positioning in a

GPS is predominantly environment dependent. Open environments, no trees, buildings,

mountains, or clouds are more ideal operating environments for GPS devices. Even with improved

performance on the hardware design and components, multipath errors will always remain.
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The primary advantage of using an IMU is the high update rates for acceleration, angular rotation,

and attitude information. Therefore, velocity and position of the vehicle can evaluated using pre-

defined filters. The disadvantages of an IMU are errors caused by bias in the sensors which

accumulate over time. The IMU utilized in the blackbox design is based on three accelerometers,

three gyros, and three magnetometers. These sensors provide acceleration, rotation rate, and tilt of

the blackbox.

The GPS and IMU systems are fused to form an integrated navigation system utilizing an extended

Kalman filter. Mathematically, the real-time positioning error can be expressed as:

2 2 .u2
7RT = JGPS + IMU (52)

where arftis the real-time position error variance, acPs is the GPS position error variance, and

(T7MUis the IMU prediction error variance as a function of time.

The navigational blackbox data recorder is used to record GPS and IMU data in real time. It is not

critical for this project to predict real-time positioning. Therefore, it is important to state that the

logged data will be utilized in in post-processing framework to infer accurate position for geotagging

purposes. An extended Kalman filter was applied to the GPS/IMU data for fairly accurate

positioning calculation that resulted in accurate positioning over 99% of the time. References for

extended Kalman filter for GPS/IMU integrated referenced. The following reading is suggested:

Caron, F. Duflos, Pomorski, D, Vanheeghe, P. GPS/IMU datafusion using multisensor Kalmanfiltering

[64] and P. Zhang, J. Gu, E.E. Milios, P. Huynh. Navigation with IMU/ GPS/ digital compass with

unscented Kalmanfilter [65], Lin [66], and Clipp [67].
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Estimated erros of position and velocity

Figure 63: GPS/IMU integration using a direct feedback Kalman filter method.

Figure 64: Demonstration of the GIS mapping capabilities of the new vehicle logging system.
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Further research into image based navigation can be investigated using methods proposed by P.

Debitetto [68]. Debitetto proposes that in urban environments where GPS and IMU accuracies are

limited, image processing can be used to find target features from local landmarks and used to

triangulate local positioning information. ARTIST can be used to gather data for this purpose.

3.2.2.9 Post Data Collection Process

On the road, the system does not process all the data imagery in real-time. It does not have that

need or requirement. Thus, most of the data processing is done back at the lab where imagery data

is fused with location data for geotagging each individual image frame from the video data. All

imagery data is recorded separately using an independent digital video recording system capable of

storage real time video data on 16 channels at full data rate (640x480, 30 fps). In summary, the

Phase 2 multi-camera synthetic aperture imaging system is capable of the following:

0 6 x DRS 640 model cameras, 640 x 480 (LWIR), 30 fps

e 4 EO/NIR cameras, 640x480 (EO/NIR), 30 fps

* Real-time 10 hz GPS logger with IMU

* No PC required operate

* 800 Vertical FOV, 400 Horizontal FOV

Capture Decompress Geotag GPS Post-Process
LWIR Video Video Data Imaging

Images

Figure 65: ARTIST procedure for processing recorded video sequences.

Data storage rate: 10 GB/hr

Target operational velocity: 10 mph
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3.2.2.10 Demonstrating ARTIST's Synthetic Aperture Imaging System

Tested in an Industrial Environments

Figure 66: Demonstration of the WAMS in an industrial environment

Description: a research partner had inquired about the possibility of applying the wide angle multi-

spectral imaging system (WAMS) system for non-urban environments, specifically, in an industrial

setting where one can use the equipment to monitor and examine thermal related problems such as

pipe thinning, pressure buildup, and overheated equipment. The system was tested in such an

environment, showing a feasibility study. The WAMS demonstrated a very wide angle field of the

view in the LWIR band. NAME AND LOCATION WITHHELD FOR CONFIDENTIALITY
PURPOSES.
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Tested in an Urban Environment

Figure 67: Demonstration of the WAMS in an urban neighborhood. (Implemented and tested by Dr. Liang Chen)

Description: These images show the result of (3) 640x480 frames fused into a single frame using an
affine stitching method. The equivalent resolution of the camera system is 1400x640 pixels with a
vertical field of view of 90 degrees allowing a full view of buildings beyond 3 stories. Notice the
cars, trees, and objects that may obstruct the view of the building or structure.
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3.3 Summary & Conclusion

We presenting a multi-phase process to understanding how thermal imaging works from a single

user point of view. Next, we introduced a 2 Phase design process to show how to solve some of the

challenges of manual data collection by introducing automation. The system was successfully

developed, assembled, and fully tested. It was shown to be fully operational according to

specifications and design parameters. In the final system, all video data was recorded in real-time

while the imaging system is operational contained an independent GPS/IMU logging system, and no

portable computing system required. In summary, the following processes were observed:

1. Field Research - Research infrared imaging by utilizing a handheld infrared camera system in

real life operating conditions. Apply knowledge and experience to develop a better method

or system.

2. Phase 1 - Develop a prototype large scale multi-spectral imaging system

3. Phase 2 - Develop a full scale multi-spectral imaging system with a wide angle field of view,

dual side, real time recording system.

This design process demonstrates the methodology employed to understand and improve thermal

imagery data collection through an automated. It is meant to be used as a guide to understanding

the principals and tradeoff considered when taking a hardware design approach. First, understand

the problems or need, then develop a prototype or demonstration of the key problems you are

trying to solve through an alpha prototype, and then finally, how would you incorporate feedback

and changes necessary to show a pre-production version of what you trying to developing through a

beta prototype. This product and system design is critical part of understanding that these steps are

also fundamentally important parts of the theoretical components as well. In the next few Chapters,

we will focus on a) image processing and b) wide area thermal mapping.
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Chapter 4: 3D Radiometry

4.0 Introduction

In Chapter 2, we discussed a theoretical framework behind the thermography in the ARTIST

system. In Chapter 3, we discussed the design and prototype of the hardware system behind

ARTIST, with the ability to produce urban scale scanning in multiple modalities including optical,

long wave infrared, and near infrared. In this chapter, we will discuss the concept of 3D radiometry

and show how the ARTIST system is used to:

a. Model the world in 3D using drive-by imaging

b. Account for the effects of directional emissivity

In practice, a majority of images taken by the ARTIST system consists of complex shapes, materials,

and viewing angles to the surface. When lateral vehicle motion is applied, the scenes are

continuously changing and thus, the viewing and distance to the object is in flux. In Chapter 2, we

discussed the idea of a Lambertian surface, in which the emissivity and radiance remains constant

for changes in viewing angle 0. However, we also noted that for typical engineering surfaces,

Lambert's cosine law does not hold as E is a function of viewing angle 0 for viewing angles 0 > 600.

Since E is now dependent on viewing angle 0, it becomes more critical to understand the nature of

infrared surface scenery when estimating surface temperature. The simplifying assumptions of fixed

emissivity and fixed distances to object prevent accurate modeling of the thermal environment.

Although many references including Minkina [35], Rogalski [36],Saunders [34], Avdelidis [69],

Cuenca [70], Labed [71], Schott [71], and Sobrino [72]; discuss the use of emissivity values to

estimate target temperature or the acknowledgement of variations in emissivity in their error

estimates, they do not investigate the use of 3D information to form their models on an urban scale.

More recently, temperature mapping of 3D surfaces for a wind tunnel experiment have been

presented by Cardone [44]. Next, we will investigate the concept of 3D Radiometry and how it can

be applied for wide area temperature mapping of an urban environment.
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In traditional thermography, inferring temperature from an image is based on two dimensional

surface assumptions [50, 58, 73, 74]. Here, we introduce the analysis of radiometry in three

dimensional space and consider how it affects the science of interpreting temperature readings. We

propose to present thermal imaging in a 3D framework which is critical to understanding how

distance and viewing angle to the object plays a critical role in how one can precisely target and

estimate energy losses.

4.1 A Case for 3D Radiometry

Modem day thermography is based on 2D principles- which can be simplified into two core

assumptions: (a) the use of a constant emissivity value for all points in a long wave infrared image

and (b) a fixed distance to all points on an image, regardless of geometry [50, 58, 73, 74]. 2D

radiometry assumptions can fail in situations where the scene is complex and view is not normal to

the surface. Such is the case of drive-by imaging in ARTIST. The constant motion of the vehicle

relative to the scene naturally forces the ARTIST system to capture images where the viewing angle

is oblique to the target object. In these situations, the relative distance and viewing angle needs to

be considered.

Observed radiance is invariant to distance. This is known as the conservation of radiance. Both the

radiant flux [W] received at the detector and the solid angle [sr] from the source to the detector

drops with the inverse square law, thereby cancelling each other out. This works to our advantage

for ARTIST since many of our scenes will have varying distances and radiance is invariant to

distance.

In Chapter 2, we discussed how Lambertian surface approximations are sometimes used in

thermography. If it were true, as is the case with a black body, a Lambertian surface emits radiance

(which is radiant flux (W) per unit projected area (in) per unit solid angle (sr)) that is constant with

angle. A blackbody has an emissivity value of 1 and is invariant to wavelength and angle. The

same is true for a Lambertian grey body, except a Lambertian grey body has emissivity values less

than one. This would mean that for a black body and Lambertian grey body, there is no wavelength

or angle dependency. Unfortunately, most materials are non-Lambertian and in Chapter 2, we

show our experimental results and the literature which discuss this topic further. The Lambertian
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surface approximation is not valid. Most materials are non-Lambertian. For non-metals, radiance,

hence, emissivity is observed to be uniform from 00 to 600. Beyond 600, observed radiance and

hence, emissivity, starts to drop off significantly. For metals, radiance, emissivity is observed to be

uniform from 00 to 45*. Beyond 450, observed radiance and hence, emissivity, starts to increase.

Angular dependency of emissivity has been reported in the literature. The most often cited

reference dates back to 1935, based on the experiments by Schmidt & Eckert 1935 [42]. Siegel &

Howell [46] showed theoretically derived predictions from electromagnetic theory. This shows that

angular dependence is observed and can be theoretically modeled for certain materials. The

observed radiance is dependent on emissivity, temperature, angle, and independent of distance.

From the previous Chapters I will summarize the following insights that will be relevant to our case

for 3D radiometry:

1. Observed radiance is invariant to distance.

2. Directional emissivity is dependent on viewing angle and exhibits different behavior for

metals (low E) and non-metals (high E).

3. The Lambertian surface approximation is not valid as most engineering materials are non-

Lambertian, therefore, radiance is dependent on viewing angle.

4. Drive-by imaging of an urban environment involves capturing images from a 3D

environment with changing viewing angles, in many cases oblique angles. These effects

should be considered, modeled, and corrected.

Therefore, to properly model the three dimensional environment, I develop the concept of 3D

radiometry and show how it is implemented within the ARTIST. 3D Radiometry refers to the

process of collecting imaging information, developing a wire-frame 3D model from the drive-by

scenes, and then using scene information including viewing angle and distance to correct for

temperature and normalized surface areas.

4.1.1 A Recap of Thermography

The following temperature inference model is based on Saunders model [34] presented in Chapter 2.

It captures how infrared manufacturers use calibrated tables (variables A,B,C) to help infer

temperature:
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(53 )

(54)

Where A,B, and C are camera specific calibration parameters, c2 is the second radiant constant, the

emissivity Eob of the surface is a constant variable that is set by the user (typically Eob is set at 0.95

but can be adjusted), Tatm, To, o are variables measured or estimated by the camera system, and d,

the distance is estimated by the auto-focus setting of the camera. Combined with variables A, B,

and C, which is based on the calibration tables provided by the manufacturer at the factory, the

thermal camera solves for the expected value of Tobto estimate the object's surface temperature.

4.1.2 Recap of Concepts from Radiation Heat Transfer

The view factor of two differential areas dA, and dA, at a distance S is:

COS 01 COS 92 dA 2
= 7S2 ( 55 )

Where 61and 82are the viewing angles between the surface normal and ray between the two

differential areas.

dA1

Figure 68: Two body view-factor diagram
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Since radiation leaving a surface is conserved, the sum of all view factors from a given surface, Si

sums to unity:

n

Fs = 1 (56)

j=1

From Figure 68, we see that the view factor between the two objects have a dependencies on 61and

62 which relates to the viewing angle of both objects relative to one another. If either Oior 62

becomes overly large, where 6 > 600, the product of the component becomes very small and F1 , 2

approaches zero. Additionally, as 61and 02 becomes larger, the effects from a decreasing E, and 2

will further cause variations in the observed radiance for the same surface temperature. Therefore, it

becomes more important to quantify the viewing angle and distance to the object. The development

of a 3D depth map and the wireframe model of a building will help us estimate camera viewing

angle for surface features.

4.2 3D Radiometry Implementation

I implement 3D Radiometry in this thesis using a 3 step approach:

1. Construct 3D model of environment using the ARTIST hardware

a. Depth map using optical flow model

b. Object size estimation

c. Surface area normalization

2. Calibrate non-radiometric infrared camera: camera signal output (pixel intensity) vs observed

radiance for blackbody temperature

3. Calculate emissivity based on radiance

4.2.1 3D Reconstruction based on Motion Estimation, Depth Map, and Solid Model

Generation

To construct a 3D model of the environment, I applied the following process:
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1. A multi-frame motion estimation algorithm is used based on an optical flow model

2. The optical flow model is used to reconstruct a depth map of the scene

3. A solid model is overlaid onto the scene from the depth map.

The science of optical flow modeling has been well-documented and presented through the years.

Well known optical flow models include the methods of Horn and Schunck [75], Lucas and Kande

[76], Uras[77], Nagel [78], Anandan [79], Singh [80], Heeger [81], Waxman [82], Fleet and Jepson

[83], Prazdny [84],and Farneback [85]. The performance of many of these algorithms have been

tested against varying datasets representing different scenarios in [86], Performance of opticalflow

techniques.

Utilizing the imaging system's forward motion, which is parallel to the scene of interest, we will

compute the motion based on successive imaging. At this stage, we assume knowledge of the

positional state of the vehicle and corresponding positional displacement based on the computed

output of the GPS/IMU sensors processed through an extended Kalman filter [64] and other

methods presented in Chapter 3.

There are many optical flow based methodologies that one can use to estimate optical flow based on

image pixel displacement. I have used a polynomial based method similar to Farneback [85] . The

polynomial optical flow method is shown to have good performance in minimizing angular error

and standard deviation [85]. My colleague, Dr. Liang Chen, implemented the optical flow algorithm

in the ARTIST system and I present some of the details here for completeness.

4.2.2 Polynomial Optical Flow using Farneback Method [34]

The Farneback [85] polynomial based motion estimation algorithm estimates motion flow using data

from two successive imaging frames. The main idea behind the method is to apply a polynomial

expansion function to define an approximate neighborhood of each pixel. By doing so, the

algorithm can uniquely define each neighborhood in a projected search area. Within such a

neighborhood, the search algorithm minimizes the difference in displacement between the

projection of the first frame and the second frame.
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I summarize the polynomial optical flow method below:

Step 1:

The first step of method is develop a local signal model based on a quadratic polynomial:

f (x)~xTAx + b'x + c (57)

Where f(x) is the polynomial function defined by a symmetric matrix A, the vector b, and a scalar

c, in a local coordinate system. The coefficients in A, b, and c, can be determined from the weighted

least squares fit of the signal values in the neighborhood of each pixel.

Step 2:

K

f2

A1

Figure 69: Farneback [851 polynomial optical flow search algorithm over neighborhood of I for d

In the second step, the polynomial expansion function is applied to the first frame fi and second

frame f2, using the predefined polynomial model f(x) to yield:

f1 (x) = X A1 x + bix + c1 (58)
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f2 (x) = XT A 2 X + b2Tx + c2

Where fi is the first frame, A1 , bi, ci are the symmetric matrix, vector, and scalar of the frame fi, f2
is the second frame, A2, b2, C2 are the symmetric matrix, vector, and scalar of the frame f2.

Next, the method constructs a new frame fd(x) based on the global displacement variable d relative

to frame fi:

fd(x) = fd(x - d) = (x - d)TAi(x - d) + bf(x - d) + c1  (60)

Where fd(x) is the projected displacement of global displacement vector d, in the search

displacement field d(x), in the neighborhood of I which defines the search area, for which we

would like to search for pixel optimal pixel displacement p between frames fi and f2 .

Step 3:

Finally, the algorithm searches for the optical pixel displacement to find the optimal pixel

displacement approximation, the minimum of the expectation value is given by:

e(x)min = w AbTAb - d (X)TI wAT Ab (61)

Where , w is the weighted least squares of the points in the neighborhood, A (x), Ab, and d (x) are

represented by the following:

A(x)= A1 (x) + A2 (x) (62)
2

1
Ab(x) = 2-(b2 (x) - bi(x)) (63)

2

d (x) = wATA) - wAT Ab (64)

We find d(x) by minimizing over a neighborhood of I of x to find the optimum pixel displacement

value where e(x) is minimized. We show an example of the implementation in the following figure
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prepared with help from a collaborator Dr. Liang Chen. I refer to Farnbeback [85] for further

references, additional details, approximations, and further insights into his methodology.

to t1 t 2  t 3  t 4  t 5

Figure 70: Example of 6 successive frames captured during vehicle lateral motion in urban neighborhood

In this section, we show that we can compute for the optical flow displacement of the vehicle by

extracting and using successive imaging frames to derive motion flow information. From the

motion flow model, we translate the relative pixel motion into a depth map. The depth map is used

to create a overlaying solid mesh map. The solid mesh map can then be used to infer the viewing

angle and distance to the surface. We demonstrate this procedure using LWIR scene taken from 3

cameras with the ARTIST hardware system. In the scene, the 3 cameras are fused to form a

synthetic aperture. Digitally, the scenes were mosaicked together. In this scene, the imaging system

is conducting a drive-by test between two 3 story buildings. At the center of the image is a car very

close to the imager. In the distant background is the sky, which is dark and represents very low

camera signal output (pixel intensity) reading. In Figure 71, we show the (a) Optical Flow Diagram,

(b) Depth Map, and (c) Mesh Map examples. In Figure 72, we outline the steps for creating the 3D

model.

