
1

Fall 2004 6.831 UI Design and Implementation 1

Lecture 3:

UI Software Architecture

2

Fall 2004 6.831 UI Design and Implementation 2

UI Hall of Fame or Shame?

This message used to appear when you tried to delete the contents of your Internet Explorer cache

from within the Windows Explorer.

Put aside the fact that the message is almost tautological (“Cookie… is a Cookie”) and overexcited

(“!!”). Does it give the user enough information to make a decision? What’s a Cookie? What will

happen if I delete it? Don’t ask questions the user can’t answer.

3

Fall 2004 6.831 UI Design and Implementation 3

Hall of Shame

And definitely don’t ask more than once. There may be hundreds of cookies cached in the browser;

this dialog box appears for each one the user selected.

There’s something missing from the dialog, whose absence becomes acute once the dialog appears a

few times: a Cancel button. Always give users a way to escape.

4

Fall 2004 6.831 UI Design and Implementation 4

Hall of Fame or Shame?

One way to fix the too-many-questions problem is Yes To All and No To All buttons, which short-

circuit the rest of the questions by giving a blanket answer. That’s a helpful shortcut, but this

example shows that it’s not a panacea.

This dialog is from Microsoft’s Web Publishing Wizard, which uploads local files to a remote web

site. Since the usual mode of operation in web publishing is to develop a complete copy of the web

site locally, and then upload it to the web server all at once, the wizard suggests deleting files on the

host that don’t appear in the local files, since they may be orphans in the new version of the web site.

But what if you know there’s a file on the host that you don’t want to delete? You’d have to say No

to every dialog until you found that file.

5

Fall 2004 6.831 UI Design and Implementation 5

Hall of Fame

If your interface has a potentially large number of related questions to ask the user, it’s much better

to aggregate them into a single dialog. Provide a list of the files, and ask the user to select which

ones should be deleted. Select All and Unselect All buttons would serve the role of Yes to All and

No to All.

Here’s an example of how to do it right, provided by IBM Eclipse. If there’s anything to criticize in

Eclipse’s dialog box, it might be the fact that it initially doesn’t show the filenames, just their count -

-- you have to press Details to see the whole dialog box. Simply knowing the number of files not

under CVS control is rarely enough information to decide whether you want to say yes or no, so

most users are likely to press Details anyway.

Nevertheless, this deserves to be in the hall of fame.

6

Fall 2004 6.831 UI Design and Implementation 6

Today’s Topics

• Model-view-controller

• View hierarchy

• Observer

Starting with today’s lecture, we’ll be talking about how graphical user interfaces are implemented.

Today we’ll take a high-level look at the software architecture of GUI software, focusing on the

design patterns that have proven most useful. Three of the most important patterns are the model-

view-controller abstraction, which has evolved somewhat since its original formulation in the early

80’s; the view hierarchy, which is a central feature in the architecture of every popular GUI toolkit;

and the observer pattern, which is essential to decoupling the model from the view and controller.

7

Fall 2004 6.831 UI Design and Implementation 7

Model-View-Controller Pattern

• Separates frontend concerns from backend
concerns

• Separates input from output

• Permits multiple views on the same
application data

• Permits views/controllers to be reused for
other models

• Example: text box
– Model: mutable string

– View: rectangle with text drawn in it

– Controller: keystroke handler

The model-view-controller pattern, originally articulated in the Smalltalk-80 user interface, has

strongly influenced the design of UI software ever since. In fact, MVC may have single-handedly

inspired the software design pattern movement; it figures strongly in the introductory chapter of the

seminal “Gang of Four” book (Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements of

Reusable Software).

MVC’s primary goal is separation of concerns. It separates the user interface frontend from the

application backend, by putting backend code into the model and frontend code into the view and

controller. MVC also separates input from output; the controller is supposed to handle input, and the

view is supposed to handle output.

In principle, this separation has several benefits. First, it allows the interface to have multiple views

showing the same application data. For example, a database field might be shown in a table and in

an editable form at the same time. Second, it allows views and controllers to be reused for other

models, in other applications. The MVC pattern enables the creation of user interface toolkits, which

are libraries of reusable interface objects.

In practice, the MVC pattern doesn’t quite work out the way we’d like. We’ll see why.

