
Computer Aiiimation of Htuman Figures
in Conversation and Action

by

john peter lewis

B.S., Johns Hopkins University
1980

Submitted to the Department of Architecture
in partial fulfillment of
the requirements for

the degree of

Master of Science in Visual Studies

at the

Massachusetts Institute of Technology

June 8, 1984

copyright (c) Massachusetts Institute of Technology 1984

Signature of author . . . . . . . . . . . . . . . . . . . . .
John Lewis Department of Architecture

/i 1 , I Friday, 8 June 1984

Certified by . . . . . .I. .-. : . . . . . . . ...........
Professor Patrick Purcell

Visitin ssociate Professor of Computer Graphics
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . .
Professor Nicholas Negroponte

Chairman, Departmental Committee for Graduate Students

OF TECHNOLOG.Y

OCT 0 5 1984
1 LiEaRARi3



Computer Animiation of Human Figures
in Conversation and Action

by
john peter lewis

Submitted to the Department of Architecture on June 6, 1984
in partial fulfillment of the requirements for the degree of

Master of Science in Visual Studies.

Abstract

Viable articulated computer-graphic representations of the human figure
have recently been developed by O'Rourke, Zeltzer, and others. In this work, a
figure implemented by Maxwell provides the starting point for the development
of tools for controlling the movement and action of figures in a simulated three-
dimensional environment.

The figure's representational quality is improved for the purpose of
animation, and its capabilities are extended to allow multiple figures to follow
arbitrary paths, with posture and movement determined by any combination of
key-frames, body-tracking, and algorithmic movement description. Objects in
the figure's visual environment are designed using a program for computer
graphic sculpture. A sophisticated computer sound synthesis system was
implemented and provided the basis for a script-driven multiprocess approach to
specifying the interactions of multiple figures in a changing environment.

The resulting system, incorporating figures in an animated visual
environment with coordinated sound, may be considered as a vehicle for
realizing "electronic cinema". While the animation scripts essentially define a
specialized non-procedural programming language, knowledge of a general
(procedural) computer language is not required, and figure animations have
been realized by artists and filmmakers having no previous background in three-
dimensional computer graphics.

Thesis Supervisor: Patrick Purcell
Title: Visiting Associate Professor of Computer Graphics

The work reported herein was supported by the NHK Broadcasting Corporation
of Japan

2



Table of Contents

Introduction 5

1 Computer Graphic Models of the Human Figure 5
1.1 Boeing Man and SAM M IE 5
1.2 Bubble Man 6
1.3 The AMG Cloud Figure 8
1.4 Zeltzer's Skeleton 9

2 The Specification of Articulated Motion 10
3 The Figure's Environment 12

Chapter One: A Face for the Graphical Marionette 14

1.1 Three-dimensional Computer Modelling of the Face 14
1.2 Gestalt 16
1.3 Computer-generated Sketch of the Face 18
1.4 Surface Reconstruction from Planar Contours 21
1.5 Potatoslice: A Program for Computer Graphic Sculpture 26
1.6 In Retrospect 27

Chapter Two: Conversations with a Graphical Robot 31

2.1 Conversational Technique 34
2.2 Real Time Animation of Electronic Persona 37
2.3 Evaluation 38

Chapter Three: The Sound Environment 40

3.1 The Music V Language 41
3.2 Digital Sound Synthesis: Sampling and Quantization 42
3.3 Specification of Sound Events: the Score File 43
3.4 Function Table Lookup Models 44
3.5 Electronic Sounding Sounds 46
3.6 Modelling the Sound versus Modelling the Instrument 48
3.7 Models of Physical Vibrators 50
3.8 A Script-driven Multiprocess Programming System 55

Chapter Four: The Visual Environment 58

4.1 The Script Interpreter 58
4.2 Script-Driven Animation 59

3



Chapter Fhie: The Marionette in its Environment 65

5.1 Motion Specification by Digitization 65
5.2 Computer-Generated Figure Animation 68
5.3 Computer-Generated Holograms 69
5.4 Conclusion 69

Appendix A: PotatoSlice manual 71

A.1 Overview 71
A.2 Display Commands 72
A.3 Other Programs 73

Appendix B: Program for a stochastic differential equation 75

Appendix C: FISH manual 77

Appendix D: Functions for randomized movement 80

4

4.3 Evaluation 63



Introduction

"Computer graphics has not yet delivered fully convincing
animations of the human figure." --Norman Badler [Badler 84].

I Computer Graphic Models of the Human Figure

The compLiter modelling of the human figure has been undertaken for a

variety of purposes, including movement analysis (kinesiology),

biomechanics, figure animation, the development of movement notations,

and ergonomic research. While the visual representation and movement

capabilities of these models varies considerably with their purpose,

1.1 Boeing Man and SAMMIE

Early computer graphic body models such as the Boeing Man and SAMMIE

were developed for ergonomic evaluations [Fetter 82, Kingsley 81]. These

models emphasized correct proportions and volumes, and usually

incorporated the anatomical limitations of movement in the form of joint

angle and self-intersection constraints. The figure was positioned by

specifying the rotation angles at each joint, and movements were generated

using the specified postures as key frames. The figures were visually

represented by wireframes delimiting the body volumes. The Boeing Man

(Figure 1) has been used in applications such as aircraft cockpit design and

crash simulations.

5



Figure I:The Boeing Man as pilot

1.2 Bubble Man

O'Rourke and Badler developed the versatile Bubble Man as the primary

figure model for the human modelling project at the University of

Pennsylvania [Badler 79a, Badler 80]. The Bubble Man's body is represented

by spheres of varying radii arranged on a skeletal stick figure. This

representation partially conveys the volume and contours of the figure.

The use of the sphere as the modelling primitive has the advantages that

body self-intersection tests are reduced to a sequence of sphere intersection

tests, and that the perspective projection of a sphere from any viewpoint may

usefully be considered to be a circle (in fact, the linear perspective of a sphere

oblique to the view direction is an oval-- Raphael noted and corrected this

'anomaly' in portraying the spherical column heads in the School of Athens).

The sphere is also simple to render and the Bubble Man has lent itself to

portrayal of cast shadows and real-time animation [Badler 79a], and

microcomputer implementation [Calvert 82].

6



IT'he stick liguire which proxidcs the 'keleton of the Bubble Man is

implemented with what might be termed an articulation trce. Ilhis is a simple

tree data structure whose nodes are 4x4 transformation matrices. Each node

corresponds roughly to a joint and its distal limb segment (if any). The

transformation matrix at each node specifies the rotation of the distal limb

segment relative to the proximal limb segment, and the length of the distal

limb. The limb segments in this description are those of the stick figure

rather than the human body, so the hips (for example) are considered

"limbs" (Figure 2). The position of any joint is determined by walking the

tree while concatenating the translation matrices at each node, and

concatenating the resulting matrix with the world (position and orientation)

matrix. [Badler 79a, O'Rourke 80a] present a detailed description and Pascal

code for the tree-walking procedure.

Figure 2:A line drawing version of the Bubble Man,
showing the stick figure "skeleton"

7



The /liCul//on /cc11S haSC\ eel ad\an,12tges.

- Limbs are treated as units rather than as separate entities, since
changing the rotation angles at a proximal node will rotate the limb
consisting of the sons of that node in the tree.

- The articulation tree is reminiscent of polar coordinates in its
separation of (limb) length and (joint) angle. The posture and
movement of the stick figure are specified in terms of joint angles, so
a particular posture or movement, once designed, can be applied to
stick figures of different proportions (this would not be true of a
figure having joint locations specified as cartesian coordinates).

- The consistent tree structure sinplifies implementation.

1.3 The AMG Cloud Figure

The goal of the graphical marionette project at the MIT Architecture

Machine Group is an "electronic puppet" figure which can be manipulated

with a body tracker in real time [Bolt 81]. A version of the Bubble Man was

implemented at the Architecture Machine Group by Maxwell [Maxwell 82]

and provided the starting point for the graphical marionette project and the

work described in this thesis. The spheroidal modelling of the the body

contours is simplified to an ellipsoid describing each limb segment, and the

self-intersection tests were removed.

The cloudfigure representation of this implementation is a major innovation

with respect to the Bubble Man and an earlier ellipsoidal figure

[Herbison-Evans 78]. The ellipsoids are rendered as translucent volumes

("clouds") rather than as surfaces. This perceptually vague representation is

appropriate to the anatomical simplicity of the body model (this point is

discussed further in chapter two). A translucent representation also

eliminates the need for hidden surface removal.

8



While it is casy to deerminc \\ whether a point iII three- or tw\ o-dimniensional

space lies within an ellipsoid or its pcispective projection, itis Imore difficult

to pro'ide a raster-scan algorithm for rendering the projection of the

ellipsoid. Maxwell's particle system ellipsoids are somewhat of a Monte Carlo

approach to this problem. A statistical sampling of points within the ellipsoid

are projected to form the percept of a translucent cloLid. The particle system

cloud is easy to implement, and the apparent volume density within the

cloud (and conseqLIeItly its shape) can be controlled as a function of particle

position within the local (limb) coordinate system.

This algorithm has several drawbacks for animation, however. ilie apparent

density of the figure is reduces as the figure approaches the viewer, and

(conversely) the figure becomes solid as it recedes. The cloud particles are

very susceptible to aliasing, so the figure acquires a 'sandpaper' texture when

it moves. The individual projection (and anti-aliasing) of the particles is

quite time consuming. In view of these difficulties, an image-space (raster-

scan) Gaussian elipsoid algorithm was implemented to represent the figure

for the purpose of animation (see the description of the figure program in

Appendix C).

1.4 Zeltzer's Skeleton

While the cloud figure is perceptually and aesthetically satisfying (and

probably more so than any of the other existing figure models), viewers have

a strong appetite for additional detail and realism. Fetter (one of the

originators of Boeing Man) has recently developed a polygonal model of the

body [Fetter 82]. A successful articulated solid body model has not yet

appeared, however, and probably will not be forthcoming in the near future.

The existing computer graphic solid modelling techniques cannot describe a

non-rigid, deforming surface such as the human body in motion.

9



%elt/cr and other w\ orkers at the Coimputcr Graphics Research Group at

Ohio State hav e taken a diff~eremt approach to the problem of \isually

representing the Figure. They chose the human skeleton as a figure

representation which may be approached in detail with current solid

modelling techniques. Zeltzer has also improved the articulation tree

implementation by distinguishing between sLipported and supporting limbs

[Zeltzer 82a]. When the joint angles of a supporting limb are changed, the

rest of the body should move with respect to the limb, rather than the limb

moving.

2 The Specification of Articulated Motion

A variety of approaches to specifying the motion of the figure have been

tried. A flexible figure model, once implemented, may be directed by any of

these methods, or a combination of them:

- Dynamic movement simulation is perhaps the "deepest" approach, in
which the movement is generated starting with a simulation of the
force of the muscle and the mass which it moves [Pierrynowski
82, Hatze 81].

- Key frame interpolation generates a movement by interpolating
between two predefined postures. A difficulty with this approach (as
with any approach which is not physically motivated) is that there is
more than one way of moving from one posture to another, even
after anatomical constraints are considered. An interpolated
movement may be anatomically possible but nevertheless appear
unnatural.

- Analytical movement description mathematically characterizes a
known movement. This is a "shallow" description which does not
incorporate anatomical or physical considerations. Cutting's
'walking algorithm' describes the motion of fifteen key points on a
walking figure as a vector-valued oscillation (line-to-space function)
[Cutting 78].