The optical flow method here is developed by Farneback [85] is meant to demonstrate the feasibility

of applying off-the-shelf algorithms onto the ARTIST system. ARTIST is developed to be plug-n-

play for other motion based optical flow and 3D reconstruction algorithms.
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relative magnitude.

(D Created with assistance from Liang Chen
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Implemented and Tested by Dr. Jonathan Jesneck

Using the ARTIST hardware platform, one can create an urban scale depth map using information integrated over many
successive frames during a drive-by scan. In this model, we show a neighborhood scan using Meshiab, an opensource 3d
modeling software. The point cloud model shown integrates all the depth information from many frames during a single
drive-by scan. Image created with assistance from Jonathan Jesneck.
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4.2.3 Calculate Remote Object Size

To correctly represent a target object's normalized size in width and height, based on the actual

distance to the target object, we must calculate the focal length and height as observed on the focal

plane array (FPA). The focal length width and height is represented by the number of projected

pixels seen as the output of the imaging camera. To calculate the normalized size, we must first

determine the thermal detector's physical size based the width and height of the sensor. In our case,

we are utilizing a DRS 640 model which is based on 17 vm technology. The FPA's physical size in

width and height is:

FPA width = 640 pixels x 17 nm/pixel = 10.88 mm

FPA height = 480 pixels x 17 km/pixel = 8.16 mm

Where FPA sensor's physical size ix 10.88 mm x 8.16 mm. With this information about the

detector's size, we can solve for the object's normalized width and height based on the observed size

of the projected image on the FPA sensor, focal length width and height, based on the following

formula:

Working Distance x FPA height
Object height + FPA height

Focal length width = Working Distance x FPA width
Object width + FPA height

Focal length height is based on the observed area's height in pixels x 17 [km, focal length width is

based on the observed area's width in pixels x 17 tm. Working distance is the actual distance from

the LWIR camera to the target object. Therefore we can solve for the object's width and height by

rearranging the previous equations:

rWorking Distance x FPA height 1
Object height = [ Fcllnthegt ]- FPA height (67)

Focal length height I

Object width Working Distance x FPA width FPA width
Focal length width
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Figure 73: Diagram showing method for calculating observed object's height and width

Same House
Different Distance

Figure 74: The effects of varying distances on an object. Left (distance = di) and Right (distance = 2edi)
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4.2.4 Normalizing Surface Area

When viewing a surface area remotely from an angle, the viewing angle plays a critical factor in

determining the normalized surface area of the object. Therefore, we need to consider the normal

surface and viewing angle to properly determine the correct surface area. For this, we introduce the

concept of projected area as:

A projected = 'A cosadA (69)

Where A is the original area, a is the angle between the normal to and the surface A and the normal

to the camera plane, in our case, the viewing angle. From this, one can see that projected area

decrease as a function of cosine 0. The greater the viewing angle 6, the lower the projected area.

Below is an example of this, where on the left, 6 ~ 900, and the left side of the building is not visible.

As 0 decreases, the projected area of the left side of the building increases.

From the projected area, normalized surface area of an object can be estimated from images at

different view angles. The normalized surface area is the area of the object's surface in an

orthographic projection, i.e. when view from infinity along a particular viewing direction.

Figure 75: Viewing angle rotation of the front of a building at different viewing angles.
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Figure 76: Demonstration of a normalized surface area viewing of the side and front of the building from Figure 75

4.3 Non-Radiometric LWIR Camera Calibration

I describe below a process for calibrating any LWIR camera system and related non-radiometric

infrared camera. Typically, thermal calibration for infrared cameras are completed at the

manufacturer's factory and the calibration tables are saved directly into the camera's internal system,

which allows an effective and fast lookup to infer distance temperatures in the form of camera

calibration parameters R,B, F according to Minkina (2009) [35] and similar parameters A,B,C

according to Saunders[34]. An alternate infrared calibration technique is presented Liebmann [87].

In our setup, we use a reference material with known emissivity and acquire accurate temperature

measurements using a thermistor device. We present a repeatable methodical process for the

calibration of an infrared camera system and outline the steps below:

1. Scene Selection:

a. Find a steady state environment, such as a temperature controlled room. Minimize

air flow or anything that may affect the local temperature significantly. Look to
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minimize convection air flow of any sort or next to a window where the sun is

shining.

2. Instruments:

a. Use an thermal infrared camera connected to a video frame grabber, 8 bit b/w

b. Find a precision thermocouple device with accurate temperature sensor

c. Find a handheld infrared thermometer with laser sighting

d. Gather 2 dark 8 ounce ceramic cups, black electric tape, and a bag of ice cubes

3. Calibration Steps

a. Turn infrared camera on, wait till steady state with room - 30 mins.

b. Setup camera to look at 2 cups at a fixed distance d from cup. Ensure that both

cups are clearly visible.

c. Place ice cubes with water into cup, stir ice water well. Measure cup temperature

externally. It should remain at steady state temperature until ice completely melts.

Cup temperature is expected to be 35-40'F.

d. Wrap black electric tape on second cup. Leave about half of the cup exposed and

half covered with black tape.

e. Place water in second cup, place in microwave till boiling. Take out immediately and

place next to ice water cup.

f. Allow the hot water to go through natural convective cooling.

g. Record infrared frame at regular intervals. Measure hot water temperature at every

frame grab and make recording.

h. Make necessary preparation for approximately 2 hours of experimental time.

i. Repeat for varying distances d1, d2, d, ... , d. in multiples of d.
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Temperature Readout

ice Water Cup Hot Water Cup DMM

Thermocouple Device

Black Electric Tape Infrared Thermometer
Etape ~ 0.95

LWIR
Ca mera

Frame Grabber

Figure 77: An experimental setup for non-radiometric infrared camera calibration

4.3.1 Camera Signal Output (Pixel Intensity) vs Observed Radiance Temperature

Calibration

The LWIR imagers are recorded in real time at 30 fps through a PC framegrabber. The ice water-

filled cup, as measured by the thermistor digital multimeter, is at 6.8* C and maintains a consistent

temperature as long as there is sufficient unmelted ice in the cup. Dark black electric tape (Etape ~

0.95) is wrapped around the hot water cup as to maximize the surface emissivity of the cup. The

entire ceramic cup is dark brown, but we assume that Etape > Edarkcup. The first experiment

estimated the emissivity of the ceramic cup based on the knowledge that Etape ~ 0.95, Tic,= 6.80 C,

Tamb =230 C, and Tc, as measured by a thermistor connected to a digital multimeter with ±0.1 C

accuracy. LumT, LumM, and LumB are top, middle, and bottom are camera signal output (pixel

intensity) readings based on 8 bit digitized readings.
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LumT Tstdev LumM Mstdev LumB Bstdev Infrared[C] Thermistor [C]

191.9

165.7

146.4

136

127.4

121.6

113.5

106.7

102.7

98.7

93.8

89.6

75.9

35.1
33.9

2.7

2.5

2.6

1.4

1.5

1.3

1.6

1.4

1.3

1.3

1.4

1.5

1.4

0.5
0.4

208.7

178.6

157

144.3

135.6

128.9

120.9

112.9

108.9

104.9

99.2

95.1

85.9

32.3

31.2

0.9

0.5

0

0.5

0.5

0.6

0.5

0.4

0.7

0.5

0.4

0.3
0.4

0.8

0.6

197.8

170.5
151.3

140.4

131

125.8

117

110.3

106.6
102

97.5

93.2

83.8

31

30.6

0.7

0.7

1.1

0.6

0.4

0.4

0.8

0.8

0.6

0.7

0.5

0.5

0.4

0.5
0.5

83.4

74.6

67.6

62.8

58.6

55.6

51.2

48.2

46.4

44.2

42.4

40.4

39.6

21

21

85.9

77.5

70.1
65

61

58.1

53.1

50.2

48

45.9

43.7

42.1

41.5

21

21.2

Table 4: Results from camera calibration test. 'The table here shows the varying experimental data observed. Lumt,

LuImM, and LumB are the camera signal output (pixel intensity) in top, mid, and lower part of the cup. Tstdev, Mstdev,
and Bstdev are the standard deviation of the camera signal output. Infrared is the measured reading from the infrared

thermometer pointed at the cup [*C]. Thermistor is the observed reading from the thermistor ['C].

Automated Rapid Thermal Imaging Systems Technology Page 161



to

I

tl

t2

t3

C

Figure 78: (4) Different screenshots of varying time sequences of experiment. The cup is filled with hot water and allowed
to cooled through natural convection at room temperature. to, t 1 , t 2 , t 3 are discrete observations made at different stages of

the experiment. A timestamp is provided on the upper right hand corner of the right images.
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Figure 79: IR Camera Signal Output (Pixel Intensity) [S] vs. Absolute Temperature [d = 48 in] by Thermistor
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Figure 80: IR Camera Signal Output (Pixel Intensity) [S] vs. Infrared Thermometer Temperature [d = 48 in]
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Figure 81: Comparison of Temperature Measurements for Infrared Thermometer vs Thermistor

In Figure 81, we show a good fit between the measured temperature based on the infrared

thermometer and a thermistor. What this means is that the infrared thermometer is fairly accurate

when it comes to estimating the surface temperature of the reference surface.
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Figure 82: Complete view of experimental setup for calibration experiment

The LWIR camera is connected to a PC framegrabber and is aimed at the experimental setup with a

hot cup filled with hot water and a cold cup filled with ice water. This experimental setup is

consistent with the outlined procedure in Section 4.3.
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4.4 Reference Surface Emissivity Calibration

object(ob)

CSource

To M
1

am bent( 0)

Background

Figure 83: Simple Source, Background, Detector Model for LWIR imaging

The initial calibration result is mapped in a linearized form y = Ax + B in Figure 79:

Y48 in-black tape = 0.383x + 7.8 , R 2 = 0.9922 (70)

Where y is the remote surface temperature of the cup as measured by the thermistor, A = 0.383

*C/lum, B = 7.804 C, and the R2 0.9919, which represents a very linear fit in Figure 80.

Y48 in-infrared thermometer = 0.367x + 7.78, R 2 = 0.9919 (71)

Where y is the remote surface temperature of the cup as measured by the infrared thermometer

pointed the black electric tape, where Eblack-tape = 0.95, A = 0.367 *C/lum, B = 7.78* C, and the R2

= 0.9919, which represents a very linear fit.

Most conventional off-the-shelf infrared thermometers are sold with fixed emissivity settings where

E is set to 0.95. In our experiment, we confirm E = 0.95 in the thermometer's documentation and

use this information to compare the absolute temperature as measured by the thermistor with the

output temperature read by the infrared thermometer to verify the accuracy of the thermometer.
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Yinfrared thermometer = EIRT ' 0.383x + 7.80 (72)

EJRT ' Ablack-tape = AIRT (73)

EIRT " 0.383x = 0.367x (74)

EIRT = 0.958 (75)

From our experimental observation of EIRT = 0.958 vs our expected EIRT-documented = 0.95, we

can confirm that the result accurate to within 1% of the expected value from the infrared

thermometer's internal settings. The actual emissivity of the reference object will directly affect the

accuracy of the surface temperature estimates.

4.4.1 Surface Emissivity Estimation

In our calibration experiment, we measure two values:

1. Output Camera Signal (Pixel Intensity) in the thermal image

2. Temperature of the unknown surface using a thermistor

Our hypothesis is that the camera grey-scale pixel output is calibrated linearly to the radiance

entering the detector. Therefore, pixel intensity at each temperature would be linear to the

corresponding Planckian form integral at that temperature. In the following three figures, we show

how we take the measurement datapoints of pixel intensity and temperature to develop our

calibration charts of pixel intensity vs radiance. In the section below, I show how such charts for a

known reference material is used to estimate emissivity of an unknown material at the same

temperature.
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Figure 84: Calibration results for Temperature of Natural Object Surface [S,] (left) & Reference Emitter Surface [S,] (right)
vs camera signal output (pixel intensity) output from LWIR camera
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Figure 85: Planckian Form Integral Results vs Observed Temperature of Experiment
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Figure 86: Camera Signal Output (Pixel Intensity) [S] vs LWIR Planckian Integral for (8-14 sim) for Natural Surface( Left)

and Reference Surface (Right) with E=0.9 5

The radiance emitted from the object's surface can be modeled according to Minkina (2009) [35],

Rogalski 2009 [37], and Fehlman and Hinders 2009 [43] as:

So (T0 ) = T80S(T 0) + r(1 - EO)S(Tb) + (1 -- T)L(Ta) (76)

Where So is the observed radiance detected by the infrared camera, S is the radiance from the

Planckian form integral (8-14 jim) of a black body, To is the surface temperature of the object, Tbis

the background temperature, Ta is the ambient temperature, r is the transmission coefficient of the

atmosphere, and E0 is the emissivity of the object. Since the object is close to the camera, we can

neglect the effects of due to the atmosphere and set r =1. Therefore, the observed radiance

becomes:

So(TO) = E0S(T0 ) + (1 - EO)S(Tb) (77)

Next, if we assume that the object is a diffuse surface where (1 - EO)S(Tb) is independent of the

reflection angle such that

(1 - E)
(1 - FO)S(Tb) ~ E (78)
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Where E is the total irradiance energy from the target surface to the surrounding background

environment. The total irradiance from the background can be estimated to be:

E
Sb (Tb) = - (79)

Therefore, the observed signal detected becomes:

SO(TO) = E0 s(TO) + (1 - EO)Sb(Tb) (80)

To estimate the emissivity of an object, Es, we use a reference emitter object such with known

emissivity Er such as the black-tape. In our experiments described in the last section, we observed a

linear relationship between camera signal output (pixel intensity) and the corresponding observed

radiance from the Planckian form integral (8-14 im) of the temperature of the reference surface:

Y48 in-black tape = 0.383x + 7.8, R2 = 0.9922

We choose the object surface such that both surfaces Eo and Er are known to be at the same

reference temperature and experiencing the same background irradiance. FehIman and Hinders

2009 [43] shows a similar method for determining emissivity using a reference material. Madding

[88] reports on emissivity estimation using either a reference material, a reference temperature, or a

two temperature method. The radiance from the object's reference emitter surface is:

Sr (To) = ErS(To) + (1 - er)Sb(Tb) (81)

We solve for the theoretical black body radiance S for the object:

~ ) SO(TO) - (1 - EO)Sb(Tb)
So)= ( 82)>

We solve for the total radiance of the black body S for the reference emitter:

Sr(To) - (1 - Er)Sb(Tb)
= E(83)
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Since the black body radiance S of both surfaces are the same, we equate the two equations:

So(TO) - (1 - Eo)Sb(Tb) _ Sr(To) - (1 - Er)Sb (Tb)

EO Er

Solving for the emissivity of an object, E0 , yields:

So(To) - Sb(Tb)

Sr(To) - Sb(Tb)

(84)

(85)

Figure 87: Close-up of object, co used for experimental calibration

To solve for E0 , we utilize a reference emitter surface of a black electric tape with a calculated

emissivity of Er 0.95 from the initial experiment. From the chart, we determine that Sb (Tb -

2 0 *C)~ 32. Solving for So(TO) and Sr(To) based on the linear regression of the experiment for To=

800 C yields:

Sb(Tb) = 32 Lum

So(TO) = 181.64 Lum

Sr(To) = 188.51 Lum

Er = 0.95

Automated Rapid Thermal Imaging Systems Technology Page 171
Automated Rapid Thermal Imaging Systems Technology Page 171



Finally, solving for E0 , the emissivity of the object, yields a mean E0 = 0.920 with a standard

deviation of Estdev = 0.010 over 13 sampled data points.

To use the calibration techniques presented in this section in the field for an unknown surface

temperature and emissivity, we present the following procedure:

1. Perform on-field infrared camera autogain (AGC) lock using two reference objects with high

emissivity values representing two temperature extremes (i.e. a warm hand and a bag of ice).

The temperature extremes will seek to maximize the dynamic range of the system between

two those reference temperatures.

2. Measure the temperature of the two reference objects using a portable thermistor.

3. From the infrared image for max and min temperature references estimate the

corresponding grey-scale pixel intensity values.

4. Derive a Planckian form integral (8-14 tm) or use an existing look-up table of radiance

values between the max and min temperatures.

5. Map the corresponding grey-scale values with the radiance values (similar to Figure 84 -

Figure 86).

6. Correct those values accordingly for emissivity, which should be a linear relationship.

4.4.2 Observing Directional Emissions

In Chapter 2 we discussed the concept of directional emissivity. In the experiment described below,

we confirm through the following, the dependency on viewing angle and camera signal output (pixel

intensity). In the experiment, the temperature profile is mapped along the center of the cup area

where the Tblack tape is measured using a thermistor and camera signal output (pixel intensity) is

calculated based on a scale of 1 through 256 using 8 bits. As one can see, observed radiance and

emissivity is invariant for a fixed temperature for viewing angle between 0* and 600. However, as

the viewing angle on the cup goes beyond 60*, the observed radiance begins to drop off for the

same isothermal temperature line. The experiment indicates that radiance and emissions are not

independent of angle. This further implies that the Lambertian surface approximation is not verified

by our experimental data and hence is not application. A similar observation has been shown by

Schmidt & Eckert 1935 [42]. However, we note that the subsequent researchers have sometimes
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been careless in applying Lambertian approximation without paying attention to the angle

dependence. This experiment was conducted along the surface of the cup with black electrical tape

where previously, we estimated Er 0.95.

Center of Cuo

T(O)=85.9 C

0

IS

Left End of Cup

T(1) =77.5 C

T(2)=70.1 C

Decreasing Temperature

T(12) 43.7 C

Viewing Angle [degree]

>~

-~1

H

-i

A

A

4- 4

Right End of Cup

Figure 88: Experimental results for camera signal output (pixel intensity)[S] vs viewing angle 0 for varying temperatures.
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Figure 89: Experimental results for camera signal output (pixel intensity) [S] vs angle 0 for varying temperatures in polar
plot.

In Chapter 2, we discussed the limits to a Lambertian surface approximation. When viewed from

any angle, a Lambertian surface will exhibit the same observed radiance. This is based on the

assumption that that object's surface is a perfect diffuser and a perfect grey body. In practice, most

surfaces are neither ideal specular or diffuse emitters, and will exhibit fractional amounts of both.

Further, we note that radiant emissions depend on viewing angle, therefore, the surface can not be

perfectly Lambertian.

