
1

Fall 2004 6.831 UI Design and Implementation 1

����������	�
������������

2

Fall 2004 6.831 UI Design and Implementation 2

�������������� �������� ��

Once upon a time, this bizarre help message was popped up by a website (Midwest
Microwave) when users requested to view the site’s product catalog. The message
appears before the catalog is displayed. Clearly this message is a patch for usability
problems in the catalog itself, but the patch itself has so many usability issues that it’s
worth listing a few.
•Overwhelming the user with detail. What’s important here, and what isn’t?
(minimalist design)
•Horrible layout: no paragraphs, no headings, no whitespace to guide the eye (aethestic
design)
•No attempt to organize the material into chunks so that it can be scanned, to find out
what the user doesn’t already know (flexibility and efficiency)
•This information is useless and out of context before the user has seen the task they’ll
be faced with (help and documentation)
•It’s a modal dialog box, so all this information will go away as soon as the user needs to
get to the catalog (minimize memory load)
•Using technical terms like V.90 modem (speak the user’s language)
•“Please carefully jot down the Model Numbers” (recognition, not recall)
•Poor response times: 20-60 second response times (user control and freedom), though
in fairness this was common for the web at the time, and maybe Acrobat has sufficient
progress interfaces to make up for it.
•Misspelling “our catalog” in the first line (speak the user’s language, but really we
don’t need a heuristic to justify pointing out a spelling errors)

3

Fall 2004 6.831 UI Design and Implementation 3

��������������
����
������������

� Simplicity
� Contrast
� White space
� Balance
� Alignment

Today, we’re going to look at some specific guidelines for graphic design. These
guidelines are drawn from the excellent book Designing Visual Interfaces by Kevin
Mullet and Darrell Sano (Prentice-Hall, 1995). Mullet & Sano’s book predates the Web,
but the principles it describes are timeless and relevant to any visual medium.
Another excellent book is Edward Tufte’s The Visual Display of Quantitative
Information. Some of the examples in this lecture are inspired by Tufte.

4

Fall 2004 6.831 UI Design and Implementation 4

��� �������

� �Perfection is achieved not when there is
nothing more to add, but when there is
nothing left to take away.� (Antoine de St-
Exupery)
� �Simplicity does not mean the absence of any

decor� It only means that the decor should
belong intimately to the design proper, and
that anything foreign to it should be taken
away.� (Paul Jacques Grillo)
� �Keep it simple, stupid.� (KISS)
� �Less is more.�
� �When in doubt, leave it out.�

Okay, we’ll shout some slogans at you now. You’ve probably heard some of these
before. What you should take from these slogans is that designing for simplicity is a
process of elimination, not accretion. Simplicity is in constant tension with task
analysis, information preconditions, and other design guidelines, which might otherwise
encourage you to pile more and more elements into a design, “just in case.” Simplicity
forces you to have a good reason for everything you add, and to take away anything that
can’t survive hard scrutiny.

5

Fall 2004 6.831 UI Design and Implementation 5

����� ����������� �������	�!��������

� Remove inessential elements

Here are three ways to make a design simpler.
Reduction means that you eliminate whatever isn’t necessary. This technique has three
steps: (1) decide what essentially needs to be conveyed by the design; (2) critically
examine every element (label, control, color, font, line weight) to decide whether it
serves an essential purpose; (3) remove it if it isn’t essential. Even if it seems essential,
try removing it anyway, to see if the design falls apart.
Icons demonstrate the principle of reduction well. A photograph of a pair of scissors
can’t possibly work as a 32x32 pixel icon; instead, it has to be a carefully-drawn picture
which includes the bare minimum of details that are essential to scissors: two lines for
the blades, two loops for the handles. The standard US Department of Transportation
symbol for handicapped access is likewise a marvel of reduction. No element remains
that can be removed from it without destroying its meaning.
We’ve already discussed the minimalism of Google and the Tivo remote in earlier
classes. Here, the question is about functionality. Both Google and Tivo aggressively
removed functions from their primary interfaces.

 Image courtesy of Google. Used with permission.

6

Fall 2004 6.831 UI Design and Implementation 6

����� ����������� �������	�!���������

� Use a regular pattern
� Limit inessential variation among

elements

For the essential elements that remain, consider how you can minimize the unnecessary
differences between them with regularity. Use the same font, color, line width,
dimensions, orientation for multiple elements. Irregularities in your design will be
magnified in the user’s eyes and assigned meaning and significance. Conversely, if your
design is mostly regular, the elements that you do want to highlight will stand out better.
PowerPoint’s Text Layouts menu shows both reduction (minimalist icons representing
each layout) and regularity. Titles and bullet lists are shown the same way.

