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SET IDENTIFICATION WITH TOBIN REGRESSORS

VICTOR CHERNOZHUKOV, ROBERTO RIGOBON, AND THOMAS M. STOKER

Abstract. We give semiparametric identi�cation and estimation results for econo-

metric models with a regressor that is endogenous, bound censored and selected,

called a Tobin regressor. We show how parameter sets are identi�ed, and give

generic estimation results as well as results on the construction of con�dence sets

for inference. The speci�c procedure uses quantile regression to address censoring,

and a control function approach for estimation of the �nal model. Our procedure

is applied to the estimation of the e¤ects on household consumption of changes in

housing wealth. Our estimates fall in plausible ranges, signi�cantly above low OLS

estimates and below high IV estimates that do not account for the Tobin regressor

structure.
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1. Introduction

In economic surveys, �nancial variables are often mismeasured in nonrandom ways.

The largest values of household income and wealth are often eliminated by top-coding

above prespeci�ed threshold values. Income and wealth are also typically reported as

nonnegative, which may neglect large transitory income losses large debts (negative

components of wealth), or other aspects that could be modeled viewed as bottom-

coding below a prespeci�ed threshold value. In addition to mismeasurement problems

related to upper and lower bounds, income and wealth are often missing due to

nonresponse.1

These measurement problems are particularly onerous when they are systematic

with respect to the economic process under study. For instance, suppose one is in-

terested in the impact of liquidity constraints on consumption spending. The wide-

spread practice of dropping all observations with top-coded income values seemingly

eliminates households that are the least a¤ected by liquidity constraints. Likewise, if

one is studying the household demand for a luxury good, the most informative data

is from rich households, who, for con�dentiality reasons, often won�t answer detailed

questions about their income and wealth situations.

These problems can be compounded when the observed �nancial variable is itself

an imperfect proxy of the economic concept of interest. For instance, suppose one

is studying the impact of the availability of cash on a �rm�s investment decisions.

Only imperfect proxies of �cash availability�are observed in balance sheet data, such

as whether the �rm has recently issued dividends. The mismeasurement of those

1For many surveys, extensive imputations are performed to attempt to ��ll in�mismeasured or

unrecorded data, often in ways that are di¢ cult to understand. For instance, in the U.S. Consumer

Expenditure (CEX) survey, every component of income is top-coded; namely wages, interest, gifts,

stock dividends and gains, retirement income, transfers, bequests, etc., and there is no obvious

relation between the top-coding on each component and the top-coding on total income. The CEX

makes extensive use of ad hoc multiple imputation methods to �ll in unrecorded income values.
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proxies is not random; positive dividends indicate positive cash availability but zero

dividends can indicate either mild cash availability or severe cash constraints. Thus,

observed dividends represent a censored (bottom coded at zero) version of the cash

availability status of a �rm.

The study of mismeasurement due to censoring and selection was initiated by the

landmark work of Tobin(1958). In the context of analyzing expenditures on durable

goods, Tobin showed how censoring of a dependent variable induced biases, and how

such bias could be corrected in a parametric framework This work has stimulated

an enormous literature on parametric and semiparametric estimation with censored

and selected dependent variables. The term �Tobit Model�is common parlance for

a model with a censored or truncated dependent variable.

We study the situation where a regressor is censored or selected. This also causes

bias to arise in estimation; bias whose sign and magnitude varies with the mismeasure-

ment process as well as the estimation method used (Rigobon and Stoker (2006a)).

With reference to the title, we use the term �Tobin regressor�to refer to a regressor

that is bound censored, selected and (possibly) endogenous.

When the mismeasurement of the regressor is exogenous to the response under

study � that is, both the correctly measured regressor and the censoring/selection

process is exogenous �then consistent estimation is possible by using only the �com-

plete cases,�or dropping any observations with a mismeasured regressor. Even when

valid, the complete cases are often a small fraction of the data, with the resulting

estimates very imprecise. But the existence of consistent estimates allows for tests

of whether bias is induced in estimates computed from the full data sample.2

2See Rigobon and Stoker (2006b) for regression tests and Nicholetti and Peracchi (2005) for tests

in a GMM framework.
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When endogenous regressors are censored or selected, the situation is considerably

more complicated. Complete case analysis, or dropping observations with a mismea-

sured regressor, creates a selected sample for the response under study. Standard

instrumental variables methods are biased when computed from the full data sample,

and are also biased and inconsistent when computed using the complete cases only.