10



- A/vecmnt 1o/a//on is a tradiional pictogram method of recording
flovemiient. NMov ement simultiol systemils for La1banotation
[Hutchinson 60] have been developcd by several researchers
[Calvert 82, 3adler 79b]. The interpreter for a movement notation

lanWuage must identify patterns of motion primitives and invoke the
corresponding movement macro. 'The movement macro is a
predefined movement specification determined by any of the means
described here. 'The movement notation language is sufficiently
detailed that it is possible to construct an event-directed movement
specification directly on this basis. An example of this type of
specification would be (as part of a 'walk' nacro): "Rotate both legs
backwards at the hips. When the rearmost leg leaves the ground,
bend its knee and swing that leg forward at twice the speed of the
backward rotation..." This approach does not incorporate the
physical constraints of movement (either via modelling or indirectly
by digitization) and consequently it runs the risk of appearing stilted.
Zeltzer has demonstrated a convincing walking motion using this
approach, however [Zeltzer 82b].

- Body tracking digitizes real figure movement, rather than analyzing
or (re)constructing it. A model's body is equipped with lights or
other easily-detected devices situated at key points on the body, and
a tracking computer calculates the motion of these points in three-
dimensional space in real time. In one approach the points are
determined by stereoscopic triangulation from a pair of digitizing
devices. [Ginsberg 83] describes the development of a prototype
system of this type for the Architecture Machine figure modelling
project. Another approach is electrogoniometry, or direct
measurement of joint angles. Electrogoniometry is more intrusive
than stereoscopic triangulation, but it has been used successfully at
the Simon Fraser University to produce a improvisation sequence
from the Nutcracker ballet.

- Image analysis is an alternative to body tracking. The movement is
first captured on film, perhaps stereoscopically, and later analyzed
frame-by-frame to deduce the three-dimensional location of key
points. These points are usually highlighted on the figure's costume.
O'Rourke and others have applied pattern recognition techniques to
this task [O'Rourke 80a]; Fetter obtained running and high-jump
motions by manually rotoscoping several of Muybridge's classic
movement studies [Fetter 82].

11



3 11he Figure's I'ironment

While the specialiied applications and extensive development timle of a

human figure model usually result in a model of a ]one figure moving in a

void, the current work is distinguished in its attempt to control the action and

interaction of multiple figureS in an environment.

Our work started with the flexible but isolated figure model implemented by

Maxwell. The model was developed to allow the integration of several types

of motion control (body tracking, algorithmic movement description, and

key-framing), and the figure was placed in three-dimensional computer

graphic environment where it can interact with other figures and with objects

in the environment. The figure's actions and the behavior of objects in its

environment are specified in a script.

Chapter one describes the development of a computer graphic sculpture

program. This program provides a fairly flexible means of realizing non-

articulated objects for the figure's environment.

Chapter two introduces a new use of the computer graphic person model.

Facial animation, movement simulation, and natural language techniques are

united to create an interlocutory metaphor for man-computer interaction.

Chapter three describes a computer sound synthesis system. This system

provided the inspiration and basis for the work in chapter four, and it also

may be used to produce a sophisticated, movement-synchronized sound

environment for the figure.

Chapter four describes a facility for scripting the actions of figures in a

virtual three-dimensional environment.

12



ITic linal chapter dcscribcs how these tools ha\e been used in the figure

modeIling projct at the Architecture Machine.

13



Chapter One

A Face for the Graphical Marionette

Providing the graphical marionette figure with a face is a priority. The

importance of the face is intuitively evident, and empirically underscored by

the existence of an area of the brain which, when damaged, hinders or

prevents the holistic identificaton of upright faces. The computer-graphic

representation of human faces is a difficult and essentially unsolved problem,

however. While the effort to develope a face for the graphical marionette

figure was discontinued because it was not practical within the timescale of

this thesis, some of the tools developed in this work were later used in the

modelling of the figure's environment. The development of these tools will

be described initially in the context of their original purpose of facial

modelling.

1.1 Three-dimensional Computer Modelling of the Face

A face model for the graphical marionette figure must display different

(perspective) aspects of the face as the figure moves in its projected three-

dimensional environment. In addition, it is very desirable that the face be

able to show emotion or simulated speech. The first of these requirements

implies a three-dimensional model of the head; an alternative two-

dimensional approach will be described later in this chapter. The facial

display of emotion and speech indicate a dynamic model of the face.

Together, these requirements mean that previous research which approaches

the face as a static or two-dimensional problem may not be immediately

applicable to a face model for the graphical marionette.

14



The trce-dimflensional mllode llin OIf I t I heCC IS ney S\non\moLIS with the

w\ork of Fred Parke. In the carly 1970s Parke devcloped a polygonal model

of the face, with provision for animation of expressions and speech [Parke

72]. Parke also developed a stereoscopic method of digitizing a face to

determine the vertices of the polygonal model. Each face was digitized in a

number of positions which served as key frames for the animation of facial

gestures. The face was animated by linear interpolation of the polygonal

vertices between frames.

Although Parke's faces resemble the individuals whose faces were digitized,

the computer rendered faces are perceived rather as masks or robot heads,

and appear disturbingly mechanical (Figure 1-1).

Figure 1-1:Parke's polygonal face

From a technical viewpoint, existing rendering techniques are suited for

representing objects having analytically defined, hard surfaces. The current

rendering techniques are correspondingly inadequate for representing soft,

15



irregu larv, or textl red surufaces of naturl objCcts i ncluding the human fIce.

Hair is an example of an 'object' which is impossible to render using iethods

which attempt to represent the object 'surface'.

The surface orientation of current techniques also leads to difficulties when

the face is animated. Linear interpolation of the facial surface generally

causes the it to pass through unrealistic poses. Platt and Badler recognized

this difficulty and approached the facial modelling problem by considering

the skin to be an elastic surface moved by the underlying facial Muscles;

unfortunately this work has not been pursued [Platt 81].

1.2 Gestalt

The mechanical appearance of Parke's faces is best considered as a

perceptual problem, however. Compare Figure 1-1 to Figure 1-2.

Figure 1-2:Sketch of a face similar to Figure 1-1

The sketch in Figure 1-2 is incomplete with respect to Figure 1-1 (the

16

00



cont.ou r lines of FigurIc 1-1 describe the siikce coontours of the Litce, hille

the lines in Figure 1-2 mcrely delimit the liicial surfaces), yet it is

perceptually comiplete, aid more satisfying than Figure 1-1.

The perceptual closure of the sketch is an illustration of gestalt, and the face

is a particularly good subject for this illustration. The computer-rendered

face exhibits what might be called a 'counter-gestalt': the additional surface

information provided in Figure 1-1 is not inaccurate, but its precision and

detail incorrectly asserts that this face is exactly as we see it, when in fact this

figure is also incomplete. This is a case where the additional information

does not help the representation of the face. Figure 1-2 is successful because

its "sketchiness" implies that it is not a complete specification of its

prototype. Parke describes this phenomenon in his own work [Parke 82]:
The closer the images get to reality, the more critical the viewer

becomes...if the image is clearly supposed to be realistic, the viewer
is very sensitive to any flaws.

A similar 'vagueness principle' is responsible for the success of the

Architecture Machine's Identidisk [Weil 82]. In this project, the goal is to

construct a representation of a remembered or imagined face. Photographs

of faces from a 'face library' stored on videodisk are mentally compared with

the imagined face. Those faces which were judged to be in some way similar

to the desired face are digitized and averaged in the computer to provide a

composite face. The photographs in the face library register a normalized

facial position to facilitate the averaging.

The Identidisk is thus similar in purpose and effect to the Identikit. The

Identikit provides a collection of facial features which are selected and

positioned to construct a representation of a remembered face. The firm

outlines of the Identikit features imply certainty in the reconstruction. The

17



conposite facC generated witih the Identidisk, how e\ver, is f'ury aS a result of

the coipositing procedure (intensity averaging), and it consequently

operates as an open-ended sketch, informing the viewer that what is seen

should not be taken literally.

1.3 Computer-generated Sketch of the Face

Since the development of a realistic face model is certainly beyond the

timescale of this thesis, it was decided to use a representation which was

intentionally vague. The representation would take the form of a sketch

similar to Figure 1-2. This representation avoids the "mechanical certainty"

of the polygonal rendering, and it also introduces aesthetic possibilities.

Maxwell's "cloud figure" version of the graphical marionette figure is also

perceptually vague and in this respect it makes a subtle but important

improvement over previous body models [Maxwell 82].

A line drawing is not so vague as to inhibit identification of expressions or

character, however. Brennan has explored (among other things) computer-

assisted means of portraiture and caricature in the line drawing [Brennan 82].

Our approach to computer-generated sketches is a continuation of Brennan's

work using an underlying three-dimensional model.

In the pen-and-ink style of drawing used in Figure 1-2, an object is

represented by delineating its projected surface outlines as well as the

outlines of the perspective projection of important surface features or

colorations. The surface outline is fundamental to this representation, and

this term will be defined for the purpose of computer implementation as the

projection of those points on the object whose tangent is parallel to the local

projection ray (a vector from any position to the observer's eye or the center

of projection) (Figure 1-3).

18



VP

Figure 1-3:Perspective projection of an object:
surface outlines are the projection on the picture plane pp of points

on the object which are tangent to the projection ray from the
object point to the view point vp.

The sketch is generated from a three-dimensional surface description of the

face and head, such as the polygonal representation of Figure 1-1. The three-

dimensional surface description is rotated and translated to provide the

desired aspect before the sketch is generated. Surface outlines are found by

'crawling' around the surface and collecting points at which the surface is

tangent to the projection.

The three-dimensional surface description is composed of vertices, with

planar triangular facets implied between the vertices. The points in this

surface description which are tangent to a projection ray are the vertices in

common to particular pairs of adjacent facets. The criterion for these facet

19



pairs is that the Forw\ard-most ficet Ices lorward with respect to the

projection ray, while the rearwar1d facet faces backw ards. The facing

direction of a facet is determined by the sign of the angle between the surface

normal of that facet and the projection ray from any point on that facet

(conveniently, one of its three vertices) to the center of projection. This angle

may be obtained as the dot product of the surface normal with the projection

ray.

The resulting collection of (projected) vertices is arranged in a coherent order

and the sketch is obtained by connecting the vertices (Figure 1-4). A number

of heuristics were required to implement the tangent determination and

subsequent ordering of the projected vertices into outlines.

Figure 1-4:Surface outlines identified with the
'tangent-finding crawler' and heuristics.

20



A procedure rI auI oimaItically identi f ing atnd III draing the isulIce oItlinCs of

objects w as impleiented (as described abo\e). but this work was abandoned

before a comlplete system for coiputer-generated sketches could be

developed. It was intended to generate surface features and facial

expressions for the computer-generated sketches of the face by texture-

mapping one-bit line drawings of the desired features onto the three-

dimensional surface representation, and projecting these to obtain

perspective versions of the features.

The features and expressions were to be developed as drawings (or sequences

of drawings) input using a digitizing tablet. Ekian's work provides a pan-

cultural taxonomy of facial expressions as well as an underlying "emotion

space" which could be used to guide the evolution of facial expressions

[Ekman 73, Ekman 75]. The mapping of mouth positions for portraying

speech would draw upon the 'lip sync' work at the Architecture Machine

Group at MIT [Negroponte 80].

It was also intended that the perceptual vagueness and aesthetic quality of

the sketch be emphasized by post-processing the sketch with a computer

simulation of human line drawing [Lewis 82], Figure 1-4. This simulation

describes the motion of a hand-held pen tracing a path towards a target

point, given prescribed initial conditions. The motion is modelled as a

feedback system with memory (momentum).