7

Fall 2004 6.831 UI Design and Implementation 7

����� ����������� �������	����"��#����

� Combine elements for leverage
�Find a way for one element to play multiple

roles

title bar

scrollbar thumb

help prompt

Finally, you can combine elements, making them serve multiple roles in the design.
The desktop interface has a number of good examples of this kind of design. For
example, the “thumb” in a scroll bar actually serves three roles. It affords dragging,
indicates the position of the scroll window relative to the entire document, and indicates
the fraction of the document displayed in the scroll window. Similarly, a window’s title
bar plays several roles: label, dragging handle, window activation indicator, and location
for window control buttons. In the classic Mac interface, in fact, even the activation
indicator played two roles. When the window was activated, closely spaced horizontal
lines filled the title bar, giving it a perceived affordance for dragging.

8

Fall 2004 6.831 UI Design and Implementation 8

$��������%�&������&����"���

� Contrast encodes information along
visual dimensions

��������� 	��
������
������ �	��� �
���
�

Contrast refers to perceivable differences along a visual dimension, such as size or
color. Contrast is the irregularity in a design that communicates information or makes
elements stand out. Simplicity says we should eliminate unimportant differences.
Once we’ve decided that a difference is important, however, we should choose the
dimension and degree of contrast in such a way that the difference is salient, easily
perceptible, and appropriate to the task.
Crucial to this decision is an understanding of the different visual dimensions. Jacques
Bertin developed a theory of visual variables that is particularly useful here (Bertin,
Graphics and Graphics Information Processing, 1989). The seven visual variables
identified by Bertin are shown above. Bertin called these dimensions retinal variables,
in fact, because they can be compared effortlessly without additional cognitive
processing, as if the retina were doing all the work. In terms of the model human
processor abstraction, differences along these dimensions can be detected by the
Perceptual Processor. Comparing numbers, on the other hand, would require the
participation of the Cognitive Processor.
Each column in this display varies along only one of the seven variables. Most of the
variables need no explanation, except perhaps for hue and value. Hue is pure color;
value is the brightness or luminance of color. (Figure after Mullet & Sano, p. 54).

9

Fall 2004 6.831 UI Design and Implementation 9

$�����������������&������&����"���

� Scale = kinds of comparisons possible
� Nominal (=)
� All variables

� Ordered (<, >)
� Ordered: position, size, value, texture granularity
� Not ordered: orientation, hue, shape

� Quantitative (amount of difference)
� Quantitative: position, size
� Not quantitative: value, texture, orientation, hue, shape

� Length = number of distinguishable levels
� Shape is very long (infinite variety)
� Position is long and fine-grained
� Orientation is very short (~ 4 levels)
� Other variables are in between (~ 10 levels)

The visual variables are used for communication, by encoding data and drawing distinctions between
visual elements. But the visual variables have different characteristics. Before you choose a visual
variable to express some distinction, you should make sure that the visual variable’s properties match your
communication. For example, you could display a temperature using any of the dimensions: position on a
scale, length of a bar, color of an indicator, or shape of an icon (a happy sun or a chilly icicle). Your
choice of visual variable will strongly affect how your users will be able to perceive and use the displayed
data.
Two characteristics of visual variables are the kind of scale and the length of the scale.
A nominal scale is just a list of categories. Only comparison for equality is supported by a nominal scale.
Different values have no ordering relationship. The shape variable is purely nominal. Hue is also purely
nominal, at least as a perceptual variable. Although the wavelength of light assigns an ordering to colors,
the human perceptual system takes no notice of it. Likewise, there may be some cultural ordering
imposed on hue (red is “hotter” than blue), but it’s weak, doesn’t relate all the hues, and is processed at a
higher cognitive level.
An ordered scale adds an ordering to the values of the variable. Position, size, value, and to some extent
texture (with respect to the grain size of the texture) are all ordered.
With a quantitative variable, you can perceive the amount of difference in the ordering. Position is
quantitative. You can look at two points on a graph and tell that one is twice as high as the other. Size is
also quantitative, but note that we are far better at perceiving quantitative differences in one dimension
(i.e., length) than in two dimensions (area). Value is not quantitative; we can’t easily perceive that one
shade is twice as dark as another shade.
The length of a variable is the number of distinguishable values that can be perceived. We can recognize
a nearly infinite variety of shapes, so the shape variable is very long, but purely nominal. Position is also
long, and particularly fine-grained. Orientation, by contrast, is very short; only a handful of different
orientations can be perceived in a display before confusion starts to set in. The other variables lie
somewhere in between, with roughly 10 useful levels of distinction, although size and color are somewhat
longer than value and texture.