A simple example of the MVC pattern is a text box widget. Its model is a mutable string of

characters. The view is an object that draws the text on the screen (usually with a rectangle around it

to indicate that it’s an editable text field). The controller is an object that receives keystrokes typed

by the user and inserts them in the string.

8

Fall 2004 6.831 UI Design and Implementation 8

MVC Diagram

Here’s a schematic diagram of the interactions between model, view, and controller.

9

Fall 2004 6.831 UI Design and Implementation 9

Model

• Responsible for data

– Maintains application state (data fields)

– Implements state-changing behavior

– Notifies dependent views/controllers when
changes occur (observer pattern)

• Design issues

– How fine-grained are the change descriptions?

• “The string has changed somehow” vs. “Insertion

between offsets 3 and 5”

– How fine-grained are the observable parts?

• Entire string vs. only the part visible in a view

Let’s look at each part in a little more detail. The model is responsible for maintaining application-

specific data and providing access to that data. Models are often mutable, and they provide methods

for changing the state safely, preserving its representation invariants.

OK, all mutable objects do that. But a model must also notify its clients when there are changes to

its data, so that dependent views can update their displays, and dependent controllers can respond

appropriately. Models do this notification using the observer pattern, in which interested views and

controllers register themselves as listeners for events generated by the model.

Designing these notifications is not always trivial, because a model typically has many parts that

might have changed. Even in our simple text box example, the string model has a number of

characters. A list box has a list of items. When a model notifies its views about a change, how

finely should the change be described? Should it simply say “something has changed”, or should it

say “these particular parts have changed”? Fine-grained notifications may save dependent views

from unnecessarily querying state that hasn’t changed, at the cost of more bookkeeping on the

model’s part.

Fine-grained notifications can be taken a step further by allowing views to make fine-grained

registrations, registering interest only in certain parts of the model. Then a view displaying a small

portion of a large model would only receive events for changes in the part it’s interested in.

Reducing the grain of notification or registration is crucial to achieving good interactive view

performance on large models.

10

Fall 2004 6.831 UI Design and Implementation 10

View

• Responsible for output

–Occupies screen extent (position, size)

–Draws on the screen

–Listens for changes to the model

–Queries the model to draw it

• A view has only one model

–But a model can have many views

In MVC, view objects are responsible for output. A view occupies some chunk of the screen, usually

a rectangular area. Basically, the view queries the model for data and draws the data on the screen.

It listens for changes from the model so that it can update the screen to reflect those changes.

11

Fall 2004 6.831 UI Design and Implementation 11

Controller

• Responsible for input

–Listens for keyboard & mouse events

– Instructs the model or the view to change

accordingly

• e.g., character is inserted into the text string

• A controller has only one model and

one view

Finally, the controller handles all the input. It receives keyboard and mouse events, and instructs the

model to change accordingly. For example, the controller of a text box receives keystrokes and

inserts them into the text string.

In the original MVC pattern used in Smalltalk-80, there was only one controller for each model and

view.

12

Fall 2004 6.831 UI Design and Implementation 12

Problem: Controller Needs Output

• Menus are clearly controller-related

–e.g. right-click menu on a text field

• But a menu needs to be drawn

–A menu is a model-view-controller in itself,

used as a subcomponent

The MVC pattern has a few problems when you try to apply it, which boil down to this: you can’t

cleanly separate input and output in a graphical user interface. Let’s look at a few reasons why.

First, a controller often needs to produce its own output. A good example is a popup menu – in the

context of our text box example, this might be the right-click menu that lets you cut, copy, or paste.

The menu is clearly part of the controller. Its appearance depends on the controller’s state -- e.g.,

highlighting the menu option that the mouse is hovering over – not strictly on the model’s state, like

the view does.

13

Fall 2004 6.831 UI Design and Implementation 13

Problem: Who Manages Selection?

• Must be displayed by the view
– As blinking text cursor or highlighted object

• Must be updated and used by the controller
– Clicking or arrow keys change selection
– Commands modify the model parts that are

selected

• Should selection be in model?
– Generally not
– Some views need independent selections (e.g.

two windows on the same document)
– Other views need synchronized selections (e.g.

table view & chart view)

Second, some pieces of state in a user interface don’t have an obvious home in the MVC pattern.

