
ll i l i 1Fa 2004 6.831 UI Des gn and Imp ementat on

Lecture 14:

Heuristic Evaluation

1

Fall 2004 6.831 UI Design and Implementation 2

U IH allofFam e or Sham e?

Courtesy of Snapfish. Used with permission.

For today’s UI Hall of Fame and Shame, we’ll focus on the Rotate commands in photo browsers and drawing
editors. These commands rotate an image by 90 degree increments, either clockwise or counterclockwise.

In the Windows XP Image Viewer, the rotation commands are represented by toolbar buttons. Unfortunately,
the icons on these buttons don’t work well. They’re very similar to each other, and the arrow doesn’t stand
out (poor contrast). The icon tells a little story, showing before and after representations of a simplified
abstract object. That’s not such a bad thing in general, but it obscures the important differences between the
two icons and forces you to study them carefully to figure out what they mean. Worse, the mapping is
backwards: the Rotate Right button (with the right-pointing arrow) actually appears on the left.

The Snapfish web site (for storing and printing digital photo albums) has a neat solution to this problem. It
does away with the notion of rotating entirely; instead, you just click on the side of the photo that you want to
be on top. A little head-and-shoulders icon provides an affordance for clicking, while reminding about the
heads-up orientation. This interface is neat because the controls are directly mapped to their effect (the side
of the image that becomes the top). There’s no need to mention right or left, clockwise or counterclockwise,
or 90 or 180 degrees. The rotation is done by direct manipulation of the image itself. The labels are
unfortunate – particularly the unreadable upside-down label! -- but new idioms often need extra help at first.

2

ll i l i 3

’

•
l ld

i
l i

•
l

isibili
l ibili ici

•
i

iti ll
i i i

•
i ini li i

Fa 2004 6.831 UI Des gn and Imp ementat on

Nielsen s Heuristics

Meet expectations
1. Match the rea wor
2. Cons stency & standards
3. He p & documentat on

User is boss
4. User contro & freedom
5. V ty of system status
6. F ex ty & eff ency

Errors
7. Error prevent on
8. Recogn on, not reca
9. Error report ng, d agnos s, and recovery

Keep it simple
10. Aesthet c & m ma st des gn

Recall these 10 heuristics we discussed in an earlier lecture.

3

ll i l i 4

•
•
œ ly
œ i i i
œ Li ili l
• lai j i l i i i

Fa 2004 6.831 UI Des gn and Imp ementat on

Heuristic Evaluation

Performed by an expert
Steps

Inspect UI thorough
Compare UI aga nst heur st cs

st usab ty prob ems
Exp n & ust fy each prob em w th heur st cs

One application of these 10 heuristics is a usability inspection process called heuristic evaluation. Heuristic
evaluation was originally invented by Jakob Nielsen, and you can learn more about it on his web site. Nielsen
has done a number of studies to evaluate the effectiveness of heuristic evaluation. Those studies have shown
that heuristic evaluation’s cost-benefit ratio is quite favorable; the cost per problem of finding usability
problems in an interface is generally cheaper than alternative methods.

Heuristic evaluation is an inspection method. It is performed by a usability expert – someone who knows and
understands the heuristics we’ve just discussed, and has used and thought about lots of interfaces.

The basic steps are simple: the evaluator inspects the user interface thoroughly, judges the interface on the
basis of the heuristics we’ve just discussed, and makes a list of the usability problems found – the ways in
which individual elements of the interface deviate from the usability heuristics.

The Hall of Fame and Hall of Shame discussions we have at the beginning of each class are informal heuristic
evaluations. In particular, if you look back at previous lecture notes, you’ll see that most of the usability
problems are justified by appealing to a heuristic.

4

ll i l i 5

• i l i i ic
œ — i (i

Mini li i)“
œ ‘t j — ‘t li l “

• Li l
œ i i l ltipl l

• i l i
œ l
œ i i l i l

• ‘t limi l i i
œ ‘ isibili i ‘

l i l i ipl
œ i i i i

Fa 2004 6.831 UI Des gn and Imp ementat on

How To Do Heuristic Evaluation

Just fy every prob em w th a heur st
Too many cho ces on the home page Aesthet c &

ma st Des gn
Can ust say I don ke the co ors

st every prob em
Even f an nterface e ement has mu e prob ems

Go through the nterface at east tw ce
Once to get the fee of the system
Aga n to focus on part cu ar nterface e ements

Don t yourse f to the 10 heur st cs
We ve seen others: affordances, v ty, F tts s Law,
perceptua fus on, co or pr nc es
But the 10 heur st cs are eas er to compare aga nst

Let’s look at heuristic evaluation from the evaluator’s perspective. That’s the role you’ll be adopting in the next

homework, when you’ll serve as heuristic evaluators for each others’ computer prototypes.