In this paper, we provide a full identi�cation analysis and estimation solution for

situations with Tobin regressors. We give results on the nonparametric identi�cation

and estimation of parameter sets. We apply recent work on con�dence sets to provide

a full theory of inference analogous to the case of point identi�cation and inference.

We carry out estimation and inference with quantile regression methods, although

our generic theory is applicable with many types of �exible estimation methods. We

see our methods as providing estimates and inference that make correct use of all

observations with accurately measured data.

Our approach is related to several contributions in the literature. Without censor-

ing or selection, our framework is in line with work on nonparametric estimation of

triangular systems, as developed by Altonji and Matzkin (2005), Chesher (2003), Im-

bens and Newey (2005) and Chernozhukov and Hansen (2005), among others. Our

accommodation of endogeneity uses the control function approach, as laid out by

Blundell and Powell (2003). In terms of dealing with censoring, we follow Pow-

ell�s (1984) lead in using monotonicity assumptions together with quantile regression

methods (see Koenker�s(2005) excellent review of quantile regression). Inference is

possible in our framework following recent results on con�dence intervals for sets of

Chernozhukov, Hong and Tamer (2007).

There is a great deal of literature on mismeasured data, some focused on regressors.

Foremost is Manski and Tamer (2002), who use monotonicity restrictions to propose

consistent estimation with interval data. For other contributions in econometrics, see

Ai (1997), Chen, Hong and Tamer (2005), Chen, Hong and Tarozzi (2004), Liang,
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Wang, Robins and Carroll (2004), Tripathi (2004), among many others, which are

primarily concerned with estimation when data is missing at random. The large

literature in statistics on missing data is well surveyed by Little and Rubin (2002),

and work focused on mismeasured regressors is surveyed by Little (1992).

The exposition proceeds by introducing our approach in a simple framework, in

Section 2. Section 3 gives our general framework and a series of generic results on

identi�cation and estimation. Section 4 contains an empirical application, where we

show how accommodating censoring and selection gives rise to a much larger estimates

of the impact of housing wealth on consumption.

2. A Basic Discussion of The Model and Identification Procedures

2.1. Linear Modeling Setup. We introduce the main ideas of our approach using

the simplest possible framework. Without censoring or selection, we assume a linear

model with (potentially) endogenous regressor:

Y = X��+ U� (2.1)

X� = Z 0 + V � (2.2)

U� = �V � + " (2.3)

where

" is mean (or median or quantile) independent of (V �; X�); (2.4)

V � is median independent of Z (2.5)

Here, X� is the uncensored regressor, which is endogenous when � 6= 0, and Z

represents valid instruments (without censoring or selection). We make no further

assumption on the distribution of " or V �.
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The observed regressor X is given as

X = IfR = 1gIfX� > 0gX� (2.6)

R =

8<: 1 with prob 1� �
0 with prob �

; independent of Z: (2.7)

That is, there are two sources of censoring ofX� to 0. First is bound censoring, which

occurs whenX� � 0 or V � � �Z 0. Second is independent selection censoring, which
occurs if R = 0. We further assume that

P [Z 0 > 0] > 0 (2.8)

which is convenient as well as empirically testable.

Censoring is modeled with the lower bound (bottom-coding) of 0, but top-coding or

di¤erent bound values are straightforward to incorporate. Selection censoring occurs

with constant probability � here, but � will be modeled as varying with controls in our

general framework. The observed regressor X is censored, selected and endogenous,

which we refer to as a Tobin regressor. While there exists an instrument Z for the

uncensored regressor X�, that instrument will typically be correlated with X �X�.

Therefore, Z will not be a valid instrument if X is used in place of X� in the response

equation (2.1).

It is also straightforward to include additional controls in the response equation.

With that in mind, we develop some examples for concreteness.

Example 1. Income and Consumption: Suppose X is income and Y is household

consumption expenditure. X is typically endogenous, top-coded and missing for

various households.. Bound censoring arises for large income values, and selection

refers to missing values, possibly due to households declining to report their income.

For instance, if one is estimating a permanent income model of consumption, then

X would be observed permanent income (or wealth). If one is investigating excess
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sensitivity (or liquidity constraints), then X would be observed current income (and

the equation would include lagged consumption). Finally, the same issues can arise

in an Engel curve analysis, where Y is the expenditure on some commodity and X is

total expenditures on all commodities.

