MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Direct numerical simulation of electroconvective instability and
hysteretic current-voltage response of a permselective membrane

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Pham, Van et al. “Direct Numerical Simulation of Electroconvective Instability and
Hysteretic Current-voltage Response of a Permselective Membrane.” Physical Review E 86.4
(2012). © 2012 American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevE.86.046310
Publisher: American Physical Society
Persistent URL: http://hdl.handle.net/1721.1/75816

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher’s site for terms of use.

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/75816

PHYSICAL REVIEW E 86, 046310 (2012)

Direct numerical simulation of electroconvective instability and hysteretic current-voltage response
of a permselective membrane

Van Sang Pham,! Zirui Li,2? Kian Meng Lim,"* Jacob K. White,’ and Jongyoon Han3->¢
1Singapore-MIT Alliance, National University of Singapore, Singapore
2College of Mechanical and Electrical Engineering, Wenzhou University, China
3Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
4Department of Mechanical Engineering, National University of Singapore, Singapore
SDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
®Department of Biological Engineering, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
(Received 31 July 2012; revised manuscript received 24 September 2012; published 11 October 2012)

We present a systematic, multiscale, fully detailed numerical modeling for dynamics of fluid flow and
ion transport covering Ohmic, limiting, and overlimiting current regimes in conductance of ion-selective
membrane. By numerically solving the Poisson-Nernst-Planck-Navier-Stokes equations, it is demonstrated that
the electroconvective instability, arising from the electric field acting upon the extended space charge layer, and
the induced strong vortical fluid flow are the dominant factors of the overlimiting current in the planar membrane
system. More importantly, at the transition between the limiting and the overlimiting current regimes, hysteresis
of electric current is identified. The hysteresis demonstrates the important role of the electroconvective flow in
enhancing of current in electrolyte systems with ion-selective membrane.

DOI: 10.1103/PhysRevE.86.046310

I. INTRODUCTION

Ion-selective membraness are widely used in many engi-
neering applications, such as water desalination, fuel cells,
and blood analysis, etc. Operational efficiency of a conducting
ion-selective membrane is characterized by its current-voltage
(I-V) curve. As depicted in Fig. 1, a typical /-V curve consists
of three distinct regimes: a low current Ohmic regime, a
plateau-limiting regime, and an overlimiting current regime.
While the first two regimes could be explained by the classical
theory of concentration polarization [1,2], the mechanism
for the third regime was unclear for a long time. So far,
one of the most promising mechanisms for the overlimiting
current is the fluid convection caused by electro-osmotic slip
of the second kind, suggested by Rubinstein and Zaltzman
[3,4]. Such electro-osmotic slip at the membrane surface
yields instability of the quiescent concentration polarization
region and generates an electroconvective flow that manifests
paired vortices. This vortical flow destroys the diffusion
layer, and brings more ions to the membrane surface to
produce an overlimiting conductivity. This mechanism is
supported by a number of experimental studies. Kim and
co-workers reported a visualization of strong nonequilibrium
electro-osmotic vortices in the overlimiting current regime
of a nanochannel array proving the existence of the second
kind electro-osmosis and vortical flow on a flat permselective
membrane [5]. The first direct experimental verification of
the electro-osmotic instability was conducted by Rubinstein
et al. [6]. It was reported that, when a significantly high
electric field is applied across a flat cation-selective membrane,
vortical flow appears near the membrane surface; concurrently,
the electric current passing through the system exceeds
the limiting-current value. Additional direct experimental
evidence for the electro-osmotic instability was reported by
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Yossifon and Chang [7] who demonstrated that the vortex pairs
appearing near nanoslot are due to the instability of the space
charge layer. The mechanism was also supported indirectly by
the experimental observation [8] where overlimiting current
disappeared as the fluid convection is suppressed by using a
high viscosity solution.

The electro-osmotic slip of the second kind was first
introduced by Dukhin et al. [9]. Subsequently, Rubinstein and
Zaltzman [3,4] proposed that such a nonlinear electrokinetic
slip on a flat permselective membrane surface could explain
ion transport in the overlimiting current regime. However,
clear understanding and modeling of this phenomenon would
require an accurate calculation of the ion concentrations,
residual space charge, local electric field, and the fluid flow
near the ion-selective membrane, which is a numerically
expensive, coupled, and multiscale problem. Demekhin and
co-workers [10] recently reported a simulation work on elec-
troconvection in electrolyte for this problem. By decoupling
the nonlinear Poisson-Nernst-Planck (PNP) equations, and
ignoring the inertial term in the Navier-Stokes (NS) equations,
they demonstrated the existence of electrokinetic instability of
electrolyte near a permselective membrane.

