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ABSTRACT

Air traffic is expected to continue to grow in the future and improved methods for dealing
with the increased demand on the system need to be designed and implemented. One method for
reducing surface congestion at airports is surface congestion management (SCM) (also
commonly called departure queue management or departure metering). The concept generally
involves holding aircraft at the gate or in the ramp area instead of releasing them onto the active
movement area during periods of high departure demand.

The FAA is planning to implement surface congestion management at airports where the
cost/benefit analysis is favorable. Therefore, an estimate of the benefits of implementing surface
congestion management in the future is necessary. To overcome the uncertainties and difficulties
inherent in forecasting, this thesis adopts a multi-fidelity modeling approach and proposes three
methods for estimating the benefits of SCM where the higher fidelity models study a subset of
airports to inform and validate the lower fidelity models used on the entire set of airports. In the
first model, a detailed analysis of a field trial of SCM at JFK airport is conducted using
operational data. The second model estimates the benefits of implementing SCM at 8 major US
airports from 2010 to 2030 by simulating congestion and performance levels through taxi time
estimation. The last model explores several options for generalizing the results to 35 airports in
the US. The results are also validated against historical benefits estimates as well as field trials of
SCM where available. The findings show that SCM will result in fuel savings on the order of 1%
of the total fuel burn in all stages of flight and between 5% and 45% of taxi-out fuel burn,
depending on the airport.
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1. INTRODUCTION

Air traffic is expected to continue to grow in the future and improved methods for dealing
with the increased demand on the system need to be designed and implemented in all phases of
flight. The airport surface is one area where system inefficiencies are especially evident in the
form of congestion: at the OEP 35 in the United States in 2010 there were over 48 million
minutes of departure taxi delay [1] (i.e., time over the unimpeded time), translating to over 194
million gallons of excess fuel burn. One approach to mitigate the resulting monetary and
environmental impacts is to employ surface congestion management techniques (also known as
departure queue management or departure metering). Understanding the potential benefits of
these techniques is important to help prioritize them relative to other capabilities which could be
developed to help address future air transportation system needs. However, these benefits are
difficult to calculate because the performance (and therefore congestion) of an airport is
dependent on a variety of factors such as capacity, weather, demand, configuration, and
controller performance, among others. The work described in this thesis develops methodologies
and applies them across a range of study airports to assess the potential benefits of surface
congestion management techniques under current and future operations to help inform decision-
making for future air transportation system evolution.

1.1 SURFACE CONGESTION AND ITS IMPACTS

Every airport can be considered to have a limit to the number of aircraft it can efficiently
handle in a given time period as a function of characteristics such as configuration, weather
conditions and demand. When demand increases above the level of the airport’s capacity at a
given time, congestion starts to grow. There are methods for managing congestion, such as the
slot-control system in place in Europe [2]. This system allocates a certain number of departure
slots per hour to airlines and forbids the scheduling of additional flights beyond the amount of
slots. The number of slots is tied to the bad-weather IMC capacity of the airport. While
congestion cannot be entirely eliminated, this system does substantially reduce it. However, the
US has no such system (excepting the New York area airports and Washington DC Reagan at
some times), meaning that schedules are often created by airlines assuming best-case VMC,
resulting in significant congestion when capacity is lower (such as during bad weather), which
must then be managed in “real time”. The FAA projection of continued growth in demand would
result in unsustainable levels of delay and congestion without improvements to the existing
system. Surface congestion negatively impacts airports in several ways. It is a major source of
delay, which can propagate from one airport through the entire system. It is environmentally and
fiscally wasteful, causing excess fuel burn, pollution, and delay costs to airlines, passengers and
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local/national communities impacted by the airport’s activities. It also results in an increased
workload on air traffic controllers because there are more flights actively taxiing. While
eliminating all of these impacts is not realistic, SCM is designed to mitigate many of them.

Figure 1 shows a particular airport with historically high delays, John F. Kennedy Airport
in New York, and how both the average taxi time and number of flights with taxi times greater
than 40 minutes are strongly correlated with demand levels. In addition, it shows how demand
consistently rose from 2000 until 2008, the start of the global recession. The forecast demand
until 2030 is also shown, and the peak level of 2007 is quickly passed.

JFK Airport Past and Future
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Figure 1: JFK Behavior

Figure 2 shows that these trends are not limited to a few highly congested airports but are
present across the OEP 35 airports. By 2030 the FAA projects a increase in air traffic of 80%
over 2010 levels at the OEP 35 airports [3]. While a much smaller proportion of flights are
operating in congestion (which can be viewed as the number of flights with excessive taxi times,
and multiplied by 10 here for better visibility) than at JFK, congestion grows quickly with a
relatively small increase in demand because many of the major US airports are already operating
close to their capacity.
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OEP 35 Past and Future
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Figure 2: Relationship between Demand and Taxi Time for OEP 35 Airports

The relationship between demand, capacity and congestion is shown in Figure 3. The figure
demonstrates how delay varies with p, which is the ratio between demand and capacity. As p
approaches 1 (for an extended period of time), delay increases nonlinearly [2] so that an
incremental increase in demand results in a large increase in delay. This relationship will become
more and more relevant given the constant increase in demand shown in Figure 2 in the future.
The forecast demand is larger than any seen in the last 10 years and indicates that congestion is a
problem that will need to be addressed at a system level. One of the questions that this thesis
attempts to answer is what that increase in demand will mean for taxi times and levels of
congestion with and without future mitigations such as surface congestion management.
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Figure 3: Relationship between Demand, Capacity and Delay|[3]

1.2 SURFACE CONGESTION MANAGEMENT

Surface congestion management is a tool that can reduce some of the impacts of congestion
such as fuel burn and emissions by reducing the time flights spend taxiing with their engines on.
Additionally, although it reduces congestion it is designed to keep the airport operating at its
maximum capacity during periods of high demand. In generic terms, SCM achieves this by
identifying an efficiency threshold in terms of number of flights that the airport can efficiently
handle at one time. If the airport is below this threshold, no additional management is needed.
When the number of flights seeking to depart exceeds this threshold, excess flights are not
allowed to push back from the gate and instead are held at the gate or some other appropriate
location with engines off until they can be released to the departure runway more efficiently, as
shown in Figure 4. By restricting the number of active flights in this way, "engines-on" taxi-out
time, fuel burn and emissions can be reduced (as long as other operational requirements are still
met which can vary by airport).
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Figure 4: Surface Congestion Management Concept

Note that this is largely simply shifting the delay from being incurred on the taxiways with
engines running, back to the gate (or other designated hold location) where the engines can be
turned off. However, in addition, it is possible that SCM could lead to some net delay reduction
as well at severely congested airports because of the reduction in controller and pilot workload as
well as the non-linear relationships in congestion between taxi time, throughput and traffic
levels. While these effects are not studied in this thesis they would be a good subject for future
work.

A basic concept used in this thesis to quantify congestion will now be introduced. A useful
way of visualizing the performance of the airport as a function of the surface traffic is the
throughput saturation curve, developed by Shumsky [10] and Pujet [11], and illustrated in
Figure 5. It represents the departure rate as a function of an appropriate surface metric (such as
the number of aircraft taxiing out or in the departure queue). Different traffic metrics might be
appropriate for different airports, but typically for low levels of surface traffic, as more departing
aircraft are pushed back onto the surface, the departure rate increases as more aircraft are
available at the runways. However, as surface traffic increases further, the capacity limit of the
airport is approached and the departure rate eventually saturates. The saturation throughput is not
the maximum throughput observed because saturation curves are often not well-behaved and to
increase the throughput from the saturation throughput to the maximum usually requires a
disproportionate increase in congestion.
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Figure 5: Airport Saturation Curve

At the saturation point, any additional increase in surface traffic simply adds to congestion
and does not achieve any substantial increase in the departure rate (indeed, if surface traffic gets
very high, the departure rate can decrease due to gridlock). Archived operational data can be
used to determine saturation curves for different airports under different configurations, weather
and traffic characteristics. These curves can then be used as a basis for when to hold aircraft from
taxiing when the airport is expected to operate above some control point on the curve. Typically
the control point would be slightly higher than the expected saturation point so as to avoid
risking loss in departure rate, but not so large as to lose significant benefits from the control
strategy. The impacts of SCM can then be assessed in terms of the performance implications
(e.g., taxi time and fuel burn) from moving the operating point of the airport from above the
control point back to the point, as shown in Figure 5. Saturation curves will be used for many of
the analyses in this thesis and some key terms will be defined here (shown in corresponding
colors in Figure 5):

Number on Surface (N(t)) — Traffic Metric
N* - Saturation point
Ncu — Control Point

Saturation Throughput (ThS) —Departure rate at N*
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1.3  TYPES OF SURFACE CONGESTION MANAGEMENT

Although the principles of surface congestion management as described above are
generally applicable across congested airports, the specifics of implementation at any given
airport (e.g., how to determine when flights need to be held, coordinate which specific flights to
then hold, where to hold them and what level of airline interaction is needed) depends on the
airport/traffic characteristics and the level of sophistication desired. To illustrate this point,
several specific implementations of surface congestion management have recently been tested in
field trials or in simulation environments, results from which will be described in detail in
Chapter 2.

Pushback rate control (or N-Control) has been tested at Boston Logan Airport which
recommends a general pushback rate to controllers to limit the number of aircraft on the surface
at peak times [4]. The pushback rate is explicitly informed by N(t); hence the alternative name of
N-Control. Specifically, N(t) is monitored in real time (and projected into the near future) and
pushbacks are suspended if N(t) rises or is expected to rise over a threshold value. The method
was adapted slightly to account for controller preferences by assigning suggested pushback rates
in 15 minute intervals.

CDQM, tested at Memphis airport, allocates departure slots to different airlines at peak
times to manage average departure queue delay to below a control value, and then the airlines
determine which flights go into which allocated slot [5]. Airlines are allocated slots according to
ration-by-schedule, which allows flexibility and prioritization of flights.

Another class of approach (subsequently referred to as the PASSUR method, because they
have implemented such an approach at JFK airport) recommends when specific flights should
leave from gate or spot to manage surface congestion [6]: this affords greatest control (and hence
potentially the greatest benefits) but requires significant real-time airline coordination to know
when flights want to push-back, as well as communication of, and compliance to, allocated slot
times which may be later than the desired push time in order to better manage the demand when
it exceeds the capacity of the airport.

These three approaches have an increasing level of complexity and correspondingly have
an increasing prediction horizon, with pushback rate control issuing advisories for only the next
time period while the PASSUR method sets initial pushback times a day in advance (although
these times are modified through the day as circumstances dictate). Despite these differences
they can all be abstracted as a form of throughput saturation curve because they all seek to
restrict the amount of planes actively taxiing (or in physical queues) to a control value, implicitly
or explicitly. While CDQM explicitly controls the delay time, this can be related to first order to
the length of the departure queue. Metering individual flights is more complicated, but
essentially restricts the size of the queue to a smaller amount. At its root, any implementation of
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SCM aims to reduce taxi time as much as possible while keeping throughput at its peak value.
Saturation curves are a way of determining the maximum number of flights that can be held off
the surface before throughput is substantially affected, which is the same result because taxi time
can be related to the number of actively taxiing flights.

While different airports might require different specific implementations of SCM, we
assert that saturation curves can provide a first-order benefits estimate for any airport because
all types of metering can be idealized as variations on N-control.

To provide validation for this assertion, the results from field trials of each of the
approaches will be examined and compared to the results obtained from the saturation curve
method that is being used in this work.

1.4  NEED FOR BENEFITS ASSESSMENTS

The reason that we are calculating these benefits (and characterizing different types of
metering as N-Control) is that there is a strong need to identify the most cost-effective options
for dealing with increased demand in the future. There are many possible improvements such as
SCM to current air traffic management technologies and techniques that are required to move
toward the next generation air transportation system (NextGen). Other upgrades include
controllers being supplied with advanced surveillance and flight data management display
systems that will allow them to maintain an integrated picture of the current situation.
Controllers and supervisors may also be provided with a suite of Decision Support Tools (of
which an SCM tool could be one element) that provide critical information for assistance in
tactical and strategic decision-making. In addition, NextGen capabilities will facilitate data
exchange between controllers within a tower facility, between ATC facilities, and between
stakeholders such as airlines.

The capabilities provided by these systems should enable multiple system benefits, such as
reduced surface delay, taxi time and fuel burn (with associated improved operational and
environmental performance); better performance during severe weather and other off-nominal
conditions; improved usability and situational awareness; and enhanced safety. However, in
order to assess the viability of specific tools for NAS-wide deployment it is necessary to
undertake a cost-benefit analysis. This includes estimating the likely costs of deployment at
appropriate locations relative to the potential benefits this deployment will bring over several
decades of operation. The generation of such data is also highly complementary to the
prototyping effort that is often conducted as part of advanced system deployment. For example,
the process by which benefits are identified necessarily requires an understanding of the
inefficiencies present in the current baseline ATC system. Understanding the causality of these
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inefficiencies can help identify what capabilities are needed to address them, and therefore, help
guide priorities for the prototype system.

Estimating the future benefits of any system is at best an uncertain task. SCM presents
several challenges in particular: identifying a methodology that is robust enough to accommodate
the many changes in airport behavior and still be valid into the future (saturation curves),
determining how saturation curves change over time because they can vary based on demand
levels and airport usage, and accurately predicting the level of congestion (which is inherently
uncertain) are all major issues that had to be overcome. In addition, the forecasts upon which the
assessment is based have their own uncertainty.

1.5 SUMMARY AND ORGANIZATION OF THE THESIS

In order to better understand the role surface congestion management can play in the air
transportation system and to make the case for its deployment at different airports, a benefits
assessment is required. Current benefits assessments are restricted to the present-day, so a new
methodology for future benefits assessments is needed to assist with decision-making regarding
what systems to develop and deploy in the air transportation system over the next several
decades. Recognizing the need for a system-wide benefits estimate of SCM and that airports have
unique and distinct operating characteristics that make it difficult to develop a generalizable
method, this work adopts a multi-fidelity modeling approach where the higher fidelity models at
a subset of airports will inform and validate the lower fidelity models which are then applied
more generally. This approach is depicted in Figure 6.
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Figure 6: Multi-Fidelity Modeling Approach

This thesis will:

Examine previous benefits assessment methodologies and field trials for current day
operations in Chapter 2.

Present a high fidelity analysis for estimating the benefits of SCM from a 6 month field
trial at JFK airport in Chapter 3 for comparison to other field trials and to aid in
construction of medium and low fidelity models.

In Chapter 4, present a medium fidelity methodology for estimating future performance
(as measured by throughput) and congestion at several key airports and derive benefits
estimates. Additionally, examine impact of key operational constraints (in the form of
gate availability) on the benefits from SCM and validate results by comparing to field
trials and the high-fidelity method.
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* In Chapter 5, present several low fidelity methodologies for estimating the benefits of
SCM across the NAS in the future, validated by the results from the 8 medium-fidelity
study airports. Compare and contrast methodologies and benefits estimates and draw
insights on key variables that identify airports that have large possible benefits from
SCM.

* In Chapter 6, review key results and discuss the implications for policy makers.
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2. PREVIOUS WORK

2.1 BACKGROUND

Benefits analyses in the literature are mainly focused on present-day operations which shed
little light in terms of benefits assessment for future system deployments: benefits assessments
under future operations are critical to this process. Several methodologies have been proposed
for calculating the effect of metering on current-day airports using operational data such as
ASPM or ASDE-X. In addition, three field trials have been performed in Boston, New York, and
Memphis using separate methodologies. This chapter examines the different methodologies and
assesses their applicability for estimating future benefits. In addition, the benefits shown in the
field trials are discussed and compared to a theoretical approach using saturation curves.

2.2 THEORETICAL MODELS AND SIMULATIONS

Several distinct methods for calculating the benefits of SCM have appeared in the
literature. The first is a method that will be used in this paper, developed by Simaiakis [9], Pujet
[10] and Shumsky [11]. Linking the number of aircraft on the surface N(z) with the departure
throughput of the same time period results in a relationship that predicts when an airport will be
in congestion. The benefits of performing N-control metering can be calculated by comparing the
taxi times in congestion and at saturation as was explained previously. We claim that this method
can also be used to give a first-order estimate of any type of metering.

CDQM allows for a simple analysis of benefits because it is controlling to a target amount
of queue delay. In [5], the benefits of using CDQM at Memphis for an entire year are calculated
by assuming that taxi times greater than the sum of the average unimpeded time plus the target
delay are excess taxi times that would be reduced through CDQM. While this is simple on the
surface to calculate, there are issues that make it more complex when expanded to other airports,
such as the proper unimpeded time to use (can vary with configuration and gate location) and the
target delay (unique to an airport / configuration and tailored to ensure maximum throughput). In
addition, if the delay is high enough (or if the airport geometry requires runway crossings or
queues besides the departure queue) the assumption of unimpeded taxi to the departure queue
might be not accurate. Finally, the ASPM database does not provide a breakdown of taxi time,
making it difficult to determine the cause of high taxi times. Two examples of high taxi times not
caused by congestion are de-icing airplanes during the winter and flights receiving ground holds
due to weather at their destination. Using the saturation curve approach reduces the impact of
such flights because it looks at average taxi times at the saturation point and in congestion.
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Because operations like de-icing take place during both low and high periods of demand, the
impact on the average taxi time is spread equally to the congestion average and the saturation
average. The benefits then do not depend on such occurences.