Example 2: Dividends and Firm Investment: Suppose X is declared dividends

and Y is investment, for individual �rms. Here X� is the level of cash availability (or

opposite of cash constraints). Positive dividendsX indicate positive cash availability,

but zero dividends arises with either mild or severe cash constraints (small or large

negative X�).

Example 3: Day Care Expenditures and Female Wages: Suppose you are study-

ing the economic situation faced by single mothers, where Y is expenditure on day

care and X is the observed wage rate. X is potentially endogenous (work more to

pay for higher quality day care), and is selected due to the labor participation choice.

2.2. Basic Identi�cation and Estimation Ideas. The strategy for identi�cation

of the model is to set the amount of selection �rst, which allows the rest of the model

to be identi�ed. So, suppose we set a value �� for Pr[R = 1]. The following steps

give identi�cation:

1) Observe that the conditional median curveQX�(1
2
jZ) = Z 0 is partially identi�ed

from the estimable curve

QX

�
1

2
(1� ��) + ��jZ

�
= max[Z 0; 0]; (2.9)

provided Z 0 > 0 with positive probability.

2) We can then estimate the control function

V � = X� � Z 0 = X � Z 0;
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whenever X > 0.

3) Given the control function V �, we can recover the regression function of interest

(mean, median or quantile) for the sub-population whereX > 0 and Z 0 > 0. Namely,

if " is mean independent of (V �; X�), we can estimate the mean regression

E[Y jX;V �] = X 0�+ �V � (2.10)

or if " is quantile independent of (V �; X�), we can estimate the quantile regression

QY (� jX;V �) = X 0�+ �V �: (2.11)

4) All of the above parameters depend on the guess ��. We recognize this functional

dependence by writing �(��), �(��), (��) for solutions of steps 1), 2), and 3). For

concreteness, suppose the particular value �0 = �(�0) is of interest. Given a set P0
that contains �0, the set

A0 = f�(�); � 2 P0g

clearly contains �0. Likewise, if we denote �(�) = f�(�); �(�); (�)g, then �0 = �(�0)
is contained in the set

�0 = f�(�); � 2 P0g:

5) It remains to �nd the set P0. In the absence of further information, this set is
given by:

P0 = [0; inf
z2support(Z)

Pr[D > 0jZ = z]]: (2.12)

where

D � 1� IfR = 1gIfX� > 0g

is the index of observations that are censored.

This is the basic identi�cation strategy. It is clear that point identi�cation is

achieved if � is a known value. In particular, if there is only bound censoring, then
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� = 0, and estimation (step 1) uses median regression to construct the (single) control

function for estimation.

For estimation, the population curves above will be replaced by empirical curves.

In Section 4 we will discuss several ways of �exibly estimating the model as well as

its non-additive generalizations. Con�dence regions can be constructed as follows.

Suppose �0 is of interest and the set P0 is known. A standard con�dence region for
�(�) is

CR1��(�(�)) = [�̂(�)� c1��s:e:(�̂(�))]:

This implies that an 1� �-con�dence region for �0 = �(�0) is merely

[�2P0CR1��(�(�)):

A simple way to report such a con�dence region is to report its largest and smallest

elements.

We will discuss further adjustments because of the estimation of P0, the range
of selection probabilities. Because of independence, the selection probability is a

lower bound on the probability of censoring for all observations. Therefore, we

can estimate the upper bound for the selection probability with an estimate of the

minimum probability of censoring across the data. With this logic, a con�dence

region for P0 can be developed, as well as adjustments for the level of signi�cance of
the parameter con�dence regions given above.

2.3. A Geometric View of Identi�cation and Estimation. We illustrate the

basic idea of identi�cation through a sequence of �gures that illustrate a simple one-

regressor version of our empirical example. In the �rst step, we �x a set of values of �

in a set from 0 to .09 (the range for the true �0) and �t a family of censored conditional

quantile estimates. Thus, we obtain a family of ��rst stage" estimates, shown in

Figure 1, indexed by the admissible values of �. We compute these estimates using the

three-step estimation procedure described in Chernozhukov and Hong (2002), which
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is a computationally attractive approximation to the estimator of Powell (1984). In

the second step, we form a control function V� using the results of the �rst step,

and then we run mean regressions of Y on X and V�. The results are indexed by

the values of � 2 [0; 0:09]. Thus, we obtain a family of �second stage" estimates,
shown in Figure 2, indexed by the admissible values of �. Finally, Figure 3 shows the

construction of a conservative though consistent upper bound on �. The underlying

speci�cation here corresponds to the one used in the empirical section of the paper.