In this paper, we study the electroconvection near a perms-
elective membrane by accurately solving the full PNP and
NS equations. Unlike Demekhin’s method, the PNP equations
are not decoupled in this work, and the inertial term in the
NS equations will be considered accurately. The /-V curve
will be considered under the context of electroconvection.
We will examine in detail the formation and development
of electroconvective instability over the membrane surface.
Details of the transition between different current regimes
will be also revealed. Importantly, we will show that the
electroconvection system exhibits a hysteretic characteristic in
the transition between the limiting and overlimiting regimes.

©2012 American Physical Society
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FIG. 1. Sketch of a typical current-voltage (/-V) curve of a
permselective membrane.

The hysteresis provides important insights into the mechanism
behind this transition.

II. FORMULATION

We consider a model system of a permselective membrane
interfacing with a symmetric, binary electrolyte solution. The
bulk space is assumed at a distance [y from the membrane,
where the concentrations of the anions and cations are main-
tained at bulk concentration Cgyy. Electric current is driven
through the membrane by a bias voltage between the bulk space
and the membrane. To mimic macroscopic flat membrane
surface with microscale variations, the membrane is modeled
by a series of wavy cation-selective surfaces as sketched in
Fig. 2, where the amplitude of the wave is purposely chosen to
be very small (e.g., 0.001 times the wavelength). This variation
in membrane surface produces a periodical electric field
that generates a perturbative fluid motion when an external
electric field is applied. Such a fluid flow perturbation is
typically confined within the distance of ~O(a), and therefore
does not lead to significant changes in ion transport in the
Ohmic regime. However, in the overlimiting regime, this
perturbation can lead to significant fluid instability and changes
in both ion concentration and flux. This setup reflects the

—

Bulk space

Electrolyte solution

Permselective _;
membrane

FIG. 2. Model system of a permselective membrane interfacing
with an electrolyte. The membrane is modeled by a series of wavy
cation-selective surfaces. The wave amplitude (a) is much smaller
than the wavelength (1), e.g.,a = 0.001 x /. A bias voltage is applied
between the membrane and bulk space to drive electric current
through the membrane.
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experimental situation, where micro- or submicroscale rough-
ness of the membrane could act as the initiation point of fluid
instability.

In the system, transport of ions is governed by the Nernst-
Planck equations [Egs. (1) and (2)]; electric potential field
is related to the ion concentrations via the Poisson equation
[Egs. (3) and (4)]; and the fluid motion is governed by the
Navier-Stokes equations [Egs. (5) and (6)]. These equations
are given in the dimensionless form as follows:
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where 7, Cy, ®, U, and P denote the dimensionless time,
concentration of cations (+ ) and anions ( — ), electric poten-
tial, vector of fluid velocity, and pressure, respectively. These
quantities were normalized by the following reference values
of time, ionic concentration, electric potential, velocity, and
pressure, respectively:
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where Cp,k is the concentration of ions at the bulk space,
is the characteristic length scale, Dy = (D4 + D_)/2 is the
average diffusivity, kp is the Boltzmann constant, T is the
absolute temperature, e is the elementary charge, Z = |Z.|
is ion valence, 1 is the dynamics viscosity of solution, and &
is the permittivity of the solvent. Parameters D, =D, /Do,
ip = Ap /lo, and p, = p,/Cpux are dimensionless diffusion
coefficients, the Debye length (Ap = \/8kBT/2CBu1kZZe2),
and the space charge, respectively. Pe = Uyly/ Dy, Sc =
n/pm Dy, and Re = Uplyp,, /1 are the Péclet number, the
Schmidt number, and the Reynolds number, respectively.

The system is characterized by the dimensionless Debye
length Ap. In this study, *p = 0.001 corresponds to the
characteristic length /p = 13.8 um, the bulk concentration
Cpuk = 0.5 mM, and the absolute temperature 7 = 300 K.
Other parameters used in the simulation include the diffusiv-
ities Dy = D_ = 107" m?/s, the number of wavy surfaces
ng = 20, and the membrane length /,, = 13.8 um.

