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ABSTRACT 

Air traffic is expected to continue to grow in the future and improved methods for dealing 
with the increased demand on the system need to be designed and implemented. One method for 
reducing surface congestion at airports is surface congestion management (SCM) (also 
commonly called departure queue management or departure metering). The concept generally 
involves holding aircraft at the gate or in the ramp area instead of releasing them onto the active 
movement area during periods of high departure demand.  

 The FAA is planning to implement surface congestion management at airports where the 
cost/benefit analysis is favorable. Therefore, an estimate of the benefits of implementing surface 
congestion management in the future is necessary. To overcome the uncertainties and difficulties 
inherent in forecasting, this thesis adopts a multi-fidelity modeling approach and proposes three 
methods for estimating the benefits of SCM where the higher fidelity models study a subset of 
airports to inform and validate the lower fidelity models used on the entire set of airports. In the 
first model, a detailed analysis of a field trial of SCM at JFK airport is conducted using 
operational data. The second model estimates the benefits of implementing SCM at 8 major US 
airports from 2010 to 2030 by simulating congestion and performance levels through taxi time 
estimation. The last model explores several options for generalizing the results to 35 airports in 
the US. The results are also validated against historical benefits estimates as well as field trials of 
SCM where available. The findings show that SCM will result in fuel savings on the order of 1% 
of the total fuel burn in all stages of flight and between 5% and 45% of taxi-out fuel burn, 
depending on the airport. 
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1. INTRODUCTION 1 

Air traffic is expected to continue to grow in the future and improved methods for dealing 2 
with the increased demand on the system need to be designed and implemented in all phases of 3 
flight. The airport surface is one area where system inefficiencies are especially evident in the 4 
form of congestion: at the OEP 35 in the United States in 2010 there were over 48 million 5 
minutes of departure taxi delay [1] (i.e., time over the unimpeded time), translating to over 194 6 
million gallons of excess fuel burn. One approach to mitigate the resulting monetary and 7 
environmental impacts is to employ surface congestion management techniques (also known as 8 
departure queue management or departure metering). Understanding the potential benefits of 9 
these techniques is important to help prioritize them relative to other capabilities which could be 10 
developed to help address future air transportation system needs. However, these benefits are 11 
difficult to calculate because the performance (and therefore congestion) of an airport is 12 
dependent on a variety of factors such as capacity, weather, demand, configuration, and 13 
controller performance, among others. The work described in this thesis develops methodologies 14 
and applies them across a range of study airports to assess the potential benefits of surface 15 
congestion management techniques under current and future operations to help inform decision- 16 
making for future air transportation system evolution.  17 

 18 

1.1 SURFACE CONGESTION AND ITS IMPACTS 19 
 20 

Every airport can be considered to have a limit to the number of aircraft it can efficiently 21 
handle in a given time period as a function of characteristics such as configuration, weather 22 
conditions and demand. When demand increases above the level of the airport’s capacity at a 23 
given time, congestion starts to grow. There are methods for managing congestion, such as the 24 
slot-control system in place in Europe [2]. This system allocates a certain number of departure 25 
slots per hour to airlines and forbids the scheduling of additional flights beyond the amount of 26 
slots. The number of slots is tied to the bad-weather IMC capacity of the airport. While 27 
congestion cannot be entirely eliminated, this system does substantially reduce it. However, the 28 
US has no such system (excepting the New York area airports and Washington DC Reagan at 29 
some times), meaning that schedules are often created by airlines assuming best-case VMC, 30 
resulting in significant congestion when capacity is lower (such as during bad weather), which 31 
must then be managed in “real time”. The FAA projection of continued growth in demand would 32 
result in unsustainable levels of delay and congestion without improvements to the existing 33 
system. Surface congestion negatively impacts airports in several ways. It is a major source of 34 
delay, which can propagate from one airport through the entire system. It is environmentally and 35 
fiscally wasteful, causing excess fuel burn, pollution, and delay costs to airlines, passengers and 36 
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local/national communities impacted by the airport’s activities. It also results in an increased 37 
workload on air traffic controllers because there are more flights actively taxiing. While 38 
eliminating all of these impacts is not realistic, SCM is designed to mitigate many of them. 39 

 Figure 1 shows a particular airport with historically high delays, John F. Kennedy Airport 40 
in New York, and how both the average taxi time and number of flights with taxi times greater 41 
than 40 minutes are strongly correlated with demand levels. In addition, it shows how demand 42 
consistently rose from 2000 until 2008, the start of the global recession. The forecast demand 43 
until 2030 is also shown, and the peak level of 2007 is quickly passed.   44 

 45 

Figure 1: JFK Behavior 46 

 47 

Figure 2 shows that these trends are not limited to a few highly congested airports but are 48 
present across the OEP 35 airports. By 2030 the FAA projects a increase in air traffic of 80% 49 
over 2010 levels at the OEP 35 airports [3].  While a much smaller proportion of flights are 50 
operating in congestion (which can be viewed as the number of flights with excessive taxi times, 51 
and multiplied by 10 here for better visibility) than at JFK, congestion grows quickly with a 52 
relatively small increase in demand because many of the major US airports are already operating 53 
close to their capacity. 54 
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 55 

Figure 2: Relationship between Demand and Taxi Time for OEP 35 Airports 56 

 57 

The relationship between demand, capacity and congestion is shown in Figure 3. The figure 58 
demonstrates how delay varies with ρ, which is the ratio between demand and capacity. As ρ 59 
approaches 1 (for an extended period of time), delay increases nonlinearly [2] so that an 60 
incremental increase in demand results in a large increase in delay. This relationship will become 61 
more and more relevant given the constant increase in demand shown in Figure 2 in the future. 62 
The forecast demand is larger than any seen in the last 10 years and indicates that congestion is a 63 
problem that will need to be addressed at a system level. One of the questions that this thesis 64 
attempts to answer is what that increase in demand will mean for taxi times and levels of 65 
congestion with and without future mitigations such as surface congestion management. 66 
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 67 

Figure 3: Relationship between Demand, Capacity and Delay[3] 68 

 69 

1.2 SURFACE CONGESTION MANAGEMENT 70 
 71 

Surface congestion management is a tool that can reduce some of the impacts of congestion 72 
such as fuel burn and emissions by reducing the time flights spend taxiing with their engines on. 73 
Additionally, although it reduces congestion it is designed to keep the airport operating at its 74 
maximum capacity during periods of high demand. In generic terms, SCM achieves this by 75 
identifying an efficiency threshold in terms of number of flights that the airport can efficiently 76 
handle at one time. If the airport is below this threshold, no additional management is needed. 77 
When the number of flights seeking to depart exceeds this threshold, excess flights are not 78 
allowed to push back from the gate and instead are held at the gate or some other appropriate 79 
location with engines off until they can be released to the departure runway more efficiently, as 80 
shown in Figure 4. By restricting the number of active flights in this way, "engines-on" taxi-out 81 
time, fuel burn and emissions can be reduced (as long as other operational requirements are still 82 
met which can vary by airport).  83 
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 84 

Figure 4: Surface Congestion Management Concept 85 

 86 

Note that this is largely simply shifting the delay from being incurred on the taxiways with 87 
engines running, back to the gate (or other designated hold location) where the engines can be 88 
turned off. However, in addition, it is possible that SCM could lead to some net delay reduction 89 
as well at severely congested airports because of the reduction in controller and pilot workload as 90 
well as the non-linear relationships in congestion between taxi time, throughput and traffic 91 
levels. While these effects are not studied in this thesis they would be a good subject for future 92 
work. 93 

A basic concept used in this thesis to quantify congestion will now be introduced. A useful 94 
way of visualizing the performance of the airport as a function of the surface traffic is the 95 
throughput saturation curve, developed by Shumsky [10] and Pujet [11], and illustrated in 96 
Figure 5. It represents the departure rate as a function of an appropriate surface metric (such as 97 
the number of aircraft taxiing out or in the departure queue). Different traffic metrics might be 98 
appropriate for different airports, but typically for low levels of surface traffic, as more departing 99 
aircraft are pushed back onto the surface, the departure rate increases as more aircraft are 100 
available at the runways.  However, as surface traffic increases further, the capacity limit of the 101 
airport is approached and the departure rate eventually saturates. The saturation throughput is not 102 
the maximum throughput observed because saturation curves are often not well-behaved and to 103 
increase the throughput from the saturation throughput to the maximum usually requires a 104 
disproportionate increase in congestion. 105 
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 106 

 107 

Figure 5: Airport Saturation Curve 108 

 109 

At the saturation point, any additional increase in surface traffic simply adds to congestion 110 
and does not achieve any substantial increase in the departure rate (indeed, if surface traffic gets 111 
very high, the departure rate can decrease due to gridlock). Archived operational data can be 112 
used to determine saturation curves for different airports under different configurations, weather 113 
and traffic characteristics. These curves can then be used as a basis for when to hold aircraft from 114 
taxiing when the airport is expected to operate above some control point on the curve. Typically 115 
the control point would be slightly higher than the expected saturation point so as to avoid 116 
risking loss in departure rate, but not so large as to lose significant benefits from the control 117 
strategy. The impacts of SCM  can then be assessed in terms of the performance implications 118 
(e.g., taxi time and fuel burn) from moving the operating point of the airport from above the 119 
control point back to the point, as shown in Figure 5. Saturation curves will be used for many of 120 
the analyses in this thesis and some key terms will be defined here (shown in corresponding 121 
colors in Figure 5): 122 

Number on Surface (N(t)) – Traffic Metric 123 

N* - Saturation point 124 

NCtl – Control Point 125 

Saturation Throughput (ThS) –Departure rate at N* 126 

 127 

 128 
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1.3 TYPES OF SURFACE CONGESTION MANAGEMENT 129 
 130 

Although the principles of surface congestion management as described above are 131 
generally applicable across congested airports, the specifics of implementation at any given 132 
airport (e.g., how to determine when flights need to be held, coordinate which specific flights to 133 
then hold, where to hold them and what level of airline interaction is needed) depends on the 134 
airport/traffic characteristics and the level of sophistication desired. To illustrate this point, 135 
several specific implementations of surface congestion management have recently been tested in 136 
field trials or in simulation environments, results from which will be described in detail in 137 
Chapter 2. 138 

Pushback rate control (or N-Control) has been tested at Boston Logan Airport which 139 
recommends a general pushback rate to controllers to limit the number of aircraft on the surface 140 
at peak times [4]. The pushback rate is explicitly informed by N(t); hence the alternative name of 141 
N-Control. Specifically, N(t) is monitored in real time (and projected into the near future) and 142 
pushbacks are suspended if N(t) rises or is expected to rise over a threshold value. The method 143 
was adapted slightly to account for controller preferences by assigning suggested pushback rates 144 
in 15 minute intervals.  145 

 CDQM, tested at Memphis airport, allocates departure slots to different airlines at peak 146 
times to manage average departure queue delay to below a control value, and then the airlines 147 
determine which flights go into which allocated slot [5]. Airlines are allocated slots according to 148 
ration-by-schedule, which allows flexibility and prioritization of flights.  149 

 Another class of approach (subsequently referred to as the PASSUR method, because they 150 
have implemented such an approach at JFK airport) recommends when specific flights should 151 
leave from gate or spot to manage surface congestion [6]: this affords greatest control (and hence 152 
potentially the greatest benefits) but requires significant real-time airline coordination to know 153 
when flights want to push-back, as well as communication of, and compliance to, allocated slot 154 
times which may be later than the desired push time in order to better manage the demand when 155 
it exceeds the capacity of the airport. 156 

These three approaches have an increasing level of complexity and correspondingly have 157 
an increasing prediction horizon, with pushback rate control issuing advisories for only the next 158 
time period while the PASSUR method sets initial pushback times a day in advance (although 159 
these times are modified through the day as circumstances dictate). Despite these differences 160 
they can all be abstracted as a form of throughput saturation curve because they all seek to 161 
restrict the amount of planes actively taxiing (or in physical queues) to a control value, implicitly 162 
or explicitly. While CDQM explicitly controls the delay time, this can be related to first order to 163 
the length of the departure queue. Metering individual flights is more complicated, but 164 
essentially restricts the size of the queue to a smaller amount. At its root, any implementation of 165 
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SCM aims to reduce taxi time as much as possible while keeping throughput at its peak value. 166 
Saturation curves are a way of determining the maximum number of flights that can be held off 167 
the surface before throughput is substantially affected, which is the same result because taxi time 168 
can be related to the number of actively taxiing flights.  169 

While different airports might require different specific implementations of SCM, we 170 
assert that saturation curves can provide a first-order benefits estimate for any airport because 171 
all types of metering can be idealized as variations on N-control. 172 

To provide validation for this assertion, the results from field trials of each of the 173 
approaches will be examined and compared to the results obtained from the saturation curve 174 
method that is being used in this work. 175 

 176 

1.4 NEED FOR BENEFITS ASSESSMENTS 177 
 178 

The reason that we are calculating these benefits (and characterizing different types of 179 
metering as N-Control) is that there is a strong need to identify the most cost-effective options 180 
for dealing with increased demand in the future. There are many possible improvements such as 181 
SCM to current air traffic management technologies and techniques that are required to move 182 
toward the next generation air transportation system (NextGen). Other upgrades include 183 
controllers being supplied with advanced surveillance and flight data management display 184 
systems that will allow them to maintain an integrated picture of the current situation. 185 
Controllers and supervisors may also be provided with a suite of Decision Support Tools (of 186 
which an SCM tool could be one element) that provide critical information for assistance in 187 
tactical and strategic decision-making. In addition, NextGen capabilities will facilitate data 188 
exchange between controllers within a tower facility, between ATC facilities, and between 189 
stakeholders such as airlines.  190 

The capabilities provided by these systems should enable multiple system benefits, such as 191 
reduced surface delay, taxi time and fuel burn (with associated improved operational and 192 
environmental performance); better performance during severe weather and other off-nominal 193 
conditions; improved usability and situational awareness; and enhanced safety. However, in 194 
order to assess the viability of specific tools for NAS-wide deployment it is necessary to 195 
undertake a cost-benefit analysis. This includes estimating the likely costs of deployment at 196 
appropriate locations relative to the potential benefits this deployment will bring over several 197 
decades of operation. The generation of such data is also highly complementary to the 198 
prototyping effort that is often conducted as part of advanced system deployment. For example, 199 
the process by which benefits are identified necessarily requires an understanding of the 200 
inefficiencies present in the current baseline ATC system. Understanding the causality of these 201 
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inefficiencies can help identify what capabilities are needed to address them, and therefore, help 202 
guide priorities for the prototype system. 203 

Estimating the future benefits of any system is at best an uncertain task. SCM presents 204 
several challenges in particular: identifying a methodology that is robust enough to accommodate 205 
the many changes in airport behavior and still be valid into the future (saturation curves), 206 
determining how saturation curves change over time because they can vary based on demand 207 
levels and airport usage, and accurately predicting the level of congestion (which is inherently 208 
uncertain) are all major issues that had to be overcome. In addition, the forecasts upon which the 209 
assessment is based have their own uncertainty.   210 

 211 

1.5 SUMMARY AND ORGANIZATION OF THE THESIS 212 
  213 

In order to better understand the role surface congestion management can play in the air 214 
transportation system and to make the case for its deployment at different airports, a benefits 215 
assessment is required. Current benefits assessments are restricted to the present-day, so a new 216 
methodology for future benefits assessments is needed to assist with decision-making regarding 217 
what systems to develop and deploy in the air transportation system over the next several 218 
decades. Recognizing the need for a system-wide benefits estimate of SCM and that airports have 219 
unique and distinct operating characteristics that make it difficult to develop a generalizable 220 
method, this work adopts a multi-fidelity modeling approach where the higher fidelity models at 221 
a subset of airports will inform and validate the lower fidelity models which are then applied 222 
more generally.  This approach is depicted in Figure 6.  223 
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 224 

Figure 6: Multi-Fidelity Modeling Approach 225 

 226 

This thesis will: 227 

• Examine previous benefits assessment methodologies and field trials for current day 228 
operations in Chapter 2. 229 

• Present a high fidelity analysis for estimating the benefits of SCM from a 6 month field 230 
trial at JFK airport in Chapter 3 for comparison to other field trials and to aid in 231 
construction of medium and low fidelity models. 232 

• In Chapter 4, present a medium fidelity methodology for estimating future performance 233 
(as measured by throughput) and congestion at several key airports and derive benefits 234 
estimates. Additionally, examine impact of key operational constraints (in the form of 235 
gate availability) on the benefits from SCM and validate results by comparing to field 236 
trials and the high-fidelity method. 237 



 

 21 

• In Chapter 5, present several low fidelity methodologies for estimating the benefits of 238 
SCM across the NAS in the future, validated by the results from the 8 medium-fidelity 239 
study airports. Compare and contrast methodologies and benefits estimates and draw 240 
insights on key variables that identify airports that have large possible benefits from 241 
SCM. 242 

• In Chapter 6, review key results and discuss the implications for policy makers. 243 

  244 

 245 
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2. PREVIOUS WORK 246 

2.1 BACKGROUND 247 

Benefits analyses in the literature are mainly focused on present-day operations which shed 248 
little light in terms of benefits assessment for future system deployments: benefits assessments 249 
under future operations are critical to this process. Several methodologies have been proposed 250 
for calculating the effect of metering on current-day airports using operational data such as 251 
ASPM or ASDE-X. In addition, three field trials have been performed in Boston, New York, and 252 
Memphis using separate methodologies. This chapter examines the different methodologies and 253 
assesses their applicability for estimating future benefits. In addition, the benefits shown in the 254 
field trials are discussed and compared to a theoretical approach using saturation curves. 255 

 256 

2.2 THEORETICAL MODELS AND SIMULATIONS 257 
 258 

Several distinct methods for calculating the benefits of SCM have appeared in the 259 
literature. The first is a method that will be used in this paper, developed by Simaiakis [9], Pujet 260 
[10] and Shumsky [11]. Linking the number of aircraft on the surface N(t) with the departure 261 
throughput of the same time period results in a relationship that predicts when an airport will be 262 
in congestion. The benefits of performing N-control metering can be calculated by comparing the 263 
taxi times in congestion and at saturation as was explained previously. We claim that this method 264 
can also be used to give a first-order estimate of any type of metering.  265 

