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ABSTRACT

The author sought out the opportunity to design and implement a system for pumping
oxygenated fluid and mixing it with saline, for the purpose of providing sufficient levels of
oxygen for patients undergoing forms of asphyxia. The machine is able to pump
oxygenated fluid by means of a low-density polyurethane bellows, which is powered by a
stepper motor. A peristaltic pump simultaneously pumps saline fluid in another branch of
the system. The two branches come together, the fluids are mixed, and bubbles are
removed before the fluid is ready to be injected into a patient. Solid modeling as well as
machine tools were used to create the physical structure, while LabView was used as the
program regulating the controls of the device.

The pump operates and can successfully mix both fluids. Flow rate can be controlled via
the LabView program, and variables such as force, displacement, and flow rate can be read
as outputs. The modular design of the pump allows it to be easily upgraded or altered.
Because of all these features, the pump is an excellent research tool for developing a
method of mixing and injecting viscous oxygenated fluid.
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Chapter

Introduction

1.1 Purpose

The author seeks to design and build a novel pumping device, specifically for viscous, non-
Newtonian fluids. This thesis discusses the pump as designed for a viscous, oxygenated
fluid (VOF) that, when injected properly into the bloodstream, raises the levels of oxygen of
the patient at a substantial rate. This injection can prevent death from a form of
asphyxiation, such as cardiac arrest. Additionally, this pumping device could be used not
only to characterize the VOF, but also other fluids with unknown or not well-understood

properties.

1.2 Motivation

According to the Heart Rhythm Foundation, 325,000 deaths occur each year as a direct
result of sudden cardiac arrest [1]. When an event like this occurs, patients who don’t die
as a direct result can experience serious damage to their organs. The body’s need for

oxygen is critical for survival.
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Dr. John Kheir from Children’s Hospital in Boston created a compressible fluid that can re-
oxygenate blood quickly in patients with asphyxia and cardiac arrest. The fluid itself is
functional and has been shown to greatly increase the oxygen content in rabbits. In spite of
these achievements, the delivery of the VOF into a human patient presents challenges.
Because the fluid is highly viscous as well as compressible, a conventional pump cannot be
used to deliver it into the blood stream. Existing medical pumps are expensive and can
only handle incompressible fluids at relatively low flow rates. A pump that addresses these
issues has the potential for being using in the medical field, particularly in emergency

situations.

1.3 Pump Overview

The novelty of the pump is in its ability to pump a fluid of unknown properties and control
the flow rate of the fluid as it is expelled from the system. The specific application of
interest calls for pumping a viscous, non-Newtonian fluid that is compressible. This
requirement calls for a feedback control loop that can regulate the fluid’s flow rate
throughout the pumping process. A load cell was chosen to measure force and to provide

this feedback.

Another question that arises when considering the pump is how to pump the fluid. Several
options were considered, and ultimately a positive displacement pump was chosen. The
prototype uses a bellows to pump fluid. The bellows, provided by Blow Molded Specialties,

is made of low-density polyethylene (LDPE), in order to retain its original shape after being
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squished. A thread lies on one end, so that it can be screwed and attached onto the rest of

the assembly. Below is a picture of the bellows.

Figure 1.1: Bellows in its expanded state.

Other elements of the system required to pump the fluid properly are saline and the means
of mixing it properly with the VOF. This was achieved by using a passive helical mixer that
unites the two branches of the system (saline and VOF) using a Y-junction. This type of
mixer was chosen because it requires no additional power to operate and thoroughly mixes
the fluid to be at the necessary concentration. This mixing is discussed further in section

2.1.3. A picture of the full mechanism with all components is shown in Figure 1.2.
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1.4 Prior Art

Due to the nature of the VOF, conventional pumps cannot regulate the flow rate of the fluid
very well. Prior to designing the device, existing solutions for pumping non-conventional

fluids were explored.

One pump of interest was the Belmont Rapid Infuser, made by the Belmont Corporation.
This pump is capable of pumping fluids at high flow rates, heating and cooling the fluid, and
also detecting the line pressure [2]. A key feature of this device that is of interest is a
bubble trap that removes macro-bubbles from the system before the fluid is injected into
the patient. This feature is of great importance for the VOF because of its highly gaseous,

oxygenated nature. Large bubbles need to be removed from the fluid before they are
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ultimately injected into the patient - otherwise the large bubbles in the bloodstream could
cause death. Although the Belmont Rapid Infuser has great features and is very useful in
some applications, it ultimately does not fulfill the role that is needed for pumping the VOF.
The device does not have a way to account for the compressible nature of the fluid, and also

causes cavitation.

Another device my team and I looked at was the Enhanced ACL Repair Gun, a previous
project in the 2.75 class at MIT. It consists of a small, handheld gun that mixes and heats a
fluid before injecting it for use [3]. The mixing mechanism within the device inspired the

use of a passive helical mixer in the pump design.
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Chapter

System Design

2.1 Design Requirements

Upon looking at the purpose for the project, its motivation, and existing devices related to

the pump, the design requirements can be addressed more thoroughly. There are several

components to the design. These include cost, flow rate, mixing, capacity, and medical

specific requirements. Table 2.1 summarizes the system design requirements.

Table 2.1: Summary of Design Requirements for 02 Pump

02 Pump Design Requirements

Cost Budget of $4000

Flow Rate VOF: 200mL/min, Saline: 50mL/min
Mixing Even distribution of saline in fluid
Capacity 1L of fluid injected into bloodstream

Medical-specific

Sterile, macro bubbles removed

17



2.1.1 Cost

The budget over the course of the semester was $4,000. This amount was designed to
cover all expenses related to the project, including: stock hardware, machining, other forms

of manufacturing, and software.

2.1.2 Flow Rate

In order to provide the patient enough oxygen to survive in the event of an emergency
situation, it was chosen to pump the fluid over a five-minute period, with a full capacity of
one liter. This translates to 250ml/minute, which is the flow rate needed to sustain the
body’s oxygen level for a period of time before emergency medical personnel arrive on the

scene.