1.4 Surface Reconstruction from Planar Contours

The remainder of this chapter will describe how the three-dimensional

surface description of the face was obtained. The modelling tools developed

for this purpose are now used to construct objects to populate the graphical

marionette figure's environment.

21



F\C4T IEC
9Cw TECT

P9CHITECl

UZf VNP§VkNC

UE [CLt1 3NE
URE MACH[NE

PRCILLTEC7 ORE
Figure 1-5:CALCOM P plotter text processed with a line drawing simulator.

A 'scribble' parameter was incremented to obtain this progression.

The computer modelling of an object such as the face requires techniques

different than the analytical tools which are responsible for the spheres,

planes, and polyhedra which characterize computer graphics. While it is

straightforward to write a program to draw a sphere, the task writing a

program to draw a portrait of President Nixon (for example) is nonsensical.

A computer model of a face can realistically be obtained by measuring a face

and digitizing these measurements. A face is not a particularly easy thing to

measure, however.

Parke's stereoscopic method is one successful approach to this problem. In

our case, the availability of data describing a head suggested another

approach. A company called Robotic Vision Systems uses a automated

method to digitize a solid object. A sculpture of the object is then machined

[Rongo 82]. A byproduct of this 'solid photograph' is a detailed, digital

description of the object surface. The data describing a bust of Professor

Nicholas Negroponte of MIT was obtained (Figure 1-6).

22

HMRC 0INWE



W

IK

0

molIT

?'

'4

K

I'

A-

qf'-

U2444',

U

Figure 1-6:Data for a three-dimensional bust of Professor Nicholas Negroponte,
from Robotic Vision Systems' solid photography system.

The data takes the form of the coordinates of points located on more than

300 horizontal cross-sections of the head, comprising more than 1,000,000

points in total (the terms section, contour, and slice will be used

synonymously hereafter). This amount of data was judged to be impractical

in terms of both memory and processing time, so a few thousand points were

obtained by roughly sampling the original data.

23

hi

4.

'I

7 77

i

LWMM _

M.0 1

,Ilk



The points arVe then connected to form facets de fin i ng a su rfacC which

approximates the original head. Since there is more than one sIuface whIi ich

spans a given set of 3D points (FiuIre 1-6), this is a heavy computer science

problem. Indeed, it has been postulated that the problem of finding the

optimal polyhedral approximation of the object described by a set of 3D

points is NP-hard[ORourke 81].

Figure 1-7:The tiling problem': a set of points obtained by
digitizing sections of a three-dimensional object may be

spanned by many different surfaces, some of which approximate
the original object

The problem has the following constraints: a point on a particular slice may

only be connected to the adjacent points on that slice and to points on the

two adjacent slices, i.e., facets are formed between pairs of adjacent slices.

Planar facets are desired for convenience in the subsequent (polyhedral)

rendering process. Triangular facets are desired since a group of four or

more points distributed on two adjacent slices will rarely be contained in a

plane.

24



Additional constraints which deifine an acceptable (non-sel -intersecting)

surface are:

- Each contour segncti (a segnient joining two adjacent points from a
particular slice) will appear in exactly one facet. The number of
facets spanning a pair of adjacent slices will therefore be m11 + n, (the
number of points on the two slices).

- If a span (connection of two points) is the left (right) edge of some
facet, it will appear as the right (left) edge of exactly one other facet.

With these constraints, the number of acceptable surfaces spanning a pair of

adjacent slices having m,n points is

A[m,n] = [(n-i) + (n-1)]! / [(n-i)! (n-1)!]

A criterion for picking one of these surfaces is desired. Keppel formulated

this 'tiling problem' as an equivalent graph theory problem, in which the set

of all acceptable surfaces for the pair of slices defined by points

{P0o 1 ,l'" n-'1}, IO0'1"'n-1} are represented by a directed graph G[V,A].

The set of vertices V corresponds to the set of all possible spans between the

upper contour and the lower contour. The set of arcs A corresponds to the

set of possible facets. An arc is defined as incident from the vertex which

represents the left span of the facet to the vertex which represents the right

span of the facet. The path of an acceptable surface will have m + n

connected arcs (modulo the size of the graph) on a graph of size m,n arcs.

A weight p assigned to each arc. The optinal tiling is selected from the set of

possible tilings using the global weighting function

p = ym+nk=1 Pk

A non-optimal tiling can proceed incrementally by choosing the arc leading

from each vertex in sequence as a function of a subset of the undetermined

and previously determined arcs. A non-optimal tiling which considers only

25



the w eights attachcd to the two arcs leading fromn the current verte\ rInS in

lincar O(m+ -n) time.

The graph-theoretic formulation of the tiling problem is standard, and many

solution algorithms and weighting criteria have been proposed [Ganapathy

82, Boissonat 81, O'Rourke 81, Fuchs 77, Keppel 75, Christianson 76]. The

global 'brute-force' minimization of surface area (suggested by Keppel) was

adopted and implemented. 'This method requires approximately an hoLir of

CPU time on a 32-bit minicomputer to reconstruct objects such as those in

Figure 1-9, containing several thousand facets. Dunba r Birnie im plemented

several other criteria and solution algorithms. The (local) minimum-edge

distance criterion works well and does not require notable amounts of CPU

time for the objects which were developed in this work (Figure 1-8).

1.5 Potatoslice: A Program for Computer Graphic Sculpture

The slice reconstruction modelling method and has applications beyond face

and head modelling and it is commonly used in medical imaging [Ganapathy

82]. In general, it allows one to design a variety of lumpy, semi-concave

objects which do not lend themselves to analytical description.

Once a (polygonal facet) surface has been reconstructed from the slices, it

may be rendered using standard methods such as those described in [Foley

82]. Several reconstructed heads are shown in Figure 1-9.

The PotatoSlice program (Appendix A) incorporates several tiling methods

with a rendering program. This system may be approached as a tool for

sculpture, and artists using it have become skilled at designing fanciful and

realistic objects by conceiving the object cross sections. The Cambridge

26



Figure 1-8:Comparison of three criteria for the
tiling problem: left, local minimum distance; center, global minimum area:

right, local maximum distance (!). Figure by Dunbar Birnie.

sculptor Ralph Helmick uses a physically analogous approach; his large-scale

sculptures are produced by laminating plywood slices. The use of this

modelling tool to configure the graphical marionette figure's environment

will be described in chapter five.

1.6 In Retrospect

While the approach described in this chapter may result in a flexible and

perceptually satisfying model of the face, it is far from practical within the

time scale of a short Master's thesis. In retrospect, several simplifications

may be identified. The surface edge-detection procedure would be easier to

implement (though comiputationally less efficient) by band-pass filtering the

27



Figure 1-9:Two heads created using the slice reconstruction
method described in this chapter. The head on the right was

generated using the data displayed in Figure 1-6, while
data for the Easter Island head was estimated by the author.

projected, shaded 3D image obtained from standard rendering techniques

(Figure 1-9, 1-10).

The requirement that the face be viewable from different directions suggests

but does not necessitate a three-dimensional face model. As an

approximation, a planar representation of the face could be texture mapped

(front projected) onto an ellipsoid 'head'. This technique has been used at

the Computer Graphics Lab at the New York Institute of Technology.

A 'graphical robot' which incorporates a real-time two-dimensional facial

animation technique will be described in the next chapter.

28



Figure 1-10:A high-pass filter applied to Figure 1-9 emphasizes
surface outlines and detail. A band-pass filter (Figure 1-10)

produces bolder contours and eliminates less-important surface detail.

"I ~j

29



This page was intentionally left blank

30



(c;It1ipterl 7 WO

Conversations with a Graphical Robot

The graphical robot is an alternative to the graphical marionette, in which the

figure is given autononly and interaction takes the form of purposeful

conversation rather than real-time puppetry. In the system described here,

purpose and autonomy derive from the robot's role as the interface to

conventional (command language driven) programs. A variety of existing

tools are combined to create a true conversational interface.

The success of this work is in part indicated by the fact that many observers

of the system were initially skeptical of the computer's performance. The key

to this success does not reside in improved speech hardware but in software

tools which provide a convenient and consistent means of tracking and

responding to conversational context. This work was judged to be

inappropriate, however, and it was succeeded by the more traditional

animation approach described in chapter four.

The following description is taken from [Lewis 84].

ABSTRACT

The man-computer interface has evolved from the teletypewriter to

workstations which accomplish a spatial metaphor for data management. In

the experimental system described here, speech and graphics techniques are

used to produce an interface in the form of a metaphorical person.

Interaction takes the form of an unconstrained spoken conversation with a

31



"graph ical robot" whosC aniiated likeness is dlispla ed on a high-riesoluto1011

Comll pLIter graphics display. T]'his syStem is proposed as a prototype of "casual

interface" for machines which we do not use oftCn enoLIgh to justi fy learning

a command syntax. The realization of such systems assumes the

development of limited-vocabulary speaker-independent continuous speech

recognizers. Th1e system architecture, performance, and assumIiptions are

discussed.

Introduction

The extent to which metaphors of existing systems have influenced

comLputing is suprising but undeniable. The computer interface modelled on

the teletypewriter restricted the interface to a single active line of characters,

resulting in line editors, line-oriented languages, and 'linear' (one event at a

time) command languages.

Graphic display terminals generalize the potential "interface space" from the

line of characters to a planar visual space. Pioneering work at the Xerox Palo

Alto Research Center used high resolution bit-mapped displays to create a

spatial metaphor in which concurrent processes are seen as spatially separate

objects located on a "desktop" display [Kay 77]. The Spatial Data

Management System explored navigation through a "dataland" where the

data could consist of color images, movies, and sounds, as well as iconic

(quality font) representations of alphanumeric data [Bolt 79].

Beyond the developments provoked by spatial metaphors, other uses of

graphic displays are slower in evolving. One can speculate, for example, that

color, depth representation, and iconography may better represent aspects of

program structure and function such as scope, binding, and concurrent

process execution.

32



In this work the power of the netaphor is c\plicitl acknow ledged and a new

nietaphor is created. The title of this paper derives froi the use of the word

"soft to describe computer interfaces whose design considers the computer

user. Certainly the softest interface is another person--a programmer who

can be instructed to accomplish the desii-ed task.

Soft machine demonstrates an interface to several conventional cornputer

programs (data-base query, electronic mail) which resem bles interaction with

a person. The interaction is in the form of an unconstrained spoken

conversation with an electronic conversational partner (alter ego). The alter

ego is an animated person-likeness which "speaks" with a high-quality

speech synthesizer and "listens" with a continuous speech recognizer (Figure

2-1). The animated image reflects the activity of the alter ego: the head

motion of the likeness is consistent with attentive listening and the lips move

with the alter ego's speech. The alter ego's conversational interests and visual

character are easily personalized, suggesting 'alter ego' for this conversational

partner.

CONTINUOUS WORD CONVERSATION SPEECH FORMANT LIPSYNC
SPEECH CONTEXT -iPROGRAM SYNTHESIZER TRACKER FRAME
RECOGNIZER MONITOR BUFFER

APPLICATION AUDIO
PROGRAMS SPEAKERS

Figure 2-1:Soft Machine system flowchart

33



2.1 Conversational Technique

I'he alter ego's conversational ability resides in a pattern-matching script.

Patterns consist of ordered lists of words, optionally separated by wildcards

(which match anything) or digits (which match a particular number of

arbitrary words). Each pattern is associated with a list of responses or

response procedures. Patterns are arranged in ascending order of generality.