The panels of Figure 3 show the �tted probabilities of missing data on X. The top

panel shows a naive plug-in upper bound on �. The bottom panel shows the upper

bound of � adjusted up by the two times standard error times a logarithmic factor

in the sample size.

3. Generic Set Identification and Inference

3.1. Set Identi�cation without Functional Form Assumptions. The general

stochastic model we consider is the following system of quantile equations:

Y = QY (U jX�;W; V ) (3.1)

X� = QX�(V jW;Z) (3.2)

where QY is the conditional quantile function of Y givenX�;W; V and QX� is the con-

ditional quantile function of X� given Z. Here U is Skorohod disturbance such that

U � U(0; 1)jX�;W; V , and V is Skorohod disturbance such that V � U(0; 1)jW;Z.
The latent true regressor is X�, which is endogenous when V enters the �rst equation

nontrivially. Z represents �instruments" and W represents covariates.

The observed regressor X, the Tobin regressor, is given by the equation

X = IfR = 1gIfX� > 0gX� (3.3)



11

where

R =

8<: 1 with probability 1� �(W )
0 with probability �(W )

(3.4)

conditional on W;Z; V :

There are two sources of censoring of X� to 0. First there is bound censoring,

occurring when X� � 0. Second is selection censoring, occurring when R = 0,

independently of the �rst source of censoring.

The model (3.1), (3.2) is quite general, encompassing a wide range of nonlinear

models with an endogenous regressor. The primary structural restriction is that the

system is triangular; that is, V can enter (3.1) but that U does not enter (3.2). The

Skohorod disturbances U and V index the conditional quantiles of Y and X�. We

have by de�nition that

U = FY (Y jX�;W; V )

V = FX�(X�jW;Z)

where FY is the conditional distribution function of Y given X�;W; V and FX� is

the conditional distribution function of X� given W;Z. The random variables U

and V provide an equivalent parameterization to the stochastic model as additive

disturbances or other (more familiar) ways capturing randomness. For example, the

linear model (2.1)-(2.2) is written in the form of (3.1), (3.2) as

Y = X��+QU� (U jV )

X� = Z 0 +QV � (V jZ)

where the additive disturbances U� and V � have been replaced by U and V through

the (equivalent) quantile representations U� = QU� (U jV ) and V � = QV � (V jZ).
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The primary restriction of the Tobin regressor is that selection censoring is inde-

pendent of bound censoring, (conditional on W;Z and V ). We have left the selec-

tion probability in the general form � (W ), which captures many explicit selection

models. For instance, we could have selection based on threshold crossing: sup-

pose � is a disturbance and the selection mechanism is R � 1
�
W

0
� + � � 0

�
, then

� (W ) = Pr
�
� < �W 0

�
	
.

We now turn to the formal identi�cation results. We require the following assump-

tion

Assumption 1: We assume that the systems of equations (3.1)-(3.4) and inde-

pendence assumptions hold as speci�ed above, and that v 7! QX�(vjW;Z) is strictly
increasing in v 2 (0; 1) almost surely.

Our main identi�cation result is

Proposition 1. The identi�cation regions for QY �(�jX�; V;W ) and FY (�jX�; V;W )

on the subregion of the support of (X�; V;W ) implied by X > 0 are given by

Q = fQY (�jX;V�;W ); � 2 Pg

and

F = fFY (�jX;V�;W ); � 2 Pg

where when X > 0

V� =
FX(XjZ;W )� �(W )

1� �(W ) ; (3.5)

or equivalently when X > 0

V� =

Z 1

0

1 fQX ((�(W ) + (1� �(W ))vjW;Z) � Xg dv: (3.6)

Finally,

P =
�
�(�) measurable : 0 � �(W ) � min

z2supp(Z)jW
FX(0jW; z) a.s

�
: (3.7)
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Proposition 1 says that given the level of the selection probability � (W ), we can

identify the quantile function of Y with respect to X� by using the (identi�ed) quan-

tile function of Y with respect to the observed Tobin regressor X, where we shift the

argument V to V� of (3.5,3.6). The identi�cation region is comprised of the quan-

tile functions for all possible values of � (W ). The proof is constructive, including

indicating how the quantiles with respect to X� and to X are connected.