10

Fall 2004 6.831 UI Design and Implementation 10

'��������

� Recall the spotlight metaphor
�Attention spotlight moves serially from one

input channel to another
�All stimuli within spotlighted channel are

processed in parallel
� Input channel = one or more visual

variables
� e.g., position, hue

11

Fall 2004 6.831 UI Design and Implementation 11

�������(���

� Selective perception: can attention be
focused on one value of the variable,
excluding other variables and values?
�Selective: position, size, orientation, hue,

value, texture
�Not selective: shape

Selectivity is the degree to which a single value of the variable can be selected from the
entire visual field. Most variables are selective: e.g., you can locate green objects at a
glance, or tiny objects. Shape, however, is not selective in general. It’s hard to pick out
triangles amidst a sea of rectangles.

12

N

N

N N

N

N

N

N
N

N

NZ

Z
Z

Z

Z

Z

Z
Z

Z
K

K
K

K
K

K

K

K

KK

K

M
M

M

M M

M

M

M

M
M

M

Ask yourself these questions:
- find all the letters on the left half of the page (position)
- find all the red letters (hue)
- find all the K’s (shape)
Which of these questions felt easy to answer, and which felt hard? The easy ones were
selective visual variables.

13

Fall 2004 6.831 UI Design and Implementation 13

'��������(���

� Associative perception: can variable be
ignored when looking at other
variables?
�Associative: position, hue, value, texture,

shape, orientation
�Not associative: size, value
� Small size and low value interfere with ability to

perceive hue, value, texture, and shape

There are two ways that your choice of visual variables can affect the user’s ability to
attend to them.
Associativity refers to how easy it is to ignore the variable, letting all of the distinctions
along that dimension disappear. Variables with poor associativity interfere with the
perception of other visual dimensions. In particular, size and value are dissociative,
since tiny or faint objects are hard to make out.

14

N

N

N N

N

N

N

N
N

N

NZ

Z
Z

Z

Z
Z

Z

Z

Z
K

K
K

K
K

K

K

K

KK

K

M M

M

M M

M

M
M

M
M

M

Notice that when we use size as a visual variable as well, the shapes and hues of small
objects become harder to detect.

15

Fall 2004 6.831 UI Design and Implementation 15

!���������������)�����

Green
Orange
Red
Black
Pink
Blue

Tthe Stroop effect, which we saw in an earlier lecture on human capabilities, was
another kind of interference caused by our inability to selectively attend to colors or
words. But the Stroop effect was really an interference at the cognitive level, not the
perceptual level. You don’t read words in early stages of visual processing.

16

Fall 2004 6.831 UI Design and Implementation 16

����� ��������$�������

� Choose appropriate visual variables
� Use as much length as possible
� Sharpen distinctions for easier

perception
�Multiplicative scaling, not additive
�Redundant coding where needed
�Cartoonish exaggeration where needed

� Use the �squint test�

Once you’ve decided that a contrast is essential in your interface, choose the right visual variable to
represent it, keeping in mind the data you’re trying to communicate and the task users need to do with the
data. For example, consider a text content hierarchy: title, chapter, section, body text, footnote. The data
requires an ordered visual variable; a purely nominal variable like shape (e.g., font family) would not by
itself be able to communicate the hierarchy ordering. If each element must communicate multiple
independent dimensions of data at once (e.g., a graph that uses size, position, and color of points to encode
different data variables), then you need to think about the effects of associativity and selectivity.
Once you’ve chosen a variable, use as much of the length of the variable as you can. Determine the
minimum and maximum value you can use, and exploit the whole range. In the interests of simplicity,
you should minimize the number of distinct values you use. But once you’ve settled on N levels,
distribute those N levels as widely across the variable as is reasonable. For position, this means using the
full width of the window; for size, it means using the smallest and the largest feasible sizes.
Choose variable values in such a way as to make sharp, easily perceptible distinctions between them.
Multiplicative scaling (e.g., size growing by a factor of 1.5 or 2 at each successive level) is makes sharper
distinctions than additive scaling (e.g., adding 5 pixels at each successive level). You can also use
redundant coding, in several visual variables, to enhance important distinctions further. The title of a
document is not only larger (size), but it’s also centered (position), bold (value), and maybe a distinct
color as well. Exaggerated differences can be useful, particularly when you’re drawing icons: like a
cartoonist, you have to give objects exaggerated proportions to make them easily recognizable.
The squint test is a technique that simulates early visual processing, so you can see whether the contrasts
you’ve tried to establish are readily apparent. Close one eye and squint the other, to disrupt your focus.
Whatever distinctions you can still make out will be visible “at a glance.”