The output of the speech recognizer is tested against the patterns until a

match is found. One of the associated responses is selected and either spoken

or executed (the lisp FVAL function is used to execute program fragments

within the script). As an example, the user might say

"why are you taking so long?"

The corresponding output of the speech recognizer is

(? are you ? ? ?)

which matches the pattern

(1 are you *)

and provokes the response

"Do you think I am?"

The speech recognizer used in this work returns up to five words recognized

from continuous speech (one or two wrods per sentence is typical

performance) with indication of words which are heard but not recognized.

The conversational script is similar to the Eliza program [Weizenbaum 64]

though less sophisticated. The purpose of soft machine's conversational

ability is not to simulate conversation with another human but to complete

the personal metaphor while functioning as a sophisticated means of

conversational prompting and system feedback. Thus, script responses serve

in the following roles: 1) To indicate the system's misunderstanding in a

34



friendly and interesting wa. A variety of statements replace the usual

"?Un recognized Command". Th is role is particul1arl effect in overcoming

the frustration which often results from the limitations of cLirreilt speech

recognition systems. 2) To encourage the user's continued and uninhibited

interaction. The iser's inquiry or expression of frustration may result in the

am using "clearly this is an existential matter" or the potentially constructive

"we were reading your mail" rather than the illegal command syndrome.

Unconstrained (anodal) conversation was a major goal of this work. The

user can adress any application program at any point; the cuITently-active

program is interrupted and its state is saved. Amodal conversation is

facilitated by the limited vocabulary of speech recognizers. The vocabulary

is carefully selected to consist of words which may be used in more than one

application, as well as general words which support the conversation. Each

word has a context list, and recognized speech is examined by a context

monitor program to determine which to program it is addressed. Thus, 'next'

may refer to the next piece of mail or the next database entry, or (as a non-

sequiteur) become the object of a conversational remark. The context

monitor uses a number of obvious heuristics to determine the applicability of

the recognized words and to discard words which may be spuriously

recognized or are currently inapplicable. Application programs maintain a

status message which is spoken if no applicable input is recognized in the

course of several conversational exchanges.

A contrived but realistic example of a conversation with Soft Machine

follows (recognized words are italicized):

user: Hello
machine:

Welcome to the machine.

35



I want to see tlic R tch database.
III: Speak up.

u: Show ime the Ro/ch database.
n: The Rotch slideathon is available.

u: buildings in Afassachuscus. 1950 to 1960.
ni: Con firmil state Massachusetts.

u: OK
ni: Confirm dates 1950 to 1960.

u: OK
Im: Initiating search

Ready.

u: Howmany?
ni: What are You talking about?

u: How many?
m: There are 646 entries.

u: Show them.
m: (first slide appears)

u: Next slide.
m: (second slide appears)

u: Read my mail.
m: How do you know it is yours?

u: Shut up.
m: You do not like me very much.

Read my mail.
You have no unviewed messages.
Last message dated .... (the most recent message is read).

36

1:



2.2 Real Time Anima tion of Electronic Persona

The text output b\ application programis is returned to the alter ego, who

reads it to the user. The text is first massaged to translate written conventions

into their verbalizations, for example, the electronic mail address

godzilla@mit-pamela" becomes "godzilla at M.I.T. pamela". The text is

then output to a high-quality speech synthesizer (Prose 2000).

The speech synthesizer's audio output is simultaneously sent to speakers and

analyzed by a real-time formant-tracking computer (Fig. 1). Ten formant

con figurations are selected, corresponding to visIally distinct lip positions. A

1024x1024x8 frame buffer stores up to eighty 128x96x8 images of lip and

head movements. Currently two sequences of ten images provide "positive

emotion" and "negative emotion" lip positions. The formant tracker

reorigins and zooms the appropriate frame buffer images, so that the alter

ego appears to speak. This "lipsync" technique was developed at the

Architecture Machine Group for limited bandwidth teleconferencing

applications [Negroponte 79].

The basic lipsync technique is extended to include limited expression and

head movement. When the alter ego is not speaking its head moves in a

subtle but animated way characteristic of attentive listening. The remaining

frame buffer images (those which are not used for lip positions) include eye

and head positions. A transition matrix describes coherent random

sequencing of these images.

37



Though a system such as this One would make a cumbersome interface to a

text editor (fior example), it is an attractive interf'ace to a machine which one

uses occasionally and does not wish to know in detail. An on-line library

catalogue search facility is an example. In one library a catalogue-search

terminal was installed adjacent to the card catalogue. Library users were

either intimidated by the computer terminal or reluctant to learn its

command syntax, and the terminal was removed for indirect access via

information-desk personnel (Eisenhower library, Johns Hopkins).

Soft machine is fun to use. Novice users are fascinated by its conversational

ability and willingly explore the system. The combination of animation and

speech techniques succeed in creating an animated persona.

Suprisingly, a limited vocabulary of several hundred words, if carefully

chosen, is quite adequate to support both applications and an interesting

conversational capacity. This is because the system does not need to

understand all of what is said, but only to recognize words which may be

meaningful to application programs, and provide a reasonable conversational

response if none are found ("limited recognition"). Appropriate applications

have a limited set of commands. Some information retrieval systems are

appropriate both in this requirement and in being systems which one might

casually encounter. A videodisk-based architectural database was interfaced

to Soft Machine. Its input vocabulary of about 100 words comprising several

independent keys (state, date in decades, building type) allows access to all of

the 5000 entries in the database.

The speech recognizer is nevertheless the weak link in the system. The

conversational interface presumes the ability to reliably identify vocabulary

38

2...3 I'aluation



words embedded in speech containing a large percentage of wkords which are

not in the vocabulary. Cururent Conti nuLIOLIS speech reCognizers perform

poorly at this task. In addition, continuous speech recognizerS are uSLally

speaker dependent, requiring retraining with each new user. It has been

recognized that the parsing of natural language often requires Understanding,

which in turn may require human-like world knowledge and intelligence.

The recent development of finite state (phonemic) probability driven

recognition models argues that incremental developments in speech

recognition will continue however [Schwartz 84], and a limited-domain

speaker-independent recognizer capable of realizing an interlace such as Soft

Machine may become available long before the problems of language

Understanding are resolved.

39



Chapter Three

The Sound Environment

Given the author's interests and skills, it was decided to provide the

marionette with a sound environment as well as a visual environment. While

the latter is fundamental, the sound environment will be discussed first, in

part because this discussion will motivate sonic of the decisions which

affected the design and implementation of the visual environment.

Computer music languages are a good place to start in the development of a

computer-generated sound environment. A computer music language can

act as a sophisticated studio if it is desired to use natural sound sources. The

digital equivalents of sound mixing and splicing are easy to program and

have advantages of precision, control, and low noise. Programs to do

equalization and effects such as reverberation and chorus are found in some

computer music systems.

In addition, a computer music language has facilities to produce novel,

imaginary sounds or music. Most computer music systems are oriented

toward providing interactive control for novice (computer) users, and those

"architectural" features (design and implementation approaches) of the

computer music language which enable this control will be adapted to form

the basis of the system for configuring and controlling the figure's visual

environment. It should be noted that, while computer music languages are

intuitive for the non-programmer (and particularly for the person who has

experience with analog musical synthesizers), they are essentially primitive

programming languages. The common sound-generating modules

40



(oscillator, noise g Cnerator, liltcr, etc.) are [)po\ ided as 'pre-program med

sibroutines' and the user need only determine the parameters and calling

order of these moduIles. Plrog ram mingil constructs such as iteration and

conditional branching are not essential and are not usually provided in the

coiputer music language.

3.1 The Music V Language

The major music languages, including Music 10, Music 11, Music 360, and

Cmuisic, are based on or developed from the Music V language developed by

Max Matthews during the early 1960s [Mathews 69]. Music V divides the

sound specification task into an orchestra or "instrument" programs and a

score file. The instruments are designed as an ordered list of signal

generating modules which receive and update information passed by a

subroutine parameter list convention. For example, a very simple (and

electronic-sounding) instrument looks like this: 1

begin "il"
Al = oscil(SINE,440,1.0) (1)
A2 = oscil(ENVELOPE,1.0,P4) (2)
out = out + Al * A2 (3)
end

Example 1

Statement (1) calls an oscillator to produce a 440 cycles-per-second (cps)

"sine" wave with amplitude one. The sine wave is assigned to the variable

Al. In statement (2) the waveform "envelope" (defined elsewhere) is

oscillated at one cps with the amplitude P4. P4 refers to the fourth parameter

of the score statement which will invoke this instrument (this will be

1The examples in this chapter are written in a hypothetical music language which is essentially
similar to Music V, 10, 11, 360, and Cmusic.

41



described below). In statenient (3) the sine wa\e Al is modulaed by the

amplitude en\elope A2 and the result is added to OUI w\hich ill be sent to

the audio speaker.

3.2 Digital Sound Synthesis: Sampling and Quantization

While it is intended that the variables ALA2,OUT denote continuous signals.,

in the digital implementation these signals are necessarly generated in a

sampled and quantized form. An audio signal is thus represented as a

sequence of numbers, which are converted into a voltage (to drive an audio

speaker) with a digital-to-analog converier (DAC). The fidelity of the

resulting sound depends on both the accuracy of the quantization and on the

sampling rate. The Shannon sampling theorem indicates that frequency

components higher than one-half of the sampling rate will not be reproduced

correctly [Shannon 49, Stearns 75]. Some individuals can detect frequency

components up to about 20,000 cps at a young age, entailing a sampling rate

of at least 40,000 cps. Musically interesting frequencies appear to be well

below 10,000 cps, however, implying a more economical sampling rate of

20,000 cps. This judgement is best justified by listening to a sound

reproduced at various sample rates, but in passing it can be supported by

several observations: many people cannot hear above 10,000 cps, the

bandwidth of AM radio is about 5000 cps (FM radio has a bandwidth of

about 15,000 cps), and the fundamental harmonic of most musical tones is

below 1000 cps ("middle C" on the piano is 262 cps).

The commonly available digital-to-analog converters accept signals which are

quantized to between eight and sixteen bits. Quantization error most directly

affects the dynamic range of the signal, measured as the signal-to-noise ratio

(SNR). Eight-bit quantization results in a SNR of about 48 decibels, which is

42



apl)proxlimatel\ collparable to the quaLility of tCle)honled aLidio signals (a

decibel is a logarithm ol the ratio of 1two am plitudes, deflned so that + 10

decibels is 3.162= scrlt(10) times the original amplitude [Benade 76]. Sixteen-

bit DACS have a SNR of about 96 decibels, which is very high fidelity.

Twelve-bit DACS have been used in computer mLisic without causing

perceptually obvious quantization effects.

3.3 Specification of Sound Events: the Score File

The instrument in Example 1 is thus called thousands of times per second,

and the signal generating modules (OSCil. in the example) are programmed

to return a single sample of their respective signals each time they are called.

A 'conductor' program reads the score file, determines the starting time and

duration of each 'note' in sequence, and calls the appropriate instrument,

passing the instrument parameters from the score to the instrument.

Example 2 is a sample score:

srate=20000;
synth "sine" 1,1.0;
seg "envelope" 0.0,0.0 0.1,1.0 1.0,0.0;
il 0 1 1000
end;

Example 2

This score activates "il" (the instrument defined in Example 1) at time zero

for the period of one (virtual) second (20,000 samples) with the auxiliary

parameter P4=1000. In this score language, the first token of an instrument

statement (beginning with an "i") is the instrument number, and P2 and P3

are conventionally the start time and duration of the event or note defined by

the instrument statement. The "synth" statement creates a function table

("sine") and fills it with a Fourier summation having the first partial with

amplitude one (a pure sine wave). A finite Fourier summation

approximating a square wave would be

43



synth "square" 1,1 3,0.3333, 5,0.2, 7,0.1429;

(odd harnioics with I/N amplitudes). The argumenl1tS the "seg" statement

specify the abscissa, ordinate pairs for a line segment (piecewise linear)

function. The abscissa and ordinate values are specified in the ranges 10,11

and 1-1,11 respectively.