Proof of Identi�cation. We follow the logic of the identi�cation steps outlined

in the previous section. Suppose we �rst set a value �(W ) for Pr[R = 1jW ]. For
x > 0, we have that

Pr [X � xjW;Z] = Pr [R = 0jW;Z] + Pr [R = 1 and X� � xjW;Z]

= Pr [R = 0jW;Z] + Pr [R = 1jW;Z] � Pr [X� � xjW;Z]

That is,

FX [xjW;Z] = �(W ) + (1� �(W ))FX� [xjW;Z]

In terms of distributions, whenever X > 0,

V� = FX� [XjW;Z] = FX(XjZ;W )� �(W )
1� �(W )

Thus V� is identi�ed from the knowledge of FX(XjZ;W ) and �(W ) whenever X > 0.

In addition

X� = X:

when X > 0

In terms of quantiles,

QX�(V�jW;Z) = QX
�
FX(XjZ;W )� �(W )

1� �(W )

����W;Z�

= QX ((�(W ) + (1� �(W ))V�jW;Z) :

(3.8)
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This implies that for any X > 0

V� =

Z 1

0

1fQX�(vjW;Z) � X�gdv

=

Z 1

0

1fQX ((�(W ) + (1� �(W ))vjW;Z) � Xgdv

Thus V� is identi�ed from the knowledge of QX(�jZ;W ) whenever X > 0.

Inserting

X;V� for cases X > 0

into the outcome equation we have a point identi�cation of the quantile functional

QY (�jX;V�;W )

over the region implied by the condition X > 0. This functional is identi�able from

the quantile regression of Y on X;V�;W .

Likewise, we have the point identi�cation of the distributional functional

FY (�jX;V�;W )

over the region implied by the condition X > 0. This functional is identi�ed either by

inverting the quantile functional or by the distributional regression of Y onX;V�;W .

Now, since the (point) identi�cation of the functions depends on the value �(W ),

by taking the union over all �(�) in the class P of admissible conditional probability
functions of W , we have the following identi�ed sets for both quantities:

fQY (�jX;V�;W ); �(�) 2 Pg

and

fFY (�jX;V�;W ); �(�) 2 Pg:

The quantities above are sets of functions or correspondences.

It remains to characterize the admissible set P. From the relationship

FX [0jW;Z] = �(W ) + (1� �(W )) � FX� [0jW;Z]
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we have

0 � �(W ) = FX [0jW;Z]� FX� [0jW;Z]
1� FX� [0jW;Z] � FX(0jW;Z);

where the last observation is by the equalities

0 = min
0�x�F

�
F � x
1� x

�
� max

0�x�F

�
F � x
1� x

�
= F:

Thus, taking the best bound over z:

0 � �(W ) � min
z2ZjW

FX(0jW; z);

Hence

P =
�
�(�) measurable : 0 � �(W ) � min

z2ZjW
FX(0jW; z) a.s

�
:

�

As noted before, the proof makes it clear that point identi�cation of the functions

is possible where X > 0 and � (W ) is known (or point identi�ed), including the no

selection case with �(W ) = 0.

3.2. Generic Limit Theory and Inference. We are typically interested in

�(�) = �
�
Q(�; �)

�
a functional of � taking values in�, where the quantileQ can either be the conditional

quantile QY or QX�, or equivalently

�(�) = ��
�
F (�; �)

�
where the conditional distribution F is either FY or FX� . For identi�cation, we have

the immediate corollary:

Corollary 1. The identi�cation region for the functional �(�0) is

f�(�); � 2 Pg:
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For some generic results on estimation, we use a plug-in estimator

b�(�) = �� bQ(�; �)� or ��� bF (�; �)�:
We assume that the model structure is su¢ ciently regular to support the following

standard estimator properties:

Assumption. 2.1 For any � 2 P , suppose an estimate of bQ or bF is available such
that

Zn(�) := An(�)
�b�(�)� �(�)�) Z1(�); for each � 2 P

where convergence occurs in some metric space (B; k � kB), where An(�) is a sequence
of scalers, possibly data dependent.

Assumption 2.2 Let

c(1� �; �) := �-quantile of kZ1(�)kB

and suppose that the distribution function of kZ1(�)kB is continuous at c(1��; P ).
Estimates are available such that bc(1� �; �)!p c(1� �; �) for each �.

