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ABSTRACT

This paper analyses current problems in evaluating BHA
maintenance operations using recorded data, offers suggestions for
designing monthly performance measures, and discusses criteria for
evaluating proposed operations policies. On the assumption that
accurate projections of demand are preferable to strict prescheduling
as a basis for designing maintenance systems that are responsive to
tenants needs, I have investigated the conditions necessary for using
stochastic queueing models to project the consequences of alternative
operating policies.

The analysis uses Consistent System statistical programs
developed by the Laboratory of Architecture & Planning at MIT and run
on the Multics operating system at MIT's Information Processing
Services. In Chapter I the relationship of data structure to
maintenance operations is described and variables are chosen from
October 1983 work order data provided by the BHA. I then use
techniques from linear regression, analysis of variance, goodness of
fit tests and queueing theory in Chapter III to define the behavior of
work order arrival processes. A similar analysis is presented for
service times in Chapter IV.

The results suggest that calls for service are not Poisson
distributed, although the limited sample size makes it difficult to
draw definitive conclusions. I also test the sensitivity of various
methods for comparing observed and hypothesized probability
distributions at different arrival rates and sample sizes. Because it
is likely that systematic maintenance problems are causing work orders
to be generated non-randomly, a method is outlined for identifying
building systems failures from task code data to be recorded by a
modified work order processing system. The extent to which work orders
are generated in a Poisson manner can then be used as one measure of
how well buildings are being maintained.

Chapter IV provides reasonable evidence that service times are
not exponentially distributed and suggests that queue interdependency
may explain observed service time distributions. Poisson-based
queueing models therefore would not currently provide acceptable
accuracy for use in evaluating proposed operating policies.

I then use more generally applicable relationships from queueing
theory in Chapter V to analyze turn-around times and queue lengths,
and to compare priority policies. First, a regression model indicates
that service priority is given to recent work orders rather than to
emergencies per se. The tendency to delay the service of older work
orders creates backlogs which are not fully reflected in mean
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turn-around times. In addition, since several work orders may be
generated for a single repair job, it is difficult to estimate the
number of tenants in queue. The resulting ambiguities are not
primarily due to data structure, however, but to operating problems.
Although the number of servers appears adequate, inefficient
priority-of-service policies and interdependent queues seriously
hinder the system's responsiveness to demand. Therefore, suggestions
are made for reducing interdependency and a method is described for
comparing priority policies with respect to total expected waiting
times.
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"The first intimation that things were getting out of hand came

one early-fall evening in the late nineteen forties. What happened,

simply, was that between seven and nine o'clock on that evening the

Triborough Bridge had the heaviest concentration of outbound traffic

in its entire history...
The bridge personnel, at any rate, was caught entirely unprepared.

A main artery of traffic, like the Triborough, operates under fairly

predictable conditions. Motor travel, like most other large-scale

human activities, obeys the Law of Averages - that great, ancient rule

that states that the actions of people in the mass will always follow

consistent patterns - and on the basis of past experience it had

always been possible to foretell, almost to the last digit, the number

of cars that would cross the bridge at any given hour of the day or

night. In this case, though, all rules were broken...

The incident was unusual enough to make all the front pages next

morning, and because of this many similar events, which might

otherwise have gone unnoticed, received attention... It was apparent

at last that something decidedly strange was happening. Lunchroom

owners noted that increasingly their patrons were developing a habit

of making runs on specific items; one day it would be the roast

shoulder of veal with pan gravy that was ordered almost exclusively,

while the next everyone would be taking the Vienna loaf and the roast

veal went begging. A man who ran a small notions store in Bayside

revealed that over a period of 4 days, 274 successive customers had

entered his shop and asked for a spool of pink thread...

At this juncture it was inevitable that Congress should be called

on for action... In the course of the committee's investigations it

had been discovered, to everyone's dismay, that the Law of Averages

had never been incorporated into the body of federal jurisprudence,

and though the upholders of States' Rights rebelled violently, the

oversight was at once corrected, both by Constitutional amendment and

by a law - the Hills-Slooper Act - implementing it. According to the

act, people were required to be average, and, as the simplest way of

assuring it, they were divided alphabetically and their permissible

activities catalogued accordingly. Thus, by the plan, a person whose

name began with "G," "N," or "U," for example, could attend the

theater only on Tuesdays, and he could go to baseball games only on

Thursdays, whereas his visits to a haberdashery were confined to the

hours between ten o'clock and noon on Mondays."

- Robert M. Coates, "The Law", 1947
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CHAPTER I
INTRODUCTION

1) Background & Purpose

Since 1980, when a long history of severe funding and management

problems culminated in a 33% vacancy rate in Boston public housing,

the Boston Housing Authority (BHA) has been in receivership. For

decades, one of the Authority's major problems has been the management

of maintenance operations. Consequently, much of the city's hopes for

getting the BHA out of receivership rest on the extent to which

maintenance operations can be improved.

A system based on tenant-initiated work order requests has been

in use for some time, and recently work order data have been recorded

on computer tapes so that summary profiles of maintenance operations

can be generated. Largely because of the heavy demands already placed

upon managers and operations staff, however, no systematic attempts

have been made to analyze work order data, despite the considerable

monthly effort required to record and store them. Although

performance measures developed from these summaries might provide

relatively unambiguous yardsticks for evaluation and scheduling, the

form of the data and their reliability have impeded the creation of

such performance measures.

It would be useful then to investigate tools and procedures that

might help feedback from past maintenance operations to inform

current practice and to project some likely waiting time consequences

of alternative operating policies and scheduling methods. First, we

would like to determine the feasibility of projectively evaluating
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changes in priority of service policies. Before implementing new

policies, development managers and operations staff should be able to

make informed decisions based on the improvements expected from these

changes under a variety of conditions. Such changes might be

projected by a set of performance measures estimated from queueing

models. The degree to which improvements are expected from a given

policy would be assessed by comparing these projections to a similar

set of "observed" performance measures calculated statistically from

the previous month's work order data. Over time, this would allow

projections to be tested and refined, and day to day scheduling

operations better anticipated.

Before such models can be constructed, however, probability

distributions for the number of arrivals and service time completions

in a given time period must be estimated from recorded data, and the

reliability and structure of these data must be assessed. Another

purpose, therefore, is to suggest any changes in data structure that

could lead to more useful performance measures being culled from work

order data on a monthly basis. In addition to providing information

which can be compared with queueing models, these measures must also

be used to update inputs for such models. Observed performance

measures should be designed to be quickly and easily extracted, and

the structure of the information should help us to clearly interpret

changes in actual operations. In this sense, we are concerned both

with "projective" and "reflective" forms of evaluation.
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2) Projective Evaluation and Queueing Analysis

From the data, simple statistics on the arrival rates of calls

for maintenance service and on service times can be isolated by

priority class (emergency, routine), craft (licensed, skilled) and

development. This information can be used to determine the extent to

which the consequences of alternative operations policies can be

projected. These consequences include the size of backlogs and the

costs and waiting times associated with projected levels of

congestion. If the system follows one of several well-known behavior

patterns, we will be able to make quite detailed queueing estimates.

The importance of probabilistic models lies in the fact that waiting

times often increase exponentially with only incremental increases in

calls for service. Such models can help suggest a policy which could

avert congestion by projecting the conditions under which it is likely

to occur.

If properly structured and carefully implemented, such

information could be usable by and useful to managers, supervisors,

craftspeople, tenants and operations staff, and could provide a method

of "planning for" work orders which are about to "happen" rather than

requiring they be prescheduled long in advance. Strict advance

prescheduling can limit the system's ability to respond to new

information and therefore increase costs and waiting times for many

calls. Conversely, a greater ability to dynamically respond to,

create and communicate information would provide an opportunity to

choose from among a wider range of operating policies, scheduling

methods and crafts roles than at present.
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While the testing of more complex systems and policies would be

more easily done on a mainframe computer, enormous centralization of

information and operations is not a technical requirement of a good

evaluation system. The present analysis was intentionally undertaken

with little prior knowledge of on-site maintenance operations in order

to test the ability of the data themselves to provide information

useful to central operations staff. In practice, however, the value

cannot be overemphasized of having dedicated people at each

development capable of linking simple but well structured data

analysis to day-to-day operations. Indeed, solutions to a host of

system design, implementation and policy questions need to

continuously adapt. At any time, most of these issues should be able

to be resolved outside of central operations - in the developments,

where maintenance operations take place. One performance measure of

the BHA work order processing & evaluation system's design might even

be the degree to which decision making power is enhanced and the range

of choices increased for those working (and living) at any place in

the system.

A dynamic scheduling, processing and evaluation system as

outlined here is based on the idea that noone knows exactly when and

where the next need for maintenance will "happen", or what crafts will

be required to service it, but that we can make reasonable projections

of many calls that are likely to occur. We have called this process

"projective evaluation" because it is concerned with how anticipated

decisions result from and help create information which continuously

evaluates the system. The extent to which this process operates

continuously and maintains its adaptability over time may be another
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measure of its success.

3) Performance Measures for Reflective Evaluation

If observed arrivals and service times do not behave in ways that

allow more powerful probabilistic models to be constructed, other

general relationships in queueing theory should still enable us to

estimate several types of congestion. Either way, to undertake

"reflective evaluation" the system first needs the ability to draw

meaningful summary statistics (performance measures) from recorded

data. These measures can then be used to observe (rather than test)

how general policies have worked in practice and how demands change

over time. They also help specify more complex policies and queueing

models we might want to test.

Averaged performance measures produced by reflective evaluations

could already increase the system's ability to respond to demand,

since they provide somewhat the same type of information as queueing

models. One difference is that these performance measures may be used

as inputs to a probabilistic model. By themselves, however, many

reflective measures are simply percents and averages taken from

monthly data when these data are in a form that permits clear

interpretation. As currently recorded, it is difficult to make use of

observed maintenance data. One problem is that observed measures may

be affected by other variables than those we wish to measure, and it

may be difficult to attribute performance changes to specific changes

in policy. Therefore we also want to distinguish between operating

problems and data structure problems, and suggest what questions
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performance measures may be designed to answer.

Samples of these performance measures for reflective evaluation

have been included in subsequent chapters. Like the projective

evaluation system which could grow from them, such measures should

also provide information useful to those throughout the maintenance

system. Using sample data from October 1983, steps have been

demonstrated for extracting several monthly performance measures,

mostly making use of simple database management routines. Finally,

several operating policies are listed which might improve maintenance

operations as profiled by these performance measures, and suggestions

are made for reducing ambiguities in retrospectively evaluating trial

policies.
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CHAPTER 11

HOW MAINTENANCE OPERATIONS ARE REFLECTED

IN THE STRUCTURE OF WORK ORDER DATA

1) Profile of Past Operations

In any year, the BHA maintenance system generates nearly 60,000

work orders. To make this information useful to the system, we need

to have a clear image of how maintenance has happened operationally. A

primary investigation should help us choose a sample for observation

and suggest how the data might be "sliced" to provide useful feedback.

A balance must be struck between an overly fine grained analysis that

prevents us from drawing general conclusions and one so global that it

is useless for suggesting specific operating solutions.

To get a sense of the relationship between maintenance operations

and the structure of work order data, several interviews were held at

the BHA with Gwen Friend, who also provided recent literature. These

enabled the following general profile of operations to be drawn.

The process generating work orders can be seen as one in which

calls for service arrive at a processing facility. Each large

development at the BHA typically has an office that generates these

work orders. In most cases, a tenant discovers a need for performing

some type of repair, whether in his or her own apartment, or somewhere

in the development. The tenant then calls the maintenance office,

where a work order clerk asks a series of questions to determine

whether repair is needed, and if so, how it shall be described on the

work order form. In the case of repairs requiring service by a
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variety of craftsmen with different skills, a work order is generated

for each component of the repair job. Thus, repairing a hole in a

wall may require separate work orders for carpentry, plastering and

painting.

Throughout the day, these work orders are collected by the

development's maintenance supervisor, sorted by priority according to

emergency or routine status, and scheduled for service later that day

or on following days, together with those orders outstanding from

previous days. As the supervisor sorts work orders, he also estimates

the service time and the cost for each job.

Each supervisor is in charge of a maintenance crew specific to

that development. With a few exceptions, crews at large developments

do not service work orders from other developments, but operate

semi-autonomously at their own locations. These crews are of

different sizes and receive calls for service at different rates.

Furthermore, maintenance crews are composed of craftspersons from

several specialized craft or skill types, and workers in each category

only service work orders corresponding to their particular craft.

Therefore, as the supervisor sorts work orders by priority class,

he also sorts them by craft type. Within each priority class and

craft category, work orders are to some extent serviced in a

first-come, first-served (or FIFO - first-in, first-out) manner.

Although supervisors maintain different scheduling styles, a set of

limited guidelines for priority scheduling were centrally adopted

three years ago. There has been a tendency throughout the BHA,

however, to backlog work orders which are either more diffcult to

service (those involving heavy budgetary demands, hard-to-get parts



page 9

and supplies, seasonal work, etc), or are considered trivial because

they will be serviced by other long-run maintenance operations, or

both. The type of orders backlogged may also vary from one development

to another, depending on any other development-wide projects that may

have priority, such as landscaping or general infrastructure repair.

This profile roughly outlines the system for several years prior

to February 1984. It also indicates that the data available describe

a maintenance system which for some time had not undergone major

changes, and that sample data may be used to create a more detailed

profile of system operations for this period. October 1983 was chosen

as a sample for the analysis, because it is one of the more recent

months for which information seems to be representative of year-round

maintenance operations.

2) Recent and Proposed Operations Changes

As this continuous but uneasy Pax Romana may be both too complex

and expensive to maintain, however, several major changes have

recently been made, and others are in store. In February 1984, a

policy was announced by which all outstanding work orders more than a

month old were to be purged, other than emergencies and those

involving energy conservation, cost savings and inspections. In

addition, no new work orders are to be accepted outside of these

categories. This move followed the expansion of the Living Unit

Inspection (LUI) program, designed to eliminate tenant-initiated

routine work orders by servicing them once yearly for each apartment.

Under the LUI program, each apartment is prescheduled for inspection
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on a particular day of the year. Apartments are inspected in

succession, and one round of inspections (a visit to all apartments)

is supposed to take one year.

The idea is that most minor or routine tasks will thereby be

discovered, and that routine work orders for each apartment will be

generated once yearly by the inspector. A tenant calling the

maintenance office with a request for routine service is then told to

wait until the date on which his or her apartment is scheduled for

inspection, even if that date is eight months away. Although the

strictness with which development managers and super

these rules may vary, the policy assumption is that a

time for routine service is far less costly to the tena

of waiting time for emergency service. Reductions

times for tenant-initiated emergency service are expec

from the increased efficiency of servicing all rout

simultaneously for a given apartment. Further reduc

turn-around and total service times are expected

inspections discover more general signs of decay and

visors

unit of

nt than

in tur

ted to

ine wor

tions

as liv

take

these problems before they degenerate into emergencies.