For closure of the governing equations, boundary condi-
tions are also supplied. At the bulk space, ionic species are well
mixed, C; = C_ = 1, and the fluid is stationary, U = 0. At
the membrane surface, no-flux condition is enforced to anions

J_ - n = 0; cations are assumed to be accumulated uniformly
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at a concentration of C,, (C + = C,, = 2); the common no-slip
boundary condition is enforced to the fluid U = 0. Bias voltage
is applied to the system through a fixed-value boundary
condition for electric potential at the bulk space (& = 0) and
the membrane (& = —V). At other boundaries, all variables
are assumed to be periodic.

III. NUMERICAL METHODS

The PNP and NS equations are nonlinearly coupled. These
sets of equations relate to each other via the convection term
in the PNP equations and the electric body force in the
NS equations. Two major difficulties in solving numerically
the PNP-NS equations are (i) the stiff nonlinear coupling
of the PNP equations, especially occurring in the electrical
double layer (EDL) of the permselective membrane where
counterions strongly accumulate, and (ii) the rapid change
of electrical body force field across the membrane’s EDL
where ions accumulate and the electric potential changes
rapidly. A possible method to solve the PNP-NS equations
is to discretize the fully coupled set of equations using the
finite element method [11]. This approach, however, results in
a large system of linear equations, which is computationally
expensive. In contrast, the method proposed by Demekhin
et al. [10] decouples the Poisson-Nernst-Planck equations and
solves them sequentially. Although this method reduces the
computational cost significantly, the accuracy might suffer in
dealing with the strongly coupled equations.

In order to avoid solving the large system of linear equations
and guarantee the strong coupling of the PNP equations, we
developed a coupled method for solving the sets of PNP and
NS equations. Starting with a velocity field from the previous
iteration or initial condition, the potential and concentrations
are simultaneously solved from the PNP equations. Then,
electric body force is calculated and substituted into the NS
equations. The velocity field obtained by solving the NS
equations is substituted back into the PNP equations. The
process is repeated until convergence is reached.

The finite volume method [12-14], which is locally
conservative, is used for discretization of the equations. The
nonlinear discretized PNP equations are solved using the
Newton-Raphson method [15]. Due to the rapid variations of
the ion concentrations and electric potential in the EDL, the
mesh near the membrane is refined using the GMSH [16]. To
avoid the nonlinear no-flux boundary condition of co-ions
at the membrane, the primitive concentration variables
C+ are replaced by electrochemical potential variables
ur=InCy+2Z,®. In terms of the electrochemical
potentiql variables, the ionic fluxes can be written as :Ii =
et==2+®(_ P, Vs 4 PeU). Taking into account the no-slip
boundary condition at the membrane surface, the no-flux
boundary condition thus reduces to a simple zero-gradient
boundary condition for the electrochemical potential variables.
It is demonstrated that the equations involving p . require a
lesser number of iterations in the Newton-Raphson method
than the equations involving C1 [17]. In addition, using the
generalized minimal residual method [18,19], the discretized
linear equations in terms of electrochemical potential are
solved faster than that in terms of the primitive variables [17].
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In the finite volume method, the NS equations can be
solved separately or simultaneously [12,14]. In the flow
developed near the permselective membrane, the body force
varying dramatically in the membrane’s EDL causes large
pressure gradient in the normal direction of the surface. In
order to guarantee coupling of the pressure and velocity, the
NS equations are solved in a coupled manner in which all
equations are solved simultaneously [17]. The Rhie-Chow
interpolation [20] is used to derive an explicit equation for the
pressure.

IV. RESULTS AND DISCUSSION

A. Current-voltage response of permselective membrane

By conducting simulations for different bias voltages, we
examine the development of electroconvection flow and its
effects on the distribution of ions and current passing through
the membrane.

1. Ohmic regime—Ion concentration near membrane reduces
with increasing bias voltage

We begin by applying a small bias voltage between the
bulk space and the membrane to establish an electric field
orthogonal to the membrane. Driven by the electric field,
counterions conduct through the membrane, leading to a
decrease in ion concentrations near the membrane as shown in
Fig. 3, where ion concentrations are plotted for bias voltages
V=14

Due to the wavy structure of the membrane surface,
the electric field is distorted near the membrane. Within a
wavelength, the electric field points towards the dip of the
wave from both x and opposite-x directions. Action of the
electric field upon the net space charge in the EDL generates
an electric body force pulling fluid towards the dip. The
resultant high pressure at the dip pushes fluid outwards from
the membrane. Due to the fluid flow continuity, a vortex pair
is formed above the wavy surface. These vortices are referred
to as seed vortices. An example of the seed vortices is given
in Fig. 4, where three vortex pairs (corresponding to three
waves) at bias voltage V = 4 are displayed. Several features
of the seed vortices are observed: (i) vortex width is defined