We discussed at the beginning of the Chapter the heat transfer between two bodies, where the view

factor between surface 1 and 2 is:

cos O1 -O co 2
F 2 = 2 dA2  (86)

icS2
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Here, as 61 and 2 becomes large, the product (cos 61 - cos 62) becomes very small. Additionally,

E0 (6) changes which would affect the overall heat transfer Q accordingly.

Using ARTIST as an experimental platform, we can perform further experiments under different

conditions for mapping the relationship between observed radiance received by the camera to

viewing angle 6.

4.4.3 Understanding Situations where Emissivity Matters

Currently, there is no scientific method for directly measuring emissivity on the fly. Consider some

situations in which misunderstanding of emissivity really matters as it relates to incorrect surface

temperature estimation and subsequently incorrect radiant emission estimate.

Low Temp High Temp

Low Emissivity

High Emissivity

Figure 90: Emissivity possibility matrix diagram

In this exercise, we limit the discussion to street level thermography where the observed

temperatures are in the range of 0*C - 400C. The scenarios A, B, C, and Dare representative of

varying signals S observed by the infrared cameras.

Scenario A: The observable signal S is nearly zero. This is due to very low emissivity combined

with low temperature, producing little to no observable signal.
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Scenario B: The observable signal S is low or weak. This is due to the object having a high

temperature surface, with low emissivity. Objects such as polished steel, polished aluminum, or

shiny metallic surfaces which are hot, can be in state B.

Scenario C: The observable signal S is low or weak. The object has high emissivity, and low

temperature. A majority of surfaces will exhibit this in many cases where the temperature is low.

Wood, painted walls, single pane glass, and most building surface materials have relatively high

emissivity.

Scenario D: the observable signal S is high or strong. The object has high emissivity and a high

surface temperature. In these cases, observed surface is clearly "hot" relative to the surrounding

surfaces. These are the cases where the energy leak is high, due to poor insulation, a thermal bridge,

or major air leaks.

In terms of energy leak detection, we are primarily concerned with the scenarios B & D, where the

surface temperature is high and with associated radiant energy loss. A & C are not of concern

because in these cases, the energy loss is low or nearly zero. We focus the rest of the discussion on

scenarios B & D.

Scenario D is clearly observable and detectable in nearly all cases because a situation where high

temperature with high emissivity surface will certainty lead to a high signal S with no false positive

readings. However, scenario B is different. The low signal S can lead to a false negative reading and

be possibly mistaken for scenario C, exhibiting low signal S.

We propose 2 methods to help identify or narrow the selection between scenarios A or B:

1. Introduce object detection algorithms to determine the likelihood of specific material

possibilities based on the morphology or visual clues from the object in the infrared band.

This process uses a pre-defined heuristic database to limit the search possibilities and reduce

the uncertainty surrounding material properties estimate

2. Extend Process (1) to include multi-spectral (multi-band) information similar to Figure 41,

from EO/NIR and introduce alternative sources of information (such as GIS mapping) to
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search for color, shape, transparency, or texture based visual clues from the other

wavelengths. This assumes that object surface pixel location can be accurately mapped

between imaging modalities. In this case, multi-spectral imaging capability of ARTIST plays

an important role in provide information from different imaging wavelengths.

4.4.4 Directional Correction to Lambert's cosine law

In this section, I would like to introduce the concept of a directional correction factor for non-

Lambertian surfaces. Assuming ARTIST can be used as a reliable platform to gather and interpret

observable radiance for a 3D environment, we further develop ARTIST to correct for situations

where observed emissions is non-uniform. From what we observed from our experiments and from

our understanding of Schmidt & Eckert 1935 [42], directional emissions are dependent on the

viewing angle for metal (low-emissivity) and non-metals (high-emissivity). However, this contrary to

Lambert's cosine law, which states that when viewed from any angle, the observed radiance is

uniform.

Emissivity [0 - 11
90

sbept = 0.95

Temperature = 85.9 C

180
Viewing Angle [degree]

Figure 91: Directional emissivity for two surfaces (Eblack-tape = 0.95 and Ecup = 0.92) with constant temperature (85.9*C) in
polar plot
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Figure 92: Normalized directional emissivity ( ) for two surfaces (Eblack-tpe = 0.95 and E,,p = 0.916) with constant

temperature (85.94C)
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Figure 93: Normalized directional emissivity (-) for Eblack-tape = 0.95, 0< 0<300, (T=85.90 C)
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Figure 94: Directional emissivity for a single surface (Ebtackape = 0.95) with multiple temperature (T,= 85.9'C and 14=

62.8*C)

For non-metals surfaces, we introduce the concept of directional correction for normal emissivity

that captures the angular variation in emissivity as a function of 0:

Eobs =EN 9() (87)

g(6) = directional correction factor (88)

4.4.5 Metallic Surfaces - an Exception

Metallic surfaces with low normal emissivity values behave differently than non-metallic surfaces as

E

discussed earlier in Chapter 2. Normalized emissivity, -, can vary as much as 30% for metals
EN

versus 6% for non-metals according to Schmidt & Eckert 1935 [42]. Additionally, directional

emissivity seems to increase for metals as a function of viewing angle 0 for metals and decrease for

higher angles in non-metals. In this thesis, no experimental calibration of emissions variation with

angle was done for metals because of the following:
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a. Metals are infrequently used in buildings because of poor thermal management (thermal

bridge)

b. Metals (low emissivity) materials represent only 20% of the possible choices of building

materials.

c. For signals from the IR cameras, the contributions from E and temperature are equal. Given

Emetal ~ 0.1 - 0.2, the signal strength from metal in the region on the scene is highly

attenuated and hard to calibrated on top of the ambient signal of the environment.

Therefore, for the purpose of this thesis, we will not focus on metallic building materials.

4.4.6 Conservation of Radiance & Etendue

To verify that the signal s [observed radiance] is the same regardless of distance, we conduct a

separate experiment where 3 identically filled cups are filled with hot water and placed in the

microwave until boil. They are taken out and placed at distance (a) = 38 inch, distance (b) = 140

inch, and distance (c) = 480 inch from the camera. The temperature is the same for all three cups T

(cup) = 160* F [344*K].

Cup B, distance(b)
Cup C, distance(b)

J1
Figure 95: 3 Cup experiment to demonstrate conservation of radiance principle for fixed temperature at varying distances
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to t1 t 2

IA
Lum(O) = 228 Lum(1) = 174 Lum(3) = 140

Figure 96: Experiment demonstrating the conservation of radiance using 3 Cup at t0 , ti, t- with identical temperature in all
cups

4.4.7 Conclusion and Insights

In this Chapter, we have explained the need for 3D radiometry. Based on the limits of a Lambertian

surface approximation, the angular dependency of emissivity, and the 3D nature of the real world,

we present the concept of 3D radiometry and specifically, the concept of a directional correction

factor to account for directional emissions from a source and normalize the value relative to normal

emissivity calculations for accurate temperature estimation. To develop a better understanding of

the 3D world, I created a 3D model of the scene. In this Chapter, I presented a polynomial based

optical flow method and showed how it can be used to create a depth map and a corresponding

mesh map to generate a solid model of the building surfaces. From the solid surface, we can

estimate distance and viewing angle to the camera. As it turns out, this information is critical to help

us understand directional emissivity and its estimation and use within ARTIST. Additionally, I have

shown a method to calibrate non-radiometric cameras to derive a calibration function for camera

signal output (pixel intensity) vs observed radiance corresponding to a temperature. Additional

experiments were conducted to show camera signal output (pixel intensity) as a function of angle

for varying temperatures. The results confirm the theory from Schmidt & Eckert 1935 [42], that

there is an angular variation in emissivity. I conclude from this Chapter that additional research

should be emphasized on understanding emissivity as a function of angle, material properties,

surface finish, and potentially many others.
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Chapter 5: Image Processing

5.0 Introduction

In Chapter 4, I presented a case for 3D radiometry and why factoring in angular information is

important to correct for direction emissivity. The emission variation, when viewed at an angle, can

be corrected using we concept around direction corrections. In this Chapter, we will focus on image

processing in thermography. As we concluded in Chapter 3, improving imaging resolution is critical

to understanding the nature and characterization of small leaks. We also discussed in Section 3.2 that

there were three forms of resolutions: spatial, spectral, and temporal resolution. In previous

Chapters, I show how ARTIST increases resolution from a hardware implementation. We will focus

on software approaches to improving resolution in Chapter 5.

I will present jointly developed research in software approaches to improving imaging resolution for

infrared cameras based on super resolution techniques. Together with Dr. Jonathan Jesneck,

Professor Sanjay Sarma, Dr. Hui Kong, and other members of the Field Intelligence Laboratory, our

research team has made research progress in the areas of image processing for resolution

enhancement. My responsibilities included developing the experimental procedures, contributions

to its theories, and thinking of potential extended applications. A majority of the technical image

processing implementation was the result of Dr. Jesneck's contributions due to his background in

medical imaging.

5.1 Quantifying the Cost per Pixel of IR

One of the motivations of my thesis research has been to reduce the dependence on very expensive

LWIR equipment. For the EO and NIR bands, the cameras are relatively inexpensive ($10,000-

$40,000) and the cost per pixel is very low. However, when considering the various LWIR

technologies that were available, the cost per pixel in the LWIR band were over 2 orders of

magnitude more compared to the EO band. This is a likely limitation for broader deployment of

LWIR instrumentation in thermography at an urban scale. LWIR technology is manufactured from

materials such germanium and zinc selenide, making it very prohibitively costly. Unfortunately,
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LWIR has not benefited from the mass production and competitive nature of modern digital camera

technology. For example:

" FLIR Photon 320, 320x240 = 76,800 Pixels

o Estimated Cost $10,000

o Cost/Pixel = $0.13 /pixel

* Canon Powershot S500 5MP Camera = 5,000,000 Pixels

o Estimated Cost $100

o Cost/Pixel = $0.00002 / pixel

The cost calculation above shows 4 orders of magnitude difference in cost/pixel between LWIR and

EO technology.

Thermal imaging hardware solutions are expensive, mainly driven by several major factors: (a) small

production quantities relative to more common electro optical systems found on digital cameras and

cell phones (b) use of expensive materials for the production of thefocalplane array (FPA) and optics

(typically germanium which is a versatile infrared material commonly used in imaging systems and

instruments in the 2 to 12 microns spectral region) that allow transmission of thermal radiation

through the lens.

In a limitation to widespread adption and use, LWIR technology is tightly controlled by the US State

Department for export and heavily regulated under International Traffic in Arms Regulations

(ITAR) as explained by Root, United States export controls [89]. These rules limit the export us of LWIR

technology outside the United States and non-US citizens.

In summary, there are three basis methods to increase LWIR resolution and field of view (FOV):

a. FPA Hardware (high spatial pixel density per square area)

b. Optics

c. Arraying (multi-camera configuration)

d. Software (resolution enhancement algorithms)
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Spectral bands Range [ptm] Detector materials Applications

NIR 0.74 - 1 SiO 2  Telecommunications

SWIR 1 -3 InGaAs, PbS Remote sensing

MWIR 3 - 5 InSb, PbSe, PtSi, High temperature

HgCdTe inspections

LWIR 8- 14 HgCdTe Ambient temperature

inspection

VLWIR 14-1000 Spectrometry,

astronomy

Si: silicon ; SiO,: silica ; In: Indium ; Ga: galthum ; As: arsenic ; Pb: lead ; S: sulfu r; Sb: antimony;

Se:selenium ; Pt: platinum; Hg: mercury; Cd:cadmium; Te:tellurium

Table 5: Detector material vs spectral wavelength table

The FUR Model P-660 thermal imager (640x480 pixels) used in our initial research retailed for

approximately $35,000 without any accessories as of January, 2010. Today, similar imagers can be

purchased for around $30,000 from the manufacturer FLIR. FUR holds a virtual monopoly in the

infrared camera market, which, according to their own documentation holds approximately 61% of

the global market share for thermal imaging equipment. Part of the reason why FUR

thermographic infrared cameras costs more than non-FLIR cameras is due to their unique

radiometry feature, the ability to interpret thermal temperature from the images.

A 640x480 infrared image has the equivalent resolution of an old computer webcam, representing

307,000 pixels. This is considered 'state of the art' for small commercial off-the-shelf thermography.

For large commercial applications such as satellite imaging or military related applications,

significantly larger focal plane arrays with high pixel density must be specially manufactured. This

increases the total development costs significantly.

Reducing cost of the equipment is a research objective both for practical reasons and for helping

broader adoption. We have focused on using off-the-shelf components, specifically long wave

infrared camera systems. Finding ways to improve resolution for LWIR systems became an
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important topic of this thesis. Without shifting focus to hardware improvements, which is costly, a

principal area of research involved improving resolution through software algorithms.

5.2 Super Resolution Imaging

Super resolution is a class of imaging techniques used to enhance the resolution of an imaging

system beyond its native limit [90-93]. There are single frame and multi-frame variants to super

resolution. Several well cited references on super resolution imaging includes Park [94], Farsui [95],

Baker [96], and Freeman [97] from MIT.

5.2.1 Single-Frame Super Resolution

Single frame super resolution methods attempts to increase resolution be removing motion or

camera blur. Examples of single frame super resolution is shown and discussed by Freeman [97]

and Elad [98].

5.2.2 Multi-Frame Super Resolution

Multi-frame super resolution methods attempts to increase resolution through the use of sub-pixel

shifts from the low resolution images to solve the inverse problem of resolving the high resolution

pixels. Examples and discussion of multi-frame super resolution approaches is discussed by Farsui

[99], Borman [100, 101]. For the purposes of this thesis, we will focus on multi-frame super

resolution. ARTIST is a multi-frame capable system. Therefore, we will aim to maximize the use of

our multi-frame information.
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Figure 97: Multi-Frame super resolution conceptual diagram

In Figure 97, we show the multi-frame super resolution concept for a single camera. For a single

imaging camera detector, we can describe its characteristic with using the following known

convention:

Resolution (pixels), spatial

Color depth (bits), wavelength

Framerate (FPS), temporal

Together with other attributes (lens aperture, sensors, etc), these three primary specifications are

used to help determine the overall system performance and information bandwidth.

Bandwidth = Resolution- Color Depth-FPS (89)

For any imaging system, there is a maximum bandwidth (I define this as the 'Q') associated with the

system. For example, an infrared camera with 640x480 resolution, 14-bit color depth, and 30 fps

has a fixed bandwidth Q.
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QIR-camera (640x480)-(14 Bit)-(30 fps)

Without any additional hardware or software improvement, Q is typically fixed for any imaging

system. However, using multi-frame super resolution, which is a motion based super resolution

algorithm, one can combine multiple low resolution imaging frames from a single camera, and use

the sub-pixel shift information to infer the high resolution pixel. This inverse problem is solved by

making a very critical tradeoff, temporal versus spatial resolution. By combining multiple frames

(temporal) and using the information to gain resolution (spatial), this method has been shown to

improve overall resolution. The reverse can also occur, spatial versus temporal tradeoff. In this

case, a high resolution frame can be down-sampled, or shifted to produce multi-frame low

resolution images. Multi-frame super resolution is a process created to produce this effect, trading

temporal resolution for an increase spatial resolution. Multi-frame super resolution algorithms can

be used to help produce manipulate spatial vs temporal information in a way that allows us to

control where we are on the Q-curve. This sub-class of software resolution improvement can be

useful in ARTIST due to the imposed natural motion of the imaging system and needs for higher

resolution.

We considered many super resolution methods to enhance imaging system resolution, specifically in

the LWIR band where the cost per pixel is highest. Methods we considered included those by

Farsui [99, 102, 103], Irani [91], Sroubek [104], Schultz [105], and Caron [106]. For infrared

detectors and equipment an order of magnitude increase in resolution will result in at least am order

of magnitude increase in cost. The marginal cost per pixel for LWIR in our estimate is non-linear.

The cost-benefit analysis of super resolution imaging in long wave infrared applications will show

that it is advantageous to focus on improving resolution through software versus a hardware

approach.
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5.3 Hyper Resolution Multi-Frame Imaging'

Operationally, ARTIST is capable of multi-spectral imaging and has the ability to image in EO, NIR,

and LWIR wavelength bands. Such a capability led to the question of whether information can be

used across different modalities to improve resolution, while viewing the same scene. As discussed

in the last Section 5.2, multi-frame super resolution refers to the improvements using temporal

versus spatial tradeoff in resolution. We extended this concept into temporal vs spatial vs spectral

resolution and hence, the concept of hyper-resolution was created.

Hyper resolution refers to the process of combining two or more spatially, temporally, or spectrally

(resolution) varying imaging system across multiple resolution modalities to achieve super resolution.

Each imaging camera will have its own unique Q-curve and when multiple Q-curves are combined,

the idea that that more information will be available to help solve the problem of improving the

resolution of a pixel. For example, there are several combinations of cameras that would be highly

beneficial to apply hyper resolution. I present two examples below:

1. Combination A: LWIR (640x480 Resolution, 14 bit, 30 fps) & EO (1920x1080,24 bit, 60

fps)

2. Combination B: LWIR (640x480 Resolution, 14 bit, 30 fps) & EO (640x480,16 bit, 500 fps)

Several methods have been introduced similar to this (1) "Image/Video Deblurring using a Hybrid

Camera" by Tai, Du, Brown, and Lin [107, 108] and (2) A Hybrid Camera for Motion Deblurring

and Depth Map Super-Resolution by Li, Yu, and Chai [109]. Both of these methods introduce the

concept of a hybrid camera system to improve the resolution of a target imaging system. These

methods are focused on addressing the problems of image deblurring by introducing the hybrid

camera system to estimate global and spatially varying motion blur. Though unique, we would like

to address the issues of resolution enhancement more specifically.

s "Hyper Resolution Multi-Frame Imaging" (MIT TLO No. 14572) L. Phan, J. Jesneck, S. Sarma
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The proposed method for the Hyper Resolution methodology has the potential to yield significant

resolution enhancement by one to two orders of magnitude. We have not fully characterized the

potential of hyper resolution across the spatial, temporal, and spectral domain. I will demonstrate a

limited use-case of hyper resolution and discussed the potential theoretical implications and use

cases.