CDQM allows for a simple analysis of benefits because it is controlling to a target amount 266 
of queue delay. In [5], the benefits of using CDQM at Memphis for an entire year are calculated 267 
by assuming that taxi times greater than the sum of the average unimpeded time plus the target 268 
delay are excess taxi times that would be reduced through CDQM. While this is simple on the 269 
surface to calculate, there are issues that make it more complex when expanded to other airports, 270 
such as the proper unimpeded time to use (can vary with configuration and gate location) and the 271 
target delay (unique to an airport / configuration and tailored to ensure maximum throughput). In 272 
addition, if the delay is high enough (or if the airport geometry requires runway crossings or 273 
queues besides the departure queue) the assumption of unimpeded taxi to the departure queue 274 
might be not accurate. Finally, the ASPM database does not provide a breakdown of taxi time, 275 
making it difficult to determine the cause of high taxi times. Two examples of high taxi times not 276 
caused by congestion are de-icing airplanes during the winter and flights receiving ground holds 277 
due to weather at their destination. Using the saturation curve approach reduces the impact of 278 
such flights because it looks at average taxi times at the saturation point and in congestion. 279 
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Because operations like de-icing take place during both low and high periods of demand, the 280 
impact on the average taxi time is spread equally to the congestion average and the saturation 281 
average. The benefits then do not depend on such occurences. 282 

The CDQM approach of setting a target delay can also be thought of as a derivative of the 283 
N-control method. The target delay should ideally be the minimum time above the unimpeded 284 
time that is necessary to maintain maximum throughput. As was mentioned previously, some 285 
queues (and therefore taxi times greater than unimpeded times) are necessary to avoid the 286 
runway being starved. But this target delay (plus the unimpeded time) should be the taxi time at 287 
N*. Given this, the approach becomes identical to the saturation curve method. However, 288 
calculating the optimal target delay is not as straightforward as calculating N*. 289 

The third method was developed primarily by researchers from Sensis Corporation (with 290 
input from the FAA) [13,14,15] as a way to measure the theoretical benefits from implementing 291 
a departure management tool (DMAN). [12] was an analysis of ASDE-X surveillance data from 292 
2008-9 at JFK airport. By assuming that the average time spent per unit length in the ‘departure 293 
queue’ (defined as the physical queue for the departure runway) does not vary with the length of 294 
the queue, the benefits of restricting the queue to a given size can be calculated by subtracting 295 
the idealized taxi time (unimpeded + time spent in a short queue) from the total taxi time. This 296 
assumes that aside from the time spent in the departure queue there is no other source of taxi 297 
delay. The benefits were calculated for departure queues controlled to lengths of 5 and 10, 298 
corresponding to aggressive and conservative values.  299 

In [13] a taxi simulation was developed based on ASDE-X data that allowed for a version 300 
of DMAN to be directly tested. Two scenarios were simulated, one with DMAN implemented 301 
and the other for operations as currently run (FCFS). Because the simulation allows all other 302 
factors to be kept the same, the differences in taxi times between the two scenarios are the 303 
benefits from implementing DMAN. Their proposed implementation (DMAN) of SCM includes 304 
resequencing departing flights to improve throughput so the benefits are not quite comparable to 305 
the method of Simaiakis. In addition, their methodology is based on limiting the physical 306 
departure queue at the runway instead of the overall number on surface. They used ASDE-X 307 
surveillance data to calibrate their simulation, which models the motion of each flight in the 308 
movement area with interactions with other flights, as well as forming queues if necessary. This 309 
method has the benefit of transparency and easy interpretability: because the same day is being 310 
simulated with and without SCM, one can be surer of the effects of SCM. The difficulty in 311 
extending this method to the future is the lack of availability of ASDE-X data at all airports, the 312 
presumed customization necessary to run the simulation at multiple airports, and possibly time 313 
constraints. In [13] Stroiney et al. examined one day at PHL and JFK; to obtain a more robust 314 
estimate across different configurations and weather conditions a larger sample size would be 315 
desired. In [14] Stroiney and Levy extend their analysis of the benefits to multiple airports as 316 
well as account for gate constraints by examining the same day as [13] at JFK. Their conclusion 317 
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at JFK was that limits on gate space result in a small and ultimately negligible decrease in 318 
benefits from SCM. To extend their analysis to multiple airports, they observed that, akin to the 319 
saturation curve method, SCM benefits are roughly equal to the amount of time spent by flights 320 
taxiing when the departure queue is above its target length. The benefits are then obtainable by 321 
observing the departure queue length over a time period. This method is only feasible with 322 
recorded surveillance data, making future prediction impossible.  323 

To add to these methods, we will propose a new method in Chapter 3 that is based on 324 
observations of actual metering operations. ASPM and ASDE-X taxi time data is compared to 325 
the schedule of gate holds performed to obtain the benefits of the field trial conducted by 326 
PASSUR at JFK in 2010. The first method will also be used as a validation in Chapter 3, as well 327 
as the main element of the analysis in Chapter 4.  328 

Although beyond the scope of the current study, there are also longer-term NextGen tools 329 
under development that go a step further and aim to reduce overall delay by combining SCM 330 
with wider airport surface optimization decisions (such as configuration selection, aircraft 331 
sequencing and taxi routing). For example, in terms of sequence optimization, by ordering flights 332 
into an optimized queue based on the size of the aircraft, throughput can be increased due to the 333 
different separation standards between differently sized aircraft. These advanced concepts 334 
assume that taxi times can be accurately estimated. With a predetermined sequence and 335 
knowledge of the taxi time of a given flight, pushback times can be given to every flight so that it 336 
can travel unimpeded to the runway and immediately take off. Examples of this include CDM in 337 
Europe [7] and SARDA (NASA) [8].  338 

 339 

2.3 FIELD TRIAL STUDIES 340 
 341 

We will now examine the results from several field trials in detail both to gain insight on 342 
the mechanics behind SCM as well as to use for validation of our analyses. Because the results 343 
from BOS are presented for portions of specific days, we also develop an extrapolation technique 344 
that yields an annual estimate of benefits from SCM for better comparison with other methods. 345 

  346 

2.3.1 Boston Logan (BOS): N-Control  347 

Background 348 

Simaiakis et al. [4] demonstrated a different method of SCM at Boston Logan in 2010, 349 
Pushback Rate Control (also referred to as N-Control). Pushback rate control follows a simple 350 
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heuristic: if the total number of aircraft taxiing to a departure runway (N) exceeds a control value 351 
(NCtl), further pushbacks are stopped until N is below the threshold. This method is informed by 352 
the saturation curves mentioned earlier in this paper.  353 

The specifics of the strategy used by Simaiakis et al.were developed through discussions 354 
with the BOS facility as well as study of historical data from the airport. Pushback rates were 355 
suggested to controllers in 15 minute intervals based on the current level of congestion on the 356 
surface, allowing some variation between no restrictions and a full stop on pushbacks. Due to the 357 
complex nature of the runway layout at BOS (see Figure 7), there are many different 358 
configurations in use. Because the parameters (such as N* and throughput) that affect the SCM 359 
strategy vary depending on the configuration, only the 3 most common configurations 360 
(accounting for 70% of use) were used. In addition, IMC conditions were not considered because 361 
of separate procedures that are followed at BOS during such periods.  362 

 363 

Figure 7: BOS airport diagram, showing alignment of runways [25] 364 

 365 



 

 26 

A diagram showing the determination of the pushback rate is in Figure 8. The saturation 369 
curve (top) is used to determine both the desired control value as well as the estimated 370 
throughput for the next period. The estimated throughput is subtracted from the current N value 371 
to estimate N after the next period. This can be compared to the control value to derive the 372 
recommended pushback rate for the current period. 373 

Results 374 

The field trial was conducted over a month from August 23 to September 24, 2010 on 375 
select days during the evening departure push period (4-8PM). There were a total of over 37 376 
hours where metering was in effect, and 24 hours of test periods with significant gate holds. 377 
Furthermore, it was found that one configuration experienced almost no metering (4L, 4R | 4L, 378 
4R, 9) with the other two main configurations (27, 22L |  22R and 27, 32 | 33L)  receiving the 379 
bulk of the congestion. 380 

An important assumption made in the study was that each minute of gate hold represented a 381 
minute of saved active taxi time. While this was shown in section 3.2.4 to not necessarily be true 382 
at JFK, it is valid here because of the short duration of the holds performed at BOS. Simaiakis et 383 
al. [4] reported a total of 247 held flights over the 8 days with significant amounts of gate holds 384 
at an average hold time of 4.35 minutes, yielding a total of 1075 minutes of gate hold (and saved 385 
taxi time).  386 

 387 

Figure 8: Schematic of pushback rate calculation [4] 
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Extrapolation to Annual Benefits 388 

The results from the BOS field trial are not easily comparable to the results from other field 389 
trials as well as the results expected from analysis of ASPM data because metering was not in 390 
effect every day in the month or even for the entire day on the selected days. In order to use the 391 
BOS field trial as validation for this thesis, an extrapolation to yearly benefits was needed. 392 
Therefore, we extrapolate the results presented by Simaiakis et al. [4] to provide an estimate for 393 
implementing N-Control for an entire year at BOS. 394 

There are many possible ways to extrapolate, including scaling by time (24.5 hours of 395 
metering compared to 4*365 hours of peak evening traffic), scaling by demand, scaling by time 396 
in a specific configuration, etc. We chose to decouple the time window chosen (4-8 PM) from 397 
the assumed high demand levels during that time. We defined a “high demand period” as a 398 
period in which there were more than Xi departures in a fifteen minute period, where Xi is the 399 
fewest departures in a period witnessed during the time when metering was in effect and i 400 
represents the configuration in use. For 22L, 27 | 22R Xi was found to be 10 departures / 15 401 
minutes and for 27, 32 | 33L it was found to be 8 departures / 15 minutes. We then found all 402 
other periods when the airport had more than Xi departures and was in the same configuration 403 
with VMC conditions. Because 4L, 4R | 4L, 4R, 9 required very little metering, only the two 404 
other configurations were examined. Benefits are also dependent on the level of demand so the 405 
extrapolated benefits were scaled by the ratio between the annual number of flights in high 406 
demand periods and the number seen in the trial. For 22L, 27 | 22R there were 525 departures 407 
during the trial and 8,645 over the course of 2010, resulting in a scaling factor of 16.47. Note that 408 
this is larger than might be expected if the benefits were simply scaled by time (one month of 409 
metering * 12 months in the year). This is due to time periods outside of the 4-8 PM study period 410 
experiencing congestion, as well as the variation of airport behavior and configuration choice 411 
over the year. The scaling factor for the other configuration is even higher, at 23.69. These 412 
scaling factors result in annual benefits estimates for the two main configurations of 150 hours 413 
for 27, 32 | 33L and 191 hours for 27, 22L |  22R. These are much lower than the configuration- 414 
specific benefits seen in the JFK field trial where the benefits were in the thousands of hours, but 415 
are to be expected given the  difference in the prior demand and congestion levels at the two 416 
airports.  417 

These totals can be validated against the estimates obtained from the saturation curve 418 
method for these two configurations. NCtl is assumed to be equal to N*=17 for both 419 
configurations. This value is different from the N* given by Simaiakis because it is calculated 420 
using the ASPM data instead of the ASDE-X data he used. ASDE-X records aircraft from the 421 
spot to the runway while ASPM records aircraft from the gate to the runway, resulting in a 422 
higher N* for ASPM. Figure 9 shows the benefits from the saturation curve method in blue 423 
compared to the extrapolated field trial benefits in red. The variance in the blue bars represents 424 
the difference in increasing or decreasing NCtl by one aircraft. Figure 10 shows the benefits from 425 
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the saturation curve method for the 10 most used configurations in VMC at BOS in 2010 as well 426 
as the corresponding N* = NCtl value. Note that the estimated benefits for metering in the 4L, 4R 427 
| 4L, 4R, 9 configuration is only 20 hours which agrees with the observation Simaiakis made that 428 
that configuration rarely experiences congestion.  429 

Despite the relatively short duration of the BOS SCM trial, it still serves as a useful 430 
validation of the saturation curve method for estimating the benefits of SCM. In addition, it 431 
agrees with several observations made during the JFK study such as that benefits are strongly 432 
tied to the configuration of the airport. 433 

 434 

 435 

Figure 9: Comparison of Benefits Estimates 436 

N* + 1 

N* - 1 
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 437 

Figure 10: Saturation Curve Benefits across major configurations 438 

 439 

2.3.2  Memphis (MEM): CDQM 440 

CDQM field trials were held on 20 days in 2010 at MEM. For half of this period, Delta was 441 
the only participant, with FedEx joining in August. [5] examines in detail 2 days as case studies 442 
and notes that when the airlines follow the recommended slot allocations, the delays are 443 
generally at the level of the target delay of 6 minutes (as opposed to a day where the slot 444 
allocations were calculated but not used, when the delays reached 20 minutes).  445 

Quantitative benefits for the Memphis field trial are not given in [5], but the time spent in 446 
queue is shown to be qualitatively held to the target delay of 6 minutes. Based on this [5] 447 
assumes that CDQM would be successful in reducing taxi times to at most the unimpeded time 448 
plus the threshold delay time. By capping actual taxi times in 2008 to this value, they claim 449 
annual benefits of 86,000 minutes (1,433 hours). As a comparison, we can calculate the benefits 450 
of SCM using the saturation curve method (Saturation curve used is shown in Figure 11). Using 451 
an NCtl = N* = 25 produces benefits of 87,200 minutes (1,454 hours) for 2008. This similarity 452 
demonstrates the interchangeability between the saturation curve method and target delay 453 
method for calculating the benefits of SCM.  454 

 455 
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 456 

Figure 11: Memphis Saturation Curve – 2008 457 

 458 

2.3.3  New York Kennedy (JFK): PASSUR  459 

A basic type of SCM has been in place at JFK for use during severe weather conditions, 460 
and has recently been expanded to be used constantly. It is not explicitly a saturation curve-based 461 
approach, as it assigns hold times to individual flights. There were no existing benefits 462 
assessments that could be used to compare with the saturation curve method. In addition, the 463 
large amount of data available (6 months) provided the opportunity for a high-fidelity analysis to 464 
examine the primary and secondary effects of SCM. For these reasons, the analysis presented in 465 
Chapter 3 was performed. 466 

 467 

2.4 CONCLUSIONS 468 

 469 

Several methods for calculating benefits from SCM in literature were reviewed. The 470 
methods proposed by Sensis Corporation [13, 14, 15] use operational ASDE-X surveillance data 471 
and are therefore inappropriate for use in the future. CDQM [5] was shown to be similar to the 472 
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final method developed by Simaiakis [9] but with the added step of calculating the target delay, 473 
making the Simaiakis method of saturation curves the most appropriate to adapt for benefits 474 
assessments looking at the future.  475 

In addition, results from field trials at BOS and MEM (JFK will be examined in detail in 476 
the next chapter) were discussed and compared to the estimates derived from saturation curves. 477 
The results were comparable, supporting our assertion that the saturation curve method can be 478 
used to approximate different types of SCM. 479 
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3. HIGH FIDELITY ANALYSIS FOR ASSESSING SCM BENEFITS AT ONE 480 
AIRPORT 481 

The methods listed in Chapter 2 approach the estimation of benefits from SCM from 482 
several different directions. However, all are theoretical and should not be relied on without 483 
detailed validation from real-world data. While the field trials at BOS and MEM can be used as 484 
validation, the relative brevity of the trials is not ideal. In addition, an approach is needed that 485 
represents a third form of SCM that is not explicitly (BOS) or implicitly (MEM) based on 486 
saturation curves to support our assertion that saturation curves can be used to model all types of 487 
SCM. To provide a more in-depth validation, we calculate and examine in detail the results from 488 
a field trial of SCM at JFK airport in New York City. The methodology used is necessarily 489 
different from that in the BOS field trial, where it was assumed that 1 minute of hold time 490 
resulted in 1 minute of saved taxi time. While this assumption is valid at BOS because of the 491 
short hold times, it could not be assumed at JFK because the holds were longer and were often 492 
conducted off-gate. This introduced small (but measurable) losses when compared to the 1 to 1 493 
metric. 494 

The JFK analysis also acts as a high fidelity model to validate and support development of 495 
models at medium and lower fidelities with wider applicability. Several secondary effects of 496 
metering such as throughput and physical constraints are examined in detail.  497 

 498 

3.1 BACKGROUND 499 
 500 

JFK is one of the biggest and most congested airports in the US, with the highest average taxi 501 
time in the nation in 2009 (31 minutes) [1]. The layout of the airport is shown in Figure 12. Early 502 
forms of surface congestion management have been used at the airport since 2002 to assist with 503 
deicing operations. In February 2010, a full-time implementation of prototype software and 504 
processes was put in place by PASSUR Aerospace for the Port Authority of New York and New 505 
Jersey, initially to manage the disruption caused by a five month closure of one of the major 506 
runways (13R/31L) at the airport. However, its use was continued when the runway re-opened. 507 
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 508 
Figure 12: New York JFK Airport [25] 509 

 510 

 A schematic of the implementation of the Surface Congestion Management (SCM) approach 511 
at JFK is shown in Figure 13. The development of the approach was based upon a collaborative 512 
process in which all carriers participated to ensure the maximum use of departure capacity while 513 
reducing the amount of engines-on departure taxi time. One of the cornerstones of the approach 514 
was the use of predictive analytics to accurately forecast up to eight hours in advance the 515 
expected departure and arrival capacity (in terms of departure and arrival “slot counts”) of the 516 
airport based on the weather forecast and past airport performance under identical predicted 517 
weather conditions. This in turn was used with the demand information of flight-specific 518 
requested push-times sourced from (and updated by) the airlines to develop the initial allocation 519 
of flights to permitted taxi "slot times" over the forecast period. When the number of aircraft 520 
wanting to push-back was below what the airport could efficiently handle in a certain time 521 
period, the slot times were the same as the desired push times. But when the number of flights 522 
wanting to push exceeded what the airport could efficiently handle, the excess flights were 523 
allocated slot times later than their desired push times to better manage the demand.  The initial 524 
allocation of flights to slot times used the concept of “ration by schedule” [15] in which the 525 
number of slots per hour was allocated to each operator based on their normal (unrestricted) 526 
percentage of the hourly volume. Slots were issued up to two hours in advance, to accommodate 527 
the longer planning horizon of international operations. Once the initial allocation of departure 528 
slots had occurred, the users had the opportunity to request swaps and substitutions within their 529 
allotment of departure slots, in order to better reflect their internal business priorities. These 530 



 

 34 

requests were received and processed electronically via a web interface managed by the “slot 531 
allocation manager”: a neutral third-party established to run the program. All slot assignments 532 
could be seen by all program users, ensuring maximum transparency and trust that there was no 533 
gaming of the system. The central tenet of the above process is that users do not push-back until 534 
they have reached their assigned departure slot time rather than simply pushing back whenever 535 
they are ready (i.e., as happens when surface congestion management is not in effect). When a 536 
flight's slot time was later than the requested push time, the hold time was absorbed either at the 537 
gate or, if the gate was required by another aircraft, at a pre-assigned holding pad with engines 538 
off as much as possible. 539 

