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We study the two-dimensional Bose-Hubbard model in the presence of a three-body interaction term,

both at a mean-field level and via quantum Monte Carlo simulations. The three-body term is tuned by

coupling the triply occupied states to a trapped universal trimer. We find that, for a sufficiently attractive

three-body interaction, the n ¼ 2 Mott lobe disappears and the system displays first-order phase

transitions separating the n ¼ 1 from the n ¼ 3 lobes and the n ¼ 1 and n ¼ 3 Mott insulator from

the superfluid. We also analyze the effect of finite temperature and find that transitions are still of first

order at temperatures T � J, where J is the hopping matrix element.

DOI: 10.1103/PhysRevLett.109.135302 PACS numbers: 67.85.�d, 03.75.�b, 05.30.�d

The Bose-Hubbard (BH) model and its second-order
superfluid (SF) Mott-insulator (MI) transition represent
one of the paradigmatic examples of strongly interacting
many-body physics in lattice structures [1]. The unprece-
dented control over ultracold atoms in optical lattices allows
for not only a clean experimental realization of the BH
model [2,3] but also the exploration of a panoply of quantum
effects beyond the standard BH model (see Refs. [4–12]).

One key element for such impressive progress is the
possibility of tuning two-body interactions by using
Feshbach resonances or changing the strength of the lattice
confinement. More recently, effective multibody interac-
tions have been experimentally observed [13,14]. The
question that naturally arises is how these interactions
affect the many-body behavior. Topological phases such
as fractional quantum Hall states appear as ground states to
model Hamiltonians with strong three-body interactions
while exotic quantum phases have been predicted for
bosonic Hamiltonians with many-body interactions, such
as the ring exchange model [15,16]. An important first
step in realizing these models using ultracold atoms was
the recognition that strong three-body losses lead to an
effective hard-core three-body interaction that can be used,
for instance, to stabilize the BH model with attractive
two-body interactions [17]. Under these conditions, the
system can undergo a first-order MI-to-SF transition in
the presence of strong pairing interactions [18]. Despite
these recent studies, lattice systems with three-body inter-
actions remain largely unexplored.

In this Letter, we analyze how the many-body physics of
the BHmodel is affected by the presence of local and tunable
three-body interactions. First, we propose a mechanism for
engineering a three-body on-site interaction term,U3, which
is controlled by an external rf pulse that couples the triply
occupied state with a three-body bound state associated with
an excited hyperfine state. This local three-body interaction

only affects triply occupied sites leading to a modified BH
Hamiltonian

H ¼ �J
X

hi;ji
ayi aj þ

X

i

�
U

2
niðni � 1Þ þ �ni;3U3 ��ni

�
;

(1)

where ayi ðaiÞ is the bosonic creation (annihilation) operator,
ni ¼ ayi ai, J is the hopping matrix element, U is the
two-body on-site interaction, U3 is the three-body on-site
interaction, � is the chemical potential, and hi; ji denotes
summation over nearest-neighbor sites only [see Fig. 1(a)].
Note that the three-body interaction considered here is differ-
ent from the more conventional interaction of the form
U3nðn� 1Þðn� 2Þ=6.
Next, we use a mean-field Gutzwiller approach to study

the BH Hamiltonian in the presence of such three-body
interaction in the U > 0, U3 < 0 regime. We focus on the
jU3j>U region where the n ¼ 2 (n ¼ 4) lobe disappears.
In this regime, a direct first-order phase transition at finite
hopping can occur between the n ¼ 1 and n ¼ 3 lobes.
Quantum Monte Carlo (QMC) simulations [19] confirm
the existence of a first-order phase transition and provide
quantitative predictions of the phase diagram in two di-
mensions and particular values of U and U3. Finally, we
briefly discuss finite temperature effects and experimental
signature of the first-order transition.
To achieve a separately tunable, on-site, three-body inter-

action of the form shown in Eq. (1), we envision a system in
which a universal three-body bound state is attached to an
excited hyperfine threshold [20] which is coupled to the
identical boson ground state by an external rf field [shown
schematically in Fig. 1(b)] [21,22]. In this scheme, identical
bosons in two different hyperfine states (labeled b and x for
the lowest state and an excited state, respectively) sit on a
single site which we model as an isotropic oscillator with
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oscillator frequency ! and length lho. For a three-body
bound state to form in an excited hyperfine state, we con-
sider a system with a repulsive bb nonresonant interaction
(0< abb � lho) and a large bx scattering length (abb �
jabxj). In this situation, universal three-body Efimov states
form attached to the bbx three-body hyperfine state [20].

