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Lecture 16: 

Experim ent Design 
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U IH allofFam e or Sham e? 

Today’s candidate for the Hall of Fame or Shame is adaptive menus, a feature of Microsoft Office. 
Initially, a menu shows only the most commonly used commands. Clicking on the arrow at the 
bottom of the menu expands it to show all available commands. Adaptive menus track how often a 
user invokes each command, in order to display frequently-used commands and recently-used 
commands. 

This interface is striving for a compromise between simplicity (i.e., providing as few features as 
possible) and task analysis (supporting the tasks required by many users, and trying to adapt to the 
common tasks of each individual user). Both properties are important for usability. Unfortunately 
they also compete with each other. Adaptive menus are an interesting hybrid technique that’s trying 
to satisfy both. 

The downside is lack of predictability. Because the menu may change in complex and unpredictable 
ways – with new items appearing and underused items disappearing for no visible reason – the user 
can no longer rely on a lot of useful cues to find menu items. One of these cues that’s lost is spatial 
memory – Paste may be found at different distances down the menu each time the menu appears. 
Another missing cue is context: Paste’s neighbors may change as well. 

Another downside is lack of user control. The adaptation happens automatically; the user can’t 
manually fixate or remove items from a menu. 

This particular implementation of adaptive menus has some specific usability problems. When the 
full menu appears, the new items are inserted into place, and there’s very little contrast in the 
graphic design to distinguish between the old items and the new items. So the user has to search 
through the entire menu again. 

But this particular implementation addresses other usability problems very well. When the user is 
hunting through all the menus, looking for a command, the full menu only has to be requested once; 
then all subsequent menus are fully displayed. 
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Today’s Topics 

Exper ment des gn 

Today’s lecture covers some of the issues involved in designing a controlled experiment. The issues 
are general to all scientific experiments, but we’ll look specifically at how they apply to user 
interface testing. 
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Controlled Experim ent 

• Start with a testable hypothesis 
œ Interface X is faster than interface Y 

• Manipulate independent variables 
œ different interfaces, user classes, tasks 

• Measure dependent variables 
œ times, errors, satisfaction 

• Use statistical tests to accept or reject 
the hypothesis 

Here’s a high-level overview of a controlled experiment. You start by stating a clear, testable 
hypothesis. By testable, we mean that the hypothesis must be quantifiable and measurable. For 
example, your hypothesis might be, “menu bars are faster than a Gimp-style right-click menu with 
hierarchical submenus”. Here’s another example that we’ll use throughout this lecture: suppose 
you’ve developed two materials for the soles of children’s shoes. Then your hypothesis might be, 
“material A wears slower than material B.” 

You then choose your independent variables – the variables you’re going to manipulate in order to 
test the hypothesis. In our example, the independent variable is the kind of interface, menubar or 
right-click menu. Other independent variables may also be useful. For example, you may want to 
test your hypothesis on different user classes (novices and experts, or Windows users and Mac 
users). You may also want to test it on certain kinds of tasks. For example, in one kind of task, the 
menus might have an alphabetized list of names; in another, they might have functionally-grouped 
commands. In the shoe sole example, the independent variable would be the type of material used to 
make the shoe sole. 

You also have to choose the dependent variables, the variables you’ll actually measure in the 
experiment to test the hypothesis. Typical dependent variables in user testing are time, error rate, 
event count (for events other than errors – e.g., how many times the user used a particular command), 
and subjective satisfaction (usually measured by a questionnaire). In the shoe example, the 
dependent variable might be the thickness of the sole after a subject has worn it for a while. 

Finally, you use statistical techniques to analyze how your changes in the independent variables 
affected the dependent variables, and whether those effects are significant (indicating a genuine 
cause-and-effect) or not (merely the result of chance or noise). We’ll say a little more about statistical 
tests in the next lecture. 
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Exam ple: Fittss Law or M enubars 

Hypothes s: Mac menu bar s faster 
than W ndows menu bar 
Independent: pos on of menu bar 
Dependent: t me to reach menu bar 

Here’s an example of a hypothesis that we might want to test: that the Macintosh menu bar, which is

anchored to the top of the screen, is faster to access than the Windows menu bar, which is separated

from the top of the screen by a window title bar.


The independent variable here is the position of the menu bar: either y = 0 or y = 16 (or whatever the

height of the title bar is).