Comparison of this system with the earlier, backlogged

October 1983 would be a fascinating exercise, but

system will not be rel

for several months. Such

reasons, however. Firs

effectively been waiting

apartment is inspected.

costs associated with

version of

data for the new

iable until the program has been in operation

a comparison would be difficult for three

t, one cannot know how long a tenant has

for routine service up to the time his or her

Under the assumption that the tenant-borne

routine waiting times are negligible, the new

enforce

waiting

a unit

n-around

follow

k orders

in both

ing unit

care of
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system would probably compare favorably with that operating in

October. But the implications of other assumptions are more difficult

to measure. Second, the decision to purge backlogged work orders will

exaggerate the reductions in turn-around times which are a consequence

of the upgraded LUI program by mixing them with reductions resulting

from purges. This difficulty can partly be overcome by looking at the

October turn-around times on a restricted interval of 1 to 20 working

days - as if the purges had also been in effect in October. But here,

the effect of congestion would have been to also raise turn-around

times for those work orders served relatively quickly, and there may

be no way to eliminate the interaction effect. Third, a new

maintenance contract has recently been negotiated under which many

tasks formerly coded as "specialized" (and thus requiring service from

a craftsperson only of that skill type) have been reclassified as

"neutral". This permits a wider range of craftspeople to service many

routine tasks, reducing the total response time required for

multicraft routine maintenance requests.

There are also further changes ahead. These concern the process

by which and the form in which information generated by work orders

will be recorded and used for evaluation. In September of this year,

the BHA is scheduled to adopt a modified version of' the Dallas Housing

Authority's work order processing system, together with the computer

hardware and software which is an integral part of it. While the

final form the system will take is still unclear, each maintenance

request is expected to be specifically coded on the work order form,

resulting in about 400 distinct task codes organized into 9 basic

crafts. It is hoped that the increased detail will enable materials
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and labor costs to be standardized by job code.

In addition, the creation of a centralized work order processing

office is foreseen in order to automatically generate work order forms

and to reduce recording errors, which have plagued the decentralized,

development-based offices. These information processing changes will

not necessarily alter the way in which work orders are actually

serviced, but tenants will now call a central maintenance facility

instead of a neighborhood office. Rather than centralize scheduling,

however, the new system is first of all intended to better monitor and

assist the actual servicing changes

through purges, a new union contract

High hopes are placed on the ab

to provide more detailed evaluative

use, however, also has a detail

Although only slightly less elegant

scheme is used only intermittently.

usable detail in the proposed system

form this information takes, but

Given the underutilization of data

forms, we need to ask how much is

that have already- taken place

and an expanded LUI program.

ility of the new work order form

information. The form in present

ed task categorization scheme.

than the one proposed, the present

It is possible that the amount of

will be increased by the improved

there are certainly no guarantees.

provided by current work order

due to the lack of a more elegant

data structure. We then ask what performance measures the future work

order form and processing system may be better designed to inform. A

major objective of this design should be to eliminate the errors and

overlapping variables that characterize the work order form used up to

the present. Let us then structure our data analysis by looking more

closely at the form this information takes.
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3) The Work Order Form

Over the past several years, data have been collected for all of

the approximately 5,000 work orders serviced each month. Roughly 1,000

of these come from the smaller and generally newer elderly

developments, and the rest from family developments, which usually

have more severe maintenance problems. A typical monthly tape thus

contains about 5,000 records of raw data, - each record or line

summarizing information from a single work order. The data entries

represent categories of information found on any work order form, and

include:

- the work order number, development, apartment, supervisor
and employee numbers;

- class, craft, cause and task code;
- call-in date, assignment, completion and inspection dates;
- estimated labor time, labor costs and materials costs;
- actual labor time, labor costs, materials and total costs.

A copy of the work order form used during this period can be found in

table 1 of Appendix II. Several of these categories will not be used

for the analysis, and several more require some explanation.

(1)

The work order, apartment, supervisor and employee numbers do not

concern us here, although they are obviously useful for tracing the

history of a particular work order, for identifying building systems

problems and comparing employee performance. The cause category has

(1)
A sample of recorded data from the October 83 tape can be found

in table 2 of the appendix. Only obvious errors have been deleted.
Some variables have also been transformed to facilitate calculations.
All weekends and holidays have been eliminated to create a working-day
profile of operations.
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also been dropped due to the ambiguities (and therefore errors)

associated with judging why a specific problem occurred. Such

judgements tend to vary from one worker to another. Task codes have

not been considered because the information is both too fine grained

for our analysis and too badly organized to specify standard costs per

task. Estimated and actual costs have also been left out of the

analysis, although in the future it will be interesting to study how

these costs change with new operating policies.

4) Variables Chosen for Analysis

~ We assume that turn-around times are the statistic of greatest

importance to tenants in need of service, and that they are also a

measure of how efficiently the system responds to demand. Tenants

bear implicit costs based on the lengths of these turn-around times,

and it is these "hidden" costs we want to know more about. Without

giving them explicit dollar values, we want to understand the

variables which affect turn-around times, using information on arrival

rates of calls for service and on service times associated with

different class and craft types. These parameter estimates, together

with information on the number of servers (or craftspersons) by

development, and the specification of the queueing discipline (rules

for the order in which calls are to be serviced), will usually be all

we need to specify a variety of models.
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A) Development

If each large development has its own maintenance crew, then each

also has its own unique set of queues to be modelled. Since the

larger family developments interest us primarily, we have selected 12

developments which generated over 200 work orders in the month of

October. These are:

Dev No.

101
103
105
108
109
114
120
123
124
501
508
510

Name

Charlestown
Mission Hill
Orchard Park
Maverick
Franklin Hill
Mission Hill Ext
Columbia Point
M. E. McCormack
Old Colony
West Broadway
Orient Heights
Gallivan Blvd

TOTAL

Units

1149
1023

774
414
375
588

1504
1016
873
676
354
251

8997

Work
Orders

201
435
190
292
222
197
233
213
475
229
172
173

3032

WOs per
100 Units

17.5
42.5
24.5
70.5
59.2
33.5
15.5
21.0
54.4
33.9
48.6
68.9

At times we

developments,

specific one.

will

and

look at

at other

information aggregated across these

times focus in on the operations of a

B) Class

More detai

service times

type against ca

led information on variations in arrival rates and

can be derived by measuring priority class and craft

11-in dates, completion dates and labor times. The 12
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class codes are meant to describe the overall type of work order. In

one sense, orders are coded by priority (emergency, routine); in

another by special source, if any (Housing Inspection Dept, Emergency

Response Service, Court Order, LUI), and in yet another sense by

special reasons for which service might be required (lead paint,

vacancy, extraordinary, modernize, safety, security). Any work order

falls into at least one of these subcategories, but may fall into all

three. Since only one of these overlapping class codes is specified

on a work order form, however, a great deal of information can be lost

or misclassified. In the future, this information might be organized

into two unique and exhaustive categories covering priority and

source, with perhaps a third for any special characteristics not

detailed elsewhere.

For this analysis, we are primarily concerned with the priority

in which calls are serviced. Fortunately, central BHA policy has

attempted to sort each of the 12 class items by the order in which

they should be handled. Assuming that central policy has had some

effect, this allows us to retrospectively analyze all work orders by

priority. Hereafter, we will use the term "class" to refer to service

priority. The variable "class" takes on two values - emergency and

routine - with respect to which all work orders are defined. The

terms "emergency" and "routine" - used in a more comprehensive sense

than that in which they appear on a work order form - are defined to

include work orders coded as
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Emergency Routine

1 emergency 4 vacancy
2 lead paint 5 routine
3 Housing Inspection 6 extraordinary

Department 7 modernize
8 safety 12 Living Unit Inspection
9 security

10 Emergency Response
Service

11 court order

This information could be used to model either the existence of one

priority-based queue for each development, or two independent queues -

one for each priority class.

C) Craft

The craft category refers to the type of craftsperson needed for

the maintenance service. According to union contracts no longer in

effect, each work order was required to be serviced by a craftsperson

of the corresponding type. This policy substantially increased the

costs and turn-around times associated with some jobs, since a

painter, for example, could not begin painting until an expensive,

licensed electrician had arrived to remove the light switch cover

plates. These rules apparently went much further than state law,

which only required that more complex tasks be performed by workers of

the corresponding specialized skill type. The fact that licensed

craftspersons are both more expensive and sometimes legally required

for certains tasks suggests that we differentiate licensed work orders

from those of other skill types. The 19 craft codes might then be

aggregated into two groups. Similar to our definition of class, the
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variable "craft" takes on two values - licensed and skilled - by which

all work orders (except rare manager actions) can be defined.

Licensed Skilled

4 electrician 1 appliance
10 plumber 2 auto mechanic

3 carpenter
5 fireman
6 glazier
7 laborer
8 painter
9 plasterer

11 roof
12 site,structure

13 steamfitter
14 welder

16 exterminator
17 tile setter
18 bricklayer
19 cement finisher

Although it can be argued that much information is lost by

grouping so many skills together, licensed work orders account for 42%

of all work orders generated, whereas any one skill type accounts for

very little. Since, for the period under study, craftspersons of a

particular type were required to service each order, one might assume

that a different queue exists for each craft. Workers in some queues

may therefore have a great deal more idle time than others. We have

ignored these distinctions here for two reasons: one is that

workorders are backlogged, usually by the hundreds, for each

development. This suggests that most workers always have calls in

queue. The other reason is that average service times do not appear to

differ dramatically by skill type. Although idle times by craft have

not been investigated here, such retrospective information could help

judge the accuracy of idle times projected by queueing models. Further
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studies should certainly attempt more fine grained analyses, once the

new work order processing system is securely in place.

D) Class/Craft Combination

Each work order has both a class value and a craft value. We may

wish to construct a model having two craft queues for each

development. Within each of these queues, work orders may be assigned

nonpreemptive priority based on their class values. On the other hand,

another simple model might be based on four independently operating

queues in which either licensed or skilled servers perform only

emergency or routine work. Each work order could then be assigned to

one of these queues, based on unique combinations of class and craft.

- emergency licensed (emlic)
- emergency skilled (emski)
- routine licensed (roulic)
- routine skilled (rouski)

5) Conclusions

Overall, we have defined four variables by which the parameters

can be measured.

A) development
B) class
C) craft
D) class/craft

The strategy we follow is to use linear regression, analysis of

variance, and goodness of fit tests to estimate the probability

distributions of the number of arrivals and of service times, and to



page 20

see how these estimates differ with respect to the variables outlined

above. Turn-around times have been analyzed in a similar fashion to

provide a base for comparison with those which could eventually be

estimated by queueing models. Once reasonable assumptions can be made

regarding the forms taken by these distributions, parameter estimates

used as inputs to queueing models can then be easily calculated using

the same database management techniques which provide other reflective

performance measures.
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CHAPTER III

ESTIMATING ARRIVAL RATES

1) Objectives

By observing arrival processes for the queues we have defined, we

can determine whether simple queueing models can be fit to these

arrivals. Here, a variety of methods are used to test whether

arrivals correspond to a Poisson process. Due to its pleasant

mathematical properties, this process has become the basis for some of

the simplest and most powerful queueing models in common use. Another

reason it is often used is that the Poisson process describes events

which occur randomly in time. Therefore, if systematic maintenance

problems are not occuring, we would expect work orders to arrive

approximately in a Poisson manner.

In the case of Poisson arrivals, scheduling operations may

clearly benefit from queueing models capable of projecting congestion.

We would therefore like to point out any Poisson arrival processes and

suggest models that may help reduce turn-around times. But since

Poisson processes describe random events, we can also use our test

results as criteria for determining whether maintenance problems are

ordinary or systematic. If arrivals are non-Poisson, then the

maintenance system would benefit from an ability to diagnose problems

by separating independent occurrences from systematic ones. We begin

with a short profile of Poisson processes, followed by an explanation

of test methods and results. An interpretation of these results can be

found at the end of this chapter.
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2) The Poisson Arrival Process

The exact time at which a call for service will arrive is not

known in advance. If one were to visit a maintenance office, the time

interval between any two arrivals would be different each time. But

over a large number of observations, these interarrival times might

follow one of several classic probability distributions. If we take

one day as our time unit of analysis, we can observe a daily demand

function showing the aggregate number of work orders that arrived on a

particular day throughout the 12 high-demand developments we have

chosen. A plot of daily demand in October (fig 1), shows work orders

as a function, ) (t), of the working day on which they arrived.

Weekend days have been eliminated.

a = awos Daily demand function: figure 1

200 + work orders per day, October 1983

a

150 +
a a

a a

a a aa a a a a
aa a a

100 + a
a

a

50 +

0 +
------------------------------------------------

0 5 10 15 20

Day
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Toward the end of the month, the number of arrivals appears to

drop because the data contain call-in dates only for those orders

serviced in October. Especially near the end of the month, calls are

arriving that will not be immediately serviced, and not appear in the

data until November. The mean arrival rate of these calls is 117 per

day with a standard deviation of 21. Further identification of errors

would probably raise the mean and reduce the standard deviation

somewhat.

We begin with the null hypothesis that arrivals can be modelled

as a time-homogenous Poisson process. This process has been shown

especially useful in approximating many aspects of urban service

systems. It typically applies when customers (arrivals) are drawn from

a large population, any one of which has a very small probability of

"arriving" on a given day. For general Poisson processes, the numbers

of arrivals occurring during non-overlapping time intervals are

statistically independent. If in addition the interarrival times

follow an exponential distribution, then the actual arrival pattern is

called a time-homogenous Poisson process. In any time interval, these

Poisson arrivals are said to occur "randomly" in time, and the

probability that there are exactly n work orders generated in a

particular day is given by

Pr(n/day) = Pr n = (_t) e t = 1 day

n = arrivals/day

If this equation fits the distribution of the number of arrivals as we

observe them in the data, then other well-known properties of

homogenous Poisson arrival processes will enable us to define the

system's behavior particularly well.
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There are a variety of methods for testing whether this

hypothesis is true for the observed arrivals. First, we plot a

histogram showing the number of days in October on which n arrivals

occurred (fig 2).

figure 2

wos /day frequencies

90 xx 2
100 'xx 2
110 xxxxxxx 7
120 xxx 3
130 xx 2
140 xx 2
150 x 1
160 0
170 0
180 Ix I

With the exception of the outlier to the right, the histogram

resembles that of a Poisson probability mass function (pmf), and

suggests we test the actual pmfs more closely for specific

developments. For each development, we then calculate means and

variances of daily arrival rates (A) by class, craft, and class/craft

combination (table 3).

Choosing development 108, a relatively busy project, we next

create table 1, showing the daily demand function. From column 1, we

can make a separate matrix (table 2) to show the number of arrivals

per day and the fraction of days on which they were observed. This is

the observed probability mass function ("frac", fig 3a). Using the

observed mean arrival rate A , we also generate a theoretical pmf

(Pr_n_arr) showing how arrivals per day would be distributed if they

corresponded perfectly to a time-homogenous Poisson process. This is
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plotted in fig 3b.

table 1

Daily demand function,
all 12 developments

wos
ci day

277 16
278 5
279 6
280 7
281 5

285 17
286 12
287 15
288 9
291 17

292 17
293 7
294 11
295 13
298 16

299 12
300 18
301 3
302 5
305 11

em

6

4
2

12
3
4
3
4

7
4
8
2
3

4
10

1
2
4

roul irc
lic emlic

rou ski emski

10 8 8 3 3
4 3 2 0 1
5 5 1 1 0
3 3 4 2 2
3 1 4 1 1

5 9 7 7 5
9 4 8 1 2

11 8 6 3 1
6 3 6 1 2
13 4 12 1 3

9 4 13 2 5
3 4 2 2 1
3 3 8 3 5

11 6 7 2 0
12 5 11 0 3

8 1 11 0 4
7 7 11 1 9
2 1 2 0 1
3 0 5 0 2
6 4 7 1 3

table 2

Probability mass function
all work orders
development 108

f reqrouski
#

2
3
4
5

6
7
8
9
10

11
12

5

2
3

3
6
6
4
10

8
2
3
7
8

7
3

3
4

wos

3
5
6
7
9

11
12
13
15
16

17
18

1
3
1
2
1

2
2

2

3
1

f rac

0.050
0.150
0.050
0.100
0.050

0.100
0. 100
0.050
0.050
0.100

0.150
0.050

Pr_n arr

0.003
0.021
0.039
0.062
0.107

0.119
0.110
0.094
0.055
0.038

0.025
0.015

3) A Summary of Tests for Poisson Arrival Processes

A) Chi-Square and Linear Regression Tests

A Chi-Square goodness of fit test was first used to compare

frequencies based on these two distributions, but low counts in the

expected cells made it necessary to aggregate the frequencies into

classes so general that the test became useless.