To analyze this scenario, we explore two-, three-, and
four-body single-site physics within the harmonic approxi-
mation, using model short-range interactions and a corre-
lated Gaussian basis set expansion [23,24]. We tune the
interaction parameters to achieve a bbx Efimov trimer
whose binding energy (Eb ¼ ENI � E where ENI is the
noninteracting energy of the trapped system) is comparable
to the trapping energy @! [see Fig. 1(c)]. This particular
scenario is suitable for achieving the proposed Hamiltonian
for two reasons. First, the two-, three-, and four-body bind-
ing energies are well separated, allowing the rf pulse to be
tuned in resonance with a particular single-site occupancy;
second, the large wave-function overlaps [see Fig. 1(d)]
imply an efficient rf transition probability. Our numerical
calculations show that the lowest three-body energy in
the bbx configuration is lower than the two-body energy
(bx configuration), and that, for each Efimov trimer state,
there is a single four-body state (bbbx configuration) bound
below the trimer state. All other four-body states lie above

the trimer energy. This is in contrast to the more commonly
considered case of four identical bosons in free space in
which there are both a deeply bound and a weakly bound
tetramer associated with each Efimov state [25]. The ener-
gies for two-, three-, and four-body states are shown sche-
matically in Fig. 1(b) along with the energies at which the rf
field is tuned to (dotted lines).
By detuning the rf field to the red of the Efimov state

for three-body occupation, both the two- and three-body
identical boson ground states are shifted down. However,
because there is an energy difference between the two- and
three-body transitions, the two-boson state is shifted sig-
nificantly less than the three-body state. For higher occu-
pation numbers, the rf field is far blue-detuned from the
bound states, and thus the ground states with four or more
identical bosons experience a weak upward shift. One
might expect an additional shift in the states with higher
occupation numbers (four or more), resulting from a three-
boson, spectator particle–like system. However, for these
weakly bound universal Efimov states, the size of the
three-body state is similar to the trapping length, and thus
additional bosons on site interact with the Efimov state and
shift the resulting N-body excited state energy off reso-
nance with the rf field.
As an initial study, we consider 85Rb. Since the reso-

nance structure for scattering between hyperfine states is
not known, we will assume that there exists an s-wave
scattering resonance between the lowest and first excited
hyperfine states at some external magnetic field strength.
For simplicity, we consider that identical bosons are
roughly noninteracting. Assuming that the energy of the
Efimov state is determined by the van der Waals length of
Rb, rvd � 82 a:u: [20], and a lattice site trapping fre-
quency of ! ¼ 2�� 10 kHz, an Efimov state will arise
at E3B � �2@! with respect to the bbx noninteracting
energy. Under these circumstances, we predict that U3

can be tuned to be attractive and of order U with a
detuning of �� 1000 kHz from the Efimov state transi-
tion energy. This large detuning also serves to mitigate
the generally short lifetimes of Efimov states (on the order
of 10 �s [26]).
This initial investigation, presented above as a plausibility

argument, indicates that using the above scheme is feasible
with existing experimental techniques.Amoredetailed study
to determine the effects of rf coupling to an excited three-
body state is left for future investigations [27]. Additionally,
direct rf association of universal trimer states has already
been demonstrated in ultracold, three-component Fermi and
Bose gases [21], lending credibility to the experimental
accessibility of this model.
We will now use Gutzwiller mean-field theory to study

the modified BH Hamiltonian described by Eq. (1). The
Gutzwiller mean-field theory is constructed by replacing
the full Hamiltonian by an effective local Hamiltonian
subject to a self-consistency condition. We introduce the

FIG. 1 (color online). Schematic representations of (a) the
Bose-Hubbard Hamiltonian considered here [Eq. (1)] and
(b) the rf field-tuned three-body on-site interaction are shown.
In (b), the red and open, blue circles represent bosons in the
lowest and (excited) hyperfine states (b and x), respectively.
The dotted line represents the energy the rf field is tuned to with
respect to the excited two- and four-body states. (c) The energy
of the lowest two-, three-, and four-body states (solid, dashed,
and dotted lines, respectively) in the excited hyperfine state is
shown in trap units with respect to the noninteracting energy
ENI. Also shown is the energy of the first excited four-body state
(upper dotted line) to demonstrate that the universal three-body
state is in fact isolated. (d) The wave-function overlap between
the noninteracting ground state and the lowest excited hyperfine
state is shown as a function of lho=abx for two, three, and four
atoms (solid, dashed, and dotted lines, respectively). In both
(c) and (d), the calculations are done for model Rb atoms
described in the text.
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superfluid order parameter c ¼ hayi i ¼ haii and the