The basis for Hyper Resolution lies in a tightly coupled multi-camera setup where the motion of

both imaging systems is well understood and can be mapped precisely. The coupling effect of

cross-registering information from two different camera systems has the following potential

beneficial effects:

1.

2.

3.

4.

Increased motion tracking resolution for spatial and temporal domains.

Reduced motion tracking errors

Imaging with multi-modality, across a broader combination of frequency spectrum

Enhanced single frame motion deblurring

Spatial

EO

Q-Curve

] Camera B (EO)

era A (EO)

Temporal

NIR

SWIR

MWIR
Camera C (LWIR)

LWIR
Spectral

Figure 98: Q-Curve for 2 camera systems, Camera A with a fixed spatial and temporal characteristics and Camera B with

superior spatial and temporal characteristics relative to Camera A, conceptual diagram
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5.4 Modeling of a Scene within a Camera Image

Camera images are typically modeled as an output of an approximation, using a down-sampling

process, for an unknown high-resolution image. A series of Y(k) of k= 1,2, ... K low-resolution

camera images may be represented using the following model:

Y(k) = D(k)H (k)F(k)X +V(k),k = 1,2,..., K(91)

where Y(k) is an observed sequence of K low-resolution images from a camera, D(k) is a down-

sampling operator, which is also known as the "decimation operator", H(k) is a blurring kernel,

F(k)encodes the motion information of the kth frame, X is the unknown high-resolution image,

and V(k) is additive system noise. A high-resolution scaled image X is down-sampled to match the

low-resolution scale associated with the series of low-resolution images.

5.4.1 Passive Image Co-Registration

Image registration is the process of transforming different sets of data into one coordinate system

[110]. In image processing, image registration may be performed using different strategies. Two

such strategies include:

1. Feature identification and tracking

2. Spatial similarity metrics

In this thesis, the preferred image registration technique is performed on the basis of spatial

similarity. For image registration, we consider horizontal, vertical, and rotational translation motion.

We model the total camera motion F represented as a product of its translational and rotational

motion operators:

F = S1S R (92

where Sk and Sm are the operators corresponding to shifted the image by 1 pixels in the horizontal

direction and m pixels in the vertical direction, and R represents the rotation matrix:
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= cos(0) -sin(6) 1
R =sin(0) cos(6) (

R is defined by a rotational angle 0. F(k) may also include a focus factor accounting for camera

motion along the line-of-sight to the imaged object. Most generally, F(k) accounts for orientation,

scaling and tilting of respective images relative to a reference image. The image offset between a

reference image and a test image may be calculated by defining a loss function L, where:

L(xy,;YO,Y)= IYO(Xy,o-Yk(x- ,y- ykO -Ok) (94)

and the optimal solution to the loss function L is defined by:

(l', m', 0') = argmninlYo - FY (95)
x,y,e

where Xk is the row offset, Yk is the column offset, and Okis the angle offset for image Yk compared

to reference image Y.

Minimizing the loss function is one method for obtaining a reference image Y, with respect to its

offsets. There is also the potential to use a reference image in a different modality (hyper-resolution).

In that case, offsets (x, y 6 ) are determined by linear transformation through matching the location

of each low-resolution image to a corresponding location in an alternate modality's image. This will

allow us to determine the phase shift of each low-resolution image inside using the registration

information from an alternate mode's image. For example, we can couple two camera systems, EO

(350-700 nm) with an LWIR system (8000-14000nm) and cross register the motion information

from LWIR to help locate shifts in the low-lighting EO band.

Multi-frame super-resolution is highly dependent on accurate and precise image registration. The

method introduced here uses only a sequence of images. This process uses a gradient that defines

the steepness of the error surface during image registration may be represented as

K

G = E FT (k)DT sign(DF(k)HX - Y(k)) (96)
k=1
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where G is the gradient vector and the remaining variables were previously defined. Minimization

of the loss function L to yield (xk, y,, O6) for each image Y, of the image sequence resulted in an

accurate representation of camera movement F(k), which is used to extract the sub-pixel resolution

information. This gradient descent approach helps identify the relative positions of all images in an

image sequence and defines the camera's movement. The movement information is represented

using a motion kernel intended for deconvolution to improve image resolution [104, 111]. The

intuition behind this kernel formulation is that a high-resolution blur pattern of a single low-

resolution pixel can be represented as a blurring kernel for a sequence of sub-pixel movements.

5.5 Kinetic Super Resolution

Together with my research colleagues, Dr. Jonathan Jesneck and Professor Sanjay Sarma, we

developed a novel super resolution algorithm called Kinetic Super Resolution6 (KSR). KSR is based

on a multi-frame approach to generating a motion kernel used to deconvolve a super positioned

image representing the low-resolution images. Dr. Jesneck and I collaborated extensively to develop

this algorithm. While I contributed to the conceptual ideas behind KSR, Dr. Jesneck worked on the

technical implementation of KSR. KSR is currently patent pending through MIT's Technology

Licensing Office.

KSR starts with the process of generating a motion based kernel representing the sub-pixel motions

of the imaging system associated with K number of low resolution frames. The camera movement

F(k), discussed previously, is modeled as an intrinsic quality of the imaging system. Using a kernel

based description; a defined motion kernel can be used for deconvolution to improve image

resolution. To begin, a two-dimensional impulse function is defined for a matrix with all zeros

except for a single one in the center.

I = diag[O, ...,0,1,0, ...,O] (97)

where I is defined in the low-resolution scale. In the high-resolution scale:

6 "Kinetic Super Resolution" (MIT TLO No. 14538)
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0 0-

0 0 0 0 0
0 1 1 1 0

1= 0 1 1 1 0 (98)

0 1 1 1 0

0 0 0 0 0

0 0-

I is represented by a single block of ones. This motion-based kernel may be easily combined with

the traditional optical-blur kernel representation by replacing the block of ones with a blurring

matrix, such as a 2D Gaussian kernel.

As an example, a 3X3 = 9x resolution increase can been projected from using the low-resolution

image and projecting to a high-resolution scale. The motion-based point spread function may then

be obtained by integration of that impulse function across the camera movements:

K

PSFcamera = E F(k)I (99)
k=1

Where PSFcamera is a motion point spread function that we defined as the "kinetic point spread

function" or a "kinetic PSF", F(k) represents the camera movement, and I is the two-dimensional

impulse function. The kinetic PSF is advantageously employed to remove the blurring effect of the

kernel of the lower resolution super positioned image by applying standard deconvolution

techniques, using regularization such as Tikhonov regularization [112, 113]. Accordingly, the

following cost function is applied:

K
C= Z IIDF(k)HX -Y11 1 + aA(x) (100)

k=1

Where C is the cost function and the remaining variables are previously defined. The cost function

is minimized, where A(x) = ||QxII2 is a penalty term in which the matrix Q represents a high-pass

filter so that the regularization represents a general smoothness constraint. In our case, minimizing

C provides the sought-after high-resolution image.
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5.5.1 KSR Example

We demonstrate KSR using a test setup that consisted of a US dollar bill taped onto a whiteboard

pointed at distance of 10 feet from the camera. The camera is a USB based Microsoft Lifecam

VX2000. Holding the camera with our hand and pointing the camera at the whiteboard, towards

the dollar bill, we were able to record a 10 second sequence of video frames. The video frames were

spliced into individual frames and the individual low-resolution 320x240 frames were used to

demonstrate KSR. The following process was implemented as explained:

1. Capture video file using Microsoft Lifecam device

2. Hold camera at target object, a US dollar bill in this example, and apply a very small amount

of hand motion during the video capture.

3. Split the video sequence into individual imaging frames.

4. Pick a sequence of frames (~20 frames)

5. Determine sub-pixel motion shifts between subsequent frames

6. Generate Kinetic PSF from the sub-pixel motion

7. Generate super position image by super imposing the low-resolution images

8. Deconvolve super position image with kinetic PSF using Tikhonov regularization
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A B

C D

Figure 100: Demonstration of KSR with dollar bill taped on a wall 3 meters away from the camera. (Implemented and
tested by Dr. Jonathan Jesneck)

A. Original video frame

B. Original video frame with bicubic interpolation

C. KSR with no motion

D. KSR with camera motion, natural hand motion

5.5.2 Testing of KSR algorithm based on Known Metrics

We demonstrate examples of KSR applied to greyscale, color, and infrared images. KSR

demonstrated robust performance over a dataset of 25,000 images, outperforming nearest-neighbor

interpolation, bilinear interpolation, and bicubic interpolation (p < 1e-16). In all cases, KSR was

stably implemented and tested. This means KSR can potentially be adapted to many practical

applications; including enhanced digital zoom for mobile phone cameras and increased signal-to-

noise ratio for low lighting situations. KSR can be coupled with more traditional super-resolution

techniques to further increase image resolution.
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For quantitative and comprehensive performance comparison, we tested the KSR algorithm over a

set of 25,000 non-simulated images, the MIRFLICKR data set [114]. From these images we

simulated low-resolution, noisy video data, which we then subjected to the KSR algorithm in order

to reconstruct images for comparison to the original high-resolution images. Each image we down-

sampled five-fold (2.5 magnitude decrease), corrupted with Gaussian N(0,30) white noise, and

shifted by randomly chosen sub-pixel amounts to produce a set of 40 low-resolution images. For

each input image's low-resolution image set, we benchmarked the super-resolution performance by

quantifying similarity to the original, unaltered image by two mechanical image similarity metrics:

peak signal-to-noise ratio [115], cross-correlation, and by two metrics that better mimic the human

visual system's perception: Q [116, 117]and structural similarity [116]. We compared the

performance of the KSR method to that of nearest-neighbor, bilinear, and bicubic interpolation. In

all cases, the KSR method significantly outperformed each of the interpolation methods (p < 1e- 16 by paired, two-sided

Wilcoxon test). Fully implementation of this testing procedure was carried out by Dr. Jonathan

Jesneck. With permission from my collaborators, Dr. Jesneck and Professor Sarma, I have included

the discussion on the KSR algorithm in this thesis for the sake of completeness.
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Figure 101: KSR performance across the MIRFLICKR image set.

The original images were down-sampled 5x and combined with Gaussian noise into sets of 40
images. The low-resolution images were transformed to higher resolution images by the kinetic
super-resolution (KSR) algorithm, bilinear interpolation, bicubic interpolation, and nearest-neighbor
interpolation. Super-resolution performance was measured by similarity with the original full-
resolution image by several similarity metrics: (A) Peak signal-to-noise ratio, (B) Cross-correlation,
(C) Q image quality metric, (D) Structural similarity.
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5.5.3 Applying KSR to LWIR Imaging of an Urban Scene

For this demonstration, we used a drive-by scan of Burnside Avenue in Somerville, MA and focused

on one particular home. In post processing, we focused on zooming into two particular areas of

that home: (A) the upper right corner of the second floor window and (B) the front door on the first

floor. In both cases, KSR was successful in improving image resolution overall. This approach can

be utilized to improve image resolution overall, when condition demand the same, e.g. if on-site

equipment, costs, LWIR resolutions are prohibitive. We demonstrate the image resolution

improvement by applying KSR, which should improve pattern recognition detection rate in other

applications require specific identification of thermal leakage type.

A

Normal Kinetic Super Resolution

B

320x240 Thermal Image

Figure 102: KSR example of home in Somerville, MA. (KSR, implemented and tested by Dr. Jonathan Jesneck)
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Closeup of Original image

KSR Resolution Enhancement of Closeup

KSR PSF

Figure 103: KSR of Building 35 at MIT, Cambridge, MA. (KSR, implemented and tested by Dr. Hui Kong)
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5.6 Hyper Resolution in Single-Band 'EO Imaging

Hyper-resolution is highly dependent on accurate and precise image co-registration. A simple spatial-

to-spatial domain method is demonstrated. The sub-pixel image registration is introduced from the

high resolution camera and transformed into motion information for low-resolution camera. We

use a passive registration method to co-register the motion. By tightly fixturing two camera systems

together, one may use the higher resolution/high/alternate modality of one system, to help co-

register in a second imaging system.

Figure 104: Couple imaging devices. Left Microsoft Lifecam Cinema-1280x720 pixel camera, Right Microsoft Lifecam VX-
2000-320x240 pixel camera

In the following example we show imaging with have 2 devices, a high resolution camera and a low

resolution camera. The high resolution camera has 1280x720 resolution and the low resolution

camera is 320x240. We couple the devices as shown in Figure 104. We apply slight hand motion to

coupled device, co-register the image, and apply our Kinetic Super Resolution methodology to

generate a high resolution image with precise sub-pixel registration. Samples images from the two

camera systems are shown in Figure 106. The two cameras are looking at the same scene, focusing

specifically on the US dollar bill on the white board.
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Q-Curve
Resolution

Low Cost

m- < Camera B

<0J Camera A

EO Band (350-700 nm) Frame Rate

Figure 105: Single-modality, dual imaging system model for hyper resolution. Conceptual Diagram.

Camera A & B have unique Q-curves individually. Hyper resolution allows the lower Q-curve from
Camera A to use information from Camera A to help make a unique bridge between the two curves
that is advantageous to high resolution information reconstruction.

original high res video frame, no suoer resolution
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Figure 106: (Left) High Resolution 1280x720 pixel image from Microsoft Lifecam Cinema camera (Right) Low Resolution
320x240 pixel image from Microsoft Lifecam VX-2000 camera. Both cameras are tightly fixture to one another. The

motion of left camera will be equally applied to the motion on the right.
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5.6.1 Hyper Resolution Example

'o0m shifts
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Figure 107: Motion tracking through coupling (Left) Column Shifts (Middle) Row Shifts (Right) Motion co-registration.
With both cameras tightly coupled, the motion of both cameras are captured in the X and Y coordinates and normalized in

the final image.
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Figure 108: (Left) Zoomed in original high resolution image (Right) zoomed in original low resolution
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Figure 109: Left) Zoomed in original high resolution image (Right) Zoomed in hyper resolved image of low resolution
camera using high resolution motion information only

(Implemented and tested by Dr. Jonathan Jesneck)
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This is a simple example of hyper resolution across a single modality. Specifically, you can see

immediately the advantages of hyper resolution. The original high resolution frame is 1280x720

while the original low resolution frame is 320x240, a ratio of 12:1. The low resolution hyper

resolution result is equal (or better in some cases) than the original high resolution frame. Thus,

hyper resolution is able to demonstrate approximately a 1200% improvement in resolution. This is

significant.

The combinatory potential for hyper resolution to extend into image enhancement in multi-

modality, temporal and spatial realm is limitless. For example, the sub-class of problems in "blind

deconvolution" will be solved by coupling a fixed frame rate camera (camA) with one that is perhaps

an order of magnitude higher in frame rate (camB). In this case, for every single frame of camA,

that image is co-registered with potentially 10 frames of camB. camB will generate a motion based

kinetic PSF that can be used to deconvolve the single image from camA. This single frame

deconvolution will allow certain motion deblurring of frame A where it was not to practically

possible before. Specific example of this combination is shown to work by Li (2008) [109] and Tai

[107]. The examples shown in the papers and here are of single band hyper resolution. I propose to

extend it to multi-band (spectral) resolution domain. If such a solution is employed, it will be

possible to remove motion blur for low frame rate cameras such as long wave infrared using high

frame rate cameras such as EO.

5.6.2 Future Works in Hyper Resolution

Perhaps one of the biggest advantages behind the concept of hyper resolution is the ability to couple

information across vastly differing spatial and temporal performance and price performance.

Inexpensive technology found in everyday digital cameras (300-1200 nm) that have high resolutions

and high frame rates, can be used in conjunction with very expensive long wave infrared (8000-

14000 nm) imaging systems. There is also the cost difference of cooled vs uncooled LWIR. In

either case, LWIR has very high cost per pixel relative to its counterpart in the visible spectrum

where the cost difference is very high specific and specific to the camera type. This cost difference

can be of the order of several orders of magnitude depending on which system one is considering.
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The potential of hyper-resolution will be further explored for research through the Field Intelligence

Laboratory at MIT.

5.6.3 Key Findings of Hyper Resolution

I present some of key findings from our research into the concept of hyper resolution.

e The most important aspect of this method is the ability to co-register motion with very low

motion registration errors. The motion based registration error of the low resolution imager

is a direct function of the error of the high resolution device (which is typically much less).

" Though this specific example shows two imaging devices in the EO (Electro Optical) range,

a more useful approach for this device is to couple two devices that have significantly

cost/resolution differentials like an EO/Far IR combination where the high resolution, low

cost functionality of the high resolution device and be used to significantly improve the

imaging capabilities of the more expensive Far IR device.

* Multi-Band Imaging and information transfer. By coupling two or more devices in different

bands, like EO, Near IR, Far IR, Millimeter Waves, and others, we can co-register many

types of information beyond just shift information that will be useful in the reconstruction

of high resolution information. Depth, angle, and texture information are potentially

usefully information that can be transferred.
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5.7 Multi-Frame Low-light Signal-to-Noise Enhancement and Super-

Resolution?

We have developed an image processing algorithm that recovers information from extremely noisy,

low-light video and creates a super-resolution image. This technology has many useful applications.

Creating high-quality images in dim environments is a very challenging problem. Low-signal images

typically appear grainy and ill-defined. In low-light conditions, the number of photons arriving at a

detector is small enough to be modeled as a stochastic event. Compounding this problem are other

stochastic processes, such as salt-and-pepper noise (aberrant pixel values caused by nonuniformly

sensitive detector elements) and quantization noise (systematic bias in binning photon signals into

discrete pixel values).

To correct for these low-light problems, there are three basic, but limited, solutions:

* Use a bigger aperture lens. Unfortunately, large lenses are quite expensive and are not always

physically suitable for imaging devices, such as small portable cameras and medical imaging

probes.

* Use a bigger detector. As one of the most expensive camera components, detectors drive

camera cost. Larger detectors are often prohibitively expensive for many imaging systems.

* Use longer exposure times. Increasing exposure time allows more light to arrive at the

detector, increasing the image signal strength. However, this greatly increases the

susceptibility to motion blur. Unfortunately, many practical low-light imaging tasks have

significant motion components, severely degrading the image quality.