The dependent variable we might measure is time: how long it takes the user to move the mouse up

to the menu bar and click on a particular target menu to pull it down.
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Schem atic View ofExperim ent Design 

Process 
ndependent 
var ab es 

dependent 
var ab es 

unknown uncontro ed 
var ab es 

Y = f

Here’s a block diagram to help you visualize what we’re trying to do with experiment design. Think 
of the process you’re trying to understand (e.g., menu selection) as a black box, with lots of inputs 
and a few outputs. A controlled experiment twiddles some of the input knobs on this box (the 
independent variables) and observes some of the outputs (the dependent variables) to see how they 
are affected. 

The problem is that there are many other input knobs as well (unknown/uncontrolled variables), that 
may affect the process we’re observing in unpredictable ways. The purpose of experiment design is 
to eliminate the effect of these unknown variables, or at least render harmless, so that we can draw 
conclusions about how the independent variables affect the dependent variables. 

What are some of these unknown variables? Let’s consider the shoe example. Many factors might 
affect the rate of wear of a shoe sole: the kind of surface walked on; the weight of the child; the way 
they walk (e.g., dragging their feet); their overall level of activity (sedentary or athletic); the kinds of 
activities they do (dancing vs. bicycling); maybe even the ambient temperature (which might soften 
the sole). All of these are unknown variables that might affect the dependent variable (amount of 
wear). 
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Concerns Driving Experim ent Design 

Interna va ty 
Are observed resu ts actua caused by 
the ndependent var ab es? 

Externa va ty 
Can observed resu ts be generalized to 
the wor d outs de the ab? 

Re ab ty 
cons stent resu ts be obta ned by 

repeating the exper ment? 

Unknown variation is the bugaboo in experiment design, and here are the three main problems it can 
cause. 

Internal validity refers to whether the effect we see on the experiment outputs was actually caused 
by the changes we made to the inputs, or caused by some unknown variable that we didn’t control or 
measure. For example, suppose we designed the shoe experiment so that sneakers made with 
material A were given to boys, and sneakers made with material B were given to girls. This 
experiment wouldn’t be internally valid, because we can’t be sure whether different amounts of wear 
are due to the difference in materials, or to some (unknown) difference in the behavior of boys and 
girls. (Statisticians call this effect confounding; when a variable that we didn’t control has a 
systematic effect on the dependent variables, it’s a confounding variable.) 

One way to address internal validity is to hold variables constant, as much as we can: for example, 
conducting all user tests in the same room, with the same lighting, the same computer, the same 
mouse and keyboard, the same tasks, the same training. The cost of this approach is external 
validity, which refers to whether the effect we see can be generalized to the world outside the lab, 
i.e. when those variables are not controlled. If we tried to control all the factors that might affect 
shoe sole wear – choosing a single surface, with one designated activity, by a single person – then it 
would be hard to argue that our lab experiment generalizes to how soles might wear in the varying 
conditions encountered in the real world. 

Finally, reliability refers to whether the effect we see (the relationship between independent and 
dependent variables) is repeatable. If we ran the experiment again, would we see the same effect? If 
our experiment tested only one pair of shoes, even if we held constant every variable we could think 
of, unknown variations will still cause error in the experiment. A single data sample is rarely a 
reliable experiment. 
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Threats to InternalValdity 

Order ng effects 
Peop earn, and peop e get t red 
Don t present tasks or nterfaces n same order for a users 
Random ze or counterba ance the order ng 

Se ect on effects 
Don t use pre-ex st ng groups un ess group s an ndependent 
var ab
Random y ass gn users to ndependent var ab es 

Exper menter b as 
Exper menter may be enthus ast c about nterface X but not Y 

ve tra ng and br ef ngs on paper, not n person 
Prov de equ va ent tra ng for every nterface 
Doub e-b nd exper ments prevent both sub ect and exper menter 
from know ng s cond on X or Y 

Essent f measurement of dependent var ab es requ res udgement 

Let’s look closer at typical dangers to internal validity, and some solutions to them. You’ll notice that the solutions come 
in two flavors: randomization (which prevents unknown variables from having systematic effects on the dependent 
variables) and control (which tries to hold unknown variables constant). 

Ordering effects refer to the order in which different levels of the independent variables are applied. For example, does 
the user work with interface X first, and then interface Y, or vice versa? There are two effects from ordering: first, people 
learn. They may learn something from using interface X that helps them do better (or worse) with interface Y. Second, 
people get tired or bored. After doing many tasks with interface X, they may not perform as well on interface Y. Clearly, 
holding the order constant threatens internal validity, because the ordering may be responsible for the differences in 
performance, rather than inherent qualities of the interfaces. The solution to this threat is randomization: present the 
interfaces, or tasks, or other independent variables in a random order to each user. 