The fluid needs to be mixed with saline in order for it to be injected at a concentration that
the body can handle. The higher the concentration of VOF, the more viscous the fluid is and
the more difficult it is to inject in the patient’s bloodstream. Injecting 50ml/min of saline

simultaneously with 250ml/minute of VOF allows for a reasonable concentration of 83.3%.

2.1.3 Mixing

If mixed at a proper concentration, the fluid should be fit to be put in the patient’s blood
stream. However, the distribution of the saline must be even throughout the VOF. This will
be achieved by using a passive, helical mixer in the device. When the two branches of fluid
come together, they are force to flow in and out of the helices, causing a fair amount of
turbulence. Below is a figure showing an unmixed combination of saline and the VOF as

well as an even mixture after being passed through the helices.
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Figure 2.1: (a) Both fluids unmixed and (b) both fluids after being passed through a
passive helical mixer.

2.1.4 Capacity
As mentioned, one liter of fluid is required for the pumping device. This capacity allows the
patient to receive enough oxygen in their bloodstream to sustain them during an

emergency situation until more medical specialists/equipment are available.

2.1.5 Medical-Specific Requirements
Because the patient is receiving a fluid that is injected directly into the body, the system of
injection (the pump) must, above all else, be sterile. This requires all tubing and

connection to be made out of disposable, clean material that can easily be replaced.

Also, in order for the device to be safe, macro bubbles must be removed from the fluid prior
to entering into the bloodstream. If this does not occur, the patient could very easily die.
Some form of a bubble trap, similar to that found on the Belmont Rapid Infuser, must be

placed within the system to prevent this from occurring.
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Chapter

Pumping System

3.1 Pump Design

Based on the functional requirements stated above, a design was developed for the pump
system. This includes the overall structure, as well as all the physical components required
for functionality. The pump was built for modularity, and also to allow the flow of both the

VOF and saline to be smooth such that they mix properly.

Below is the overall system diagram. The diagram’s purpose is to show the major
components and their spatial relation to each other. Note the relative positions of
electronics, valves, switches, and reservoirs (saline and bellows). Each part of the system

will be described in subsequent sections.
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Figure 3.1: Oz Pump System Diagram, Minus Structural Components
3.1.1 Structure
The basic structure is comprised a series of simple, aluminum extrusions called 80/20 [5].
This material was chosen as the framework for the pump because of its modularity.
Because this device was developed primary as a research tool, this feature adds to the
value of the product. Many hardware changes could be made immediately simply because
the connections between the pieces of the frame were relatively easy to disassemble and

reassemble. Below is a screenshot from a CAD model of the pump structure.
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Figure 3.2: CAD model of basic pump structure with 80/20.
In addition to the 80/20 pieces, stock plates of aluminum were used on different surfaces
to provide a place for other components to sit. The left portion of the structure is where
the peristaltic pump is placed, as well as the saline bag. On the right, the electronics lie at
the top above everything else. This decision was made in order to prevent any fluid that
might leak from coming close to touching any electrical components. Below that lies the

area in which the bellows sits, as well as the majority of the other mechanical components.

3.1.2 Bellows

As mentioned in Chapter 1, a bellows was chosen as the means of storing the fluid and then
pumping it into the rest of the system to be mixed. LDPE was chosen because of its
flexibility as a material. The bellow’s critical dimensions were determined based on its
required capacity, as well as based on the control over the flow rate. For example, if for a
set volume, the bellows were very large in diameter and very short in height, it would not

take much of a stroke for the stepper motor to expel the entire amount of fluid. Also, a
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wider base of the structure containing the bellows would be required. On the other hand, if
the bellows was very tall in height but small in diameter, the stroke of the stepper motor
would have to be larger, but the amount of control over how much fluid is displaced per
step increases. The relationship between the critical dimensions is shown in Figure 3.3,

with the region of the graph circled about where the bellows for the system lies.

Height vs Diameter for 1L Cylinder

10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0 —
2.0
1.0
0.0

Height (in.)

3.0 3.5 4.0 4.5 5.0
Diameter (in.)

Figure 3.3: Critical Dimensions Relationship for 1L Cylinder
Above, the graph simply shows the theoretical relationship between height and diameter -
the bellows is approximated as a cylinder. A bellows with a somewhat larger height than
diameter was chosen as a compromise between control of volume as it is expelled, and
vertical space within the structure. This method is sufficient for sizing the bellows for the

system, however when volume calculations come into play, a more accurate way to
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measure volume displaced from the bellows becomes necessary. This will be explored in

section 3.1.4.

3.1.3 Bellows Cap

In addition to making sure the bellows is properly sized, it is also crucial to determine how
to connect the bellows to the rest of the system in a way that preserves the flow of VOF
without leakage. The idea came about to create a custom cap for the bellows, which
interfaces with a ball valve on one side and the threaded part of the bellows on the other.
3D printing the part allowed for more customization than fabricating the part using other
methods. The critical features are: a groove for an O-ring, internal threads to mate with the
external threads of the bellows, and a hole to allow a ball valve to enter through the center
of the part. Figure 3.4 shows the initial CAD design, created using Solidworks software, as

well as the physical part.

() (b)

Figure 3.4: (a) Bellows Cap solid model (b) manufactured cap with O-ring
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Sizing the O-ring in relation to the groove was an important part of this part’s design. It
was necessary to calculate the intended compression of the O-ring, and then using this

information, to design the O-ring to compress a given amount within the groove of the part.

3.1.4 Volume Calculation

An important aspect of the device is its ability to calculate and regulate the flow of VOF
through force feedback. This is only possible if the volume of fluid expelled by the bellows
is known at any given instant. With this information, calculations within LabView can
happen instantaneously - a model describing the bellow’s behavior as it is compressed is

needed.