We propose a new solution: aggregate multiple frames from a low-light video in order to produce a

higher-quality, super-resolution image. Here we demonstrate our technique through a very low-light

video taken in a dark lecture hall. We used a hand-held Olumpus E-P1 camera and panned it in the

direction of a dollar bill that we had taped onto the blackboard. The camera was pointed at the

"Multi-Frame Low-Light Signal-to-Noise Enhancement & Super Resolution" (MIT TLO No. 14596). J. Jesneck, L.
Phan, S. Sarma
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blackboard and recording a video sequence in real-time. There were no additional lighting sources

in the room besides the source through a diffused glass window to the right of the blackboard. The

ambient lighting conditions in the room was not enough see the dollar bill for a person (with myself

and Dr. Jesneck present). The video display on the camera was also dark and not visibly clear that

there was a signal in the scene.

5.7.1 Preprocessing low-signal, highly variant images

The first step in reconstructing a high resolution image is to increase the image contrast of the

original image in order to identify image features that may be used for image position registration.

We enhance the contrast using histogram equalization, which rescales the pixel values to a range that

shows more detail.

p,(i) = , 0 :5 i < L (101)

where px (i)is the probability of an occurrence of pixel value i of a discrete image [x], ni is the

number of pixels with value i, n is the total number of pixels in the image, and L is the total number

of pixel levels in the image. We then map the range of observed pixel values onto a wider range by

y' = y(max({x}) - min({x})) + min({x}) (102)

where y = cdf.,(x) is the cumulative distribution function of the probability distribution of the

pixel values.

5.7.2 Aggregating low-signal images to increase signal strength

By modeling the shot noise component in the video frames, we identify stable image features that

can be used to determine a fixed position or feature of the images. Then we register the images with

a search over the error surface defined by the difference between the two images with given offset:

E(xj, yj) = I 10(x, y) - I(x - X1, y - yi) (103)
x,y
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where x1and yjare the row and column offsets for image Icompared to reference image I0.

Original Video Frame of Chalkboard Low-light through closed door

(B)

Figure 110: (A) Original Video Frame of Chalkboard from Olympus E-P1 Camera, 17mm F2.8 Lens, (B) Low-light Image
through door to the right of (A), (C) Contrast Enhanced

Example error surface for image registration
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Figure 111: (Left) Apply 2D Error Surface Registration (Right) Generate 3D Error Surface Registration to find minimum
displacement error. (Implemented and tested by Dr. Jonathan Jesncck)
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(A) Contrast Enhanced of Original image

(C) Super Position Image of (B)

Figure 112: (A) A Contrast Enhanced Original Image, (B) A Closeup of Dollar Bill in (A), (C) Super Position Image of

Dollar Bill in (B). (Implemented and tested by Dr. Jonathan Jesneck)

Once we have determined the video frames' registration offsets, we average each pixel value over the

stack of collocated pixels. This averaging operation reduces the noise of the composite image while

avoiding motion blur.

N

Isuper = Z I-Poisson(,EA) (104)
n=1

Where Isuperis the super positioned image, which has the same expected value E(lsuper) = A, but a

greatly decreased variance var(Isuper) = A/N.
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5.7.3 Increasing Image Resolution with KSR

Once we have the super-position image, we can apply our previously described Kinetic Super-

Resolution algorithm to deconvolve against the KSR motion kernel(MIT TLO #14538).

Figure 113: KSR Improvement on low-light image. (Implemented and tested by Dr. Jonathan Jesneck)

5.7.4 Applications for Low-Light Signal-to-Noise Enhancement using KSR

Improving the signal strength and resolution of very low-light images has several commercial

opportunities.

Low-cost, portable cameras:

Cell phone cameras notoriously produce low-quality images in low-light conditions. They cannot

have large lenses and detectors for space and cost reasons. Additionally, they cannot depend on long

exposure times, since hand-held cameras would introduce significant motion blur. Therefore cell

phone cameras would benefit greatly from our algorithm.

Night-time surveillance systemsfor high-speed targets:

Security and defense organizations could greatly benefit from higher-quality scans of moving

vehicles and people, with greater image detail allowing for better object tracking and automated

person identification.

Night vision systems:
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Portable, hand-held and helmet-mounted night vision systems can greatly increase night-time

visibility by applying a video version of this algorithm, thus avoiding the bulk of heavy lenses.

Passive low-signal imaging systems:

For many surveillance applications, it is imperative that the surveillance operation be undetected,

which precludes the use of illuminators. Thus imaging is limited to passive systems. These systems

would especially benefit from our algorithm.

5.8 Thermal Signature Identification'

We have developed a unique technique that can be used to extrapolate and infer the thermal

properties of an object through naturally occurring or induced thermal cycling. By observing the

temperature variations of such processes, it is possible to infer the object's thermal properties by

mapping the transient time constant to pixel location. That information can be fused within a

spatial and temporal domain as a unique identifier/marker for identification purposes. We name

this method "thermal fingerprinting." Similar methods have been presented Szekely [118, 119],

Murphy [120], and others for specific applications and methods.

5.8.1 Thermal Transients

Thermal Transients Through the use of accurate thermal instrumentation device such as long wave

infrared (IR) imager, we record the temperature changes of the object as it goes through a naturally

occurring or induced thermal cycling in a time period sufficient to record noticeable changes.

Assuming the object does not go through a phase change or vary significantly in thermal properties

during the observed period, one can plot the temperature profile vs. time. In the case of IR imaging

(2 dimensional surface), one simply superimposes the thermal information over a known 3D surface

texture to plot the spatial temperature profile vs. time. A thermal transient response can be used to

infer the thermal properties of object through thermal balancing of conduction, convection, and

radiation effects. One can model and extrapolate one or more unique time constant(s) throughout

"Thermal Signature Identification" (MIT TLO No. 14146) L. Phan, J. Jesneck, S. Sarma
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the spatial domain. The superimposed spatial information can be fused along with unique thermal

property identifiers to increase the spatial resolution of the object.

According to transient heat transfer:

. dT
Q =pVc - j

dt

T - Too -At /
- ae I ptc

Ti o TO

T = pVC/hA

(105)

(106)

(107)

where -c is there thermal time constant of the observed temperature change per pixel which directly

relates to the thermal properties of the object.
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Figure 114: Temperature vs time map of a single pixel
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3x3 Pixel

Figure 115: Up close 3x3 pixel example of a thermal signature

When viewed up close, each pixel represents a unique thermal signature, which in this refers to the

thermal time constant t N mapped to the transient effects of an exponential function for that pixel.

However, this need not be the case. The symbol- may be replaced for by any pattern, linear,

exponential, logarithmic, quadratic, or any function that be used as a unique identifier for that

specific pixel. This concept is useful for applications beyond ARTIST.
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Figure 116: The experiment was to show sequenced thermal images of observed vehicle (2009 Honda Civic) during beating
cycle where car heating was turned to the max setting internally, while the external environment was approximately 30

degrees F
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Thermogram showing
thermal properties of a
car vs the actual frame
of vehicle.

Figure 117: Spatial mapping of time constant onto image. (Implemented and tested by Dr. Jonathan Jesneck)

Notice that by mapping the time constant over the entire image, one is able to observe the thermal

properties of the object below the surface of the exterior shell. This information is not directly

observable directly from the thermal images. Only by mapping the transient time constant during

the thermal cycling was this unique information visible.

5.8.2 Applications of Thermal Signature Identification

Medical Imaging - Thermal fingerprinting has several potential uses in cancer or medical research by

using the process to identify unique thermal properties that are informative for phenotype or disease

diagnosis. One can analyze the thermal signature on many spatial scales, such as within cells, tissues,

organs, or whole organisms by identifying thermal spatial markers and then comparing the changes
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of those markers through different observed time periods. For example, if a specific thermal marker

has significant changes in thermal properties observed, one can attempt to explain what may be

causing those changes, potentially cancerous or degrading conditions.

Intelligence - Potential uses in mapping or location based identification. In the case of using visual

image recognition for location based terrain mapping and position identification, one can use the

thermal signature identification process as additional markers. Combining the marker information

will increase the accuracy of location identification through pattern recognition of visual markers

with thermal markers.

Energy Eficieng - Potential uses in structural mapping and using the thermal signature identification

process to find leaks. Thermal signature profiling along with pattern recognition can be used to

identify thermally problematic areas of a structure.

Manufacturing - Potential uses in refining product design to optimize heat transfer. Thermal

signatures can help identify regions with large risk for thermal damage, such as in a microchip.

Thermal mapping information will facilitate design to account for heat flow and to protect thermally

sensitive components.

Geology - Potential uses in structural mapping and risk prediction in thermally unstable locations.

Thermal signatures can help identify changes in geographic hot spots around thermal vents and

volcanoes. The thermal characteristics can help to improve risk prediction models for human and

wildlife populations that live around hot spots.

Astronomy - Potential uses in mapping astronomical bodies. Thermal signatures can help identify

thermally interesting regions of an astronomical body, such as thermal vents in a planet that may

provide access for the heat harvesting for energy production. Thermal mapping may also find

structurally weak parts in a frozen crust that would be more efficient for mining.

5.9 Conclusion

In this chapter, we have introduced several novel concepts highly applicable to ARTIST:
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* Kinetic Super Resolution - a multi-frame super resolution algorithm based on generating a

KSR motion kernel and deconvolving the super positioned low-resolution images using a

single camera used to construct a high resolution image.

" Hyper Resolution - The use of spatial, temporal, and spectral resolution across different

imaging modalities to reconstruct a high resolution image in a low resolution modality. The

combinatory approach is advantageous to translating motion, depth, angle, texture, and

other useful information that can be useful.

* Thermal Signature Identification - The mapping of the thermal transient response of each

individual pixel to derive an accompanying time constant based expression that is unique to

each pixel. By doing so, we can infer sub-surface information such as structure and thermal

resistance at the surface.

" Low-Light Signal-to-Noise Enhancement using KSR - An algorithm used for low-signal and

noisy environments where images are degraded reaching the noise level of the imaging

system. In such situations, it is shown that it is possible to reconstruct a high resolution

image using this technique combined with KSR.

Hyper resolution will further increase our ability to extract useful information from multiple

modalities including significant resolution enhancements. KSR is a fundamentally important

concept that is limited to single modality, but when applied can help improve both resolution and

boost signal-to-noise ratios in very poor operating conditions such as low light applications.

Thermal signature identification allows one to capture the thermal transient profile and use that

profile as location based markers. Useful applications in thermal signature identification includes

material property analysis, diagnostics level comparisons in different systems, and potentially

navigation related purposes.

Automated Rapid Thermal Imaging Systems Technology Page 217
Automated Rapid Thermal Imaging Systems Technology Page 217



Chapter 6: Uncertainty Analysis

6.0 Introduction

We have developed and presented the ARTIST system in the first five Chapters of this thesis

covering the three modules: hardware, 3D radiometry, and image processing. In this Chapter, I will

discuss how each module contributes to the total uncertainty in the system. For each, we will

develop a system model, perform sensitivity analysis, and develop design insights to reduce error.

By understanding how uncertainty affects system performance for the individual components, we

can determine where to focus on risk mitigation efforts.

6.1 Uncertainties in the ARTIST

ARTIST is designed as a multi-component engineering system meant for use in a large scale urban

environment. Within the many components, numerous potential sources of uncertainty can exist.

In ARTIST system, I defined three principle areas of uncertainty which can affect system

performance and contribute to overall uncertainty:

1. 3D Radiometry: Scene Uncertainty in 3D

a. Emissivity Variation

i. Material variation: E - 0.7 - 1.0 for common building materials

ii. Angle Dependent

b. Background Radiation & Reflection Effects from Nearby Objects

2. Hardware: Sensor Measurement Uncertainty - LWIR

a. Noise limits to sensor performance

b. Calibration based uncertainty in current IR cameras

3. Image Processing: Motion Based Uncertainty

a. Limits to steady vehicle motion based on optical flow

b. Vibration induced uncertainty in the imaging systems
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Scene uncertainty in 3D refers to the uncertainty involved in the multi-step process of

reconstructing a solid wireframe model of the scene based on camera motion and image

displacement, and the resulting dependency of that information on inferring accurate temperatures.

Here, the system is highly dependent on the performance of the 3D reconstruction method and

effects of background radiation and reflections. From our discussions, we know there is variations

in emissivity values for different materials. In my research, most common building materials have

emissivity values between E = 0.7 to 1.0. We also know there is an angle dependency for emissivity

which can be quantified. Thus, the effects of emissivity uncertainty can be quantified. Scene

uncertainty is also affected by background temperature and reflections from nearby objects. This

will be discussed in detail in the following sections.

Sensor uncertainty in the hardware refers to the potential measurement errors that can arise from

sampling and interpreting the measured radiance from the infrared camera system. Here, sensor

noise and calibration errors can lead to uncertainty when inferring temperature. From references

and camera spec sheets, we see that most cameras have a plus or minus 50 mK or better for most

standard long wave camera.

For motion based uncertainty we have motion uncertainty which is related to two types of vehicle

motion. First is steady state vehicle motion and second is vibration induced motion due to bumps

and random excitation on the road. For steady state motion, I analyzed the limits of steady motion

based on the limits of the optical flow algorithm to determine pixel displacement based on pixel

velocities. By placing limits on velocity of pixel for stable optical flow operation, I am able to

determine reasonable speed limits for the vehicle to be approximately 1. At distances of 10 m away

from the vehicle, we can drive at up to 1.7 m/s or 4 miles per hour. For vehicle induced vibrations,

we have observed stable operation of the system on the road for most bumps and conditions at

speeds of up to 10 miles per hour. Most vibrations are attenuated by the vehicle's damping system.

In the following sections, I will discuss and present models for each of these three areas of

uncertainties, show how the uncertainty will introduce errors in system performance, and present

methods and ideas to help mitigate errors.
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6.1.1 Defining Measurement Uncertainty

In a measurement environment, a sampling of the measured values helps us understand the

dispersion of values - known as a distribution. Two of the most common measures of a distribution

is the mean and standard deviation. The mean, M, is defined as:

N

i=1

Where N is the total number of measurements, Xi is the value of measured component. The mean

is used as a measured estimate of the center of the distribution. The standard deviation, s, is

calculated according to the following:

Z (X, - M) 2
S N (109)

Where the standard deviation, s, measure the dispersion about the mean and direction proportion to

the width of the distribution. Mean and standard deviation are general parameters used to quantify

uncertainty in measurements [61, 62].

6.1.2 Total Uncertainty Approximation

For multiple independent variables influencing uncertainty, the combined uncertainty distribution

must reflect the combination of the individual distributions. The combined distribution, the total

variance, is the sum of the sum of the individual variances [61, 62]:

stotal = S1 + s + -- + s (110)

Where stotal is the total standard deviation, si, ... , Sk is the standard deviation from each

independent contributing variable. A similar approximation approach, called a quadrature, to

combining uncertainty can be represented as the following:
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u2tztai = U2 + U2 + U2 + -.. + U 2
(111)

Where Uto0tal is the total uncertainty in the system.

6.2 Scene Uncertainty - 3D

In modeling the 3D environment presented in Chapter 4, ARTIST has the ability to account for the

effects of directional emissivity variation as a function of the viewing angle and also consider the

effects of background radiation.

To recap from the introduction of this Chapter, scene uncertainty has the following components:

1. Emissivity Variation

i. Material variation: E = 0.7 - 1.0 for common building materials

ii. Angle Dependent - Limited to the performance limits of Optical Flow

Algorithms

2. Background Radiation & Reflection Effects from Nearby Objects

6.2.1 Emissivity Uncertainty for Common Building Materials

I propose an approach for how material variations affect emissivity measurements. According to

Saunders [34] and Minkina [35], with access to detailed information about a material, emissivity can

usually be estimated to within ±0.05. For any given material, the emissivity depends on the nature

of the surface, the wavelength of the thermal sensor, the viewing angle to the surface, and on the

temperature of the surface. With no apriori knowledge of an environment, estimating remote

surface temperature can be challenging. Next, I show how I estimate material-based uncertainty in

emissivity for building materials.

As we are most interested in scanning of an urban environment, we should consider a set of building

materials presented in Appendix A (Normalized Emissivity Values for Common Building Materials).

Of this subset of building materials, we have metal and non-metal materials. As explained in

Chapter 4, metal materials on the surface of buildings do not constitute as good building material

because of the potential thermal flaws it would cause in energy efficiency. Therefore, we will make
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the general assumption of focusing on non-metal materials, which typically exhibit values of

emissivity s > 0.70. In this range, common materials make over 80% of the possible types of

materials on the surface of building. Of the 126 building materials listed in Appendix A (Table of

Normalized Emissivity Values), 105 of the materials have emissivity values > 0.70. Taking this

specific subgroup of materials (E > 0.70), we find the mean emissivity is 0.901 with a standard

deviation of 0.067. We base the remainder of the discussion on emissivity uncertainty using this set

of non-metallic materials. From Figure 14, we see the histogram of emissivity values is clustered at

E ~ 0.90.

Without a-priori knowledge of building materials, our average value of emissivity is 0.901 with a

standard deviation of 0.067 and represent an element of uncertainty in the system, defined as Uemat

, the uncertainty related to estimating the accurate emissivity for common building materials.

The second element of uncertainty comes from our estimate of the normal angle of the object,

which is propagated through angular error estimates based on optical flow reconstruction. In this

case, we need to consider the additional uncertainty related to estimating the remote surface's angle

with respect to the camera. This analysis was performed in the last section on 3D modeling

uncertainty. We will integrate the results of that analysis to determine the combined effects.
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Figure 118: Histogram of Normalized Emissivity Values for common building materials

6.2.2 Angle Dependency and Angular Errors in Optical Flow Techniques

In this section, we will discuss the angular dependency of the ARTIST system. In Chapter 4 on 3D

Radiometry, I used an optical-flow algorithm method based on Farneback [85] to generate a 3D

model of the environment based on the following steps:

1. Generate optical flow diagram of the images of a scene based on the lateral displacement

between frames.

2. Use optical flow diagram to generate a depth map by integrating navigational information

from the vehicle blackbox system.

3. Use depth map to create a wireframe of the 3D surfaces. The wireframe model can used to

provide distance and viewing angle information of a target object's surface, with respect to

the camera.