 540 

 541 
Figure 13: JFK Surface Congestion Management (SCM) Approach 542 

 543 

 Figure 14 shows an example "Departure Slot Allocation" screen from the system employed at 544 
JFK. The left side illustrates airline-sourced "ready to push" times by flight, while the right side 545 
shows how these flights were allocated to departure slots in 15 minute time bins. The green 546 
vertical bar delineates the current time bin. Differences between the “ready to push” and 547 
departure slot times represent the gate hold time to manage surface congestion more efficiently. 548 
For example, DL1629 had a desired push time of 16:15 but a slot time of 16:45 so received a 30 549 
minute gate hold time and shows as demand in the 16:45 departure slot window. 550 

 551 
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 552 
Figure 14: Airline Ready to Push and Departure Slot Allocation Example [6] 553 

 554 

3.2 METHODOLOGY 555 

 556 

There are many potential impacts of surface congestion management, for example in terms of 557 
taxi-out time, fuel burn, emissions, throughput, gate usage, holding area usage, ground crew 558 
operations, passenger connectivity, bag connectivity, airport terminal occupancy, airport terminal 559 
revenues, etc. The focus of the analysis reported here is a first order assessment of annualized 560 
impacts of the 2010 surface congestion management approach on taxi-out time, fuel burn and 561 
CO2 emissions at JFK. The general approach to achieve this was to compare taxi times, fuel burn 562 
and emissions pre/post surface congestion management implementation, with all other relevant 563 
operational factors being as equal as possible. It was possible to find a few days where the airport 564 
was operating under very similar conditions pre/post surface congestion management 565 
implementation, allowing the general impacts of the technique to be observed. For example, 566 
Figure 15 shows that, on these sample days, surface congestion management reduced the number 567 
of aircraft on the airport surface between 17:00 and 21:00 (corresponding to the evening 568 
departure push at JFK) from a peak of 40 on the sample day in the period before the technique 569 
was implemented to about 25 after it was implemented, resulting in active taxi-out time savings 570 
of over 20 minutes for the average flight departing at 20:00. The surface traffic snapshot shown 571 
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in Figure 16 reinforces the effect in terms of the reduced departure queue size and resultant 572 
reduced taxi-out times, with the "excess" aircraft being held off the active movement area. 573 

 574 

 575 
Figure 15: Comparison of Taxi-out Times Pre/Post Surface Congestion Management 576 

Implementation for Sample Days 577 

 578 

Although these observations provide insights into the effect of surface congestion 579 
management, data across numerous days is required to estimate annualized impacts. However, 580 
the large number of factors that influence airport operations (e.g., demand, capacity, airport 581 
configuration, weather/ATC constraints, equipment status, etc.) and the complexity of operations 582 
specifically at JFK made finding a large enough sample of comparable days pre/post- 583 
implementation very difficult. Therefore, an analysis approach was developed which found 584 
relationships between surface congestion management and taxi time impacts in each major 585 
airport configuration and then applied the identified relationships to the full set of data to 586 
determine the annualized impacts of the congestion management technique, as described in the 587 
next section. 588 

 589 
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 590 

Figure 16: Comparison of Airport Traffic and Departure Queues Pre/Post Surface 591 
Congestion Management 592 

 593 

The analysis methodology is presented in Figure 17 with the general sequence of steps 594 
presented along the top and more detail on how the steps were executed below. Each of the steps 595 
is discussed in detail in this section. 596 

 597 

 598 
Figure 17: Analysis Methodology 599 
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 600 

3.2.1 Data Sources 601 

This analysis used the ASPM database [1] which provides flight-specific OOOI times and 602 
airport throughput in 15 minute intervals; ASDE-X data which provides position in the active 603 
movement area (not ramp) at 1 second updates; and the PASSUR program data which provides 604 
flight-specific desired and slot times. 605 

The pre-implementation analysis period was selected to be January 1, 2009 - December 31, 606 
2009. The initiation of the surface congestion management process coincided with the closure of 607 
runway 13R/31L, but the impacts during the runway closure were not analyzed because the 608 
airport was not in its normal state (i.e., there was no pre-implementation data corresponding to 609 
JFK without runway 13R/31L). Therefore, the post-implementation analysis period was selected 610 
to be July 1, 2010 - December 31, 2010 corresponding to the day runway 13R/31L re-opened 611 
through the last day for which all of the data sources discussed above were available for this 612 
analysis. 613 

 614 

3.2.2 Data Corrections 615 

 616 
Figure 18: Key Analysis Events 617 

 618 

The data sources identified above provided the key analysis events illustrated in Figure 18. 619 
The difference between the OOOI OUT and OFF times provided a good measure of the taxi-out 620 
time in the pre-surface congestion management environment. However, it was not suitable in the 621 
post-surface congestion management environment due to the fact that a large number of the 622 
flights which were given slot times after their desired push times were held "off-gate". In those 623 
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cases, the ASPM OUT time was not an accurate reflection of when the aircraft actually started 624 
taxiing to its departure runway, but rather when it left the gate to be held elsewhere (as would 625 
happen if the gate was needed for an inbound arrival). Therefore, the post-surface congestion 626 
management taxi-out times were determined from the ASDE-X data. Given that the ASDE-X 627 
tracks were generally picked up at the spots (the interface between the ramp and active 628 
movement areas) the tracks needed to be corrected back to an equivalent OUT time so they could 629 
be directly compared to the pre-implementation taxi-out times based on the OUT-to-OFF events. 630 

To determine the appropriate OUT-to-spot correction factor, distributions of the differences 631 
between ASPM OUT times and ASDE-X pickup times were calculated for pre- and post-surface 632 
congestion management days. For the pre-implementation case, only 9 weeks of ASDE-X data 633 
were available, whereas 6 months of data were available for the post-implementation period. The 634 
pre- and post-implementation distributions were subtracted from each other resulting in the left 635 
side of Figure 19, which shows a spike above the horizontal axis and a trailing tail below it. The 636 
positive spike represents additional flights pre-congestion management implementation with 637 
small differences between their out and pickup times, while the trailing tail represents additional 638 
flights post-surface congestion management implementation with large differences. Because the 639 
number of flights in the negative tail and positive spike is approximately equal, it was 640 
hypothesized that the trailing tail represent flights that, pre-implementation, pushed back 641 
normally but post-implementation were held off-gate (resulting in a long period of time between 642 
their OUT and spot times). The positive spike therefore represents a distribution of typical OUT- 643 
to-spot times. This subsequently had a normal distribution fitted to it as shown on the right side 644 
of Figure 9, with a resulting mean of 7 minutes and a standard deviation of 2 minutes. This can 645 
be interpreted as the distribution of times it takes a typical flight at JFK to reach the spot once the 646 
parking brake has been released, accounting for tug push-back, engine start and checklist 647 
completion times. 648 

 649 

 650 

Figure 19: "OUT-to-spot" Correction Factor Data 651 
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 652 

 Another correction factor was required to account for those flights that held in the active 653 
movement area at pre-designated hold locations until their slot time; i.e., their ASDE-X pick-up 654 
time was not a true reflection of their start of taxi time (similar to the reason why ASPM data 655 
was not appropriate for any flight with an off-gate hold).  To correct for the fact that these flights 656 
were in fact holding in the active movement area (most likely with engines off), all flights which 657 
appeared in ASDE-X data 7 minutes or more before their scheduled slot time (5 minute 658 
PASSUR allowance + 2 minute grace period) had their spot times moved forward to their 659 
scheduled slot time. This approach was validated by examining ASDE-X tracks for individual 660 
flights that fit the criteria and verifying that those flights stayed in their assigned hold area until 661 
their slot time, and then began taxiing to their departure runway. 662 

3.2.3 Define Congestion Metric & Variation of Taxi Time with Metric pre/post 663 
SCM 664 

The key congestion metric used in this analysis was the "take-off queue", introduced by Idris 665 
et al. [16], which for a given flight i is defined as the number of other take-offs which occur 666 
between the pushback and take-off time of aircraft i. Other metrics were also tested, including 667 
number of departing aircraft on the airport surface and the number of aircraft in physical 668 
departure queues at the runways, but they were found to be less suitable for JFK analysis. The 669 
main advantage of the take-off queue versus the number on surface is that it takes overtakes into 670 
account, when an aircraft takes off before another aircraft that left its gate before the first aircraft 671 
did. The geometry of JFK results in many such flights because some gates are much closer to the 672 
departure runway than others. As a result, the take-off queue provides a much better estimate of 673 
the time that a flight will spend taxiing. The downside of this metric is that it is flight-specific 674 
and more difficult to calculate. Figure 20 shows that the take-off queue is a better predictor of 675 
taxi time at JFK as measured by R2. 676 

To convert the change in take-off queues into a change in taxi time at JFK, a regression was 677 
calculated using taxi time versus take-off queue data as shown in Figure 21. The slope of the 678 
regression can be interpreted as the incremental taxi time for every additional aircraft in the take- 679 
off queue. The slopes of the regression pre- and post-surface congestion management are very 680 
similar, indicating the dynamics of the airport are unaffected by the procedure, but the airport is 681 
operating at much lower average take-off queue counts when surface congestion management is 682 
in operation. Regressions like this were calculated for the top six most common configurations 683 
that experienced holds at JFK and the regression line slopes of all but one of the configurations 684 
statistically equal pre- and post-implementation, but did vary between configurations as expected 685 
given their different capacities. 686 

 687 
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 688 

 689 
Figure 20: Comparison of Traffic Metrics 690 

 691 

 692 

 693 
Figure 21: Relationship of Taxi Time to Take-off Queue 694 

 695 

 To alleviate the problem highlighted earlier with identifying similar days pre- and post- 696 
surface congestion management implementation, multiple "sample days" were found for each of 697 
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the top 6 configurations. These days were chosen by looking at the peak departure period (5-9 698 
PM in most cases) and finding days when the airport stayed in the same configuration for the 699 
duration of the period. This eliminated instances where the configuration was changed midway 700 
through the period, which could affect the results. By looking at a group of days and averaging 701 
the traffic over them, the variations in operation from day to day are accounted for to first order. 702 
The average takeoff queue across the group of sample days was calculated in 15 minute bins 703 
(e.g., 17:00-17:15) pre- and post-surface congestion management implementation, and using the 704 
regression lines for each configuration, the taxi time impact of the technique was determined in 705 
those 15 minute time bins. This was then summed over all time periods in the sample days to 706 
determine a total amount of taxi time saved. 707 

 708 

3.2.4 Find Relationship of Taxi Time to Hold Time for Each Major 709 
Configuration (“Scaling Factors”) 710 

The difference in taxi time observed from the previous step can be compared to the hold time 711 
(defined as the difference between the desired push time and the slot time) due to the surface 712 
congestion management technique to determine configuration-specific "Scaling Factors": see 713 
Figure 22. 714 

 715 

Figure 22: Scaling Factors Relating Taxi Time Reduction to Hold Time By Configuration 716 

 717 

They can be considered as representing the observed taxi time reduction of each minute of 718 
hold time. Notice the sensitivity of the scaling factors (represented by the whiskers) to the gate- 719 
to-spot correction factor described earlier. The reasons for the differences between 720 
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configurations are complex and are a subject of on-going investigation, but there are several 721 
hypotheses. The scaling factors appear highest for the configurations with the lowest declared 722 
capacity. Because these configurations can accommodate fewer aircraft, it makes sense that for a 723 
given demand (and hold) level, there would be more congestion and therefore more benefit from 724 
SCM when compared to a higher-capacity configuration. There could also be configuration- 725 
specific operational restrictions and policies that could lead to more or less congestion, such as 726 
the number of departure fixes available or use of certain configurations only at certain times or 727 
weather conditions.  728 

 729 

3.2.5 Apply Scaling Factors to All Data 730 

 Once scaling factors for the main configurations were calculated, they were generalized to the 731 
other configurations in use at JFK by comparing the number of runways in use as well as the 732 
specific runways (resultant average 0.79). Ideally, a separate analysis would be conducted for 733 
IMC conditions. However, because IMC conditions occur infrequently (< 10%) at JFK, there 734 
was not enough data to perform a valid analysis. Therefore, the conservative assumption was 735 
made that the scaling factors were the same for VMC as IMC for a given configuration. This is a 736 
conservative because capacities are generally lower in IMC and hence the benefits of surface 737 
congestion management would be larger. This full list of scaling factors was then applied to ALL 738 
the  gate holds in the six month analysis period to estimate the aggregate taxi time impacts of 739 
surface congestion management. This number was doubled to estimate the annualized impacts. 740 

 741 

3.2.6 Estimate Total Fuel & Emissions Impacts 742 

 To convert from taxi time savings into fuel and emissions savings, an average fuel burn index 743 
was calculated for each month of the study period to account for changes in fleet mix. The 744 
PASSUR data included the tail number of all aircraft. A fleet database was used to match tail 745 
numbers to engine types, and ICAO ground idle fuel flow certification data [17] was used to 746 
estimate the taxi fuel flow rate for each aircraft accounting for the number of engines of each 747 
type it possessed and APU/single-engine taxi assumptions. Fuel burn savings from surface 748 
congestion management were determined by multiplying this fuel flow rate by the taxi time 749 
savings determined from the previous steps and summing over all flights. Fuel burn savings were 750 
converted to carbon dioxide emissions savings by using the standard CO2 emissions index of 751 
3.16 kg CO2/kg fuel burnt. 752 

 753 

3.3 RESULTS 754 

 755 
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3.3.1 Key Results 756 

Table 1 presents the calculated impacts of surface congestion management at JFK once the 757 
methodology discussed above has been applied. Total annualized taxi time reductions of 14,800 758 
hours translate into annual savings of 5.0 million gallons of fuel and 48,000 metric tons of 759 
carbon dioxide from surface congestion management at JFK. The total taxi time reduction results 760 
are within the range of estimates from simulation studies in the open literature [13,14,15], but the 761 
results shown in Table 1 are based on the actual operational data. At JFK in 2009 there were 762 
104,000 total hours spent taxiing out [1], which corresponds to total fuel burn of 35.2 million 763 
gallons of fuel using the methodology from Section 3.2.6. Therefore, the SCM program had 764 
savings of 14% over the current surface operations in terms of fuel and time saved. Taking the 765 
BTS estimate of 16.2 billion gallons of fuel consumed by certificated carriers in the US in 2009 766 
[18] and scaling by the number of flights at JFK relative to the NAS, we can make a rough 767 
estimate of total fuel burn (all phases of flight) for departures at JFK to be 369 million gallons, 768 
making the savings from SCM 1.3% of the total. The estimate of 1.3% is probably an 769 
overestimate because the BTS estimate only includes US carriers. Including international carriers 770 
could drop the the estimate to 1% or lower. The ASPM estimate has no such caveat. 771 

 772 

Table 1: Calculated Benefits 773 

Configuration 
Proportion 

of Hold 
Mins 

Hold 
Time 

(104 
mins) 

Scaling 
Factor 

Taxi-out 
Time 

Reduction 
(104 mins) 

Fuel 
Reduction 

(US 
gallons) 

Carbon 
Dioxide 

Reduction 
(metric 
tons) 

31L,31R | 31L 20% 11.8 1.17 & 
1.02 13 730,000 6,990 

13L | 13R 18% 10.4 0.67 7 391,000 3,750 
22L | 22R, 31L 13% 7.5 0.16 1.2 66,200 630 
4R | 4L, 31L 9% 5.2 0.66 3.4 191,000 1,830 

31R | 31L 7% 4.3 0.79 3.4 187,000 1,790 
13L, 22L | 13R 6% 3.5 1.2 4.2 239,000 2,290 

Others 27% 15.5 0.79 12.2 690,000 6,600 
Totals                    

(6 months)  58.1  44.4 2,490,000 23,900 

Totals (annual)    
88.8 

(14,800 
hrs) 

4,980,000 47,800 

 774 
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Figure 12 shows how the resulting fuel cost savings of surface congestion management at JFK 775 
vary as a function of assumed fuel price and percent use of single engine taxi (a taxi procedure 776 
where only one engine is turned on: the fuel burn of a single-engine taxi was estimated to be 777 
60% of the equivalent “all engine” taxi). At the typical 2010 fuel price range of $2-3/gallon [18], 778 
fuel costs savings through surface congestion management are estimated to be $10-15 million 779 
per year at JFK if it is assumed no flights are performing single-engine taxi, and $7.5-12.5 780 
million if half of the flights are assumed to be performing single-engine taxi. 781 

 782 

 783 
Figure 23: Annual Monetized Benefits of JFK Metering 784 

 785 

3.3.2 Taxi-in Times 786 

One possible side effect of surface congestion management can be an increase in taxi-in times 787 
for arriving aircraft if the procedure for holding departure aircraft is not sufficiently well 788 
planned. For example, if there are multiple aircraft being held at their gates past their desired 789 
departure times, there might not be enough gates available for arriving aircraft, resulting in the 790 
arriving aircraft having to wait on the surface and delaying their IN times. The average taxi-in 791 
times by hour from 17:00 to 21:00 local time were taken from ASPM for the years 2007 to 2010. 792 
Figure 13 shows the average over the entire period for each year. If we propose two hypotheses 793 
H0 and Ha: 794 

H0: µ1 = µ2 = µ3 = µ4 795 

Ha: not all µi are equal 796 
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where µi is the average taxi time in a given year i (i = 1:4 for 2007:2010), then we can use a one- 797 
way ANOVA test to test which hypothesis should be chosen. To conclude Ha with an alpha of 798 

0.1, F* must be greater than F(.9, 3,16) = 2.46. We calculate F* =  = 0.117 where MSTR 799 

is the treatment mean square and MSE is the error mean square. We can see that F* is much less 800 
than F and that H0 holds, meaning that there is no significant change in the mean taxi-in time. As 801 
a result we can conclude that to the first order departure metering has no impact on taxi-in times 802 
at JFK. 803 

 804 

 805 

 806 
Figure 24: JFK Taxi-in Time Analysis 807 

 808 

3.3.3 Throughput 809 

 Another possible side effect of surface congestion management can be reduced 810 
throughput if too many aircraft are held back for too long. Figure 14 shows a comparison of 811 
airport throughput before and after surface congestion management by configuration and airport- 812 
wide. The throughput here is measured by the number of wheels-off times in a given hour. The 813 
time period studied is the 5-9 PM period (except for 13L, 22L | 13R, which is 1-5 PM as in the 814 
study). The only configuration with a statistically significant (90 % confidence) change was 13L 815 
| 13R, which increased after metering was implemented. Overall, there was no change in the 816 
average throughput. As a result, we can conclude that to the first order, departure metering has 817 
no impact on throughput at JFK. While the increase in throughput in 13L | 13R is significant, it is 818 
small and could be due to other factors, such as the improvements on 13R in the first half of 819 
2010. 820 
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 821 