The bellows can be broken up into two spatial elements: two cylinders of constant
diameter, and a “rings” section where diameter oscillates between a minimum and
maximum value multiple times along the bellow’s length. Figure 3.4 gives a visual

representation of these two volumetric sections.

Figure 3.4: Two geometric sections comprise the entire bellows volume.
The volume of the two constant cylinders was calculated simply by multiplying the area of

the base circle of each by their heights. Referring back to Figure 1.3, the top and bottom

sections of the bellows remain unchanged as the bellows is compressed. Calculating the
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volume of the rings section is trickier. The profile of each ring can be considered to be a
triangle. As the bellows shrinks in size, this triangle becomes more acute, and its base
shrinks linearly from its maximum to zero (Although zero cannot be the actual minimum,
for the purpose of this analysis it is assumed to be in order to simplify calculations). The
two legs of the triangle follow the path of a chord whose center is the outermost vertex of
the profile. Figure 3.5 shows the parts of the triangular profile in detail, and Table 3.1

defines its elements.

Most
Compressed
Position

-

Most
Expanded
Position

Figure 3.5: Path of Bellows Triangular Profile
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Table 3.1: Bellows Profile Parameters (fully expanded state)

Parameter Length (mm) Description

Base of triangle, which corresponds to

B 11.8 the height of the bellows.  This
parameter decreases as the bellows is
compressed.

S 13.8 Side of triangle. Length of this
parameter is constant.

H 12.5 Height of triangle. This parameter

increases as the bellows is compressed.
Radius (not shown). This is the radius
r 45.0 of the whole bellows, i.e. from the left-
most point of H to the center of the
bellows in Fig. 3.6.

The volume of the revolution created by the profile, as well as the inner volume between
the axis of revolution and the left-most part of the profile can be calculated using
integration - more specifically the shell method. Equation 3.1 defines the shell method [6],

and Equation 3.2 defines the function f (x) in the context of the triangular profile.

Viings = 2n43r(f(x))dx 3.1
f(x)=—(%)x+Y 3.2

B and H are values outlined in Table 3.1, and they both vary as the bellows is compressed.
X is essentially r; it decreases in value as H increases. Y is the y-intercept of the line formed

by one leg of the triangle. It is equal to the slope of the line (-B/2H) multiplied by the
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maximum radius of the bellows. This value is the minimum radius (45mm) plus the initial

length of H (12.5mm), which gives 57.5mm.

With the knowledge that the paths of each leg of the triangle are circular, the height of the
triangular profile can be calculated at any level of compression (i.e. acuteness of the
triangle). This means that the shell method can be used for a finite number of states of
compression. A volume can be calculated for each of these states. However, this method
would take a great deal of time, especially with a large number of states. Instead, the
volumes of two states were calculated: one with a triangular profile representing the
bellows when fully expanded, and one with a profile representing the bellows when nearly
fully compressed (since complete compression is impossible if accounting for the thickness
of the LDPE material). Subtracting the volumes of these two states from each other, the
result is the amount of fluid displaced by one “ring”. The shell method calculations were
done using a Microsoft Excel spreadsheet, and they can be found in Appendix A. Equation
3.3 summarizes integration. Note that, for simplicity, the variable Y from Equation 3.2 has

been substituted by its definition in terms of the other variables.

Viing = 47Tf (_—x + (— * 60)) dx 3.3

Figure 1.3 shows that there are 10 rings that make up the bulk of the bellows’ volume, in
addition to the two cylindrical sections. The volume of VOF expelled by one ring was

calculated to be 23.942 mL, which means 239.42 mL were expelled by the “rings” section in
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total. To test the validity of this value, the bellows was filled to its full capacity with water
and then pumped throughout its entire stroke. The remaining fluid was then measured in a
graduated cylinder; this value was 259 mL. Thus, the percent error of the model is 7.56%.
The volume of the constant cylindrical sections was calculated to be ~921 mL. Adding this
value with the measured volume of the 10 rings, the result is the total capacity of the

bellows, ~1180 mL.

In order to simplify the model further for the purpose of programming, an effective area
was used for the calculation of the volume in the entire bellows, and then the percent error
was calculated for each of these effective areas. Percent error was calculated every 2 mm
the bellows was compressed, and it was found that the percent error varies through each
part of the stroke. Using another Excel worksheet, all of these errors were calculated and
averaged, to see which effective radius (and thus effective area) would yield, on average,
the lowest percent error from the model throughout its stroke. This value was 57.9 mm,

with an error of 1.038% from the model.

Below in Figure 3.6 is a graphical representation of the data from the model, and how it

compares to measured, real data. Table 3.2 shows the exact values.
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Figure 3.6: Measured and Predicted Volume Displaced of Bellows

Table 3.2: Bellows Volume - Predicted and Measured
Total Predicted

Displacement (mm) VLTI D BT Volume Displaced Fercentirror
(mL) (%)
(mL)

0 0 0 0
8 100 82.93 1.55
16 200 166.52 3.29
24 300 250.78 5.27
35 400 367.72 3.95
45 500 475.12 3.50
56 600 594.47 0.94
66 700 704.05 0.84
74 800 792.47 1.92
84 900 903.93 1.40

3.1.5 Gliding Plate Assembly

There are a few components that constrain the bellows properly and allow it to only be
unconstrained in the up and down direction. The primary mechanism that allows the

bellows to compress up and down within a vertical plane is a gliding plate. It sits above the
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bellows and interfaces with the load cell. Beneath the bellows is a loading brace, which
swings out toward the user. This piece is important because it allows the user to load the
bellows without bumping into other components and without compressing the bellows
before insertion into the machine. On the sides of the gliding plate are two elements: a long
sliding bracket on one side, and an outrigger on the other. These pieces each have a slot
that fits into a section in the 80/20 material, and allow the gliding plate to slide up and
down within the structure. An outrigger was used on one side instead of two long rails in
order to avoid over constraint - the outrigger is simply a small auxiliary support to avoid
the bellows from twisting during compression. The figure below shows a close up of the
assembly. Note the long rail on the left is about 1.6 times the radius of the gliding plate,
which helped to prevent jamming, via St. Venant’s principle.