One of those pieces is the selection. Many UI components have some kind of selection, indicating

the parts of the interface that the user wants to use or modify. In our text box example, the selection

is either an insertion point or a range of characters.

Which object in the MVC pattern should be responsible for storing and maintaining the selection?

The view has to display it, e.g. by highlighting the corresponding characters in the text box. But the

controller has to use it and modify it. Keystrokes are inserted into the text box at the location of the

selection, and clicking or dragging the mouse or pressing arrow keys changes the selection.

Perhaps the selection should be in the model, like other data that’s displayed by the view and

modified by the controller? Probably not. Unlike model data, the selection is very transient, and

belongs more to the frontend (which is supposed to be the domain of the view and the controller)

than to the backend (the model’s concern). Furthermore, multiple views of the same model may

need independent selections. In Emacs, for example, you can edit the same file buffer in two

different windows, each of which has a different cursor.

So we need a place to keep the selection, and similar bits of data representing the transient state of

the user interface. It isn’t clear where in the MVC pattern this kind of data should go.

14

Fall 2004 6.831 UI Design and Implementation 14

Problem: Direct Manipulation

• Direct manipulation: user points at

displayed objects and manipulates them

directly

• View must provide affordances for

controller

–e.g. scrollbar thumb, selection handles

• View must also provide feedback about

controller state

–e.g., button is depressed

Here’s a third example of why input and output are hard to decouple. Good graphical user interfaces

support direct manipulation, which means that the user can manipulate displayed objects directly,

as if they were physical objects. A scrollbar is a good example of direct manipulation: the user can

change the position of the scrollbar thumb by clicking and dragging it directly. Drawing editors

provide lots of direct manipulation: you can drag an object to the position you want it, and you can

drag the selection handles drawn around it to resize the object.

Direct manipulation techniques force a close cooperation between the view and the controller. The

view must display affordances for manipulation, such as selection handles or scrollbar thumbs. The

controller must be aware of the screen locations of these affordances. When the user starts

manipulating, the view must modify its appearance to give feedback about the manipulation, e.g.

painting a button as if it were depressed.

15

Fall 2004 6.831 UI Design and Implementation 15

Reality: Tightly Coupled View & Controller

• MVC has largely been superseded by
MV (Model-View)

• A reusable view manages both output
and input
–Also called widget or component

• Reusable controllers are rare
–Actions in Java Swing: objects that sit

behind menu item, toolbar button, or
keyboard shortcut
• E.g. cut, copy, paste, delete

In principle, it was a nice idea to separate input and output into separate, reusable classes. In reality,

it isn’t feasible, because input and output are tightly coupled. As a result, the MVC pattern has

largely been superseded by what might be called Model-View, in which the view and the controller

are fused together into a single class, often called a component or a widget.

The term MVC still persists, but people who use it tend to be talking about a higher level of system

design than the GUI. For example, MVC is used in the Java Server Pages architecture to mean a

database (model), request handler (controller), and a reply page generator (view). At this level of

abstraction, the controller and the view can be significantly decoupled from each other.

Are there any vestiges of independent, reusable controllers left in modern GUIs? Certainly any input

event handler – like the MouseListener interface in Java – is a controller. But MouseListener is an

interface, not a reusable component, and the MouseListener interface tends to be implemented by a

view (or by an inner class of a view) – you can’t find many reusable MouseListener implementations

sitting in the Java library waiting to be added to your program.

Reusable controllers do still exist, but at a higher level than raw mouse and keyboard input. In Java

Swing, for example, an Action is a reusable object that represents a command. It sits behind a menu

item, toolbar button, or keyboard shortcut, and gets triggered when the user invokes it. Swing

actually includes a number of reusable Actions for editing text models: cut, copy, paste, delete, etc.

16

Fall 2004 6.831 UI Design and Implementation 16

View Hierarchy

• Views are arranged into a hierarchy

• Containers
– Window, panel, rich text widget

• Components
– Canvas, button, label, textbox

– Containers are also components

• Every GUI system has a view hierarchy, and
the hierarchy is used in lots of ways
– Output

– Input

– Layout

The second important pattern we want to discuss in this lecture is the view hierarchy.

Views are arranged into a hierarchy of containment, which some views (called containers in the Java

nomenclature) can contain other views (called components in Java). A crucial feature of this

hierarchy is that containers are themselves components – i.e., Container is a subclass of Component.