The CDQM approach of setting a target delay can also be thought of as a derivative of the
N-control method. The target delay should ideally be the minimum time above the unimpeded
time that is necessary to maintain maximum throughput. As was mentioned previously, some
queues (and therefore taxi times greater than unimpeded times) are necessary to avoid the
runway being starved. But this target delay (plus the unimpeded time) should be the taxi time at
N*. Given this, the approach becomes identical to the saturation curve method. However,
calculating the optimal target delay is not as straightforward as calculating N*.

The third method was developed primarily by researchers from Sensis Corporation (with
input from the FAA) [13,14,15] as a way to measure the theoretical benefits from implementing
a departure management tool (DMAN). [12] was an analysis of ASDE-X surveillance data from
2008-9 at JFK airport. By assuming that the average time spent per unit length in the ‘departure
queue’ (defined as the physical queue for the departure runway) does not vary with the length of
the queue, the benefits of restricting the queue to a given size can be calculated by subtracting
the idealized taxi time (unimpeded + time spent in a short queue) from the total taxi time. This
assumes that aside from the time spent in the departure queue there is no other source of taxi
delay. The benefits were calculated for departure queues controlled to lengths of 5 and 10,
corresponding to aggressive and conservative values.

In [13] a taxi simulation was developed based on ASDE-X data that allowed for a version
of DMAN to be directly tested. Two scenarios were simulated, one with DMAN implemented
and the other for operations as currently run (FCFS). Because the simulation allows all other
factors to be kept the same, the differences in taxi times between the two scenarios are the
benefits from implementing DMAN. Their proposed implementation (DMAN) of SCM includes
resequencing departing flights to improve throughput so the benefits are not quite comparable to
the method of Simaiakis. In addition, their methodology is based on limiting the physical
departure queue at the runway instead of the overall number on surface. They used ASDE-X
surveillance data to calibrate their simulation, which models the motion of each flight in the
movement area with interactions with other flights, as well as forming queues if necessary. This
method has the benefit of transparency and easy interpretability: because the same day is being
simulated with and without SCM, one can be surer of the effects of SCM. The difficulty in
extending this method to the future is the lack of availability of ASDE-X data at all airports, the
presumed customization necessary to run the simulation at multiple airports, and possibly time
constraints. In [13] Stroiney et al. examined one day at PHL and JFK; to obtain a more robust
estimate across different configurations and weather conditions a larger sample size would be
desired. In [14] Stroiney and Levy extend their analysis of the benefits to multiple airports as
well as account for gate constraints by examining the same day as [13] at JFK. Their conclusion
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at JFK was that limits on gate space result in a small and ultimately negligible decrease in
benefits from SCM. To extend their analysis to multiple airports, they observed that, akin to the
saturation curve method, SCM benefits are roughly equal to the amount of time spent by flights
taxiing when the departure queue is above its target length. The benefits are then obtainable by
observing the departure queue length over a time period. This method is only feasible with
recorded surveillance data, making future prediction impossible.

To add to these methods, we will propose a new method in Chapter 3 that is based on
observations of actual metering operations. ASPM and ASDE-X taxi time data is compared to
the schedule of gate holds performed to obtain the benefits of the field trial conducted by
PASSUR at JFK in 2010. The first method will also be used as a validation in Chapter 3, as well
as the main element of the analysis in Chapter 4.

Although beyond the scope of the current study, there are also longer-term NextGen tools
under development that go a step further and aim to reduce overall delay by combining SCM
with wider airport surface optimization decisions (such as configuration selection, aircraft
sequencing and taxi routing). For example, in terms of sequence optimization, by ordering flights
into an optimized queue based on the size of the aircraft, throughput can be increased due to the
different separation standards between differently sized aircraft. These advanced concepts
assume that taxi times can be accurately estimated. With a predetermined sequence and
knowledge of the taxi time of a given flight, pushback times can be given to every flight so that it
can travel unimpeded to the runway and immediately take off. Examples of this include CDM in
Europe [7] and SARDA (NASA) [8].

2.3  FIELD TRIAL STUDIES

We will now examine the results from several field trials in detail both to gain insight on
the mechanics behind SCM as well as to use for validation of our analyses. Because the results
from BOS are presented for portions of specific days, we also develop an extrapolation technique
that yields an annual estimate of benefits from SCM for better comparison with other methods.

2.3.1 Boston Logan (BOS): N-Control
Background

Simaiakis et al. [4] demonstrated a different method of SCM at Boston Logan in 2010,
Pushback Rate Control (also referred to as N-Control). Pushback rate control follows a simple
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heuristic: if the total number of aircraft taxiing to a departure runway () exceeds a control value
(Ncu), further pushbacks are stopped until N is below the threshold. This method is informed by
the saturation curves mentioned earlier in this paper.

The specifics of the strategy used by Simaiakis et al.were developed through discussions
with the BOS facility as well as study of historical data from the airport. Pushback rates were
suggested to controllers in 15 minute intervals based on the current level of congestion on the
surface, allowing some variation between no restrictions and a full stop on pushbacks. Due to the
complex nature of the runway layout at BOS (see Figure 7), there are many different
configurations in use. Because the parameters (such as N* and throughput) that affect the SCM
strategy vary depending on the configuration, only the 3 most common configurations
(accounting for 70% of use) were used. In addition, IMC conditions were not considered because
of separate procedures that are followed at BOS during such periods.

BOSTON / GENERAL EDWASD LAWRENCE LOGAN INTL (BOS)
BOSTON, SETTS

iy
AIRPORT DIAGRAM ALS8 AN

422N

CAUTION: B ALERT TO
FUNWAY CROSSING
CLEARANCES. FEADIACK

. e L

NORIN ~§ SN

QAT ANl
TERMNAL

JANUARY 2010
ANNUAL RATE OF CHANGE
(AR

e aprN

2102 HVW 80 ©1 2102 34 60 1IN

- SATELUTE FifE
STANION

NE-1, 08 FEB 2012 10 08 MAR 2012

BEV ASDEX Surveilonce Sysiem in s,
20 Phors shouid sperate Konspordars
vy | with Mod C.on ol heys and s

575, D200, 25175, 70400, 10/202-875 7100w

AIRPORT DIAGRAM
e

oy
RWY 041228, 048221, 09-27, 15338, 158331
5200, 5200, 25175, 20-400, 20/207-800

BOSTON, MASSACHSH
BOSTON / GENERAL EDWARD LAWRENCE LOGAN INTL (BOS)

Figure 7: BOS airport diagram, showing alignment of runways [25]

25



27,32|33L —
; a bbbl = Desired N 15 Swggested push
. g ' esired N, = o
VMC — s : 2 per
4 arrivals , 3 mins
1600-1615hrs ’ . T
(from ETMS) l + Recommended ground
(_ controller pushback rate =
Predicted departure rate ry =10 a/c over 15 min :
1600-1615hrs = 11 Or2per3 min i
- I
+/ Current N remaining on surface :
CurrentN = 16 throughout next time period = 5 i
(from ASDE-X or counting) i
R (influences next time period) |

________________________________________________________________

Figure 8: Schematic of pushback rate calculation [4]

A diagram showing the determination of the pushback rate is in Figure 8. The saturation
curve (top) is used to determine both the desired control value as well as the estimated
throughput for the next period. The estimated throughput is subtracted from the current N value
to estimate N after the next period. This can be compared to the control value to derive the
recommended pushback rate for the current period.

Results

The field trial was conducted over a month from August 23 to September 24, 2010 on
select days during the evening departure push period (4-8PM). There were a total of over 37
hours where metering was in effect, and 24 hours of test periods with significant gate holds.
Furthermore, it was found that one configuration experienced almost no metering (4L, 4R | 4L,
4R, 9) with the other two main configurations (27, 22L | 22R and 27, 32 | 33L) receiving the
bulk of the congestion.

An important assumption made in the study was that each minute of gate hold represented a
minute of saved active taxi time. While this was shown in section 3.2.4 to not necessarily be true
at JFK, it is valid here because of the short duration of the holds performed at BOS. Simaiakis et
al. [4] reported a total of 247 held flights over the 8 days with significant amounts of gate holds
at an average hold time of 4.35 minutes, yielding a total of 1075 minutes of gate hold (and saved
taxi time).

26



Extrapolation to Annual Benefits

The results from the BOS field trial are not easily comparable to the results from other field
trials as well as the results expected from analysis of ASPM data because metering was not in
effect every day in the month or even for the entire day on the selected days. In order to use the
BOS field trial as validation for this thesis, an extrapolation to yearly benefits was needed.
Therefore, we extrapolate the results presented by Simaiakis et al. [4] to provide an estimate for
implementing N-Control for an entire year at BOS.

There are many possible ways to extrapolate, including scaling by time (24.5 hours of
metering compared to 4*365 hours of peak evening traffic), scaling by demand, scaling by time
in a specific configuration, etc. We chose to decouple the time window chosen (4-8 PM) from
the assumed high demand levels during that time. We defined a “high demand period” as a
period in which there were more than X; departures in a fifteen minute period, where X; is the
fewest departures in a period witnessed during the time when metering was in effect and i
represents the configuration in use. For 22L, 27 | 22R X; was found to be 10 departures / 15
minutes and for 27, 32 | 33L it was found to be 8 departures / 15 minutes. We then found all
other periods when the airport had more than X; departures and was in the same configuration
with VMC conditions. Because 4L, 4R | 4L, 4R, 9 required very little metering, only the two
other configurations were examined. Benefits are also dependent on the level of demand so the
extrapolated benefits were scaled by the ratio between the annual number of flights in high
demand periods and the number seen in the trial. For 221, 27 | 22R there were 525 departures
during the trial and 8,645 over the course of 2010, resulting in a scaling factor of 16.47. Note that
this is larger than might be expected if the benefits were simply scaled by time (one month of
metering * 12 months in the year). This is due to time periods outside of the 4-8 PM study period
experiencing congestion, as well as the variation of airport behavior and configuration choice
over the year. The scaling factor for the other configuration is even higher, at 23.69. These
scaling factors result in annual benefits estimates for the two main configurations of 150 hours
for 27, 32 | 33L and 191 hours for 27, 22L | 22R. These are much lower than the configuration-
specific benefits seen in the JFK field trial where the benefits were in the thousands of hours, but
are to be expected given the difference in the prior demand and congestion levels at the two
airports.

These totals can be validated against the estimates obtained from the saturation curve
method for these two configurations. N¢y is assumed to be equal to N*=17 for both
configurations. This value is different from the N* given by Simaiakis because it is calculated
using the ASPM data instead of the ASDE-X data he used. ASDE-X records aircraft from the
spot to the runway while ASPM records aircraft from the gate to the runway, resulting in a
higher N* for ASPM. Figure 9 shows the benefits from the saturation curve method in blue
compared to the extrapolated field trial benefits in red. The variance in the blue bars represents
the difference in increasing or decreasing Ny by one aircraft. Figure 10 shows the benefits from
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the saturation curve method for the 10 most used configurations in VMC at BOS in 2010 as well
as the corresponding N* = N¢y value. Note that the estimated benefits for metering in the 4L, 4R
| 4L, 4R, 9 configuration is only 20 hours which agrees with the observation Simaiakis made that
that configuration rarely experiences congestion.

Despite the relatively short duration of the BOS SCM trial, it still serves as a useful
validation of the saturation curve method for estimating the benefits of SCM. In addition, it
agrees with several observations made during the JFK study such as that benefits are strongly
tied to the configuration of the airport.
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28



200 18

B Benefits

160 ] [ 14
140 - L 12
120 - L 10
100 - — 1, %

80 -

8
ENStar -6

60 - —
40 - 4
| 5 . B :
0 0

'22L, 27 '27, 32 | '22L,27'4L,4R |'4L, 4R | '33L| '22L| '4L,4R| '33L| '33L,
[22R" 33L" |22L, 4L,4R, 9 27 15R' 4R, 9" 27,33L" 33R|
22R ) 27

Benefits (hours)

Configuration

Figure 10: Saturation Curve Benefits across major configurations

2.3.2 Memphis (MEM): CDQM

CDQM field trials were held on 20 days in 2010 at MEM. For half of this period, Delta was
the only participant, with FedEx joining in August. [5] examines in detail 2 days as case studies
and notes that when the airlines follow the recommended slot allocations, the delays are
generally at the level of the target delay of 6 minutes (as opposed to a day where the slot
allocations were calculated but not used, when the delays reached 20 minutes).

Quantitative benefits for the Memphis field trial are not given in [5], but the time spent in
queue is shown to be qualitatively held to the target delay of 6 minutes. Based on this [5]
assumes that CDQM would be successful in reducing taxi times to at most the unimpeded time
plus the threshold delay time. By capping actual taxi times in 2008 to this value, they claim
annual benefits of 86,000 minutes (1,433 hours). As a comparison, we can calculate the benefits
of SCM using the saturation curve method (Saturation curve used is shown in Figure 11). Using
an Ncyg = N* = 25 produces benefits of 87,200 minutes (1,454 hours) for 2008. This similarity
demonstrates the interchangeability between the saturation curve method and target delay
method for calculating the benefits of SCM.
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2.3.3 New York Kennedy (JFK): PASSUR

A basic type of SCM has been in place at JFK for use during severe weather conditions,
and has recently been expanded to be used constantly. It is not explicitly a saturation curve-based
approach, as it assigns hold times to individual flights. There were no existing benefits
assessments that could be used to compare with the saturation curve method. In addition, the
large amount of data available (6 months) provided the opportunity for a high-fidelity analysis to
examine the primary and secondary effects of SCM. For these reasons, the analysis presented in
Chapter 3 was performed.

2.4 CONCLUSIONS

Several methods for calculating benefits from SCM in literature were reviewed. The
methods proposed by Sensis Corporation [13, 14, 15] use operational ASDE-X surveillance data
and are therefore inappropriate for use in the future. CDQM [5] was shown to be similar to the
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final method developed by Simaiakis [9] but with the added step of calculating the target delay,
making the Simaiakis method of saturation curves the most appropriate to adapt for benefits
assessments looking at the future.

In addition, results from field trials at BOS and MEM (JFK will be examined in detail in
the next chapter) were discussed and compared to the estimates derived from saturation curves.
The results were comparable, supporting our assertion that the saturation curve method can be
used to approximate different types of SCM.
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3. HIGH FIDELITY ANALYSIS FOR ASSESSING SCM BENEFITS AT ONE
AIRPORT

The methods listed in Chapter 2 approach the estimation of benefits from SCM from
several different directions. However, all are theoretical and should not be relied on without
detailed validation from real-world data. While the field trials at BOS and MEM can be used as
validation, the relative brevity of the trials is not ideal. In addition, an approach is needed that
represents a third form of SCM that is not explicitly (BOS) or implicitly (MEM) based on
saturation curves to support our assertion that saturation curves can be used to model all types of
SCM. To provide a more in-depth validation, we calculate and examine in detail the results from
a field trial of SCM at JFK airport in New York City. The methodology used is necessarily
different from that in the BOS field trial, where it was assumed that 1 minute of hold time
resulted in 1 minute of saved taxi time. While this assumption is valid at BOS because of the
short hold times, it could not be assumed at JFK because the holds were longer and were often
conducted off-gate. This introduced small (but measurable) losses when compared to the 1 to 1
metric.

The JFK analysis also acts as a high fidelity model to validate and support development of
models at medium and lower fidelities with wider applicability. Several secondary effects of
metering such as throughput and physical constraints are examined in detail.