2 ;
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FIG. 3. Ion concentrations at bias voltages in Ohmic regime
(V = 1,4). The electric field drives cations through the membrane,
leading to decreases of ion concentrations near the membrane surface.
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FIG. 4. Seed vortices in Ohmic regime (V = 4). The vortices
are defined by the membrane structure (a,/). Due to the smallness of
the surface perturbation, the flow velocity in the vortices is very low
(0.0015Uy).

by the membrane structure, and is small compared to the
system size; (ii) each vortex rotates in the opposite direction
to its two neighbors as a result of the periodic wavy surfaces;
(iii) maximum magnitude of flow velocity in the seed vortices
is ~0.0015U,, which is small due to the weak lateral electric
field (determined by the bias voltage and the membrane
structure) and small net charge in the EDL.

Due to the low flow velocity, the seed vortices contribute
insignificantly into the overall transport of ions [through
the convection term presented in Eq. (2)]. Ton transport in
the system is dominated by diffusion, as shown in Fig. 3,
where ion concentrations vary linearly with the distance
from the membrane surface. When the bias voltage increases,
the solution is more polarized at the membrane surface, as
represented through the lowering ion concentrations near
the membrane (Fig. 3). As a result, the gradient of ion
concentration increases accordingly, producing an increasing
diffusive flux which is proportional to the external electric
field. The current therefore increases with the bias voltage
manifesting the characteristic of the Ohmic regime (Fig. 14).

2. Limiting-current regime—Development of extended
space charge layer

When bias voltage exceeds a critical value (V,;; = 7.5), the
concentration of ions near the membrane surface approaches
zero. Beyond this critical value, a further increase in voltage
insignificantly reduces the concentration near the membrane,
but develops an extended space charge layer next to the EDL
of the membrane. The extended space charge layer was first
studied by Rubinstein and Shtilman [21], from the solution
of a drift-diffusion equation under high electric field. It was
demonstrated that, under such a condition, the equilibrium
EDL becomes distorted, generating an extended space charge
layer relating to the EDL but not part of it. Rather, it is a
separate entity with minimal counterion concentration and
near-zero co-ion concentration [22]. As shown in Fig. 5, the

PHYSICAL REVIEW E 86, 046310 (2012)

FIG. 5. Ion concentration at bias voltages in limiting regime
V = 14,19. In this regime, ion concentration near the membrane
approaches zero; a depletion zone develops near the membrane, and
extends with increasing bias voltage.

thickness of the concentration polarization layer is ~0.05
(corresponding to bias voltage V = 19), which is much thicker
than the original EDL (0.001). The extended space charge
layers corresponding to bias voltages 4, 14, and 19 can also
be inferred from plots of the space charge (p, = Cy — C_)
in Fig. 6. As can be seen, in the Ohmic regime (V = 4), the
thickness of the space charge layer is only ~0.005 (in the order
of the EDL thickness). In the limiting regime, the space charge
layer is much thicker and can be extended up to 0.1 (V = 19).

Driven by electrical body force, fluid flow is determined by
the electric field and the space charge. From Fig. 6, it shows
that the space charge within the EDL in the limiting regime is
higher than that in the Ohmic regime. The combined effect of
a larger space charge and a stronger electric field generates a
faster rotation of fluid in the seed vortices. Consequently, the
vortices expand towards the bulk space as shown in Fig. 8(a),
where each seed vortex at V = 14 has a height of 0.15, which is
about two times higher than the seed vortex at V = 4 (Fig. 4).

Lateral velocities (Uy) in the Ohmic and limiting regimes
are shown in Fig. 7. The lateral velocity in the limiting regime
is approximately two times (V = 19) or three times (V = 14)
larger than that in the Ohmic regime. However, the fluid flow is
not strong enough to significantly alter the ion concentration,

2
——=\/=
V=14
1
— V=19 ]
L 0.04}i
: Space charge
® : hump
L 1 @ - ]
1
i
'
0.5 \ .
0 0.05 0.1 0.15
L Y
0
0 0.2 04 086 08 1