Here are some tips for doing a good heuristic evaluation. First, your evaluation should be grounded in known usability

guidelines. You should justify each problem you list by appealing to a heuristic, and explaining how the heuristic is

violated. This practice helps remove most of the (inevitable) subjectivity involved in inspections: You can’t just say

“that’s an ugly yellow color.” (If it’s really yucky, you should pass that subjective opinion back to the design team, but

you’ll be forced to identify it as subjective if you can’t find a heuristic to justify it.)

List every problem you find. If a button has several problems with it – inconsistent placement, bad color combination,

confusing label – then each of those problems should be listed separately. Some of the problems may be more severe than

others, and some may be easier to fix than others. It’s best to get all the problems on the table in order to make these

tradeoffs.

Inspect the interface at least twice. The first time you’ll get an overview and a feel for the system. The second time, you

should focus carefully on individual elements of the interface, one at a time.

Finally, although you have to justify every problem with a guideline, you don’t have to limit yourself to the Nielsen 10.

We’ve seen a number of specific usability principles that can serve equally well: affordances, visibility, Fitts’s Law,

perceptual fusion, color guidelines, graphic design rules are a few. The Nielsen 10 are helpful in that they’re a short list that

covers a wide spectrum of usability problems. For each element of the interface, you can quickly look down the Nielsen

list to guide your thinking.

5

ll i l i 6Fa 2004 6.831 UI Des gn and Imp ementat on

Let’s try it on an example. Here’s a partial heuristic evaluation of the screen shown above. Can you find any
other usability issues?

1. Shopping cart icon is not balanced with its background whitespace (Aesthetic & minimalist design)

2. Good: user is greeted by name (Visibility of system status)

3. Red is used both for help messages and for error messages (Consistency, Match real world)

4. “There is a problem with your order”, but no explanation or suggestions for resolution (Error reporting)

5. ExtPrice and UnitPrice are strange labels (Match real world)

6. Remove Hardware button inconsistent with Remove checkbox (Consistency)

7. "Click here“ is unnecessary (Aesthetic & minimalist design)

8. No “Continue shopping" button (User control & freedom)

9. Recalculate is very close to Clear Cart (Error prevention)

10. “Check Out” button doesn’t look like other buttons (Consistency, both internal & external)

11. Uses “Cart Title” and “Cart Name” for the same concept (Consistency)

12. Must recall and type in cart title to load (Recognition not recall, Error prevention, Flexibility & efficiency)

6

ll i l i 7

• l i i
œ l i i l

• l i i i
• i l i
œ i
œ Fi ‘ l

• i l ili

Fa 2004 6.831 UI Des gn and Imp ementat on

Heuristic Evaluation Is Not User Testing

Eva uator s not the user e ther
Maybe c oser to be ng a typ ca user than
you are, though

Ana ogy: code nspect on vs. test ng
HE f nds prob ems that UT often m sses

Incons stent fonts
tts s Law prob ems

But UT s the go d standard for usab ty

Heuristic evaluation is only one way to evaluate a user interface. User testing -- watching users interact with
the interface – is another. User testing is really the gold standard for usability evaluation. An interface has
usability problems only if real users have real problems with it, and the only sure way to know is to watch and
see.

A key reason why heuristic evaluation is different is that an evaluator is not a typical user either! They may be
closer to a typical user, however, in the sense that they don’t know the system model to the same degree that
its designers do. And a good heuristic evaluator tries to think like a typical user. But an evaluator knows too
much about user interfaces, and too much about usability, to respond like a typical user.

So heuristic evaluation is not the same as user testing. A useful analogy from software engineering is the
difference between code inspection and testing.