With these assumptions, we can show the following generic result:, covering the

case of known P.

Proposition 2. Let

C1��(�) :=
n
� 2 � :

An(�)�b�(�)� �)�
B
� bc(1� �; �)o:

Let

CR1�� :=
[

�2P
C1��(�):

Then

lim inf
n!1

P
n
�(�0) 2 CR1��

o
� 1� �:
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Estimation of P poses more challenges. From (3.7), estimation of P is equivalent

to estimation of the boundary function:

`(W ) = min
z2Z

FX [0jW; z]:

Let b̀(W ) be a suitable estimate of this function. One example is
b̀(W ) := min

z2Z
bFX [0jW; z]: (3.9)

We assume that the model structure is su¢ ciently regular to permit the following

estimator properties:

Assumption. 2.3 Let b�n(1� �) and the known scaler Bn(W ) to be such that
`(W )� b̀(W ) � Bn(W )b�n(1� �)

for all W with probability at least 1� �.

Conservative forms of con�dence regions of this type are available from the litera-

ture on simultaneous con�dence bands. For instance, for b̀(W ) = minz2Z bFX [0jW; z]:
above, if we set

ẑ = argmin
z2Z

bFX [0jW; z]
and

Bn(W ) :=
h
s.e.( bF (W; z))i

z=ẑ0(W )
�n(1) = 2

p
log n

then Assumption 2.3 holds. Sharper con�dence regions for minimized functions are

likely available, but their construction is relatively unexplored. For some initial

results of this type, see Chernozhukov, Lee and Rosen (2008).

Let �(W ) belong to the parameter set P. Then the con�dence region for �(W ) is
given by

CR01�� = f� 2 � : �(W )� bl(W ) � Bn(W )b�n(1� �)g
We combine this with the previous proposition to obtain
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Proposition 3. Let

CR1�� :=
[

�2CR01��
C1��(�):

Then

lim inf
n!1

P
n
�(�0) 2 CR1��

o
� 1� �� �:

3.3. Available Estimation Strategies. We can proceed by either quantile or dis-

tribution methods, or some combination of the two. The key functions, used as inputs

in quantile-based calculations given in the previous section, are as follows:

1. Conditional quantile function of selected regressor X given Z and other co-

variates W :

QX [�jZ;W ]

2. Conditional quantile function of outcome Y regressor X, covariates W , and

the control function V�:

QY [�jX;W; V�]

and its functionals �� such as average derivatives

E@QY [�jX;W; V�]=@X:

3. Conditional mean function of outcome Y regressor X, covariates W , and the

control function V�:

E[Y jX;W; V�]

its functionals �� such as average derivatives

E@E[Y jX;W; V�]=@X:

The key functions, used as inputs in distribution-based calculations given in the

previous section, are as follows:
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4. Conditional distribution function of selected regressor X given Z and other

covariates W :

FX [�jZ;W ]

5. Conditional distribution function of outcome Y regressor X, covariates W ,

and the control function V�:

FY [�jX;W; V�]

and its functionals �� such as average derivatives

E@FY [�jX;W; V�]=@X:

6. Conditional mean function of outcome Y given regressor X, covariates W ,

and the control function V�:

E[Y jX;W; V�]

its functionals �� such as average derivatives

E@E[Y jX;W; V�]=@X:

There are many available methods for all of the above options. Semiparametric

methods include for the items listed in this order:

1 & 2. Censored quantile regression (Powell, 1984, Chernozhukov and Hong, 2002),

and other quantile methods based on parametric models such as the classical Tobit.

Two-step quantile regression with estimated regressor, as in Koenker and Ma (2006)

and Lee (2006).

4 & 5. Various semi-parametric models for conditional distribution function, see

e.g. Han and Hausman (1997), and Chenozhukov, Fernandez-Val, Melly (2007). Es-

timated regressors are covered by the theory in Newey and McFadden (1994).

3 & 6. Usual least squares with estimated regressor, as in Newey and McFadden

(1994).
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Nonparametric methods include for the items listed in this order:

1 & 2. Nonparametric quantile regression and its versions with estimated regressors.

The former is available in Chaudhuri, Chaudhuri, Doskum, and Samarov, Belloni and

Chernozhukov (2007), and the latter in Lee (2006).

4 & 5. Various nonparametric models for conditional distribution function, see e.g.