Although this method was observed to perform satisfactorily in ARTIST, the absolute performance

of the method was not fully characterized and tested against a reference to analyze for errors. Other

models are presented by Micusik, B. [121], L Dreschler [55], D Anguelov, C Dulong, D Filip, C

Auoae Rapi Thermal......... --maging System Techolog.P...22
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Frueh [122], and others. ARTIST system allows for plug and play of many of these optical flow

techniques. The polynomial approach that I have currently deployed offers a good performance as

reported in the paper by Farneback[85].

In ARTIST, the 3D reconstruction is based on an optical flow method to create the depth map.

Next, we will focus on modeling the errors associated with creation of the optical flow depth map

proces. In this analysis, we will follow Fleet and Jepson 1990 [83] convention for the angular

measure of error for optical flow methods, where they describe angular error as:

4)E = arccos(0c ' ve) (112)

Where *E is the angular error,v = (u, v) is the velocity in displace per time unit in units of

pixel/frame, ic is the correct velocity vectors in 3D, 'eis the estimated velocity vector in 3D.

According to Fleet (1992) the directional errors at small speeds do not have as large an angular error

compared to directional errors at higher speeds. The error measure for component velocities is the

angle between the measured component velocity and actual component velocity such that:

)E= arccos(' -' in) ( 113)

where O = (n, -s), vn is the normal velocity, and vc is the 2-D velocity. According to

Barron, Fleet, and Beauchemin [1994] [86], relative errors of 10% correspond to angular errors of

approximately 2.5* at pixel velocities near 1 pixel/frame.

6.2.2.1 Analysis of Different Optical Flow Models

The ARTIST system can use any optical flow algorithm and hence, the 3D model generation and

associated errors are dependent on the choice of algorithm. We summarize below a comparison of

various optical flow methods in the literature. Although there are multiple ways to describe optical

flow based errors, I will focus on a study by Barron, Fleet, and Beauchemin [1994] [86] which

simulated a number of different optical flow methods including those of Horn and Schunck [75],

Lucas and Kanade [76], Uras [77], Nagel [123], Anandan [79], Singh [80], Heeger [81], Waxman [82],

and Fleet and Jepson [83], which is described in detail in the published paper. In the paper, Barron,
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Fleet, and Beauchemin [1994] [86] conducted simulated studies on a number of datasets including

the Yosemite Sequence, SRI Sequence, NASA Sequence, Rotating Rubik Cube, and the Hamburg

Taxi Sequence. Of these different datasets, the simulation dataset most relevant and similar to our

analysis is the Yosemite Sequence (Synthetic sequence with ground truth)9 . The Yosemite Sequence

is the most challenging dataset in the group where a range of velocities (between 2-5 pixels/frame)

and occluding edges between the mountains and horizon creates a challenging environment and

produces poor velocity measurements in optical flow techniques. We will look at the results obtains

by Barron, Fleet, and Beauchemin [1994] [86] and corresponding projected optical flow error

estimate to determine an error budget for our own optical flow error equivalent in ARTIST.

By analyzing the Barron, Fleet, and Beauchemin E1994] [86] results, we hope to use the insights

provided by the paper to:

1. Compare the performance of different optical flow algorithms.

2. Compare the performance of those algorithms through a range of test sequences, and find

the test sequence most similar to the type of situation ARTIST is more likely to encounter.

In our case, we think the Yosemite Sequence is most similar.

3. Use the results to infer potential performance limits on ARTIST if ARTIST used existing

off-the-shelf optical flow algorithms in a plug-n-play manner.

The Barron, Fleet, and Beauchemin [1994] [86] paper is a very well cited and insightful publication

regarding performance limits of well-known optical flow algorithms. Although the paper is a little

dated, the optical flow methods presented, particularly the Lucas and Kanade [76], are well known

and commonly used in many existing applications.

9 http://www.cs.brown.edu/~black/images.htmI
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Figure 119: (Left) Yosemite Sequence Image (Right) Optical Flow from Yosemite Sequence Image with velocities as high
as 2-5 pixel/frame. Barron, Fleet, and Beauchemin [1994] [83] (With permission from Publisher)

The results of the Barron, Fleet, and Beauchenin [1994] [86] simulation experiments shows the

challenges associated with estimating the normal surface for 3D environments using optical flow

algorithms for all the techniques presented. This is shown in Table 6(with permission from

Publisher). Although other datasets showed significantly lower angular error results, the challenges

presented from the Yosemite Sequence dataset helps us develop an upper bound error estimate for

the ARTIST system in understanding angular errors based on optical flow based 3d reconstruction.

The angular error, OyE, in the Yosemite Sequence were significantly higher than the SRI Sequence,

NASA Sequence, Rotating Rubik Cube, and the Hamburg Taxi Sequence in some cases by over an

order of magnitude both for the average angular error and standard deviation. Even within the

Yosemite Sequence dataset, the performance range for angular error can be significant, ranging from

the best performing method, based on the Lucas and Kanade (A2 > 1.0, where A2 is a parameter)

with 3.220 average error, 8.92* standard deviation to the worst performing method based on the

Horn and Schunck (original) with an average error of 31.69*, standard deviation 31.18*.
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Technique Average Error Standard Deviation Density

Horn and Schunck (original) 31.69* 31.180 100%

Horn and Schunck (original) ||vI 1 5.0 25.330 28.510 59.6%
Horn and Schunck (modified) 9.780 16.190 100%
Horn and Schunck (modified) 1 VI| 2 5.0 5.59* 11.520 32.9%
Lucas and Kanade (X2 2 1.0) 4.28* 11.410 35.1%
Lucas and Kanade (02 a 5.0) 3.22* 8.92* 8.7%
Uras et al. (unthresholded) 8.94* 15.61* 100%

Uras et al. (det (H) 2 1.0) 7.550 19.64* 14.7%

Nagel 10.220 16.510 100%

Nagel 11V1112 a 5.0 6.060 12.020 32.9%
Anandan 13.36* 15.64* 100%

Singh (step 1, n = 2, w = 2) 15.28* 19.610 100%

Singh (step 1, n = 2, w = 2, X1 s 6.5) 12.010 21.430 11.3%

Singh (step 2, n = 2, w = 2) 10.440 13.940 100%

Singh (step 2, n = 2, w = 2, X, s 0.1) 10.03* 13.13* 97.7%

Heeger (combined) 15.93* 23.16* 44.8%

Heeger (level 0) 22.820 35.280 64.2%

Heeger (level 1) 9.87* 14.74 * 15.2%

Heeger (level 2) 12.93 15.36* 2.4%

Waxman et al. of = 2.0 20.05* 23.230 7.4%

Fleet and Jepson (7 = 1.25) 5.28 * 14.340 30.6%

Fleet and Jepson (r = 2.5) 4.63* 13.420 34.1%

Table 6: Yosemite Sequence angular error simulation results for different well-known optical flow techniques from the

Barron, Fleet, and Beauchemin (1994) [861 (with permissions from Publisher)

Dataset Best

Sinusoidal Fleet & Jepson (mean=0.03, stdev=0.01)

Square2 Fleet & Jepson (mean=0.07, stdev=0.02)

Translating Tree Fleet & Jepson (mean=0.23, stdev=0.19)

Diverging Tree Fleet & Jepson (mean=0.73,stdev=0.46)

Lucas and Kanade
Yosemite (mean=3.22,stdev=8.92)

Worst

Singh (mean=64.26, stdev=26.14)

Horn and Schunck (mean=47.21,
stdev= 14.60)

Horn and Schunck (mean=38.27,
stdev=27.67)

Singh (nean=17.66, stdev=14.25)

Horn and Schunck
(mean=31.69,stdev=31.18)

Table 7: Summary of angular error simulation results for different datasets from Barron, Fleet, and Beauchemin (1994) [86]
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6.2.2.2 Estimating Effects of Angular Error on Emissivity for 3D Radiometry

To create the 3D model in ARTIST we used a polynomial based optical flow method (detailed in

Chapter 4). This method was applied to drive-by imaging of the scene in the LWIR band. In

Chapter 4, 3D Radiometry, we explained angle dependency in radiance and the role of directional

emissivity. In Chapter 2, directional emissivity is uniform for non-metal surfaces up to 600 viewing

angle and drops for angles greater than 60*. For example, at angle 0 = 850, the mean normalized

emissivity (c) can drop significantly to 0.433 and have variations for Emin = 0.127 and a Emax
0ENs

0.706. We construct the uncertainty bars for 0 -850 and 0 -800 below.

0.2

01

~ =0.12
n

0 5 10 15 20
Viewing Angle (90* - 6)

E
-i

z

03 00

02 0
010

n 0 6 0 0 - - -- -- - -- - - -- -

25 30 35 0 5 10 15 20
Viewing Angle (900 - 0)

Figure 120: Emissivity Error Estimation for 0=850 (Left) and 0=800 (Right)

We will focus on the 600 - 900 viewing angle region where the directional emissivity has the greatest

variation. For this analysis, we will use our own experimental data presented in Chapter 4, which

presents normalized emissivity vs viewing angle for the reference material (Etape=0.95) shown in

Figure 92. We will use the implied angular error estimate in the Yosemite Sequence from Barron,

Fleet, and Beauchemin [1994] [86] as a proxy to develop the error in direction emissary estimate.

We will use the results from Barron, Fleet, and Beauchemin [1994] [86] to project the average error

to derive the following chart in the 600 - 900 region.
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6 actual (max) ~ 6 projected + OE

6 actual (mi) = projected - OE

40

35

30

0

to

C

25

20

15

10

5

0

r.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Emissivity

(114)

(115)

0.9 1

Figure 121: Projected error based on the Lucas and Kanade algorithm for normalized emissivity in 3D radiometry based on

the reference material (Etape=0. 9 5). Error bars indicate the angular error at each viewing angle.
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Table 8: Projected Angular Error for normalized emissivity based on the Lucas and Kanade error projection

(*Emean=3.22,stdev=8.92) based on the Yosemite Sequence

6.2.2.3 Summary of Angular Error Effects on Emissivity

The ARTIST system is capable of utilizing any of the well-known optical flow techniques and one

must be careful to understand their particular performance limits and how they affect the 3D

radiometry computations. By comparing alternative optical flow methodologies on a challenging

dataset like the Yosemite Sequence, we are able to use the projected angular errors presented by

Barron, Fleet, and Beauchemin [1994] [86] as a proxy to develop an upper bound error projection

for ARTIST. Looking closer at the results tested by Barron, Fleet, and Beauchemin (1994) [86],

there are two potential optical flow algorithms that show similar performance:

1. Lucas and Kanade (mean angular error = 3.22', stdev = 8.92*)

2. Fleet & Jepson (r - 2.5) (mean angular error PE = 4.63*, stdev = 13.42*)

The Lucas and Kanade [76] method was tested to have a lower mean angular error and standard

deviation than the Fleet and Jepson [83] method. Alternatively, we can consider the use of either of

these algorithms as a preferred optical flow methodology for ARTIST due to the similar

performance of both methods.
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Looking closer at the uncertainty analysis results from Table 8, we can see that the optical flow

algorithm's projected angular error effect is most prominent for 700 * 0 900. At 0 < 700, the net

effect on AE =( Emax - Emin) ranges between 0.04-0.237 in potential emissivity error based the

Lucas and Kanade optical flow algorithm. Also from Table 8, at angles between 600 *- 0 < 700, the

net effect on angular error AE is less than 0.10. At angles between 00 < 0 < 60*, the effects of

angular error has almost no net effect on AE. We show that the ARTIST system is robust to angular

errors in the range of 00 * 0 < 600, but is severely affected elsewhere. In our case, the ARTIST

system's optical flow further compounds the uncertainty on directional emissivity. Variations in

emissivity are directly related to our ability to estimate temperature. Thus, AE is directly related to

Test which is summarized as follows regarding angular uncertainty:

0 Range AE

70* - 0 5 900 0.237

600 0 < 700 0.100

0* - 6 : 60* < 0.013

Table 9: Angular errors effect on emissivity

6.2.3 The Effects of Background Radiation and Reflections

In a 3D scene, the effects of background radiation and reflections from nearby objects should also

be included. From Chapter 4 on 3D Radiometry, we model the observed radiance from the object's

reference emitter surface as the following:

Sr(To) = Er(To) + (1 - cr)g(Tb) (116)

Observed Radiance Source Signal Background/Reflections

Where Sr(To) is the observed radiance, Er is the emissivity of the surface, S is total radiance of the

black body, To is the surface temperature of the object, Tbis the background temperature. The

observed radiance measured by the detector can be decomposed into a source signal due to the
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emittance by the source and component representing the reflections due to background radiation

and represented by the following:

1. Source Signal

2. Background/Reflections

These two components (1) Source Signal and (2) are highly dependent on the weighted emissivity

and reflection relationship established in Chapter 2:

E + r=1 (117)

Where e is the emissivity and r is the reflectivity of the signal. From the expression, what you can

expect to see that at low emissivity values, observed radiance due to reflections from background

radiation would dominate the signal source.

It is possible to evaluate for S using the Planckian form integral that was shown earlier in Chapter 2

when we integrate for wavelengths between 8000 nm and 14000 nm.

Mb (T, A) = C2
/s . 1eA-T _ 11 (118 )

(A2  ( 119 )

= R(A) -Mb (T, A)d 1

We can numerically solve for S to determine the solution and expected signal. From this, we can

evaluate the effects of background radiation component(1 - Er)S(Tb) which is the reflection from

the target to the detection. In Figure 122 plot the Planckian form integral to show blackbody

spectral radiance as a function of wavelength. In Figure 123, we evaluate the integral of the

Planckian form from 8000nm to 14000nm using Mathematica and plot the integral of Equation (

119) vs Temperature.
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Figure 122: Plackian form Monochromatic Irradiance for Temperature Range [270"K-400"K]
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Figure 123: Integral of the Planckian form from 8 Lm to 14 jim
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Simulation of Background Radiation Effects: Er = 0-9
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Figure 124: 3D Error Estimate of Background Radiation Effect for Er 0.9
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Table 10: Error Table of Estimate of Background Radiation Effect for Er = 0.9
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Simulation of Background Radiation Effects: er = 0.8
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Figure 125: 3D Error Estimate of Background Radiation Effect for Er = 0.8

Background Temperature [K]
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'Table 11: Error 'able of Estimate of Background Radiation Effect for Er = 0.8
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Simulation of Background Radiation Effects: Er = 0.2
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Figure 126: 3D Error Estimate of Background Radiation Effect for Er = 0.2

Background Temperature [K]

270 280 290 300 310 320 330 340 350 360 370 380 390 400
270 0% 15% 32% 51% 71% 94% 118% 145% 173% 203% 235% 269% 304% 342%
280 -13% 0% 14% 30% 47% 66% 87% 109% 133% 158% 185% 213% 243% 275%
290 -23% -12% 0% 13% 28% 44% 62% 80% 101% 122% 145% 169% 194% 221%
300 -31% -22% -11% 0% 13% 26% 41% 57% 75% 93% 113% 133% 155% 178%
310 -38% -30% -21% -11% 0% 12% 25% 39% 54% 69% 86% 104% 123% 143%
320 -43% -36% -28% -20% -10% 0% 11% 23% 36% 50% 65% 80% 97% 114%
a SS -48% -42% -35% -27% -19% -10% 0% 11% 22% 34% 47% 61% 75% 90%

E
3 340 -52% -46% -40% -33% -26% -18% -9% 0% 10% 21% 32% 44% 57% 70%
3 350 -55% -so% -45% -39% -32% -25% -17% -9% 0% 10% 20% 30% 42% 53%
360 -57% -53% -48% -43% -37% -31% -24% -16% -8% 0% 9% 19% 29% 39%
370 -60% -56% -52% -47% -42% -36% -30% -23% -16% -8% 0% 9% 18% 27%
380 -62% -58% -54% -50% -45% -40% -34% -28% -22% -15% -8% 0% 8% 17%
390 -63% -60% -57% -53% -48% -44% -39% -33% -27% -21% -14% -7% 0% 8%

400 -65% -62% -59% -55% -51% -47% -42% -37% -32% -26% -20% -14% -7% 0%

Table 12: Error Table of Estimate of Background Radiation Effect for Er = 0.2
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Simulation of Background Radiation Effects: er = 0.1

400%

350%

300%

250% 77

200%

150%

100%

So%

Source Temperature [K]

- 320
-310

300
290

280

270

400

3 a70
350

340
330

Background Temperature [K]

Figure 127: 3D Error Estimate of Background Radiation Effect for Er = 0.1

Background Temperature [K)

270 280
270 0% 17%
280 -14% 0%
290 -26% -14%
300 -35% -25%
310 -42% -33%
320 -49% -41%
330 -54% -47%
340 -58% -52%
350 -62% -56%
360 -65% -60%
370 -67% -63%
380 -69% -65%
390 -71% -68%
400 -73% -70%

290
36%
16%
0%

-13%
-23%
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-58%
-61%
-64%
-66%

300
57%
34%
15%

0%
-12%
-22%
-31%
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-43%
-48%
-53%

-56%
-59%

-62%

310 320
80% 106%
5S3% 75%
32% 50%
14% 30%
0% 13%

-12% 0%
-21% -11%
-29% -20%
-36% -28%
-42% -35%
-47% -40%
-51% -45%
-55% -49%
-58% -53%

30
133%
98%
69%
46%
28%
13%

0%
-11%
-19%
-27%
-33%
-39%
-44%
-48%

340
163%
123%
90%
65%
44%

26%
12%
0%

-10%
-19%

-26%
-32%
-37%
-42%

350
195%
149%
113%
84%
60%
41%
25%
11%
0%

-10%
-18%

-25%
-31%
-36%

Table 13: Error Table of Estimate of Background Radiation Effect for Er = 0.1
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360
228%
178%
137%
105%
78%
56%
38%
23%
11%
0%

-9%
-17%
-24%
-30%

370
264%

208%
163%
127%

97%
73%
53%
56%
22%
10%
0%

-9%

-16%
-23%

380
302%
240%
190%
150%
117%

90%
68%
50%
34%
21%
10%
0%

-8%
-16%

390
342%
274%
219%
174%
138%
109%

84%
64%
47%
32%
20%
9%
0%

-8%

400
384%

S09%
249%

200%
160%
128%
101%

79%

60%
44%

S0%
19%
9%

0%
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Figure 124 through Figure 127 shows a simulation of the measurement error due to background

radiation for varying emissivity values of Er = 0.9, 0.8, 0.2, 0.1. We vary the source vs mean

background temperature between 270K and 400K we plot the error on the measured signal of the

LWIR camera. Negative error denotes that the signal will be underestimated and positive error

denotes the signal will be overestimated by the percentage amounts. In the horizontal axes, the

source temperature variation is represented on the left and background temperature on the right.