Then we attempted a simple linear regression analysis using one

probability distribution to predict the other. The details of this

analysis are presented in the appendix to Chapter IlM. Ambiguities in

the results led us to test the sensitivity of regressions to known

2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20
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PMF for arrivals, 108
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differences between probability distributions. For low arrival rates

and small sample sizes, regression results appear to underestimate

these differences. The tests are especially insensitive to differences

between cumulative distributions.

Finally, we found that non-constant variances require that a

weighted least squares approach be used. Such a regression test would

account for inhomogenous variances (just as the Chi-Square test does),

but it would also indicate how consistently and in what direction the

distributions differ. No time was available to execute a weighted

least squares regression test, however.

B) The Kolmogorov-Smirnov Test

Another method for testing the degree of agreement between a

cumulative function of observed probabilities and an hypothesized

cumulative distribution is the Kolmogorov-Smirnov (K-S) goodness of

fit test. This avoids the problem of glossing over differences

between the two distributions because it subtracts each cell in the

observed function from the corresponding cell of the expected or

hypothesized distribution, and uses the maximum resulting difference

as a test statistic, D, whose distribution in repeated sampling is

known.

D = maximumlexpected - observedi

Here, D is small under the null hypothesis that the observed

probabilities are equal to the Poisson. A large D, however, leads us

to reject the Poisson model at some chosen significance level, whose
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critical value depends on the sample size, n. Like many tests, the K-S

statistic tends to favor the null hypothesis for small sample sizes.

In our case, we want to be careful because the finer our class and

craft categories are sliced, the more the arrival processes may appear

Poisson.

We can give the non-Poisson alternative the benefit of the doubt

by choosing a significance level of a=0.20. By this decision rule, we

are willing

non-Poisson

to re

whi

Critical values

reference. But

provides us with

Table 4 in

for development

statistic D are

the regression

judges all arriv

significance.

randomly generated p

different values of

sensitive to changes

regressions has to

rather than observed

rate).

n

ject the Poisson model if our

le allowing a 20% probability

at the 0.05 level have also

either decision rule accounts for

a defin

Appendix

108.

tive answer.

III summarizes the

The distributions

observations appear

of chance error.

been provided for

recording errors or

outcomes of the K-S

used to calculate the

given in table 5 and figure 2 of the

on cumulative probability

al processes to be Poisson

distri

at any

appendix.

butions, the

reasonable

K-S

level

test

test

Like

test

of

An analysis using the K-S test to compare a series of

robabilities to a Poisson distribution based on

the mean arrival rate shows the test to be highly

in this rate. The problem faced with cumulative

some extent been overcome (here we used random

distributions to test for changes in the arrival

The interesting conclusion, however, is that the K-S statistic

also appears highly sensitive to changes in sample size. Our tests

for development 108 used a sample of 20 days and found arrivals to be

i



page 28

Poisson. But for the same sample size, the K-S test also judges a

cumulative distribution of random uniform probabilities to be Poisson,

provided we use the mean arrival rate implied by those random numbers

as our estimate of lambda in generating the expected Poisson

distribution. The same is generally true for all sample sizes less

than 60. At 60, the test discriminates well between hypothesized and

random distributions for an arrival rate of 18 work orders per day,

but not for 12. It is only for sample sizes of at least 100, however,

that it appears clearly useful for testing hypotheses throughout the

range of the arrival rates in our observed distributions. The test is

therefore inadequate for estimating arrival distributions from monthly

samples. The results of these investigations are presented in tables 6

and 7 of Appendix Ill.

C) Measures of Central Tendency Across Developments

Finally, Poisson arrival processes also have the property that

the mean number of Poisson events occurring in a given time period is

precisely equal to the variance. The means and variances of daily

arrival rates are given in tables 3a and 3b by class, craft,

class/craft and development. If the means and variances for any

development are equal, this does not prove the arrivals are Poisson,

but very different means and variances would suggest that they are

not.

Using data from all 12 developments, linear regressions were run

to test how well the observed means predict the variances. While this

masks the differences between any two developments, it permits us to
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view tendencies across them. In making such generalizations, however,

one must also be careful to avoid the "ecological fallacy" of

interpreting results from regressions on sample means just as one

would interpret them from tests run on actual data. Regressions on

means naturally tend to account for more of the observed variation

simply because the means of several samples vary less than do the data

in those samples.

Means & variances of arrival rates
by class, craft & development

wos-m emm

8.150
14.400
7.350

11.100
8.150
7.750

10.150
7.650

20.000
S.900
6.950
6.750

2.050
1.050
5.250
4.250
6.600
3.900
8.800
1.000
1.450
0.350
0.500
6.100

table 3a
rou m lic_m ski m

6.050
12.950
2.100
6.650
1.550
3.850
1.350
6.650

18.500
8.500
6.450
0.650

3.100
6.400
2.700
4.150
3.650
2.750
5.200
3.150
8.350
3.800
3.150
2.400

5.000
8.000
4.650
6.750
4.500
5.000
4.950
4.500
11.650
5.050
3.800
4.350

emlic m emskim roulicm rouski m

0.900
0.600
2.400
1.550
3.100
2.000
4.600
0.600
0.450
0.150
0.350
2.200

1.150
0.450
2.850
2.650
3.500,
1.900
4.200
0.400
1.000
0.150
0.150
3.900

2.200
5.600
0.300
2.550
0.550
0.750
0.600
2.550
7.900
3.650
2.800
0.200

3.800
7.350
1.800
4.350
1.000
3.100
0.750
4.100

10.600
4.850
3.650
0.450

table 3b

wossA em-s A rousa 1i cs2 sk i-s2

24.344
31.618
15.920
24.305
12.766
21.987
36.024
13.184
64.626
20.730
14.577
14.304

4.260
1.313

12.831
8.934

16.459
6.305

26.378
0.947
3.629
0.239
0.473

10.824

14.364
32.262

3.881
12.236
3.629
9.923
2.660

10.452
65.740
20.794
14.258

1.293

3.675
6.462
4.012
6.240
4.661
3.88 1
9.536
3.397

12.766
8.486
5.818
2.462

11.472
16.524
9.400

12.931
6.579

12.946
15.312
7.840

62.758
6.472
6.802
9.505

eml i c_sA emsk ils2 roul i c sz rousk i s

1.147
0.569
3.830
2.683
5.462
3.580
7.513
0.780
0.576
0.134
0.450
2.062

1.608
0.682
5.607
4.661
7.840
3.356

11. 540
0.358
2.631
0.134

0.134
6.938

3.222
6.991
0.221
2.996
0.787
0.828
0.780
1.946

11.465
8.556
5.009
0.274

6.381
15.610
3.640
6.260
3.262
7.885
1.355
6.938

62.457
6.240
6.975
0.787

Four rounds of regressions were run testing the means of each

class, craft, and class/craft category in table 3a against the

corresponding variances in the columns of table 3b. Results are given

in table 8 of the appendix. The high slopes of the fitted regression

lines suggest that typical arrival processes for most classes, crafts,

dev

101.000
103.000
105.000
108.000
109.000
114.000
120.000
123.000
124.000
501.000
508.000
510.000

dev

101.000
103.000
105.000
108.000
109.000
114.000
120.000
123.000
124.000
501.000
508.000
510.000
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and class/craft combinations may conform more closely to

hyperexponential or uniform distributions than to the Poisson. This

appears especially true for skilled and routine/skilled arrivals.

Another possibility is that many arrivals correspond to time-varying

or inhomogenous Poisson processes - in other words that arrivals in

non-overlapping intervals are independent, but that "rush hours" and

peak periods also occur.

Failures in all classes and crafts do seem to be associated,

since the only categories which appear somewhat Poisson are also the

most finely sliced. These include emergency and emergency/skilled

problems, whose variances were smaller in development 108. On this

basis, other developments exhibit a greater overall tendency toward

related and systematic failures of the emergency/skilled type.

Development 120 seems to have had special problems in this respect.

Further studies should isolate and detail such problems for each

development.

4) Interpreting Test Results

Based on all of the tests presented above, we can neither accept

nor reject the hypothesis that the number of arrivals is Poisson

distributed. For our sample sizes, the only tests which led us to

accept the hypothesis proved highly insensitive to differences between

distributions. There are also major problems with the tests which led

us to reject the Poisson model. It is certainly true, however, that

there is considerable variability in daily arrivals at any

development. This may be due to systematic maintenance problems which
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cause work orders to be generated in groups.

In continuously modernized buildings without systematic problems,

one would expect work orders to be generated in an entirely random

manner. By definition, however, buildings are constructed at one

point in time. Because their components are standardized, those

components also tend to need repair or replacement at about the same

time, and this causes work orders to be generated non-randomly. The

existence of group arrivals is partly due to the fact that several

work orders are often generated for a single repair job. One job may

appear to be many separate jobs. But groups of non-Poisson routine

arrivals also indicate that minor

simultaneously occurring due to worr

problems are associated because they

falling plaster), not because one

another. The analysis indicates that

the major portion of non-Poisson work

that the repairs required to service

greatly by skill type. One would

affairs in old developments (Maverick

having maintenance crews that respond

On the other hand, non-Poisson ar

the sense that one problem contributes

examples include emergency roof, site

a variety of smaller "associated"

connections between these minor fa

but associated problems are

out building components. These

happen concurrently (such as

minor problem necessarily causes

such routine problems make up

orders for development 108, and

such problems tend to vary

expect to find such a state of

was first occupied in 1942)

to minor problems one at a time.

rivals can also be systematic in

to or causes another. Extreme

or structure failures leading to

problems without apparent causal

iilures. Similarly, licensed

problems such as the failure of outdated plumbing or electrical

systems may generate a host of associated routine work orders which
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appear unrelated. Such bunches of routine work orders could well

indicate that more serious problems are about to happen, and that

there are major problems underlying these minor failures.

The fact that we are unable to assume arrivals to be Poisson

distributed does not help us to construct simple and accurate queueing

models. But it does suggest that the more serious (and interesting)

maintenance problems involve precisely those work orders which do not

arrive in a Poisson manner. We can use this fact to help us identify

possible systematic failures.

It is important that we not confuse service priorities with the

degree to which a problem may result from systematic failures.

Emergency work orders

serious systems pro

emergencies can be

occurrences. If mos

view work orders a

systematically gener

these problems are th

as systematically,

which are likely to

are not ne :essar i 1 y the main indicators of

blems. While they require priority service, these

the result of either related or isolated

t arrival categories are non-Poisson, we should

s symptoms of a maintenance process that

ates certain types of problems. By definition,

e cumulative effects of systematic neglect. Just

therefore, we must define the underlying failures

be causing different "bunches" of associated

problems, whether they be emergency or routine, licensed or skilled.
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5) Diagnosing Systems Failures

A) The Bottom-Up Approach

A method for identifying system failures can be briefly outlined

as follows. One first identifies a specific bunch of problems that are

regularly occurring. Again, these problems are "associated" because

they are of the same type, rather than because they necessarily cause

each other. Only rarely will bunches will be observable in the space

of one day, since failures may not create symptoms all at once. It is

more likely that neglected systems will be identified by isolating

"bunches" that form over periods of several weeks or even months.

Each bunch can then be viewed as one element in a hypothetical

set of such symptoms. At the disaggregated level, these bunches may

appear unrelated to other elements of the same set. Indeed, workers

may fail to notice (or to record) the existence of a "set" of

problems, since they tend to service work orders of a particular type.

But these diverse elements may in fact be related through systems

failures. The bottom-up approach asks what possible systems failures

are implied by the diverse non-random problems we observe in work

order data.

B) The Top-Down Approach

The same method for identifying systems failures can be seen from

another perspective. First, a list of possible systems failures is

created. From these, one can generate hypothetical sets of problems
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which could follow from such failures. Each set implies a

corresponding systems failure, and each element in a set constitutes a

symptom or bunch of associated work orders which would appear in the

data if the related systems problem may be occurring. Any systems

problem may therefore imply a variety of possible symptoms, not all of

which would necessarily manifest themselves in the event such failures

exist. From the appearance of a few symptoms or bunches, one could

then diagnose possible failures. Furthermore, if a given underlying

problem is suspected, one should be able to anticipate other bunches

of work orders that may "happen", since these are simply the remaining

elements of the system's set. The diagnosis is complicated somewhat,

however, by the fact that a given symptom may imply a variety of

systems failures, and therefore belong to several sets at once. This

should be clear from the diagram (figure 4) on the following page.

The term "systems failures" should not conjure images of

exploding boilers, flooded corridors and collapsing ruins, however.

The reason we need a method for diagnosing them is precisely that they

may otherwise go unrecognized. The method outlined here is essentially

meant to be used for analyzing neglected or undermaintained building

systems, since they may be hidden behind work orders which appear to

workers as isolated events. Rather than cataloguing every imaginable

system, the bottom-up approach should be used initially to identify

those "most neglected" systems for which system sets should be

constructed. The detailed task code scheme provided by the new work

order processing system should be quite useful for this.
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6) Summary & Conclusions

Our analysis of arrival rates therefore indicates that

1) A variety of non-random problems are occurri-ng;

2) These failures are associated but are not necessarily

causing other failures to occur;

3) Underlying systems failures which may be causing diverse

types of non-random problems are not always recognized

in the field or by monthly reviews of work order data, but

4) they can be identified by constructing sets of

symptoms which appear in the data as bunches of

associated work orders. These sets can then be used to

structure monthly reviews.

5) Data should be organized by the new work order processing

system so that work orders can be sorted into bunches

by task code, and

6) Living Unit Inspection data should be structured to further

identify such problems by classifying the condition of

components common to many apartments.

Finally, waiting time consequences for most arrival processes

might not be approximated with acceptable accuracy by simple

Poisson-based queueing models. It appears quite likely that work order

arrivals are uniformly distributed, although other models may apply.

Conversely, however, the degree to which arrival distributions change

over time into Poisson processes may be used as a measure for

evaluating improvements in building conditions. As systematic and

associated failures are identified and serviced, one would expect
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arrivals of subsequent work orders to

distributions. In turn, this would enable

to be made from simple queueing models.

modified and expanded LUI program and the

proposed work order processing system seem

general direction.

more closely follow Poisson

more accurate projections

From this perspective, the

task code scheme of the

to be oriented in the right
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CHAPTER IV

SERVICE TIMES

1) The Poisson Service Process

Service times measure the time actually spent performing

maintenance tasks. These are usually very small in comparison with

the time customers spend in queue (by far the largest component of

turn-around times), but they play an important role in determining the

lengths of those queues.

<-----------turn -around time---------

--------- waiting time--------' +

cal-ndays.horcall-in completion
date. da t.

The strategy for estimating service time distributions is similar

to the one we used for analyzing arrivals. There, we tested to see if

the interarrival times follow an exponential distribution, which is

equivalent to saying that the arrival rates could be modelled by a

Poisson probability mass function. We assumed the interarrival times

to be independent, and tested this assumption by measuring events per

unit time with the aid of the pmf.