 822 
Figure 25: JFK Throughput Analysis 823 

 824 

3.4 COMPARISON OF HIGH FIDELITY ANALYSIS TO SATURATION CURVE 825 
METHOD 826 

 827 

Benefits from metering at JFK can also be calculated using the saturation curve method 828 
introduced in Chapter 1. Figure 26 shows the saturation curve for JFK airport across all 829 
configurations and weather conditions in 2009, the last full year before metering was 830 
implemented. The saturation point N* occurs around N(t) = 25 and the corresponding saturation 831 
throughput is just above 10 departures / 15 minutes.  Although N-control was not used to 832 
perform metering, this thesis argues that it is a valid method for estimating the possible benefits 833 
at all airports of implementing metering using any method. This is because using a saturation 834 
curve defines the available pool of benefits by quantifying the inefficiencies that can be 835 
addressed by metering. In addition, each different implementation of metering essentially limits 836 
the number of aircraft on the surface by controlling the length of different queues.  837 

To compare the estimated benefits of the PASSUR trial with the saturation curve method, 838 
an equivalent NCtl value must be identified. This value represents the aggressiveness of the 839 
metering approach. While a value of NCtl = N* will be used in the medium fidelity methodology, 840 
the value can vary.  Examining the ASDE-X data (corrected to include the ramp area and 841 
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exclude off-gate holds) for the sample days during the post-metering period, the average N(t) 842 
across all configurations was 18 during the peak traffic hours. This was taken as the equivalent 843 
NCtl. While this seems low, especially given N* = 23 for the previous year, it can be viewed as an 844 
upper bound to the benefits. In addition,  because N-control is not being used there is no clear 845 
cap on N, necessitating the use of the average that results in a more aggressive value. Finally, 846 
there is anecdotal evidence that the metering program at JFK was aggressive in reducing 847 
congestion, which would correspond to a lower NCtl.  848 

 849 

 850 

Figure 26: JFK Saturation Curve - 2009 851 

 852 

Returning to the pre-metering ASPM data, the total number of flights operating when N(t) 853 
> 18 was calculated to be 73,166, with an average taxi time of 46.0 minutes. The average taxi 854 
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time of flights with N(t) = 18 was 31.2 minutes. Therefore, the benefits from moving all flights 855 
in congestion to the control point would be 856 

Benefits = Flightscongested * (AvgTaxiTimecongested – AvgTaxiTimesaturation) 857 

=  73,166*(46-31.2) = 108,000 minutes = 18,000 hours 858 

The benefits for metering to N = 23 are 12,260 hours, resulting in 2 values that bracket the 859 
observed value of 14,800 hours. The first estimate is higher than the observed benefits, but is 860 
close to other studies’ estimates of the benefits of metering [11,12]. In addition, it represents the 861 
theoretical benefits. As we have shown, there are a number of real-world constraints such as off- 862 
gate holds, the use of 15 minute bins, and user compliance that could reduce the achieved 863 
benefits. 864 

While N(t) = 18 is below N*, which would indicate that the full throughput of the airport is 865 
not being achieved, it is important to remember that this was not the method used at JFK and is 866 
instead a way of further verifying the results shown in this section. The throughput was shown in 867 
section 3.3.3 to not have significantly changed from 2009 to 2010.  868 

 869 

3.5 CONCLUSIONS 870 

 871 

The analysis of the field trial at JFK provides useful insights for the extension of the 872 
benefits assessment into the future. The differences between benefits in specific configurations is 873 
not immediately intuitive but does make sense given that taxi distance, taxi time and airport 874 
throughput can all vary significantly based on the configuration. As will be explained in the next 875 
chapter, performance and congestion in the future are calculated by configuration (although the 876 
issue of changing airport behaviour and configuration choice is not examined). Our assertion that 877 
saturation curves can describe all types of metering was further supported by the comparison 878 
between the results from the high fidelity analysis and the saturation curve method. Finally, the 879 
overall efficiency of metering at JFK in terms of reduction in taxi time to hold time is relatively 880 
large (overall scaling factor of 0.79) despite a substantial amount of off-gate holds and large 881 
differences in performance by configuration. In addition, possible secondary effects of metering 882 
such as reduced throughput and increased taxi-in times were shown to be negligible. Given these 883 
findings, secondary effects will be neglected in the medium and low fidelity analyses, as will the 884 
efficiency of metering (scaling factors). However, landside constraints such as gate availability 885 
(the cause of off-gate holds) will be considered. 886 
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4. MEDIUM FIDELITY METHOD FOR ASSESSING SCM BENEFITS AT 887 
MULTIPLE AIRPORTS 888 

As was discussed in Chapter 1, there is a need to perform benefits assessments on potential 889 
air traffic management techniques including SCM. Current benefits estimates are based on 890 
operational data that are not available for future years. In addition, traffic levels are estimated to 891 
rise to levels never before seen at many airports, meaning that the behavior of these airports 892 
could be different from what has previously been experienced.  893 

A simple formulation of the problem is as follows: the benefits from metering at a generic 894 
airport in the future must be calculated. The inputs available are demand estimates in the form of 895 
estimated pushback schedules in 5 year increments and estimated changes in capacity due to 896 
construction or ATC technology improvements in the same increments, and operational data 897 
from the previous 10 years is available from ASPM. 898 

This chapter presents a medium fidelity methodology to calculate future benefits. It is 899 
informed by the high fidelity analysis of JFK airport in the previous chapter but has a wider 900 
applicability and uses more generic techniques. While it does not account for most of the 901 
secondary effects studied in the JFK model, it still examines the chosen airports in detail by 902 
simulating taxi times and calculating saturation curves specific to an airport and a configuration. 903 
The results from this method will be compared to both historical data and the field trial results 904 
from JFK and BOS. In addition, they will be used to construct NAS-wide estimates in the low 905 
fidelity model. 906 

 907 

4.1 BACKGROUND 908 

Of the methodologies described in Chapter 2, most are not appropriate for the task 909 
described above due to the nature of the future data available. The N-control approach of using 910 
saturation curves to quantify congestion was chosen for its generalizability and adaptability. If 911 
take-off times can be calculated from the future pushback schedules, saturation curves can be 912 
derived for the future that allow calculation of the congestion at a given airport. By adapting the 913 
taxi time simulation developed by Simaiakis [19], characteristics of specific airports such as 914 
configuration and layout are replaced by general values such as average unimpeded time and 915 
maximum throughput.  916 

  The work performed by Sensis [13,14,15] relied heavily on ASDE-X data and 917 
simulations. This level of detail is not available for the future, and while simulations could be 918 
developed from present-day data there are several formidable issues. Each simulation would 919 



 

 51 

have to be tailored to a specific airport because it calculates the exact path each flight takes, 920 
requiring a great deal of time and familiarity. In addition, ASDE-X data is not readily available 921 
for many of the desired study airports. Finally, new construction at an airport would require the 922 
simulation to be changed, but the way the new infrastructure will be used is highly uncertain. 923 

The CDQM approach of setting a target delay has already been discussed and shown to be 924 
similar to the saturation curve method in Chapter 2.  925 

The remainder of this chapter will describe both the techniques needed to develop the data 926 
to construct and analyze future saturation curves and the results from applying those techniques 927 
at 8 airports. Section 4.2 will set out the complete methodology used to calculate future taxi 928 
times and construct saturation curves. In addition, it will describe how physical constraints were 929 
taken into account. Section 4.3 introduces the airports studied, and Section 4.4 presents the 930 
results from applying the methodology as well as comparisons to the high-fidelity model from 931 
JFK, the field trial at BOS, and historical benefits generated from ASPM-based saturation 932 
curves. 933 

 This methodology is necessarily at a lower fidelity than the one done for the case study of 934 
JFK. Secondary effects such as single-engine taxi and off-gate holds are not examined in relation 935 
to benefits, and because the saturation curve method does not explicitly simulate metering (it 936 
only identifies the opportunity for savings), the configuration-specific relationship of hold time 937 
to saved taxi time is also not examined. In addition to the constraints of the simulation, forecasts 938 
are notoriously unreliable. As has been discussed earlier, the benefits of SCM can be highly 939 
sensitive to small changes in demand at airports that are near capacity. The secondary effects 940 
studied in the high-fidelity methodology are negligible compared to the effects of changing the 941 
forecast demand or capacity. This medium fidelity model does still provide a fair amount of 942 
customization to individual airports and will be shown to match well with field trial data. 943 

 944 

4.2 ANALYSIS METHODOLOGY 945 

4.2.1 Simulation 946 

The high-level methodology for the benefits assessment of SCM is illustrated in Figure 27. 947 

 948 
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 949 

Figure 27: Departure Metering Analysis Methodology  950 

 951 

 The methodology is split into 2 sections that are linked by the concept of saturation 952 
curves. The simulation section takes as inputs current operational data to train the prediction 953 
algorithms and traffic simulation, and the future schedule data that is used in those simulations 954 
once they have been created. The simulation outputs saturation curves for the future year cases 955 
(including 2010 as validation). 956 

 The congestion and corresponding benefits from SCM are calculated from the saturation 957 
curves as well as compared to the field trials discussed in Chapter 2. As will be explained, these 958 
results are ‘unconstrained’ due to the nature of the model behind the future year schedules. The 959 
physical constraints on the benefits (gate utilization) are examined and applied to the results to 960 
obtain practical benefits levels.  961 

Future year benefits were calculated by simulating throughput saturation curves and 962 
congestion at each study airport for the future “out-years” of 2015, 2020, 2025, and 2030 as well 963 
as the “current year” 2010. This required the development of a two-stage model that predicted 964 
the future saturation curves (Saturation Curve Prediction Algorithm) as well as the future traffic 965 
and congestion (Traffic Simulation) to determine where the study airports were operating along 966 
these curves in different years. 967 
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4.2.2 Saturation Curve Prediction 968 

 969 

Figure 28: DFW Saturation Curves in 2000 (Left) and 2010 (Right) 970 

 971 

At first glance, one might assume that a saturation curve is an unchanging characteristic of 972 
a given configuration. After all, they are a way of representing throughput, and the maximum 973 
achievable throughput should be the declared capacity. This would be a naïve approach, 974 
however. In the left side of Figure 28 the average saturation throughput can be seen to be 975 
approximately 27 aircraft / 15 minutes, while the average declared capacity for the year was 29 976 
aircraft / 15 minutes. While both these values can vary (and do, as shown by the whiskers) based 977 
on factors like the number of arrivals and the downstream weather among others, on average the 978 
saturation throughput is below the declared capacity. This is because the saturation throughput 979 
better reflects the sustainable capacity. If an airport operates at high demand levels for a period 980 
of several hours, the declared capacity cannot be sustained due to uncertainty, delays, varying 981 
fleet mix, and a variety of other reasons.  982 

In addition, saturation throughput in the same configuration can change over time as shown 983 
by Figure 28 (The omission of 18R in 2010 is irrelevant because simultaneous departures on 18L 984 
and 18R are not possible). Our hypothesis is that differing levels of demand are the main driver 985 
behind this change. Figure 29 shows how the demand, declared capacity, saturation throughput 986 
and taxi times at DFW vary from 2000 to 2010. DFW was at its highest level of demand in 2000 987 
before decreasing constantly (besides a brief spike in 2004). Correspondingly, the saturation 988 
throughput was highest between 2000 and 2002 and also decreased thereafter. According to our 989 
hypothesis, the decrease in saturation throughput from 2003 onwards happened because the 990 
pressures to maximize throughput were removed. The time scale of the effect appears to be 2 or 991 
3 years, as the saturation throughput did not immediately follow the decrease in demand in 2001 992 
and did not rebound in 2004. The declared capacity remained higher for longer (until 2005) 993 
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perhaps because of institutional memory, before decreasing. Note that even though the saturation 994 
capacity decreased, the taxi times (which can be viewed as the amount of pressure on the system) 995 
stayed constant or decreased as well. There are other hypotheses on the change in DFW 996 
performance examined in Section 4.6.1. Because DFW experiences such a large change in 997 
performance a combination of factors is likely responsible, with many of them being specific to 998 
the airport.  999 

 1000 

Figure 29: DFW Demand and Capacity 1001 

 1002 

Given this complex relationship between saturation capacity and demand and declared 1003 
capacity, saturation curves needed to be modeled in the future. In addition, it was hypothesized 1004 
that they could depend on other airport variables such as the number of runways in use or the 1005 
percentage of capacity used, especially when an airport is expected to construct a new runway 1006 
(creating a new configuration). Finally, a linear model is not very appropriate because while 1007 
saturation throughput could significantly decrease as seen at DFW, there is an upper limit to the 1008 
amount it can increase that is determined by separation requirements between flights, which a 1009 
linear model would not capture. 1010 

Instead, future saturation curves were estimated using the Random Forest (RF) method 1011 
[20]. The Random Forest was chosen because of the many parameters and conditions that affect 1012 
an airport’s performance, as well as the non-linearity of the performance. The RF method uses 1013 
groups of decision trees that test the importance of different parameters in order to predict values 1014 
by calculating the average over all predictions from the individual trees. RF is appropriate for our 1015 
analysis because it makes no assumptions about the functional relationship between the 1016 
input/predictor variables and the output, and avoids biases by not assuming a particular function 1017 
is the correct form to describe airport behavior.  1018 
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The saturation point and saturation throughput are the target prediction variables that define 1019 
the airport throughput saturation curves to first order. The input parameters to the random forest 1020 
model were chosen using engineering judgment as well as the input of subject matter experts and 1021 
included the mean and peak hourly demand and capacity, the usage of a configuration, the 1022 
physical size of the airport, and the number of gates. The decision trees were trained, or ‘grown’, 1023 
on data from 2000 to 2010, those being the years for which ASPM data exists. Data based on the 1024 
capacity growth forecasts and future schedules, supplemented with parametric variation of the 1025 
curves as appropriate for representative days/conditions for the future study years, were input 1026 
into the model to obtain the future saturation curves. 1027 

The saturation point is defined for the purposes of calculation as the first point at which the 1028 
throughput reaches 95% of its maximum value. To eliminate the high variability due to small 1029 
sample sizes (outliers at high N values with abnormally high throughput), the 2% of data with 1030 
the highest N values were removed from the data set for the calculation of N*. The saturation 1031 
throughput is simply the mean throughput at the saturation point. While the 95% and 2% values 1032 
are arbitrary, there is no perfect set of values due to the idiosyncrasies of real data. These values 1033 
were tested on a subset of the total data and found to be similar to the values obtained from 1034 
physical examination of the curves. When calculating the congestion at an airport, the full data 1035 
set (with the top 2% added back in) was considered. 1036 

 1037 

4.2.3 Taxi Time Simulation 1038 

In order to determine future year operating points relative to this curve, a traffic simulation 1039 
capability which had been previously developed and validated at MIT [19] has been modified to 1040 
use the inputs identified above to predict taxi times in the future. The simulation calculates taxi 1041 
times for every flight over the course of a year in a given configuration by modeling the aircraft 1042 
departure process as a queuing system. It takes the future year schedules as its main input and 1043 
assumes that the scheduled departure times will be the pushback times for each flight. Taxi time, 1044 
τ is related to the size of the departure queue by: 1045 

 1046 

where τunimpeded is the average unimpeded time (by airline or overall), α is a taxiway 1047 
congestion factor, R(t) is the number of aircraft on ramps and taxiways at time t, and Wq(t) is the 1048 
expected waiting time at time t. The simulation calculates the time for three different segments of 1049 
taxiing: unimpeded time, taxiway congestion time, and time in departure queue. In Figure 30 α 1050 
represents the Ramp and Taxiway interactions, Wq(t) is the time spent in the departure queue 1051 
(which depends on the runway server), and τunimpeded is the base time it would take if the ramp 1052 
interactions and departure queue were 0. 1053 
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 1054 

Figure 30: Departure Process [19] 1055 

 1056 

These three segments have tunable parameters: τunimpeded, α and capacity (which affects Wq). 1057 
The average unimpeded time used was the average across all airlines in a specific configuration 1058 
from 2010, because the physical layout of an airport can change suddenly and unexpectedly (e.g. 1059 
if an airline moved terminals or left an airport). By using the overall taxi time, the robustness of 1060 
the model is improved. There were no changes to the unimpeded time because of new 1061 
construction because of the uncertainty in completion times and effectiveness. The taxiway 1062 
congestion factor is calibrated from the present day training data by matching the amount of 1063 
congestion predicted with the congestion actually seen. In [19] this factor is calibrated by 1064 
matching the mean and median taxi times. Congestion matching was chosen because it more 1065 
accurately predicts taxi times during congestion, which is the regime of interest.  1066 

The saturation throughput from the RF model was used to determine the service rate for the 1067 
departure queue. The service rates (aircraft/minute) were calculated from the training data for 1068 
different levels of arrivals to reflect the interdependence of the arrival and departure rates. The 1069 
saturation throughput calculated by the RF model was an average value, so to translate that to 1070 
different levels of arrivals, the difference between the average service rate and the rate implied 1071 
by the saturation throughput was calculated. This difference was added to the rates for each level 1072 
of arrival to determine the new service rates. The service rates were modeled as Erlang 1073 
distributions, where the arrivals at the runway threshold were assumed to be random. Each 1074 
runway configuration at each study airport was modeled as a single server with infinite space for 1075 
the queue, and aircraft are taken first-come, first-served.  1076 

With estimates of taxi time, the evolution of N(t), the number on surface, over the course of 1077 
the day can be calculated.  Note N(t) is not the same as R(t) because it includes aircraft in the 1078 
departure queue at the end of the runway. Benefits of surface congestion management relative to 1079 
the baseline case for future years are calculated in the same way as described previously, by 1080 
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taking the number of flights operating above N* and multiplying by the difference between the 1081 
average taxi time at N* and the average for flights above N*. 1082 

The two main modifications to [19] that were implemented for this thesis were calibrating 1083 
the taxiway congestion factor to the amount of congestion instead of the mean/median taxi times, 1084 
and changing the service rates to match the values predicted by the Random Forest instead of 1085 
using the values from the operational data. The second change was important because it reflects 1086 
the change in airport performance due to secondary variables beyond capacity such as demand. 1087 
Without it, the airport performance would be static (unless additional runways are planned, as at 1088 
ORD).  1089 

In addition to the two modifications, the decision was made to model the 5 most-used 1090 
configurations separately for each airport instead of choosing one ‘aggregate’ configuration. 1091 
There were several reasons for this decision. The simulation is supposed to be tailored to a 1092 
specific configuration with average unimpeded times and service rates. By using an aggregate 1093 
configuration, one dilutes the validity of the model. In addition, if an airport has configurations 1094 
that vary in performance, the benefits of SCM would be greatly affected by assuming one 1095 
configuration. For example, a hypothetical airport with two configurations, one with two 1096 
departure runways that is in use 55% of the time and one with one departure runway that is in 1097 
use 45% of the time. If the most common configuration is used, the effective throughput of the 1098 
airport is relatively high and congestion that might have been present in the configuration with 1099 
one runway is eliminated. 1100 