Selection effects arise when you use pre-existing groups as a basis for assigning different levels of an independent 
variable. Our earlier example in which A-shoes were given to boys and B-shoes to girls was an obvious selection effect. 
More subtle selection effects can arise, however. Suppose you let the kids line up, and then assigned A-shoes to the first 
half of the line, and B-shoes to the second half. This procedure seems “random”, but it isn’t – the kids may line up with 
their friends, and groups of friends tend to have similar activities. The only safe way to eliminate selection effects is 
honest randomization. 

A third important threat to internal validity is experimenter bias. After all, you have a hypothesis, and you’re hoping it 
works out – you’re rooting for interface X. This bias is an unknown variable that may affect the outcome, since you’re 
personally interacting with the user whose performance you’re measuring. One way to address experimenter bias is 
controlling the protocol of the experiment, so that it doesn’t vary between the interface conditions. Provide equivalent 
training for both interfaces, and give it on paper, not live. 

An even better technique for eliminating experimenter bias is the double-blind experiment, in which neither the subject 
nor the experimenter knows which condition is currently being tested. Double-blind experiments are the standard for 
clinical drug trials, for example; neither the patient nor the doctor knows whether the pill contains the actual experimental 
drug, or just a placebo. With user interfaces, double-blind tests may be impossible, since the interface condition is often 
obvious on its face. (Not always, though! The behavior of cascading submenus isn’t obviously visible.) 

Experimenter-blind tests are essential if measurement of the dependent variables requires some subjective judgement. 
Suppose you’re developing an interface that’s supposed to help people compose good memos. To measure the quality of 
the resulting memos, you might ask some people to evaluate the memos created with the interface, along with memos 
created with a regular word processor. But the memos should be presented in random order, and you should hide the 
interface that created each memo from the judge, to avoid bias. 
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Threats to ExternalValdity 

Popu at on 
Draw a random samp e from your rea target 
popu at on 

Eco og ca
Make ab cond ons as rea st c as poss
mportant respects 

Tra ng 
Tra ng shou d m c how rea nterface wou d be 
encountered and earned 

Task 
Base your tasks on task ana ys

Here are some threats to external validity that often come up in user studies. If you’ve done a 
thorough user analysis and task analysis, in which you actually went out and observed the real world, 
then it’s easier to judge whether your experiment is externally valid. 

Population asks whether the users you sampled are representative of the target user population. Do 
your results apply to the entire user population, or only to the subgroup you sampled? The best way 
to ensure population validity is to draw a random sample from your real target user population. But 
you can’t really, because users must choose, of their own free will, whether or not to participate in a 
study. So there’s a self-selection effect already in action. The kinds of people who participate in 
user studies may have unknown variables (curiosity? sense of adventure? poverty?) that threaten 
external validity. But that’s an inevitable effect of the ethics of user testing. The best you can do is 
argue that on important, measurable variables – demographics, skill level, experience – your sample 
resembles the overall target user population. 

Ecological validity asks whether conditions in the lab are like the real world. An office environment 
would not be an ecologically valid environment for studying an interface designed for the dashboard 
of a car, for example. 

Training validity asks whether the interfaces tested are presented to users in a way that’s realistic to 
how they would encounter them in the real world. A test of an ATM machine that briefed each user 
with a 5-minute tutorial video wouldn’t be externally valid, because no ATM user in the real world 
would watch such a video. For a test of an avionics system in an airplane cockpit, on the other hand, 
even hours of tutorial may be externally valid, since pilots are highly trained. 

Similarly, task validity refers to whether the tasks you chose are realistic and representative of the 
tasks that users actually face in the real world. If you did a good task analysis, it’s not hard to argue 
for task validity. 
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Threats to Relabi ty 

Uncontro ed var at on 
Prev ous exper ence 

Nov ces and experts: separate nto d fferent c asses, or use on y one c ass 
User d fferences 

Fastest users are 10 times faster than s owest users 
Task des gn 

Do tasks measure what you re try ng to measure? 
Measurement error 

me on task may nc ude cough ng, scratch ng, d stract ons 
So ut ons 

nate uncontro ed var at on 
Se ect users for certa n exper ence or ack thereof

ve a users the same tra ng 
Measure dependent var ab es prec se

Repet on 
Many users, many tr
Standard dev at on of the mean shr nks ke the square root of N .e., quadrup ng 
users makes the mean tw ce as accurate

Once we’ve addressed internal validity problems by either controlling or randomizing the unknowns, 
reliability is what’s left. 