For a Poisson service process, however, it is the time between

service completions (the service times) that are independent and which

follow an exponential distribution. Instead of measuring probability

distributions of events in a fixed time interval, we now measure

probabilities that the time interval needed for an event to occur will
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assume some value. Therefore, we approximate a Poisson service

process by calculating expected probabilities using the probability

density function (pdf) for a negative exponential distribution, which

is given by
-ut

Pr{ste (t,t+dt)} = ue dt t > 0

This is the set of probabilities that a service completion occurs in

any given time interval, or, equivalently, the probabilities that

service times are of a given duration.

As A stood for the mean arrival rate of calls per day, here u

equals the mean service rate per hour and t is the independent random

variable describing the number of hours. Mean service times calculated

from the data, however, are given by 1/u. Tables 4a and 4b present

means and standard deviations for these service times by development,

class, craft, and class-craft combination.

(1)

Taking the inverse of the observed mean service time (1/u) for

development 108 transforms it to a mean service rate (u), which can be

substituted into the formula for the negative exponential

distribution. Integrating the areas under the curve for each service

rate then gives the expected probability density function for our

hypothesized Poisson service process.

In table 1, development 108 work orders have been sorted by

service times for all class and craft categories. The aggregate column

(1)
For further reference, table 1 in Appendix IV shows the actual number

of workorders in each service time category by class, craft, and
class-craft. These figures are aggregated across all 12 developments.



table 2

Service time
Probability density

development 108

Service times, by class & craft # hrs freq
frac stpdf

# hrs wos

1
2
3
4
5

6
7

9
10

11
12
13
14
15

16
17
18
19
20

0.500
1.000
1.500
2.000
2.500

3.000
3.500
4.000
4.500
5.000

5.500
6.000
6.500
7.000
8.000

9.000
10.000
11.000
12.000
16.000

24
69
40
47
9

32
1

16
4
9

1
10
2
2
16

1
1

2

roul ic
em lic emski

rou ski emlic rouski

8
25
11
13
3

14
0
7
1
2

1
4
0
0
7

1
0
0
i
2

"wos" (all work

16
42
28
33
6

18

9
3
7

0
6
2
2
9

0

0
0

7
16
12
30
5

20
1
7
2
3

0
6
1
0
2

0
0
0
0
O1

17
52
28
17
4

12
0
8

2
5

4
4
1
1

14

7
18
8
7
2

5
0
3

1
1

1
1
0

5

1

1
1

6
9
9

23
4

11

4

2
2

0
3
1
0
0

0
0
0
0
O)

10
35
20
11
2

7
0
6

5

0
3
1
2
9

0
1
1
0
O0

1 0.500
2 1.000
3 1.500
4 2.000
5 2.500

6 3.000
7 3.500
8 4.000
9 4.500

10 5.000

11
12
13
14
15

16
17
18
19
20

21
22
23

5.500
6.000
6.500
7.000
8.000

9.000
10.000
11.000
12.000
16.000

22.000
24.000
30.000

24
69
40
47
9

32
1

16
4
9

10

2
2
16

2

1
2

1

0.082
0.236
0. 137
0. 161
0.031

0.110
0.003
0.055
0.014
0.031

0.003
0.034
0.007
0.007
0.055

0.003
0.003
0.003
0.003
0.007

0.003
0.007
0.003

0.141

0.119
0.101
0.085
0.072

0.061
0.052
0.044
0.037
0.032

0.027
0.023
0.019
0.032
0.023

0.017
0.012
0.009
0.006
0.002

0.000
0.000
0.000

orders) was then used to calculate the observed and

expected probability distributions given in table 2.

2) Methods for Testing Exponential Service Times

A) Linear Regression

No matter how the arrivals are distributed, we would expect there

to be a good chance that service times are exponential. Regression

tests comparing the distributions in figures la and lb are once more

unreliable due to non-constant variances. A weighted least squares

page 39

table 1

function
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figure la observed service time pdf
development 108

f = frac

0.2500 +

0.2000 +

. +
0.1500 +

0. 1000 +

if

0.0500 + f f

I f f f
0.0000 4 f f f f f f f f

-- - - - --- - - - - - - -----------------------------

o 10 20 30

hrs

figure 1b expected exponential pdf

s = st_pdf

0. 1600 +

0. 1400 +s

0.1200 + s

0.1000+ S

I S

0.0800 +
i S

0.0600 + S

0.0400 + S
S S

S

0.0200 + S S S S

ss
i ~ s S

0.0000 + s S S S
0-----------------------------

0 10 20 30

hrs
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approach is again necessary if a regression test is to be used.

Details of simple regression results are given in Appendix IV.

B) The Kolmoqorov-Smirnov Test

Service time distributions can be reviewed, however, using the

Kolmogorov-Smirnov goodness of fit test. We avoid the problem of

small sample size here, because our sample is the number of work

orders rather than the number of days. Results of the tests are given

in table 3, and the calculations are in table 4 of the appendix. For

all large sample sizes, the K-S statistic leads us to reject the

exponential hypothesis.

C) Measures of Central Tendency

For arrival processes, we used the fact that Poisson means and

variances are precisely equal as a final test of the degree to which

the observed arrivals in development 108 are representative of those

in the other 11. With the exception of emergency, emergency/licensed

and routine/licensed jobs, we found the variances to be much higher

than the means, - suggesting that uniform or hyperexponential

distributions may be more accurate predictors of some arrival

processes.

We can follow an analogous strategy as a final test for

exponential service times. For development 108, a K-S test has

provided reasonable evidence that service times are not exponentially

distributed. A comparison of the means and variances may enable us to



Kolmogorov-Smirnov Goodness of Fit Test
for

Observed vs. Expected Poisson Service Time Distributions, by Class & Craft,
Development 108

Ho: observed = exponential
H1: observed i exponential

Class/Craft
Category

D stat.
Sample size

n

Critical Value

a = .20 a = .05

All work
orders

Emergency

Routine

Licensed

Skilled

Emlic

Emski

Roulic

Rouski

.177

.135

.189

.193

.216

.173

.185

.200

292

100

188

114

174

37

62

76

.063 .080

.107

.078

.100

.081

.175

.136

.123

.136

.099

.127

.103

.223

.173

.160

reject Ho

accept at .05

reject

reject

reject

accept at .20

reject

reject

.102 .130 reject

Decision

-h
0

00

D 0

0

M 0'

0 <

r+

CD

0
0

a

a
--,

CL

0

r+

0
-r-

0
W)

.228 109
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table 4

Means & standard deviations of service times
by class, craft & development

wos_m em m rou m lic-m skim emlicm emskim roulicm rouski m

2.512
3.397
3.095
3.009
4.027
3.429
2.470
4.185
2.220
3.753
3.965
2. 173

2.353
3.083
3.165
3.020
3.148
3.868
1.784
5.826
2.216
6.944
1.917
2.083

2.574
3.456
2.930
3.037
8.263
3.020
5.885
3.987
2.224
3.637
4.119
2.795

1. 969
2.890
3.467
2.842
3.100
4.034
1.821
3.122
1.790
2.478
2.134
2.636

2.891
3.856
2.922
3.089
4.629
3.176
3.125
4.906
2.533
4.620
5.252
1 .934

2.227
3.015
3.613
3.257
2.704
4.262
1.825
4.077
2.500

14.250
1.778
2.716

2.448
3.235
2.867
2.863
3.450
3.557
1.739
8.100
2.080
1.250
2.333
1.760

1.873
2.822
2.357
2.651
5.107
3.438
1.794
2.952
1.745
1.924
2. 185
2.125

3.051
4.034
3.010
3.271

10. 104
2.942
9.045
4.632
2.586
4.752
5.342
3.179

dev wos_S

101.000
103.000
105.000
108.000
109.000
114.000
120.000
123.000
124.000
501.000
508.000
510.000

3.907
4.663
3.972
3.575
6.843
5.516
5.281
5.322
3.208
7.757
7.201
2.018

em s rou_s lic_s sk i_s emlic_s emsk is roulic s rouski s

3.042
4.204
4.434
2.978
5.204
5.803
1.964
5.680
2.219

11.690
1. 165
1.814

4.181
4.803
2.623
3.890

11. 146
5.229

11.674
5.258
3.282
7.579
7.439
3.062

1.386
2.905
5.731
2.843
2.599
3.543
2.184
2.562
2.102
4.009
2.304
2.191

4.921
5.739
2.840
4.006
8.455
6.148
7.112
6.475
3.789
9.374
8.995
1.888

1.817
4.078
6.063
2.876
2.019
3.768
2.267
2.216
2.374

15.354
1.121
2.232

3.745
4.378
2.921
3.072
6.478
7.033
1.591
7.884
2.178
0.645
1.443
1.469

1.191
2.617
1.651
2.841
4.063
2.892
1.668
2.596
2.083
1 .228
2.430
1 .959

5.282
6.104
2.734
4.496

13.451
5.565

14.848
6.306
3.919
9.524
9.115
3.555

tentatively extend these conclusions to other developments.. The

method is similar to the one employed for arrivals, but not identical,

because service time distributions have been modelled using a pdf

rather than a pmf. For a Poisson service process, the mean service

time is 1/u and the variance is 1/u2 . Therefore, the standard

deviation (rather than the variance) is precisely equal to the mean,

since

To test how closely the values in the columns of table 4a match those

of table 4b, we use the same method as in comparing the means and

dev

101.000
103.000
105.000
108.000
109.000
114.000
120.000
123.000
124.000
501.000
508.000
510.000
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variances of arrival rates. A first glance suggests that the means in

each class and craft category are fairly close to their corresponding

standard deviations. Results of the regressions are presented in table

5 of Appendix IV.

The r-square terms are uniformly higher than tests run for

development 108 alone, as one would expect from regressions run on

sample means. The slopes of lines fit by the regressions, however, are

fairly close to one. Means and standard deviations are furthest from

matching for skilled jobs, but we expect more variation here, due to

the greater variety of job types in this category.

3) Interpretation & Conclusions

If we had found service times to be exponential, then the time

remaining until the next service completion would be independent of

the particular time at which we choose to view the service process. It

would also be independent of the type of work order previously

serviced. This is the Markov or "no memory" property of Poisson

service processes. Exponential service times would therefore indicate

that different types of repairs are being done within any class or

craft category, since these repairs are taking different amounts of

time to service. Such repairs would be unassociated and not

consequences of systems failures. We might then expect any categories

of Poisson arrivals to correspond to exponential service time

categories.

But matters are more complicated than this. Two unrelated jobs

may take the same time to be serviced, just as two associated jobs may
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have different service times. The fact that several workers may be

needed to handle a given problem indicates that some jobs are

interdependent and that the service times for these jobs are mixed

together. Service interdependency means that queues can form on queues

as some tasks are delayed in mid-service until help arrives from

workers of another specialized skill needed to complete the task.

Furthermore, this additional server may himself leave

standing in a second queue while he is servicing minor

first. Given this interdependent operating method, Pois

and service processes would not necessarily correspond.

Recording is another difficulty. "Bumps" appear in

time distributions for jobs that take convenient time

service (4 hours, 8 hours, 16 hours, 40 hours). These

contain rounding errors and thus not correspond to

durations of particular types of service. Rounding errors

other jobs

tasks

son

in

arr

the

val

the service

intervals to

times may

theoretical

for the many

short service times may be especially large relative to theoretical

service times.

Despite these recording errors, systematic maintenance problems

and job interdependency appear to be more important reasons we observe

no mathematically neat distribution underlying service times.

There is a more important explanation, however, for the observed

service time distributions than all those we have discussed so far.

It is based on the fact that means and standard deviations do not

merely correspond within class and craft categories; these measures of

central tendency are also remarkably similar across those categories.

Service times are on the whole much more regular or homogenous than

the arrival rates we observed. This is an indication that maintenance
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crews are responding to calls by cosmetically treating diverse

problems in similar ways.

Rather than undertaking projects aimed at the long term

improvement of conditions, crews may be so used to operating in a

"reactive mode" that the solutions they prescribe and apply merely

alleviate symptoms in the short run where they should be diagnosing

and treating underlying failures. Crews appear overworked and

yet this may indicate a need to reorganize service

priorities and methods, rather

Unit Inspection program seems o

modes of operation. But it

concentrate their efforts so he

are unable to devote attention

Systematic problems often

reaction. A structure therefore

avoids the tendency merely

encourages workers to initiate

than to expand personnel. The Living

ne way to begin to explore "initiatory"

is important that these inspections not

avily on apartment interiors that they

to more global buildings systems.

cannot be resolved through piecemeal

must be found for the LUI program that

to react to scheduling routines, and

diagnoses. Because of their diverse

nature, many systematic problems will not be isolated through data

analysis, but can only be discovered in the field by craftspersons and

supervisors who operate diagnostically.

The method for constructing system arrival sets outlined in the

previous chapter can also be used to create corresponding service

solution sets and to define system-oriented schedules that coordinate

the diverse maintenance operations needed to upgrade undermaintained

systems.

understaffed,
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CHAPTER V
TURN-AROUND TIMES

1) Uses for the Data

For all jobs serviced in October, turn-around time (tat) data

indicate how many working days each order spent in the queueing system

from the day on which the request was called in through the day

service was completed. Weekend days and holidays have been eliminated

so that turn-around times more accurately reflect the actual working

time required for the system to respond to demand. Of course, from

tenants' point of view, weekend days are included in the time they

must wait for service. But the inclusion of weekend days also

exaggerates working day turn-around times by as much as 30 days for

calls which are backlogged several months. Eliminating non-working

days may therefore help us to better understand the relationship

between actual system operations and turn-around times.

Had we been able to conclude in the previous chapter that arrival

and service time distributions follow a Poisson process, then we could

have modelled maintenance operations for development 108 as an M/M/n

queueing system. This would have allowed us to compare hypothetical

operating policies and to draw relatively specific conclusions, such

as: "For policy x, 90% of emergency work orders will be serviced

within 24 hours"; or "The expected average waiting time for routine

calls is 5.5 days"; or "There is an 80% probability

or less will be in queue at time t".

that w work orders
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(1)

Despite the fact that the observed arrival and service time

distributions prevent us from making such specific projections,

however, an analysis of observed turn-around times can reveal several

important waiting time consequences which follow from the observed

operating policy. First, we have fit a linear regression model showing

the number of work orders that have a particular turn-around time.

Second, we have used some general queueing equations applicable for

nearly any arrival and service processes to estimate mean backlogs.

Finally, a simple method has been illustrated for comparing

hypothetical priority policies based on total waiting time

calculations.

2) A Linear Regression Model for Observed Turn-Around Times

The regression model presented below indicates there is a linear

relationship between the log of the turn-around time and the log of

the number of work orders corresponding to a given time. (2)

log(wos) = 6.5 -1.3 X log(tat)

6.5 -1.3
or, wos = e (tat)

(1)
Any M/M/n queue is characterized by Poisson arrivals, exponential

service times and n identical servers.

(2)
See Appendix V for detailed results.
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This equation defines the number of work orders which spent t days in

the queueing system. Because both variables in the regression

equation have been logged, the resulting linear relationship can be

interpreted as a constant elasticity. In other words, a 1% change in

the number of work orders is accompanied by a 1% change in the length

of the turn-around time.

This equation can be used to compare October turn-around times

with those following from recent operations changes. However,

reductions in routine times following these changes will be

exaggerated by the fact that routine work orders are now generated

solely by the Living Unit Inspection program.

figure 1

Fitted and actual relationships
between

work orders and turn-around time

f = fitted

1 = Intat

5 +

4 +f1 f f f
' f1 1 f fII

f 11f11
fI f f f 1

3 + f fif 1
fl1i

f f 1

fif

2+ fif
f I

f 1

f

0 +1
-------- +------------------- +-------------------- +--------------------

0 2 4 6 8

Inwos
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Figure 1 shows how closely the fitted regression line corresponds

to the data. The equation also holds for all classes and crafts of

work orders (see Appendix V) and suggests that over all developments

there is no appreciable difference between emergency and routine

turn-around times.