Sliding
. Bracket

Linear
Screw Outrigger

| et /L

f Limit

Spacer 28 < 'Switch

Loading
Brace

Figure 3.7: Close Up of Glide Plate Assembly
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3.1.6 Peristaltic Pump

Instead of trying to invent a pump, it was decided to use pre-existing technology for
pumping saline, since it is a non-viscous, incompressible fluid. A peristaltic pump was also
chosen because it pumps within the desired flow rate range (120mL/min - 2.2L/min), and
the pumping action itself does not interfere with the fluid - it is a sanitary procedure. In
addition, doctors are familiar with this type of pump, so it is appealing to the primary user.

The pump chosen was a Thomas Scientific Mini Variable Flow Pump [7].

3.1.7 Tubing and Connections

One important part of the system is the tubing network. Each tube allows the fluid to travel
easily from one component to another. Clear PVC tubing was used, as well as simple push-
to-connect connectors to secure the tubing. A Wye connector was used to bring together
the two branches of the system (saline branch and VOF branch). A ball valve was used to
interface between the bellows cap and the rest of the system. Furthermore, a bubble trap
(salvaged from a Belmont Rapid Infuser) and a passive helical mixer were place in the

system after the Wye connector.
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Figure 3.8: Close Up of Two Branches of System and Mixer

3.2 System Fluid Model

In determining the design parameters for the system, it is necessary to look at the
underlying physics in order to make informed decisions. At its essence, the pump needs to
deliver fluid at a specified flow rate and mix it uniformly. Through looking at the principles

that define fluid flow the power required for the device can be determined.

3.2.1 Pressure and Resistance

The transfer of power in the machine goes from electrical, in the form of a power supply, to
mechanical, in the form of a lead screw drive and a bellows. Because the bellows is

compressed in order to expel fluid, pressure builds up within the space. Additional
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components are required, however, in order to mix the fluid, filter out bubbles, and deliver
it to the patient. This requires tubing as a passage for the fluid to move through, as well as

a bubble trap, fittings, and attachments.

Each of these components causes friction in the path of the fluid, from the bellows to the
end of the system. This friction leads to pressure build-up, so the stepper motor must have
enough power to sustain constant compression of the bellows. Each tube is idealized as a
long, cylindrical pipe. Equation 3.3 is the Hagen-Poiseuille equation, which defines the

pressure drop in cylindrical pipes.

8uLQ
r4

AP = 3.3

The viscosity, u, of the VOF was estimated to be 1000 times more viscous than water.
Length L was given by the geometric constraints of the device, flow rate Q was pre-
determined as per the functional requirements, and the radius of the tube r was given from
dimensions of available medical-grade tubing. From the equation it is clear that the radius
is the most critical parameter in affecting the tube pressure, so it was chosen to be
conservatively large (1/4” inner diameter) in order to minimize this. From these
calculations, it was determined that there would be a pressure drop of 2.02 psi in the
system, which, after multiplying by the cross sectional area, corresponds to 33 pounds of

force.
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With this knowledge, a Haydon-Kerk stepper motor was chosen that could sustain 33
pounds of force without a problem. Appendix A contains motor specifications provided
from the manufacturer, showing that it can provide up to 60 steady pounds of force and a

maximum of 100 pounds.
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Chapter

Programming

4.1 LabView Program

Firstly, thank you to Bruno Piazzarolo for taking the lead on this part of the project and
being the primary developer of the program. During the initial development of the device,
all logic and controls were done in Python, and in addition an Arduino was used to relay
information from the limit switches on the device. This proved to be inefficient, as the code
was not intuitive to understand and the interface was somewhat simplistic. In order to
improve on this, a program in LabView was developed. This transition allowed for a high
level of control with a modular and interactive interface. Instead of an Arduino, and Data
Acquisition System (DAQ) was used to interface with the amplifier, load cell, and limit
switches. The setup of how components connect to each other is shown above in Figure

3.1.
The program interface contains two modules: one for the Initialize through Calibrate state,
and one for the Pumping (Motor Control state). All the user has to do is click on one tab

and new sets of options appear. Graphs for error, velocity, and calibration data (force vs.
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distance) are all contained within the interface. The figure below shows two screenshots -

one of for each tab within the front end of the program.

Init State Information

Motor Position  Top Limit

M Tnformstion

position
Attached?

A
g0
9 v

Serial Number Returr
0

Serial Number (-1)

"-
A
v

‘YNATIONAL
’ INSTRUMENTS

LabVIEW "Student Edi
Figure 4.1: Initialize/Calibrate Tab in LabView

Serial Number (1)
vl

Figure 4.2: Pump Tab in LabView
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4.2 Program States

Within the program, there are a set number of states that are executed consecutively in

order to make the program run. Below is a description of what each state does.

* Initialize: checks connections and makes sure the stepper motor is ready to be
operated.

* Bellows Top: the stepper motor moves downward until a non-zero force is
detected. This indicates the top of the bellows.

* Manual Jog: allows the user to manually control the position so that all the air
from the bellows is purged before calibration.

¢ (Calibration: This stage performs a test compression of the fluid and determines
its compressibility curve (force vs. distance), as this may vary from batch to
batch. The fluid is squished to 90% of its original volume, and then released in
preparation for pumping.

* DMotor Control: This stage dispenses fluid. Error is calculated via force
feedback, and the flow rate is adjusted accordingly. Proportional control is used
to increase the signal from the amplifier. See Figure 4.3 for a detailed diagram.

* End: cleans up the program and closes the operation of the stepper motor.
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Figure 4.3: Logic Diagram of Motor Control (Pumping) State
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Chapter

Experimentation

Once the pump was fabricated and assembled, its pumping ability was tested. A few tests
were done to understand the behavior of the machine, and to see how reliable and accurate

pumping can be performed.