3.4 Function Table Lookup Models

The preceeding discussion implies that signals are stored in function tables

and regenerated by table lookup, rather than by direct polynomial expansion

approximations. This is done for reasons of speed. In the early 1960s people

were conscious of the cost of a computer hour and only the cheapest

techniques could be considered. This had a major effect on the development

of computer music languages.

The effect of this effect will be considered by considering the traditional

implementation of a synthetic guitar approximation (for example) using a

Music V-type language. It is common knowledge in musical acoustics that a

struck or hammered string generates odd harmonics with 1/N amplitude (a

square wave), while a plucked string generates 1/N2 odd harmonics (triangle

wave). The natural decay of a plucked or struck string is exponential. The

sounding box of the guitar acts as a resonator or filter, and this will be

approximated with a gentle bandpass filter. This completes our "synthetic

guitar".

Unfortunately this approximation does not bear the least resemblance to its

prototype. Physical musical instruments are universally complex and

nonlinear in their porduction of sound, and the difference between the

computer and the physical instrument is as between a toy synthesizer and an



Cx p ressiv\ e sound. We can atte m pt to describe the cha ractelistics of ml tusical

inst rumenits in \arious ways; a relatie\Cl) successful approach is to consider

the frequency spectrum of the sound, and its Cvolu.tion. It is known that for a

given (physical) instrument, characteristics of the spectrum will depend on

the amplitude, pitch, and performance of each note in a nonlinear way.

Thus, the spectrum of a note with the pitch C5 (the note one octave above

middle C on the piano) will be distinctly different from the spectrum of a

note with pitch C4 which is shifted up one octave in frequency.

It has also been demonstrated that the e 10olution of the sound spectrum,

particularly during the onset of the note, contributes significantly to our

perception of timbre and to the idenfication of the instrument [Stumpf 90];

the spectrum which is constant or which evolves according to a simple

formtula identifies the instrument as an electronic synthesizer.

In the time domain, it can be observed that physical vibrating systems are not

periodic but almost periodic. An effect of friction is to slightly alter the

harmonic frequencies of a vibrating system, so that they are not in the same

phase relationship from one period to the next. The contour of the acoustic

wave can change significantly during the course of a note.2 The effects of the

stiffness of the vibrating body and resonant coupling are similar to that of

friction in that they remove the musical signal from strict periodicity.

The selection of the oscillator as the fundamental modelling tool and sound

source for computer music is suggested by any analysis which considers

music to be a fundamentally harmonic or periodic phenomenon. Oscillator

2'he perception of timbre is fairly robust in that the physical correlate of the timbre is usually
a rapidly evolving waveform. The perception of timbre might in some cases be equated to the
colution of sounds rather than to a steady-state spectrum.

45



models are inappropriate, however, k0r modelli ng tra nsienlt or in haimonic

sound features whIich may be perceptually important even if they do not by

themselves define a mLISical sound. - For example, the spectrum of many

instruments appears as harmonic peaks above a resonant "noise floor"

(Figure 3-1). The periodicity and linearity entailed by the function table

lookLip method as well as the triangle and square wave characterizations of

iusical acoustics (mentioned previously) are approxiniations to physical

sound production.

7

Figure 3-I:The spectrum of real music: a guitar passage from Amon Duul
Live in London (1973)

3.5 Electronic Sounding Sounds

While we may take the opinion that the electronic synthesizer adds a new

range of sounds (albeit simple) to the composer's "pallette", the composer

who uses computer-generated sounds exclusively is often disappointed. The

46



compositional restrictions imposed b\ comn puter music can be dramatically

demonstrated: choose a popular or traditional iclody which has been

successfully orchestrated and performed with a variety of instruments. A

voice, flute, or guitar performance may be expressive; a piano performance

will sound "flat" until it is harmonized, and the computer performance is

mechanical and even embarassing to the extent that it will not bear repeated

listening. The composer must "throw a lot of notes at the problem" in order

to compensate for the extreme acoustic simplicity of this medium, and the

"bleeps and beeps" which characterize computer music are not solely the

composer's choice. It is common to find jazz bass players and closet heavy

metal enthusiasts side by side in making beeps in the computer music studio.

At this point it is appropriate to comment on the "purpose" of computer

music, since it is often said that the duplication of traditional instruments is

not a worthwhile goal for computer music. This discussion can be

approached from two fairly distinct orientations. According to one

orientation, computer music should be used to produce novel sounds or

sound structures which would be impractical or impossible to attempt using

other tools.

Composers are often drawn to computer music for its potential as a

performer or realizer of their work, as well as for its possibilities as an

electronic medium. This orientation is especially applicable for beginning

composers, or when novel compositional techniques are employed and

feedback is desired. Computer music may short-circuit the syndrome of the

composer who must wait many years for a composition to be discovered and

performed for the first time. If the computer is considered primarily as a

medium for realization or personal expression, providing the expressive and

performance capabilities of traditional instruments is not an inappropriate

47



goal. Of cour se. if there exisied I comn puter model \which perceptuIally

dupi icatcd the properties of a physical inst runient, the iodel could easily be

'fiddled' to produce novel sounds which exceed the practical or physical

limitations of its prototype.

Given the ostensible emphasis of'conputer music on the production of novel

sounds, it is somewhat suprising to note that the fundamental computer

sound synthesis techniques, including additive and subtractive synthesis,

waveshaping, and frequency modulation, were either pioneered or are

commonly emiployed in analog musical synthesizers. The exceptions to this

observation are techniques which process (natural) sounds; linear prediction

in particular can produce effects beyond those of the analog vocoder.

It may also be suprising to note that practicing musicians often complain

about the sound quality of digital synthesizers:

"The only way to get any sound that comes close to being
considered fat on a digital synth is to have 64 oscillators playing the
same thing. With the older analog synthes, you could often use
just two oscillators, and the sound had a certain warmth and size
that you can't really find now." --Eddie Jobson (keyboard player
with Alan Holdsworth and U.K.) [Keyboard 84]

The old electronic oscillators did not stay in tune for very long, and the

electronic oscillator may share some of the nonlinear characteristics and

"imperfections" of mechanical vibrators [Chamberlin 80, p.489].

3.6 Modelling the Sound versus Modelling the instrument

The presumption motivating the preceeding discussion is that these

imperfections and nonlinear effects are the final product of centuries of

design and evolution of musical instruments, and they are the foundation of

48



the characiter and cx pressi \eness of the instrmnCIlt. T1he ori gial m111 otIvtiol

for Comn puter im usiC is su rely its unlimited potential, so it is not appropriate at

this point to declare computer music to be hopelessly inexpressive.

A major focus of computer music research has been the study of physical

instruments and the investigation of modelling methods which might rival

the acoustic complexity of physical instruments. Effects identified in acoustic

research have been incorporated in the oscillator/function table models. For

example, the stretched (slightly inharmonic) spectrum of the piano has been

simulated by detuning the oscillators in an additive synthesis model

[Schottstaedt 77].

It is interesting to reflect on our knowledge of musical acoustics, and its

implications for our modelling strategy. Though we may know how to build

a particular physical instrument, the computer modelling of the sound of that

instrument requires years of research, and (at present) the resulting model

can usually be distinguished from its prototype without difficulty.

An alternative approach is to transfer our knowledge of the instrument's

sound from the physical domain to the computer by digitizing the sound.

There are several obvious objections to this approach. It entails digitizing all

of the pitch, amplitude, and performance combinations which the instrument

is capable of producing, because (as was described previously) the sound of a

note at a particular amplitude (for example) is generally distinct from an

amplified version of a quieter note of the same pitch. A second objection is

that there is usually no point in merely digitizing a sound and playing it back

without modification. Both of these objections are overcome if the data can

be conveniently parameterized in a data reduction procedure such as

[Schindler 84]. A third drawback of this approach is that one is dependent

49



on natul sOuinds 1or souricc nmateril. and that it \ iclds a shallow and specile

model (if the paraimeterized data is considered as such) which may not be

easily adapted beyond its original context. The parameterized data does not

contribute much to our understanding of the instrument or its sound.

A third modelling approach is to start with the physics of the instrument

rather than its sound. This distinction is illustrated in the following

equations:

Y SIN(WT) sine wave (3-1)
Y= -W2Y harmonic oscillator (3-2)

(Y"' denotes the second derivative of Y with respect to time). Both 3-1 and

3-2 result in a sinusoid in Y, but 3-2 suggests a physical model rather than the

closed form solution or approximation to that model.

3.7 Models of Physical Vibrators

While computer models of the sound of an instrument are a significant

research topic, our knowledge of the physical construction of an instrument

may be transferred to a digital model which generates some of the nuances

and expressiveness of its prototype. As an example, the vibrating string is

modelled by the wave equation rather than as an oscillator:

Y"(T) = K * Y"(X)

(Y"(.) denotes the second partial derivative of Y with respect to the

parenthesized variable). The constant K is related to the string tension and

density.

The closed form solution of the wave equation is well known, but analytical

solution becomes difficult as terms describing friction and string stiffness,

and other factors are added. An initial formulation of friction is

50



V'(1) =K * ) "(\,- *~ V(T)

i.c., I is a damping ternm proportional to the string \elocity. A more accurate

formulation of friction accounts for the effect that energy at higher

frequencies is damped or dissipated more quickly than at lower frequencies.

[Hiller 71] derived an approximation for string stiffness as well as an

Improved friction term.

In general, physical models take the form of difflerential or integral

equations, which may be implemented digitally by several methods. The

author has been working with finite difference implementations of the wave

equation for several years, and more recently several stochastic delay-

differential equations have been explored. In implementation, physical

models are immediately distinguished from oscillator models. For example,

the wave equation string model must be tuned by adjusting its tension! (The

author was not able to analytically calibrate the a particular value of

tension/density constant to a particular absolute frequency, so tuning was a

fairly time-consuming process). The harmonic content of the string model

also depends on where it is plucked or struck, and how hard. These

performance nuances would be tedious to approximate with an oscillator

model. Figures 3-2, 3-3 show the outputs of pickups placed at different

locations on the string model.

Appendix B is a program listing of the simple stochastic delay-differential

equation

Y= F(T,X(T))IY" = X - K1 * Y + K2 * Y.D + K3 * Y'

where X is a random shock excitation and Y-D refers to the value of Y delayed

by time D. This equation resembles a digital filter except that it is nonlinear

and does not obey the principle of superposition. When differential

equations (such as this one) are invented for the purposes of complex sound

51



Figure 3-2:lnitial string position representing a pluck
(displacement as a function of location), and

several periods of string motion shown at equally spaced pickups
along the string (displacement as a function of time).

Damping is exaggerated.

52



Figure 3-3:Initial string position approximating a metallic sound
(displacement as a function of location), and

several periods of string motion. Damping is exaggerated.

53



gene ratiion, stahlIity is oftIL I prohcill, particl arl if' tihe eCuatiloll in\olves

feedback. A solution to this problem (and one which is not inappropriate if

the physical implications of the equation are considered) is to insert a limiter

or clipper into tile feedback portion of the equation. The feedback terms

should also be damped, and if the damping is carefully adjusted then the

limiter or clipper will only be invoked during portions of each sound event.