In a truly priority-based queueing system, newly arriving routine

calls would not be serviced until all emergencies had been handled.

The data, however, are more representative of a maintenance system in

which separate queues exist for emergency and routine work orders. If

for example one crew services only emergencies, while another handles

only routine calls, then both queues may be equally congested.

In addition, BHA staff have noted the difficulty of comparing

mean turn-around times in any one development or month with those of

another. The difficulty arises because those crews operating quickly

in any month (or receiving fewer calls) will begin to service

backlogged orders toward the end of that month. Because these orders

have been in the system a long time, the crew's mean turn-around time

will be driven upward by the act of servicing them. Reliance on such

statistics for comparing month-to-month performance creates incentives

to "wish away" or purge backlogged orders.

The resulting confusion (table 1) is not due to the structure of

the data, however, but rather to the operating method in use. By this

method, work orders which have already spent a month in queue are sent

back to the end of the line, where they are ignored until the system

is uncongested enough to deal with them. Service priority is above all

given to work orders arriving in the current month, rather than to

emergency calls per se. Only if older work orders cease to be sent to
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table 1
Means & standard deviations of turn-around times

by class, craft & development

# dev tat-m

1
2
3
4
5

6
7
8
9

10

101
103
105
108
109

114
120
123
124
501

4.327
18.810
8.859
8.788

13.014

12.4 18
7.804

10.615
8.096

11.938

tat_s

8.071
30.493
11.788
17.969
27.920

39.932
19.363
17.196
21.471
26.641

em-m em-s rou-m

2.653
42.608
8.258
6.646

13.854

5.238
6.853
3.905

12.258
4.222

3.192
36.959
10.785
18.747
29.912

21.982
18.757
9.049

22.429
6.704

4.897
13.456
10.211
10.051
8.486

19.430
12.462
11.369
7.795

12.301

rou-s lic-m lic-s ski-m ski-s

9.107
26.099
13.786
17.657
14.934

50.970
2 1 . 762
17.737
21.420
27.167

4.538
19.299
4.729
7.500

12.062

3.544
6.548

10.585
7.104
8.753

5.113
29.289
9.152

10.094
38.626

9.157
21.265
19.566
21.855
26.524

4. 197
17.748
10. 794
9.729

13.593

16.894
9.061

10.635
8.815

14.200

9.595
31.000
12.403
21.545
19.242

47.999
17.257
15.543
21.201
26.758

11 508 14.560 36.202 3.000 3.715 15.381 37.323

12 510 11.071 20.540 11.277 21.747 9.682 9.073
5.478 12.586 21.021 45.154
8.661 19.308 12.351 21.139

# dev em1 i c_m

I 101
2 103
3 105
4 108
5 109

6 114
7 120
8 123
9 124

10 501

11 508
12 510

2.333
31.242
4.615
4.758

13.239

2.262
5.602
1. 182

11.700
1.000

emlic_s

2.436
33.449
9.232
7.604

42.077

3.507
21.609
0.603

19.345
0.000

emsk I_m

2.893
49.045
10.750
7.726

14.255

8.214
8.172
6.900

12.524
8.250

emskis

3.685
37.492
11.114
22.662
19.503

30.785
15.193
12.749
24.207

8.995

roul ic_m

5.351
17.269
5.571
8.886
6.000

7.133
12.000
12.042
6.852
9.118

roulic_5s

5.598
28.125

9.181
10.914
6.069

16.754
18. 808
20.662
22.004
27.093

rousk i _m

4.625
9.931

10.860
11.048
9.833

22.028
12. 818
10.957
8.502

14.469

rouski s

10.854
23.614
14.261
21.164
18.014

55.310
24.230
15.765
20.990
27.198

3.000 4.036 3.000 3.464 5.803 13.293 21.596 45.755

8.451 20.488 12.763 22.341 10.000 9.381 9.500 9.247

the back of the line will meaningful reductions in mean turn-around

times appear in the data after a period of several months.

3) Total Waiting Times & the Number of Tenants in Oueue

The question "How quickly is maintenance service responding to

demand?" can be posed in another way: "How many tenants are waiting

for service, and how long have they been waiting?". When we review

turn-around time statistics, it is as if we observe each work order as

it is leaving service. We know how long these work orders have spent

in the system, but not how many are currently waiting (figure 2).
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f i gure 2

A General Queueing 5yst em.

Queues
X X X X x X

xx x x x x x

I number in queue
I waiting time

x

ser vice facility
server i

3

( r-lx
ri

| | number in service
1 i service time j

Fortunately, BHA Monthly Management Reports contain estimates of

the number of outstanding work orders by development. The size of

these backlogs does not change dramatically from one month to the next

and suggests that the system is approximately in a steady state. This

means that the number of tenants in the queueing system remains

roughly constant over time. A general relationship in queueing theory

known as "Little's formula" can be used to compare BHA backlog

estimates with those expected from a steady state system with the same

arrival and turn-around time statistics.

Little's formula

mean
arri val
rate

completed
work

orders
01

L = 2 W
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Here L is the expected steady state number of work orders in the

queueing system, - is the mean arrival rate (Poisson or not), and W

is the expected steady state time in the system for a given work

order, or the mean turn-around time.

Tenants in

Mean Tat

W

4.33
18.81
8.86
8.79

13.01

12.42
7.80
10.62
8.10

11.94

14.56
11.07

the Queueing

Estimate
w/Little's
Formula

L

35
271
65
98
106

96
79
81

162
106

101
75

System

BHA Estimate

352
671
154
140
219

211
65

284
627
294

143
77

Calculations of L based on Little's formula underestimate the

number of outstanding work orders as given in Monthly Management

Reports (table 2). More tenants are actually waiting than we would

expect to find. The problem is not that mean turn-around times have

been skewed upward by the servicing of backlogged orders in any month,

but rather that they fail to reflect the higher turn-around times

associated with those orders still unserviced. Real mean turn-around

times are higher than they appear in the data, and therefore actual

backlogs are larger than those estimated by Little's formula.

One reason actual turn-around times are so long (and backlogs so

table 2

Dev

101
103
105
108
109

114
120
123
124
501

508
510

Estimated

Arrival
Rate

;k x

8.15
14.40
7.35
11.10
8.15

7.75
10-15
7.65

20.00
8.90

6.95
6.75
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large) is that some older work orders are repeatedly being sent to the

back of the line. But this may not account for all of the difference

between L and the BHA estimate. Another reason may be that many repair

jobs involve several work orders (and servers), since more than one

skill may be required to perform the repair. For such interdependent

jobs, servers in one queue may be kept waiting for related or

prerequisite orders to be serviced by those in another. There is also

then a queueing process operating for these servers, many of whom may

be kept "busy" waiting in the queue.

For a steady state queueing system,

/02 <1 k = number of servers
ku

must be true. If/ (rho) is greater than one, there will be no

steady state, since calls are arriving faster than servers are

theoretically able to handle them. In "unstable" queues of this type,

even minor increases in the arrival rate lead to major congestion.

Because wild fluctuations in backlog are not occurring, we assume that

a steady state exists and that the number of servers is theoretically

adequate. A good deal of the actual backlog may therefore be due to

the existence of tandem or interdependent queues. In order for

turn-around times to be reduced, the interdependencies leading to

"server queueing" also must be reduced. The recent reclassification of

many tasks as "neutral" should certainly improve the situation, but

the "neutral" job category may have to be expanded to include a wider

range of tasks. It is important to know which tasks contribute most
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heavily to queue interdependency. These will appear as "bunches" of

work orders in monthly data.

We have seen how the operating policy with respect to backlogs

and the delays due to interdependent servicing account for the low

estimate of'L given by Little's formula. In addition, the fact that

several work orders may be generated for one repair job means that BHA

backlog figures provide too high an estimate of the steady state

number of apartments (tenants) in the queueing system. If only one

work order were generated per job, and if backlog policy were changed

and queue interdependency eliminated, then Little's formula should

provide an accurate estimate of those in the system. To find the

steady state number in queue (Lq), we subtract the number in service

on any day (A/u) from L. Here u has been transformed to a daily

service rate.

Lq = kWq = Z(W - _I) - AW - _ L - _
u u u

In a one-order-per-job operating system, Lq would also equal the

steady state number of outstanding work orders. The waiting times for

such a system can be summed to give the total time tenants spend in

queue. Various queueing. disciplines (priority policies) can then be

compared with respect to total tenant waiting times.

4) Comparing Priority-of-Service Policies

A method for comparing queueing disciplines can be briefly

illustrated using two hypothetical priority policies. One policy is
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FIFO (First In, First Out). A variant of a FIFO system with

nonpreemptive priority for emergency calls might be described as

follows: There are two basic queues - licensed and skilled - each of

which has an emergency and a routine component. Newly arriving

emergency calls queue up behind those emergencies already waiting,

while new routine arrivals take their places behind other routine

calls. No routine jobs are serviced until all emergencies have been

handled, but new emergencies do not interrupt the servicing of a

routine order which has already begun (figure 3).

figure 3

Variant of a FIFO Queueing 5ystem
with nonpreemptive priorities.

arri. V4ls rouhne emergencyl licensed servers

XXX XXXXX X X X completed
I I work

first m_ frst in - \ orders.
Wkin Lfin

skilled server.s
XXXXXXX XXXX

A second system, based on "Shortest Expected Processing Time"

(SEPT), is similar in many ways to the one just outlined. Again, there

might be 2 (or n) queues, each organized so that emergency orders

continue to have nonpreemptive priority over routine calls. But within
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each emergency or routine sub-queue, those jobs are serviced first

which have the shortest expected processing (service) time. On any

day, this priority is assigned by the maintenance supervisor without

considering how long a given call may have already waited for service

(figure 4).

figure 4

A SEPT Queueing System
with nonpreemptive priorit le5.

routine emergency licensed servers

arrivals II
XXXXXXX XXX completed

work
orders.

sept sept

skilled server.,
XXXXXXX XXXX(

The FIFO and SEPT queueing systems can be compared with respect

to the total time tenants spend waiting in each system. Using monthly

data, a FIFO work order profile can be created by sorting calls at any

development according to craft (licensed or skilled) and then in

ascending order by arrival date. Note that "class" distinctions have

been ignored, since knowing when the emergency queue is empty involves

a more complex analysis, while the simplification used here does not

affect a comparison of the two policies.
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To make the comparison, each work order is assigned a waiting

time, which is the sum of the service times for those work orders

ahead of it in queue. The total time tenants spend in the system is

simply the sum of these waiting times. In the following tables,

imaginary data have been used to illustrate the method.

FIFO Waiting Times for Licensed Calls

WO No. Arrival date Service time Waiting time

(hours) (hours)

1 1 10 0

2 1 3 10

3 1 5 13
4 1 2 18

5 1 1 20

6 1 2 21
23

Total Waiting Time 105 hours
(13.1 days)

For the SEPT system, work orders for each arrival date can be

further sorted in ascending order of expected processing time.

SEPT Waiting Times for Licensed Calls

WO No. Arrival date Service time Waiting time

5 1 1 0
4 1 2 1
6 1 2 3
2 1 3 5
3 1 5 8
1 1 10 13

23

Total Waiting Time 53 hours

(6.6 days)
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In practice, work orders are continuously arriving that have shorter

service times than some which may have just been serviced. Therefore,

the total waiting times calculated by this method are only

approximations of those we would actually witness. Nevertheless, a

comparison of these hypothetical policies provides reasonable evidence

that a queueing discipline based on Shortest Expected Processing Time

would be preferable to a simple FIFO system in terms of reducing the

total time tenants spend waiting for service. For equity reasons,

supervisors might want to put an upper limit on the time a work order

may be delayed due to its long expected processing time.

Other queueing disciplines could be evaluated in a similar

fashion by comparing the total waiting times implied by each policy.
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APPENDIX I

Key to Tables in the Appendices

Appendix III

Tables 1,2 & Figure 1

- wos work orders. This is the number of work orders arriving per
day.

- em emergency work orders
- rou routine "
- lic licensed " " "

- ski skilled " "

- emlic : emergency/licensed work orders arriving per day
- emski : emergency/skilled " " " " " " "

- roulic : routine/licensed " " " " " "

- freq : frequencies or days on which n arrivals occurred
- frac : the observed probability mass function, or the fraction of

days on which n arrivals occurred
- Prn : the "expected" Poisson pmf. The observed mean arrival rate

used to calculate this distribution is the weighted mean of
the orders arriving times the number of days on which
n arrive. The expected pmf is therefore a likely profile of
the observed distribution if the observed is Poisson.

Table 3 :

- The calculations used for this test are pmfs given in table 7.

Table 4,5 & Figure 2

- Symbols are as in table 1 above. Also

- cumPrn : the cumulative expected pmf, or cumulative distribution
function

- cumfrac : the cumulative observed pmf

- allKS : For all arrivals, this is the difference between cumPr_n
and cumfrac, whose maximum value used as the D estimate in
the K-S test.

- eKS : same as allKS, but for emergency arrivals
- rKS : " ' " "' "' routine "' "1
- IKS : "o "t "' " licensed " "1

" " " " routine/skilled arrivals- rsKS : "
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Tables 6,7 :

- wos : arrivals per day for all work orders
- un20, un40, 60, 100 A set of 20, 40, 60, 100 uniformly

distributed random frequencies (days) on
which n arrivals would occur.

- frac20, 40, 60, 100 Random uniform pmf based on un20, 40, ...100
- uncdf20, 40, ...100 uniform cdfs based on frac20, ...100
- poi_pmf20, 40, ...100 : Expected poisson pmfs were generated using

the mean arrival rate implied by the
uniform istribution. Because they have the
same mean, we are testing how sensitive the
regression and K-S tests are to the forms
the distributions take.

- poicdf20, ...100 : cdfs based on the poipmf20, ...100
- D20, ...100 : Differences between the uncdf20, ...100 and

poicdf20, ...100. The maximum in this set is the D
statistic used to test K-S sensitivity at sample
sizes 20 to 100.

Appendix IV

Table 3 :

- hrs : service times in hours
- emfrac observed pdf for emergency service times
- rfrac " " " routine " " "

- rsfrac " " " " routine/skilled service times

- epdf : expected pdf for emergency service times
- rpdf :" " " " routine " " "

- rspdf " " " " routine/skilled service times.