Y

FIG. 6. Profile of space charge near the membrane in the Ohmic
(V =4) and limiting regimes (V = 14 and 19). Due to the development
of an extended space charge layer, the space charge in the limiting
regime is much greater than that in the Ohmic regime.
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FIG. 7. Tangential velocity across a seed vortex at different bias
voltages in the Ohmic (V = 4) and limiting regimes (V = 14 and 19).
Action of an electric field on the extended space charge layer causes
a deformation of seed vortices. The deformation is only significant at
high bias voltages in the limiting-current regime (e.g., V = 19).

and its impact is still confined by the scale of membrane
roughness. The ion concentrations are still uniform in the
lateral direction. Due to the vanishing ion concentrations near
the membrane, current passing through the membrane is only
slightly increased for increasing voltages, corresponding to the
limiting regime in the -V curve (Fig. 14).

Action of the tangential electric field upon the extended
space charge layer developing near a permselective surface
was studied by Dukhin and co-workers [9]. They suggested a
new kind of electro-osmosis flow, namely, electro-osmosis of
the second kind, for a curved membrane surface. Subsequently,
Rubinstein and Zaltzman advanced a theory of second kind
electro-osmosis on a flat membrane surface [4]. It was shown
that the second kind electro-osmosis can result in an instability
of quiescent concentration polarization [3,4]. These studies
represent the action of the tangential electric field upon the

0.14

Y-Axis

000 002 004 006 008 010 012

000 002 004 006 0.08 010 012 0.14
X-Axis
(a)
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net charges in the extended space charge layer through the
second kind electro-osmotic slip boundary conditions. In the
present study, by solving the full set of governing equations,
we are able to investigate the dynamics of the extended space
charge layer and the effect of this dynamics on the fluid flow,
as discussed in the following section.

3. Effect of extended space charge layer on the fluid flow

Due to the decrease in ion concentrations in the
polarization layer, net space charge inside the EDL reduces at
V =19 compared to V = 14. The electrical body force inside
the EDL at V = 19 is weakened accordingly. Consequently,
the flow velocity at V = 19 is lower than that at V = 14, as
shown in Fig. 7.

Although space charge in the EDL is lower, the extended
space charge layer at V = 19 is thicker with the appearance of
a space charge hump at position y = 0.06, as shown in Fig. 6.
Action of the electric field on the extended space charge layer
produces an effect on the flow in the layer. As seen from
Fig. 8(a), this effect seems to be insignificant at V = 14.
However, the effect becomes significant at V = 19, as shown
in Fig. 8(b) where the vortices are deformed at a distance of
~0.006 from the membrane. Compared with Fig. 6, we can see
that the vortices are distorted at the position of the space charge
hump in the extended space charge layer. Therefore, it can be
stated that the development of extended space charge layers in
the limiting-current regime tends to deform the seed vortices.
The strength of this effect is determined by the space charge
hump and the lateral electric field caused by the roughness of
membrane surface.

A further increase in bias voltage generates a higher space
charge hump and stronger lateral electric field; consequently,
the deformation of the vortices is larger. When the voltage is
significantly high, the seed vortices are broken; the vortices
become unstable, leading to instability of the fluid flow.

0.14

0.10 0.12

Y-Axis

0.00 002 004 0.06 0.08

0.00 002 004 006 008 010 012 0.14
X-Axis

(b)

FIG. 8. Seed vortices in the limiting regime at V = 14 (a) and V = 19 (b). Due to the higher electric field, the seed vortices in the limiting
regime are longer than those in the Ohmic regime (a). At high bias voltage in the limiting regime (V = 19), action of an electric field upon the
extended space charge layer deforms the seed vortices at the location of space charge hump in the extended space charge layer (Fig. 6).
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FIG. 9. Electroconvective instability at bias voltage V = 22. The action of an electric field on the extended space charge layer starts breaking
the seed vortices from the top at + = 0.011 (a). Adjacent vortices merge to form a larger vortex; at t = 0.013, four large vortices are formed

from the original 40 seed vortices (b).

4. Overlimiting current regime—Electroconvective instability

When the bias voltage exceeds a critical value (V¢ = 21),

the seed vortices are broken up
caused by the action of the electric

by the deformation effect
field on the space charge in

x10

0.25 03

0.I35
X
@

15+

the extended space charge layer. In Fig. 9(a), the seed vortices
start breaking up from their top at + = 0.011. At a time step
later (r = 0.013), the original 40 seed vortices merge into four
large vortices, which extend up to the position of y = 0.4 as

—--t=004 |
—t=0.045
."‘—"‘ - .
0.25 03 0.35 04 045
X
(b)

FIG. 10. The development in time of cation concentration (a) and lateral electric field (b) between I and O. The vortex causes an enhancement
of ion concentration at I, where fluid is driven towards the membrane, and a depletion of ion concentration at O, where fluid is driven outwards
from the membrane. Due to the concentration gradient between I and O, the lateral electric field is amplified in time.
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shown in Fig. 9(b). Like the seed vortices, each large vortex
rotates in a direction opposite to its adjacent vortices.