The insight(s) from simulating the effects of background/reflective radiation is the following:

1. If the source and background temperature are equivalent, the error is very low and variation

in emissivity has minimal effect in temperature estimate.

2. If the source temperature is higher than the background temperature, the weighted effect of

reflectance with a lower background temperature component will cause the observed

radiance to underestimate the actual temperature. The greater the temperature difference,

the greater the effect of background temperature in causing this underestimate.

3. If the background temperature is higher than the source temperature, the weighted effect of

reflectance with a higher background temperature component will cause the observed

radiance to overestimate the actual temperature. Here, the influence from the background is

much greater as shown by the steep slope on the right in Figure 124 to Figure 127. An

example where this effect prevalent is LWIR imaging during the day, where solar radiation

dominates the background radiation. Such an example is indicated in Figure 128.

4. When considering the effects of directional emissivity, one should consider the resulting

background/reflective component of (1 - Er), which can dominate the signal if Er values are

low. In the case of non-metal materials, at oblique viewing angles of 0 > 600, the effect of

directional emissivity can drop rather significantly, especially as viewing angles gets closer to

90*. In those cases, we expect the (1 - Er)'background/reflection's term to become a critical

factor in determining the observed signal at the detector.

Here, we show that sources of uncertainty due to background radiation is unavoidable, but that the

error can be quantifiable if we have an idea of the background radiation environment.
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Figure 128: The effect of solar radiation and other background radiation sources such as street lamps.

6.2.4 Mitigating uncertainty associated with 3D modeling

In our analysis of scene uncertainty in ARTIST, we have identified three areas that will affect overall

performance when it comes to accurately inferring temperature in the scene:

1. Emissivity Variation of Different Building Materials

2. Performance Limits of Optical Flow Algorithms

3. Background Radiation & Reflection Effects from Nearby Objects

The emissivity variation of different building materials is an uncertainty that can be quantified and

shown. The performance limits of off-the-shelf optical flow algorithms were used to infer angular

error, which affects our ability to resolve accurate viewing angles from the wireframe models.
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Angular errors relate directly to directional emissivity in the ARTIST system. Finally, the effects of

background radiation and reflection effects from nearby objects were analyzed. To minimize errors

relating to scene uncertainty, it is critical to develop an accurate model of the 3D environment for

which we are inferring temperature. In doing so, we can improve ARTIST through the following:

1. Correct for emissivity variation in materials and viewing angle

2. Develop more accurate 3D model of the scene

3. Correct for background radiation & reflection effects from nearby objects

4. Increase sampling measurements with slower moton

In the past, I have developed sensing systems for autonomous UAVs. This includes my MIT

Masters Thesis in 1999, Collision Avoidance via Laser Range Finding [124], which was one the

earliest miniature LIDAR systems developed for UAVs. For ARTIST, I propose the following

methodologies to reduce scene uncertainty, thereby improving the performance of the 3D

Radiometry by reducing 3D modeling uncertainties:

1. Introduce 3D LIDAR scanning

2. Introduce GIS modeling from existing GIS database

3. Fusion of 3D Reconstruction techniques using aerial imagery from satellite data

4. Introduce light field technology for active 3D

5. Multi-spectral image fusion through Hyper Resolution, using alternative spatial, temporal,

and spectral resolution to generate accurate 3D modeling

6. Super Resolution using KSR to increase imaging resolution

7. Off-the-shelf systems for stereo vision or use existing commercial technologies for 3D

mapping.

These methods will help ARTIST create more accurate 3D modeling of the environment, reduce

angular errors, and thus, allow the directional correction factor to more accurately be applied to

correct for directional emissivity in non-Lambertian surfaces.
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6.3 Sensor Measurement Uncertainty for our Experiment and LWIR Imaging

In this section, we will describe the sensor measurement uncertainty for our experimental setup

based on the cup, as shown in Chapter 4: 3D Radiometry. By examining the uncertainties related to

the experimental setup, we infer a similar procedure for understanding how the uncertainties shown

here relate to a real drive-by imaging environment. For infrared cameras, most modern uncooled

microbolometer LWIR imagers have specifications of 50 mK or better [23, 24, 27, 59, 125].

Appendix B discusses noises induced limits. In IR thermography, the effects of measurement

uncertainty can be quantified using the Sakuma-Hattori equations. In this section, we will see how

measurement uncertainty is affected when combined with scene and material uncertainty.

We describe the signal error model as a function of the following variables:

Serror = fR A Esource> source' Tambient) (120)

Where A is the wavelength, Esource is the emissivity of the source, Tsource is the temperature of the

source, and Tambient is the ambient temperature surrounding the object. From this, we can develop

an uncertainty analysis of the signal based on the following form:

2 js 2\s 2 Os as 2 d
As2 = - - a2 + - - AE) + - ATsource) + -s aATambient) (121)

(al / 19E, / source (a ambient

Where As2 is the total variance of the system. Since A is the wavelength and is fixed for a detector,

we will remove its effects on our uncertainty analysis and focus instead on the remaining three

variables, Esource, source' ambient-

6.3.1 Total Uncertainty Components

We will now translate uncertainties in our experiment to the following form:

2 T a T 2 2_ T a~
UTs,total = . U ) + ( -_ U \2 + Tamb UTamb) (122)

(aE a Tm aab
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Where U ,,tota is the total temperature variance uncertainty of the system, UT,,m is the variance

uncertainty related to the radiance temperature (Tsource), U sE is the variance uncertainty related to

the emissivity (Esource), and U2,,7 is the variance uncertainty related to the effective background

temperature (Tambient)-

6.3.2 Temperature Measurement Uncertainty

To estimate the temperature using camera signal output (pixel intensity) from the camera, we sample

the center area of the experimental surface using the reference material (E=0.95) and at normal

incidence 0=0 as shown in Figure 129.

SampleMean Stdev T(Degree C)

1 193.7 1.4 81.9871

0 2 193.6 1.2 81.9488

3 193.7 1.1 81.9871

4 193.5 0.9 81.9105

5 193.4 0.9 81.8722

6 193.7 1.1 81.9871

193.9 1.3 820637

8 193.5 1.1 81.9105

9 193.3 1 81.8339

10 193.3 1 81.8339

Figure 129: Experimental setup for sampling Tm

By sampling 10 different frames and taking a sample measurement of the center area (as indicated

above), we determine that the mean of the readings is 193.56 and the standard deviation is 0.195.

Using the calibration settings we derived in Chapter 4, we apply the calibration T(*C) = 0.383x

+7.8*C to yield mean temperature 81.93*C and standard deviation 0.075*C. We assign an

approximate 9 5 % confidence internal as twice the value of the standard deviation: Ufruc=0.1 50 C.

Therefore, we yield the uncertainty in radiance temperature measurement to be:
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UT = (Uluc2)M = (0.152)% = 0.15*C (123)

6.3.3 Combined Material and Directional Emissivity Uncertainty

First, we will model the combined effects of these two elements of emissivity uncertainty:

U E (E,mat 2 + E,a2) (124)

Where UE is the total emissivity uncertainty, Ue,mat is the uncertainty in estimating an object's

normal emissivity without a priori knowledge, and UE,a is uncertainty in emissivity related to angular

dependencies. If we assign an approximate 95% confidence internal as twice the value of the

standard deviation for estimating emissivity our boundary continue for common building materials

for E > 0.70, we will yield the following:

UE= ((2 2)2 + U M2)= ((2 . 0.067)2 + Ua 2 )" = (0.13142 + Ua2)M (125)

Our emissivity uncertainty UE,mat 0.1314 for a majority of a common building materials. Next, we

will integrate the results from our 3D modeling uncertainty and its effect on emissivity as a function

of angle. In the last section, we discussed 3D modeling uncertainty, specifically, angular errors

based on optical flow 3D mapping and variations in directional emissivity. The result of analysis

showed the following:

0 Range AE

700 0 5 900 0.237

600 0 5 700 0.100

00 < 0 600 0.013

Table 14: Angular errors effect on emissivity

Where 0 is normal minus viewing angle, AE is expected normal emissivity uncertainty conditional on

0. Combining the effects of an unknown building material's normal emissivity with the uncertainty

created by angular effects on normal emissivity yields the following results:
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0 Range

700 0 5 900

600 < 0 < 700

00 S 0 60*

ye,mat

0.237

0.100

0.013

0.056

0.010

0.014568 0.266

0.014568 0.157

0.000169 0.014568 0.121

Table 15: Extended Ernissivity Uncertainty conditional on Directional Angle 0

Where 0 is normal minus viewing angle, AE is expected normal emissivity uncertainty conditional on

0, AE2 is the variance, Us,mat is the net variance of uncertainty related to estimating normal

emissivity for building materials, and U, is the net uncertainty of both of U,mat and U,,. The

results show that UE is conditional on the directional angle 0 as indicated in the table above.

6.3.4 Effective Background Temperature Uncertainty from Experiment

We sample 3 different contribution areas on the image to determine the contributing variance from

the background. This includes the left of the cup (the table), the right of the cup (the table), and the

top of the cup (the background wall behind the cup) to determine the contributions from the

surrounding background.

Left Stdev Right Stdev Top
19.4432
19.3283

19.29
19A049
19.3283

19.29
19.2517
19.4815
19.3666
19A049

0.1915
0.2681
0.2298
0.1915
0.2298
0.1915
0.19m5
0.3064
0.2298
0.2681

18.9453
18.9836
18.9453
18.9836
18.9453
18.8304
18.9453
19.0985
18.9836
19.0219

0.6128
0.6128
0.6511
0.6894
0.6511
0.6894
0.6511
0A979
0.6511
0.6128

Stdev
17.1069

16.992
17.1069
17.1835
17.0303
16.8388
16.9154
16.992
16.992

16.9537

0.3447
0.383
0.383
0.383

0.3064
0.3064
0.2298
0.2681
0.2681
0.3064

Mean Stdev Mean Stdev Mean Stdev
19.35894 0.074003 18.96828 0.068036 17.01115 0.100929

Figure 130: Effective Background Temperature in three locations
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From the data, we fine the estimate the effective background temperature uncertainty to be the

following:

U 2 = Uiegt 2 + Uright 2 + Utop2  (126)

We assign an approximate 95% confidence interval as twice the value of the standard deviation of

each of the left, right, and top standard deviation values:

UT 2 = (0.074 - 2)2 + (0.0.68 - 2)2 + (0.101 -2)2

UTw = 0.143'C

Where the net effect of uncertainty on the background temperature UTw is 0.143*C

6.3.5 Total Measurement Uncertainty for Experiment

.The signal measured by the detector is given by the Planckian form integral below and is

approximated using the Saunders model we discussed earlier in this thesis, where A and B are fixed

camera calibration constants.

S(Tmeas) = ES(T) + (1 - E)S(Tamb) (127)

1 __E + (1-E)

C2  C2  C2  
(128)

eATmeas+B - 1 eAT+B - 1 eATamb+B - 1

The total uncertainty in the temperature measurement is given by:

2 T z2 ( T )2 aT 2

UTs,total = -U + ( Um + (am' UTamb (129)

Differentiate the signal equation implicitly:
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-1 C2 -C 2AaTm -E C2 -C 2AOT
.egATmeas+B.- AT+-

C2 1]2 eAeea+Bs (ATmeas + B) 2  C2 2eeAT+B ] (AT + B) 2  (130)
g ATmeas+B1i 

[eAT+B-1

__E _C _ _E 1 C2 C2 AaTamb
C2 ~ ~ ~ ( - + E) - 2 2-e ATamb +B .Aab )

eAT+B - 1 eATamb+B - 1 [eATamb+B . ]2 (Agamb + B) 2

Using this equation, one will be able to compute the sensitivity parameters T , and .
aTmeas &E OTamb

These sensitivity parameters will enable a user to develop parametric charts to plot temperature

uncertainty for variations in ambient temperature and emissivity. A and B are constants related to

the shape of the spectral responsivity function of the detector. Below, we show an illustrative

calculation of uncertainty when the measured signal is 350*K, source emissivity E = 0.8, and the

ambient temperature is 280*K. For a uniform responsivity function centered at A0, we compute:

A = 0 (1 - 6r 2 ) (131)

B = Cr 2  
(132)2

Where r - is the ratio of standard deviation to the central wavelength of the spectral responsivity

function. For a LWIR at 8-14 km, A ~ 9.3632 m, B ~ 178.25 jLmK. We solve for the source

temperature, using Equation (128 ), to be 363.09 K. We compute = 1.15628 , - = -15.795
aTmeas aE

K, and =-0.13039. We then use relation:
aTamb

UTstotal2 = -U2 + kdTm -UT) + ( Tamb UTamb)

to obtain total uncertainty. Previously we have shown UTm= 0.15*C, UTamb = 0.143*C, and

Uevaries according to angle according to Table 16.

With U2,E is conditional on the following:

Automated Rapid Thermal Imaging Systems Technology Page 246



0 Range Ur (5)

700 0 90* 0.266

600 _ 0 < 70* 0.157

0* 5 0 : 60* 0.121

Table 16: Conditional Uncertainty Contribution in enissivity

We compute the total uncertainty under two conditions, one where the viewing angle is less than 450

and the other at highly oblique viewing angles. U. in 0.121 and 0.266 corresponding to these two

scenarios. Plugging these values, we estimate total uncertainty to be 1.92*C and 4.21'C for the two

viewing angles scenarios.

What this means is that uncertainty in estimating the target object's true temperature is largely a

direct result of emissivity uncertainties. The greater the temperature of the object, the greater the

absolute effect on observed radiance which translate directly to temperature.

6.4 Motion Based Uncertainty

The ARTIST imaging system is vehicle-mounted and depends primarily on the vehicle motion to

gather the thermal imaging data from different fields of view relative to the target object. As a

result, we have to consider the effect of vehicle motion and disturbances on the efficacy of the

imaging system. In the literature, there are many examples of 'egomotion'-solving for the motion

trajectory of a camera from images of the scene [65, 68, 84]. The effect of motion induced

uncertainty on the ARTIST system can be better understood based on the concept of egomotion.

At the same time, the error budget estimates we develop in this section are specific to ARTIST and

are not commonly done in typical egomotion analysis of unexplored scenes.

The effect of vehicle motion on the ARTIST system can be analyzed in two main categories:

3. Steady vehicle motion and its effect on the optical flow algorithm and on motion blur

4. Vibration induced uncertainty on the imaging system overall.
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In both cases for motion, the relative changes of scene motion will cause changes in the optical

scenery. These changes are what the optical flow algorithms use to help estimate motion flow

information. By estimating the displacement of pixels between two scenes, the optical flow motion

algorithms are used to characterize velocity vectors, which are then used to infer depth of the scene.

In an earlier section in Chapter 6 regarding scene uncertainty for 3d modeling, we summarized a

review article [86] regarding optical flow performance through a synthetic testing environment. In

many these image datasets including the Yosemite Sequence, the maximum pixel displace/frame or

pixel velocity ranges anywhere from 3-5 pixel/frame.

6.4.1 Limits of Steady Vehicle Motion

In this section, I show how vehicle motion causes pixel displacement and how that may affect our

ability to estimate motion.

First, we will model vehicle motion based the forward motion of the vehicle, lateral to the scene that

the camera is pointed at. We will assume that vehicle motion is steady and develop a model that

translates the vehicle motion into intra-frame pixel displacement.
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Camera Displacement Image Pixel Displacement

D Total Pixel Width of Image

Vehicle Velocity (m/s) Imaging Velocity
(pixel/frame)

Total FOV = 40 Degrees

Figure 131: Steady Lateral Vehicle Motion

In Figure 131, we show the camera moving forward with velocity v (m/s), pointed at a scene with

distance D (m), having a total horizontal field of view of 400, and half-width length W (in), and

projected pixel displacement Vpixei (pixel/frame). In our case, the infrared imaging camera has a

resolution of 640x480, with 640 pixels in the horizontal direction and a frame rate of 30 frames per

second. At an estimated distance D of 10 m to the target surface, which is a reasonable distance to

target building, W = 3.6m. The following relationships are formed:

Vmax
Camera Displacement = - ns (

FrameRate

Where camera displacement is the physical displacement of the camera between each frame

(in/frame), Vmax is the vehicle's speed (m/s), and frame rate is the camera's frame rate (frames/s).

W
Image Pixel Diplacement = V pixei - [Pixel W idth] 14
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W(m) = 2D -tan6 (

Where the image pixel displacement (m/frame) is the absolute displacement of the imaging frame

movement between frames, vpixeL (pixel/frame) is the pixel displacement velocity, W (m) is the

absolute width of the imaging frame, D (m) is the distance to the target surface, and 0 (degree) is

half of the total horizontal field of view (FOV) of the imaging camera, and pixel width (pixels) is the

number of pixels corresponding to the width W. In steady state, the camera displacement must

equal to the image pixel displacement to derive the following:

Vmax [ 2D -tan 0(1
FrameRate L(Pixel Width)] Vpixe (136)

Which can be rewritten as the following:

r2 -tan 0
Vmax = Frame Rate Pixel Width]- D -vpixel (137)

Max Vehicle Speed Camera System Parameters Pixel Velocity

Distance

Intuitively, the vehicle's speed combined with the camera system performance parameter, and

distance to the target object will determine the translated relative pixel velocity of the system. At a

distance D = 10m, W=3.6m, based on the DRS 640 Camera parameters, 0 = 400, Pixel Width = 640

Pixels, FrameRate = 30 frames/sec, we derive the following relationship for velocity vmax vs vpixel:

a ( 30 frame 7.2m Vpixe (138)vmax~~ = 30 s 640 Pixels] 1pxi( s

It can be seen from Equation ( 137) that we if we hold the vehicle velocity constant, with all else

being the same, and we adjust the distance of the vehicle from the scene, we can reduce pixel

velocity. The same relationship holds in reverse, the less the distance to the target, the greater the
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pixel velocity, hence, the lower the performance of the optical flow algorithm and the greater the

error.