Table 4

- cepdf cumulative expected pdf for emergency service times
- cefrac S " observed " " " " " "

- eks : differences between cepdf and cefrac
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table 2

Sample Work Order Data
Boston Housing Authority

October 1983

wo

class mats totalcost aday
# dev craft labor ci day cday hrs tat

i 101 1 1 0 1948 1948 298 300 300 2.500 3
2 101 1 1 0 1169 1169 277 300 300 1.500 18
3 101 5 1 0 1169 1169 295 302 302 1.500 6
4 101 1 1 0 1169 1169 300 302 302 1.500 3
5 101 5 1 1962 12540 14502 271 274 278 12.000 6

6 101 1 1 0 779 779 299 300 300 1.000 2
7 101 1 1 0 1169 1169 299 300 300 1.500 2
8 101 1 1 0 1169 1169 286 300 300 1.500 11
9 101 99 1 0 1169 1169 300 302 302 1.500 3

10 101 1 1 0 1558 1558 277 279 279 2.000 3

11 101 1 1 0 1948 1948 279 277 279 2.500 1
12 101 1 1 0 779 779 294 302 302 1.000 7
13 101 5 1 0 3116 3116 279 279 279 4.000 1
14 101 5 2 0 8670 8670 305 305 305 7.500 1
15 101 1 3 250 490 740 278 278 278 0.500 1

16 101 1 3 1390 980 2370 298 298 298 1.000 1
17 101 5 3 125 490 615 271 281 281 0.500 9
18 101 5 3 125 490 615 271 283 291 0.500 9
19 101 5 3 388 980 1368 279 279 279 1.000 1
20 101 4 3 0 1256 1256 264 264 277 1.000 10

21 101 5 3 0 0 0 281 281 281 0.500 1
22 101 4 3 388 490 878 278 281 281 0.500 4
23 101 5 3 0 490 490 281 281 281 0.500 1
24 101 4 3 388 980 1368 302 302 302 1.000 1
25 101 4 3 388 490 878 278 278 278 0.500 1

26 101 1 3 250 1470 1720 298 286 299- 1.500 2
27 101 1 3 388 490 878 302 302 302 0.500 1
28 101 5 3 388 490 878 300 300 300 0.500 1
29 101 5 3 388 490 878 302 302 302 0.500 1
30 101 5 3 0 980 980 264 278 278 1.000 11
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APPENDIX III -

1) Linear Regression as a Test of Probability Distributions

A simple regression test was devised to observe how closely the two

pmfs correspond by using one distribution as the independent

variable or predictor of the other. We assumed

the two sets of probabilities would match perfectly if the test

accounted for all

of the variation by fitting a line of slope-1, passing directly through

the origin.

Since we did not precisely know the extent of errors in the data,

the tests were run in several ways. First,

the observed pmf was used as the independent variable

to explain variations in the expected probabilities.

Pr{expected} = BO + B1 X Pr{observed} (1a)

This is a regression of the "expected on the observed" probabilities.

The relationship was then turned around to test how well the expected

Poisson pmf explained the observed variation.

Pr{observed} = BO + B1 X Pr{expected} (1b)

Although the fraction of total variation explained (r-square) is the

same in each case, the slopes (B1) and y-intercepts (BO) may differ.

We controlled the y-intercepts by eliminating the constant terms from

the equations and forcing the fitted lines to pass through the origin.

This second round of tests gave both different slopes and different
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r-square values.

Pr{expected} = BI X Pr{observed}

Pr{observed} = BI X Pr{expected}

(2a)

(2b)

A comparison of the results from each of these four regressions was

initially used to indicate whether all arrivals to development 108

taken as a group could be approximated by a Poisson model. The test

results were

Pr {exp}

Pr {obs}

- 0.07

- 0.09

Pr {exp}

Pr {obs}

- 0.11 X Prfobs}

- 0.10 X Prfexp}

= 0.56 X Prfobs}

= 0.96 X Pr{exp}

r

r*-

r'-

r.r=

0.01

0.01

error

error

(1a)

(Ib)

(2a)

(2b)

Development

overall.
(1)

108 arrivals certainly did not appear to be Poisson

We thought that arrivals for some classes and crafts

been more closely approximated by the Poisson model, however

summarizes regression results for each of the four equations

craft, and class/craft combination. The observed and

probabilities for each category are given in table

distributions are plotted in figures la through 1d.

All four series of regressions indicated that only e

licensed, emergency/licensed and emergency/skilled arriva

may have

. Table 1

by class,

expected

2. The

mergency,

Ils might

(1)
In cases for which the correlation of the dependent and

independent variables is extremely small, the "rgop" program in the

Consistent System sometimes yields negative values for r-square when

the constant term is forced out of the model.
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follow nearly Poisson patterns. All other classes and crafts appeared

to have non-Poisson arrivals, as indicated both by their low r-square

values and slopes nearer to zero than to one. But how reliable were

these results?

We then tested the regression test itself by generating a

distribution of random uniform probabilities and using regression to

compare them with a Poisson distribution. To calculate our Poisson

values, we used the mean arrival rate implied by the corresponding

uniform probabilities as our estimate of lambda. If the test showed no

correlation between the distributions (as we would expect), then we

would have had some evidence that the regression method used was

accurate enough for our purposes.

The results of these tests are given in table 3. They indicate

that regression is an inadequate tool for comparing noncumulative

probability distributions based on small samples. This explains why

our finely sliced categories appeared to be nearer to Poisson

distributions. For larger samples, the test distinguishes between

uniform and Poisson distributions, but not between the Poisson and the

normal. In addition, regressions using cumulative distributions were

shown to be extremely insensitive to any differences between

distributions.

Most important, however, the non-constant variances in the

distributions suggest the need for a weighted least squares approach

if regression models are to be used. Unfortunately, no time was

available to execute this test. On the basis of simple regression

tests, we could therefore neither accept nor reject the hypothesis

that observed arrivals are Poisson distributed.



Linear Regressions of Observed Arrivals on Expected Poisson Arrivals

Class/Craft
Category

Expected on Observed

2
r BO B1i

Observed on Expected

2
r B0 B1i

Exp. on Obs.

2
r B1i

Obs. on Exp.

2
r B1

All work
orders

Emergency

Routine

Licensed

Skilled

Emlic

Emski

Roulic

Rouski

.01 .07*

.57
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.11
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error .56
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table 2 Observed & Expected Poisson Probability Mass Functions
by Class & Craft, Development 108

frac Pr_n

0.050 0.003
0.150 0.021
0.050 0.039
0.100 0.062
0.050 0.107
0. 100 0.119
0.100 0.110
0.050 0.094
0.050 0.055
0.100 0.038
0.150 0.025
0.050 0.015

f req
em frac Pr n.

1 3
2 3
3 3
4 6
6 1

7 1
8 1

10 1
12 1

0.150 0.061
0.150 0.129
0.150 0.183
0.300 0.194
0.050 0.117

0.050 0.071
0.050 0.038
0.050 0.008
0.050 0.001

t req
rou frac Pr_n

2 1 0.050 0.029
3 5 0.250 0.063
4 1 0.050 0.105
5 2 0.100 0.140
6 2 0.100 0.155
7 1 0.050 0.148
8 1 0.050 0.123
9 2 0.100 0.091
10 1 0.050 0.060
11 2 0.100 0.036

12 1 0.050 0.020
13 1 0.050 0.010

lic frac
f req

1 3 0.15
3 4 0.20
4 5 0.25
5 2 0.10
6 1 0.05

7 1
8 2
9 1
0 1

f req
ski f rac Pr_nPr_n

0 0.065
0 0.188
0 0.195
0 0.162
0 0.112

1 1 0.050
2 3 0.150
4 2 0.100
5 1 0.050
6 2 0.100

7 3 0.150
8 3 0.150

11 3 0.150
12 1 0.050
13 1 0.050

0.050 0.066
0.100 0.034
0.050 0.016
0.050 0.016

eml ic
freq f rac Pr_n

1 7 0.350 0.329
2 4 0.200 0.255
3 3 0.150 0.132
7 1 0.050 0.001
0 5 0.-250 0.212

roul ic
freqfrac Pr_n

1 3 0.150 0.199
2 4 0.200 0.254
3 4 0.200 0.216
4 2 0.100 0.138
5 4 0.200 0.070
0 3 0.150 0.078

emsk i
f req f rac Pr_n

1 5 0.250 0.187
2 4 0.200 0.248
3 4 0.200 0. 219
4 1 0.050 0.145
5, 3 0.150 0.077
9 1 0.050 0.001
0 2 0.100 0.071

rousk i
freqfrac Pr_n

1 3 0.150 0.056
2 2 0. 100 0.122
3 5 0.250 0. 177
4 2 0.100 0.193
5 1 0.050 0. 168
6 2 0.100 0. 121
7 2 0.100 0.075
8 2 0.100 0.041

10 1 0.050 0.009

Column 1 = number of arrivals
Column 2 = freqencies ,(days)
Column 3 = "frac" = observed probabilities
Column 4 = "Pr n" = exTected Poisson omf

f req
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wos

3
5
6
7
9
11
12
13
15
16
17
18

0.008
0.027
0.101
0.137
0. 154

0.148
0. 125
0.039
0.022
0.011
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figure la
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figure lb

f = frac

30.0000 +
*10**-2

25.0000 +
*10**-2

20.0000 +
*10**-2

15.0000 +
*10**-2

10.0000 +
*10**-2

5.0000 +f
*10**-2 -+-

f req
# rou frac Pr_n

1
2
3
4
5
6
7
8
9

10

2
3
4
5
6
7
8
9

10
11

i
5
2
2
2

1

2

2

0.050
0.250
0.050
0.100
0.100
0.050
0.050
0.100
0.050
0. 100

0.029
0.063
0.105
0.140
0. 155
0. 148
0.123
0.091
0.060
0.036

11 12 1 0.050. 0.020
12 13 1 0.050 0.010

f f

f f
---- +--------------

f

f

f observed pmf for
routine work orders

f f f
----------------------

2 4 6 8 10 12 14

rou

P = Pr n

P

P

P

P

P

P

erpected Poisson pmf

P

- 4 62-----.----------- 1----------------------------4

2 4 6 a 10 12 14

P

P
P

0. 1600 +

0.1400 +

0.1200 +

0.1000 +

0.0800 +

0.0600 +

0.0400 +

0.0200 +

0.0000 +

P

rou



page 69

figure ic
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figure Id
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*10**-2

14.0000
*10**-2

12.0000
*10**-2

10.0000
* 10** -2

8.0000
*10**-2

6.0000
* 10**-2

4 .0000
*10**-2

+

+
+

f

0 2

P = Pr n

0. 1600 +

0..1400 +

0. 1200 +

0.1000 +

0.0800 +

0.0600 +

0.0400 +

0.0200

0.0000

0 2

ski



R s *
Regression Sensitivity Test Comparing Random Uniform & Poisson Distributions

Range:
work orders
per day

1 to 12

1 to 18

1 to 12

1 to 18

1 to 12

1 to 18

1 to 12

1 to 18

Sample size

days

20

20

40

40

60

60

100

100

Poisson on Uniform

2
r BO B1

.12 .06 .33

.07 .04

.16 .04

.02 .05

*
.35 .03

.26

.47

.13

.69

.00 .06 -. 06

*
.02 .06

*
.00 .05

.25

.12

Uniform on Poisson

2
r BO B1

*
.12 .05 .36

.07 .04 .25

.16 .06 .34

.02 .05 .14

.35 .04 .52

.00 .06 -.04

.02 .08 .06

.00 .05 .03

* - insignificant BO coefficient, indicating the fitted line may pass through the origin.

** - mean arrival rate used for calculating Poisson distribution is that implied by the

random uniform distribution.

C)
0

Xh M

0~0

0

0-I

o" r+

r+

=1

Cr

0

-u



TABLE 4 Appendix III Kolmogorov-Smirnov Goodness of Fit Test for Arrivals, by Class & Craft,
Developmvent 108

Class/Craft
Category

All work
orders

Emergency

Routine

Licensed

Skilled

Emlic

Emski

Roulic

Rouski

D statistic

.213

.184

.199

.086

.164

.038

.100

.156

.145

n (sample size)

20

20

20

20

20

20

20

20

20

Critical Values

a=.20 a=.05

.231

.231

.231

.231

.231

.231

.231

.231

.231

.294

.294

.294

.294

.294

.294

.294

.294

.294

Decision

accept

accept

accept

accept

accept

accept

accept

accept

accept

Ho: observed=Poisson
HI: observedtPoisson

0

0
(0
0
in
0

0. C- 0
(/1

(<<

CD 0 M~
-- 0

oo

0
.- 0U
CO -

r+ '

rt
lu

CD

--I

r+

0~1

"-a
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table 5

oumfrac2
cumPr n

0.005
0.035
0.075
0.137
0.330

0.567
0.678
0.772
0.902
0.940

0.965
0.981

0.050
0.200
0.250
0.350
0.400

0.500
0.600
0.650
0.700
0.800

0.950
1.000

Kolmogorov-Smirnov Test Calculations
by class & craft

al IKS

-0.045
-0.165
-0.175
-0.213
-0.070

0.067
0.078
0.122
0.202
0.140

0.015
-0.019

development 108

freq
em cumfrac

1 3 0.150
2 3 0.300
3 3 0.450
4 6 0.750
6 1 0.800

7 1 0.850
8 1 0.900

10 1 0.950
12 1 ' 1.000

cumPr

0.061
0.189
0.372
0.566
0.847

0.918
0.956
0.981
0.985

eKS

-0.089
-0.111
-0.078
-0.184
0.047

0.068
0.056
0.031

-0.015

f req
rou cumfrac

2 1
3 5
4 1
5 2
6 2

7
8
9
10
11

2
1
2

curnPr

0.050 0.037
0.300 0.101
0.350 0.206
0.450 0.346
0.550 0.502

0.600 0.649
0.650 0.772
0.750 0.863
0.800 0.923
0.900 0.960

12 1 0.950 0.980
13 1 1.000 0.990

lic cumfrac
freq cumPr 1KS

f req
ski cumfrac

1 3 0.150 0.131
3 4 0.350 0.351
4 5 0.600 0.546
5 2 0.700 0.708
6 1 0.750 0.820

7 1 0.800 0.886
8 2 0.900 0.920
9 1 0.950 0.936
0 1 1.000 0.952

-0.019
0.001

-0.054
0.008
0.070

0.086
0.020

-0.014
-0.048

1 1 0.050 0.009
2 3 0.200 0.036
4 2 0.300 0.197
5 1 0.350 0.334
6 2 0.450 0.488

7 3 0.600 0.636
8 3 0.750 0.761

11 3 0.900 0.957
12 1 0.950 0.979
13 1 1.000 0.990

emlic cumfrac
freq cumPr elKS

emski cumfrac
freq cumPr esKS ,

1 7 0.350 0.329 -0.021
2 4 0.550 0.584 0.034
3 3 0.700 0.716 0.016
7 1 0.750 0.788 0.038
0 5 1.000 1.000 -0.000

1 5 0.250 0.187 -0.063
2 4 0.450 0.435 -0.015
3 4 0.650 0.654 0.004
4 1 0.700 0.800 0.100
5 3 0.850 0.877 0.027

9 1 0.900 0.929 0.029
0 2 1.000 1.000 -0.000

cumfrac
roulic

freq cumPr rIKS
rouski cumfrac

freq cumPr rsKS

1 3 0.150 0.199 0.049
2 4 0.350 0.453 0.103
3 4 0.550 0.669 0.119
4 2 0.650 0.806 0.156
5 4 0.850 0.876 0.026

0 3 1.000 0.955 -0.045

1 3 0.150 0.056 -0.094
2 2 0.250 0.178 -0.072
3 5 0.500 0.355 -0.145
4 2 0.600 0.548 -0.052
5 1 0.650 0.715 0.065

6 2 0.750 0.837 0.087
7 2 0.850 0.912 0.062
8 2 0.950 0.953 0.003
10 1 1.000 0.982 -0.018

cumPr
sKS

-0.041
-0.164
-0.103
-0.016
0.038

0.036
0.011
0.057
0.029

-0.010

rKS

-0.013
-0. 199
-0.144
-0.104
-0.048

0.049
0.122
0.113
0. 123
0.060

0.030
-0.010



page 74
figure 2

c = cumfrac

C1.0000

0.8000

C

C

C
C

0.6000 +

0.4000 +

0.2000 +

0.0000

0

C

C

C
C

C
C

C observed cdf, all
work orders

5 10 15 20

wos

c = cumPr_n

1.0000 +

0.8000 +

0.6000 +

0.4000 +

0.2000 +

0.0000 +

0

C
C C

C

C

C

C

C

C
expected Poisson cdfc

C
C

1o 15 20

wos



Kolmogorov-Smirnov Sensitivity Test Comparing Random Uniform and Poisson Distributions *