3.1 BACKGROUND

JFK is one of the biggest and most congested airports in the US, with the highest average taxi
time in the nation in 2009 (31 minutes) [1]. The layout of the airport is shown in Figure 12. Early
forms of surface congestion management have been used at the airport since 2002 to assist with
deicing operations. In February 2010, a full-time implementation of prototype software and
processes was put in place by PASSUR Aerospace for the Port Authority of New York and New
Jersey, initially to manage the disruption caused by a five month closure of one of the major
runways (13R/31L) at the airport. However, its use was continued when the runway re-opened.
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Figure 12: New York JFK Airport [25]

A schematic of the implementation of the Surface Congestion Management (SCM) approach
at JFK is shown in Figure 13. The development of the approach was based upon a collaborative
process in which all carriers participated to ensure the maximum use of departure capacity while
reducing the amount of engines-on departure taxi time. One of the cornerstones of the approach
was the use of predictive analytics to accurately forecast up to eight hours in advance the
expected departure and arrival capacity (in terms of departure and arrival “slot counts™) of the
airport based on the weather forecast and past airport performance under identical predicted
weather conditions. This in turn was used with the demand information of flight-specific
requested push-times sourced from (and updated by) the airlines to develop the initial allocation
of flights to permitted taxi "slot times" over the forecast period. When the number of aircraft
wanting to push-back was below what the airport could efficiently handle in a certain time
period, the slot times were the same as the desired push times. But when the number of flights
wanting to push exceeded what the airport could efficiently handle, the excess flights were
allocated slot times later than their desired push times to better manage the demand. The initial
allocation of flights to slot times used the concept of “ration by schedule” [15] in which the
number of slots per hour was allocated to each operator based on their normal (unrestricted)
percentage of the hourly volume. Slots were issued up to two hours in advance, to accommodate
the longer planning horizon of international operations. Once the initial allocation of departure
slots had occurred, the users had the opportunity to request swaps and substitutions within their
allotment of departure slots, in order to better reflect their internal business priorities. These
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requests were received and processed electronically via a web interface managed by the “slot
allocation manager”: a neutral third-party established to run the program. All slot assignments
could be seen by all program users, ensuring maximum transparency and trust that there was no
gaming of the system. The central tenet of the above process is that users do not push-back until
they have reached their assigned departure slot time rather than simply pushing back whenever
they are ready (i.e., as happens when surface congestion management is not in effect). When a
flight's slot time was later than the requested push time, the hold time was absorbed either at the
gate or, if the gate was required by another aircraft, at a pre-assigned holding pad with engines
off as much as possible.
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Figure 13: JFK Surface Congestion Management (SCM) Approach

Figure 14 shows an example "Departure Slot Allocation" screen from the system employed at
JFK. The left side illustrates airline-sourced "ready to push" times by flight, while the right side
shows how these flights were allocated to departure slots in 15 minute time bins. The green
vertical bar delineates the current time bin. Differences between the “ready to push” and
departure slot times represent the gate hold time to manage surface congestion more efficiently.
For example, DL.1629 had a desired push time of 16:15 but a slot time of 16:45 so received a 30
minute gate hold time and shows as demand in the 16:45 departure slot window.
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Figure 14: Airline Ready to Push and Departure Slot Allocation Example [6]

3.2 METHODOLOGY

There are many potential impacts of surface congestion management, for example in terms of
taxi-out time, fuel burn, emissions, throughput, gate usage, holding area usage, ground crew
operations, passenger connectivity, bag connectivity, airport terminal occupancy, airport terminal
revenues, etc. The focus of the analysis reported here is a first order assessment of annualized
impacts of the 2010 surface congestion management approach on taxi-out time, fuel burn and
CO; emissions at JFK. The general approach to achieve this was to compare taxi times, fuel burn
and emissions pre/post surface congestion management implementation, with all other relevant
operational factors being as equal as possible. It was possible to find a few days where the airport
was operating under very similar conditions pre/post surface congestion management
implementation, allowing the general impacts of the technique to be observed. For example,
Figure 15 shows that, on these sample days, surface congestion management reduced the number
of aircraft on the airport surface between 17:00 and 21:00 (corresponding to the evening
departure push at JFK) from a peak of 40 on the sample day in the period before the technique
was implemented to about 25 after it was implemented, resulting in active taxi-out time savings
of over 20 minutes for the average flight departing at 20:00. The surface traffic snapshot shown
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in Figure 16 reinforces the effect in terms of the reduced departure queue size and resultant
reduced taxi-out times, with the "excess" aircraft being held off the active movement area.
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Figure 15: Comparison of Taxi-out Times Pre/Post Surface Congestion Management
Implementation for Sample Days

Although these observations provide insights into the effect of surface congestion
management, data across numerous days is required to estimate annualized impacts. However,
the large number of factors that influence airport operations (e.g., demand, capacity, airport
configuration, weather/ATC constraints, equipment status, etc.) and the complexity of operations
specifically at JFK made finding a large enough sample of comparable days pre/post-
implementation very difficult. Therefore, an analysis approach was developed which found
relationships between surface congestion management and taxi time impacts in each major
airport configuration and then applied the identified relationships to the full set of data to

determine the annualized impacts of the congestion management technique, as described in the
next section.
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Figure 16: Comparison of Airport Traffic and Departure Queues Pre/Post Surface
Congestion Management

The analysis methodology is presented in Figure 17 with the general sequence of steps
presented along the top and more detail on how the steps were executed below. Each of the steps
is discussed in detail in this section.
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Figure 17: Analysis Methodology
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3.2.1 Data Sources

This analysis used the ASPM database [1] which provides flight-specific OOOI times and
airport throughput in 15 minute intervals; ASDE-X data which provides position in the active
movement area (not ramp) at 1 second updates; and the PASSUR program data which provides
flight-specific desired and slot times.

The pre-implementation analysis period was selected to be January 1, 2009 - December 31,
2009. The initiation of the surface congestion management process coincided with the closure of
runway 13R/31L, but the impacts during the runway closure were not analyzed because the
airport was not in its normal state (i.e., there was no pre-implementation data corresponding to
JFK without runway 13R/31L). Therefore, the post-implementation analysis period was selected
to be July 1, 2010 - December 31, 2010 corresponding to the day runway 13R/31L re-opened
through the last day for which all of the data sources discussed above were available for this
analysis.

3.2.2 Data Corrections

ASPM data ASDE-X data ASPM data
Gate Spot Wheels
ouT - OFF

pickup
. = @

T~

PASSUR data Hold time (gate, non-movement, movement area)

Pre-SCM ASPM data: OUT-to-OFF >
taxi time
Post-SCM <0ut-to-8pot>< ASDE-X data Spot-to-OFF >
taxi time

ASPM/ASDE-X/PASSUR data

Figure 18: Key Analysis Events

The data sources identified above provided the key analysis events illustrated in Figure 18.
The difference between the OOOI OUT and OFF times provided a good measure of the taxi-out
time in the pre-surface congestion management environment. However, it was not suitable in the
post-surface congestion management environment due to the fact that a large number of the
flights which were given slot times after their desired push times were held "off-gate". In those
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cases, the ASPM OUT time was not an accurate reflection of when the aircraft actually started
taxiing to its departure runway, but rather when it left the gate to be held elsewhere (as would
happen if the gate was needed for an inbound arrival). Therefore, the post-surface congestion
management taxi-out times were determined from the ASDE-X data. Given that the ASDE-X
tracks were generally picked up at the spots (the interface between the ramp and active
movement areas) the tracks needed to be corrected back to an equivalent OUT time so they could
be directly compared to the pre-implementation taxi-out times based on the OUT-to-OFF events.

To determine the appropriate OUT-to-spot correction factor, distributions of the differences
between ASPM OUT times and ASDE-X pickup times were calculated for pre- and post-surface
congestion management days. For the pre-implementation case, only 9 weeks of ASDE-X data
were available, whereas 6 months of data were available for the post-implementation period. The
pre- and post-implementation distributions were subtracted from each other resulting in the left
side of Figure 19, which shows a spike above the horizontal axis and a trailing tail below it. The
positive spike represents additional flights pre-congestion management implementation with
small differences between their out and pickup times, while the trailing tail represents additional
flights post-surface congestion management implementation with large differences. Because the
number of flights in the negative tail and positive spike is approximately equal, it was
hypothesized that the trailing tail represent flights that, pre-implementation, pushed back
normally but post-implementation were held off-gate (resulting in a long period of time between
their OUT and spot times). The positive spike therefore represents a distribution of typical OUT-
to-spot times. This subsequently had a normal distribution fitted to it as shown on the right side
of Figure 9, with a resulting mean of 7 minutes and a standard deviation of 2 minutes. This can
be interpreted as the distribution of times it takes a typical flight at JFK to reach the spot once the
parking brake has been released, accounting for tug push-back, engine start and checklist
completion times.

7 70
n=268

= 60 4 mmData @

5 \ Te =
- g 50 \ Gate o ut-to-spot —Normal Distribution ) -
32 4k | time distribution | L s0 gg
o s =]
o= 30- as
- 40 =

3 2o
(5%} &<
—S 2 5=
o8 Egn
c 30 ]
o 2 100 =9
23 53
g3 4 20 &9
Lo \ R

KT ) E H

= . ) 710 2

@ 0 Off-gate holds 1~ E =

~-60 -40 -20 0 20 40 42 41 10 9 8 7 £ S5 4 3 2 A4
ASDE-X “spot-to-off” — ASPM “out-to-off” ASDE-X “spot-to-off” — ASPM “out-to-off”
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Another correction factor was required to account for those flights that held in the active
movement area at pre-designated hold locations until their slot time; i.e., their ASDE-X pick-up
time was not a true reflection of their start of taxi time (similar to the reason why ASPM data
was not appropriate for any flight with an off-gate hold). To correct for the fact that these flights
were in fact holding in the active movement area (most likely with engines off), all flights which
appeared in ASDE-X data 7 minutes or more before their scheduled slot time (5 minute
PASSUR allowance + 2 minute grace period) had their spot times moved forward to their
scheduled slot time. This approach was validated by examining ASDE-X tracks for individual
flights that fit the criteria and verifying that those flights stayed in their assigned hold area until
their slot time, and then began taxiing to their departure runway.

3.2.3 Define Congestion Metric & Variation of Taxi Time with Metric pre/post
SCM

The key congestion metric used in this analysis was the "take-off queue", introduced by Idris
et al. [16], which for a given flight i is defined as the number of other take-offs which occur
between the pushback and take-off time of aircraft i. Other metrics were also tested, including
number of departing aircraft on the airport surface and the number of aircraft in physical
departure queues at the runways, but they were found to be less suitable for JFK analysis. The
main advantage of the take-off queue versus the number on surface is that it takes overtakes into
account, when an aircraft takes off before another aircraft that left its gate before the first aircraft
did. The geometry of JFK results in many such flights because some gates are much closer to the
departure runway than others. As a result, the take-off queue provides a much better estimate of
the time that a flight will spend taxiing. The downside of this metric is that it is flight-specific
and more difficult to calculate. Figure 20 shows that the take-off queue is a better predictor of
taxi time at JEK as measured by R”.

To convert the change in take-off queues into a change in taxi time at JFK, a regression was
calculated using taxi time versus take-off queue data as shown in Figure 21. The slope of the
regression can be interpreted as the incremental taxi time for every additional aircraft in the take-
off queue. The slopes of the regression pre- and post-surface congestion management are very
similar, indicating the dynamics of the airport are unaffected by the procedure, but the airport is
operating at much lower average take-off queue counts when surface congestion management is
in operation. Regressions like this were calculated for the top six most common configurations
that experienced holds at JFK and the regression line slopes of all but one of the configurations
statistically equal pre- and post-implementation, but did vary between configurations as expected
given their different capacities.
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Configuration 31L, 31R | 31L Pre-metering Configuration 31L, 31R | 31L Pre-metering
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Figure 21: Relationship of Taxi Time to Take-off Queue

To alleviate the problem highlighted earlier with identifying similar days pre- and post-
surface congestion management implementation, multiple "sample days" were found for each of
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the top 6 configurations. These days were chosen by looking at the peak departure period (5-9
PM in most cases) and finding days when the airport stayed in the same configuration for the
duration of the period. This eliminated instances where the configuration was changed midway
through the period, which could affect the results. By looking at a group of days and averaging
the traffic over them, the variations in operation from day to day are accounted for to first order.
The average takeoff queue across the group of sample days was calculated in 15 minute bins
(e.g., 17:00-17:15) pre- and post-surface congestion management implementation, and using the
regression lines for each configuration, the taxi time impact of the technique was determined in
those 15 minute time bins. This was then summed over all time periods in the sample days to
determine a total amount of taxi time saved.

3.2.4 Find Relationship of Taxi Time to Hold Time for Each Major
Configuration (“Scaling Factors”)

The difference in taxi time observed from the previous step can be compared to the hold time
(defined as the difference between the desired push time and the slot time) due to the surface
congestion management technique to determine configuration-specific "Scaling Factors": see
Figure 22.
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Figure 22: Scaling Factors Relating Taxi Time Reduction to Hold Time By Configuration

They can be considered as representing the observed taxi time reduction of each minute of
hold time. Notice the sensitivity of the scaling factors (represented by the whiskers) to the gate-
to-spot correction factor described earlier. The reasons for the differences between
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configurations are complex and are a subject of on-going investigation, but there are several
hypotheses. The scaling factors appear highest for the configurations with the lowest declared
capacity. Because these configurations can accommodate fewer aircraft, it makes sense that for a
given demand (and hold) level, there would be more congestion and therefore more benefit from
SCM when compared to a higher-capacity configuration. There could also be configuration-
specific operational restrictions and policies that could lead to more or less congestion, such as
the number of departure fixes available or use of certain configurations only at certain times or
weather conditions.

3.2.5 Apply Scaling Factors to All Data

Once scaling factors for the main configurations were calculated, they were generalized to the
other configurations in use at JFK by comparing the number of runways in use as well as the
specific runways (resultant average 0.79). Ideally, a separate analysis would be conducted for
IMC conditions. However, because IMC conditions occur infrequently (< 10%) at JFK, there
was not enough data to perform a valid analysis. Therefore, the conservative assumption was
made that the scaling factors were the same for VMC as IMC for a given configuration. This is a
conservative because capacities are generally lower in IMC and hence the benefits of surface
congestion management would be larger. This full list of scaling factors was then applied to ALL
the gate holds in the six month analysis period to estimate the aggregate taxi time impacts of
surface congestion management. This number was doubled to estimate the annualized impacts.

3.2.6 Estimate Total Fuel & Emissions Impacts

To convert from taxi time savings into fuel and emissions savings, an average fuel burn index
was calculated for each month of the study period to account for changes in fleet mix. The
PASSUR data included the tail number of all aircraft. A fleet database was used to match tail
numbers to engine types, and ICAO ground idle fuel flow certification data [17] was used to
estimate the taxi fuel flow rate for each aircraft accounting for the number of engines of each
type it possessed and APU/single-engine taxi assumptions. Fuel burn savings from surface
congestion management were determined by multiplying this fuel flow rate by the taxi time
savings determined from the previous steps and summing over all flights. Fuel burn savings were
converted to carbon dioxide emissions savings by using the standard CO, emissions index of
3.16 kg COy/kg fuel burnt.

3.3 RESULTS
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3.3.1 Key Results

Table 1 presents the calculated impacts of surface congestion management at JFK once the
methodology discussed above has been applied. Total annualized taxi time reductions of 14,800
hours translate into annual savings of 5.0 million gallons of fuel and 48,000 metric tons of
carbon dioxide from surface congestion management at JFK. The total taxi time reduction results
are within the range of estimates from simulation studies in the open literature [13,14,15], but the
results shown in Table 1 are based on the actual operational data. At JFK in 2009 there were
104,000 total hours spent taxiing out [1], which corresponds to total fuel burn of 35.2 million
gallons of fuel using the methodology from Section 3.2.6. Therefore, the SCM program had
savings of 14% over the current surface operations in terms of fuel and time saved. Taking the
BTS estimate of 16.2 billion gallons of fuel consumed by certificated carriers in the US in 2009
[18] and scaling by the number of flights at JFK relative to the NAS, we can make a rough
estimate of total fuel burn (all phases of flight) for departures at JFK to be 369 million gallons,
making the savings from SCM 1.3% of the total. The estimate of 1.3% is probably an
overestimate because the BTS estimate only includes US carriers. Including international carriers
could drop the the estimate to 1% or lower. The ASPM estimate has no such caveat.