Hall, Wol¤, Yao (1997) and Chernozhukov and Belloni (2007). Estimated regres-

sors are covered by the theory in Imbens and Newey (2006) for the cases of locally

polynomial estimates.

3 & 6. Least squares with estimated regressor, as in Newey, Powell, Vella (2004).

Moreover, in quantile strategies it is easy to deal with either additive or nonaddi-

tive speci�cations. The distribution approaches are mostly geared towards nonaddi-

tive speci�cations, though location models allow to treat additive ones as well. By

additivity here we mean the additivity or non-additivity of disturbances entering the

�rst stage.

In the next version of the paper, we will give two complete algorithms of estimation,

with all the details.

4. The Marginal Propensity to Consume out of Housing Wealth

Recent experience in housing markets has changed the composition of household

wealth. In many countries such as the United States, housing prices have increased

over a long period, followed by substantial softening. The market for housing debt,

especially the risky subprime mortgage market, has experienced liquidity shortages

that have resulted in increased volatility in many �nancial markets. From a policy

perspective, the crisis in the subprime mortgage market is relevant in so far as it

has an e¤ect on consumption and overall economic activity. For instance, if a drop in

housing prices occurs because of the crisis, and that drop leads to a severe contraction
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of consumption at the household level, then central bank intervention is likely to occur

� and indeed, it has occurred recently.

Currently, two topics dominate the monetary policy discussion. First, what impact

will the subprime crisis have on aggregate demand? Second, what distribution e¤ects

will occur because of the crisis? The �rst question requires an assessment of the

marginal propensity to consume out of housing wealth, and the second depends on

the exposure that households and banks had prior to the subprime crisis.

Surprisingly, the literature does not agree on the "right" measure of the marginal

propensity of consumption out of housing wealth. Some papers �nd marginal propen-

sities of 15 to 20 percent (e.g. Benjamin, Chinloy and Jud (2004)) while others report

relatively low estimates of 2 percent in the short run and 9 percent in the long run

(e.g.Carroll, Otsuka and Slacalek (2006)). Research in this area is very active, and

what policy makers have done, is to take a conservative approach.3

One of the problems of estimation is the fact that variables such as income and

housing wealth are endogenous and, in most surveys, also censored. The literature

typically drops the censored observations, and tries to estimate the relationship by

incorporating some non-linearities. As we have discussed, this is likely to bias the

results, and therefore could have a role in why there is no agreement on a standard set

of estimates. We feel that the estimation of the marginal propensity of consumption

out of housing wealth is a good situation for using the methodologies developed here

to shed light an a reasonable range of parameter values applicable to the design of

policy.

3This impact of housing wealth is of primary interest for the world economy, not just the US.

See, for instance, Catte, Girouard, Price and Andre (2004) and Guiso, Paiella and Visco (2005) for

European estimates in the range of 3.5 percent. Asian estimates are in a simlar range; see Cutler

(2004) for estimates of 3.5 percent for Hong Kong.
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We have data on U.S. household consumption and wealth from Parker (1999).

These data are constructed by imputing consumption spending for observed house-

holds in the Panel Survey of Income Dynamics (PSID), using the Consumer Expendi-

ture Survey (CEX). Income data is preprocessed � original observations on income

are top-coded, but all households with a top-coded income value have been dropped

in the construction of our data.

We estimate a �permanent income�style of consumption model:

lnCit = �+ �PY lnPYit + �H lnHit + �OW lnOWit + �Y lnYit + U
�
it (4.1)

Here Cit is consumption spending, PYit is a constructed permanent component of

income (human capital), Hit is housing wealth, OWit, is other wealth and Yit is

current income. Our focus is the elasticity �H , the propensity to consume out of

housing wealth.

Log housing wealth takes on many zero values, which we model as the result of

bound censoring and selection. These features arise �rst by the treatment of mort-

gage debt (we do not observe negative housing wealth values) and by the choice of

renting versus owning of a household�s residence. We view the composition of wealth

between housing and other �nancial assets as endogenous, being chosen as a func-

tion of household circumstances and likely jointly with consumption decisions. For

instruments, we use lagged values of current income, permanent income and other

wealth.. Thus, we model log housing is a Tobin regressor.