Because the simulation is configuration-specific, realistic configuration choices are needed. 1101 
The weather and configuration choices from the base year (2010) were taken as typical and used 1102 
for every future year. While configuration choices and weather can change from year to year, the 1103 
behavior is unpredictable and compared to any predictions one might make the base year is at 1104 
least proven to be within the envelope of airport behavior.  1105 

 1106 

4.2.4 Results, Validation, Constraints 1107 

To calculate the future benefits, demand and capacity inputs are needed. The taxi time 1108 
simulation takes as a demand input a pushback schedule. This was obtained from “NextGen 1109 
schedules” provided by the FAA from their SWAC model [21]. This is a NAS-wide network 1110 
model which is used by the FAA to develop NextGen flight scenarios (as was used for the future 1111 
schedules input discussed above), and has the ability to “trim” flights when the demand at any 1112 
given node (airport) in the network causes degraded performance beyond a certain threshold 1113 
level. To calculate the capacities used to trim the schedules, the average ADR in the base year 1114 
was increased in the future by the percentage suggested by the MITRE FACT2 report [22].  This 1115 
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resulted in a discrepancy at ORD where the capacity increased by more than the average 1116 
saturation throughput predicted by the RF model. This will be discussed further in section 4.4.7.  1117 

After the taxi times and saturation curves are calculated, the benefits must be summed 1118 
across the 5 common configurations. Using only 5 configurations caused an inconsistency 1119 
between the simulation results and the field trial results for two reasons: firstly, low-use 1120 
configurations can have disproportionate benefits from metering, meaning that only scaling the 1121 
top 5 configurations underestimates the true benefits. Secondly, only examining VMC conditions 1122 
also underestimates the benefits because IMC conditions have more benefits / hour of time due 1123 
to the reduction in capacity and congestion caused by bad weather. To account for this, the 1124 
benefits for the base year were calculated from ASPM using the 5 configuration and scale up 1125 
method as well as with one aggregate saturation curve that included all configurations and 1126 
weather conditions. The benefits obtained using these two methods were compared to obtain a 1127 
scaling factor between the scale up method and the aggregate method (more representative of 1128 
actual benefits). This factor was then used to scale up the future benefits so that they were 1129 
compatible with the historic benefits and the field trial. 1130 

The “unconstrained benefits” are produced by the method outlined above, but in reality 1131 
there are physical constraints to the number of flights that can be held by a departure metering 1132 
approach, e.g., by the number of gates or off-gate hold locations. The “practical benefits” results 1133 
outlined here consider airport gates as a limiting resource. If there are too few gates, metering 1134 
might need to be scaled back or conducted off gate, which is not as desirable. To calculate the 1135 
gate utilization, OOOI times from ASPM were used. The result is that the approximate number 1136 
of aircraft on the ground (assumed to be at a gate) can be calculated throughout the day. This 1137 
count is calculated by adding one when an aircraft arrives at a gate (IN time) and subtracting one 1138 
when an aircraft departs (OUT time). The count is calculated at each minute from midnight to 1139 
midnight of one day and is airline-specific. Finally, because the count starts at midnight there are 1140 
an unknown number of aircraft already on the ground. This results in a count that can be negative 1141 
at times. To normalize for this, the absolute value of the minimum value (largest negative 1142 
number) is added to the entire count for that airline. For example, if an airline has a point in time 1143 
where the count is -8, 8 would be added to every value in the count so that the new minimum 1144 
value is 0. This approach assumes that each airline has 0 aircraft at a gate at one point during the 1145 
day. This not completely accurate, but the induced error is small. The capacity of the airport to 1146 
conduct on-gate holds can be estimated by taking the difference between the number of gates in 1147 
use and the total number of gates at the airport.  This method makes several simplifying 1148 
assumptions: It neglects gate ownership issues (in the US, gates are ‘owned’ by a specific airline 1149 
and are not a shared resource), the size of gates and their ability to handle different types of 1150 
aircraft and whether or not an aircraft was moved off gate after arrival,. It also does not explicitly 1151 
show space available for off-gate holds. Off-gate holding space is very hard to quantify without 1152 
interviews with staff at specific airports, but examination of LGA maps (the most constrained 1153 
airport) identified several possible locations. We therefore assumed that off-gate holds could be 1154 
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used at all airports.  With this assumption, our cutoff for on-gate metering was the total number 1155 
of gates at an airport. We assumed that the utilization could temporarily hit that peak, with the 1156 
excess demand held off gate, but that if the utilization was significantly over the number of gates, 1157 
metering could not take place.  1158 
 1159 

The gate utilization was calculated for each airport and year in the study and compared to 1160 
the number of gates at the airport (or planned to be constructed). If the analysis showed that there 1161 
would not be enough gates to accommodate metering, then the benefits were restricted to the last 1162 
year in which the gates could accommodate metering. Figure 31 shows results using future 1163 
schedules from DFW and JFK in 2010. The average number of aircraft at a gate is shown on they 1164 
axis, with the X-axis showing the time of day. Both airports have approximately 150 gates but 1165 
face different future demands. While DFW is forecast to have little growth in demand for gates 1166 
in the future, JFK will, according to these schedules, face increasing competition for gates even 1167 
without the implementation of SCM. 1168 

Several other airports will be shown to exceed their gate capacity in future years. This 1169 
illustrates a fundamental problem with the generation of future schedules: the only constraining 1170 
capacity is the runway capacity when there are in fact several others that can restrict an airport, 1171 
such as gate capacity, security, and noise abatement. Because these factors are not considered, 1172 
the use of these schedules can lead to overestimates of benefits because demand levels are higher 1173 
than realistic levels at several airports. While we attempt to correct for this by restricting growth 1174 
of benefits when gate constraints are met, the preferred method would be to regenerate the 1175 
schedules with additional constraints. Unfortunately, this was not feasible for this thesis. Because 1176 
the methodology behind the generation of the future schedules is unknown, the impact on the 1177 
results is hard to quantify. Nevertheless, results using a new set of schedules would not be 1178 
expected to be substantially different from the ‘Practical’ set of results because they reflect the 1179 
benefits at the maximum sustainable demand given the shape of the schedule. 1180 
 1181 

 1182 
Figure 31: DFW and JFK Gate Utilization (Future Schedules) 1183 
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4.3 AIRPORT SCOPE 1184 

8 airports have been examined in detail: ATL, BOS, DFW, IAD, JFK, LGA, ORD, and 1185 
PHL. JFK and BOS were chosen because of their recent and ongoing field trials of SCM. The 1186 
other airports were chosen to represent different types of airports. LGA is small and space 1187 
constrained, PHL is larger but space constrained, DFW is large with relatively low demand, 1188 
ORD and ATL are large with high demand, and IAD is a medium sized airport. Results for each 1189 
airport are included in the next section.  1190 

 1191 

4.4 RESULTS 1192 

 1193 

Results are given for the 8 study airports in terms of hours of taxi time reduction. In the 1194 
discussion section, these time savings will be converted into fuel and monetary savings. The 1195 
predicted benefits are shown in panel b for each airport. The historical benefits (Benefits that 1196 
could have been realized if metering was in place) between 2000 and 2010 were calculated with 1197 
ASPM data and are displayed for comparison. These historical benefits estimates generally 1198 
validate the methodology because the 2010 (Actual) and 2010 (Simulated) points are close. 1199 
When field demonstration data is available (i.e. for JFK and BOS), that too is used for 1200 
comparison. The top-left chart for each airport shows different measures of demand and capacity 1201 
between 2000 and 2030 that helps to interpret the unconstrained benefits results. The historical 1202 
capacity is the average declared departure capacity from ASPM, while the saturation throughput 1203 
is calculated from the average of the throughputs for the saturation curves for the 5 most used 1204 
VMC configurations. The bottom left chart for each airport shows the average gate utilization 1205 
during the study years, as well as the current number of gates at the airport. This is used to 1206 
identify disparities between forecast demand and forecast gate availability. If there are 1207 
significant gate constraints, then the benefits are capped and the bottom right chart shows the 1208 
resulting practical benefits.  1209 

 1210 
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4.4.1 ATL - Atlanta 1211 

 1212 
Figure 32: ATL Departure Metering Benefits Results 1213 

 1214 

Demand at ATL is predicted to increase by about 30% from 2010 to 2030, while the 1215 
predicted capacity does not increase significantly. The historical benefits show a large increase in 1216 
2003-4 as a result of the increasing demand, before dropping off as the airport performance 1217 
improved from 2006-8 (see the saturation throughput / capacity) with largely steady demand.  As 1218 
a result of the increased demand in the forecast, the airport shows steadily increasing 1219 
unconstrained benefits from departure metering through 2030 The gate utilization results show 1220 
that there is significantly higher need for holds than there are gates available in 2030, so the 1221 
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practical benefits are capped at 2025 levels. It is assumed that the relatively short time periods in 1222 
2025 where gate utilization exceeds gate capacity can still be metered by holding aircraft in off- 1223 
gate locations. The unusual gate utilization in 2030 will be explained in the discussion section. 1224 
The gate utilization for all airports shows a steady scaling up of the current pattern with 1225 
increasing demand. Analyzing the shape of the curve is beyond the scope of this thesis, but 1226 
instead of simply scaling up a future utilization curve might be flatter over the course of the day 1227 
if an airport is near capacity (akin to current day LGA). 1228 

 1229 

4.4.2 BOS – Boston Logan 1230 

 1231 

Figure 33: BOS Departure Metering Benefits Results 1232 

 1233 
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Expected demand growth at BOS is about 20% from 2010 to 2030 (although demand in 1234 
2030 is not expected to be any larger than the airport handled in 2000), while capacity is not 1235 
expected to increase significantly. The historical benefits roughly follow the historical demand at 1236 
BOS, but are very low relative to the other study airports. Because the demand does not reach the 1237 
levels seen in 2000, it is reasonable that the benefits also stay within the range already seen. Gate 1238 
utilization is not expected to be a constraining factor at this airport because it remains under its 1239 
capacity for the duration of the day and therefore the practical benefits are expected to be similar 1240 
to the unconstrained. The extrapolation of the results of the MIT field trial previously discussed 1241 
in Chapter 2 is shown in Figure 34. The results from the simulation for the base year of 2010 1242 
have been added to the chart and compare favorably to the configuration specific benefits 1243 
estimated from both the field trial and ASPM saturation curve for 2010, providing some 1244 
validation of the operational realism afforded by the approach. 1245 

 1246 

Figure 34: Boston Field Demonstration Validation 1247 

 1248 
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4.4.3 DFW – Dallas / Fort Worth 1249 

 1250 

Figure 35: DFW Departure Metering Benefits Results 1251 

 1252 

DFW airport  is forecast to reverse its recent decline in traffic, and there is no expected 1253 
increase in capacity. The decrease in the future benefits in 2020 is due to the simulation- 1254 
predicted increase in performance (and corresponding decrease in benefits) between 2015 and 1255 
2020, which can be seen in panel b. While this may seem like a sudden change, the historical 1256 
data shows substantial volatility. This is a reversion to the performance in the early 2000’s, when 1257 
there was a similar demand level. This effect is elaborated on in section 4.6.1. There should be 1258 
sufficient gate space without any expansion in terminal facilities (and there is room for terminal 1259 
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expansion at the airport if necessary), resulting in practical benefits that are equal to the 1260 
unconstrained benefits. 1261 

 1262 

4.4.4 IAD  - Washington Dulles 1263 

 1264 

Figure 36: IAD Departure Metering Benefits Results 1265 

 1266 

Dulles airport shows steadily increasing traffic from 2010 through 2030. There are several 1267 
discrepancies in the results that merit explanation. The first is the spike in traffic in 2004 and 1268 
2005 that did not produce the same magnitude increase in taxi time and benefits relative to other 1269 
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airports. The sharp rise in traffic was due to the rise and fall of Independence Air, which was 1270 
based at Dulles and operated from June 2004 to January 2006. The gate usage chart in Figure 38 1271 
from 2004 suggests that Independence tried to avoid the departure banks of United that would 1272 
minimize the added congestion and benefits. Compared to the 2010 chart in Figure 38  (uses 1273 
ASPM data as opposed to Figure 36 which uses the future schedule), there are secondary 1274 
departure banks around 0700, 1000 and 1400 in between the main United pushes. This would 1275 
mean that congestion is lessened because the increased demand happened at off-peak times. 1276 

 1277 

Figure 37: 2004 Gate Usage at IAD 1278 
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 1279 

Figure 38: 2010 ASPM IAD Gate Usage 1280 

 1281 

Traffic in 2020 is predicted to be at 2005 levels and the predicted benefits are much higher 1282 
most likely because the growth is spread evenly across all carriers and the timing of the 1283 
additional flights is not focused in off-peak times as it was in 2004. Increasing traffic during the 1284 
busy departure pushes would greatly increase congestion and benefits, much more so than the 1285 
addition of Independence Air in 2004-5. A second cause for the future benefits being higher than 1286 
the present day is shown in Figure 39. In the ASPM individual flights database, there are no days 1287 
with more than 500 departures while the FAA schedule has multiple such days. The ASPM 1288 
historical demand shown in Figure 36a matches with the future demand because it is an 1289 
aggregate count that includes flights such as military and GA that are not necessarily counted in 1290 
the individual flights database. This makes a difference because the individual flights database is 1291 
used to calculate the saturation curve and taxi time simulation. The effect of the difference 1292 
between the aggregate and individual databases is negligible at the other airports, but IAD has a 1293 
17% difference in the number of flights (BOS is second at 6%). One solution would be to further 1294 
trim the demand at IAD but that was not possible for this thesis. In terms of gate utilization, 1295 
Figure 36 shows that there are significant gate conflicts from 2020 onwards, especially with the 1296 
‘banked’ behavior due to the United hub. Benefits are thus capped at 2015 levels. The IAD 1297 
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saturation curves from 2005 and 2006 (Figure 40 and Figure 41) support the hypothesis that IAD 1298 
has not reached its capacity, and are very different even though they are only one year apart due 1299 
to a 20% drop in VMC traffic. The difference between the curves shows that IAD appears to not 1300 
have reached its maximum capacity even at 2005 traffic levels. In 2005, the calculated N* is 30 1301 
even though the throughput continues to increase after that point. This is due to the method of 1302 
calculating N* which discards the top 2.5% of flights as unreliable. In this case, however, there 1303 
appears to be a definite trend showing possible higher performance. The current methodology 1304 
does not capture the possible higher performance at high demand levels, leading to increased 1305 
estimates of congestion in the future. Another problem with IAD in particular is the reporting of 1306 
its configurations. The saturation curves are for 1L, 1R | 30 which means that arrivals are on 1L 1307 
and 1R with departures on 30. For a typical airport with one departure runway (LGA, JFK), the 1308 
saturation throughput is around 10 / 15 minutes. The saturation throughput here is between 18 1309 
and 25 / 15 minutes, suggesting that the airport is using other runways as departure runways and 1310 
not accurately reporting it. This decreases the accuracy of both the RF model and the traffic 1311 
simulation. 1312 

 1313 

Figure 39: Average number of departures / day in ASPM and FAA schedule (2010) 1314 

 1315 
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 1316 

Figure 40: IAD 2005 Saturation Curve 1317 

 1318 

 1319 

Figure 41: IAD 2006 Saturation Curve 1320 
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 1321 

4.4.5 JFK – New York JFK 1322 

 1323 

Figure 42: JFK Departure Metering Benefits Results 1324 

 1325 

JFK shows steadily increasing benefits as the demand increases. The demand is 1326 
substantially above the peak historic traffic level seen at JFK in 2007 even though the capacity is 1327 
not forecasted to grow and taxi times and delays are already high. The saturation throughput is 1328 
forecast to grow slightly as a response to the increasing demand. The growth in demand coupled 1329 
with a lack of growth in capacity results in large benefits into the future, but the demand for 1330 
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metering will exceed the available gate space soon after 2015. This indicates that either there 1331 
needs to be new terminal construction (which is not planned) or that the demand is too high. 1332 
Given this constraint, the practical benefits from metering are capped at 2015 levels. There is no 1333 
data point for the historical benefits in 2010 because of the field demonstrations being conducted 1334 
at the airport by PASSUR at that time. However, these trials allow further validation of our 1335 
approach. The comparison between the benefits from the field results (the black diamond in 1336 
panel d) and ASPM data from Chapter 3 is reproduced here with the addition of the simulated 1337 
benefits. 1338 

 1339 

4.4.6 LGA – New York LaGuardia 1340 

 1341 

Figure 43: LGA Departure Metering Benefits Results 1342 
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 1343 

LaGuardia airport is forecast to have no growth in the study time period. This is expected 1344 
given LGA’s slot-controlled status.  As a result, the benefits do not vary much over the course of 1345 
the study. The spike in 2020 is likely due to small variations in the predicted performance of the 1346 
airport (the average taxi time is slightly higher) and does not have a major impact on overall 1347 
benefits. There are a significant number of open gates during the day in all years, allowing for 1348 
the full benefits of metering to be achieved. This figure is roughly similar to Figure 31, which 1349 
serves as a reality check.  1350 

 1351 

4.4.7 ORD – Chicago O’Hare 1352 

 1353 

Figure 44: ORD Departure Metering Benefits Results 1354 
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 1355 

O’Hare airport has relatively low benefits through 2020 because of the runway capacity 1356 
expansion project scheduled to finish by 2020. This is the only airport in the study undergoing 1357 
physical expansion. The expansion introduces much uncertainty into the calculation of benefits 1358 
because the capacity of the airport determines the demand (through trimming) but the saturation 1359 
throughput (performance) determines the benefits. The simulation implies high levels of benefits 1360 
in 2030 because it predicts that the saturation throughput of ORD will not be as great as the 1361 
predicted capacity. This prediction is based on the past performance of ORD as well as the 1362 
performance of DFW, an airport whose current configuration is similar to ORD’s future 1363 
configuration. The demand will thus exceed the capacity at ORD in the model, causing a large 1364 
amount of congestion. The future ORD will be comparable to the current DFW layout. The peak 1365 
DFW throughput, which occurred in 2002, was 28 departures / 15 minutes, which is around the 1366 
simulation level. If this is the true performance of ORD in the future, the demand will likely be 1367 
forced lower than forecast to keep delays low, which would in turn drive the benefits lower. If, 1368 
instead, the airport performs at the level predicted by the capacity, the demand would remain the 1369 
same but the benefits would again be lower because there would be fewer delays. Because in 1370 
either case the benefits would be lower than the simulation predicts, the practical benefits for 1371 
2030 were capped at the 2025 level. Demand for metering can be satisfied with current terminal 1372 
infrastructure until 2025. However, ORD has several locations identified for future terminal 1373 
expansion. Therefore, it is assumed that there will be sufficient gate space to perform metering in 1374 
2030 with the given demand.  1375 