Due to the appearance of the large vortices, the fluid
outside the depletion zone, which has high ion concentrations,
is transported to the membrane surface. We investigate this
transport process by considering the evolution in time of a
single vortex determined by points O and I at coordinates
xo = 0.225 and x; = 0.475 in Fig. 9(b). From the rotation
direction (clockwise) of the vortex, we can see that the fluid,
which has high ion concentrations, is driven to the membrane
surface at the right side of the vortices (indicated by I). As a
result, the ion concentrations are locally enhanced around I.
The vortex, at the same time, returns the low ion concentration
fluid on the membrane surface to the bulk space at the left side
(indicated by O). It therefore expands the local depletion zone
at O. The enhancement and depletion are shown in Fig. 10(a),
where the cation concentration along the line connecting I and
O at time steps 0.4 and 0.45 is plotted.

The concentration gradient between I and O produces
an amplification to electric field [23], which strengthens the
electric body force at the middle of I and O. The amplification
is illustrated in Fig. 10, where the cation concentration and
electric field at two time steps (f = 0.04 and t+ = 0.045) are
plotted. As can be seen, the higher concentration gradient
develops in time, and the stronger electric field is induced.
This strong electric field tends to accelerate the flow velocity
in the vortex.

In addition, the enhancement compresses the extended
space charge layer at I; consequently, the space charge density
in this layer is increased. The action of the vertical electric field
on this high density space charge generates a high pressure at
I. On the other hand, the depletion at O yields a decompression
on the extended space charge layer resulting in a decrease in
space charge density and related decrease in pressure. The
compression and decompression on the extended space charge
layer are depicted in Fig. 11(a), where the space charge layer at
I is about a half narrower than that at O, and the space charge
density at I is about two times higher. The related increase
(at I) and decrease (at O) in pressure are shown in Fig. 11(b),

0.08
- —-at0
—atl
0.06| -
& 0.041 |
0.02} -
° 0.1 0.15
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where the pressure at I is about two times higher than that at
O. The pressure drop between I and O also tends to accelerate
the flow velocity in the vortex.

The combined effect of electric field amplification and pres-
sure drop accelerating the rotation in the vortex is essentially a
positive feedback and promotes electroconvective instability in
the system. At steady state, the instability generates vortices in
which fluid flow is accelerated to the speed of 130Uj. This fast
vortical flow transports ions to the membrane surface as can be
seen in the contour plot of cation concentration in Fig. 12(b),
where the ion concentration is the two-dimensional variation
as opposed to the one-dimensional variation observed in the
Ohmic and limiting regimes.

In order to understand the effect of the vortical flow on
the ion transport, we compare the ion flux obtained with the
vortical flow to the ion flux obtained without vortices (fluid
flow is not considered in the system). A general form of ion
flux is given by the Nernst-Planck equation (2):

In the above equation, the first term is flux attributed to the
ion diffusion, the second term is flux attributed to the field
driven, and the last term is flux attributed to ion convection. In
the no-vortices case, the last term in Eq. (9) is zero.

The comparison is presented in Fig. 13, where the compo-
nents of cation flux passing though a cross section, which is
0.02 above the membrane surface, at V = 22 are plotted. Due
to the impermeability to anions of the membrane, the anion
flux is not shown. It is noted that the ion transport attributed to
convection (crossed markers) is negligible because the cross
section is very close to the membrane, which is impermeable
to the fluid flow.

For the case without vortices, the ion flux components are
uniform along the membrane surface manifesting the linear
variation of ion concentrations and electric potential in the
system. In addition, since the section is taken across the
depletion layer, where cation concentration is low and flat

——-at0
—at| |

Pressure
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FIG. 11. Extended space charge layer (a) and pressure (b) at I and O. The coming in flow at I compresses the local extended space charge
layer at I. In contrast, the coming out flow at O decompresses the local extended space charge layer at O. Action of a normal electric field on
the unequal space charge densities at I and O causes a pressure gradient in the lateral direction which tends to speed up the vortex.
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FIG. 12. The steady state streamlines (a) and contour lines of cation concentration (b) at V = 22. The vortices extend to the bulk space (a);
the maximum flow velocity in the vortices is 130Uy, which is much faster than that before the instability occurs. The vortices drive more ions
to the membrane surface from one side and expand the depletion zone from the other side (b).