One implication of the Tobin regressor structure is that all standard OLS and

IV estimates are biased; including estimates that take into account either censoring

or endogeneity, but not both. In Table 1, we present OLS and IV estimates for

various subsamples of the data. The OLS estimates are all low; 2.8% for all data,

3.4% for households with observed lag values, and 5.3% for the �complete cases, �or

households with nonzero housing values. The IV estimate for the complete cases is

at least a �ve-fold increase, namely 28.1%.
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Table 1. Basic Estimates of Housing E¤ects

All Households Households with Nonzero Housing Wealth

observed IV (Complete Cases)

Sample Size 6,647 3,256 2,126

OLS .028 0.034 0.053

(004) (0.005) (0.010)

IV (TSLS) 0.281

(0.030)

Our procedure involves three steps. First, we establish a range for the selection

probability by studying the probability of censoring. Second, we compute quantile

regressions of the Tobin regressor for di¤erent values of the selection probability as

in (2.9) or (3.8), and then estimate the control function for each probability value.

Third, we estimate the model (4.1), including the estimated control function, as in

(2.10) or (2.11). Our set estimates coincide with the range of coe¢ cients obtained

for all the di¤erent selection probability values. Their con�dence intervals are given

by the range of upper and lower con�dence limits for coe¢ cient estimates.

The �rst step is to estimate the probability that lnH = 0 given values of PY ,

Y and OW , and �nd its minimum over the range of our data, implementing (3.9).

Speci�cally, we used a probability model with Cauchy tails, including polynomial

terms in the regressors. We used the procedure of Koenker and Yoon (2007), which

is implemented in R. The minimum values were small, and, as a result we chose

a rather low yet conservative value of b̀(W ) = :04. After adjusting by two times

standard error times a log factor, the upper bound estimate became :09. (We have

illustrated this calculation graphically in Figure 3). Thus, for the remaining steps, we

do computations for a grid of values over the range � 2 [0; :09]. The procedure and
results for the mean log consumption regressions are summarized in Figures 4 and

7. In particular, we plot the estimates for each value of �, as well as the associated
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Table 2. Con�dence Sets for Housing E¤ects

Set Estimate Con�dence Region

Housing coe¢ cient �H

Mean Outcome [:141; :149] [:116; :175]

90% Quantile [:165; :167] [:127; :206]

10% Quantile [:141; :188] [:081; :263]

Selection Probability � [0; :04] [0; :09]

con�dence interval. The set estimates are the projections of those curves onto the

left axis. As the Figure shows, there is relatively little variation in the coe¢ cient

estimates, so the set estimates are fairly sharp. We also computed estimates for the

upper and lower ranges of consumption values, namely the 90% quantile and the 10%

quantile. For the low ranges, there was more variation in the coe¢ cients. We present

the results for the housing e¤ects in Figures 5, 6 and 8 and 9.

All the results on housing e¤ects are summarized in Table 2. We note that all

results are substantially (and signi�cantly) larger than the OLS estimates (2.8%-

5.3%), which ignore endogeneity. All results are substantially smaller than the IV

estimate of 28.1%, which ignores censoring. Relative to the policy debate on the

impact of housing wealth, our results fall in a very plausible range.

5. Summary and Conclusion

We have presented a general set of identi�cation and estimation results for models

with a Tobin regressor, a regressor that is endogenous and mismeasured by bound

censoring and (independent) selection. Tobin regressor structure arises very com-

monly with observations on �nancial variables, and our results are the �rst to deal

with endogeneity and censoring together. As such, we hope our methods provide
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a good foundation for understanding of how top-coding, bottom-coding and selec-

tion distort the estimated impacts of changes in income, wealth, dividends and other

�nancial variables.

Our results are restricted to particular forms of censoring. It is not clear how

to get around this issue, because endogeneity requires undoing the censoring, and

undoing the censoring (seemingly) requires understanding its structure. Here we

separate selection and bound censoring with independence, use quantile regression

to address bound censoring, and identify parameter sets for the range of possible

selection probability values. Recent advances in the theory of set inference allow

straightforward construction of con�dence intervals for inference on parameter values.

One essential feature of our framework is that the censoring is not complete, namely

that some true values of the censored variable are observed. Such �complete cases�

provide the data for our estimation of the main equation of interest. However, not all

forms of censoring involve observing complete cases. Suppose, for instance, that we

were studying household data where all that we observe is whether the household is

poor or not; or that their income falls below the poverty line threshold. In that case,

using the �poor� indicator is a severely censored form of income, and no complete

cases (income values) are observed. Our methods do not apply in this case, although

it is of substantial practical interest.
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