D 5 m, 10 m, 20 m
60

a a aD=5m

Stable O tical Flo D
50 ----------- ------- ------ I-------- --------

JObserved Stability

40 ------. ------ ------------- ------ ------ --- ------- L- ----- ------

30 -------------------- -- - -- -- -- -- ------- --- - - --- - - -

D=0

0 1 2 3 4 5 6 7 8 9 10
Camera Veloci [m/s]

Figure 132: Camera velocity Vmax,, (m/s) vs pixel displacement Vi (px/fae

Figure 132 shows the projected pixel displacement velocity vs camera velocity of three different

distances (5m,10m,20m) from the camera system. The greater the velocity of the camera system, the

greater the pixel displacement velocity per frame. The grey area of the chart projects a stable region

of pixel displacement velocity using techniques such as Lucas and Kanade [76] optical flow method

presented in Section 6.2. However, using the polynomial optical flow method by Farneback [85]

applied to ARTIST, we have observed stable optical flow reconstruction for vehicle velocities up to

10 mph ~ 4.46 m/s. Therefore, although we have not characterized the performance of the

Farneback [85] method, our applied observations based on the data suggests stable operations of the

algorithm at speeds up to 10 mph.
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To increase the performance of the system and reduce angular errors, which are critical to 3D

radiometry, we must look closely at the relationship between vehicle velocity and pixel displacement

velocity. Stable optical flow methods presented by Barron, Fleet, and Beauchemin [1994] [86] using

various video sequence was shown to be stable at pixel displacement velocities of up to 5

pixels/frame, as seen in the Yosemite Sequence. If the same pixel displacement velocity limits were

placed on ARTIST, it would suggest that the maximum vehicle velocity is limited to 1.69 m/s which

is 3.8 mph to achieve the same performance.

To reduce uncertainty due to vehicle motion, we suggest the following::

1. Increasing the FrameRate of the imaging system

2. Increasing the spatial resolution of the imaging system by maximizing (0/pixel width)

relationship.

3. Decrease vehicle speed

4. Maximize distance to object

We seek to minimize the pixel displacement velocity by optimizing the above. For solution (2)

above, the use of increased resolution will add increased hardware cost and complexity in the image

processing algorithms. Therefore, although beneficial on a net basis, there are tradeoffs involved in

the solution. In implementing these suggestions, we help to minimize optical flow errors that will

lead to reduced angular errors and improved performance for 3D radiometry.

6.4.2 Vehicle Vibration Induced Uncertainty

As the vehicle with the roof-mounted ARTIST system is driven around, the uneven road surface,

e.g. bump, and traffic conditions, e.g. sudden braking may induce vibrations in the vehicle. The

ARTIST hardware is capable of being rigidly mounted to the roof of a typical sedan. The particular

vehicle used in our data collection was an Acura RDX. To the first order, the fixturing that holds

the camera hardware is assumed to have very high stiffness and hence, the ARTIST system and the

vehicle cabin is assumed to move as one unit.
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Dynamic analysis of typical automobiles, such as a car, would suggest that the vertical bounce, roll,

and pitch are the three main degrees of freedom for the vehicle cabin. We also learn from [63] and

other well published results that the natural frequencies of these three modes are on the order of - 1

Hz for most sedans.

The response of a vehicle to road disturbances is highly specific to the vehicle under study and the

particular road conditions that are encountered. When the vehicle carrying the roof-mounted

ARTIST system encounters a bump, the resulting displacement (linear and rotary) causes a

displacement of the features in the field of view, as recorded by the cameras. This necessitates

image registration and correction of images before performing the optical flow calculations for 3D

modeling. Extreme displacements may cause some features to go outside the field of view. The

multi-camera synthetic aperture used in ARTIST has a vertical FOV of 900 and a horizontal FOV of

30*.

With a natural frequency of ~1 Hz, the resulting natural frequency of the system will limit the

camera velocity and impact from the induced motion of the system. In this case, refer to Figure

122 relating the camera velocity to pixel displacement. By analyzing the response due to vibration

induced motion, we will see that the induced velocity in the vehicle is limited by the attenuation of

the damper system in the vehicle. The attenuation of vehicle motion limits the maximum induced

velocity in the system in a regime that where pixel displacement/frame is relatively low and can be

managed by the performance of the optical flow motion estimation.

6.4.3 Mitigation approaches of Motion Based Uncertainty

From a theoretical viewpoint, the uncertainty in the vertical positioning of the imaging system under

the effect of road conditions can be inferred from the 2-norm of the transfer function of the

automobile's suspension system assuming a typical road profile as a forcing function. From a

practical standpoint, once the ARTIST system is rigidly roof-mounted, the effects of vibrations are

dependent upon the vehicle's suspension design. One could improve the position accuracy of the

imaging systems by using vibration isolation gyroscopic mounts or active vibration isolation mounts.

Alternatively, the artist system could be appended with accelerometers so that the image frame are

time and location stamped, allow for post-processing and re-centering/registration correction.
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To improve imaging quality and increase system resolution, I propose applying the following:

1. Motion blur removal in image processing.

2. Hyper resolution - applying a hybrid camera system of higher frame rate to infer integration

motion of the slower camera and using projected motion kernel to remove blur.

3. Use of higher frame rate cameras and systems.

4. Isolate physical motion of imaging system from potential disturbance motions.

6.5 Conclusion

In this Chapter, we have discussed three principle areas of uncertainty in the ARTIST that will affect

the overall performance to the system:

1. 3D Radiometry: Scene Uncertainty in 3D

a. Emissivity Variation

b. Background Radiation & Reflection Effects from Nearby Objects

2. Hardware: Sensor Uncertainty - LWIR

3. Image Processing: Motion Based Uncertainty

We have presented the potential errors caused by each situation, quantified the impact of such errors

on the ARTIST system, and presented methods to help mitigate the risks. Based on Chapter 6, I

will list and rank the top tree sources of errors by greatest impact:

1. Emissivity Uncertainty

i. Unknown Building Materials

ii. Effects of Directional Emissivity

iii. Performance of Optical Flow Model

2. Background Radiation and Reflections

i. For Non-Metal

1. Lower Mean Background Temperature will cause underestimated

temperature inference from lower observed radiance.
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2. Higher Mean Background Temperature will cause an overestimated

temperature inference from higher observed radiance.

3. Motion Uncertainty

i. The maximum vehicle speed is determined by camera system parameters,

distance to the object, and inter-frame pixel velocity limits based on stable

optical flow model operation.
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Chapter 7: Conclusion

In Chapter 1 through 6 of this thesis, I have presented the problem, developed the ARTIST

framework, and showed how ARTIST can be used to pursue urban scale temperature mapping.

Over time, I hope the ARTIST system will evolve with new components, algorithms, and methods

but the fundamentals will remain the same. Much of the theory will be equally applicable for future

generations to apply.

7.1 Fundamental Contributions of Thesis

The fundamental contributions of this thesis relate to the Automated Rapid Thermal Imaging

Systems Technology (ARTIST) includes the following individual contributions:

e Multi-camera synthetic aperture imaging system

e 3D Radiometry - justification and implementation

e Non-radiometric infrared camera calibration techniques

e Image enhancement algorithms - justification and implementation covering:

o Hyper Resolution

o Kinetic Super Resolution

o Thermal Signature Identification

o Low-Light Signal-to-Noise Enhancement using KSR

In summary, in my thesis, I have tried to do for IR thermography what Google Streetview did for

visual imaging.

7.2 Future Works

I suggest the following areas as topics for future work:

1. Improving the ARTIST system from the current state:

a. Hardware - the integration of new technology; camera, storage, geo-location, light

field, LIDAR, and other performance enhancing components.
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b. 3D Radiometry

i. Measuring temperatures of surfaces at oblique angles

ii. Thermography of metallic surfaces (e.g. in industrial applications)

c. Image Processing - to continue the development of an urban scale hyper resolution

technique to maximize imaging resolution(s) by combining spatial, spectral, and

temporal resolution modalities.

2. Scalability challenges for urban scale deployment of ARTIST - the mass deployment of the

ARTIST system in a global scale to gather useful information for residential, commercial,

and industrial applications.

3. New research areas in IR thermography using Thermal Signature Identification - the

expansion of the thermal signature identification concept to be used as a diagnostics process,

with possible applications in technology, medical, and other scientific fields.

4. Use of ARTIST hardware as a characterization tool for 3D radiometry - the ARTIST

framework can be applied for other infrared (long-wave, mid-wave, short-wave) applications

including other remote sensing and interplanetary studies.

5. Application of ARTIST to further heat transfer studies related to energy loss analysis - for

energy loss analysis for residential, commercial, and industrial sectors, accurate temperature

information should be used in conjunction with conduction, convection, and radiation heat

transfer models to improve the reliability of those models.

7.3 Long Term Vision

My vision of the future is for ARTIST system to be developed into a globally scalable technology

that can be deployed on-demand for high throughput thermography applications in energy efficiency

analysis of residential, commercial, and industrial applications. Although ARTIST focuses on

enhancing the performance of the long wave infrared band, the information from the other

spectrum is also valuable and important. In the future, newer applications may include disaster

recovery, automated remote sensing, industrial monitoring, and in any application where thermal,

multi-spectral, high resolution imaging is useful. As an on-demand technology, I hope that this

system can put into practical use to further help solve scientific and practical needs for mankind.
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7.4 Gaps in this thesis

The following topics are not covered in this thesis and are potential opportunities for future

research:

1. Heat Transfer analysis of energy loss - the translation of an accurate temperature map into

R-values for building materials, identifying and quantifying air leakage energy loss on the

envelope, studies correlating problem identification into an assessment of energy saved, etc.

2. The performance of the polynomial based optical flow algorithm by Farneback [85] and our

specific implementation of the algorithm of drive-by imaging has not been fully tested for

performance. I refer the Farneback [85] paper for analyzing the performance of the

algorithm.

3. Multi-spectral hyper resolution has only been presented as a concept with a single-band

multi-camera example shown. It has not been extended in practice to multi-band super

resolution. This area of research will be continued at the MIT Field Intelligence Laboratory

with applications and publications to follow.

4. Motion based uncertainty has not been quantified or corroborated with experimentation. A

more precise model would account for motion induced blur and its corresponding

translational effects in the images. Once such a process is well understood, we can reverse

the process and enhance imaging performance through image deblurring processing. By

doing so, we can potentially increase the speed of the vehicle beyond the current limits.

The End
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Appendix

Appendix A: Normalized Emissivity Values of Common Building Materials

The following table has normal emissivity numbers for common materials.

Material

Aluminum: anodized

Aluminum: polished

Asbestos: board

Asbestos: fabric

Asbestos: paper

Asbestos: slate

Brass: highly polished

Brass: oxidized

Brick: common

Brick: common, red

Brick: facing, red

Brick: fireclay

Brick: masonry

Brick: red

Carbon: candle soot

Carbon: graphite, filed surface

Carbon: purified

Cement:

Charcoal: powder

Chipboard: untreated

Chromium: polished

Clay: fired

Concrete

Concrete: dry

Concrete: rough

Copper: polished

Copper: oxidized

Enamel: lacquer

Fabric: Hessian, green

Fabric: Hessian, uncolored

Fiberglass

Fiber board: porous, untreated

Normalized Emissivity Value

0.77

0.05

0.96

0.78

0.93

0.96
0.03

0.61

0.83

0.93

0.92

0.75

0.94

0.9

0.95

0.98

0.8

0.54

0.96

0.9

0.1

0.91

0.92

0.95

0.95

0.05

0.65

0.9

0.88

0.87

0.75
0.85
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Fiber board: hard, untreated

Filler: white

Firebrick

Formica

Galvanized Pipe

Glass
Glass: chemical ware (partly
transparent)

Glass: frosted

Glass: frosted

Glass: polished plate

Granite: natural surface

Graphite: powder

Gravel

Gypsum

Hardwood: across grain

Hardwood: along grain

Ice

Iron: heavily rusted

Lacquer: bakelite

Lacquer: dull black

Lampblack

Limestone: natural surface

Mortar

Mortar: dry

P.V.C.

Paint: 3M, black velvet coating

Paint: aluminum

Paint, oil: average of 16 colors

Paint: oil, black, flat

Paint: oil, black, gloss

Paint: oil, grey, flat

Paint: oil, grey, gloss

Paint: oil, various colors

Paint: plastic, black

Paint: plastic, white

Paper: black

Paper: black, dull

Paper: black, shiny

Paper: cardboard box

Paper: green

Automated Rapid Thermal Imaging Systems Technology

0.85

0.88

0.68

0.94

0.46

0.92

0.97

0.96

0.7

0.94

0.96

0.97

0.28

0.08

0.82

0.7

0.97

0.94

0.93

0.97

0.96

0.96

0.87

0.94

0.92

1

0.45

0.94

0.94

0.92

0.97

0.94

0.94

0.95

0.84

0.9

0.94

0.9

0.81

0.85
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Paper: red 0.76

Paper: white 0.68

Paper: white bond 0.93

Paper: yellow 0.72

Paper: tar 0.92

Pipes: glazed 0.83

Plaster 0.88

Plaster: rough coat 0.91

Plasterboard: untreated 0.9

Plastic: acrylic, clear 0.94

Plastic: black 0.95

Plastic: white 0.84

Plastic paper: red 0.94

Plastic paper: white 0.84

Plexiglas: Perpex 0.86

Plywood 0.9
Plywood: commercial, smooth finish,
dry 0.82

Plywood: untreated 0.83

Polypropylene 0.97

Porcelain: glazed 0.92

Quartz 0.93

Redwood: wrought, untreated 0.83

Redwood: unwrought, untreated 0.84

Rubber 0.95

Rubber: stopper, black 0.97

Sand 0.9

Skin, human 0.98

Snow 0.8

Soil: dry 0.92

Soil: frozen 0.93

Soil: saturated with water 0.95

Stainless Steel 0.59

Stainless Plate 0.34

Steel: galvanized 0.28

Steel: rolled freshly 0.24

Styrofoam: insulation 0.6

Tape: electrical, insulating, black 0.97

Tape: masking 0.92

Tile: floor, asbestos 0.94

Tile: glazed 0.94
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Tin: burnished 0.05
Tin: commercial tin-plated sheet iron 0.06
Varnish: flat 0.93
Wallpaper: slight pattern, light grey 0.85
Wallpaper: slight pattern, red 0.9
Water: 0.95
Water: distilled 0.95
Water: ice, smooth 0.96
Water: frost crystals 0.98
Water: snow 0.85
Wood: planed 0.9
Wood: paneling, light finish 0.87
Wood: spruce, polished, dry 0.86

Table 17: Emissivity values of common materials
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Appendix B: Noise Equivalent Temperature Difference - NETD

The NETD is the difference between the temperature of an observed object and the ambient

temperature which generates a signal level at the detector equal to the noise level. This is also

known as the temperature resolution of the system. Infrared camera manufacturers often use

NETD as an important camera specification for differentiating the quality of their camera to their

competitor's. The differences in value for an infrared camera can range from 10 mK to 100 mK, an

order of magnitude difference. NETD [K] is technically defined as the ratio of the RMS noise

voltage U, to the voltage increment AU, which is generated by the differences in temperature

between the measurement area of a black body Teb and the background temperature T,:

____Un Tob -- To
NETD AUs AUs (39)

To - T Un

According to Niklaus, Decharat, Jansson, and Stemme [29] the model for NETD for a conventional

uncooled infrared bolometer array using a column based readout design and integrated analog-to-

digital conversion can be expressed as:

NETD 2 = NETD + NETD20hfSOf + NETDehermai + N 2ETDOIC (140)

Where the NETDi is the 1/f-noise of the bolometer, the NETDohnson is the Johnson noise of the
7

bolometer, the NETDthermalis the thermal fluctuation noise of the bolometer, and the NETDROIC is

the readout integrated circuit (ROIC) related noise.

F2 G -V -1n -L 1 +;2
NETD = 4 -A- TCR -- A - E(112

h- F2 2G -TR - j - -)1 + . (142
NPET)D n - FP Ubias -TCR- - A - E1-A2= ~~(AT ) Gji-j;iL +2.(. (4
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[ 1 fef- T1 p
NETDthermai = 4 4 - V (143

A1P2# A -EA1-A2
(!AP A1-a2)

F 2 (RROC + Rbol) - G 1+ 2
NETDROIC 4 - 'R VROJC (144

ROI $ 1-0, 11-A22 RROIC - Ubias - TCR - A EA1-A2 - R I

V Q ROIC ,Rbol (14
VROIC Vamp (fr) 2 + RROIC - IROIC (fr 2  (145

am (r 12 + RROIC + Rboli ))

fr =X - fi (146

)

feff = minfr fbol1 (147
)

1
fbol 4- (148)

C
T (149)G

Where F is the F-number of the infrared optics, #11-1 2is the transmission of the infrared optics in

the wavelength interval from k, to k2, G is the total thermal conduction between the bolometer and

its surrounding, C is the thermal capacity of the bolometer pixel, TCR is the temperature coefficient

of resistance of the thermistor material, K is the 1/f noise constant of the thermistor material, V is

the volume of the thermistor material, Rbo, is the resistance of the bolometer thermistor, ft is the

bolometer fill factor, A is the bolometer pixel area, Ea1-A2 is the infrared absorption rate of the

bolometer membrane in the wavelength internal from k, to k2, f, is the shutter uniformity correction

frequency for the bolometer array, f, is the read-out frequency of the bolometer, x, is the amount of

bolometer pixels per column, f; is the image readout frequency, ff is the effective integration
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frequency of the bolometer, fub0 is the thermal integration frequency of the bolometer, t is the

thermal time constant of the bolometer pixel, Ubi., is the bolometer bias voltage, RROIC is the input

impedance of the ROIC, VROIC is the total noise voltage of the ROIC, Vp is the input reference

noise voltage of the ROIC, VQ is the input reference analog to digital quantization interval, IRoic is

the current noise from the ROIC input including the bolometer bias current source, (A) is
AT Al-a2

the temperature contrast in the wavelength interval from X, to X, T, is the bolometer membrane

temperature, w is the modulation frequency of the infrared signal (embedded in the electronics) from

the image scene, and k is the Boltzmann constant.

Absorber
Sensitive Layer hi

Contact 
RB

Membrane V

Substrate RL VRL

Figure 133: Schematic Cross section of a thin film bolometer (left) Bolometer circuit (right)
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