Thus a container can include other containers, allowing a hierarchy of arbitrary depth.

Virtually every GUI system has some kind of view hierarchy. The view hierarchy is a powerful

structuring idea, which is loaded with a variety of responsibilities in a typical GUI. We’ll look at

three ways the view hierarchy is used: for output, input, and layout.

17

Fall 2004 6.831 UI Design and Implementation 17

View Hierarchy: Output

• Drawing
– Draw requests are passed top-down through the hierarchy

• Clipping
– Parent container prevents its child components from drawing

outside its extent

• Z-order
– Children are (usually) drawn on top of parents

– Child order dictates drawing order between siblings

• Coordinate system
– Every container has its own coordinate system (origin

usually at the top left)

– Child positions are expressed in terms of parent coordinates

First, and probably primarily, the view hierarchy is used to organize output: drawing the views on the

screen. Draw requests are passed down through the hierarchy. When a container is told to draw

itself, it must make sure to pass the draw request down to its children as well.

The view hierarchy also enforces a spatial hierarchy by clipping – parent containers preventing their

children from drawing anything outside their parent’s boundaries.

The hierarchy also imposes an implicit layering of views, called z-order. When two components

overlap in extent, their z-order determines which one will be drawn on top. The z-order corresponds

to an in-order traversal of the hierarchy. In other words, children are drawn on top of their parents,

and a child appearing later in the parent’s children list is drawn on top of its earlier siblings.

Each component in the view hierarchy has its own coordinate system, with its origin (0,0) usually at

the top left of its extent. The positions of a container’s children are expressed in terms of the

container’s coordinate system, rather than in terms of full-screen coordinates. This allows a complex

container to move around the screen without changing any of the coordinates of its descendents.

18

Fall 2004 6.831 UI Design and Implementation 18

View Hierarchy: Input

• Event dispatch and propagation

–Raw input events (key presses, mouse

movements, mouse clicks) are sent to

lowest component

–Event propagates up the hierarchy until

some component handles it

• Keyboard focus

–One component in the hierarchy has the

focus (implicitly, its ancestors do too)

In most GUI systems, the view hierarchy also participates in input handling.

Raw mouse events – button presses, button releases, and movements – are sent to the smallest

component (deepest in the view hierarchy) that encloses the mouse position. If this component

chooses not to handle the event, it passes it up to its parent container. The event propagates upward

through the view hierarchy until a component chooses to handle it, or until it drops off the top,

ignored.

Keyboard events are treated similarly, except that the first component to receive the event is

determined by the keyboard focus, which always points to some component in the view hierarchy.

19

Fall 2004 6.831 UI Design and Implementation 19

View Hierarchy: Layout

• Automatic layout: children are
positioned and sized within parent
–Allows window resizing

–Smoothly deals with internationalization
and platform differences (e.g. fonts or
widget sizes)

–Lifts burden of maintaining sizes and
positions from the programmer
• Although actually just raises the level of

abstraction, because you still want to get the
graphic design (alignment & spacing) right

The view hierarchy is also used to direct the layout process, which determines the extents (positions

and sizes) of the views in the hierarchy. Many GUI systems have supported automatic layout,

including Motif (an important early toolkit for X Windows), Tk (a toolkit developed for the Tcl

scripting language), and of course Java AWT and Swing.

Automatic layout is most useful because it allows a view hierarchy to adjust itself automatically

when the user resizes its window, changing the amount of screen real estate allocated to it.

Automatic layout also smoothly handles variation across platforms, such as differences in fonts, or

differences in label lengths due to language translation.

20

Fall 2004 6.831 UI Design and Implementation 20

Observer Pattern

• Observer pattern is used to decouple

model from views

Model

View A

View B

Model

Model

Observer

Observer

stock market data

graph

table

Finally, let’s look at the observer pattern.

21

Fall 2004 6.831 UI Design and Implementation 21

Basic Interaction

Model Observer

modify

update

gets

return

register
interface Model {

void register(Observer)

void unregister(Observer)

Object get()

void modify()
}

interface Observer {

void update(Event)
}

Here’s the conventional interaction that occurs in the observer pattern. (We’ll use the abstract

representation of Model and Observer shown on the right. Real models and observers will have

different, more specific names for the methods, and different method signatures. They’ll also have

multiple versions of each of these methods.)