Heuristic evaluation may find problems that user testing would miss (unless the user testing was extremely
expensive and comprehensive). For example, heuristic evaluators can easily detect problems like inconsistent
font styles, e.g. a sans-serif font in one part of the interface, and a serif font in another. Adapting to the
inconsistency slows down users slightly, but only extensive user testing would reveal it. Similarly, a heuristic
evaluation might notice that buttons along the edge of the screen are not taking proper advantage of the Fitts’s
Law benefits of the screen boundaries, but this problem might be hard to detect in user testing.

7

ll i l i 8

• ltipl l
œ Di l i i l
œ imini i
œ Niel l

• Al i i l i i
i

œ i i l
œ i i l i i

• ‘ l l
œ l l l
œ i l ‘ i

Fa 2004 6.831 UI Des gn and Imp ementat on

Hints for Better Heuristic Evaluation

Use mu e eva uators
fferent eva uators f nd d fferent prob ems

The more the better, but d sh ng returns
sen recommends 3-5 eva uators

ternate heur st c eva uat on w th user
test ng

Each method f nds d fferent prob ems
Heur st c eva uat on s cheaper

It s OK for observer to he p eva uator
As ong as the prob em has a ready been noted
Th s wou dn t be OK n a user test

Now let’s look at heuristic evaluation from the designer’s perspective. Assuming I’ve decided to use this
technique to evaluate my interface, how do I get the most mileage out of it?

First, use more than one evaluator. Studies of heuristic evaluation have shown that no single evaluator can
find all the usability problems, and some of the hardest usability problems are found by evaluators who find
few problems overall (Nielsen, “Finding usability problems through heuristic evaluation”, CHI ’92). The
more evaluators the better, but with diminishing returns: each additional evaluator finds fewer new problems.
The sweet spot for cost-benefit, recommended by Nielsen based on his studies, is 3-5 evaluators.

One way to get the most out of heuristic evaluation is to alternate it with user testing in subsequent trips
around the iterative design cycle. Each method finds different problems in an interface, and heuristic
evaluation is almost always cheaper than user testing. Heuristic evaluation is particularly useful in the tight
inner loops of the iterative design cycle, when prototypes are raw and low-fidelity, and cheap, fast iteration is
a must.

In heuristic evaluation, it’s OK to help the evaluator when they get stuck in a confusing interface. As long as
the usability problems that led to the confusion have already been noted, an observer can help the evaluator get
unstuck and proceed with evaluating the rest of the interface, saving valuable time. In user testing, this kind of
personal help is totally inappropriate, because you want to see how a user would really behave if confronted
with the interface in the real world, without the designer of the system present to guide them. In a user test,
when the user gets stuck and can’t figure out how to complete a task, you usually have to abandon the task and
move on to another one.

8

ll i l i 9

ini
œ i i l
œ li i
œ lai l i i i

l i
œ l ly
œ i l

œ i l i i i
œ l

i i
œ l i iti ll l j i)
œ l ‘ i

i i
œ l i i l i l i

Fa 2004 6.831 UI Des gn and Imp ementat on

Form alEvaluation Process

1. Tra ng
Meet ng for des gn team & eva uators
Introduce app cat on
Exp n user popu at on, doma n, scenar os

2. Eva uat on
Eva uators work separate
Generate wr tten report, or ora comments recorded by an
observer
Focus on generat ng prob ems, not on rank ng the r sever ty yet
1-2 hours per eva uator

3. Sever ty Rat ng
Eva uators pr or ze a prob ems found (not ust the r own
Take the mean of the eva uators rat ngs

4. Debr ef ng
Eva uators & des gn team d scuss resu ts, bra nstorm so ut ons

Here’s a formal process for performing heuristic evaluation.

The training meeting brings together the design team with all the evaluators, and brings the evaluators up to
speed on what they need to know about the application, its domain, its target users, and scenarios of use.

The evaluators then go off and evaluate the interface separately. They may work alone, writing down their
own observations, or they may be observed by a member of the design team, who records their observations
(and helps them through difficult parts of the interface, as we discussed earlier). In this stage, the evaluators
focus just on generating problems, not on how important they are or how to solve them.

Next, all the problems found by all the evaluators are compiled into a single list, and the evaluators rate the
severity of each problem. We’ll see one possible severity scale in the next slide. Evaluators can assign
severity ratings either independently or in a meeting together. Since studies have found that severity ratings
from independent evaluators tend to have a large variance, it’s best to collect severity ratings from several
evaluators and take the mean to get a better estimate.