(Fig. 5), the flux component attributed to ion diffusion is
negligible.

For the case with vortices in the region of enhanced ion
concentration (x = [0.0, 0.6]), the flux components attributed
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FIG. 13. Flux components in the vortices case is compared
with the no-vortices case. In the region x = [0,0.6], where ion
concentrations are enhanced by the coming in flow, flux components
attributed to the diffusion and field driven are much higher than those
in the no-vortices case. In contrast, in the region x = [0.6,0.95], where
coming out flow expands the depletion zone, the flux components are
lower than those in the no-vortices case. Because the enhanced fluxes
are larger than the reduced fluxes, the total current passing through
the membrane increases over the limiting-current value.

to diffusion and field driven are much higher than those in
the no-vortices case. On the other hand, the expansion of the
depletion zone reduces the local conductivity. As a result,
the flux components in the depletion zone (x = 0.6-0.95)
decrease to lower than those in the no-vortices case. However,
due to the larger amount of enhanced current, the overall
current in the vortices case is higher than that (the limiting
current) in the no-vortices case.

Due to the instability, higher bias voltage results in a faster
flow velocity in the vortices. The faster flow carries more ions

2
I
. [ - | Over-
Ohmic { Limiting limitin
1.5¢ { '
I 5/
I
} L
- 1r Bl 1
| Il
| )
0.5} | X ]
{ Increasing voltage I l
0 . } ___. Decreasirllg voltage : :
0 5 v __10 15 20y 25
crl Vv cr2

FIG. 14. Current-voltage (/-V') curve for the permselective mem-
brane obtained by increasing bias voltages (solid line) and by de-
creasing bias voltages (dashed line). In the /-V curves, three regimes
are identified: Ohmic, limiting, and overlimiting. The nonoverlap-
ping /-V curves at the transition between limiting and overlim-
iting current regimes exhibit a hysteretic behavior of the electric
current.
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to the membrane surface to enhance the solution conductivity.
Therefore, beyond the limiting-current regime, the current
increases again with the increasing bias voltage, creating the
overlimiting current regime in the /-V curve (Fig. 14).

As discussed above, the instability is caused by the action of
the lateral field upon the extended space charge layer. Since the
lateral field increases with roughness of the membrane surface,
larger wave amplitude (a) will induce stronger lateral field.
Hence, an increase in the wave amplitude of the membrane
surface leads to an earlier onset of the instability, and so
the overlimiting current regime. This is consistent with the
conclusions of Rubinstein and Zaltzman [4] and Balster et al.
[24] on the influence of membrane surface heterogeneity on
the length of the limiting-current region.

<
=

0.8

¥-Axis
0.6

0.4

.2

0.0

Y-Axis
0.6 0.8 1.0

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

PHYSICAL REVIEW E 86, 046310 (2012)

Currents passing through the membrane at different bias
voltages are collected to form the voltage-current (/-V)
curve shown in Fig. 14. In the /-V curve, three regimes
are identified. First, the Ohmic regime, where the convection
flow is negligible, an increase in applied voltage results in
a reduction of ion concentration near the membrane and an
increase in current. Secondly, the limiting-current regime,
which is characterized by the almost constant current with
increasing bias voltage, the saturated current is due to the
vanishing of ions at the membrane-solution interface. The
last regime is the overlimiting current regime occurring at
high bias voltages. In this regime, solution conductivity is
increased significantly due to strong vortical flow caused by
electroconvective instability.
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FIG. 15. Steady state streamlines and contour lines of cation concentration at B [(a), (b)] and B’ [(c), (d)]. Due to the initial vortices and
depletion zone, at the same bias voltage the fluid flow and ion concentration at B’ are different from those at B. The large vortices at B” transport
more ions to the membrane surface, thus enhancing current passing through the membrane.
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B. Hysteretic behavior

As described in the previous section, when the bias voltage
increases, there is a critical voltage which acts as a threshold
between the limiting and overlimiting current regimes. At the
critical voltage, the seed vortices are broken up to form large
vortices. The process of merging vortices involves a large scale
change in the flow field, and modifies the mode of ion transport.
It is interesting to study the reversibility of this process, i.e.,
whether the system exhibits the same behavior when the bias
voltage is decreased passing the critical region.