5.1 Flow Rate

The first set of these tests looks at the flow rate achieved by the pump - both the bellows
pump and peristaltic. First, tests were done with water to establish a baseline of data for a
Newtonian, incompressible fluid. Later, tests were done with the VOF and with another

viscous fluid, corn syrup, to serve as an analogue.

5.1.1 Bellows Pump

The bellows pump was filled with water before testing began. After sealing it off with the
bellows cap and seal on top, it was placed underneath the stepper motor, and the stepper
motor was activated. Measurements were recorded for a period of three minutes, with the
volume of water expelled recorded at 20-second intervals. The water was pumped into
graduated cylinders in order to be measured accurately. By recording data in this way, it

was possible to calculate an average flow rate.
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The input flow rate was unknown for this particular test, because at the time the software
program had not yet been transitioned from its old platform. However, the input voltage to

the stepper motor was constant for all trials. Below is data for the initial flow rate tests

with water.
Table 5.1: Bellows Pump With Water
Trial Time (sec)
0 20 40 60 80 100 | 120 | 140 | 160 | 180
1 0 37 70 112 | 145 | 181 | 219 | 254 -- --
2 0 36 67 102 | 132 | 166 | 197 | 231 | 263 | 295
Volume 0 | 31 | 60 | 90 | 118 | 146 | 176 | 205 | 234 | 270
Displaced 3
(mL) 4 0 28 57 88 118 | 150 180 | 210 | 240 | 270
5 0 32 63 94 124 | 158 | 185 | 216 | 246 | 276

An important thing to take note of is that the final two data points for the first trial could
not be recorded because the bellows ran out of fluid - not enough was put into it. Using the

above data, the following flow rates were calculated:

Table 5.2: Bellows Pump With Water Flow Rates
Trial Average Flow Rate (mL/min)

1 108
2 98
3 90
4 90
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5 92

Average 95.6

These flow rates are relatively low compared to what is required from the functional
requirements, but they show that the bellows pump can pump water at relatively
consistent flow rates. Graphs of the water displaced by the bellows for each trial, as well as
a running calculation of the flow rate through the bellows pump over time for each trial, are

shown below.

Water Displaced by Bellows Pump
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Figure 5.1: Water Displaced by Bellows Pump (2/17/12)
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Average Water Flow Rate Through Bellows

Pump
140
120
‘»\
) 80 em==Trial 1
E
:’ em==Trial 2
£~}
ég 60 Trial 3
2
= 40 e==Tria] 4
e===Trial 5 ("240")
20
0 T T T T T T T T 1

20 40 60 80 100 120 140 160 180
Time (sec)

Figure 5.1: Average Water Displaced by Bellows Pump (2/17/12)
By taking a running average of the flow rate while pumping water, there is a more accurate
representation of the speed and consistency of the pump over time. The data shows that,
although the pump is relatively consistent in flow rate, it does vary somewhat, with a range

of 87 to 108 mL/minute for trials one through four.

Note: The indication of “240” in the fifth trial in Figure 5.1 indicates that the pump was run
at a slightly higher flow rate (trials one through four were run at “200”). 240 is a unitless
number that indicated the speed of the stepper motor when the program controlling it was
written in Python. Since then the programming was transitioned to LabView, and other

data, unless otherwise noted, shows the input flow rate in terms of mL/minute.
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5.1.2 Peristaltic Pump

Since saline is an incompressible, Newtonian fluid that can be pumped via conventional
means, a peristaltic pump was used for that branch of the system. The pump itself does not
have very clearly defined input settings for flow rate - they range on a knob from zero to
ten. These numbers are not useful - in order to determine how quickly saline is actually
flowing into the system, another test similar to the previous one was performed. Water
was pumped for three minutes and volume measurements were recorded every 20
seconds. Water was initially used instead of saline in order to establish reference data. The
input setting for the pump was “8”, which, as is shown in section 5.2, corresponds to a flow

rate of 71 mL/min. Below are the results.

Table 5.3: Peristaltic Pump With Water
Trial Time (sec)

0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180

) 0 | 32 | 63 | 95 | 128 | 161 | 192 | 225 | 256 | 289

, 0 | 28 | 57 | 84 | 112 | 142 | 175 | 206 | 239 | 270

Volume 0 | 25 | 50 | 75 | 100 | 124 | 149 | 173 | 197 | 225
Displaced 3

(mL) . 0 | 29 | 53 | 80 | 107 | 133 | 160 | 186 | 211 | 237

c 0 | 26 | 52 | 78 | 105 | 131 | 157 | 186 | 217 | 252

Table 5.4: Peristaltic Pump With Water Flow Rates

Trial Average Flow Rate (mL/min)

1 96.3

2 90
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4 79
5 84
Average 84.8

The peristaltic pump tests range much more than those with the bellows. This difference in
consistency can be attributed to the nature of the fluid flow. In the bellows pump setup
fluid travels straight down out of the bellows and into the rest of the system. With the
peristaltic pump, the tube that carries the fluid must wind around in order for it to come
into contact with the rollers. This extra length of tubing as well as the turns it experiences

is a cause of more friction, and thus less predictable behavior.

5.2 Prime Time

It was also important to test the prime time of each pump. Specifically, this means the time
required for each pump to start up, and cause fluid to travel from its reservoir (i.e. the
saline bag) out to the other end of the system. Only the prime time for the peristaltic pump
was measured because of the slow rate at which it ramps up and pumps fluid relative to the
bellows pump with the stepper motor. Saline was used for these tests in order to more
closely represent a pumping scenario. Tables 5.5 and 5.6 show prime time at a constant
input setting, as well as with increasing input settings. Measurements were taken for one

minute in order to also record flow rate after the prime time was reached.
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Table 5.5: Peristaltic Pump Prime Time - Constant Input Setting
Input  Flow Rate Prime

Setting (mL/min) time (sec)

70 40.2
8 71 39.2
71 38.2

Table 5.6: Peristaltic Pump Prime Time - Increasing Input Setting
Input Flow Rate Prime

Setting (mL/min) time (sec)

5 37 64.6
6 58 552
7 65 43.2
8 71 39.2
9 74 69.8
10 76 63.7

Table 5.6 shows that as the input setting increases, so does the flow rate. This correlation

is best shown in graphical form, and can be seen below.