17

Fall 2004 6.831 UI Design and Implementation 17

$�������&������&����"�����������������

Let’s look at an email inbox to see how data associated with email messages are encoded into visual
variables in the display. Here are the data fields shown above, in columns from left to right:
Spam flag: nominal, 2 levels (spam or not)
Subject: nominal (but can be ordered alphabetically), infinite (but maybe only ~100 are active)
Sender: nominal (but can be ordered alphabetically), infinite (but maybe ~100 people you know +
everybody else are useful simplifications)
Unread flag: nominal, 2 levels (read or unread)
Date: quantitative (but maybe ordered is all that matters), infinite (but maybe only ~10 levels matter:
today, this week, this month, this year, older)

This information is redundantly coded into visual variables in the display shown above, for better
contrast. First, all the fields use position as a variable, since each is assigned to a different column. In
addition:
Spam: shape, hue, value, size (big colorful icon vs. little dot)
Subject: shape
Sender: shape
Unread: shape, hue, value, size (big green dot vs. little gray dot) and value of entire line (boldface vs. non)
Date: shape, size (today is shorter than earlier dates), position (list is sorted by date)

Exercise: try designing a visualization with these encodings instead:
Spam: size (this takes advantage of dissociativity)
Subject: shape
Sender: position
Unread: value
Date: position

18

Fall 2004 6.831 UI Design and Implementation 18

���������������� ��������������

Here’s another example showing how redundant encoding can make an information
display easier to scan and easier to use. Search engine results are basically just database
records, but they aren’t rendered in a simplistic caption/field display like the one shown
on top. Instead, they use rich visual variables – and no field labels! – to enhance the
contrast among the items. Page titles convey the most information, so they use size,
hue, and value (brightness), plus a little shape (the underline). The summary is in black
for good readability, and the URL and size are in green to bracket the summary.
Take a lesson from this: your program’s output displays do not have to be arranged like
input forms. When data is self-describing, like names and dates, let it describe itself.
And choose good visual variables to enhance the contrast of information that the user
needs to see at a glance.

Image courtesy of Google. Used with permission.
Image courtesy of Google. Used with permission.

19

Fall 2004 6.831 UI Design and Implementation 19

$�����������*�"���������������

Title
Heading
This is body text. It’s smaller than the heading, lighter in weight, and longer
in line length. We’ve also changed its shape to a serif font, because serifs
make small text easier to read. Redundant encoding produces an effective
contrast that makes it easy to scan the headings and distinguish headings from
body text.1

1This is a footnote. It’s even smaller, and positioned at the bottom of the page.

Figure 1. This is a caption, which is
smaller than body text, and set off by
position, centering, and line length.

Titles, headings, body text, figure captions, and footnotes show how contrast is used to
make articles easier to read. You can do this yourself when you’re writing papers and
documentation. Does this mean contrast should be maximized by using lots of different
fonts like Gothic and Bookman? No, for two reasons – contrast must be balanced
against simplicity, and text shape variations aren’t the best way to establish contrast.

20

Fall 2004 6.831 UI Design and Implementation 20

��� ��������(�+�$�������

min

25%

50%

75%

max

Tukey Tufte #1 Tufte #2

Conversely, here’s a case where simplicity is taken too far, and contrast suffers.
Simplicity and contrast seem to fight with each other. The standard Tukey box plot
shows 5 different statistics in a single figure. But it has unnecessary lines in it!
Following the principle of simplicity to its logical extreme, Edward Tufte proposed two
simplifications of the box plot which convey exactly the same information – but at a
great cost in contrast. Try the squint test on the Tukey plot, and on Tufte’s second
design. What do you see?