This may provide a complex sub-event with a perceptual function similar to

the attack portion of most physical instruments. [Saaty 81] describes

analytical techniques for determining the stability conditions of equations

such as this one.

In a listening evaluation, the digital implementation of a non-trivial physical

model has several striking qualities. The author's string model, which

accounts (to a greater or lesser extent) for air friction, string stiffness,

resonant coupling, and the resonance of a sounding board, does not duplicate

or even strongly suggest the sound of a plucked string! While the bridge

coupling and sounding board are poorly modelled at this point, the

complexity and elusiveness of such a perceptually simple sound as a plucked

string has been quite suprising.

On the favorable side, the string model does not sound particularly like an

electronic synthesizer, and the performance nuances and acoustic complexity

of the model are sufficient to sustain a simple or even monophonic score.

Some of the acoustic features identified in working with this model have

been approximated with an oscillator/wave table model. The resulting

'instrument' has been able to "support" music written for piano, thus

contradicting the dictum that the computer is such a distinct medium that it

will not support music written for other instruments. On the contrary, it is the

author's assumption that the computer is at least potentially the universal

medium.

54



With few e\cep tions, ph\sical models haVC 110t been used inI Comp1u Iter music.

The Ujor comIuter languages do not contain all the IIeceSsar\ programimIiiing

constricts (conditional statements, arrays, and iteration) to permit the

implementation of these models, and the design of these languages was

guided by the belief that the physical modelling approach is too expensive.

This belief was unarguable ten years ago, when one could hope to afford a

few minutes of CPU time per day. At present, the computational resources

available in a computer graphics lab (for example) can usually offer several

hours of equivalent CPU time per day. The physical modelling approach is

not "hopelessly inefficient" at this point; in fact, the harmonic oscillator

implemented by finite differences is the most efficient ways of generating a

sinusoidal oscillation other than by table lookup.

The author's computer music composition Ossature Metallique, performed at

the spring 1984 computer music concert at MIT, contained two instruments

which utilized finite difference equatons. Most of this composition was

synthesized using a computer music language developed by the author. The

development of this language was prompted by the lack of portability of the

existing computer music languages (Musics 10 and 11 are written in PDP-10

and PDP-11 assembler languages), as well as to provide a tool for exploring

synthesis methods.

3.8 A Script-driven Multiprocess Programming System

The architecture of this computer music language was shaped by the

requirements that it be portable and provide a 'open-ended' programming

environment comparable to existing programming languages. Facilities for

the basic synthesis techniques, including additive synthesis, frequency

modulation, moving average and autoregressive filters, waveshaping, and

55



linear prediction wOuld be provided, but the major capahiIlit\ of the language

would be its prograinilg( COnstructs. Returning to Example 1, notice that

the implementation of this instrumenit consisting of several OSCILs in a

(non-music) progranmming language is only a matter of several table lookups

and incremented indices:
/* OSCIL */

value = table [index];

index = index + freq mod tablesize;

return(value);

With the exception of linear prediction, the other standard synthesis

techniques are also fairly simple to program.

The major task in writing a computer music language is the evidently the

development of the language interpreter or compiler, and the writing of an

interpreter or compiler for a new language is a task which should be

measured in man-years. Given Our requirement that the new music language

should provide a programming environment comparable to a programming

language, it made a lot of sense to start with an existing programming

language, and modify it for sound generation. The conversion of a language

compiler or interpreter for a particular machine conflicts with the desire for

portability, however.

Portability is achieved if we develope a language translator whose output is

an existing higher-level language. The music language will be translated into

a common programming language and then compiled. The language

translator is easily (if not ideally) implemented using a macro processor. The

language Ratfor, which is translated into Fortran with a macro processor,

provides a precedent for this approach. The source for a version of the M4

macro processor was available and used for this purpose [Kernighan 76]. The

disadvantage of implementing the translator with a general-purpose macro

56



pr)cess(r is that a nguage-specific error checking is not possible. TIhe music

language has enough sVntax reqLIIrements beyond that of the underlying

programnm ing language to justify the term "language", and errors in the

music language are not detected until run tirne in the current

mi pIem entation.

Much of this 'syntax' is determined by the additional requirements the sound

synthesis process be driven by a score file, and that the instruments be

reentrant. Once an orchestra (collection of instruments) has been designed

and compiled, a particular composition which uses that orchestra is described

in a score file such as was shown in Example 2. It is particularly desirable

that an instrument be capable of acting with several sets of parameters

simultaneously' (in virtual time) to generate concurrent sound events such as

chords. This capability will be termed 'reentrant'. Unfortunately the most

common programming languages do not have the multiprocessing and

scheduling constructs to directly support these features.

Abstracting from the musical context, the facility of a system providing

script-driven control of multiple processes in time is equally applicable in

computer animation. The implementation and use of this facility in a script-

driven computer animation system is described in the next chapter.

57



Chapter Four

The Visual Environment

In this chapter, the graphical marionette figure and the objects comprising its

environment are United in a script-driven animation system named Fish.

Some of the vocabulary describing the system reflects its origin in the

cornputcr music language described in the previous chapter.

The system consists of a script interpreter written in a symbolic interpreted

language such as Lisp, an orchestra manager which oversees the animation

process, and instruments which accomplish the animation rendering. The

instruments are written in a compiled language such as Pascal or PL/I for

efficiency. For practical reasons (specifically, the limitations of the local

Lisp/PL/1 interface) the animation is accomplished as two passes.

4.1 The Script Interpreter

The "Lung" script interpreter reads and evaluates the script to produce a

script output file. For example, the script input

(Repeat 10
(setq name (gensym))
(makemove Curtime name 1.0

(pickrts bounds) (pickdrts drtsbounds))
(@ Curtime)

(mary fletcher scale (?in 0.5 1.2))
)

generates twenty lines of script output in which the position and movement

direction of ten figures (rendered by the MARY program) are chosen at

random. The sizes of the figures are also chosen at random, in the range

0.5..1.2 of the default size.

58



The ILu ng progIm Contlai ns relat il\ \ew preprograi med consIrults: the

power of the program is that of the Lisp language itself. Any script input

which is not identified as valid input to the aniiation system is assumed to

be a Lisp program fragment and is evaluated. If the Lisp code occurs within

a known script statement, the result of the evaluation is substituted into the

statement. lisp code occuring outside of script statements is evaluated for

side effects. The predefined constructs can thus be grouped in macros or

extended by defining new functions (Appendix D).

4.2 Script- Driven Animation

The scripting facility of this animation system defines a

declarative/procedural interface, in which the declarative form of the script is

converted to drive the procedural (programmed) animation rendering

software. Thus, no programming is needed to develop an animation. The

scripting process is further simplified by the use of spatial digitizers to

directly specify motion (described in the next chapter).

The orchestra manager partially implements a multiprocessing metaphor, in

which multiple copies of any instrument may be simultaneously active.

Unfortunately the widely available computer languages do not support

multiprocessing. In this system multiprocessing is implemented by imposing

standard calling conventions (at the procedural level) on instruments and by

use of a macro processor. In the resulting environment one instrument or

renderer can be active in as many instances as desired, regardless of the

extent of the static (impure) data required by each instance. No global data

structures are suggested, so a variety of distinct approaches to computer

rendering may be present in a single animation. This is evident in the

"Nick's grove" animation, where cloud (particle system) figures stroll

59



through an en I\ironmenit represented by polygonal liicets, and are observed

by an invisible camera (Figure 4-1).

Figure 4-1:A frame from the "Nick's Grove" animation. The falling object
is a head which is about to drop onto the shoulders of the first figure.

A user's view of some of the features of this animation system is presented

below, with reference to the standard terminology of ASAS for comparison

[Reynolds 82].

Motions fall inbetween the ASAS concepts of Newton and Actor. They are

called once per frame, in a consistent but unspecified order. As the name

implies, motions typically define motion, but they are also an appropriate

60



mechanism for specifi\ iIg an qulantitics wh ich change dI Iiring the Couirse of

the animation. For example, a camera zoom could be accomplished by

creating a motion to change the camera's focal length.3

Motions are created and destroyed by script statements or by instruments.

The required parameters are a name, start time, delta time, starting value,

and delta value. ThIe values may be literal or symbolic scalars or vectors. A

typical script motion statement is:

(move riseandspin Curtime 1.0 vector(1 0 -1) upabit)

In this example, the motion RISFANDSPIN defines an interpolated vector

quantity which changes from (1 0 -1) at time CURIIME by the amount

UPAB r (a predefined vector) during one second.

Motions are origined relative to other positions or motions. This feature

facilitates object interactions by relative or coordinated movement (the

"message board" system described below is also used for this purpose). For

example, the primary figure in an animation sequence might be identified as

such by keeping the camera stationary relative to the (moving) figure. A

more sophisticated example is the "hungry beetles" chase, in which each of

several "beetles" chases the next beetle, starting from a distant position

(Figure 4-1). The size, orientation, and location of a group of objects may

optionally be changed by changing an origin common to the motions of the

objects.4

Instruments are similar to the Actor type in ASAS: when the instrument

3 The current camera program requires its focal length to be a literal.

4 Whether this happens is currently a compile-time parameter; in some cases it may be
desirable to change the size and orientation of an object independently of any other objects
which are origined relative to it.

61



Figure 4-2:Diagran of the spiral paths generated by four
"hungry beetles" starting at the vertices of a square

(from [Abelson 81 )]

instance is active, it will be awakened once each frame and provided with the

local data space of that instance. The instrument executes and then returns

control to its caller.

This view of the instrument as a somewhat autonomous entity which executes

(effectively) in parallel with other processes is subtly but distinctly different

from the traditional architecture in which control resides in a single program

which invokes a hierarchy of subroutines. Reynolds calls the instrument's

world view "object oriented" (other definitions for this term have been

proposed).

The order in which instruments are called is defined by coordinates which

are updated and broadcast by each instrument instance. Usually the

instrument is responsible for rendering a particular type of object at a

particular place, and the coordinate is the distance of the object from the

camera. Typically the place is defined as a motion instance. Instruments

need not do rendering, so they provide a way to perform once-per-frame

tasks which are not served by the motion concept. In fact, the 'motion server'

is itself such an instrument, with all of the motions as its instances.

62



I ist rum11.eits S arc activated b\ instrument calls in the script (t\ pically ) or by

other instruments. The instlrument call consists of an activation time, the

name of the instrument, and paranieters to the instrument. Each instrument

defines its own parameter convention, so there is no need to impose a unified

parameter structure on diverse instruments. A typical script call, featuring an

instrument which is a renderer, is:

(@ timel) (bnuts6 riseandspin carrot offset 0 range 300)

In this example, at TINII an instance of the bnults6 renderer is created. This

instance renders the CA RROT object following the motion RISFANDSPIN.

An instrument can deactivate ("unplay") itself, or it can be deactivated by a

script statement or by another instrument.

Instruments can communicate with one another by entering their messages in

a "message board" database. The utilities which are used for this purpose are

the same as those which accomplish the declarative/procedural data transfer

and which provide each instrument instance with its local data. A limited

example of instrument communication is seen in the "Nick's grove"

animation, where Nick's head drops out of a tree and lands on one of the

figures (Figure 4-1). This figure is broadcasting the position of its head. The

Nick head picks up this position, origins itself relative to it, and moves to the

origin. In this way a very precise movement is easily scripted.