Here’s a good way to visualize reliability: imagine a bullseye target. The center of the bullseye is the true 
effect that the independent variables have on the dependent variables. Using the independent variables, you 
try to aim at the center of the target, but the uncontrolled variables are spoiling your aim, creating a spread 
pattern. If you can reduce the amount of uncontrolled variation, you’ll get a tighter shot group, and more 
reliable results. 

One kind of uncontrolled variation is a user’s previous experience. Users enter your lab with a whole lifetime 
of history behind them, not just interacting with computers but interacting with the real world. You can limit 
this variation somewhat by screening users for certain kinds of experience, but take care not to threaten 
external validity when you artificially restrict your user sample. 

Even more variation comes from differences in ability – intelligence, visual acuity, memory, motor skills. The 
best users are 10 times better than the worst, an enormous variation that may swamp a tiny effect you’re 
trying to detect. 

Other kinds of uncontrolled variation arise when you can’t directly measure the dependent variables. For 
example, the tasks you chose to measure may have their own variation, such as the time to understand the task 
itself, and errors due to misunderstanding the task, which aren’t related to the difficulty of the interface and act 
only to reduce the reliability of the test. Time is itself a gross measurement which may include lots of activities 
unrelated to the user interface: coughing, sneezing, asking questions, responding to distractions. 

One way to improve reliability eliminates uncontrolled variation by holding variables constant: e.g., selecting 
users for certain experience, giving them all identical training, and carefully controlling how they interact with 
the interface so that you can measure the dependent variables precisely. If you control too many unknowns, 
however, you have to think about whether you’ve made your experiment externally invalid, creating an 
artificial situation that no longer reflects the real world. 

The main way to make an experiment reliable is repetition. We run many users, and have each user do many 
trials, so that the mean of the samples will approach the bullseye we want to hit. As you may know from 
statistics, the more trials you do, the closer the sample mean is likely to be to the true value. (Assuming the 
experiment is internally valid of course! Otherwise, the mean will just get closer and closer to the wrong 
value.) Unfortunately, the standard deviation of the sample mean goes down slowly, proportionally to the 
square root of the number of samples N. So you have to quadruple the number of users, or trials, in order to 
double reliability. 
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Blocking 

de samp es nto subsets wh ch are more 
homogeneous than the who e set 

Lots of var at on between feet of d fferent k ds 
But the feet on the same k d are far more homogeneous 
Each ch s a b ock 

App y a cond ons w th n each b ock 
Put mater A on one foot, mater B on the other 

Measure d fference w th n b ock 
Wear Wear

Random ze w th n the b ock to e nate nterna
va ty threats 

Random y put A on eft foot or r ght foot 

Blocking is another good way to eliminate uncontrolled variation, and therefore increase reliability. 
The basic idea is to divide up your samples up into blocks that are more homogeneous than the 
whole set. In other words, even if there is lots of uncontrolled variation between blocks, the blocks 
should be chosen so that there is little variation within a block. Once you’ve blocked your data, you 
apply all the independent variable conditions within each block, and compare the dependent 
variables only within the block. 

Blocking is a natural technique for the shoe sole material example. There’s much uncontrolled 
variation between feet of different children – how they behave, where they live and walk and play – 
but the two feet of the same child both see very similar conditions by comparison. So we treat each 
child as a block, and apply one sole material to one foot, and the other sole material to the other foot. 
Then we measure the difference between the sole wear as our dependent variable. This technique 
prevents inter-child variation from swamping the effect we’re trying to see. 

In agriculture, blocking is done in space. A field is divided up into small plots, and all the treatments 
(pesticides, for example) are applied to plants in each plot. Even though different parts of the field 
may differ widely in soil quality, light, water, or air quality, plants in the same plot are likely to be 
living in very similar conditions. 