Table 1: Calculated Benefits

) H.Old Taxi-out Fuel C.a rbp n
Proportion Time Scalin Time Reduction Dioxide
Configuration of Hold (104 Fac torg Reduction (US Reduction
Mins mins) (104 mins) allons) (metric
& tons)
3IL3IR|3IL | 20% 11.8 1'1132& 13 730,000 | 6,990
13L | 13R 18% 10.4 0.67 7 391,000 3,750
221 | 22R, 31L 13% 7.5 0.16 1.2 66,200 630
4R | 4L, 31L 9% 5.2 0.66 34 191,000 1,830
31R | 31L 7% 4.3 0.79 34 187,000 1,790
13L, 22L | 13R 6% 3.5 1.2 4.2 239,000 2,290
Others 27% 15.5 0.79 12.2 690,000 6,600
Totals
(6 months) 58.1 44.4 2,490,000 23,900
88.8
Totals (annual) (14,800 4,980,000 47,800
hrs)
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Figure 12 shows how the resulting fuel cost savings of surface congestion management at JFK
vary as a function of assumed fuel price and percent use of single engine taxi (a taxi procedure
where only one engine is turned on: the fuel burn of a single-engine taxi was estimated to be
60% of the equivalent “all engine” taxi). At the typical 2010 fuel price range of $2-3/gallon [18],
fuel costs savings through surface congestion management are estimated to be $10-15 million
per year at JFK if it is assumed no flights are performing single-engine taxi, and $7.5-12.5
million if half of the flights are assumed to be performing single-engine taxi.
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Figure 23: Annual Monetized Benefits of JFK Metering

3.3.2 Taxi-in Times

One possible side effect of surface congestion management can be an increase in taxi-in times
for arriving aircraft if the procedure for holding departure aircraft is not sufficiently well
planned. For example, if there are multiple aircraft being held at their gates past their desired
departure times, there might not be enough gates available for arriving aircraft, resulting in the
arriving aircraft having to wait on the surface and delaying their IN times. The average taxi-in
times by hour from 17:00 to 21:00 local time were taken from ASPM for the years 2007 to 2010.
Figure 13 shows the average over the entire period for each year. If we propose two hypotheses
Hy and H,:

Ho:wi = w2 =us = mg

H,: not all w; are equal
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where W, is the average taxi time in a given year i (i = 1:4 for 2007:2010), then we can use a one-
way ANOVA test to test which hypothesis should be chosen. To conclude H, with an alpha of

0.1, F* must be greater than F(.9, 3,16) = 2.46. We calculate F* = MSZQ = 0.117 where MSTR

is the treatment mean square and MSE is the error mean square. We can see that F* is much less
than F and that Hy holds, meaning that there is no significant change in the mean taxi-in time. As
a result we can conclude that to the first order departure metering has no impact on taxi-in times
at JFK.
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Figure 24: JFK Taxi-in Time Analysis

3.3.3 Throughput

Another possible side effect of surface congestion management can be reduced
throughput if too many aircraft are held back for too long. Figure 14 shows a comparison of
airport throughput before and after surface congestion management by configuration and airport-
wide. The throughput here is measured by the number of wheels-off times in a given hour. The
time period studied is the 5-9 PM period (except for 13L, 22L | 13R, which is 1-5 PM as in the
study). The only configuration with a statistically significant (90 % confidence) change was 13L
| 13R, which increased after metering was implemented. Overall, there was no change in the
average throughput. As a result, we can conclude that to the first order, departure metering has
no impact on throughput at JFK. While the increase in throughput in 13L | 13R is significant, it is
small and could be due to other factors, such as the improvements on 13R in the first half of
2010.
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Figure 25: JFK Throughput Analysis

3.4 COMPARISON OF HIGH FIDELITY ANALYSIS TO SATURATION CURVE
METHOD

Benefits from metering at JFK can also be calculated using the saturation curve method
introduced in Chapter 1. Figure 26 shows the saturation curve for JFK airport across all
configurations and weather conditions in 2009, the last full year before metering was
implemented. The saturation point N* occurs around N(#) = 25 and the corresponding saturation
throughput is just above 10 departures / 15 minutes. Although N-control was not used to
perform metering, this thesis argues that it is a valid method for estimating the possible benefits
at all airports of implementing metering using any method. This is because using a saturation
curve defines the available pool of benefits by quantifying the inefficiencies that can be
addressed by metering. In addition, each different implementation of metering essentially limits
the number of aircraft on the surface by controlling the length of different queues.

To compare the estimated benefits of the PASSUR trial with the saturation curve method,
an equivalent N¢y value must be identified. This value represents the aggressiveness of the
metering approach. While a value of Ny = N* will be used in the medium fidelity methodology,
the value can vary. Examining the ASDE-X data (corrected to include the ramp area and
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exclude off-gate holds) for the sample days during the post-metering period, the average N(z)
across all configurations was 18 during the peak traffic hours. This was taken as the equivalent
Ncy. While this seems low, especially given N* = 23 for the previous year, it can be viewed as an
upper bound to the benefits. In addition, because N-control is not being used there is no clear
cap on N, necessitating the use of the average that results in a more aggressive value. Finally,
there is anecdotal evidence that the metering program at JFK was aggressive in reducing
congestion, which would correspond to a lower N¢y.

JFK Throughput
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Figure 26: JFK Saturation Curve - 2009

Returning to the pre-metering ASPM data, the total number of flights operating when N(z)
> 18 was calculated to be 73,166, with an average taxi time of 46.0 minutes. The average taxi
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time of flights with N(?) = 18 was 31.2 minutes. Therefore, the benefits from moving all flights
in congestion to the control point would be

Benefits = Flightscongested * (AvgTaxiTimecongested — AvgTaxiTimesawration)
= 73,166*(46-31.2) = 108,000 minutes = 18,000 hours

The benefits for metering to N = 23 are 12,260 hours, resulting in 2 values that bracket the
observed value of 14,800 hours. The first estimate is higher than the observed benefits, but is
close to other studies’ estimates of the benefits of metering [11,12]. In addition, it represents the
theoretical benefits. As we have shown, there are a number of real-world constraints such as off-
gate holds, the use of 15 minute bins, and user compliance that could reduce the achieved
benefits.

While N(t) = 18 is below N*, which would indicate that the full throughput of the airport is
not being achieved, it is important to remember that this was not the method used at JFK and is
instead a way of further verifying the results shown in this section. The throughput was shown in
section 3.3.3 to not have significantly changed from 2009 to 2010.

3.5 CONCLUSIONS

The analysis of the field trial at JFK provides useful insights for the extension of the
benefits assessment into the future. The differences between benefits in specific configurations is
not immediately intuitive but does make sense given that taxi distance, taxi time and airport
throughput can all vary significantly based on the configuration. As will be explained in the next
chapter, performance and congestion in the future are calculated by configuration (although the
issue of changing airport behaviour and configuration choice is not examined). Our assertion that
saturation curves can describe all types of metering was further supported by the comparison
between the results from the high fidelity analysis and the saturation curve method. Finally, the
overall efficiency of metering at JFK in terms of reduction in taxi time to hold time is relatively
large (overall scaling factor of 0.79) despite a substantial amount of off-gate holds and large
differences in performance by configuration. In addition, possible secondary effects of metering
such as reduced throughput and increased taxi-in times were shown to be negligible. Given these
findings, secondary effects will be neglected in the medium and low fidelity analyses, as will the
efficiency of metering (scaling factors). However, landside constraints such as gate availability
(the cause of off-gate holds) will be considered.
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4. MEDIUM FIDELITY METHOD FOR ASSESSING SCM BENEFITS AT
MULTIPLE AIRPORTS

As was discussed in Chapter 1, there is a need to perform benefits assessments on potential
air traffic management techniques including SCM. Current benefits estimates are based on
operational data that are not available for future years. In addition, traffic levels are estimated to
rise to levels never before seen at many airports, meaning that the behavior of these airports
could be different from what has previously been experienced.

A simple formulation of the problem is as follows: the benefits from metering at a generic
airport in the future must be calculated. The inputs available are demand estimates in the form of
estimated pushback schedules in 5 year increments and estimated changes in capacity due to
construction or ATC technology improvements in the same increments, and operational data
from the previous 10 years is available from ASPM.

This chapter presents a medium fidelity methodology to calculate future benefits. It is
informed by the high fidelity analysis of JFK airport in the previous chapter but has a wider
applicability and uses more generic techniques. While it does not account for most of the
secondary effects studied in the JFK model, it still examines the chosen airports in detail by
simulating taxi times and calculating saturation curves specific to an airport and a configuration.
The results from this method will be compared to both historical data and the field trial results
from JFK and BOS. In addition, they will be used to construct NAS-wide estimates in the low
fidelity model.

4.1 BACKGROUND

Of the methodologies described in Chapter 2, most are not appropriate for the task
described above due to the nature of the future data available. The N-control approach of using
saturation curves to quantify congestion was chosen for its generalizability and adaptability. If
take-off times can be calculated from the future pushback schedules, saturation curves can be
derived for the future that allow calculation of the congestion at a given airport. By adapting the
taxi time simulation developed by Simaiakis [19], characteristics of specific airports such as
configuration and layout are replaced by general values such as average unimpeded time and
maximum throughput.

The work performed by Sensis [13,14,15] relied heavily on ASDE-X data and
simulations. This level of detail is not available for the future, and while simulations could be
developed from present-day data there are several formidable issues. Each simulation would
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have to be tailored to a specific airport because it calculates the exact path each flight takes,
requiring a great deal of time and familiarity. In addition, ASDE-X data is not readily available
for many of the desired study airports. Finally, new construction at an airport would require the
simulation to be changed, but the way the new infrastructure will be used is highly uncertain.

The CDQM approach of setting a target delay has already been discussed and shown to be
similar to the saturation curve method in Chapter 2.

The remainder of this chapter will describe both the techniques needed to develop the data
to construct and analyze future saturation curves and the results from applying those techniques
at 8 airports. Section 4.2 will set out the complete methodology used to calculate future taxi
times and construct saturation curves. In addition, it will describe how physical constraints were
taken into account. Section 4.3 introduces the airports studied, and Section 4.4 presents the
results from applying the methodology as well as comparisons to the high-fidelity model from
JFK, the field trial at BOS, and historical benefits generated from ASPM-based saturation
curves.

This methodology is necessarily at a lower fidelity than the one done for the case study of
JFK. Secondary effects such as single-engine taxi and off-gate holds are not examined in relation
to benefits, and because the saturation curve method does not explicitly simulate metering (it
only identifies the opportunity for savings), the configuration-specific relationship of hold time
to saved taxi time is also not examined. In addition to the constraints of the simulation, forecasts
are notoriously unreliable. As has been discussed earlier, the benefits of SCM can be highly
sensitive to small changes in demand at airports that are near capacity. The secondary effects
studied in the high-fidelity methodology are negligible compared to the effects of changing the
forecast demand or capacity. This medium fidelity model does still provide a fair amount of
customization to individual airports and will be shown to match well with field trial data.

4.2 ANALYSIS METHODOLOGY
4.2.1 Simulation

The high-level methodology for the benefits assessment of SCM is illustrated in Figure 27.
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Figure 27: Departure Metering Analysis Methodology

The methodology is split into 2 sections that are linked by the concept of saturation
curves. The simulation section takes as inputs current operational data to train the prediction
algorithms and traffic simulation, and the future schedule data that is used in those simulations
once they have been created. The simulation outputs saturation curves for the future year cases
(including 2010 as validation).

The congestion and corresponding benefits from SCM are calculated from the saturation
curves as well as compared to the field trials discussed in Chapter 2. As will be explained, these
results are ‘unconstrained’ due to the nature of the model behind the future year schedules. The
physical constraints on the benefits (gate utilization) are examined and applied to the results to
obtain practical benefits levels.

Future year benefits were calculated by simulating throughput saturation curves and
congestion at each study airport for the future “out-years” of 2015, 2020, 2025, and 2030 as well
as the “current year” 2010. This required the development of a two-stage model that predicted
the future saturation curves (Saturation Curve Prediction Algorithm) as well as the future traffic
and congestion (Traffic Simulation) to determine where the study airports were operating along
these curves in different years.
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4.2.2 Saturation Curve Prediction
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Figure 28: DFW Saturation Curves in 2000 (Left) and 2010 (Right)

At first glance, one might assume that a saturation curve is an unchanging characteristic of
a given configuration. After all, they are a way of representing throughput, and the maximum
achievable throughput should be the declared capacity. This would be a naive approach,
however. In the left side of Figure 28 the average saturation throughput can be seen to be
approximately 27 aircraft / 15 minutes, while the average declared capacity for the year was 29
aircraft / 15 minutes. While both these values can vary (and do, as shown by the whiskers) based
on factors like the number of arrivals and the downstream weather among others, on average the
saturation throughput is below the declared capacity. This is because the saturation throughput
better reflects the sustainable capacity. If an airport operates at high demand levels for a period
of several hours, the declared capacity cannot be sustained due to uncertainty, delays, varying
fleet mix, and a variety of other reasons.

In addition, saturation throughput in the same configuration can change over time as shown
by Figure 28 (The omission of 18R in 2010 is irrelevant because simultaneous departures on 18L
and 18R are not possible). Our hypothesis is that differing levels of demand are the main driver
behind this change. Figure 29 shows how the demand, declared capacity, saturation throughput
and taxi times at DFW vary from 2000 to 2010. DFW was at its highest level of demand in 2000
before decreasing constantly (besides a brief spike in 2004). Correspondingly, the saturation
throughput was highest between 2000 and 2002 and also decreased thereafter. According to our
hypothesis, the decrease in saturation throughput from 2003 onwards happened because the
pressures to maximize throughput were removed. The time scale of the effect appears to be 2 or
3 years, as the saturation throughput did not immediately follow the decrease in demand in 2001
and did not rebound in 2004. The declared capacity remained higher for longer (until 2005)
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perhaps because of institutional memory, before decreasing. Note that even though the saturation
capacity decreased, the taxi times (which can be viewed as the amount of pressure on the system)
stayed constant or decreased as well. There are other hypotheses on the change in DFW
performance examined in Section 4.6.1. Because DFW experiences such a large change in
performance a combination of factors is likely responsible, with many of them being specific to
the airport.
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Figure 29: DFW Demand and Capacity

Given this complex relationship between saturation capacity and demand and declared
capacity, saturation curves needed to be modeled in the future. In addition, it was hypothesized
that they could depend on other airport variables such as the number of runways in use or the
percentage of capacity used, especially when an airport is expected to construct a new runway
(creating a new configuration). Finally, a linear model is not very appropriate because while
saturation throughput could significantly decrease as seen at DFW, there is an upper limit to the
amount it can increase that is determined by separation requirements between flights, which a
linear model would not capture.

Instead, future saturation curves were estimated using the Random Forest (RF) method
[20]. The Random Forest was chosen because of the many parameters and conditions that affect
an airport’s performance, as well as the non-linearity of the performance. The RF method uses
groups of decision trees that test the importance of different parameters in order to predict values
by calculating the average over all predictions from the individual trees. RF is appropriate for our
analysis because it makes no assumptions about the functional relationship between the
input/predictor variables and the output, and avoids biases by not assuming a particular function
is the correct form to describe airport behavior.
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The saturation point and saturation throughput are the target prediction variables that define
the airport throughput saturation curves to first order. The input parameters to the random forest
model were chosen using engineering judgment as well as the input of subject matter experts and
included the mean and peak hourly demand and capacity, the usage of a configuration, the
physical size of the airport, and the number of gates. The decision trees were trained, or ‘grown’,
on data from 2000 to 2010, those being the years for which ASPM data exists. Data based on the
capacity growth forecasts and future schedules, supplemented with parametric variation of the
curves as appropriate for representative days/conditions for the future study years, were input
into the model to obtain the future saturation curves.

The saturation point is defined for the purposes of calculation as the first point at which the
throughput reaches 95% of its maximum value. To eliminate the high variability due to small
sample sizes (outliers at high N values with abnormally high throughput), the 2% of data with
the highest N values were removed from the data set for the calculation of N*. The saturation
throughput is simply the mean throughput at the saturation point. While the 95% and 2% values
are arbitrary, there is no perfect set of values due to the idiosyncrasies of real data. These values
were tested on a subset of the total data and found to be similar to the values obtained from
physical examination of the curves. When calculating the congestion at an airport, the full data
set (with the top 2% added back in) was considered.

4.2.3 Taxi Time Simulation

In order to determine future year operating points relative to this curve, a traffic simulation
capability which had been previously developed and validated at MIT [19] has been modified to
use the inputs identified above to predict taxi times in the future. The simulation calculates taxi
times for every flight over the course of a year in a given configuration by modeling the aircraft
departure process as a queuing system. It takes the future year schedules as its main input and
assumes that the scheduled departure times will be the pushback times for each flight. Taxi time,
1 is related to the size of the departure queue by:

T=T +aR(t)+W, (1)

unimpeded

where Tuuimpedea 18 the average unimpeded time (by airline or overall), a is a taxiway
congestion factor, R(?) is the number of aircraft on ramps and taxiways at time ¢, and W,(?) is the
expected waiting time at time ¢. The simulation calculates the time for three different segments of
taxiing: unimpeded time, taxiway congestion time, and time in departure queue. In Figure 30 «
represents the Ramp and Taxiway interactions, W,(?) is the time spent in the departure queue
(which depends on the runway server), and Tunimpedea 15 the base time it would take if the ramp
interactions and departure queue were 0.
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Figure 30: Departure Process [19]

These three segments have tunable parameters: Tunimpedes, @ and capacity (which affects ).
The average unimpeded time used was the average across all airlines in a specific configuration
from 2010, because the physical layout of an airport can change suddenly and unexpectedly (e.g.
if an airline moved terminals or left an airport). By using the overall taxi time, the robustness of
the model is improved. There were no changes to the unimpeded time because of new
construction because of the uncertainty in completion times and effectiveness. The taxiway
congestion factor is calibrated from the present day training data by matching the amount of
congestion predicted with the congestion actually seen. In [19] this factor is calibrated by
matching the mean and median taxi times. Congestion matching was chosen because it more
accurately predicts taxi times during congestion, which is the regime of interest.