4.3 Evaluation

As a system for scripting animation, the Fish has proved fairly robust and

flexible. As an animation system, Fish suffers from simplistic rendering and

hidden surface algorithms. Like the proverbial four-lane highway, the

system has been 'filled to capacity' sooner than expected. Part of the

63



di Iflculty lhere is a local rating S ste ii tatoll on the si/C of prograimls.

Cu rrnitly unnceded inst rumIents must bc removed before nelC instrmilents

can be added.

The applications and results of this system are described in the next chapter.

This work was judged to be inappropriate, however, and it was succeeded by

the fitirly nebulous approach indicated chapter six.

64



Chapter Five

The Marionette in its Environment

The current work has succCeded in its intended application of portrayal of

figures inl an environment, as well in an unforeseen application (computer

generated holography). Progress and remaining difficulties in the area of

body tracking will be described before discussing these applications.

5.1 Motion Specification by Digitization

As originally conceived, the Architecture Machine Group figure modelling

project posited a real-time graphic representation of a body-tracked figure

[Bolt 811]. A full-body tracker is currently under development but is not

operational at this time. In the absence of a body tracker, the motion of the

graphical marionette figure has been specified using the walking algorithm,

key-frame interpolation, and partial body tracking.

Shigeru Suzuki has adapted a spatial digitizer manufactured by Polhemus

Navigational Sciences to provide a partial body-tracking capability [Suzuki

84]. The spatial digitizer returns the position and orientation (azimuth,

elevation, and roll) of a hand-held digitizing sensor. Suzuki observed that

the spatial digitizer could track a limb (two nodes in the figure model) by

making use of the orientation data.

The digitizing sensor is attached to a distal limb segment (e.g. to the

forearm). The position and orientation data together define an axis in space

parallel to the axis of the distal limb segment. The position of the distal limb

65



segmient is then fixed b\ considering its position relative to the attached

sensor. When the position of the distal limb segment is determined, the

proximal limb secment is known to connect a stationary body node to the

proximal node of the distal limb segment.

Inaccuracies in the spatial digitization cause the proximal limb segment to

stretch or compress. Ihis difficulty is overcome when the limb position is

converted to the articulation tree representation. The position of the

proximal node of the distal limb segment (= the distal node of the proximal

limb segment) is used to determine the articulation matrix rotation angles for

the proximal limb segment, and the absolute position of this node is replaced

with the correct length of the proximal limb. Similarly, the absolute position

of the distal limb segment is discarded after rotational angles are determined.

The articulation tree walk will then generate a correctly proportioned figure,

and the position of the body-tracked limb will deviate from its prototype only

as a result of digitization error.

The author augmented the figure model to allow the motion of one or more

of its limbs to be specified by partial body tracking while the figure as a

whole is moved by the walking algorithm or by keyframe interpolation.

Programs to direct the figure's walking and the motion of objects in the

environment using a digitizing tablet (the "posit" program in Appendix C)

and by algorithmic methods (Appendix D) were also implemented.

What initially appeared to be minor technical difficulties in this body

tracking effort were found to be serious or even crippling. When the spatial

digitizer is used as an interactive pointing or positioning device, the

digitization noise is easily compensated by the operator. When it is used as a

tracking device, however, the digitization noise causes the figure motion to

appear mechanical or insect-like.

66



Seiral attempts at fltering the noisc have not enireN eliminated it. [lie

magnetic operation of this digitizer is disru pted b\ the graphic display, so

that the digitized space is not only nonlinear but non-monotonic. The aLithor

would like to propose that simply reducing the amplitude of the noise (with a

low order Filter) will not be sufficient for the body tracking application,

because the residual low-amplitude, high-frequency noise stands out in

observation. Human visual perception appears to be quite sensitive to

discontinuities in velocity as well as in position. An attempt to splice body

tracking motion to key-frame or algorithmic motion would need to consider

the discontinuity in velocity at the splice; this problem was judged to be

bey ond the time scale of this thesis.

Another problem is the limited tracking space (approximately 2-4 cubic feet)

of the digitizer. When combined with the restriction that only one limb may

be tracked, the result is that only some fairly mundane gestures can be input.

The integration of a body-tracked limb motion in figure movement

generated by the walking algorithm does not always appear natural. In our

experience, the body tracking application is distinct from spatial digitizing

and requires specialized tools.

Perhaps the biggest drawback of the current body-tracking effort is the

absence of a real-time display device. The turn-around time between

tracking and display is several minutes due to the filtering, and the

subsequent frame-by-frame display portrays a sequence of positions rather

than a motion. The real-time display of a stick figure is well within the

capability of cheap vector displays, but the body-tracking (triangulation) and

filtering tasks on the full body will require dedicated computation. A new

body tracker using one or more dedicated microprocessors is currently being

developed by Tetsuo Semba.

67



5.2 Computer-Generated Figure Animation

While the de\elopment of a full body tracker is still underway, several

animations depicting figures moving and interacting in virtual three-

dimensional environments have been produced.5

Michael Roper's animation "Concrete Jungle" juxtaposes the stark,

geometrical character of the graphical marionnete and its environment with

the complexity and warmth of several streetside types, captured on video.

This aniniation is a setting of the song by Bob Marley.

Jennifer Hall, an artist at the MIT Center for Advanced Visual Studies,

produced an animation which uses computer graphics to successively expand

the viewer's perceptions beyond the inevitable attempt to assign a

conventional (real world) spatial interpretation. The initial appearance of

figures walking upside-down suggests that the camera is upside down, but

the appearance of upright figures in the same scene brings the realization that

the other figures are "walking on the ceiling". A shift in the camera's

position reveals that the initial scene was only one "wall" of a larger space.

Sarah Dickenson's animation places the graphical marionette figures against

an abstract, industrial backdrop inspired by the artist Leger. This animation

makes extensive use of single-limb body tracking to effect a "mechanical

ballet".

The "Nick's Grove" animation by Michael Teitel and Jennifer Hall was

described in the previous chapter.

5'These animations are well under a minute in length. due to limitations on computer time (the
more complex scenes in these animations required approximately two-hours of computer time to

produce each second of animation).

68



5.3 Computer-Generated I lolograis

A system for producing lenticular holograms has been constructed at the

Polaroid corporation. Approxiniately one-hundred photographs of a scene

are obtained at equally spaced intervals as a camera moves froni right to left

across the scene. The resulting hologram is monochromatic and has parallax

in the horizontal direction only [Benton 83].

The virtual camera and regular sampling of an animation system such as Fish

make it an appropriate tool for producing a computer-generated lenticular

hologranm. The virtual camera is panned across the imaginary scene at the

speed required to obtain the desired number of frames and the desired

perspective shift.

Several computer-generated holograms have been produced using Fish.

These are not the first computer-generated holograms of this type, but they

appear to be the first computer-generated holograms to incorporated

medium-resolution, shaded imagery.

5.4 Conclusion

While the scope of the Architecture Machine figure modelling project is

partially paralleled by work at the University of Pennsylvania, the Computer

Graphics Research Group at the Ohio State University, and particularly at

the Simon Fraser University, the previously-described animations depicting

the motion and action of multiple figures in imaginary environments appear

to be unique at this time.

It is hoped that this work will provide the basis for further devlopment.

Priorities in the future will continue to include the development of a full-

69



hody tracker. 'Ihe aquisit ion of a real-time picture

immediate feedback in body -tracking and and

scripiing-by-enIac/menI [Bolt 81]. A secondary goal is the

figure model to provide facial expressions, speech,

representation.

system wiII allow

enable interactive

development of the

and better overall

70



Appendix A

PotatoSlice manual

This appendix is the users' manual for the PotatoSlice programs described in

Chapter 2.

A.I Overview

Suppose you are creating an object which you will call potato". The

following (annotated) sequence of commands will run the programs to allow

you to input and view an object described by parallel planar slices. The

commands themselves are distinguished in bold type.

1. Type cwd >u>course>potato. Files will be created in your directory

though the programs are located in this directory.

2. Type editslice potato to create the object. Remember to specify y
values in increasing order, and to enter slices counterclockwisely.
The first and last points on a particular slice are assumed to be
connected, so it is not necessary to 'close* a slice by entering two
points at the same location.

3. Type brunch potato. This runs various number crunching programs
and prints out mathematical-looking things.

4. Type Bnuts6 potato. Bnuts6 is the program for producing a
perspective, shaded display of the object. A minimal command
sequence for using Bnuts6 is: init trans 0 0 1000 go

71



The commands accepted by the 13nu ts6 display program are described below.

The starred commands are toggles, i.e., if their Current value is FAILSE then

the command sets them to TR U E:

resets the perspective transformation matrix, including

rxry,rz

scale <x y z>

trans (x y z>

* flipshade

* gourd

* outline

* backfacing

light <x y z)

any previous translations, rotations, or scaling commands.

rotate the object about x, y, or z axes

scale the object in three directions

translate the object

if flipshade is true a solid rendering is performed,
otherwise a wire-frame is shown. flipshade is initially
false.

specifies smooth (Gouraud) shading

causes tiles to be outlined with jaggy black lines

causes back-facing tiles to be shaded red (initially FALSE)

specifies three components of the direction vector to the
light source. The z component should be negative if you
want to see anything. Light
flipshade command is given.

must be specified before the

This allows the rendering of translucent objects and other
effects. Try 'writefunc avg'. 'writefunc ? lists the
command abbreviations. See 'help ram$param' also.

saveposition

setposition

newfile

saves the rotations/translations/scales
position in a file in your directory

retrieves a position saved earlier

opens a new object file

for the current

72

init

writefunc

A.2 Display Coninuinds



begins the rendering

BInuts6 uses the left-handed coordinate system:
The x-axis extends in the Positive direction to the right on the screen.
The y-axis extends in the positive direction up on the screen.
The z-axis extends in the positive direction into the screen.

Therefore, to view a normal object you should do the rotations first, and then

translate the object away from the origin into the viewing space. This usually

includes a large positive (e.g. 500) translation in z.

A.3 Other Programs

bnuts7 & nuts7 are like (B)nuts6 except that the 'gourd' shading command

produces a primitive texture mapping rather than Gouraud shading. To run

these programs, specify

datapath:
p218file
object

>u>username
try pam240 or sin240
the name of the object

It is necessary to give the 'ox' and 'ampl~ commands before translating and

displaying the object. A sample command sequence is:

init
ox
ampl 60
rx 0.3 ry 0.3 rz 0.3
trans 0 0 700
gourd go

The texturing process sometimes exceeds the grayscale range (0-255). To fix

this, do (after quitting the program):

linear
range? 0 330
initial color? 0 0 0
final color? 1 1 1

73

go



lere are sc\ Cral \ ariations on the brunch program:

brunch is very fast & usually acceptable. Bnuts6 & bnuts7 can
display objects produced using 'brunch'. Try things out
with brunch First, then run crunch5 if desired.

crunch is slow for large objects (bonehead' takes about an hour if
you are the only person on the machine). crunch does
'global optimization' and it produces slightly better results
than brunch. crunch objects are displayed with nuts6 &
nuts7.

crunch4 like crunch, but displayed with BInuts6 or bnuIts7. This
progran is recommended over crunch. Slow for large
objects.

crunch5 crunch5 produces the best results, especially for objects
which slant (successive contours/slices are horizontally
shifted). Slow for large objects. Use Bnuts6,bnuts7 to
view.

Several other useful programs:

reflector reflects each slice about the first point in the slice. Use
this for making objects with one axis of symmetry, eg a
head.

countiles counts the number of tiles (triangles) in an object

sysfilter this program low-pass filters the screen image. Try it.