Gutzwiller wave function jGi ¼ �N
i¼0ð

P1
n¼0 f

ðiÞ
n jniiÞ, so

that the effective Hamiltonian for a translationally invari-

ant system, i.e., fðiÞn ¼ fn, takes the form

E½c � ¼ �Jzc
X

n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðf?nþ1fn þ ðc:c:Þ þ zJc 2 þ En;

(2)

where z is the coordination number, fn are variational
parameters, and En¼U

2 nðn�1Þþ�n;3U3��n. The prob-

lem is now reduced to determining the set of coefficients
ffng which minimize E½c � and satisfy the normalization
condition hGjGi ¼ P

njfnj2 ¼ 1 [2,28,29].
Figure 2 shows the ground-state phase diagram of model

(1) at different values ofU3. Aswe increase themagnitude of
jU3j from 0 to U, the n ¼ 2 and n ¼ 4 Mott lobes shrink
considerably while the n ¼ 3 lobe increases in size [as seen
in Fig. 2(b)]. In particular, forU3 � �U the n ¼ 2 andn¼4
lobes completely disappear since it is nowenergeticallymore
favorable to have occupation number n ¼ 3 [Fig. 2(c)]. This
can be easily understood in the zero hopping limit. At �¼
�12¼U, a doubly occupied site has the same energy as a
singly occupied one. At �¼�13¼ð3UþU3Þ=2, instead, a
singly occupied site has the same energy as a triply occupied
one. The condition �13 � �12 sets the U3 value for which
the second lobe disappears, i.e., jU3j>U (at jU3j¼U, sites
with occupation number n ¼ 1, 2, 3 are degenerate in energy
for� ¼ �12 ¼ �13). Direct transitions fromMI occupation

numbersn ¼ 1 ton ¼ 3 survive at finite hopping [Fig. 2(d)],
as confirmed below using QMC calculations. The same
argument shows that jU3j>U also implies the disappear-
ance of the 4th lobe. One can easily see that, upon further
increasing U3, all lobes other than n ¼ 3 will eventually
disappear (e.g., at U3 ¼ �3U, the n ¼ 1 and n ¼ 5 lobes
disappear).
We have monitored the behavior of mean-field energy

[Eq. (2)] at fixed�=U while varying J=U to study the order
of phase transitions described by model (1). The formation
of double minima structure in the mean-field energy func-
tional E½c � is a signature of first-order phase transitions.
We have observed such double minima structures at
U3 ¼ �1:5U for the n ¼ 1 MI-SF and n ¼ 3 MI-SF tran-
sitions. The occurrence of first-order transitions can be
understood with a simple argument. At fixed small J=U,
jU3j �U, and upon increasing (decreasing) � in order to
dope the n ¼ 1 (n ¼ 3) MI with particles (holes), double
occupancy will be suppressed in favor of triply occupied
sites. At a large enough jU3j, such a mechanism will even-
tually prevent a gradual addition (subtraction) of particles
resulting in first- rather than second-order transitions.
Second-order transitions will be restored at a large enough
J=U as the kinetic energy gain due to hopping of extra
particles (holes) will again favor a gradual change in density.
In order to confirm the mean-field predictions, we have

performed QMC simulations on a square lattice of linear
size up to L ¼ 24 (and L ¼ 30 in certain cases) for selected
values of J=U, and at � ¼ 1

kBT
¼ L=J, which corresponds

to an effective zero-temperature regime. Figure 3 compares
the QMC results with the mean-field predictions of the
phase diagram for U3 ¼ �3U=2. As mentioned above, a
direct transition from n ¼ 1 MI (lower lobe) to n ¼ 3 MI

FIG. 2 (color online). Mean-field phase diagrams in the �=U
vs zJ=U plane, where z ¼ 4 is the number of nearest neighbors
in two dimensions, for jU3j ¼ 0 (a), jU3j ¼ �U=2 (b), jU3j ¼
�U (c), and jU3j ¼ �3U=2 (d), are shown. When 0< jU3j<U,
the n ¼ 2 and n ¼ 4 lobes visibly shrink in favor of the
n ¼ 3 lobe, until they completely disappear at jU3j ¼ U (c).
For jU3j>U, the n ¼ 3 lobe begins to overlap with the n ¼ 1
and n ¼ 4 lobes, and a direct phase transition between MI lobes
becomes possible. The dotted rectangle in (d) highlights the
region examined in detail in Fig. 3.