The saturation throughput from the RF model was used to determine the service rate for the
departure queue. The service rates (aircraft/minute) were calculated from the training data for
different levels of arrivals to reflect the interdependence of the arrival and departure rates. The
saturation throughput calculated by the RF model was an average value, so to translate that to
different levels of arrivals, the difference between the average service rate and the rate implied
by the saturation throughput was calculated. This difference was added to the rates for each level
of arrival to determine the new service rates. The service rates were modeled as Erlang
distributions, where the arrivals at the runway threshold were assumed to be random. Each
runway configuration at each study airport was modeled as a single server with infinite space for
the queue, and aircraft are taken first-come, first-served.

With estimates of taxi time, the evolution of N(?), the number on surface, over the course of
the day can be calculated. Note N(?) is not the same as R(?) because it includes aircraft in the
departure queue at the end of the runway. Benefits of surface congestion management relative to
the baseline case for future years are calculated in the same way as described previously, by
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taking the number of flights operating above N* and multiplying by the difference between the
average taxi time at N* and the average for flights above N*.

The two main modifications to [19] that were implemented for this thesis were calibrating
the taxiway congestion factor to the amount of congestion instead of the mean/median taxi times,
and changing the service rates to match the values predicted by the Random Forest instead of
using the values from the operational data. The second change was important because it reflects
the change in airport performance due to secondary variables beyond capacity such as demand.

Without it, the airport performance would be static (unless additional runways are planned, as at
ORD).

In addition to the two modifications, the decision was made to model the 5 most-used
configurations separately for each airport instead of choosing one ‘aggregate’ configuration.
There were several reasons for this decision. The simulation is supposed to be tailored to a
specific configuration with average unimpeded times and service rates. By using an aggregate
configuration, one dilutes the validity of the model. In addition, if an airport has configurations
that vary in performance, the benefits of SCM would be greatly affected by assuming one
configuration. For example, a hypothetical airport with two configurations, one with two
departure runways that is in use 55% of the time and one with one departure runway that is in
use 45% of the time. If the most common configuration is used, the effective throughput of the
airport is relatively high and congestion that might have been present in the configuration with
one runway is eliminated.

Because the simulation is configuration-specific, realistic configuration choices are needed.
The weather and configuration choices from the base year (2010) were taken as typical and used
for every future year. While configuration choices and weather can change from year to year, the
behavior is unpredictable and compared to any predictions one might make the base year is at
least proven to be within the envelope of airport behavior.

4.2.4 Results, Validation, Constraints

To calculate the future benefits, demand and capacity inputs are needed. The taxi time
simulation takes as a demand input a pushback schedule. This was obtained from “NextGen
schedules” provided by the FAA from their SWAC model [21]. This is a NAS-wide network
model which is used by the FAA to develop NextGen flight scenarios (as was used for the future
schedules input discussed above), and has the ability to “trim” flights when the demand at any
given node (airport) in the network causes degraded performance beyond a certain threshold
level. To calculate the capacities used to trim the schedules, the average ADR in the base year
was increased in the future by the percentage suggested by the MITRE FACT2 report [22]. This
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resulted in a discrepancy at ORD where the capacity increased by more than the average
saturation throughput predicted by the RF model. This will be discussed further in section 4.4.7.

After the taxi times and saturation curves are calculated, the benefits must be summed
across the 5 common configurations. Using only 5 configurations caused an inconsistency
between the simulation results and the field trial results for two reasons: firstly, low-use
configurations can have disproportionate benefits from metering, meaning that only scaling the
top 5 configurations underestimates the true benefits. Secondly, only examining VMC conditions
also underestimates the benefits because IMC conditions have more benefits / hour of time due
to the reduction in capacity and congestion caused by bad weather. To account for this, the
benefits for the base year were calculated from ASPM using the 5 configuration and scale up
method as well as with one aggregate saturation curve that included all configurations and
weather conditions. The benefits obtained using these two methods were compared to obtain a
scaling factor between the scale up method and the aggregate method (more representative of
actual benefits). This factor was then used to scale up the future benefits so that they were
compatible with the historic benefits and the field trial.

The “unconstrained benefits” are produced by the method outlined above, but in reality
there are physical constraints to the number of flights that can be held by a departure metering
approach, e.g., by the number of gates or off-gate hold locations. The “practical benefits” results
outlined here consider airport gates as a limiting resource. If there are too few gates, metering
might need to be scaled back or conducted off gate, which is not as desirable. To calculate the
gate utilization, OOOI times from ASPM were used. The result is that the approximate number
of aircraft on the ground (assumed to be at a gate) can be calculated throughout the day. This
count is calculated by adding one when an aircraft arrives at a gate (IN time) and subtracting one
when an aircraft departs (OUT time). The count is calculated at each minute from midnight to
midnight of one day and is airline-specific. Finally, because the count starts at midnight there are
an unknown number of aircraft already on the ground. This results in a count that can be negative
at times. To normalize for this, the absolute value of the minimum value (largest negative
number) is added to the entire count for that airline. For example, if an airline has a point in time
where the count is -8, 8 would be added to every value in the count so that the new minimum
value is 0. This approach assumes that each airline has 0 aircraft at a gate at one point during the
day. This not completely accurate, but the induced error is small. The capacity of the airport to
conduct on-gate holds can be estimated by taking the difference between the number of gates in
use and the total number of gates at the airport. This method makes several simplifying
assumptions: It neglects gate ownership issues (in the US, gates are ‘owned’ by a specific airline
and are not a shared resource), the size of gates and their ability to handle different types of
aircraft and whether or not an aircraft was moved off gate after arrival,. It also does not explicitly
show space available for off-gate holds. Off-gate holding space is very hard to quantify without
interviews with staff at specific airports, but examination of LGA maps (the most constrained
airport) identified several possible locations. We therefore assumed that off-gate holds could be
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used at all airports. With this assumption, our cutoff for on-gate metering was the total number
of gates at an airport. We assumed that the utilization could temporarily hit that peak, with the
excess demand held off gate, but that if the utilization was significantly over the number of gates,
metering could not take place.

The gate utilization was calculated for each airport and year in the study and compared to
the number of gates at the airport (or planned to be constructed). If the analysis showed that there
would not be enough gates to accommodate metering, then the benefits were restricted to the last
year in which the gates could accommodate metering. Figure 31 shows results using future
schedules from DFW and JFK in 2010. The average number of aircraft at a gate is shown on they
axis, with the X-axis showing the time of day. Both airports have approximately 150 gates but
face different future demands. While DFW is forecast to have little growth in demand for gates
in the future, JFK will, according to these schedules, face increasing competition for gates even
without the implementation of SCM.

Several other airports will be shown to exceed their gate capacity in future years. This
illustrates a fundamental problem with the generation of future schedules: the only constraining
capacity is the runway capacity when there are in fact several others that can restrict an airport,
such as gate capacity, security, and noise abatement. Because these factors are not considered,
the use of these schedules can lead to overestimates of benefits because demand levels are higher
than realistic levels at several airports. While we attempt to correct for this by restricting growth
of benefits when gate constraints are met, the preferred method would be to regenerate the
schedules with additional constraints. Unfortunately, this was not feasible for this thesis. Because
the methodology behind the generation of the future schedules is unknown, the impact on the
results is hard to quantify. Nevertheless, results using a new set of schedules would not be
expected to be substantially different from the ‘Practical’ set of results because they reflect the
benefits at the maximum sustainable demand given the shape of the schedule.
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Figure 31: DFW and JFK Gate Utilization (Future Schedules)

59



4.3 AIRPORT SCOPE

8 airports have been examined in detail: ATL, BOS, DFW, IAD, JFK, LGA, ORD, and
PHL. JFK and BOS were chosen because of their recent and ongoing field trials of SCM. The
other airports were chosen to represent different types of airports. LGA is small and space
constrained, PHL is larger but space constrained, DFW is large with relatively low demand,
ORD and ATL are large with high demand, and IAD is a medium sized airport. Results for each
airport are included in the next section.

4.4 RESULTS

Results are given for the 8 study airports in terms of hours of taxi time reduction. In the
discussion section, these time savings will be converted into fuel and monetary savings. The
predicted benefits are shown in panel b for each airport. The historical benefits (Benefits that
could have been realized if metering was in place) between 2000 and 2010 were calculated with
ASPM data and are displayed for comparison. These historical benefits estimates generally
validate the methodology because the 2010 (Actual) and 2010 (Simulated) points are close.
When field demonstration data is available (i.e. for JFK and BOS), that too is used for
comparison. The top-left chart for each airport shows different measures of demand and capacity
between 2000 and 2030 that helps to interpret the unconstrained benefits results. The historical
capacity is the average declared departure capacity from ASPM, while the saturation throughput
is calculated from the average of the throughputs for the saturation curves for the 5 most used
VMC configurations. The bottom left chart for each airport shows the average gate utilization
during the study years, as well as the current number of gates at the airport. This is used to
identify disparities between forecast demand and forecast gate availability. If there are
significant gate constraints, then the benefits are capped and the bottom right chart shows the
resulting practical benefits.
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4.4.1 ATL - Atlanta

a) Demand / Capacity / Taxi Time b) Unconstrained Benefits
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Figure 32: ATL Departure Metering Benefits Results

Demand at ATL is predicted to increase by about 30% from 2010 to 2030, while the
predicted capacity does not increase significantly. The historical benefits show a large increase in
2003-4 as a result of the increasing demand, before dropping off as the airport performance
improved from 2006-8 (see the saturation throughput / capacity) with largely steady demand. As
a result of the increased demand in the forecast, the airport shows steadily increasing
unconstrained benefits from departure metering through 2030 The gate utilization results show
that there is significantly higher need for holds than there are gates available in 2030, so the
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practical benefits are capped at 2025 levels. It is assumed that the relatively short time periods in
2025 where gate utilization exceeds gate capacity can still be metered by holding aircraft in oft-
gate locations. The unusual gate utilization in 2030 will be explained in the discussion section.
The gate utilization for all airports shows a steady scaling up of the current pattern with
increasing demand. Analyzing the shape of the curve is beyond the scope of this thesis, but
instead of simply scaling up a future utilization curve might be flatter over the course of the day
if an airport is near capacity (akin to current day LGA).

4.4.2 BOS — Boston Logan

a) Demand / Capacity / Taxi Time b) Unconstrained Benefits
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Figure 33: BOS Departure Metering Benefits Results
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Expected demand growth at BOS is about 20% from 2010 to 2030 (although demand in
2030 is not expected to be any larger than the airport handled in 2000), while capacity is not
expected to increase significantly. The historical benefits roughly follow the historical demand at
BOS, but are very low relative to the other study airports. Because the demand does not reach the
levels seen in 2000, it is reasonable that the benefits also stay within the range already seen. Gate
utilization is not expected to be a constraining factor at this airport because it remains under its
capacity for the duration of the day and therefore the practical benefits are expected to be similar
to the unconstrained. The extrapolation of the results of the MIT field trial previously discussed
in Chapter 2 is shown in Figure 34. The results from the simulation for the base year of 2010
have been added to the chart and compare favorably to the configuration specific benefits
estimated from both the field trial and ASPM saturation curve for 2010, providing some
validation of the operational realism afforded by the approach.
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Figure 34: Boston Field Demonstration Validation
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4.4.3 DFW —Dallas / Fort Worth

a) Demand / Capacity / Taxi Time b) Unconstrained Benefits
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Figure 35: DFW Departure Metering Benefits Results

DFW airport is forecast to reverse its recent decline in traffic, and there is no expected
increase in capacity. The decrease in the future benefits in 2020 is due to the simulation-
predicted increase in performance (and corresponding decrease in benefits) between 2015 and
2020, which can be seen in panel b. While this may seem like a sudden change, the historical
data shows substantial volatility. This is a reversion to the performance in the early 2000’s, when
there was a similar demand level. This effect is elaborated on in section 4.6.1. There should be
sufficient gate space without any expansion in terminal facilities (and there is room for terminal
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expansion at the airport if necessary), resulting in practical benefits that are equal to the
unconstrained benefits.

4.4.4 TAD - Washington Dulles

a) Demand / Capacity / Taxi Time b) Unconstrained Benefits

IAD - Evolution of Demand and Taxi Time X 105 IAD - Future Benefits

—©—ASPM Historical
|| ==MIT Simulation

150 3

—S— Future Demand
—E— ASPM Historical Demand
—*— ASPM Historical Taxi Time

N
&
.

—— Future Taxi Time - MIT
-£5- ASPM Historical Capacity

[l Historical Saturation Throughput
-4~ Future Capacity

| —%— Future Saturation Throughput

=)
=]
N
T
L

Taxi Time (min)

Number of Flights
Yearly Demand / 10000
Capacity / 15 minutes

Annual Benefits
(Hours of Taxi Time Reduction)
o -
o o

2000 2005 2010 2015 2020 2025 2030 2000 2005 2010 2015 2020 2025 2030
Year Year
IAD Airport x 10 IAD - Future Practical Benefits

a
<3
S

©
o
=]

. . 8 T !
—zggg —-6—ASPM Historical
- _“23122 1 ——MIT Simulation

----'2010
w— Available Gates

g

()
T
i

™

a

=)
T

o
S

# of aircraft at gate
8

N

Q
S

Annual Benefits
(Hours of Taxi Time Reduction)
S

50+

6 8 1 12 14 1 18 20 22 24 2000 2005 2010 2015 2020 2025 2030

Time Year
c) Gate Utilization d) Practical Benefits

Figure 36: IAD Departure Metering Benefits Results

Dulles airport shows steadily increasing traffic from 2010 through 2030. There are several
discrepancies in the results that merit explanation. The first is the spike in traffic in 2004 and
2005 that did not produce the same magnitude increase in taxi time and benefits relative to other
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airports. The sharp rise in traffic was due to the rise and fall of Independence Air, which was
based at Dulles and operated from June 2004 to January 2006. The gate usage chart in Figure 38
from 2004 suggests that Independence tried to avoid the departure banks of United that would
minimize the added congestion and benefits. Compared to the 2010 chart in Figure 38 (uses
ASPM data as opposed to Figure 36 which uses the future schedule), there are secondary
departure banks around 0700, 1000 and 1400 in between the main United pushes. This would
mean that congestion is lessened because the increased demand happened at off-peak times.
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Figure 37: 2004 Gate Usage at IAD
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IAD Airport 2010
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Figure 38: 2010 ASPM IAD Gate Usage

Traffic in 2020 is predicted to be at 2005 levels and the predicted benefits are much higher
most likely because the growth is spread evenly across all carriers and the timing of the
additional flights is not focused in off-peak times as it was in 2004. Increasing traffic during the
busy departure pushes would greatly increase congestion and benefits, much more so than the
addition of Independence Air in 2004-5. A second cause for the future benefits being higher than
the present day is shown in Figure 39. In the ASPM individual flights database, there are no days
with more than 500 departures while the FAA schedule has multiple such days. The ASPM
historical demand shown in Figure 36a matches with the future demand because it is an
aggregate count that includes flights such as military and GA that are not necessarily counted in
the individual flights database. This makes a difference because the individual flights database is
used to calculate the saturation curve and taxi time simulation. The effect of the difference
between the aggregate and individual databases is negligible at the other airports, but IAD has a
17% difference in the number of flights (BOS is second at 6%). One solution would be to further
trim the demand at IAD but that was not possible for this thesis. In terms of gate utilization,
Figure 36 shows that there are significant gate conflicts from 2020 onwards, especially with the
‘banked’ behavior due to the United hub. Benefits are thus capped at 2015 levels. The IAD
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saturation curves from 2005 and 2006 (Figure 40 and Figure 41) support the hypothesis that IAD
has not reached its capacity, and are very different even though they are only one year apart due
to a 20% drop in VMC traffic. The difference between the curves shows that IAD appears to not
have reached its maximum capacity even at 2005 traffic levels. In 2005, the calculated N* is 30
even though the throughput continues to increase after that point. This is due to the method of
calculating N* which discards the top 2.5% of flights as unreliable. In this case, however, there
appears to be a definite trend showing possible higher performance. The current methodology
does not capture the possible higher performance at high demand levels, leading to increased
estimates of congestion in the future. Another problem with IAD in particular is the reporting of
its configurations. The saturation curves are for 1L, 1R | 30 which means that arrivals are on 1L
and 1R with departures on 30. For a typical airport with one departure runway (LGA, JFK), the
saturation throughput is around 10 / 15 minutes. The saturation throughput here is between 18
and 25 / 15 minutes, suggesting that the airport is using other runways as departure runways and
not accurately reporting it. This decreases the accuracy of both the RF model and the traffic
simulation.
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Figure 39: Average number of departures / day in ASPM and FAA schedule (2010)
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Figure 40: IAD 2005 Saturation Curve
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4.4.5 JFK - New York JFK

a) Demand / Capacity / Taxi Time b) Unconstrained Benefits
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Figure 42: JFK Departure Metering Benefits Results

JFK shows steadily increasing benefits as the demand increases. The demand is
substantially above the peak historic traffic level seen at JFK in 2007 even though the capacity is
not forecasted to grow and taxi times and delays are already high. The saturation throughput is
forecast to grow slightly as a response to the increasing demand. The growth in demand coupled
with a lack of growth in capacity results in large benefits into the future, but the demand for

70



metering will exceed the available gate space soon after 2015. This indicates that either there
needs to be new terminal construction (which is not planned) or that the demand is too high.
Given this constraint, the practical benefits from metering are capped at 2015 levels. There is no
data point for the historical benefits in 2010 because of the field demonstrations being conducted
at the airport by PASSUR at that time. However, these trials allow further validation of our
approach. The comparison between the benefits from the field results (the black diamond in
panel d) and ASPM data from Chapter 3 is reproduced here with the addition of the simulated
benefits.