Pange:
work orders
ner day

1 to 12

1 to 18

1 to 12

I to 18

1 to 12

1 to 18

1 to 12

1 to 18

Sample size

n

20

20

40

40

60

60

100

100

D statistic

D

.147

.236

.166

.176

.104

.227

.152

.199

Critical Values

a = .20 a = .05

.231

.231

.169

.169

.138

.138

.107

.107

.294

.294

.215

.215

.176

.176

.136

.136

Decision

accept Ho

reject at

accept at

accept Ho

reject at

accept at

accept Ho

reject Ho

reject Ho

reject Ho

.20

.05

.20

.05

Ho: uniform = Poisson
(test insensitive to
differences at this n)

Hi: test sensitive at
least to differences
between uniform & Poisson
at this n

0

0
I0

0-,

930
VV <
0w 1

r+ M

En
C r

0 0-
D 1r

* - mean arrival rate used for calculating Poisson distribution is that implied by the

random uniform distribution.

w

a'

-UDi
£0
CD

'-TI

Table 6
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table 7a

Kolmogorov-Smirnov Sensitivity Test Calculations

wos un20 un40 un60 unIO frac20

1.000
2.000
3.000
4.000
5.000

6.000
7.000
8.000
9.000

10.000

1.000
3.000
0.000
2.000
4.000

1.000
3.000
1.000
1.000
1.000

3.000
3.000
8.000
2.000
4.000

3.000
5.000
3.000
5.000
2.000

1.000
6.000
5.000
6.000

10.000

4.000
8.000
3.000
7.000
7.000

7.000
6.000

12.000
8.000
7.000

10.000
9.000
5.000
9.000

14.000

0.050
0.150
0.000
0.100
0.200

0.050
0.150
0.050
0.050
0.050

frac40

0.075
0.075
0.200
0.050
0.100

0.075
0.125
0.075
0.125
0.050

frac 100
frac60

0.017
0.100
0.083
0.100
0.167

0.067
0.133
0.050
0.117
0.117

0.070
0.060
0.120
0.080
0.070

0.100
0.090
0.050
0.090
0.140

11 11.000 2.000 2.000 1.000 8.000 0.100 0.050 0.017 0.080
12 12.000 1.000 0.000 2.000 5.000 0.050 0.000 0.033 0.050

uncdf 20

0.050
0.200
0.200
0.300
0.500

0.550
0.700
0.750
0.800
0.850

Uncdf 40

0.075
0.150
0.350
0.400
0.500

0.575
0.700
0.775
0.900
0.950

uncdf6C

0.017
0.117
0.200
0.300
0.467

0.533
0.667
0.717
0.833
0.950

uncdfiOO poi_pmf4O PO
poipmf2O poi_pmf6

0.070
0.130
0.250
0.330
0.400

0.500
0.590
0.640
0.730
0.870

0.013
0.040
0.083
0.127
0.156

0.160
0.141
0.108
0.074
0.046

0.020
0.057
0.107
0.150
0.169

0.159
0.128
0.090
0.056
0.032

0.012
0.038
0.079
0.124
0.154

0.160
0. '42
0.111
0.077
0.048

0.950 1.000 0.967 0.950 0.025 0.016 0.027
1.000 1.000 1.000 1.000 0.013 0.008 0.014

i_pmf 100 poi_cdf40 poi-cdfIOC
0 poicdf2O poilcdf6O

0.013
0.053
0.136
0.263
0.420

0.580
0.721
0.829
0.903
0.949

0.020
0.077
0.184
0.334
0.503

0.662
0.790
0.879
0.936
0.967

0.012
0.050
0.130
0.253
0.408

0.567
0.710
0.821
0.897
0.945

0.010
0.042
0.112
0.224
0.370

0.528
0.674
0.792
0.878
0.933

D20 D40 D60 DiO0

-0.037
-0.147
-0.064
-0.037
-0.080

0.030
0.021
0.079
0.103
0.099

-0.055
-0.073
-0.166
-0.066
0.003

0.087
0.090
0.104
0.036
0.017

-0.004
-0.066
-0.070
-0.047
-0.059

0.034
0.043
0.104
0.064

-0.005

-0.060
-0.088
-0.138
-0.106
-0.030

0.028
0.084
0.152
0. 148
0.063

0.033 0.974 0.983 0.972 0.965 0.024 -0.017 0.006 0.015
0.018 0.987 0.991 0.986 0.983 -0.013 -0.009 -0.014 -0.017

1
2
3
4
5

6
7
8
9
10

0.010
0.032
0.070
0.113
0.146

0.158
0.146
0.118
0.085
0.055
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table 7b
Kolmogorov-Smirnov Sensitivity Test Calculations

# wos2 un20 un40 un6O uniO frac20

1.000
2.000
3.000
4.000
5.000

6.000
7.000
8.000
9.000

10.000

11.000
12.000
13.000
14.000
15.000

16.000
17.000
18.000

1.000
1.000
1.000
3.000
0.000

0.000
1.000
1.000
2.000
3.000

2.000
0.000
1.000
2.000
1.000

1.000.
0.000
0.000

0.000
3.000
3.000
1.000
2.000

3.000
2.000
0.000
0.000
2.000

6.000
6.000
1.000
3.000
1.000

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18

unc
uncdf20

0.050
0.100
0.150
0.300
0.300

0.300
0.350
0.400
0.500
0.650

0.750
0.750
0.800
0.900
0.950

pmf 100

0.001
0.005
0.016
0.035
0.063

0.094
0.119
0. 133
0.132
0.117

0.095
0.071
0.049
0.031
0.018

0.010
0.005
0.003

1.000
1.000
1.000

poi_cdf20

0.001
0.007
0.025
0.064
0.132

0.230
0.354
0.489
0.620
0.735

0.826
0.893
0.938
0.966
0.982

0.991
0.996
0.998

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
1 .

3.000
1.000
5.000
6.000
3.000

0.000
1.000
6.000
2.000
2.000

7.000
2.000
2.000
4.000
6.000

.000 4.000

.000 6.000

.000 0.000
df40

uncdf60

000 0.050
075 0.067
150 0.150
175 0.250
225 0.300

300 0.300
350 0.317
350 0.417
350 0.450
400 0.483

550 0.600
700 0.633
725 0.667
800 0.733
825 0.833

950 0.900
975 1.000
00 1.000

poi_cdf60

1.000
10.000
10.000
4.000
7.000

6.000
6.000
5.000
7.000
2.000

8.000
5.000
7.000
7.000
2.000

4.000
4.000
5.000

incdf 100

0.010
0.110
0.210
0.250
0.320

0.380
0.440
0.490
0.560
0.580

0.660
0.710
0.780
0.850
0.870

0.910 C
0.950 C
1.000 C

D2
poi_cdf40 poicdfiO

0.000
0.003
0.010
0.027
0.063

0.124
0.211
0.322
0.445
0.570

0.685
0.782
0.857
0.911
0.948

0.971
0.984
0.992

0.001
0.003
0.011
0.032
0.073

0.140
0.234
0.350
0.477
0.602

0.714
0.806
0.875
0.924
0.956

0.976
0.987
0.994

0.001
0.007
0.022
0.058
0.121

0.214
0.333
0.466
0.598
0.715

0.811
0.881
0.930
0.961
0.979

0.990
0.995
0.998

-0.049
-0.093
-0.125
-0.236
-0.168

-0.070
0.004
0.089
0.120
0.085

0.076
0.143
0.138
0.066
0.032

-0.009
-0.004
-0.002

0.050
0.050
0.050
0.150
0.000

0.000
0.050
0.050
0.100
0.150

0.100
0.000
0.050
0.100
0.050

0.050
0.000
0.000

frac40

0.000
0.075
0.075
0.025
0.050

0.075
0.050
0.000
0.000
0.050

0.150
0.150
0.025
0.075
0.025

0.125
0.025
0.025

fraclOO
frac60

0.050 0.010
0.017 0.100
0.083 0.100
0.100 0.040
0.050 0.070

0.000 0.060
0.017 0.060
0.100 0.050
0.033 0.070
0.033 0.020

0.117 0.080
0.033 0.050
0.033 0.070
0.067 0.070
0.100 0.020

0.067
0. 100
0.000

0.040
0.040
0.050

pmf20 pmf40 pmf60

).001
).006
).018
).039
).068

0.099
0.123
O.135
0.131
).115

0.091
0.067
0.045
0.028
0.016

.009

.005

.002
0

0.000
0.002
0.007
0.018
0.036

0.061
0.087
0.110
0.124
0.125

0.115
0.097
0.075
0.054
0.036

0.023
0.014
0.008

0.001
0.003
0.008
0.021
0.041

0.067
0.094
0.116
0. 127
0.125

0.112
0.092
0.070
0.049
0.032

0.020
0.011
0.006

D40 D60 D100

0.000
-0.072
-0.140
-0.148
-0.162

-0.176
-0.139
-0.028
0.095
0.170

0.135
0.082
0.132
0.111
0.123

0.021
0.009

-0.008

-0.049
-0.064
-0. 139
-0.218
-0.227

-0.160
-0.083
-0.067
0.027
0.118

0.114
0.172
0.208
0.191
0.123

0.076
-0.013
-0.006

-0.009
-0.103
-0.188
-0.192
-0.199

-0.166
-0.107
-0.024
0.038
0.135

0.151
0.171
0.150
0.111
0.109

0.080
0.045

-0.002

5
1
1



Regressions of Mean Arrivals on Variances, by Class & Craft

Class/Craft
Category

All work
orders

Emergency

Routine

Licensed

Skilled

Emlic

Emski

Roulic

Rouski

Variance on Mean

2r BO B1

.86 -9.65 3.50

.93 -1.70 2.74

.93 -4.08 3.31

Mean on Variance

r BO BI

.86 3.75 .25

.93 .81 .34

.93 1.80 .28

.74 0 1.46 .74 1.07

.84 -21.7 6.44

.96 -. 25 1.68

*
.93 -. 50 2.31

*
.89 -. 06 1.48

.74 -8.20 4.94

.50

.84 3.80 .13

.96 .21 .57

.93 .34 .40

*
.89 .31 .60

.74 2.23 .15

Var. on Mean

r2 B1

.80 2.63

.91 2.43

.90 2.84

.74 1.46

.58 3.08

.95 1.59

.92 2.14

.89 1.46

.65 3.54

Mean on Var.

r2 BI

.61 .36

.89 .39

.86 .33

.66 .65

error .26

.94 .62

.90 .45

.88 .65

.29 .21

-o01
to
CD

00* -insignificant BO coefficient, indicating fitted line may pass through the origin.

to

-I

0

0

t

D<

0

Di

(n

r+

00
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APPENDIX IV

1) Use of Regression to Test Exponential Service Times

Using linear regression, the exponential distribution was

compared with observed probabilities representing the fraction of

actual service times that have a particular length. Regressions were

run on the noncumulative probabilities just as they were for arrivals,

using the same series of simple regression equations. Table 2

presents the results of these tests, and table 3 gives the actual

distributions. Slopes given by the "observed on expected" regressions

are in all cases fairly close to one, but an analysis of variation in

the other direction (expected on observed) suggests that service times

are non-Poisson. With the conservative decision rule that Poisson

processes should have r-squares over 50 and slopes between 60 and 140

in each of the four regressions, we conclude that service times are

not Poisson. In no cases, however, do the observed service time

distributions differ wildly from the Poisson model. These

distributions are also more homogenous across classes and crafts than

are the arrival rates.

Once more, however, the problem of inhomogenous variance makes

the results of these regression tests unreliable. A weighted least

squares approach should be used to account for non-constant variances.

Following is a collection of data, calculations and scatter plots

used in the service time analyses.



table 1

Work Orders
by

service time, class & craft

emlic roulic
# hrs wos em rou lic ski emski rouski

1 0.500 352 138 210 127 222 68 67 59 158
2 1.000 719 275 441 295 421 100 174 195 250
3 1.500 463 134 327 191 271 30 104 161 168
4 2.000 477 174 301 202 275 71 103 129 174
5 2.500 168 57 110 76 92 27 30 48 63

6 3.000 206 73 133 88 117 42 30 46 88
7 3.500 41 14 27 24 17 9 5 15 12
8 4.000 152 60 91 59 92 24 35 35 58
9 4.500 26 11 15 17 9 6 5 i 4
10 5.000 41 14 27 18 22 10 4 8 19

11 5.500 9 2 7 4 5 1 1 3 4
12 6.000 51 26 24 23 28 15 11 7 18
13 6.500 9 3 6 4 5 1 2 3 3
14 7.000 30 6 24 8 21 3 3 5 19
15 7.500 7 1 6 2 5 1 0 1 5

16 8.000 123 39 81 53 70 24 15 28 56
17 8.500 5 0 5 0 5 0 0 0 5
18 9.000 4 2 2 0 4 0 2 0 2
19 9.500 2 1 1 2 0 1 0 1 0
20 10.000 8 3 5 2 6 0 3 2 3

21 10.500 2 1 1 0 2 0 1 0 1
22 11.000 6 2 4 2 4 1 1 1 3
23 11.500 1 1 0 1 0 1 0 0 0
24 12.000 18 6 12 4 14 2 4 2 10
25 13.000 5 0 5 3 2 0 0 3 2

26 14.000 17 6 11 1 16 0 6 1 10
27 15.000 7 2 5 1 6 1 1 0 5
28 16.000 28 10 18 7 21 5 5 2 16
29 20.000 1 0 1 0 1 0 0 0 1
30 21.000 4 0 4 0 4 0 0 0 4

31 22.000 2 1 1 1 1 1 0 0 1
32 23.000 2 0 2 1 1 0 0 1 1
33 24.000 8 1 7 1 7 0 1 1 6
34 25.000 2 1 1 0 2 0 1 0 1
35 2G.000 2 1 1 1 1 1 0 0 1

36 27.000 2 0 2 0 2 0 0 0 2
37 28.000 5 2 3 0 5 0 2 0 3
38 29.000 2 1 1 1 1 1 0 0 1
39 30.000 4 0 4 0 4 0 0 0 4
40 32.000 3 1 2 0 3 0 1 0 2

41 34.000 1 0 1 0 1 0 0 0 1
42 38.000 2 0 2 0 2 0 0 0 2
43 39.000 2 1 1 1 1 1 0 0 1
44 40.000 2 0 2 0 2 0 0 0 2
45 43.000 1 0 1 0 1 0 0 0 1

46 45.000 1 0 I 0 1 0 0 0 I
47 48.000 3 2 1 0 3 0 2 0 1
48 52.000 3 0 3 0 3 0 0 0 3
49 54.000 1 0 1 0 1 0 0 0 1
50 64.000 2 0 2 0 2 0 0 0 2
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Linear Regressions of Observed Service Times on Expected

Class/Craft Expected on

2
r

All work
orders

Emergency

Routine

Observed

BO BI

.63 .02 .51

.57 .02

.65 .02

Licensed .44 .02

.59

.32

.64

.45

.56

.48

.52

.41

.02 .43

.03

.02

.02

.02

.31

.49

.41

.40

Observed on Expected

2
r BO B1

.63 0 1.24

.57 0 1.19

.65 0 1.26

.44 0 1.07

*
.59 -.01 1.36

.32 0 1.03

.64 0 1.30

.45 0 1.08

.56 -. 01 1.39

Exp. on Obs.