Finally, the design team and the evaluators meet again to discuss the results. This meeting offers a forum for
brainstorming possible solutions, focusing on the most severe (highest priority) usability problems.

When you do heuristic evaluations in this class, I suggest you follow this ordering as well: first focus on
generating as many usability problems as you can, then rank their severity, and then think about solutions.

9

ll i l i

• i i
œ
œ
œ i

• i le
i i

Mi ixi l i i
j ixi i i i

i i i ix

Fa 2004 6.831 UI Des gn and Imp ementat on 10

Severity Ratings

Contr but ng factors
Frequency: how common?
Impact: how hard to overcome?
Pers stence: how often to overcome?

Sever ty sca
1. Cosmet c: need not be f xed
2. nor: needs f ng but ow pr or ty
3. Ma or: needs f ng and h gh pr or ty
4. Catastroph c: mperat ve to f

Here’s one scale you can use to judge the severity of usability problems found by heuristic evaluation. It helps
to think about the factors that contribute to the severity of a problem: its frequency of occurrence (common or
rare); its impact on users (easy or hard to overcome), and its persistence (does it need to be overcome once or
repeatedly). A problem that scores highly on several contributing factors should be rated more severe than
another problem that isn’t so common, hard to overcome, or persistent.

10

ll i l i

• i i l i
œ

œ

œ l
Mi i l “ l

i
œ ‘ ll i

i ‘ l ‘s

œ

Fa 2004 6.831 UI Des gn and Imp ementat on 11

Evaluating Prototypes

Heur st c eva uat on works on:
Sketches
Paper prototypes
Unstab e prototypes

• — ss ng-e ement prob ems are harder
to f nd on sketches

Because you re not actua y us ng the
nterface, you aren t b ocked by feature
absence
Look harder for them

A final advantage of heuristic evaluation that’s worth noting: heuristic evaluation can be applied to interfaces
in varying states of readiness, including unstable prototypes, paper prototypes, and even just sketches. When
you’re evaluating an incomplete interface, however, you should be aware of one pitfall. When you’re just
inspecting a sketch, you’re less likely to notice missing elements, like buttons or features essential to
proceeding in a task. If you were actually interacting with an active prototype, essential missing pieces rear
up as obstacles that prevent you from proceeding. With sketches, nothing prevents you from going on: you
just turn the page. So you have to look harder for missing elements when you’re heuristically evaluating static
sketches or screenshots.

11

ll i l i

• i i l i i ll
l

• l iti ll itici
l i i l i

l (mini li i)“
• l
œ — i i i l “
œ — i i “

• ific
œ — i le“
œ — i ll (bl

)“

Fa 2004 6.831 UI Des gn and Imp ementat on 12

W riting Good Heuristic Evaluations

Heur st c eva uat ons must commun cate we to
deve opers and managers
Inc ude pos ve comments as we as cr sms
œ —Good: Too bar cons are s mp e, w th good contrast and few

co ors ma st des gn
Be tactfu

Not: the menu organ zat on s a comp ete mess
Better: menus are not organ zed by funct on

Be spec
Not: text s unreadab
Better: text s too sma , and has poor contrast ack text
on dark green background

Here are some tips on writing good heuristic evaluations. First, remember your audience: you’re trying to
communicate to developers. Don’t expect them to be experts on usability, and keep in mind that they have
some ego investment in the user interface. Don’t be unnecessarily harsh.

Although the primary purpose of heuristic evaluation is to identify problems, positive comments can be
valuable too. If some part of the design is good for usability reasons, you want to make sure that aspect
doesn’t disappear in future iterations.

12

ll i l i

• i l
œ l
œ i ic
œ i i
œ i
œ i i
œ i l l)

(
i

i i l
wi i l il i i i
dial

i i i ial
i lly

Fa 2004 6.831 UI Des gn and Imp ementat on 13

Suggested Report Form at

What to nc ude:
Prob em
Heur st
Descr pt on
Sever ty
Recommendat on (f any)
Screenshot (f he pfu

12. Severe: User may close window without saving data error
prevent on)

If the user has made changes w thout sav ng, and then c oses the
ndow us ng the C ose button, rather than F e >> Ex t, no conf rmat on

og appears.

Recommendat on: show a conf rmat on d og
or save automat ca

13