For this purpose, the system is solved for decreasing bias
voltages starting from a voltage in the overlimiting current
regime. lonic currents obtained are plotted in Fig. 14 along
with the 7-V curve obtained with increasing voltages. It is
obvious that the /-V curves do not coincide with each other
at the transition between limiting and overlimiting current
regimes indicating a hysteretic behavior of the current at the
transition.

In order to investigate the mechanism behind the hysteretic
behavior, we consider flow fields at increasing and decreasing
bias voltage V = 20 denoted by points B and B’ in Fig. 14.
The flow field at B, shown in Fig. 15(a), features a limiting
conductance regime with a series of small vortices defined by
the membrane surface structure. In contrast, the flow field at
B’, shown in Fig. 15(c), consists of two large vortices. It is
shown from Figs. 12(a) and 15(c) that the flow pattern at B’ is
similar to that at the overlimiting current regime; the flows are
different only in flow velocity magnitude.

The maintenance of overlimiting current flow pattern at a
voltage below the critical value can be explained by the existing
vortical flow and depletion zone. The bias voltage (V = 20)
induces a large pressure in the extended space charge layer of
the membrane. Due to the lateral balance in the system at B,
the pressure pushes fluid perpendicularly onto the membrane
surface instead of driving a lateral fluid flow. In contrast, at B/,
the vortical flow resulting from electroconvective instability
compresses the extended space charge region of membrane
from one side (coming in flow), and decompresses it from
the other side (coming out flow). Consequently, it raises
a lateral difference of pressure on the membrane surface.
Therefore, the high pressure in the extended space charge
layer is invoked to retain the vortical flow. Furthermore, the
slight lateral electric field caused by the surface perturbation
is not able to drive a macroscopic flow in the system at B. In
contrast, at B, the existing depletion zone produces a lateral
concentration gradient which generates a high lateral electric
field. Consequently, it produces an additional lateral body
force to retain the vortical flow. A comparison between lateral
electric fields at B and B’ is shown in Fig. 16. As can be seen
from the figure, the electric field at B is defined by structure
of the membrane surface manifested by the short wavelength
curve. The electric field profile at B’ is a combination of two
components: a short wavelength component defined by the
membrane structure and a long wavelength component caused
by the lateral concentration gradient across the depletion zone.

When voltage decreases further, the rotation velocity
reduces accordingly; the factors retaining the large vortices
flow (including the lateral pressure gradient and the lateral
concentration gradient) are weakened accordingly. Eventually,

PHYSICAL REVIEW E 86, 046310 (2012)
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FIG. 16. Lateral electric fields near the membrane surface at B
(solid line) and B’ (dashed line). Due to the nonuniform depletion
zone, the lateral electric field at B’ is much larger than that at B. The
lateral body force caused by the large electric field helps to maintain
the overlimiting current flow pattern at B'.

the system returns to the state with seed vortices, and the ion
transport is dominated again by ion diffusion (Fig. 14).

The hysteretic behavior indicates an important role of
vortical flow in the overlimiting current regime. This flow
mixes the diffusion layer to bring high concentration fluid
to the membrane and form depletion zones. Thus, lateral
electric field and pressure gradient are generated to maintain
the vortical flow at a voltage below the critical value.

V. CONCLUSION

By solving the coupled Poisson-Nernst-Planck-Navier-
Stokes equations, we obtain direct numerical solution for
the nonlinear electrokinetic flow near the permselective
membrane. The solution demonstrates the occurrence of
electroconvective instability at a significantly high voltage as
a result of the action of an electric field on the extended space
charge layer. We clarify the mechanism behind the change of
conductivity in an /-V curve. The vortical flow resulting from
the instability transports more ions to the membrane to promote
an overlimiting current passing through it. More importantly,
we observe a hysteretic behavior of current in the transition
between a limiting and an overlimiting regime. The hysteretic
behavior is characterized by the significant difference between
flow pattern and ion distribution in limiting and overlimiting
regimes. The role of electroconvective instability is exhibited
through the hysteresis: Once the ion concentrations are
redistributed by the vortical flow, the resultant macroscopic
lateral electric field and pressure gradient are able to maintain
the overlimiting current regime at a voltage below the critical
value.
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