Saline Flow Rates Through Peristaltic
Pump: Variable Inputs
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Figure 5.2: Saline Flow Rates Through Peristaltic Pump: Variable Inputs
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5.3 Flat Saline Test

In the initial assembly of the pump, the saline bag hung from the side of the structure in a
vertical position, much as saline bags in hospital rooms do in an IV system. In these types
of systems, the saline drips from the bag as it is delivered through a tube into the blood.
The primary difference between this setting and that of the project is that instead of saline
dripping, a peristaltic pump is displacing volume within the tube to draw the saline out. As
the saline bag is emptied, the amount of pressure within the bag changes, causing some

inconsistency in the flow rate.

To address this problem, it was decided to lay the saline bag flat on a horizontal platform,
so that the pressure from the fluid would vary less as the bag was emptied. This method

had positive results, shown below.
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Figure 5.3: Flat Saline Bag Test - Volume Displaced
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Four trials were taken over a two-minute period, with measurements of volume taken
every ten seconds. The trend is very linear for all trials, showing that this method of
positioning the saline bag is repeatable and consistent. The average flow rate for this test

across all trials was 85.5 mL/min, with a standard deviation of 2.4.

5.4 Dry Run

The bellows in the system acts as a spring, compressing to expel the fluid inside it. Bellow
stiffness comes into play in the software. It is important for the force the bellows exerts on
the load cell to be accounted for during the calibration phase. Three bellows samples,
provided by Blow Molded Specialties, were used during dry run tests. Two are “ridge”
types, i.e. of the same geometry seen in Figure 1.1. One is a “corkscrew” type, which has a

helical profile as part of its geometry.

All three bellows have the same expanded length, as well as the same outer and neck
diameters. The only difference lies in the exterior shapes. Testing these bellows consisted
of loading each one into the pump assembly, and recording the force that correlated to a
distance that the bellows was displaced. The displacement ranged from zero to three
inches. Below are curves showing the stiffness of each bellow. A linear relationship fit to
Bellows 3 shows a relatively constant stiffness for the ridge type of geometry. This data
now has use in the software for the purpose of determining the net force of the fluid in the

feedback loop.

49



Bellows Stiffness
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Figure 5.4: Bellows Stiffness of Two Different Geometries

5.5 Pump Behavior

“Ridge” type bellows were chosen because they are less stiff than the “corkscrew” type, and
allow the stepper motor to push down on it and expel the fluid with more ease. In addition
to measuring force vs. displacement, force vs. time was also measured, as well as
displacement vs. time. This data indicates the bellows’ speed and how much it pushes back

at a given time and position.
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5.5.1 Force Profile

A few trials of the force profile were taken as the bellows was compressed with the stepper

motor. The figure below shows the results.

Force Profile
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Figure 5.5: Force Profile of Bellows Pump
The data shows that the force rises over time in a mostly linear fashion. Over time, and the
bellows compressed near its limit, and the force increased at a much faster rate. Aside
from the noise from the load cell in trial one, and change in force was relatively consistent.
The maximum force recorded by the load cell was about 80 pounds, which indicates that
the motor was right under its maximum load. Note the exclusion of trial two from the data.
The results were very erratic and outside the norm, and the results from trials one and

three confirmed this.
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5.5.2 Position Profile

Data was also collected showing the position of the top of the bellows over time. This data

indicates the compression of the bellows throughout the stepper motor’s stroke.
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Figure 5.5: Position Profile of Bellows Pump
This data was more consistent than with the force profile. This was likely because the
measurement of force was more erratic - the load cell has a high degree of sensitivity. The
Phidgets controller, however, was able to measure position more accurately. Again, Trial

two was an outlier and was removed from the data.
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Chapter

Fluid Quality

6.1 Mixing Quality

Firstly, thank you to Kristen Pefia for leading the team in testing fluid quality. As discussed
briefly in section 2.1.3, the mixing of the fluid is very important. The fluid is manufactured
such that 90% of its volume is oxygenated fluid. It is then diluted with saline to be
significantly less viscous before injection into the body. It is important to make sure the
fluid is homogeneous so that equal amounts or oxygen are injected into the patient with
each mixture. Images showing the distribution and size of bubbles for various mixtures are

located in section 6.2.

6.2 Volume Percentage

After taking a sample of the 90% concentrated form of the VOF, different samples were
mixed at different ratios, and then viewed under a microscope to see the bubble sizes and
formations. The ratios observed were various concentrations of oxygen: 90%, 75%, 50%,
and 25%. Below are figures taken from Dr. Kheir’s lab at Boston Children’s Hospital via a

microscope.
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(a) (b)

(9] (d)

Figure 6.1: Microscopic Images of Fluid at Various Concentrations - (a) 90% (b) 75%
(c) 50% (d) 25%

There is a clear distinction in both the size and formation of bubbles at various
concentrations. The bubbles tend to be larger at higher concentrations, as well as closer
together. One thing that is not easily observed is that, in Figure 6.1d, there are more than
just the clusters of small bubbles. Other clusters exist, but they are out of focus. In the
images of bubbles at all of the other concentrations, this same observation was made. It
makes sense that the higher concentration of oxygen VOF has bubbles of larger diameters,

because more oxygen is contained within a given volume.
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6.3 Particle Size Distribution
In order to understand the various particle sizes of the fluid, about a microliter of the VOF
was placed into a Particle Sizer at Dr. Kheir’s lab and tested. Below is an example of one

distribution of particle size from the collected data.