 1376 
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4.4.8 PHL – Philadelphia Intl 1377 

4.4.9  1378 

 1379 

Figure 45: PHL Departure Metering Benefits Results 1380 

 1381 

Philadelphia airport shows a medium level of benefits comparable to other airports in the 1382 
study, with the future demand in 2030 slightly exceeding the peak seen in 2005. The main 1383 
anomaly is the unusual behavior of the gate utilization curves for 2020, 2025 and 2030, which all 1384 
end the day with many more planes than they started with. Panel c shows that there will be 1385 
insufficient gate space in 2030 to accommodate the demand. Therefore, benefits are capped at 1386 
2025 levels. This causes the benefits in 2030 to rise because the airport performance was 1387 
predicted to incrementally improve from 2025 to 2030, lowering the benefits relative to 2025. 1388 
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When the demand is capped at 2025 levels, this improvement in performance is nullified and the 1389 
benefits increase to 2025 levels. 1390 

4.5 AGGREGATE BENEFITS 1391 

4.5.1 Aggregate Departure Metering Benefits 1392 

The airports with major contributions to the unconstrained benefits are ORD, ATL, and 1393 
JFK, as shown in Figure 46. The other four airports are all at about the same lower level of 1394 
benefits. When the practical benefits are examined which account for gate constraints, JFK and 1395 
ATL  approach the lower group, as shown in Figure 47. ORD has reduced benefits because of 1396 
the uncertainty in the airport expansion project. The practical benefits show that all airports are 1397 
in the 0-50,000 hours of taxi time reduction range. This is a realistic value. Taking JFK 2015 as 1398 
an example: 50,000 hours of taxi time reduction means that there were about 50,000 hours of 1399 
gate hold in a year. That equates to 137 hours a day.  1400 

At an average of 640 departures a day, on average a flight will be held 13 minutes. Because 1401 
metering will most likely be needed (and used) only at certain times of day, average holds could 1402 
be between 20 and 30 minutes. Departure metering does not reduce delays, but only transfers 1403 
them to the gate. Therefore, holds of between 20 and 30 minutes implies delays of at least that 1404 
long. The amount of delay implied by the 2030 JFK unconstrained benefits (approximately 3 1405 
times 2015 or 1.5 hours), would likely lead to a reduction in demand until reasonable delay 1406 
levels were reached.  1407 

 1408 

Figure 46: Aggregate Unconstrained Results 1409 
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 1410 

 1411 

Figure 47: Aggregate Practical Results 1412 

 1413 

4.5.2 Monetization of Departure Metering Benefits 1414 

Assuming a fuel price from 2010 to 2030 of $2.43 in FY2011 dollars[23], the 1415 
unconstrained benefits from fuel savings can be calculated to be $3.6 billion dollars cumulative 1416 
from 2010 to 2030 across the 8 airports studied, as shown in Table 3 and Table 4. Summing the 1417 
practical benefits results in $2.3 billion. These estimates assume 3.1 kg / gallon of jet fuel and 1418 
airport-specific fuel burn rates (using ICAO taxi fuel rates) which account for the fleet mixes at 1419 
each as shown in Table 2 below. Taking the average taxi times from the simulation and 1420 
multiplying by the total number of flights, we can find the total estimated time spent in taxi as 1421 
well as the corresponding fuel burn. We calculated that for the 8 airports cumulatively from 2010 1422 
to 2030 in the Unconstrained case there would be 6 billion gallons of fuel burned, or $14.4 1423 
billion, making the savings from SCM almost 26% of the total fuel cost in taxi. This is higher 1424 
than the estimate presented in Chapter 3 because these eight airports are forecast to operate in 1425 
congestion much more frequently in the future, requiring SCM to operate for longer periods of 1426 
time. In terms of total fuel burn in all stages of flight, scaling data for 2010 from the BTS [18] by 1427 
the future demand levels, we can calculate that the total fuel burn at these 8 airports will be 100.5 1428 
billion gallons, with a corresponding cost of $244 billion. The benefits are then 1.5% of the total 1429 
fuel burn. For the practical case, the results are 5.3 billion gallons of fuel, $12.8 billion, and 18% 1430 
of total fuel cost for taxiing only and 97 billion gallons of fuel, $235.8 billion, and 1.0% of the 1431 
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total fuel burn. Again, care should be taken with the estimate of the percentage of total fuel burn 1432 
because only domestic carriers are included, and the true percentage is probably lower. The 1433 
percentages vary substantially by airport because of the nature of SCM. For airports such as BOS 1434 
with little potential for benefits, most of the taxi time will not be during congestion and therefore 1435 
the percentage of taxi (and total) fuel saved is low.  1436 

 1437 

Table 2: Airport-Specific Fuel Flow Rates 1438 

Airport Fuel Burn Rate 
(kg/sec) 

ATL 0.2155 
BOS 0.1892 
DFW 0.2214 
IAD 0.1729 
JFK 0.3096 
LGA 0.1707 
ORD 0.2099 
PHL 0.1733 

 1439 

 1440 

Figure 48: Unconstrained Fuel Benefits from Metering 1441 

 1442 
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 1443 

Figure 49: Practical Fuel Benefits from Metering 1444 

 1445 

Table 3: 2010-2030 Cumulative Benefits by Airport, Unconstrained 1446 

Unconstrained 

Airport 
Thousand 

Hours Taxi 
Time 

Reduction 

Million 
Gallons $ Millions 

Savings as % 
of taxi-out 
fuel cost 

Savings as % 
of total fuel 

cost 

ATL 1251 313 761 26% 1.5% 
BOS 59 13 31 4% 0.2% 
DFW 105 27 66 4% 0.2% 
IAD 299 60 146 12% 0.6% 
JFK 1839 661 1606 47% 6.8% 
LGA 326 65 157 22% 1.0% 
ORD 1108 270 656 26% 1.3% 
PHL 446 90 218 20% 0.9% 

TOTALS 5,432 1,498 3,641   

 1447 

 1448 
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 1449 

Table 4: 2010-2030 Cumulative Benefits by Airport, Practical 1450 

Practical 

Airport 
Thousand 

Hours Taxi 
Time 

Reduction 

Million 
Gallons $ Millions 

Savings as % 
of taxi-out 
fuel cost 

Savings as % 
of total fuel 

cost 

ATL 965 242 587 21% 1.2% 
BOS 59 13 31 4% 0.2% 
DFW 105 27 66 4% 0.2% 
IAD 177 36 86 11% 0.6% 
JFK 1060 381 926 35% 1.9% 
LGA 326 65 157 22% 1.2% 
ORD 390 95 231 10% 0.5% 
PHL 455 92 223 20% 1.1% 

TOTALS 3,537 949 2,307   

 1451 

4.6 ANOMALIES AND DISCREPANCIES 1452 

4.6.1 Uncertainty in Runway Capacity / Performance  1453 

Impacts: ORD, DFW 1454 

Both ORD and DFW have varying estimates on the future capacity and performance of the 1455 
airport. In the case of ORD, new construction will add runways but the usage and performance of 1456 
the new configurations is unknown. DFW has no new construction, but history has shown large 1457 
variations in performance with changes in demand. It is not certain in either case what the future 1458 
performance will be, but it will have a major impact on the benefits. DFW will be less impacted 1459 
because the demand at the airport is not forecast to reach even the conservative estimate of 1460 
capacity, keeping the benefits levels low. However, the volatility in the results is visible in 1461 
Figure 35. ORD, on the other hand, would likely not be able to sustain operations at the demand 1462 
level of 2030 because the 300,000 hours of gate hold in 2030 translates to about 40 minutes for 1463 
each flight. This is not an acceptable level of delay (would likely translate to average taxi times 1464 
over 1 hour without metering). 1465 

DFW shows the most variation in its historical performance out of the eight study airports. 1466 
There are several hypotheses on why this has happened. The first is that the large decrease in 1467 
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demand allowed throughput to drop without increasing delay. Without the pressure of high 1468 
demand levels, the airport did not need to perform at high levels and so did not.  1469 

 1470 

Figure 50: DFW Demand and Performance 1471 

 1472 

Figure 50 shows the saturation throughput of the main configuration (South Flow, 13R, 1473 
17C, 17L, 18R | 13L, 17R, 18L) from 2000 to 2010 as well as the total number of operations at 1474 
DFW in each year. The saturation throughput appears to be correlated to the total demand most 1475 
strongly from 2004 onwards. However, the period between 2000 and 2004 cannot be readily 1476 
explained by the demand because it decreases from 2000 to 2002 while the throughput increases 1477 
and then increases from 2002 to 2004 while the throughput decreases. 1478 
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 1479 

Figure 51: DFW Proportion of Prop Operations 1480 

 1481 

Figure 51 shows the same saturation throughput, but compared to the percentage of 1482 
operations that are propeller-powered aircraft. This is a relevant comparison to make because 1483 
Runway 13L is constrained to prop-only operations for noise abatement. When prop operations 1484 
made up a substantial proportion of operations (until 2004), the throughput was higher, between 1485 
24 and 29 departures / 15 minutes. The typical performance of a single departure runway is 1486 
around 10 departures / 15 minutes. Because the south flow has three departure runways, one 1487 
would expect the maximum throughput to be around 30, depending on runway crossings, 1488 
interactions with landings, and symmetrical use of all 3 runways. However, when prop 1489 
operations sharply fell off, the effect was to lose a runway because jet operations could not use 1490 
13L.  1491 

The behavior between 2000 and 2004 is still not fully explained, but it demonstrates the 1492 
complexities and unpredictability of airport behavior. In the future we assume the same fleet mix 1493 
as present day because it is the best guess, but at airports like DFW there could be major changes 1494 
if the demand approaches the capacity. Airlines could see a runway lying essentially unused, and 1495 
convert many of their regional flights back to turboprop aircraft to take advantage of the unused 1496 
capacity, bumping the throughput back to 2000 levels. Alternatively, airport officials could 1497 
decide to lift or partially lift the props-only requirement. These choices would have major 1498 
impacts on the benefits (and, in effect, are implied by the RF model when it predicts that the 1499 
throughput will rise in 2020), but cannot be predicted.  1500 
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The prop-only restriction and change in fleet mix was only found after noticing the large 1501 
change in throughput from 2000 to 2010 and investigating further, but it can easily be imagined 1502 
that there are other such operational changes that have smaller effects and are thus neglected. 1503 
These add to the uncertainty of trying to predict future behavior but cannot be discovered 1504 
without intense inspection of each airport studied, which, given the medium and low fidelity 1505 
methods for estimating future benefits, is not desirable or efficient. It is important to consider the 1506 
large amount of uncertainty inherent in any future prediction, and especially in this particular 1507 
case. A section of Chapter 6 will identify and discuss the main sources of uncertainty in this 1508 
thesis. 1509 

 1510 

4.6.2 Gate Utilization 1511 

Impacts: LGA, BOS, ATL 1512 

Both LGA and BOS show an anomalous hump in the overnight gate utilization that is much 1513 
higher than is seen in the ASPM 2010 data. This is because the FAA future schedules have a 1514 
different distribution of arrivals and departures than the actual distribution in 2010, shown in 1515 
Figure 52. Because the methodology behind the future schedules is unknown, it is assumed that 1516 
it is more likely that the gate utilization will resemble the current day pattern. While this 1517 
difference in distributions could cause a change in the benefits level, it is outside the scope of 1518 
this project to calculate a new schedule with more realistic distributions. The 2030 data for 1519 
Atlanta does not follow the trend for the previous years mainly because of a substantial 1520 
imbalance that appears between the departures and arrivals. Whereas in 2025 there are predicted 1521 
to be 20,000 more arrivals than departures, in 2030 at ATL there are predicted to be 60,000 more 1522 
departures than arrivals. Because the cause of this discrepancy lies in the generation of the future 1523 
schedules, there is little that can be done. The true gate usage at ATL will likely follow the 1524 
current day pattern.  1525 
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 1526 

Figure 52: # of flights per hour in 2010 at LGA  1527 

 1528 

4.7 CONCLUSIONS 1529 

 1530 

The results of the medium fidelity analysis show that there are substantial potential benefits 1531 
in the future from SCM at all of the 8 study airports. BOS has the lowest forecast benefits over 1532 
the 20-year period, but still would realize over $30 million in fuel savings alone, or 3.8% of  1533 
their taxi-out fuel costs. The analysis also showed that the future demand forecast could be 1534 
overestimating future capacity and does not take gate constraints into account. Because the 1535 
forecast was an input to the model that could not be replaced or modified, the resulting benefits 1536 
estimate is highly uncertain. However, it is clear that at major airports such as JFK and ATL, 1537 
even moderate increases in demand will result in severe congestion and that SCM shows the 1538 
ability to reduce the environmental and fiscal impact of this congestion. 1539 

0	  
5	  

10	  
15	  
20	  
25	  
30	  
35	  
40	  
45	  
50	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	   22	  

N
um

be
r	  
of
	  F
lig
ht
s	  

Hour	  of	  the	  day	  

FAA	  Arrivals	  

ASPM	  Arrivals	  



 

 84 

5. LOW FIDELITY METHODS FOR ASSESSING SCM BENEFITS AT NAS- 1540 
WIDE AIRPORTS 1541 

5.1 BACKGROUND 1542 

 1543 

As the results from the previous chapter have shown, potential benefits from departure 1544 
metering can vary greatly from airport to airport. This makes extending the benefits assessment 1545 
to a wider set of airports a challenge. We could not complete the medium fidelity analysis at all 1546 
the OEP 35 airports in the time available for this thesis, but it would be a feasible and useful 1547 
opportunity for future work. In order to make policy decisions, a fast, widely applicable model is 1548 
desirable. Although these often imply low fidelity, they can be informed and validated by the 1549 
medium and high fidelity models already presented. In addition, we recognize that an airport is a 1550 
complex system and any individual low fidelity method is likely to deliver results that are 1551 
substantially different from another model. Therefore, we present three different methods here to 1552 
attempt to set bounds on the uncertainties in the estimation of benefits and to try to identify 1553 
variables that have a strong correlation with benefits that can be used to identify airports where 1554 
further study would be useful. 1555 

The first method weighs the benefits of the 8 medium fidelity study airports relative to the 1556 
rest of the NAS using the relative amount of taxi delay as the indicator variable, i.e., the relative 1557 
benefits expected at an airport scale with its relative taxi delay within the NAS.  1558 

The second method expands upon the first and replaces taxi delay with other variables that 1559 
can be calculated for future years without simulation to create a linear regression. The regression 1560 
was built using historical data from 2000 to 2010 and tested using benefits estimates for the OEP 1561 
35 airports in 2010.  1562 

The third method forms clusters of airports with similar characteristics that are assigned the 1563 
mean benefit level of the medium-fidelity study airports in that set.  1564 

Each of these low fidelity modeling methods are examined in turn in this chapter. The 1565 
recurring theme through this section will be the tradeoff between simplicity and ease of 1566 
calculation on one hand and perceived accuracy of the results on the other. While all three 1567 
methods fall under the umbrella of the ‘low fidelity’ method, there is substantial variation  1568 
among them and each has their own merits and shortcomings. 1569 

 1570 
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5.2  METHOD 1: PERCENTAGE OF TAXI DELAY 1571 

 1572 

Taxi delay should be an intuitive driver of SCM benefits, given SCM aims to address 1573 
excess taxi times. Taxi delay at an airport can be calculated by finding the average unimpeded 1574 
time (often taken as the 10th percentile of all taxi-out times) as well as the overall average time. 1575 
The difference between the two multiplied by the total number of flights represents the taxi 1576 
delay, or excess taxi time.  1577 

SCM is designed to reduce excess taxi time with engines on by spending that time held at a  1578 
gate or other location. Therefore, one hypothesis is that taxi delay is linearly related to benefits 1579 
from SCM. An assumption also needs to be made about how benefits and taxi delay relate into 1580 
the future: the assumption used here is that the proportion of nationwide taxi delay at any given 1581 
airport will remain constant into the future. Using this assumption, the percentage of delay at the 1582 
8 study airports from the medium fidelity methodology in 2010 is equal to the percentage of 1583 
benefits both for the current day and into the future. From ASPM, the 8 study airports account 1584 
for 40.8% of the taxi delay out of the OEP 35 airports in 2010, resulting in a scaling factor of 1585 
2.45. Therefore, one estimate of benefits from SCM at the OEP 35 airports is $8.9 billion if the 1586 
unconstrained results are scaled, and $5.7 billion for the practical. Scaling the 2010 fuel estimate 1587 
from [18] by the future demand, the total fuel burn in all stages of flight for departures from the 1588 
OEP35 airports is 319 billion gallons, or $775 billion. The unconstrained benefits are then 1.1% 1589 
of the total fuel cost, and the practical are 0.7%. Again, these numbers are probably 1590 
overestimates. 1591 

This method has the advantage of being simple to calculate but suffers from the inaccuracy 1592 
of a number of assumptions. The first is that taxi delay is directly proportional to benefits. Figure 1593 
53 and Figure 54 show that the benefits from SCM are much more concentrated at certain 1594 
airports than the taxi delay. In particular, BOS, DFW and IAD have a substantially smaller 1595 
proportion of SCM benefits than their proportion of taxi delay. This is related to the discussion 1596 
on CDQM. There is a certain amount of taxi delay that is not affected by SCM, the ‘target delay’ 1597 
of CDQM that allows airports to maintain maximum throughput. At BOS, DFW and IAD most 1598 
flights that have taxi delays have delays that are under the target delay and therefore may not be 1599 
as affected by SCM. Most airports with low taxi delay per flight will similarly have fewer 1600 
benefits than their taxi delay suggests.  1601 

Another assumption that the method makes is that the ratio between the practical and 1602 
unconstrained benefits remains the same across the OEP 35 airports as it was at the 8 study 1603 
airports. The validity of this assumption is hard to gauge. Alternatively, the two estimates could 1604 
be viewed as ‘high’ and ‘low’ estimates using the taxi delay method. 1605 
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If the optimal target delay could be determined then it could be subtracted from the total 1606 
taxi delay to find the possible benefits as in [5]. The problem, as mentioned before, is that the 1607 
optimal target delay can vary from airport to airport. If the optimal target delay identified in the 1608 
CDQM study of 6 minutes is applied to every airport, Figure 55 shows that the proportions still 1609 
do not match well with the proportion of benefits; most notably, BOS, JFK and IAD have higher 1610 
share than their share of benefits. Relative to the OEP 35, the 8 study airports now have 59.8% of 1611 
the delay, which leads to a scaling factor of 1.67 and OEP 35 estimated benefits of $6.1 and $3.9 1612 
billion for the Unconstrained and Practical cases, which are 0.8% and 0.5% of total fuel cost.  1613 