21

Fall 2004 6.831 UI Design and Implementation 21

$��������*��"��� �

Here’s an example of too little contrast. It’s important to distinguish captions from text
fields, but in this design, most of the visual variables are the same for both:
- the position is very similar: the box around each caption and text field begins at the
same horizontal position. The text itself begins at different positions (left-justified vs.
aligned), but it isn’t a strong distinction, and some of the captions fill their column.
- the size is the same: captions and text fields fill the same column width
- the background hue is slightly different (yellow vs. white), but not easily differentiable
by the squint test
- the background value is the same (very bright)
- the foreground hue and value are the same (black, plain font)
- the orientation is the horizontal, because of course you have to read it.
The result is that it’s hard to scan this form. The form is also terribly crowded, which
leads us into our next topic…

22

Fall 2004 6.831 UI Design and Implementation 22

, ���������

� Use white space for grouping, instead of
lines
� Use margins to draw eye around design
� Integrate figure and ground
�Object should be scaled proportionally to

its background
� Don�t crowd controls together
�Crowding creates spatial tension and

inhibits scanning

White space plays an essential role in composition. Screen real estate is at a premium in
many graphical user interfaces, so it’s a constant struggle to balance the need for white
space against a desire to pack information and controls into a display. But insufficient
white space can have serious side-effects, making a display more painful to look at and
much slower to scan.
Put margins around all your content. Labels and controls that pack tightly against the
edge of a window are much slower to scan. When an object is surrounded by white
space, keep a sense of proportion between the object (the figure) and its surroundings
(ground). Don’t crowd controls together, even if you’re grouping the controls.
Crowding inhibits scanning, and produces distracting effects when two lines (such as the
edges of text fields) are too close. Many UI toolkits unfortunately encourage this
crowding by packing controls tightly together by default, but Java Swing (at least) lets
you add empty margins to your controls that give them a chance to breathe.

23

Fall 2004 6.831 UI Design and Implementation 23

Crowded Dialog

Image found in:

K. Mullet and D. Sano, "Designing visual interfaces: Communication-oriented techniques,“
Sunsoft Press, Prentice Hall (1995), p. 110.

Here’s an example of an overcrowded dialog. The dialog has no margins around the edges;

the controls are tightly packed together; and lines are used for grouping where white

space would be more appropriate. Screen real estate isn’t terribly precious in a transient

dialog box.

The crowding leads to some bad perceptual effects. Lines appearing too close together –

such as the bottom of the Spacing text field and the group line that surround it – blend

together into a thicker, darker line, making a wart in the design. A few pixels of white

space between the lines would completely eliminate this problem.

24

Fall 2004 6.831 UI Design and Implementation 24

Using White Space to Set Off Labels

Images found in:

K. Mullet and D. Sano, "Designing visual interfaces: Communication-oriented techniques,“
Sunsoft Press, Prentice Hall (1995), p. 96.

A particularly effective use of white space is to put labels in the left margin, where the

white space sets off and highlights them. In dialog box (a), you can’t scan the labels and

group names separately; they interfere with each other, as do the grouping lines. In the

redesigned dialog (b), the labels are now alone on the left, making them much easier to

scan.

For the same reason, you should put labels to the left of controls, rather than above.

25

Fall 2004 6.831 UI Design and Implementation 25

���
�������*�������������
�������

� Gestalt principles explain how eye creates a whole
(gestalt) from parts

��
���� �������� �
�����

��
���� ���� � ����

The power of white space for grouping derives from the Gestalt principle of proximity.
These principles, discovered in the 1920’s by the Gestalt school of psychologists,
describe how early visual processing groups elements in the visual field into larger
wholes. Here are the six principles identified by the Gestalt psychologists:
Proximity. Elements that are closer to each other are more likely to be grouped
together. You see four vertical columns of circles, because the circles are closer
vertically than they are horizontally.
Similarity. Elements with similar attributes are more likely to be grouped. You see
four rows of circles in the Similarity example, because the circles are more alike
horizontally than they are vertically.
Continuity. The eye expects to see a contour as a continuous object. You primarily
perceive the Continuity example above as two crossing lines, rather than as four lines
meeting at a point, or two right angles sharing a vertex.
Closure. The eye tends to perceive complete, closed figures, even when lines are
missing. We see a triangle in the center of the Closure example, even though its edges
aren’t complete.
Area. When two elements overlap, the smaller one will be interpreted as a figure in
front of the larger ground. So we tend to perceive the Area example as a small square in
front of a large square, rather than a large square with a hole cut in it.
Symmetry. The eye prefers explanations with greater symmetry. So the Symmetry
example is perceived as two overlapping squares, rather than three separate polygons.

26

Fall 2004 6.831 UI Design and Implementation 26

, ����������'(�����&������/����

0

10

20

30

40

50

Winter Spring Summer Fall

0

10

20

30

40

50

Winter Spring Summer Fall

Here’s an interesting idea from Tufte: get rid of the grid rules on a standard bar chart,
and use whitespace to show where the grid lines would cross the bars. It’s much less
noisy. (But alas, impossible to do automatically in Excel.)