1. An observer registers itself to receive notifications from the model.

2. When the model changes (usually due to some other object modifying it), the model broadcasts

the change to all its registered views by calling update on them. The update call usually includes

some information about what change occurred. One way is to have different update methods on the

observer for each kind of change (e.g. treeStructureAdded() vs. treeStructureRemoved()). Another

way is to package the change information into an event object. Regardless of how it’s packaged, this

change information that is volunteered by the model is usually called pushed data.

3. An observer reacts to the change in the model, often by pulling other data from the model using

get calls.

We already discussed the tradeoff between fine-grained and coarse-grained registration and

notification. There’s also a tradeoff between pushing and pulling data.

22

Fall 2004 6.831 UI Design and Implementation 22

Model Must Be Consistent Before Update

Model Observer

modify

update

gets

return

register

model must establish
its invariants here,

so that gets are correct

Let’s talk about some important issues. First, when the model calls update on its observers, it is

giving up control – in much the same way that a method gives up control when it returns to its caller.

Observers are free to call back into the model, and in fact often do in order to pull information from

it. So the model has to make sure that it’s consistent --- i.e., that it has established all of its internal

invariants – before it starts issuing notifications to observers.

So it’s often best to delay firing off your observers until the end of the method that caused the

modification. Don’t fire observers while you’re in the midst of making changes to the model’s data

structure.

23

Fall 2004 6.831 UI Design and Implementation 23

Registration Changes During Update

Model Observer

modify

update

gets

unregister

register

observer may
unregister itself

in response to

an update

Another potential pitfall is observers that unregister themselves. For example, suppose the model

contains stock market data, and a view registers itself as an observer of one stock in order to watch

for that stock reaches a certain price. Once the stock hits the target price, the view does its thing

(e.g., popping up a window to notify the user); but then it’s no longer needed, so it unregisters itself

from the model.

This is a problem if the model is iterating naively over its collection of observers, and the collection

is allowed to change in the midst of the iteration. It’s safer to iterate over a copy of the observer list.

Since one-shot observers are not particularly common, however, this imposes an extra cost on every

event broadcast. So the ideal solution is to copy the observer list only when necessary – i.e., when a

register or unregister occurs in the midst of event dispatch.

24

Fall 2004 6.831 UI Design and Implementation 24

Update Triggers A Modify

Model Observer

modify(X)

update(X)

modify(Y)

update(Y)

A third pitfall occurs when an observer responds to an update message by calling modify on the

model. Why would it do that? It might, for instance, be trying to keep the model within some legal

range. Obviously, this could lead to infinite regress if you’re not careful. A good practice for models

to protect themselves against sloppy views is to only send updates if a change actually occurs; if a

client calls modify() but it has no actual effect on the model, then no updates should be sent.

25

Fall 2004 6.831 UI Design and Implementation 25

Out-of-Order Updates

Model Observer A

modify(X)

update(X)

modify(Y)

Observer B

update(Y)

update(Y)

update(X)

.

.

.

A more pernicious pitfall can arise when there are multiple observers and one of them modifies the

model: events can get out of order. This diagram shows an example of what can happen. Observer

A gets the first update (for change X), and it responds by modifying the model. The model in turn

responds by sending out another round of updates (change Y) immediately. If observer A makes no

further modifications, observer B finally gets its updates – but it gets the changes in the opposite

order that they actually occurred, change Y before change X!

There are a few solutions to this problem:

- the model could delay broadcasting event Y until all the updates for X have been sent. This is

usually done by putting the events on a queue. It imposes some additional cost and complexity on the

model, but it’s the best way to guarantee that events arrive in the same order to all observers.

- the model could skip sending the update(X) to observer B. This ensures that observer B doesn’t get

an event with old data in it, but it also means that B has missed a transition. Some observers might

care about those transitions: for example, if B is a graph displaying stock prices over a time interval.

- observers could ignore pushed data (X, Y) and always get the latest state directly from the model.

This is good practice in general. If your view only needs to show the current model state, then get it

directly from the model; don’t rely on the pushed event to tell you what it is.

26

Fall 2004 6.831 UI Design and Implementation 26

Next Time: Human Capabilities

• Readings

–“Semantic Pointing”

–Optional: Chapter 2 in Psychology of

Human-Computer Interaction