Counts POPULATION DIFF. DISTRIBUTION A2 23 3:51
2000 et Jr—— = Sensor File:
g 0908901_07202011
3 Sensor Model:
1500 = LE400-0-5 EXT
i Sensor S{N:
3 0908901
LU = Sample Time:
g 20 Sec
500 = Fluid Volume:
= 20.00 ml
= Threshold:
0 ' - 0.50 um
' 0.5 1 2 5 10 20 50 100 200 500 Total # Sized:
extinction.sns
Mean Stnd Dev. Mode Median Concentration Dilution Factor
7.69um  8.25um [107.3%] 9.47 um 4.96 um 3135664 #ml 38.23

Caption: Sample
Figure 6.2: Distribution of Particle Diameter for 92% Concentrated Fluid

From the above figure, it can be seen that most particles for the 92% concentration of fluid
were between 2 and 20 micrometers in diameter. The mean and other statistics regarding
the data are shown. Below is a table summarizing the particle size data for all
concentrations of fluid that were measured. It is important to note that the minimum

particle size that the machine could possibly measure (i.e. resolution) was 0.5 micrometers.
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Table 6.1: Mean and Median Particle Size With Varying Fluid Concentration

02 Concentration Mean Diameter (pum) Median (ium)
13% 3.13 1.22
25% 5.20 3.48
52% 5.27 2.09
71% 4.04 1.71
92% 7.69 4.96

These results from the particle sizer somewhat validate the claim from section 6.2, which
was based on qualitative results. The mean and median values are very different in all

cases - this is likely because there were multiple diameters with a spike in particle counts.

6.4 Rheology

The viscosity of the VOF is very important, as it is a large factor in how well the fluid flows
through the pump system. Data from Dr. Kheir shows how the fluid’s viscosity behaved
after various shear stresses were applied to it [8]. This viscosity profile is shown below at

different concentrations, as well as compared with blood.
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Figure 6.3: Dr. Kheir - Rheologic Profile of Fluid
It is clear that the VOF, especially at high concentrations, is several orders of magnitude
more viscous than blood. This fact is truer at lower stresses — higher stresses cause the

fluid to be less viscous. The dip in the curve for the 80% and 90% concentrated fluid

represent the stresses at which each fluid yielded.

6.4.1 Rheological Profile at 90%

Data was collected from samples of the fluid to measure viscosity, using a rheometer in Dr.
Kheir’s lab. The concentrations of interest are 90%, because that is the concentration the
fluid is initially when it is manufactured, and 70%, because that is the appropriate

concentration for injection into the human body. Below is rheometer data for the 90%

concentration.
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Figure 6.4: Viscosity Data for 90% Concentration of Fluid
The fluid appears to yield the most at around 0.2 Pa. When a great amount of stress is

applied, the viscosity continues to decline.

6.4.2 Rheological Profile at 70%

In addition, the viscosity data for the 70% concentration is shown below. The fluid does
not seem to yield a great amount - in fact the viscosity increases for a large range of stress
applied. After 4 Pa of pressure, the viscosity in the fluid begins to decline. Despite this, the
viscosity does not change even within one order of magnitude throughout the range of
stresses applied to it. This suggests that, as the fluid becomes less concentrated with
oxygen, it behaves more like an incompressible fluid, and its viscosity does not change

much when stress is applied to it.
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Figure 6.4: Viscosity Data for 90% Concentration of Fluid

59



60



Chapter

Conclusion

7.1 Project Summary

This thesis explored the design process, assembly, and testing of a pumping device for
intravenous oxygen infusion at a specified flow rate. The flow rates measured from both
the bellows pump and saline pump were consistent and desirable. Fluid flow principles, as
well as volume integration assisted greatly in the analysis of the physics involved. A great
deal of testing was done to validate and invalidate various approaches to the machine

design.

The entire interface was created in LabView, allowing for greater ease of use, and accurate
calculations of flow rate and volume displaced. When the pump was completed, it was able
to pump VOF at the specified flow rate of 200mL/min, and saline at 50mL/min. The
physical structure itself is stable, and uses modular materials to allow for easy
reconfiguration. Various fluid properties were tested as well, to gain a great understanding
of the fluid in order to pump it more efficiently. The bubble trap on the device had some

problems and did not always remove bubbles from the fluid. Ultimately, the device is able
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to successfully pump at mix fluid in compliance with the functional requirements. It can be

used as a research tool to further understand how to better pump and mix the fluid.
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Appendix

Analysis and Specs

A.1 Motor Specifications

Size 23 Series 57000 Force vs Linear Velocity
.375 in. (9.53 mm) @ Leadscrew, Bipolar, Chopper Drive, 100% Duty Cycle
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Speed: in/sec. (mm/sec.)
Figure A.1: Haydon-Kerk Motor Specifications - Force vs Linear Velocity

The model chosen for the stepper motor is type “1” in the above figure, and can sustain a

maximum of about 60 pounds of force with a step size of 0.001” [4].
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Size 23 Series 57000 Force vs Pulse Rate
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Figure A.2: Haydon-Kerk Motor Specifications - Force vs Pulse Rate
This figure shows data for the same stepper motor, but with Pulse Rate on the x-axis as

opposed to linear velocity.