4.4.6 LGA — New York LaGuardia
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Figure 43: LGA Departure Metering Benefits Results
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LaGuardia airport is forecast to have no growth in the study time period. This is expected
given LGA’s slot-controlled status. As a result, the benefits do not vary much over the course of
the study. The spike in 2020 is likely due to small variations in the predicted performance of the
airport (the average taxi time is slightly higher) and does not have a major impact on overall
benefits. There are a significant number of open gates during the day in all years, allowing for
the full benefits of metering to be achieved. This figure is roughly similar to Figure 31, which
serves as a reality check.

4.4.7 ORD - Chicago O’Hare
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Figure 44: ORD Departure Metering Benefits Results
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O’Hare airport has relatively low benefits through 2020 because of the runway capacity
expansion project scheduled to finish by 2020. This is the only airport in the study undergoing
physical expansion. The expansion introduces much uncertainty into the calculation of benefits
because the capacity of the airport determines the demand (through trimming) but the saturation
throughput (performance) determines the benefits. The simulation implies high levels of benefits
in 2030 because it predicts that the saturation throughput of ORD will not be as great as the
predicted capacity. This prediction is based on the past performance of ORD as well as the
performance of DFW, an airport whose current configuration is similar to ORD’s future
configuration. The demand will thus exceed the capacity at ORD in the model, causing a large
amount of congestion. The future ORD will be comparable to the current DFW layout. The peak
DFW throughput, which occurred in 2002, was 28 departures / 15 minutes, which is around the
simulation level. If this is the true performance of ORD in the future, the demand will likely be
forced lower than forecast to keep delays low, which would in turn drive the benefits lower. If,
instead, the airport performs at the level predicted by the capacity, the demand would remain the
same but the benefits would again be lower because there would be fewer delays. Because in
either case the benefits would be lower than the simulation predicts, the practical benefits for
2030 were capped at the 2025 level. Demand for metering can be satisfied with current terminal
infrastructure until 2025. However, ORD has several locations identified for future terminal
expansion. Therefore, it is assumed that there will be sufficient gate space to perform metering in
2030 with the given demand.
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4.4.8 PHL - Philadelphia Intl

4.4.9
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Figure 45: PHL Departure Metering Benefits Results

Philadelphia airport shows a medium level of benefits comparable to other airports in the
study, with the future demand in 2030 slightly exceeding the peak seen in 2005. The main
anomaly is the unusual behavior of the gate utilization curves for 2020, 2025 and 2030, which all
end the day with many more planes than they started with. Panel ¢ shows that there will be
insufficient gate space in 2030 to accommodate the demand. Therefore, benefits are capped at
2025 levels. This causes the benefits in 2030 to rise because the airport performance was
predicted to incrementally improve from 2025 to 2030, lowering the benefits relative to 2025.
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When the demand is capped at 2025 levels, this improvement in performance is nullified and the
benefits increase to 2025 levels.

4.5 AGGREGATE BENEFITS
4.5.1 Aggregate Departure Metering Benefits

The airports with major contributions to the unconstrained benefits are ORD, ATL, and
JFK, as shown in Figure 46. The other four airports are all at about the same lower level of
benefits. When the practical benefits are examined which account for gate constraints, JFK and
ATL approach the lower group, as shown in Figure 47. ORD has reduced benefits because of
the uncertainty in the airport expansion project. The practical benefits show that all airports are
in the 0-50,000 hours of taxi time reduction range. This is a realistic value. Taking JFK 2015 as
an example: 50,000 hours of taxi time reduction means that there were about 50,000 hours of
gate hold in a year. That equates to 137 hours a day.

At an average of 640 departures a day, on average a flight will be held 13 minutes. Because
metering will most likely be needed (and used) only at certain times of day, average holds could
be between 20 and 30 minutes. Departure metering does not reduce delays, but only transfers
them to the gate. Therefore, holds of between 20 and 30 minutes implies delays of at least that
long. The amount of delay implied by the 2030 JFK unconstrained benefits (approximately 3
times 2015 or 1.5 hours), would likely lead to a reduction in demand until reasonable delay
levels were reached.
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Figure 46: Aggregate Unconstrained Results
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Figure 47: Aggregate Practical Results

4.5.2 Monetization of Departure Metering Benefits

Assuming a fuel price from 2010 to 2030 of $2.43 in FY2011 dollars[23], the
unconstrained benefits from fuel savings can be calculated to be $3.6 billion dollars cumulative
from 2010 to 2030 across the 8 airports studied, as shown in Table 3 and Table 4. Summing the
practical benefits results in $2.3 billion. These estimates assume 3.1 kg / gallon of jet fuel and
airport-specific fuel burn rates (using ICAO taxi fuel rates) which account for the fleet mixes at
each as shown in Table 2 below. Taking the average taxi times from the simulation and
multiplying by the total number of flights, we can find the total estimated time spent in taxi as
well as the corresponding fuel burn. We calculated that for the 8 airports cumulatively from 2010
to 2030 in the Unconstrained case there would be 6 billion gallons of fuel burned, or $14.4
billion, making the savings from SCM almost 26% of the total fuel cost in taxi. This is higher
than the estimate presented in Chapter 3 because these eight airports are forecast to operate in
congestion much more frequently in the future, requiring SCM to operate for longer periods of
time. In terms of total fuel burn in all stages of flight, scaling data for 2010 from the BTS [18] by
the future demand levels, we can calculate that the total fuel burn at these 8 airports will be 100.5
billion gallons, with a corresponding cost of $244 billion. The benefits are then 1.5% of the total
fuel burn. For the practical case, the results are 5.3 billion gallons of fuel, $12.8 billion, and 18%
of total fuel cost for taxiing only and 97 billion gallons of fuel, $235.8 billion, and 1.0% of the
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total fuel burn. Again, care should be taken with the estimate of the percentage of total fuel burn
because only domestic carriers are included, and the true percentage is probably lower. The
percentages vary substantially by airport because of the nature of SCM. For airports such as BOS
with little potential for benefits, most of the taxi time will not be during congestion and therefore
the percentage of taxi (and total) fuel saved is low.

Table 2: Airport-Specific Fuel Flow Rates

. Fuel Burn Rate
Arport (kg/sec)
ATL 0.2155
BOS 0.1892
DFW 0.2214
IAD 0.1729
JFK 0.3096
LGA 0.1707
ORD 0.2099
PHL 0.1733
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Figure 48: Unconstrained Fuel Benefits from Metering
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Figure 49: Practical Fuel Benefits from Metering

Table 3: 2010-2030 Cumulative Benefits by Airport, Unconstrained

Unconstrained
Thousand ) )
. . - Savings as % | Savings as %
Airport Hm;ri?nléam é/lalllll:)%r; $ Millions of taxi-out of total fuel
: fuel cost cost
Reduction
ATL 1251 313 761 26% 1.5%
BOS 59 13 31 4% 0.2%
DFW 105 27 66 4% 0.2%
IAD 299 60 146 12% 0.6%
JFK 1839 661 1606 47% 6.8%
LGA 326 65 157 22% 1.0%
ORD 1108 270 656 26% 1.3%
PHL 446 90 218 20% 0.9%
TOTALS 5,432 1,498 3,641
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Table 4: 2010-2030 Cumulative Benefits by Airport, Practical

Practical
Thousand . )
. . o Savings as % | Savings as %
Alrport HO%E;ZaXI ?}4;1111(1;2 $ Millions of taxi-out of total fuel
. fuel cost cost
Reduction
ATL 965 242 587 21% 1.2%
BOS 59 13 31 4%, 0.2%
DFW 105 27 66 4% 0.2%
IAD 177 36 86 11% 0.6%
JFK 1060 381 926 35% 1.9%
LGA 326 65 157 22% 1.2%
ORD 390 95 231 10% 0.5%
PHL 455 92 223 20% 1.1%
TOTALS 3,537 949 2,307

4.6 ANOMALIES AND DISCREPANCIES
4.6.1 Uncertainty in Runway Capacity / Performance
Impacts: ORD, DFW

Both ORD and DFW have varying estimates on the future capacity and performance of the
airport. In the case of ORD, new construction will add runways but the usage and performance of
the new configurations is unknown. DFW has no new construction, but history has shown large
variations in performance with changes in demand. It is not certain in either case what the future
performance will be, but it will have a major impact on the benefits. DFW will be less impacted
because the demand at the airport is not forecast to reach even the conservative estimate of
capacity, keeping the benefits levels low. However, the volatility in the results is visible in
Figure 35. ORD, on the other hand, would likely not be able to sustain operations at the demand
level of 2030 because the 300,000 hours of gate hold in 2030 translates to about 40 minutes for
each flight. This is not an acceptable level of delay (would likely translate to average taxi times
over 1 hour without metering).

DFW shows the most variation in its historical performance out of the eight study airports.
There are several hypotheses on why this has happened. The first is that the large decrease in
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demand allowed throughput to drop without increasing delay. Without the pressure of high
demand levels, the airport did not need to perform at high levels and so did not.
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Figure 50: DFW Demand and Performance

Figure 50 shows the saturation throughput of the main configuration (South Flow, 13R,
17C, 17L, 18R | 13L, 17R, 18L) from 2000 to 2010 as well as the total number of operations at
DFW in each year. The saturation throughput appears to be correlated to the total demand most
strongly from 2004 onwards. However, the period between 2000 and 2004 cannot be readily
explained by the demand because it decreases from 2000 to 2002 while the throughput increases
and then increases from 2002 to 2004 while the throughput decreases.
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Figure 51: DFW Proportion of Prop Operations

Figure 51 shows the same saturation throughput, but compared to the percentage of
operations that are propeller-powered aircraft. This is a relevant comparison to make because
Runway 13L is constrained to prop-only operations for noise abatement. When prop operations
made up a substantial proportion of operations (until 2004), the throughput was higher, between
24 and 29 departures / 15 minutes. The typical performance of a single departure runway is
around 10 departures / 15 minutes. Because the south flow has three departure runways, one
would expect the maximum throughput to be around 30, depending on runway crossings,
interactions with landings, and symmetrical use of all 3 runways. However, when prop

operations sharply fell off, the effect was to lose a runway because jet operations could not use
13L.

The behavior between 2000 and 2004 is still not fully explained, but it demonstrates the
complexities and unpredictability of airport behavior. In the future we assume the same fleet mix
as present day because it is the best guess, but at airports like DFW there could be major changes
if the demand approaches the capacity. Airlines could see a runway lying essentially unused, and
convert many of their regional flights back to turboprop aircraft to take advantage of the unused
capacity, bumping the throughput back to 2000 levels. Alternatively, airport officials could
decide to lift or partially lift the props-only requirement. These choices would have major
impacts on the benefits (and, in effect, are implied by the RF model when it predicts that the
throughput will rise in 2020), but cannot be predicted.
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The prop-only restriction and change in fleet mix was only found after noticing the large
change in throughput from 2000 to 2010 and investigating further, but it can easily be imagined
that there are other such operational changes that have smaller effects and are thus neglected.
These add to the uncertainty of trying to predict future behavior but cannot be discovered
without intense inspection of each airport studied, which, given the medium and low fidelity
methods for estimating future benefits, is not desirable or efficient. It is important to consider the
large amount of uncertainty inherent in any future prediction, and especially in this particular
case. A section of Chapter 6 will identify and discuss the main sources of uncertainty in this
thesis.

4.6.2 Gate Utilization
Impacts: LGA, BOS, ATL

Both LGA and BOS show an anomalous hump in the overnight gate utilization that is much
higher than is seen in the ASPM 2010 data. This is because the FAA future schedules have a
different distribution of arrivals and departures than the actual distribution in 2010, shown in
Figure 52. Because the methodology behind the future schedules is unknown, it is assumed that
it is more likely that the gate utilization will resemble the current day pattern. While this
difference in distributions could cause a change in the benefits level, it is outside the scope of
this project to calculate a new schedule with more realistic distributions. The 2030 data for
Atlanta does not follow the trend for the previous years mainly because of a substantial
imbalance that appears between the departures and arrivals. Whereas in 2025 there are predicted
to be 20,000 more arrivals than departures, in 2030 at ATL there are predicted to be 60,000 more
departures than arrivals. Because the cause of this discrepancy lies in the generation of the future
schedules, there is little that can be done. The true gate usage at ATL will likely follow the
current day pattern.
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Figure 52: # of flights per hour in 2010 at LGA

4.7 CONCLUSIONS

The results of the medium fidelity analysis show that there are substantial potential benefits
in the future from SCM at all of the 8 study airports. BOS has the lowest forecast benefits over
the 20-year period, but still would realize over $30 million in fuel savings alone, or 3.8% of
their taxi-out fuel costs. The analysis also showed that the future demand forecast could be
overestimating future capacity and does not take gate constraints into account. Because the
forecast was an input to the model that could not be replaced or modified, the resulting benefits
estimate is highly uncertain. However, it is clear that at major airports such as JFK and ATL,
even moderate increases in demand will result in severe congestion and that SCM shows the
ability to reduce the environmental and fiscal impact of this congestion.
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S. LOW FIDELITY METHODS FOR ASSESSING SCM BENEFITS AT NAS-
WIDE AIRPORTS

5.1 BACKGROUND

As the results from the previous chapter have shown, potential benefits from departure
metering can vary greatly from airport to airport. This makes extending the benefits assessment
to a wider set of airports a challenge. We could not complete the medium fidelity analysis at all
the OEP 35 airports in the time available for this thesis, but it would be a feasible and useful
opportunity for future work. In order to make policy decisions, a fast, widely applicable model is
desirable. Although these often imply low fidelity, they can be informed and validated by the
medium and high fidelity models already presented. In addition, we recognize that an airport is a
complex system and any individual low fidelity method is likely to deliver results that are
substantially different from another model. Therefore, we present three different methods here to
attempt to set bounds on the uncertainties in the estimation of benefits and to try to identify
variables that have a strong correlation with benefits that can be used to identify airports where
further study would be useful.

The first method weighs the benefits of the 8§ medium fidelity study airports relative to the
rest of the NAS using the relative amount of taxi delay as the indicator variable, i.e., the relative
benefits expected at an airport scale with its relative taxi delay within the NAS.

The second method expands upon the first and replaces taxi delay with other variables that
can be calculated for future years without simulation to create a linear regression. The regression
was built using historical data from 2000 to 2010 and tested using benefits estimates for the OEP
35 airports in 2010.

The third method forms clusters of airports with similar characteristics that are assigned the
mean benefit level of the medium-fidelity study airports in that set.

Each of these low fidelity modeling methods are examined in turn in this chapter. The
recurring theme through this section will be the tradeoff between simplicity and ease of
calculation on one hand and perceived accuracy of the results on the other. While all three
methods fall under the umbrella of the ‘low fidelity’ method, there is substantial variation
among them and each has their own merits and shortcomings.
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5.2 METHOD 1: PERCENTAGE OF TAXI DELAY

Taxi delay should be an intuitive driver of SCM benefits, given SCM aims to address
excess taxi times. Taxi delay at an airport can be calculated by finding the average unimpeded
time (often taken as the 10" percentile of all taxi-out times) as well as the overall average time.
The difference between the two multiplied by the total number of flights represents the taxi
delay, or excess taxi time.

SCM is designed to reduce excess taxi time with engines on by spending that time held at a
gate or other location. Therefore, one hypothesis is that taxi delay is linearly related to benefits
from SCM. An assumption also needs to be made about how benefits and taxi delay relate into
the future: the assumption used here is that the proportion of nationwide taxi delay at any given
airport will remain constant into the future. Using this assumption, the percentage of delay at the
8 study airports from the medium fidelity methodology in 2010 is equal to the percentage of
benefits both for the current day and into the future. From ASPM, the 8 study airports account
for 40.8% of the taxi delay out of the OEP 35 airports in 2010, resulting in a scaling factor of
2.45. Therefore, one estimate of benefits from SCM at the OEP 35 airports is $8.9 billion if the
unconstrained results are scaled, and $5.7 billion for the practical. Scaling the 2010 fuel estimate
from [18] by the future demand, the total fuel burn in all stages of flight for departures from the
OEP35 airports is 319 billion gallons, or $775 billion. The unconstrained benefits are then 1.1%
of the total fuel cost, and the practical are 0.7%. Again, these numbers are probably
overestimates.