FIG. 3 (color online). First-order phase transitions at U3¼
�1:5U. The dotted line corresponds to the first-order phase
transition from the n ¼ 1 MI (lower blue) to n ¼ 3 MI (upper
pink) predicted by mean-field theory. Solid lines refer to mean-
field first-order transitions from MI to SF. Solid circles are QMC
results from hysteretic curves. Dashed lines correspond to
second-order mean-field MI-SF transitions. Open squares are
second-order transition points from QMC. Lower (upper) inset
shows examples of hysteretic behavior for the n ¼ 1 (n ¼ 3)
MI-to-SF transition.
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(upper lobe) survives at finite hopping. This first-order
transition is depicted by the dotted line, while the solid lines
refer to first-order transitions from MI to SF. The solid and
open symbols correspond to QMC predictions of the phase
boundary with first- and second-order phase transitions.

To extract transition points, we have analyzed the parti-
cle density n as a function of �. Additionally, we have
performed hysteresis analysis by sweeping back and fourth
in chemical potential and calculating the corresponding
particle density. The hysteretic behavior of the system
along the phase boundaries (solid symbols) further con-
firms that these are first-order transitions. We show two
examples of such curves for the n ¼ 1 MI-SF and n ¼ 3
MI-SF transitions in the lower and upper inset, respec-
tively. Based on the energy argument previously discussed,
we expect the phase transition to become second order as
J=U is increased. Indeed, larger kinetic energy will favor
formation of particle or hole excitations on top of the MI.
The energy gain due to hopping of the latter will compete
with the attractive three-body interaction and will eventu-
ally restore the second-order MI-SF transition driven by
addition or subtraction of a small number of particles from
the MI regime.

We have used QMC simulations to benchmark the J=U
values at which first-order phase transitions become second
order. Second-order MI-SF transitions are depicted in Fig. 3
by dashed mean-field lines, with open squares representing
QMC results. For z ¼ 4, the n ¼ 1 (n ¼ 3) MI-SF transi-
tion becomes of second order at zJ=U ¼ 0:20� 0:02
(zJ=U ¼ 0:133� 0:02). We estimate the position triple
point, using mean-field approximation [Eq. (2)], where we
truncate the Hilbert space to the ni ¼ 1, 2, 3 states. Using
this approximation, we find ðzJUÞTP ¼ �ðUþU3Þ=10. For
U3 ¼ �1:5U and z ¼ 4, this gives J=U ¼ 0:05.

First-order phase transitions present in our model can be
experimentally detected due to a loss of adiabaticity across
the phase boundary even upon an arbitrarily slow ramping
up or down of the optical lattice, as suggested in Ref. [30],
or by observing hysteretic behavior. In addition, first-order
phase transitions are characterized by discontinuity in
density profiles, a local observable easily accessible with
state-of-the-art techniques [31].

Finally, we have looked at how first-order phase tran-
sitions are affected by finite temperature. Strictly speaking,
the MI state exists only at zero temperature. In practice, MI
features persist up to temperature T � 0:2U [32]. QMC
results show that phase transitions are still of first order at
temperatures of T � J, where MI features are still well
defined. A more extensive study of the behavior of the
system at finite temperatures will be the subject of future
investigations.

Concluding, we have studied an extended version of the
Bose–Hubbard model, which includes an attractive three-
body interaction term U3, both at a mean-field level and by
means of quantumMonte Carlo simulations. The three-body

term results from a universal three-body bound state
attached to an excited threshold and can be tuned via an
external rf field. We have found that, at jU3j>U, where the
n ¼ 2 lobe disappears, there exists a first-order phase tran-
sition separating the n ¼ 1 from the n ¼ 3 lobes, which
extend up to a triple point. A strong three-body attraction
also affects the order of theMI-SF transition.We have found
first-order transitions separating the n ¼ 1 and n ¼ 3 MI
from the SF. We have also analyzed the effect of finite
temperatures and found that transitions are still of first order
at temperatures T � J.
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