A.2 Bellows Volume Analysis

Table A.1 shows the detailed analysis of the bellows volume calculation, with a large

amount of states, or iterations shown.
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Table 5.6: Peristaltic Pump Prime Time - Increasing Input Setting

H (mm) B/2 Y int Slope = Volume Displaced

(mm)  (mm)  -(B/2H) by 10 Rings (mL)

12.50 5.9 28.32 -0.47 47.50 0 0.00 0.00

12.72 5.4 25.46 -0.42 47.28 1 7.03 17.01
12.92 4.9 22.75 -0.38 47.08 2 14.07 34.95
13.10 4.4 20.15 -0.34 46.90 3 21.10 53.71
13.26 3.9 17.65 -0.29 46.74 4 28.14 73.17
13.40 3.4 15.23 -0.25 46.60 5 35.17 93.25
13.51 2.9 12.87 -0.21 46.49 6 42.20 113.85
13.61 2.4 10.58 -0.18 46.39 7 49.24 134.88
13.69 1.9 8.33 -0.14 46.31 8 56.27 156.27
13.75 1.4 6.11 -0.10 46.25 9 63.31 177.93
13.79 0.9 3.91 -0.07 46.21 10 70.34 199.79
13.82 0.4 1.74 -0.03 46.18 11 77.37 221.78
13.82 0 0.00 0.00 46.18 | 11.8 83.00 239.42

Note the final value for volume displaced is not the same number as the actual volume

displaced - this difference in data is addressed in section 3.1.4.
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Appendix

Budget and Costs

Table B.1: Budget and Costs

Category Item Price Supplier

Peristaltic

Pump New and improved peristaltic pump N/A | Thomas Scientific

Structural Aluminum Inch T-Slotted Framing System 90 McMaster-Carr

Materials Degree Bracket, Single, 2-Hole, for 1" Extrusion $19.90 | (47065T223) (5)
Aluminum Inch T-Slotted Framing System Plate, McMaster-Carr
Single, 2-Hole, for 1" Extrusion $45.80 | (47065T141) (10)
Std Zinc-Plated STL End-Feed Fastener, for 1"
Aluminum Inch T-Slotted Framing System, Packs McMaster-Carr
of 4 $4.60 | (47065T142) (2)
Compact Head End-Feed Fastener, for 1"
Aluminum Inch T-Slotted Framing System, Packs McMaster-Carr
of 4 $7.40 | (47065T139) (4)
Nylon Thrust Bearing for 1/4" Shaft Dia, 5/8" OD, McMaster-Carr
1/16" Thickness $4.80 | (2797T1) (4)
Multipurpose Aluminum (Alloy 6061) .125" Thick, McMaster-Carr
12" X 12" $28.02 | (89015K18)
Waterjet new rail and outrigger $51.00 | MIT Hobby Shop

Measurement | Graduation Cylinders, 500mL (x2) $30.00 | VWR

Electronics Amplifier (DMD-4059-DC) $379.00 | Omega

Plumbing

Materials 1/2" fullport ball valve FPT 400PSI $7.32 | Home Depot
1/2 quick connect x 1/2 MIP $2.98 | Home Depot
5/8" OD x 1/2" ID x 10' vinyl tube $4.38 | Home Depot
1/2" OD x 3/8" ID x 20' vinyl tube $6.90 | Home Depot
2x1 2Nylon BarbxMIP $2.84 | Home Depot
White Polypropylene Push-to-Conn Tube Fitting McMaster-Carr
Reducing Coupling for 1/2" X 3/8" Tube OD $9.46 | (9087K66) (2)
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Moisture-Resistant Acetal Push-to-Connect Wye

McMaster-Carr

for 1/2" Tube OD, Gray $15.08 | (51055K418) (2)
Pressure Steel Thrd Fitting 3/4"-16 UNF-2A X 1/2" McMaster-Carr
NPTF Male Adapter $14.72 | (50925K332) (2)
Type 316 Stainless Steel Hex Nut 3/4"-16 Thread McMaster-Carr
Size, 1-1/8" Width, 41/64" Height, Packs of 5 $11.72 | (94804A365) (1)
O-Rings (pack of 20) width 3/16" OD 3.27" ID
2.85" $11.23 | McMaster-Carr
3D Printsmith LLC,
Bellows Cap $312.00 | Durus material
Billed to Biomedical
Modeling, Inc.
Other 6 outlet power strip, 3 ft cord $3.72 | Home Depot
Total Spent $921.87
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Appendix

Recommendations

The design of this device consisted of analyzing the functional requirements and coming up
the best practical solution. As with any project, there were unforeseen circumstances that
voided initial ideas or plans, and forced my colleagues and I to take pragmatic measures
when necessary. This thesis primarily discusses what was ultimately done and results of
such actions, not the brainstorming or ideation at the beginning of the process. The
purpose of this appendix is to briefly discuss changes that might be made in the future,

based on the shortcomings of certain aspects of the project.

Sealing the bellows properly to avoid leakage of fluid was a consistent problem. The use of
an O-ring and bellows cap was implemented to solve this, but was only mildly successful.
In testing, the O-ring would flex against the LDPE surface of the bellows, which is not very
stiff. This displacement caused a lack of compression of the O-ring. To solve this, Loctite
was placed on the threads on both the bellows and the bellows cap. Also, epoxy was placed
around the outside of the cap, where the O-ring interfaces with it. This solved the problem
and avoided leakage of fluid, however the solution was permanent - the bellows cap can no

longer be removed from the bellows, and thus the only way to insert or extract fluid is
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through direct use of the ball valve. In a future design, it would be wise to blow mold a
bellows with features already in it that would interface with a tube. This eliminates the

need for any sort of bellows cap or O-ring type of seal.

When brainstorming ideas for how to pump and store fluid, the bellows was ultimately the
design that was chosen. However, other ideas were considered. One such idea was to use a
bag full of fluid, and then to pass a ringer or roller over the tube, and thus to squeeze it out.
This method can be visualized as squeezing toothpaste out of a tube with one’s fingers. The
problem with this design is that, there would have to be a lot of pressure build up in order
to squeeze out all the fluid with one pass. If the roller/ringer were not a one-pass type of
device, it would have to somehow change diameter in order to expel the rest of the fluid on

a second or third pass.

Another idea was to use a reciprocating pump that would measure out and pump VOF in a
fixed volume, before mixing it with saline in another chamber. The figure below shows this
idea (Image created by Matthew Keeter). This design was not pursued because of the level

of complexity required to make it work.

TS

¥

Figure C1: Reciprocating Pump Idea
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