 1614 

Figure 53: 2010 Taxi Delay at 8 Study Airports 1615 

 1616 

 1617 

Figure 54: 2010 SCM Benefits at 8 Study Airports 1618 
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 1619 

Figure 55: 2010 Taxi Delay - 6 minutes at 8 Study Airports 1620 

 1621 

 1622 

Figure 56: Regression of Benefits to Reduced Taxi Delay 1623 

 1624 

The underlying assumption in this model is that taxi delay and SCM benefits are linearly 1625 
related. A regression relating the amount of benefits from SCM per flight to the amount of 1626 
modified taxi delay (delay – 6 minutes) per flight is shown in Figure 56. Using data from 2000 to 1627 
2010 results in the equation y = 0.4542x + 0.3491, with an R2 of .7966. Most of the study 1628 
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airports are seen to lie on the regression line; however, Figure 56 shows that JFK is not well 1629 
described by this equation. One hypothesis to explain this is that the target delay of 6 minutes is 1630 
not as applicable at JFK as it is at other airports. Figure 57 shows that when the target delay for 1631 
JFK is increased to 10 minutes, the R2 is increased to .882 and the equation changes to y = .523x 1632 
+ .359. However, when this regression equation is used to predict the future benefits, there is 1633 
substantial scatter between the Future (predicted by regression) and FutureActual (based on the 1634 
results from the medium fidelity model), especially at higher delays. This highlights the problem 1635 
that regressions should not be used to predict occurrences outside of the data they have been 1636 
trained on. It also reflects the fact that this is not a fair comparison. The taxi delay calculated 1637 
from the medium fidelity model does not include things like IMC conditions which have 1638 
substantial  impacts in actual operations. 1639 

 1640 

Figure 57: Modified Taxi Delay Regression and Prediction of Future Benefits 1641 

 1642 

5.3 METHOD 2: MULTIPLE LINEAR REGRESSION MODEL 1643 

While the modified form of taxi delay shown in the previous section was shown to predict 1644 
benefits from SCM quite well in the present, the performance was reduced in the future (as 1645 
would be expected from a forecast). A more important problem is that taxi delay is only 1646 
available for future years at the airports for which taxi models are available from higher fidelity 1647 
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models (i.e. which were studied in more detail). Because the goal of this chapter is to find a 1648 
methodology that avoids extensive simulation, taxi delay is not a useful metric for a linear 1649 
regression used for forecasting. New variables are needed that can be calculated for the future; 1650 
the challenge is that this restricts the options to those variables that can be derived from the FAA 1651 
forecast data; i.e., the pushback schedule and the forecasted capacity because taxi times are not 1652 
available. 4 variables were chosen to represent congestion: total annual departure demand (# of 1653 
pushbacks), total annual departure demand when an airport is operating at demand levels at or 1654 
above capacity (# of pushbacks in congestion), the number of 15 minute periods in a year when 1655 
the airport is operating at that point (periods with 100% usage), and the yearly average 1656 
percentage of capacity used (% capacity used). For this analysis, a period of congestion was 1657 
defined as a period where the number of pushbacks exceeded the departure capacity for that 1658 
period. While this does not guarantee that the airport is actually operating at capacity (we do not 1659 
know the condition of the runway), it was considered a reasonable proxy. 1660 

These four variables were chosen to represent different aspects of congestion and SCM. 1661 
The total demand shows the overall size of the airport, because large airports would receive more 1662 
benefits from an SCM system than a smaller airport with a similar delay per flight. The 1663 
Pushbacks in Congestion variable represents how much of the total demand is operating when 1664 
the airport is congested. This is different from the 100% Usage periods, which measures how 1665 
often the airport is congested. Two airports that are congested for the same amount of time 1666 
would have different benefits if the capacity is low at one airport (making the threshold for 100% 1667 
usage low) often and the other airport is congested while in its highest capacity configuration. 1668 
The % Capacity used variable gives an idea of the overall congestion at an airport. 1669 

To build the regression, data from the 8 medium-fidelity study airports from 2000 to 2010 1670 
was used. The benefits served as the dependent variable, and the four stated inputs were the 1671 
independent variables. It was found that the percentage of capacity used does not significantly 1672 
improve the quality of the model, so it was discarded. Several other statistical tests were 1673 
performed to test the validity of the regression; these are listed and discussed in Appendix B. To 1674 
mitigate the heteroscedasticity seen in the initial regression (the variance of the residuals was not 1675 
constant, which violates one of the assumptions of a linear regression), the dependent variable 1676 
(Benefits) was transformed by taking the square root. The resulting model is: 1677 

  

€ 

Benefits = a1X1 + a2X2 + a3X3 + a4  1678 

where X1 is # of pushbacks, X2 is periods of 100% usage, and X3 is # of pushbacks in 1679 
congestion. 1680 

The resulting parameters are shown below. As a check, data from the OEP 35 airports was 1681 
obtained for the year 2010 and benefits were calculated using the saturation curve method as 1682 
well as the linear regression. When the estimated benefits were compared to the actual benefits, 1683 
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the R2 was actually higher (0.79) than the R2 (.736, adjusted R2 = .726) from the training data. 1684 
Using data from the future schedules, the inputs were calculated and run in the model. Linear 1685 
interpolations between the future schedule years were calculated to find the total benefits over 1686 
the 2010-2030 period. The resulting benefits were $2.9 billion (0.3% of total fuel costs), much 1687 
lower than the total calculated using the taxi delay method and only slightly more than the total 1688 
practical benefits calculated for the 8 study airports. There is no distinction between the 1689 
unconstrained and practical benefits in this method because the regression is built on historical 1690 
data and the inputs in the future do not change. 1691 

 1692 

Figure 58: Comparison of Medium Fidelity Method and Linear Regression 1693 

 1694 

Examining the individual estimates in Figure 58 (results for all airports given in Appendix 1695 
B), the larger patterns are similar (JFK and ATL have the most benefits) but most airports have 1696 
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smaller benefits than in the medium fidelity study. There are some discrepancies; BOS and LGA 1697 
both have more benefits than previously, and EWR, while not studied explicitly, is forecast to 1698 
have benefits on the order of DFW (which is surprising, especially given the results in the 1699 
clustering analysis discussed next). JFK and ATL were also underpredicted in the analysis of the 1700 
residuals in Appendix B, and BOS was overpredicted. This continuation of previous trends is a 1701 
check that the model is performing as expected. The lower total estimate reflects the fact that 1702 
even with the square-root transformation, the regression still does not fully capture the dynamics 1703 
of congestion. 1704 

Table 5: Model Coefficients 1705 

Unstandardized Coefficients Standardized 
Coefficients Model 

B Std. Error Beta 
t Sig. 

Constant -4.641 7.418  -0.626 0.533 
# of pushbacks 19.292 3.142 0.662 6.14 0+ 

periods of 100% usage 14.257 1.467 1.004 9.717 0+ 
# of pushbacks in 

congestion -3.002 0.935 -0.459 -3.212 0.002 

 1706 

Despite the relatively high value of R2, there is substantial cause for concern about the 1707 
validity of the linear model. All three predictor variables can be considered positive indicators of 1708 
congestion; i.e., the higher their value, the higher the congestion is expected to be. However, the 1709 
coefficient for # of pushbacks in congestion is negative as shown in Table 5, indicating a 1710 
decrease in congestion for an increase in the value of the variable. This suggests that instead of 1711 
finding a model that truly describes congestion, we have only found the model that best fits the 1712 
data given the low quality of the input variables. As a result, the future predictions should be 1713 
considered even more uncertain than normal forecasts. If we calculate the residuals for the future 1714 
predictions for the 8 study airports by comparing them to the Unconstrained forecast from the 1715 
medium fidelity model and plot them with the residuals from the training data in Figure 60 1716 
(Original plot in Appendix B, rescaled in Figure 59), we see that the future residuals are both 1717 
positively biased (large underpredictions) and much larger in magnitude than for the training 1718 
data. This confirms our concerns that the linear model is not compatible with the medium fidelity 1719 
model. 1720 
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 1721 

Figure 59: Past Residuals Only 1722 

 1723 

Figure 60: Past and Future Residuals 1724 

  1725 

Given the concerns about the linear model as well as the observation that congestion 1726 
increases nonlinearly as demand approaches capacity (Figure 3), a non-linear model might be 1727 
expected to perform better. However it is not obvious what form a non-linear model should take. 1728 
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Through experimentation this model was found to have an R2 of .776, or slightly better than the 1729 
linear model: 1730 

 1731 

When we use this equation to predict the future benefits, the estimate is increased to $4.2 1732 
billion. However when we more closely examine the breakdown by airport in Figure 61, almost 1733 
all of the increase is due to just one airport, JFK (with SFO increasing moderately). The benefits 1734 
here are the cumulative benefits realized from 2010 to 2030 at each airport. This estimate for 1735 
JFK is above even the unconstrained estimate from the medium fidelity method. It also 1736 
highlights a concern about using a non-linear model: most of the historical data is in a range 1737 
where benefits are still roughly linear. There is little data to show when and how an airport enters 1738 
the non-linear regime. While the model correctly (according to the medium fidelity method) 1739 
predicts JFK entering the non-linear regime, it misses ORD and ATL, shedding doubt on 1740 
whether or not the estimate for SFO is accurate.  1741 

Overall, the nonlinear model adds much complexity and uncertainty while not providing 1742 
corresponding additional insight or accuracy or even change in estimates from the linear model 1743 
(apart from JFK). There is no guarantee that the form of the regression above is correct or 1744 
optimal; the coefficient for Pushbacks in Congestion is still negative, as it was for the linear case. 1745 
Finally, the nonlinear model makes the assumption that airports will tolerate operation in the 1746 
nonlinear regime (akin to the Unconstrained case). In reality, they will probably try to avoid it as 1747 
much as possible through regulations, schedule adjustments, or other forms of demand control.  1748 
As a result, a non-linear method was not pursued any further. 1749 
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 1750 

Figure 61: Comparison of Linear and Nonlinear Methods 1751 

 1752 

5.4 METHOD 3: AIRPORT CLUSTERING 1753 

A third possible method is clustering, which groups airports into different bins based on 1754 
certain key characteristics. The parameters chosen were variables that were identified as 1755 
important based on the experience gained from the high and medium fidelity methods and were: 1756 
Total Demand, Current % Capacity Used, Growth of Demand from 2010 to 2030 and Growth of 1757 
Capacity from 2010 to 2030. The first two variables are the same in the linear regression and are 1758 
present for the same reason as given previously. Clustering differs from the regression in that the 1759 
evolution over time of the variables is not considered. As a result, a variable is needed to 1760 
represent how traffic at an airport will change: the expected growth of congestion (Growth of 1761 
demand and capacity). Clustering could be performed on these raw variables. However, given 1762 
the insights from the high and medium fidelity methods, a new variable was created in order to 1763 
create clusters that corresponded to historical levels of benefits. Several different equations were 1764 
tested and the following both grouped the 8 study airports from the medium fidelity method into 1765 
levels close to the practical benefits levels and also was relatively simple: 1766 
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The form of the equation makes intuitive sense. It states that the most important variable is 1768 
the capacity used (because it is squared) which agrees with Figure 3 that showed how congestion 1769 
and delay increase nonlinearly as the percentage of capacity used nears 100%. Future congestion 1770 
will also be affected by how much more the demand grows than the capacity. Finally, the overall 1771 
level of traffic at an airport scales the benefits accordingly because the other two terms are 1772 
percentages.  1773 

The clustering was performed using the k-means algorithm [24] with the clustering variable 1774 
previously identified. The algorithm iteratively divides n observations into k clusters, where an 1775 
observation belongs to the cluster whose mean it is closest to (Euclidean distance). k was chosen 1776 
to be 4 for this analysis to both ensure multiple study airports be assigned to a cluster and to 1777 
sufficiently stratify the results. 3 clusters (the Low, Medium and High levels) have at least one of 1778 
the 8 study airports from the medium fidelity method, while Group 4 (Negligible) is estimated to 1779 
have half of the benefits of BOS, the airport with the lowest level of benefit from the medium 1780 
fidelity study set. Although Group 4 has no medium fidelity study airports, this was deemed to 1781 
be acceptable because it consists of airports where metering is anticipated to be of little impact. 1782 
Because all 8 study airports were chosen for their potential for SCM to have an impact, having 1783 
one of them in the cluster would inflate the benefit estimate. To use clustering as a tool for 1784 
generalizing benefits, the average benefits in terms of taxi time saved were found for the airports 1785 
in a cluster. The remaining 27 airports from the OEP 35 were assigned to clusters based on their 1786 
value of the clustering variable, and assigned the average value of the benefits at the study 1787 
airports in that cluster. While airports are unique, we think this is a reasonable method because 1788 
we are focusing on one specific attribute (congestion). It is also true that having small sample 1789 
sizes of 2 or 3 airports providing the average benefit level can skew the results. This is partly 1790 
alleviated because most of the airports are in the lower two tiers where the benefits are low, but 1791 
future work should focus on airports such as EWR and SFO in the top tiers that have not yet 1792 
been studied in detail. The resultant clusters and levels of benefit are shown below in Figure 62 1793 
and Table 6. JFK and ATL are the anchors for the “high” level of benefits, ORD, PHL and LGA 1794 
are the medium level, and IAD, BOS and DFW are the low level, with no study airports in the 1795 
negligible level. Most airports are in the low or negligible level clusters, as would be expected 1796 
because most airports are not currently congested or operating close to their capacity. The 1797 
airports not in the low or negligible tier are identified and basically conform to intuition.  1798 



 

 96 

 1799 

Figure 62: Clustering Results 1800 

 1801 

Table 6: Clustering Results 1802 

Unconstrained 
Cluster Mean Benefit 

($ Millions) 
Number of 

Airports 
Total Benefit   
($ Millions) 

High (JFK, ATL) 1184 3 3551 
Medium (LGA, ORD, 

PHL) 344 7 2407 

Low(BOS, DFW, IAD) 81 16 1294 
Negligible (BOS/2) 16 9 141 

Totals  35 7392 

Practical 
Cluster Mean Benefit 

($ Millions) 
Number of 

Airports 
Total Benefit    
($ Millions) 

High (JFK, ATL) 757 3 2270 
Medium (LGA, ORD, 

PHL) 204 7 1425 

Low(BOS, DFW, IAD) 61 16 978 
Negligible (BOS/2) 16 9 141 

Totals  35 4813 
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  1803 

 1804 

Table 6 shows the resulting benefits estimates from the clustering approach. Most of the 27 1805 
airports not studied in the medium fidelity method fall in the Low or Negligible category. The 1806 
total unconstrained benefits (based on the average unconstrained benefits from the medium 1807 
fidelity method) are estimated to be $7.4 billion (1.0% of total fuel cost) over the 20 year study 1808 
period. The practical benefits are $4.8 billion (0.6 %). Just under half of the total benefits came 1809 
from the three ‘high-level’ airports, ATL, EWR, and JFK.  1810 

 1811 

5.5 CONCLUSIONS 1812 

Figure 63 shows that the three methods evaluated yielded results that varied substantially, 1813 
from $3 to 9 billion, or between 0.4% and 1.2% of the total fuel cost across the OEP 35, as 1814 
hypothesized (again, likely an overestimate of the percentage of total cost). The benefit estimate 1815 
is the total benefits for the 2010-2030 period summed across the OEP 35 airports. We can 1816 
attempt to explain the relative performance of the methods. The taxi delay scaling factor gave the 1817 
largest estimate of benefits because not all taxi delay can in fact be saved by SCM. Airports with 1818 
amounts of delay too small to be affected by SCM still receive benefits according to this model. 1819 
By subtracting 6 minutes from the taxi delay, this effect is somewhat mitigated, but it is not as 1820 
accurate as it could be because 6 minutes is not the optimal amount at every airport. The linear 1821 
regression predicts much lower benefits than any of the scaling methods. The results are also the 1822 
same for both the Practical and Unconstrained cases because physical constraints were not 1823 
known for all 35 airports. As a result, no capping of the benefits was performed. Because many 1824 
of the 8 study airports were predicted to approach or exceed their capacity in the medium fidelity 1825 
model, their benefits increased non-linearly beyond any level seen in the past. The linear model 1826 
could not capture this behavior and has correspondingly low benefits estimates. While a non- 1827 
linear model could be constructed, it is not immediately obvious what its form should be. Also, 1828 
given the low quality of the inputs it would probably not add any insights compared to the three 1829 
current methods. Finally, clustering is, at its heart, a more intelligent scaling method so it makes 1830 
sense that it is lower than the raw taxi delay but reasonably close to the modified taxi delay 1831 
method.  1832 

 The results from these methods also provide insight into which variables should be 1833 
studied when choosing airports for further study or SCM implementation. While taxi delay is an 1834 
intuitive choice, we have shown that raw taxi delay can overestimate the possible  benefits. In 1835 
addition, it is a hard metric to calculate in the future without detailed simulations. For long term 1836 
planning, it is better to examine the relationship between the predicted growth in demand and the 1837 
growth in capacity, as well as the current level of congestion (whether measured by taxi delay or 1838 
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% of capacity used). An airport such as LGA which is currently congested but is forecast to 1839 
remain at current traffic levels will receive fewer benefits when summed over the next 20 years 1840 
than an airport which is not as congested but is forecast to face greatly increased demand, such as 1841 
ATL.  1842 

 1843 

Figure 63: Low Fidelity Methods 1844 

 1845 
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6. CONCLUSIONS AND DISCUSSION 1846 

6.1 SUMMARY 1847 

Surface congestion management has already been shown to be an effective solution to the 1848 
problem of congestion and excess taxi times at airports. However, in order to justify its 1849 
expansion and inclusion in NextGen ATC systems, an analysis of the future benefits was 1850 
required. This thesis showed that the benefits of such a system would be substantial, between $3 1851 
and 9 billion over the next 20 years , or between 0.4% and 1.2% of the total fuel cost across the 1852 
OEP 35 (again, likely an overestimate of the percentage of total cost). In addition, several 1853 
airports currently have the potential for benefits on the level seen in the JFK field trial of $10-20 1854 
million per year just in fuel costs, up to 10-20 % of the fuel costs for taxiing. By examining the 1855 
predictors of congestion proposed in this thesis, policymakers can identify where to focus 1856 
resources for maximum effect.  1857 