2
r B1i

.49 .64

.43 .62

.54 .65

.25 .56

.39 .57

error .48

.51 .61

.28 .55

.32 .55

Category

indicating fitted line may pass through the origin.

Obs. on Exp.

2
r B1

.62 1.17

.57 1.15

.65 1.19

.44 1.09

.58 1.23

.32 1.07

.63 1.21

.45 1.10

.55 1.24

Skilled

Emlic

Emski

Roulic

Rouski

M
0)

M
U:)

-

-o 0

mo-sm

0

C<

rex

< 0
C0)

00--ft

OC+

n

X

0

M..-

(n,
CD

(n
"U

r-

a
a-

CD

* -insignificant BO coefficient,
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table 3

Observed & Expected Service Time Probability Density Functions
by class & craft
development 108

hrs emfrac epdf

0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000
6.500
7.000
8.000
9.000

10.000
11.000
12.000
16.000
22.000
24.000
30.000

0.080
0.250
0.110
0. 130
0.030
0.140
0.000
0.070
0.010
0.020
0.010
0.040
0.000
0.000
0.070
0.010
0.000
0.000
0.010
0.020
0.000
0.000
0.000

0.140
0.119
0.101
0.085
0.072
0.061
0.052
0.044
0.037
0.032
0.027
0.023
0.019
0.016
0.023
0.017
0.012
0.009
0.006
0.002
0.000
0.000
0.000

rfrac rpdf ifrac 1pdf sfrac spdf

0.085
0.223
0.149
0.176
0.032
0.096
0.005
0.048
0.016
0.037
0.000
0.032
0.011
0.011
0.048
0.000
0.005
0.005
0.000
0.000
0.005
0.011
0.005

0.140
0.118
0.100
0.085
0.072
0.061
0.052
0.044
0.037
0.032
0.027
0.023
0.019
0.016
0.024
0.017
0.012
0.009
0.006
0.002
0.000
0.000
0.000

0.061
0.140
0.105
0.263
0.044
0.175
0.009
0.061
0.018
0.026
0.000
0.053
0.009
0.000
0.018
0.000
0.000
0.000
0.000
0.009
0.000
0.009
0.000

0.148
0. 124
0.104
0.087
0.073
0.061
0.051
0.043
0.036
0.030
0.025
0.021
0.018
0.015
0.021
0.015
0.010
0.007
0.005
0.001
0.000
0.000
0.000

0.098
0.299
0.161
0.098
0.023
0.069
0.000
0.046
0.011
0.029
0.006
0.023
0.006
0.006
0.080
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006

0.138
0.117
0.100
0.085
0.072
0.061
0.052
0.044
0.038
0.032
0.027
0.023
0.020
0.017
0.024
0.018
0.013
0.009
0.007
0.002
0.000
0.000
0.000

hrs elfrac elpdf esfrac espdf rifrac rlpdf rsfrac rspdf

0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000
6.500
7.000
8.000
9.000

10.000
11.000
12.000
16.000
22.000
24.000
30.000

0.027
0.189
0.081
0.162
0.027
0.243
0.000
0.081
0.000
0.027
0.000
0.081
0.000
0.000
0.054
0.000
0.000
0.000
0.000
0.027
0.000
0.000
0.000

0.132
0.113
0.097
0.083
0.071
0.061
0.052
0.045
0.039
0.033
0.028
0.024
0.021
0.018
0.026
0.019
0.014
0.010
0.008
0.002
0.000
0.000
0.000

0.113
0.290
0. 129
0.113
0.032
0.081
0.000
0.048
0.016
0.016
0.016
0.016
0.000
0.000
0.081
0.016
0.000
0.000
0.016
0.016
0.000
0.000
0.000

0. 147
0.123
0.103
0.087
0.073
0.061
0.051
0.043
0.036
0.030
0.026
0.021
0.018
0.015
0.021
0.015
0.011
0.008
0.005
0.001
0.000
0.000
0.000

0.079
0. 118
0.118
0.303
0.053
0.145
0.013
0.053
0.026
0.026
0.000
0.039
0.013
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.013
0.000

0.156
0.129
0.107
0.089
0.073
0.061
0.050
0.042
0.035
0.029
0.024
0.020
0.016
0.013
0.018
0.013
0.009
0.006
0.004
0.001
0.000
0.000
0.000

0.092
0.294
0.174
0.092
0.018
0.064
0.000
0.046
0.009
0.037
0.000
0.028
0.009
0.009
0.083
0.000
0.009
0.009
0.000
0.000
0.009
0.009
0.009

0.131
0.113
0.097
0.083
0.071
0.061
0.052
0.045
0.039
0.033
0.028
0.024
0.021
0.018
0.026
0.019
0.014
0.011
0.008
0.002
0.000
0.000
0.000
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table 4

Kolmogorov-Smirnov Test Calculations
by class & craft
development 108

hrs cepdf cefrac eks crpdf crfrac rks clpdf clfrac lks cspdf csfrac sks

0.140 0.080 0.060 0.140 0.085
0.259 0.330 -0.071 0.258 0.309
0.360 0.440 -0.080 0.358 0.457
0.445 0.570 -0.125 0.444 0.633
0.518 0.600 -0.082 0.516 0.665

0.579 0.740 -0.161 0.577 0.761
0.631 0.740 -0.109 0.629 0.766
0.675 0.810 -0.135 0.673 0.814
0.712 0.820 -0.108 0.711 0.830
0.744 0.840 -0.096 0.742 0.867

0.771 0.850 -0.079 0.769 0.867
0.793 0.890 -0.097 0.792 O.899
0.813 0.890 -0.077 0.812 0.910
0.829 0.890 -0.061 0.828 0.920
0.852 0.960 -0.108 0.852 0.968

0.869 0.970 -0.101 0.869 0.968
0.881 0.970 -0.089 0.881 0.973
0.890 0.970 -0.080 0.890 0.979
0.896 0.980. -0.084 0.896 0.979
0.898 1.000 -0.102 0.898 0.979

0.898 1.000 -0.102 0.898 0.984
0.898 1.000 -0.102 0.898 0.995
0.898 1.000 -0.102 0.898 1.000

0.054 0.148 0.061
-0.051 0.271 0.202
-0.099 0.375 0.307
-0.189 0.462 0.570
-0.149 0.535 0.614

-0.184 0.596 0.789
-0.137 0.648 0.798
-0.141 0.691 0.860
-0.119 0.727 0.877
-0.125 0.757 0.904

-0.098 0.783 0.904
-0.107 0.804 0.956
-0.098 0.822 0.965
-0.092 0.837 0.965
-0.116 0.858 0.982

-0.099 0.873 0.982
-0.092 0.883 0.982
-0.089 0.890 0.982
-0.083 0.896 0.982
-0.081 0.897 0.991

-0.086 0.897 0.991
-0.096 0.897 1.000
-0.102 0.897 1.000

0.086
0.070
0.068

-0.108
-0.079

-0.193
-0.150
-0.169
-0.150
-0.146

-0.121
-0.152
-0. 143
-0.128
-0.125

-0.110
-0.099
-0.092
-0.087
-0.094

-0.094
-0.103
-0.103

0.138 0.098
0.255 0.397
0.355 0.557
0.439 0.655
0.511 0.678

0.573 0.747
0.625 0.747
0.669 0.793
0.707 0.805
0.739 0.833

0.766 0.839
0.789 0.862
0.809 0.868
0.826 0.874
0.850 0.954

0.868 0.960
0.880 0.966
0.889 0.971
0.896 0.977
0.898 0.983

0.898 0.989
0.898 0.994
0.898 1.000

cel frac
hrs celpdf

0.500 0.132 0.027
1.000 0.245 0.216
1.500 0.341 0.297
2.000 0.425 0.459
2.500 0.496 0.486

3.000 0.557 0.730
3.500 0.609 0.730
4.000 0.654 0.811
4.500 0.693 0.811
5.000 0.726 0.838

5.500 0.754 0.838
6.000 0.779 0.919
6.500 0.799 0.919
7.000 0.817 0.919
8.000 0.844 0.973

9.000 0.863 0.973
10.000 0.877 0.973
11.000 0.888 0.973
12.000 0.895 0.973
16.000 0.898 1.000

22.000 0.898 1.000
24.000 0.898 1.000
30.000 0.898 1.000

cesfrac
elks cespdf

0.105 0.147 0.113
0.028 0.270 0.403
0.044 0.373 0.532
-0.035 0.460 0.645
0.009 0.533 0.677

-0.173 0.594 0.758
-0.120 0.645 0.758
-0.157 0.689 0.806
-0.118 0.725 0.823
-0.112 0.755 0.839

-0.084 0.781 0.855
-0.140 0.803 0.871
-0.119 0.821 0.871
-0.102 0.836 0.871
-0.129 0.857 '0.952

-0.110 0.872 0.968
-0.096 0.883 0.968
-0.085 0.890 0.968
-0.077 0.896 0.984
-0.102 0.897 1.000

-0.102 0.897 1.000
-0.102 0.897 1.000
-0.102 0.897 1.000

cr1 frac
esks crlpdf

0.034 0.156 0.079
-0.134 0.285 0.197
-0.159 0.392 0.316
-0.185 0.481 0.618
-0.145 0.555 0.671

-0.164 0.615 0.816
-0.113 0.666 0.829
-0.118 0.708 0.882
-0.098 0.742 0.908
-0.083 0.771 0.934

-0.074 0.794 0.934
-0.068 0.814 0.974
-0.050 0.830 0.987
-0.035 0.844 0.987
-0.094 0.862 0.987

-0.096 0.875 0.987
-0.085 0.884 0.987
-0.077 0.890 0.987
-0.088 0.894 0.987
-0.103 0.895 0.987

-0.103 0.895 0.987
-0.103 0.895 1.000
-0.103 0.895 1.000

crsfrac
riks crspdf

0.077 0.131 0.092
0.088 0.244 0.385
0.077 0.341 0.560
-0.137 0.424 0.651
-0.116 0.495 0.670

-0.200 0.556 0.734
-0.163 0.608 0.734
-0.174 0.653 0.780
-0.166 0.692 0.789
-0.163 0.725 0.826

-0.140 0.753 0.826
-0.160 0.778 0.853
-0.157 0.799 0.862
-0.143 0.817 0.872
-0.125 0.843 0.954

-0.112 0.863 0.954
-0.103 0.877 0.963
-0.097 0.888 0.972
-0.093 0.895 0.972
-0.092 0.898 0.972

-0.092 0.898 0.982
-0.105 0.898 0.991
-0.105 0.898 1.000

0.500
1.000
1.500
2.000
2.500

3.000
3.500
4.000
4.500
5.000

5.500
6.000
6.500
7.000
8.000

9.000
10.000
11.000
12.000
16.000

22.000
24.000
30.000

0.040
-0.142
-0.203
-0.216
-0.167

-0.174
-0.122
-0.124
-0.098
-0.094

-0.073
-0.073
-0.059
-0.048
-0.104

-0.092
-0.085
-0.082
-0.081
-0.085

-0.090
-0.096
-0.102

rsks

0.040
-0.141
-0.219
-0.228
-0.175

-0.178
-0.126
-0.126
-0.097
-0.101

-0.072
-0.075
-0.064
-0.055
-0.111

-0.09 1
-0.086
-0.085
-0.077
-0.075

-0.084
-0.093
-0.102



Regressions of Mean Service Times on Standard Deviations, by Class & Craft

Class/Craft
Category

St. D. on Mean Mean on St. D.

2)
r BO BI r BO B1

St. D. on Mean

2r B1

Mean on St. D.

2r B1

.63 -1.12 1.90 .63 1.55 .33 .61 1.60

.85 -1.21 1.60 .85 1.12 .52 .82 1.34

*
.79 -.22 1.59 .79

*
.93 .50

.13 1.02 .38 1.61 .38

.73 -1.25 1.98 .73 1.42 .37

.92 -.38 1.10 .92

.25 1.12 .67

.30 .76 .79

.12 1.49 .89

.62 .84

.82 .60

.22 1.04

.44 .59

.79 1.54

.38 1.06

.71 1.65

.92 1.04

.67 1.18

.78 .87

.89 1.50

coefficient, indicating fitted line may pass through the origin.

All work
orders

Emergency

Routine

Licensed

Skilled

.38

0

Emlic

Emski

Roulic

Rouski

07

0

r+

.12 .61

.69 .71

.72 .62

error .87

.46 .58

.91 .92

.60 .77

.79 1.10

.88 .65

M

.67

.79

.89

0
:3

tn

rt

Di

0

U3

CD

00~

2I

* -insignificant B0O
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wos

1135
391
198
145
108

106
78
65
42
49

emer

394
148
67
46
29

55
16
22
11
12

rout

735
242
128
96
79

51
61
43
31
36

1 icen

511
176
77
59
41

33
28
26
17
22

APPENDIX V

table la
skill

621
213
120
85
67

73
50
39
25
27

I nrout
1ntat 1nwos Inemer

0.000
0.693
1.099
1.386
1.609

1.792
1.946
2.079
2. 197
2.303

7.034
5.969
5.288
4.977
4.682

4.663
4.357
4.174
3.738
3.892

5.976
4.997
4.205
3.829
3.367

4.007
2.773
3.091
2.398
2.485

6.600
5.489
4.852
4.564
4.369

3.932
4.111
3.761
3.434
3.584

Inl icen

6.236
5. 170
4.344
4.078
3.714

3.497
3.332
3.258
2.833
3.091

I nsk i11

6.431
5.361
4.787
4.443
4.205

4.290
3.912
3.664
3.219
3.296

figure 1
1 = I nwos

8 +

6+ 1

11

4+ 1

2 1
11

1 11

2-1 1-1 1 1

0 2 4 6

I ntat

table lb
coef standerr dgfd F_ ratio sig

constant
1ntat

6.500 0.200 129.000 1055.291
-1.298 0.049 129.000 712.540

Frat io

sumofsquares dgf meansquare

total 269.886 130.000 2.076
regression 228.515 1.000 228.515 712.540

error 41.371 129.000 0.321 *

# tat

1
2
3
4
5

6
7
8
9

10

1
2
3
4
5

6
7
8
9
10

0.000
0.000

sig

0.000
*
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f = fitted

1 = Intat

4 +

3 +

2 +

1+

0 +

f1
fi
f I

f I

1 1
fI

f f f I
1 fif f
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figure 2a

1
f f

1 1

fl

f

2

fl

1
fl

f

4 6

1 nemer

f = fitted

1 = Intat

+ figure 2b

+f 1
'1 f1 1 1

' 1 1 1 1
1 flf 1

fl1 1
+ 1 fl 1

11 f
fif1 1

fif
+ flfl

fl
fi f

lif

+ 1 f

+ 1
------------------------------------------------------------

n 2 4 6 8

1 nrout

5

4

3

2

1

0

I

I
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f = fitted

1 = 1ntat

fl 1
fI f 1
f I f

f1 fl1 f1
f fIf f I
1 flI

f f 1 fI
flf
1 I

figure 2c

fI
f I
I f

fI 1
f I
f fI

4 +

3 +

2+

1+

0 +

f

2 4 6

inl icen

f = fitted

1 = 1ntat

1 fi1l 1 1
fl fIf 1

f1l f1
f fIf1f1

f fI
f f1

figure 2d

f 1
1 fIff11
1 f 1

ff 1 1
fl1
1if

f 11
f 1

fl
f
I f

1
f

f

2 4 6

1nskil1

f
1 f

1

0 8

4 +

3 +

2 +

i+

0+

0 8

1
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