This method has the advantage of being simple to calculate but suffers from the inaccuracy
of a number of assumptions. The first is that taxi delay is directly proportional to benefits. Figure
53 and Figure 54 show that the benefits from SCM are much more concentrated at certain
airports than the taxi delay. In particular, BOS, DFW and IAD have a substantially smaller
proportion of SCM benefits than their proportion of taxi delay. This is related to the discussion
on CDQM. There is a certain amount of taxi delay that is not affected by SCM, the ‘target delay’
of CDQM that allows airports to maintain maximum throughput. At BOS, DFW and IAD most
flights that have taxi delays have delays that are under the target delay and therefore may not be
as affected by SCM. Most airports with low taxi delay per flight will similarly have fewer
benefits than their taxi delay suggests.

Another assumption that the method makes is that the ratio between the practical and
unconstrained benefits remains the same across the OEP 35 airports as it was at the 8 study
airports. The validity of this assumption is hard to gauge. Alternatively, the two estimates could
be viewed as ‘high’ and ‘low’ estimates using the taxi delay method.
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If the optimal target delay could be determined then it could be subtracted from the total
taxi delay to find the possible benefits as in [5]. The problem, as mentioned before, is that the
optimal target delay can vary from airport to airport. If the optimal target delay identified in the
CDQM study of 6 minutes is applied to every airport, Figure 55 shows that the proportions still
do not match well with the proportion of benefits; most notably, BOS, JFK and IAD have higher
share than their share of benefits. Relative to the OEP 35, the 8 study airports now have 59.8% of
the delay, which leads to a scaling factor of 1.67 and OEP 35 estimated benefits of $6.1 and $3.9
billion for the Unconstrained and Practical cases, which are 0.8% and 0.5% of total fuel cost.

Figure 53: 2010 Taxi Delay at 8 Study Airports

Figure 54: 2010 SCM Benefits at 8 Study Airports
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Figure 55: 2010 Taxi Delay - 6 minutes at 8 Study Airports
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Figure 56: Regression of Benefits to Reduced Taxi Delay

The underlying assumption in this model is that taxi delay and SCM benefits are linearly
related. A regression relating the amount of benefits from SCM per flight to the amount of
modified taxi delay (delay — 6 minutes) per flight is shown in Figure 56. Using data from 2000 to
2010 results in the equation y = 0.4542x + 0.3491, with an R? of .7966. Most of the study
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airports are seen to lie on the regression line; however, Figure 56 shows that JFK is not well
described by this equation. One hypothesis to explain this is that the target delay of 6 minutes is
not as applicable at JFK as it is at other airports. Figure 57 shows that when the target delay for
JFK is increased to 10 minutes, the R is increased to .882 and the equation changes to y = .523x
+ .359. However, when this regression equation is used to predict the future benefits, there is
substantial scatter between the Future (predicted by regression) and FutureActual (based on the
results from the medium fidelity model), especially at higher delays. This highlights the problem
that regressions should not be used to predict occurrences outside of the data they have been
trained on. It also reflects the fact that this is not a fair comparison. The taxi delay calculated
from the medium fidelity model does not include things like IMC conditions which have
substantial impacts in actual operations.
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Figure 57: Modified Taxi Delay Regression and Prediction of Future Benefits

5.3 METHOD 2: MULTIPLE LINEAR REGRESSION MODEL

While the modified form of taxi delay shown in the previous section was shown to predict
benefits from SCM quite well in the present, the performance was reduced in the future (as
would be expected from a forecast). A more important problem is that taxi delay is only
available for future years at the airports for which taxi models are available from higher fidelity
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models (i.e. which were studied in more detail). Because the goal of this chapter is to find a
methodology that avoids extensive simulation, taxi delay is not a useful metric for a linear
regression used for forecasting. New variables are needed that can be calculated for the future;
the challenge is that this restricts the options to those variables that can be derived from the FAA
forecast data; i.e., the pushback schedule and the forecasted capacity because taxi times are not
available. 4 variables were chosen to represent congestion: total annual departure demand (# of
pushbacks), total annual departure demand when an airport is operating at demand levels at or
above capacity (# of pushbacks in congestion), the number of 15 minute periods in a year when
the airport is operating at that point (periods with 100% usage), and the yearly average
percentage of capacity used (% capacity used). For this analysis, a period of congestion was
defined as a period where the number of pushbacks exceeded the departure capacity for that
period. While this does not guarantee that the airport is actually operating at capacity (we do not
know the condition of the runway), it was considered a reasonable proxy.

These four variables were chosen to represent different aspects of congestion and SCM.
The total demand shows the overall size of the airport, because large airports would receive more
benefits from an SCM system than a smaller airport with a similar delay per flight. The
Pushbacks in Congestion variable represents how much of the total demand is operating when
the airport is congested. This is different from the 100% Usage periods, which measures how
often the airport is congested. Two airports that are congested for the same amount of time
would have different benefits if the capacity is low at one airport (making the threshold for 100%
usage low) often and the other airport is congested while in its highest capacity configuration.
The % Capacity used variable gives an idea of the overall congestion at an airport.

To build the regression, data from the 8 medium-fidelity study airports from 2000 to 2010
was used. The benefits served as the dependent variable, and the four stated inputs were the
independent variables. It was found that the percentage of capacity used does not significantly
improve the quality of the model, so it was discarded. Several other statistical tests were
performed to test the validity of the regression; these are listed and discussed in Appendix B. To
mitigate the heteroscedasticity seen in the initial regression (the variance of the residuals was not
constant, which violates one of the assumptions of a linear regression), the dependent variable
(Benefits) was transformed by taking the square root. The resulting model is:

/Benefits = a X, + a,X, +a,X; +a,

where X is # of pushbacks, X, is periods of 100% usage, and X3 is # of pushbacks in
congestion.

The resulting parameters are shown below. As a check, data from the OEP 35 airports was
obtained for the year 2010 and benefits were calculated using the saturation curve method as
well as the linear regression. When the estimated benefits were compared to the actual benefits,
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the R? was actually higher (0.79) than the R? (.736, adjusted R* = .726) from the training data.
Using data from the future schedules, the inputs were calculated and run in the model. Linear
interpolations between the future schedule years were calculated to find the total benefits over
the 2010-2030 period. The resulting benefits were $2.9 billion (0.3% of total fuel costs), much
lower than the total calculated using the taxi delay method and only slightly more than the total
practical benefits calculated for the 8 study airports. There is no distinction between the
unconstrained and practical benefits in this method because the regression is built on historical
data and the inputs in the future do not change.
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Figure 58: Comparison of Medium Fidelity Method and Linear Regression

Examining the individual estimates in Figure 58 (results for all airports given in Appendix
B), the larger patterns are similar (JFK and ATL have the most benefits) but most airports have
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smaller benefits than in the medium fidelity study. There are some discrepancies; BOS and LGA
both have more benefits than previously, and EWR, while not studied explicitly, is forecast to
have benefits on the order of DFW (which is surprising, especially given the results in the
clustering analysis discussed next). JFK and ATL were also underpredicted in the analysis of the
residuals in Appendix B, and BOS was overpredicted. This continuation of previous trends is a
check that the model is performing as expected. The lower total estimate reflects the fact that
even with the square-root transformation, the regression still does not fully capture the dynamics
of congestion.

Table 5: Model Coefficients

Model Unstandardized Coefficients Séig?gg?;ig ¢ Sig.
B Std. Error Beta
Constant -4.641 7.418 -0.626 | 0.533
# of pushbacks 19.292 3.142 0.662 6.14 0+
periods of 100% usage 14.257 1.467 1.004 9.717 0+
# of pushbacks in -3.002 0.935 0459 | -3212 | 0.002
congestion

Despite the relatively high value of R there is substantial cause for concern about the
validity of the linear model. All three predictor variables can be considered positive indicators of
congestion; i.e., the higher their value, the higher the congestion is expected to be. However, the
coefficient for # of pushbacks in congestion is negative as shown in Table 5, indicating a
decrease in congestion for an increase in the value of the variable. This suggests that instead of
finding a model that truly describes congestion, we have only found the model that best fits the
data given the low quality of the input variables. As a result, the future predictions should be
considered even more uncertain than normal forecasts. If we calculate the residuals for the future
predictions for the 8 study airports by comparing them to the Unconstrained forecast from the
medium fidelity model and plot them with the residuals from the training data in Figure 60
(Original plot in Appendix B, rescaled in Figure 59), we see that the future residuals are both
positively biased (large underpredictions) and much larger in magnitude than for the training
data. This confirms our concerns that the linear model is not compatible with the medium fidelity
model.
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Figure 60: Past and Future Residuals

Given the concerns about the linear model as well as the observation that congestion
increases nonlinearly as demand approaches capacity (Figure 3), a non-linear model might be
expected to perform better. However it is not obvious what form a non-linear model should take.
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Through experimentation this model was found to have an R* of .776, or slightly better than the
linear model:

In(Benef ity = a,\ Pushbacks + a, exp(a, x PeriodsOf100%Use) + a, PushbacksInCongestion + a

When we use this equation to predict the future benefits, the estimate is increased to $4.2
billion. However when we more closely examine the breakdown by airport in Figure 61, almost
all of the increase is due to just one airport, JFK (with SFO increasing moderately). The benefits
here are the cumulative benefits realized from 2010 to 2030 at each airport. This estimate for
JFK is above even the unconstrained estimate from the medium fidelity method. It also
highlights a concern about using a non-linear model: most of the historical data is in a range
where benefits are still roughly linear. There is little data to show when and how an airport enters
the non-linear regime. While the model correctly (according to the medium fidelity method)
predicts JFK entering the non-linear regime, it misses ORD and ATL, shedding doubt on
whether or not the estimate for SFO is accurate.

Overall, the nonlinear model adds much complexity and uncertainty while not providing
corresponding additional insight or accuracy or even change in estimates from the linear model
(apart from JFK). There is no guarantee that the form of the regression above is correct or
optimal; the coefficient for Pushbacks in Congestion is still negative, as it was for the linear case.
Finally, the nonlinear model makes the assumption that airports will tolerate operation in the
nonlinear regime (akin to the Unconstrained case). In reality, they will probably try to avoid it as
much as possible through regulations, schedule adjustments, or other forms of demand control.
As a result, a non-linear method was not pursued any further.
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Figure 61: Comparison of Linear and Nonlinear Methods

5.4 METHOD 3: AIRPORT CLUSTERING

A third possible method is clustering, which groups airports into different bins based on
certain key characteristics. The parameters chosen were variables that were identified as
important based on the experience gained from the high and medium fidelity methods and were:
Total Demand, Current % Capacity Used, Growth of Demand from 2010 to 2030 and Growth of
Capacity from 2010 to 2030. The first two variables are the same in the linear regression and are
present for the same reason as given previously. Clustering differs from the regression in that the
evolution over time of the variables is not considered. As a result, a variable is needed to
represent how traffic at an airport will change: the expected growth of congestion (Growth of
demand and capacity). Clustering could be performed on these raw variables. However, given
the insights from the high and medium fidelity methods, a new variable was created in order to
create clusters that corresponded to historical levels of benefits. Several different equations were
tested and the following both grouped the 8 study airports from the medium fidelity method into
levels close to the practical benefits levels and also was relatively simple:

D t
ClusterVariable = eman.dGrow h x CapacityUsed” x Al DemandLevel
CapacityGrowth
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The form of the equation makes intuitive sense. It states that the most important variable is
the capacity used (because it is squared) which agrees with Figure 3 that showed how congestion
and delay increase nonlinearly as the percentage of capacity used nears 100%. Future congestion
will also be affected by how much more the demand grows than the capacity. Finally, the overall
level of traffic at an airport scales the benefits accordingly because the other two terms are
percentages.

The clustering was performed using the k-means algorithm [24] with the clustering variable
previously identified. The algorithm iteratively divides n observations into k clusters, where an
observation belongs to the cluster whose mean it is closest to (Euclidean distance). £ was chosen
to be 4 for this analysis to both ensure multiple study airports be assigned to a cluster and to
sufficiently stratify the results. 3 clusters (the Low, Medium and High levels) have at least one of
the 8 study airports from the medium fidelity method, while Group 4 (Negligible) is estimated to
have half of the benefits of BOS, the airport with the lowest level of benefit from the medium
fidelity study set. Although Group 4 has no medium fidelity study airports, this was deemed to
be acceptable because it consists of airports where metering is anticipated to be of little impact.
Because all 8 study airports were chosen for their potential for SCM to have an impact, having
one of them in the cluster would inflate the benefit estimate. To use clustering as a tool for
generalizing benefits, the average benefits in terms of taxi time saved were found for the airports
in a cluster. The remaining 27 airports from the OEP 35 were assigned to clusters based on their
value of the clustering variable, and assigned the average value of the benefits at the study
airports in that cluster. While airports are unique, we think this is a reasonable method because
we are focusing on one specific attribute (congestion). It is also true that having small sample
sizes of 2 or 3 airports providing the average benefit level can skew the results. This is partly
alleviated because most of the airports are in the lower two tiers where the benefits are low, but
future work should focus on airports such as EWR and SFO in the top tiers that have not yet
been studied in detail. The resultant clusters and levels of benefit are shown below in Figure 62
and Table 6. JFK and ATL are the anchors for the “high” level of benefits, ORD, PHL and LGA
are the medium level, and IAD, BOS and DFW are the low level, with no study airports in the
negligible level. Most airports are in the low or negligible level clusters, as would be expected
because most airports are not currently congested or operating close to their capacity. The
airports not in the low or negligible tier are identified and basically conform to intuition.
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Figure 62: Clustering Results
Table 6: Clustering Results
Unconstrained
Cluster Mean Benefit Number of Total Benefit
($ Millions) Airports ($ Millions)
High (JFK, ATL) 1184 3 3551
Medium (LGA, ORD,
PHL) 344 7 2407
Low(BOS, DFW, IAD) 81 16 1294
Negligible (BOS/2) 16 9 141
Totals 35 7392
Practical
Cluster Mean Benefit Number of Total Benefit
($ Millions) Airports ($ Millions)
High (JFK, ATL) 757 3 2270
Medium (LGA, ORD,
PHL) 204 7 1425
Low(BOS, DFW, IAD) 61 16 978
Negligible (BOS/2) 16 9 141
Totals 35 4813
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Table 6 shows the resulting benefits estimates from the clustering approach. Most of the 27
airports not studied in the medium fidelity method fall in the Low or Negligible category. The
total unconstrained benefits (based on the average unconstrained benefits from the medium
fidelity method) are estimated to be $7.4 billion (1.0% of total fuel cost) over the 20 year study
period. The practical benefits are $4.8 billion (0.6 %). Just under half of the total benefits came
from the three ‘high-level” airports, ATL, EWR, and JFK.

5.5 CONCLUSIONS

Figure 63 shows that the three methods evaluated yielded results that varied substantially,
from $3 to 9 billion, or between 0.4% and 1.2% of the total fuel cost across the OEP 35, as
hypothesized (again, likely an overestimate of the percentage of total cost). The benefit estimate
is the total benefits for the 2010-2030 period summed across the OEP 35 airports. We can
attempt to explain the relative performance of the methods. The taxi delay scaling factor gave the
largest estimate of benefits because not all taxi delay can in fact be saved by SCM. Airports with
amounts of delay too small to be affected by SCM still receive benefits according to this model.
By subtracting 6 minutes from the taxi delay, this effect is somewhat mitigated, but it is not as
accurate as it could be because 6 minutes is not the optimal amount at every airport. The linear
regression predicts much lower benefits than any of the scaling methods. The results are also the
same for both the Practical and Unconstrained cases because physical constraints were not
known for all 35 airports. As a result, no capping of the benefits was performed. Because many
of the 8 study airports were predicted to approach or exceed their capacity in the medium fidelity
model, their benefits increased non-linearly beyond any level seen in the past. The linear model
could not capture this behavior and has correspondingly low benefits estimates. While a non-
linear model could be constructed, it is not immediately obvious what its form should be. Also,
given the low quality of the inputs it would probably not add any insights compared to the three
current methods. Finally, clustering is, at its heart, a more intelligent scaling method so it makes
sense that it is lower than the raw taxi delay but reasonably close to the modified taxi delay
method.

The results from these methods also provide insight into which variables should be
studied when choosing airports for further study or SCM implementation. While taxi delay is an
intuitive choice, we have shown that raw taxi delay can overestimate the possible benefits. In
addition, it is a hard metric to calculate in the future without detailed simulations. For long term
planning, it is better to examine the relationship between the predicted growth in demand and the
growth in capacity, as well as the current level of congestion (whether measured by taxi delay or
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% of capacity used). An airport such as LGA which is currently congested but is forecast to
remain at current traffic levels will receive fewer benefits when summed over the next 20 years

than an airport which is not as congested but is forecast to face greatly increased demand, such as
ATL.