Blocking helps solve reliability problems, but it doesn’t address internal validity. What if we always 
assigned material A to the left foot, and material B to the right foot? Since most people are right-
handed and left-footed, some of the difference in sole wear may be caused by footedness, and not by 
the sole material. So you should still randomize assignments within the block. 
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Betw een Subjects vs.W ithin Subjects 

Between sub ects des gn 
Users are d ded nto two groups: 

One group sees on nterface X 
Other group sees on nterface Y 

Resu ts are compared between fferent groups 
Is mean > mean

nates var at on due to order ng effects 
User can earn from one nterface to do better on the other 

th n sub ects des gn 
Each user sees both nterface X and Y n random order
Resu ts are compared within each user 

For user , compute the d fference x -y
Is mean -y > 0? 

nates var at on due to user d fferences 
User on y compared w th se

The idea of blocking is what separates two commonly-used designs in user studies that compare two 
interfaces. Looking at these designs also gives us an opportunity to review some of the concepts 

A between-subjects design is unblocked. Users are randomly divided into two groups. These 
groups aren’t blocks! Why? First, because they aren’t more homogeneous than the whole set – they 
were chosen randomly, after all. And second, because we’re going to apply only one independent 
variable condition within each group. One group uses only interface X, and the other group uses only 
interface Y. The mean performance of the X group is then compared with the mean performance of 
the Y group. This design eliminates variation due to interface ordering effects. Since users only see 
one interface, they can’t transfer what they learned from one interface to the other, and they won’t be 
more tired on one interface than the other. But it suffers from reliability problems, because the 
differences between the interfaces may be swamped by the innate differences between users. As a 
result, you need more repetition – more users – to get reliable and significant results from a between 
subjects design. 

A within-subjects design is blocked by user. Each user sees both interfaces, and the differential 
performance (performance on X – performance on Y) of all users is averaged and compared with 0. 
This design eliminates variation due to user differences, but may have reliability problems due to 
ordering effects. 

Which design is better? User differences cause much more variation than ordering effects, so the 
between-subjects design needs more users than the within-subjects design. But the between-subjects 
design may be more externally valid. 
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Design ofthe M enubar Experim ent 

Users 
ndows users or Mac users? 

Age, handedness? 
How to samp e them? 

th n- or between-sub ects? 
Imp ementat on 

Rea ndows vs. rea Mac 
Art ndow manager that ets us contro menu bar pos on 

Tasks 
Rea st c: word process ng, ema , web brows ng 
Art : repeated y po nt ng at fake menu bar 

Measurement 
When does movement start and end? 

Order ng 
of tasks and nterface cond ons 

Hardware 
mouse, trackba , touchpad, oyst ck? 
PC or Mac? wh ch part cu ar mach ne? 

Let’s return to the menubar example, where we want to test the hypothesis that the Mac menu bar is faster to

reach than the Windows menu bar. Here are some of the issues we’d have to consider in designing this study.

First, what user population do we want to sample? Does experience matter? Windows users will be more

experienced with one kind of menu bar, and Mac users with the other. On the other hand, the model

underlying our hypothesis (Fitts’s Law) is largely independent of long-term memory or practice, so we might

expect that experience doesn’t matter. But that’s another hypothesis we should test, so maybe past experience

should be an independent variable that we select when sampling.

How do we sample the user population we want? The most common technique is advertising around a college

campus, but this biases against older users and less-educated users. Any sampling method has biases; you have

to collect demographic information, report it, and worry about whether the bias influences your data.

Should this be a within-subjects or between-subjects study? In a within-subjects study, each user will use both

the Mac menu bar and the Windows menu bar; in the between-subjects study, they’ll use only one. The

biggest question here is, which is larger: individual variation between users, or learning effects between

interfaces used by the same user? A within-subjects design would probably be best here, since it has higher

power, and we want to test expert usage, so learning effects should be minimized.

What implementation should we test? One possibility is to test the menu bars in their real context: inside the

Mac interface, and inside the Windows interface, using real applications and real tasks. This gives more

external validity, but the problem is now the presence of confounding variables -- the size of the menu bars

might be different, the reading speed of the font, the mouse acceleration parameters, etc. We need to control

for as many of these variables as we can. Another possibility is implementing our own window manager that

holds these variables constant and merely changes the position of the menu bar.

What tasks should we give the user? Again, having the user use the menu bar in the context of realistic tasks

might provide more external validity; but it would also be noisier. An artificial experiment that simply

displays a menu bar and cues the user to hit various targets on it would provide more reliable results. But then

the user’s mouse would always be in the menu bar, which isn’t at all realistic. We’d need to force the user to

move the mouse out of the menu bar between trials, perhaps to some home location in the middle of the

screen.

How do we measure dependent variable, time? Maybe from the time the user is given the cue (“click Edit”) to

the time the user successfully clicks on Edit.

What order should we present the tasks and the interface conditions, to deal with learning effects? Since we’re

doing a within-subjects study, we should randomize the order of interface conditions and of tasks.

Finally, the hardware we use for the study can introduce lots of confounding variables. We should use the

same computer for the entire experiment.
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