Three different methods were presented in this thesis to develop these future year SCM 1858 
benefits estimates. The first, a high fidelity and highly specialized model of JFK airport in New 1859 
York City, examined the change in a traffic metric (takeoff queue) and its related impact on taxi- 1860 
out time to estimate the savings from implementing SCM. The model was based on ASDE-X 1861 
surveillance data as well as ASPM taxi time information and looked at several secondary effects 1862 
such as throughput, taxi in times, configuration-specific effects, and off-gate holding. The results 1863 
showed that even with a substantial number of off-gate holds the overall efficiency of SCM (hold 1864 
minutes to minutes of benefits) was still high, around 0.8 and resulted in expected benefits of 1865 
between $10 to 15 million annually.  1866 

This result informed the development of the medium fidelity approach to future benefits, 1867 
where 8 airports were studied (including JFK). Configuration-specific effects were still examined 1868 
as well as a lower fidelity method of examining the need for off gate holds, but other secondary 1869 
effects were not included. The use of saturation curves to approximate whatever type of metering 1870 
will be implemented in the future was validated by examining three field trials, each with a 1871 
different type of SCM. The use of simulations to calculate airport performance and taxi times as 1872 
well as the uncertainty in the future demand forecasts cause the fidelity of this method to be 1873 
lower.  1874 

The final method was actually several different low-fidelity methods for calculating future 1875 
benefits at many airports. While using any single method to perform a benefits analysis would 1876 
not be recommended, examining them together helps to define the possible range of benefits as 1877 
well as the uncertainty in an estimate of total benefits. In addition, particular airport 1878 
characteristics were identified as relatively well-correlated with benefits. While the medium and 1879 
high fidelity analyses have shown that airports are too complex to develop accurate overarching 1880 
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generalities, these characteristics are still useful for policymakers when trying to identify airports 1881 
to implement SCM. Taken together, the suite of multi-fidelity models has been seen to be an 1882 
effective method of undertaking a benefits assessment for applications such as SCM that can aid 1883 
policy-making decisions. 1884 

 1885 

6.2 IMPLICATIONS FOR POLICYMAKERS 1886 

Estimating the benefits of implementing a new technology or method serves two purposes. 1887 
First, to decide whether or not it should be introduced and second, to determine where it should 1888 
be introduced to provide the most benefit. While the first question cannot be answered without a 1889 
corresponding analysis of the costs of implementation, this thesis  has shown that the potential 1890 
benefits of SCM are substantial (of the order of $ billions across the NAS, around 1% of total 1891 
fuel costs and between 5 and 50% of taxi fuel costs, depending on the airport and year), 1892 
especially considering the relative lack of infrastructure changes and improvements necessary. 1893 
Depending on the deployment costs, this suggests SCM is likely to be an important contributor to 1894 
future air transportation system enhancement. Chapter 5 addressed the second question by 1895 
identifying variables and characteristics at airports that signal an opportunity for SCM to have a 1896 
substantial impact.  1897 

 The complexity of airport operations ensures that there is not one single variable that can 1898 
accurately predict the usefulness of SCM at an airport. Taxi delay is an intuitive choice, but as 1899 
was previously explained, there is a certain amount of taxi delay that SCM will not affect, given 1900 
current operations. In addition, estimates of future delay at airports are highly uncertain. Instead, 1901 
taxi delay and taxi times should be used as one of several indicators for present-day analyses, 1902 
while future indicators could be the ratio of growth in demand to growth in capacity (with a 1903 
higher value indicating more congestion), the daily demand level, both present and future (with a 1904 
higher value indicating more absolute benefits because there are more flights that would be 1905 
affected), and the percent of capacity that is used (with a higher value indicating more 1906 
congestion). While JFK airport already has an SCM system in place, our analyses have shown 1907 
that EWR, SFO, LGA, PHL and ATL would see substantial benefits from an implementation in 1908 
the next 5 years, with the addition of ORD in the 10-20 year time frame. Depending on the cost 1909 
of implementation, many other airports would also have measurable benefits. 1910 

Policymakers should also consider other changes that may be necessary both to implement 1911 
SCM and to generally improve the performance of airports. The analysis of physical constraints 1912 
at airports (availability of gates to perform gate-holding at) assumed that gates were 1913 
interchangeable when in fact airlines “own” specific gates. If this policy could be changed so that 1914 
gates are a common resource it would better support SCM strategies as well as other potential 1915 
improvements such as accommodating new aircraft with increased wingspan.  1916 
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A related issue is that of gate space. As was shown in the medium fidelity method, several 1917 
of the study airports are forecast to face demand for gates that greatly exceeds the current 1918 
capacity. While some airports such as ORD have plans for such a contingency, other airports 1919 
such as JFK that are space constrained may not be able to accommodate all the holds SCM may 1920 
require (and possibly may not be able to accommodate the forecast demand). The resulting ‘cap’ 1921 
on the demand has large impacts on both the benefits from SCM (and virtually every other 1922 
proposed improvement) and planning for the US air transportation system in general. 1923 
Policymakers should examine the implications of lower demand levels than currently forecast as 1924 
well as work to find ways to possibly accommodate increased demand at constrained airports. 1925 
 1926 

SCM is just one of many improvements being considered for future implementation. Many 1927 
of the assumptions, considerations and limitations studied in this thesis are also relevant in 1928 
assessing other improvements. The most important is probably ensuring that the demand forecast 1929 
is as accurate as possible. As was shown in the medium and low fidelity analyses, the demand 1930 
forecast has a substantial impact on the benefits of SCM. While congestion is strongly tied to the 1931 
demand, almost every improvement such as choosing the correct runway configuration or 1932 
departure sequencing also depends on the demand. Accounting for some of the micro-level 1933 
constraints such as gate availability or redistribution of flights to off-peak times that are not 1934 
always considered when making system-wide forecasts is vital for when studying the benefits. 1935 

The other broadly applicable lesson from this thesis is that airports are unique. While we 1936 
presented several methods for generalizing the benefits, they have substantial uncertainty and 1937 
should be treated only as order-of-magnitude approaches. In addition, we examined several cases 1938 
of large changes in airport behavoior or performance, such as the variation of performance at 1939 
DFW where only a detailed investigation into airport specifics yielded the probable cause. 1940 
Obviously such a detailed analysis is not possible at every airport or for every study, but 1941 
generalization techniques should be applied with great care. The clustering performed in Chapter 1942 
5 is a good example. The clustering variable was picked to reflect SCM, and the resultant groups 1943 
are meaningful only in the SCM context. Trying to use them for studying departure sequencing, 1944 
for example, is not recommended.  1945 

 1946 

6.3 UNCERTAINTY 1947 

As might be expected in systems as complex and dynamic as airports, the uncertainty in our 1948 
predictions of SCM benefits is high. Even in studies using historical operational data, such as the 1949 
high fidelity analysis of JFK, there are many sources of uncertainty. Some were explicitly 1950 
assessed, such as the range of possible gate-to-spot correction factors (5-9 minutes). Others, such 1951 
as the precise location of off-gate holds and the interaction between SCM, maintenance, ground 1952 
holds, EDCT’s, and other causes of ground delay were not addressed. In the future analyses, the 1953 
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inputs alone have large uncertainties. The demand for air travel is forecast to steadily rise over 1954 
the next 20 years, but history has shown that constant growth is rarely the case. Recessions, wars, 1955 
terrorist events, fuel prices and more all can have negative impacts on the demand. Economic 1956 
booms, revolutionary technology, and low fuel prices could all increase the demand beyond the 1957 
forecast. Airports could decide that a planned expansion could cost too much or that a new 1958 
runway is suddenly necessary, throwing off capacity estimates. Changes in regulations, 1959 
procedures, or fleet mix could lead to substantial changes in airport performance as was 1960 
hypothesized to have happened at DFW.  1961 

The source of uncertainty with the largest effect on benefits is the future demand. The 1962 
current forecasts do not consider physical constraints and have optimistic capacity forecasts. As a 1963 
result, the future demand will most likely be lower than these forecasts. All of these issues need 1964 
to be explicitly identified so their implications can be explicitly considered when the results are 1965 
being interpreted. A very pessimistic lower bound on benefits can be calculated by assuming that 1966 
demand remains at 2010 levels. In this case, the 8 study airports from the medium fidelity 1967 
method would have the $38.4 million in benefits from 2010 in each subsequent year to give $806 1968 
million over the period from 2010 to 2030, 0.1% of total fuel costs. This is substantially smaller 1969 
than the $2.79 billion in benefits in practical benefits previously estimated. 1970 

 1971 

6.4 FUTURE WORK 1972 

There are several areas where future work would be useful. Developing a forecast of 1973 
demand that explicitly accounts for more of the key actual or expected constraints within the 1974 
system would greatly decrease the uncertainty in the analysis, but would require a more detailed 1975 
set of models. In addition, the traffic patterns may change as an airport nears both its runway and 1976 
terminal capacity. It was shown in Chapter 4 that the model currently scales traffic each year. 1977 
Instead, traffic may move to lower-demand periods to try to escape congestion. Changing the 1978 
forecast model, however, is likely an enormous task by itself. Another possibility would be to 1979 
examine multiple forecasts (low, medium, high) to better develop a range of estimates. A human- 1980 
in-the-loop simulation of future traffic scenarios would help to validate the estimates of 1981 
congestion as well as provide an estimate of the benefits possible from SCM. This would be 1982 
especially valuable given that many airports will face levels of traffic that have never been seen 1983 
before. Observing how controllers react to these traffic levels would be very helpful in predicting 1984 
future performance. More work could also be done on comparing the different methods of SCM; 1985 
which methods work best at which airports, and how the levels of benefits compare across 1986 
methods in similar situations. Finally, further study on airports where the performance has 1987 
changed substantially (DFW) or is forecast to change (ORD) would be informative. Interviews 1988 
with controllers, planners, and other airport staff would be helpful in building a more complete 1989 
model of airport performance both in the past and the future.  1990 
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 2077 
APPENDIX A: ADDITIONAL INFORMATION 2078 

 2079 

Random Forest Variables 2080 

Variable Name Description Source 

Mean(DepDemand) 

Mean(depDemand) - Mean 
Departure Demand (Yearly, by 
configuration, per hour) ASPM - APM 

Mean(arrDemand) 

Mean(arrDemand) - Mean 
Arrival Demand (Yearly, by 
configuration, per hour) ASPM - APM 

90%DepDemand 

90%DepDemand - 90th 
percentile Departure Demand 
(Yearly, by configuration, per 
hour) ASPM - APM 

90%ArrDemand 

90%ArrDemand - 90th 
percentile Arrival Demand 
(Yearly, by configuration, per 
hour) ASPM - APM 

Mean(depCap) 

Mean(depCap) - Mean 
Departure Capacity (Yearly, 
by configuration, per hour) ASPM - APM 

mean(arrCap) 

mean(arrCap) - Mean Arrival 
Capacity( Yearly, by 
configuration, per hour) ASPM - APM 

90%DepCap 

90%DepCap - 90th percentile 
Departure Capacity (Yearly, 
by configuration, per hour) ASPM - APM 

90%ArrCap 

90%ArrCap - 90th percentile 
Arrival Capacity (Yearly, by 
configuration, per hour) ASPM - APM 

Used Used - % of Configuration ASPM - APM 
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Capacity Used (Yearly, by 
configuration) 

# of Arrival 
Runways 

# of Arrival Runways (By 
Configuration) Derived from Configuration 

# of Departure 
Runways 

# of Departure Runways (By 
configuration) Derived from Configuration 

# of Unique 
Departure Runways 

# of Unique Departure 
Runways (By configuration) Derived from Configuration 

# of Unique 
Runways 

# of Unique Runways (By 
Configuration) Derived from Configuration 

Area of Airport Area of Airport (acres) Wikipedia / Airport Websites 

Miles of Taxiway Miles of Taxiway (total) Wikipedia / Airport Websites 

Miles of Runway miles of Runway (total) Wikipedia / Airport Websites 
Terminals Terminals Wikipedia / Airport Websites 

Traffic 
Traffic - Total traffic at the 
airport (Yearly) ASPM-APM 

%Capacity used 
% Capacity Used - % of 
Airport capacity used (Yearly) ASPM-APM 

Gates # of Gates Wikipedia / Airport Websites 

Nstar 
Saturation point of 
Configuration 

From Simaiakis code - remove top 2.5% 
of flights (by N), find the N value where 
the throughput reaches 95% of 
maximum throughput 

ThS 
Saturation Throughput - 
throughput at saturation point From Simaiakis code 

	   2081 

 2082 

 2083 

 2084 

 2085 

 2086 
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 2087 

Variation of benefits with N control 2088 

 2089 

 2090 

 2091 

 2092 
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APPENDIX B: STATISTICAL TESTS 2102 

Several statistical tests were conducted to show the validity of using a linear regression model. The 2103 
assumptions that were checked were for constancy of error variance (homoscedasticity), normality, 2104 
collinearity, and the appropriateness of the model (whether a better form would fit the data, whether 2105 
variables could be being omitted). 2106 

 2107 

 2108 

 2109 

 2110 

 2111 

 2112 

 2113 

 2114 

 2115 

 2116 

  2117 

Figure 64 shows the residuals from the initial model (using raw benefits as the dependent variable). 2118 
When the residuals were plotted, the magnitude increased with the predicted value, showing 2119 
heteroscedasticity. To compensate for this, the dependent variable was transformed by taking the square 2120 
root.  2121 

 2122 

 2123 

 2124 

 2125 

Figure 64: Residual Plot, Initial Model 
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 2126 

 2128 

 2130 

 2132 

 2134 

 2136 

 2138 

 2140 

 2142 

 2144 

 2146 

While this only moderately improved the situation, the adjusted R2 value did increase from .666 to 2147 
.726, indicating a better fit to the data. The Breusch-Pagan test was run to test for constancy of the error 2148 

variance where the test statistic is

€ 

χBP
2 =

SSR*
2

÷
SSE
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

. SSR* is the regression sum of squares when 2149 

regressing the squared residual on an individual predictor variable. We run three tests, one for each 2150 
variable and compare to the critical value. At an a level of .05, the critical value is χ2(0.95;1) = 3.84.  2151 

 2152 

Table 7: Breusch-Pagan test values 2153 

  SSR* χ2
BP 

Pushbacks 51035 0.248 
Pushbacks in Congestion 470882 2.287 
Periods with 100% Usage 1873903 9.100 
      
SSE 28237   

 2154 

H0: γ1 = 0 (There is no dependence on Xi of the squared residual) 2155 

Figure 65: Residual plot, transformed model 
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Ha: γ1 does not equal 0 (The squared residual does depend on Xi) 2156 

If  χ2
BP > χ2(0.95;1) conclude Ha. Else conclude H0 2157 

We can conclude H0 only for Pushbacks and Pushbacks in Congestion (P values of 0.62 and 0.13), 2158 
but we conclude Ha for 100% Usage (P = 0.003). While this is not optimal, the model is not intended to 2159 
provide accurate forecasts, only a general estimate and this is therefore acceptable. 2160 

 In addition, a normal probability plot was made to assess whether the error terms were normally 2161 
distributed. The coefficient of correlation was found to be r = .994. The critical value for n = 88 is 0.986, 2162 
so there is support for our conclusion that the errors are distributed normally. 2163 

 2164 

Figure 66: Normal Probability Plot 2165 
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 2173 

 2175 

 2177 

 2179 

 2181 

 2183 

 2185 

 2187 

 2189 

 2191 

 2193 

When the residuals are broken down by airport, it is obvious that there are strong airport-specific effects, 2194 
important variables that have been left out, or both. However, because extensive data is available only for 2195 
these 8 airports, airport-specific effects cannot be quantified. While in general it seems like larger, more 2196 
congested airports (JFK, ORD, PHL) are underpredicted (positive residuals), there are exceptions like 2197 
LGA. There are also important variables that could be included to improve the results, such as taxi delay 2198 
or average taxi time, but the model is limited to variables available in the future. Finally, there are 2199 
definitely issues with collinearity among the independent variable, as shown in Figure 68, because they 2200 
are all based on the same metrics, implying that using the model for predictive purposes may perform 2201 
poorly. A formal method of detecting m get liulticollinearity is the Variance Inflation Factor (VIF). This 2202 
can be calculated for each variable and describes how an independent variable is related to the other 2203 

independent variables by the equation   2204 

 2205 

 2206 

 2207 

 2208 

Figure 67: Residuals categorized by airport 
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Table 8: Variance Inflation Factors 2209 

  VIF 
Pushbacks 3.61 
Pushbacks in 
Congestion 6.33 
Periods with 
100% Usage 3.32 

Typically values over 10 indicate severe multicollinearity. While the VIF here are relatively high, they do 2210 
not exceed 10 and multicollinearity is not considered further. There are interesting relationships that 2211 
appear to be separated based on the number of runways in use (1 or more than 1) but because this is not 2212 
an experiment where the conditions can be controlled and that almost all variables at an airport are inter- 2213 
related, not much can be done about this. Given these restrictions, the large uncertainty present in the 2214 
inputs, and the results from the Breusch-Pagan and normality tests, the model was deemed to be sufficient 2215 
for the purposes of this thesis.  2216 

 2217 

 2218 
Figure 68: Scatter plots of Variables 2219 
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 2220 

 2221 

Table 9: Multiple Regression Results 2222 

  

Thousand 
Hours Taxi 
Time 
Reduction 

Million 
Gallons 

$ Millions 

ATL 413 103 251 
BOS 284 62 151 
BWI 142 36 88 
CLE 7 1 3 
CLT 227 41 101 
CVG 5 1 2 
DCA 60 12 28 
DEN 108 23 55 
DFW 106 27 66 
DTW 70 15 37 
EWR 107 27 64 
FLL 34 8 20 
HNL 6 2 4 
IAD 50 10 24 
IAH 102 19 47 
JFK 655 235 572 
LAS 55 14 35 
LAX 203 63 153 
LGA 397 79 191 
MCO 32 9 22 
MDW 30 7 17 
MEM 106 32 77 
MIA 39 13 33 
MSP 91 19 46 
ORD 250 61 148 
PDX 19 4 10 
PHL 264 53 129 
PHX 45 11 26 
PIT 2 0 1 
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SAN 221 55 133 
SEA 56 14 35 
SFO 371 114 276 
SLC 44 8 20 
STL 6 1 3 
TPA 9 2 5 
Total 4615 1182 2872 

 2223 

Table 10: Airport Clusters 2224 

Airport Group 
ATL 1 
EWR 1 
JFK 1 

    
CLT 2 
LAS 2 
LAX 2 
LGA 2 
ORD 2 
PHL 2 
SFO 2 

    
BOS 3 
BWI 3 
DCA 3 
DEN 3 
DFW 3 
DTW 3 
FLL 3 
IAD 3 
IAH 3 

MDW 3 
MIA 3 
MSP 3 
PDX 3 
PHX 3 
SAN 3 
SEA 3 

    
CLE 4 
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CVG 4 
HNL 4 
MCO 4 
MEM 4 
PIT 4 
SLC 4 
STL 4 
TPA 4 

 2225 