Comparison of Methods 2010-2030
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Figure 63: Low Fidelity Methods
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6. CONCLUSIONS AND DISCUSSION

6.1 SUMMARY

Surface congestion management has already been shown to be an effective solution to the
problem of congestion and excess taxi times at airports. However, in order to justify its
expansion and inclusion in NextGen ATC systems, an analysis of the future benefits was
required. This thesis showed that the benefits of such a system would be substantial, between $3
and 9 billion over the next 20 years , or between 0.4% and 1.2% of the total fuel cost across the
OEP 35 (again, likely an overestimate of the percentage of total cost). In addition, several
airports currently have the potential for benefits on the level seen in the JFK field trial of $10-20
million per year just in fuel costs, up to 10-20 % of the fuel costs for taxiing. By examining the
predictors of congestion proposed in this thesis, policymakers can identify where to focus
resources for maximum effect.

Three different methods were presented in this thesis to develop these future year SCM
benefits estimates. The first, a high fidelity and highly specialized model of JFK airport in New
York City, examined the change in a traffic metric (takeoff queue) and its related impact on taxi-
out time to estimate the savings from implementing SCM. The model was based on ASDE-X
surveillance data as well as ASPM taxi time information and looked at several secondary effects
such as throughput, taxi in times, configuration-specific effects, and off-gate holding. The results
showed that even with a substantial number of off-gate holds the overall efficiency of SCM (hold
minutes to minutes of benefits) was still high, around 0.8 and resulted in expected benefits of
between $10 to 15 million annually.

This result informed the development of the medium fidelity approach to future benefits,
where 8 airports were studied (including JFK). Configuration-specific effects were still examined
as well as a lower fidelity method of examining the need for off gate holds, but other secondary
effects were not included. The use of saturation curves to approximate whatever type of metering
will be implemented in the future was validated by examining three field trials, each with a
different type of SCM. The use of simulations to calculate airport performance and taxi times as
well as the uncertainty in the future demand forecasts cause the fidelity of this method to be
lower.

The final method was actually several different low-fidelity methods for calculating future
benefits at many airports. While using any single method to perform a benefits analysis would
not be recommended, examining them together helps to define the possible range of benefits as
well as the uncertainty in an estimate of total benefits. In addition, particular airport
characteristics were identified as relatively well-correlated with benefits. While the medium and
high fidelity analyses have shown that airports are too complex to develop accurate overarching
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generalities, these characteristics are still useful for policymakers when trying to identify airports
to implement SCM. Taken together, the suite of multi-fidelity models has been seen to be an
effective method of undertaking a benefits assessment for applications such as SCM that can aid
policy-making decisions.

6.2 IMPLICATIONS FOR POLICYMAKERS

Estimating the benefits of implementing a new technology or method serves two purposes.
First, to decide whether or not it should be introduced and second, to determine where it should
be introduced to provide the most benefit. While the first question cannot be answered without a
corresponding analysis of the costs of implementation, this thesis has shown that the potential
benefits of SCM are substantial (of the order of $ billions across the NAS, around 1% of total
fuel costs and between 5 and 50% of taxi fuel costs, depending on the airport and year),
especially considering the relative lack of infrastructure changes and improvements necessary.
Depending on the deployment costs, this suggests SCM is likely to be an important contributor to
future air transportation system enhancement. Chapter 5 addressed the second question by
identifying variables and characteristics at airports that signal an opportunity for SCM to have a
substantial impact.

The complexity of airport operations ensures that there is not one single variable that can
accurately predict the usefulness of SCM at an airport. Taxi delay is an intuitive choice, but as
was previously explained, there is a certain amount of taxi delay that SCM will not affect, given
current operations. In addition, estimates of future delay at airports are highly uncertain. Instead,
taxi delay and taxi times should be used as one of several indicators for present-day analyses,
while future indicators could be the ratio of growth in demand to growth in capacity (with a
higher value indicating more congestion), the daily demand level, both present and future (with a
higher value indicating more absolute benefits because there are more flights that would be
affected), and the percent of capacity that is used (with a higher value indicating more
congestion). While JFK airport already has an SCM system in place, our analyses have shown
that EWR, SFO, LGA, PHL and ATL would see substantial benefits from an implementation in
the next 5 years, with the addition of ORD in the 10-20 year time frame. Depending on the cost
of implementation, many other airports would also have measurable benefits.

Policymakers should also consider other changes that may be necessary both to implement
SCM and to generally improve the performance of airports. The analysis of physical constraints
at airports (availability of gates to perform gate-holding at) assumed that gates were
interchangeable when in fact airlines “own” specific gates. If this policy could be changed so that
gates are a common resource it would better support SCM strategies as well as other potential
improvements such as accommodating new aircraft with increased wingspan.
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A related issue is that of gate space. As was shown in the medium fidelity method, several
of the study airports are forecast to face demand for gates that greatly exceeds the current
capacity. While some airports such as ORD have plans for such a contingency, other airports
such as JFK that are space constrained may not be able to accommodate all the holds SCM may
require (and possibly may not be able to accommodate the forecast demand). The resulting ‘cap’
on the demand has large impacts on both the benefits from SCM (and virtually every other
proposed improvement) and planning for the US air transportation system in general.
Policymakers should examine the implications of lower demand levels than currently forecast as
well as work to find ways to possibly accommodate increased demand at constrained airports.

SCM is just one of many improvements being considered for future implementation. Many
of the assumptions, considerations and limitations studied in this thesis are also relevant in
assessing other improvements. The most important is probably ensuring that the demand forecast
is as accurate as possible. As was shown in the medium and low fidelity analyses, the demand
forecast has a substantial impact on the benefits of SCM. While congestion is strongly tied to the
demand, almost every improvement such as choosing the correct runway configuration or
departure sequencing also depends on the demand. Accounting for some of the micro-level
constraints such as gate availability or redistribution of flights to off-peak times that are not
always considered when making system-wide forecasts is vital for when studying the benefits.

The other broadly applicable lesson from this thesis is that airports are unique. While we
presented several methods for generalizing the benefits, they have substantial uncertainty and
should be treated only as order-of-magnitude approaches. In addition, we examined several cases
of large changes in airport behavoior or performance, such as the variation of performance at
DFW where only a detailed investigation into airport specifics yielded the probable cause.
Obviously such a detailed analysis is not possible at every airport or for every study, but
generalization techniques should be applied with great care. The clustering performed in Chapter
5 is a good example. The clustering variable was picked to reflect SCM, and the resultant groups
are meaningful only in the SCM context. Trying to use them for studying departure sequencing,
for example, is not recommended.

6.3 UNCERTAINTY

As might be expected in systems as complex and dynamic as airports, the uncertainty in our
predictions of SCM benefits is high. Even in studies using historical operational data, such as the
high fidelity analysis of JFK, there are many sources of uncertainty. Some were explicitly
assessed, such as the range of possible gate-to-spot correction factors (5-9 minutes). Others, such
as the precise location of off-gate holds and the interaction between SCM, maintenance, ground
holds, EDCT’s, and other causes of ground delay were not addressed. In the future analyses, the
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inputs alone have large uncertainties. The demand for air travel is forecast to steadily rise over
the next 20 years, but history has shown that constant growth is rarely the case. Recessions, wars,
terrorist events, fuel prices and more all can have negative impacts on the demand. Economic
booms, revolutionary technology, and low fuel prices could all increase the demand beyond the
forecast. Airports could decide that a planned expansion could cost too much or that a new
runway is suddenly necessary, throwing off capacity estimates. Changes in regulations,
procedures, or fleet mix could lead to substantial changes in airport performance as was
hypothesized to have happened at DFW.

The source of uncertainty with the largest effect on benefits is the future demand. The
current forecasts do not consider physical constraints and have optimistic capacity forecasts. As a
result, the future demand will most likely be lower than these forecasts. All of these issues need
to be explicitly identified so their implications can be explicitly considered when the results are
being interpreted. A very pessimistic lower bound on benefits can be calculated by assuming that
demand remains at 2010 levels. In this case, the 8 study airports from the medium fidelity
method would have the $38.4 million in benefits from 2010 in each subsequent year to give $806
million over the period from 2010 to 2030, 0.1% of total fuel costs. This is substantially smaller
than the $2.79 billion in benefits in practical benefits previously estimated.

6.4 FUTURE WORK

There are several areas where future work would be useful. Developing a forecast of
demand that explicitly accounts for more of the key actual or expected constraints within the
system would greatly decrease the uncertainty in the analysis, but would require a more detailed
set of models. In addition, the traffic patterns may change as an airport nears both its runway and
terminal capacity. It was shown in Chapter 4 that the model currently scales traffic each year.
Instead, traffic may move to lower-demand periods to try to escape congestion. Changing the
forecast model, however, is likely an enormous task by itself. Another possibility would be to
examine multiple forecasts (low, medium, high) to better develop a range of estimates. A human-
in-the-loop simulation of future traffic scenarios would help to validate the estimates of
congestion as well as provide an estimate of the benefits possible from SCM. This would be
especially valuable given that many airports will face levels of traffic that have never been seen
before. Observing how controllers react to these traffic levels would be very helpful in predicting
future performance. More work could also be done on comparing the different methods of SCM;
which methods work best at which airports, and how the levels of benefits compare across
methods in similar situations. Finally, further study on airports where the performance has
changed substantially (DFW) or is forecast to change (ORD) would be informative. Interviews
with controllers, planners, and other airport staff would be helpful in building a more complete
model of airport performance both in the past and the future.
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APPENDIX A: ADDITIONAL INFORMATION

Random Forest Variables

Variable Name

Description

Source

Mean(DepDemand)

Mean(depDemand) - Mean
Departure Demand (Yearly, by
configuration, per hour)

ASPM - APM

Mean(arrDemand)

Mean(arrDemand) - Mean
Arrival Demand (Yearly, by
configuration, per hour)

ASPM - APM

90%DepDemand

90%DepDemand - 90th
percentile Departure Demand
(Yearly, by configuration, per
hour)

ASPM - APM

90%ArrDemand

90%ArrDemand - 90th
percentile Arrival Demand
(Yearly, by configuration, per
hour)

ASPM - APM

Mean(depCap)

Mean(depCap) - Mean
Departure Capacity (Yearly,
by configuration, per hour)

ASPM - APM

mean(arrCap)

mean(arrCap) - Mean Arrival
Capacity( Yearly, by
configuration, per hour)

ASPM - APM

90%DepCap

90%DepCap - 90th percentile
Departure Capacity (Yearly,
by configuration, per hour)

ASPM - APM

90%ArrCap

90%ArrCap - 90th percentile
Arrival Capacity (Yearly, by
configuration, per hour)

ASPM - APM

Used

Used - % of Configuration

ASPM - APM
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Capacity Used (Yearly, by

configuration)
# of Arrival # of Arrival Runways (By
Runways Configuration) Derived from Configuration

# of Departure

# of Departure Runways (By

Runways configuration) Derived from Configuration
# of Unique # of Unique Departure
Departure Runways | Runways (By configuration) Derived from Configuration
# of Unique # of Unique Runways (By
Runways Configuration) Derived from Configuration
Area of Airport Area of Airport (acres) Wikipedia / Airport Websites
Miles of Taxiway | Miles of Taxiway (total) Wikipedia / Airport Websites
Miles of Runway miles of Runway (total) Wikipedia / Airport Websites
Terminals Terminals Wikipedia / Airport Websites
Traffic - Total traffic at the
Traffic airport (Yearly) ASPM-APM
% Capacity Used - % of
%Capacity used Airport capacity used (Yearly) | ASPM-APM
Gates # of Gates Wikipedia / Airport Websites
From Simaiakis code - remove top 2.5%
of flights (by N), find the N value where
Saturation point of the throughput reaches 95% of
Nstar Configuration maximum throughput
Saturation Throughput -
ThS throughput at saturation point | From Simaiakis code
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Variation of benefits with N control

5 ATL - Effects of variation of N Control
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Annual Benefits (Hours of Taxi Time Reduction)

Annual Benefits (Hours of Taxi Time Reduction)

4 DFW - Effects of variation of N Control
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Annual Benefits (Hours of Taxi Time Reduction)

Annual Benefits (Hours of Taxi Time Reduction)
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APPENDIX B: STATISTICAL TESTS

Several statistical tests were conducted to show the validity of using a linear regression model. The
assumptions that were checked were for constancy of error variance (homoscedasticity), normality,
collinearity, and the appropriateness of the model (whether a better form would fit the data, whether
variables could be being omitted).

Residuals
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Figure 64: Residual Plot, Initial Model

Figure 64 shows the residuals from the initial model (using raw benefits as the dependent variable).
When the residuals were plotted, the magnitude increased with the predicted value, showing
heteroscedasticity. To compensate for this, the dependent variable was transformed by taking the square
root.
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Residuals
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Figure 65: Residual plot, transformed model

While this only moderately improved the situation, the adjusted R* value did increase from .666 to
726, indicating a better fit to the data. The Breusch-Pagan test was run to test for constancy of the error
SSR* (SSEY . .
T +|——] . SSR* is the regression sum of squares when
n

regressing the squared residual on an individual predictor variable. We run three tests, one for each
variable and compare to the critical value. At an a level of .05, the critical value is %*(0.95;1) = 3.84.

variance where the test statistic is X;P =

Table 7: Breusch-Pagan test values

SSR* %8P
Pushbacks 51035 0.248
Pushbacks in Congestion 470882 2.287
Periods with 100% Usage 1873903 9.100
SSE 28237

Ho: y1 = 0 (There is no dependence on X; of the squared residual)
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H,: v, does not equal 0 (The squared residual does depend on Xj)
If %sp > %%(0.95;1) conclude H,. Else conclude H,

We can conclude Hy only for Pushbacks and Pushbacks in Congestion (P values of 0.62 and 0.13),
but we conclude H, for 100% Usage (P = 0.003). While this is not optimal, the model is not intended to
provide accurate forecasts, only a general estimate and this is therefore acceptable.

In addition, a normal probability plot was made to assess whether the error terms were normally
distributed. The coefficient of correlation was found to be r = .994. The critical value for n = 88 is 0.986,
so there is support for our conclusion that the errors are distributed normally.

Normal Probability Plot
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Figure 66: Normal Probability Plot
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Residuals by Airport
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Figure 67: Residuals categorized by airport

When the residuals are broken down by airport, it is obvious that there are strong airport-specific effects,
important variables that have been left out, or both. However, because extensive data is available only for
these 8 airports, airport-specific effects cannot be quantified. While in general it seems like larger, more
congested airports (JFK, ORD, PHL) are underpredicted (positive residuals), there are exceptions like
LGA. There are also important variables that could be included to improve the results, such as taxi delay
or average taxi time, but the model is limited to variables available in the future. Finally, there are
definitely issues with collinearity among the independent variable, as shown in Figure 68, because they
are all based on the same metrics, implying that using the model for predictive purposes may perform
poorly. A formal method of detecting m get liulticollinearity is the Variance Inflation Factor (VIF). This
can be calculated for each variable and describes how an independent variable is related to the other

1

independent variables by the equation VIF, = T_Rr?
- N
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Table 8: Variance Inflation Factors

VIF
Pushbacks 3.61
Pushbacks in
Congestion 6.33
Periods with
100% Usage 3.32

Typically values over 10 indicate severe multicollinearity. While the VIF here are relatively high, they do
not exceed 10 and multicollinearity is not considered further. There are interesting relationships that
appear to be separated based on the number of runways in use (1 or more than 1) but because this is not
an experiment where the conditions can be controlled and that almost all variables at an airport are inter-
related, not much can be done about this. Given these restrictions, the large uncertainty present in the
inputs, and the results from the Breusch-Pagan and normality tests, the model was deemed to be sufficient
for the purposes of this thesis.
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Figure 68: Scatter plots of Variables
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Table 9: Multiple Regression Results

Thousand Million $ Millions
Hours Taxi Gallons
Time
Reduction
ATL 413 103 251
BOS 284 62 151
BWI 142 36 88
CLE 7 1 3
CLT 227 41 101
CvG 5 1 )
DCA 60 12 28
DEN 108 23 55
DFW 106 27 66
DTW 70 15 37
EWR 107 27 64
FLL 34 8 20
HNL 6 2 4
IAD 50 10 24
IAH 102 19 47
JFK 655 235 572
LAS 55 14 35
LAX 203 63 153
LGA 397 79 191
MCO 32 9 2
MDW 30 = 17
MEM 106 32 e
MIA 39 13 33
MSP 91 19 46
ORD 250 61 148
PDX 19 4 10
PHL 264 53 129
PHX 45 1 26
PIT ) 0 1
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SAN 221 55 133
SEA 56 14 35
SFO 371 114 276
SLC 44 8 20
STL 6 1 3
TPA 9 2 5
Total 4615 1182 2872

Table 10: Airport Clusters
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