TSRS.doc documentation of the object data structure

74



Appendix B

Program for a stochastic differential equation

A program listing of a finite difference implementation of an example

stochastic differential equation:

DDE:proc; /* stochastic delay-difference equation example */

/* derivation..
y" = -ky harmonic oscillator
y' = -kly + k2y' w/ friction
y =-kly + k2y(-t) + k3y' w/ feedback
y' = x -kly + k2y(-t) + k3y' w/ random shock excitation

notation, y+ y(t+1), dt=1
y+ - 2 y= + y- = x -kly= + k2y-t + k3y= - k3y-
y+ = x -kly= + 2y= + k3y= - y- - k3y- + k2y-t
y+ = x + (2 - kl + k3)y=

ki force
k2 feedback
k3 friction

retime
y= = (2 - kI + k3)y-

- (1 + k3)y- + (k2)y-t -kl

- (1 + k3)y-2 + (k2)y-t-1

*/
call ioa(" for speech-like signal, try 0.01, 0.005, -0.001, 10 ");

dcl F [1:512] fit;
dcl i fix;
dcl memory[0:20] fit; dcl Mien fix init(20);
do i=0 to Mien; memory[i]=0.0; end;
dcl (kl,k2,k3) fit;
dcl (iMlen,iMlenl,iMien2,oMlen) fix;
dcl y fit;

75



dcl x f1t:

I:
call askin("excitation force,feedback,friction constants,pitch period ? ",k1);
call askn ("feedback ? ",k2);
call askn("friction ? ",k3);
call askn("pitch period > ",p);
dcl (pip) fix: ip=0;

excit SL$oofO; /* correlated random 1/ft2 excitation */

iMlen = 3;
doi=1 to 512;

ip = ip + 1; if ip>p then do;
ip=0;
call ioan(".");
x = SL$oof);

end;
iMlenI = iMlen - 1; if iMlenI ( 0 then iMlen1 = iMlenI + Mien;
iMlen2 = iMlenI - 1; ifiMlen2 < 0 then iMlen2 = iMlen2 + Mien;
oMlen = iMlen + 1; if oMlen > Mien then oMlen = 0;

/* y= = (2 - k1 + k3)y- - (1 + k3)y-2 + (k2)y-t-1 */
y = (2.0 - kI + k3) * memory[iMlenl];
y = y - (1.0 + k3) * memory[iMlen2];
y = y + k2 * memory[oMlen];
y = y + x;
memory[iMlen] = y;
F[i] = y;

iMlen = iMlen + 1; if iMlen > Mien then iMlen = 0;
x=0.0;

end;

goto l;

end ;

76



Appendix C

FISH manual

Several important preexisting instruments for generating the marionette and

its environment are described here (see Chapter 5). In the descriptions,

"P<N>" refers to the instrunients' Nth parameter, and "&oiT'I" means that the

remaining parameters are optional (defaults are assumed) and may be

specified in any order.

cursor A 3d coordinate system/cursor which is useful for cheaply
representing objects while their motions are defined. It
draws x,y,z axes in red,green,blue. The default size is 100.
If P3 is not a number it is ignored.

P2 =motion
&OPT P3=size

grid A rectangular grid of square "spots" which can be used to
represent a planar surface in space.

P2 =motion
&OPT xm in,xmax,zmin,zmax,dx,dz,color,spotsize

bnuts6 The renderer for PotatoSlice objects (see Chapter 2 and
Appendix A).

P2= motionid
P3= object
&OPT gourd, plate, wire,
outline, toutline range offset

hack This is the "graphical marionette" stick figure. The figure
may be rendered by line segments or by "clouds". Several
types of clouds have been developed. Particle system
clouds composed of a distribution of one-pixel "particles"
are perceptually integrated in the eye but result in fairly

77



Strong aliasig duriil n oCelit. Gausian clouds
remove the high spatial frequencics of particle clouds but
practically restrict the animation to mionochrome if a 8- or
9-bit picture (isplay is Used.

P2 - motion
13 template File (fletcher)
&OPT
cloud particle field clouds
gcloud Gaussian clouds
stick stick figure
scale (default size is 100 pixels)
range range in color matrix:

offset..offset± range-1
offset offset in color matrix: delLiult is 255
radius 'fatness' fraction: 1.0 generates a

normally proportioned figure; 1.5 is a fat
figure

track fname node speed

The track command replaces the Cutting 'walking
algorithm' data with data for a limb obtained with
ShigerIs Polhemus body tracking data. (fname> is the
file name of the tracking data. The extension .trackdata is
assumed. <node> is the node where the tracked motion is
attached. It replaces the walking data at that node & its
son. nodes 10,13 are left,right shoulders in the fletcher
template. (speed> is a floating speed; 1.0 =real time (as it
came from the Polhemus).

Because the stick figure moves differently than other
objects (e.g. it does not move at a constant velocity), it
should be scaled using the scale parameter rather than (as
is usually done) by scaling a motion.

billboard Calls polymap, to simulate placement of a 'billboard' in
space. This instrument was written by Michael Teitel. A
sample script line:

0 billboard motionid picname (options>;

options:

78



crop (xl yl x2 y2 x3 3 x4 v4)
Describes the boundaries of the
billboard in a pic file in Ramtek
coordinates (0,0 = top left;
639,439=bottom right). If entered in
clockwise order beginning with the top
left, the billboard will start oriented as
seen with loadpic

otherwise x] yl will be top left
x2 y2 top right
x3 y3 bot right
x4 y4 bot left

clear (percent) percent between 0 and 1
(0 =transparent; 1 -opaq ie, lower
than .2 seems useless).

fade (time start finish)

time =time2fade
start = start percent
finish= finish percent

z is the z
rotations.
the center

coordinate of the origin for
(billboards are origined at

of the picture in x and y)

79

zorg (z)



Appendix )

Functions for randomized movement

The control constrLcts provided in Lung (Chapter 4) can be extended by

defining new functions. The Lung (iicl (filenamine>) command will load Lisp

program fragmetsI s that they ma be d in acri:

(setq rtsbounds '(-1000 1000 0 0 0 2000))
(setq drtsbounds '(-30 30 0 0 -30 30))
(incl "randommoves")
;tell mary fletcher to stagger for 10 seconds
;(stagger name time dur srate:nsteps/sec

rtsbounds drtsbounds frac)
(stagger (gensym) 0.0 10.0 5 rtsbounds drtsbounds 0.2)
(dclR mary)
(mary stagger fletcher gcloud)
(end)

These sample functions illustrate the definition of a staggering motion and

motion in a random direction:

(defun stagger (name starttime dur nsteps-sec rtsrange drtsrange-sec frac)

(prog (time dt startpos dir speed)
(setq startpos (pickrts rtsrange))
(setq speed (?in (1$ (veclen drtsrange-sec) 2.0) (veclen drtsrange-sec)))
(setq dir (vecnormalize (pickrts drtsrange-sec)))
(setq dt (/$ 1.0 (float nsteps-sec)))
(setq speed (*$ speed dt)) ;assume drtsrange-sec in time 1.0

;now speed is per-sample magnitude
(cond ((flolessp dt SPERIOD) (error "toomany steps")))
(setq time starttime)
(make time 'move name dt 'rts (append '(0 0 0) startpos)

'drts (vec->drts (vecscale dir speed)))
a ;(gc)

(setq time (+ $ time dt))
(setq dir (vecdriftxz dir frac))

80



(make time ~move name di ~dris (vec->drts (vccscale dir speed)))
(cond ((11oIcssp ( + $ time dt) ( + $ starttime dur)) (go a)))

(sctq time (+ $ starttime dur))
(cond ((llolessp Maxtime time) (setq time Maxtime)))

)) ;stagger

(defun rndmove (rtsrange drtsrange-sec)
;generate a straight line motion in a random direction
:initial position is chosen within rtsrange
:speed is chosen within drtsrange-sec
(prog (name)

(setq name (gensym))
(setq Moves (cons name Moves))
(putprop name t 'Move)
(puitprop name (picrts rtsrange) 'Start)
(putprop name (picrts drtsrange-sec) 'Delta)

(return name)
)) ;rndmove

81



[Ahelson 81]
H. Abelson and A. diSessa.
Turile Geometry.
MIT Press, 1981.

[Badler 79a]
N. Iadler, J. O'Rourke, and H. Toltzis.
A spheroidal representation of a human body for visualizing

movemlent.
Proc. IEEE 67(10):1397-1403, October, 1979.

[Badler 79b]
N. Badler and S. Smoliar.
Digital representations of huian movement.
Computing Surveys 11(1), March, 1979.

[Badler 80]
N. Badler, J. O'Rourke, and B. Kaufman.
Special problems in human movement simulation.
Computer Graphics 14(3), 1980.

[Badler 84]
N. Badler.
What is required for effective human figure animation?
In Graphics Interface. 1984.

[Benade 76]
A. H. Benade.
Fundamentals of Musical Acoustics.
Oxford University Press, 1976.

[Benton 83]
S. Benton.
Photographic holography.
SPIE Journal 391, 1983.

[Boissonat 81]
J. D. Boissonnat and 0. D. Faugeras.
Triangulation of 3D objects.
In Proceedings of the 1981 International Joint Conference on Artificial

Intelligence, pages 658-660. 1981.

82



113olt 79]
R. Bolt.
Sp'ail Data- Aanagement.
Technical Report, M IT Architecture Machine Group, March, 1979.
DARPA Report

[Bolt 80]
R. Bolt.
"PuLit-That-There": voice and gesture at the graphics interface.
Computer Graphics, August, 1980.

[Bolt 81]
R. Bolt.
P'roposal for ihc development of a Graphical A larionette.
Technical Report, M IT Architecture Machine Group, 1981.

[Brennan 82]
S. Brennan.
Caricature Generator.
Master's thesis, MIT, August, 1982.

[Calvert 82]
T. W. Calvert, J. Chapman, and A. Patla.
Aspects of the kinematic simulation of human movement.
IEE E Computer Graphics and Applications 2(3), November, 1982.

[Chamberlin 80]
H. Chamberlin.
Musical Applications of Microprocessors.
Hayden, 1980.

[Christianson 76]
H. Christianson and T. W. Sederberg.
Conversion of complex contour line definitions into polygonal

element mosaics.
Computer Graphics 13(2):187-192, August, 1976.

[Cutting 78]
J. E. Cutting.
A program to generate synthetic walkers as dynamic point-light

displays.
Behavior Research Methods and Instrumentation 10(1):91-94, 1978.

83



[)oolc 82]
1. )ooley.

Anthropoictric modelling programs -- a suIvey.
/EEE Computcr graphics and applications 2(3), November, 1982.

[Ekman 73]
P. kman.
Universal facial expressions in emotion.
Studia Psychologica 25(2):140-146, 1973.

[Ekman 75]
P.Ekman.
Facial Affect Scoring Technique (fast): A First Validity Study.
Semiotica, 1975.

[Fetter 82]
W. Fetter.
A progression of human figures simulated by computer graphics.
IEE E Computer Graphics and Applications 2(3), November, 1982.

[Foley 82]
J. D. Foley and A. Van Dam.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley, 1982.

[Fuchs 77]
H. Fuchs.
Optimal surface reconstruction from planar contours.
Communications of the CACM 20(10), October, 1977.

[Ganapathy 82]
S. Ganapathy and T. G. Dennehy.
A new general triangulation method for planar contours.
Computer Graphics (Siggraph 1982) 16(3):69-7 5, 1982.

[Ginsberg 83]
C. Ginsberg.
Human body motion as input to an animated graphical display.
Master's thesis, MIT, May, 1983.

84



[GOuraud 71]
H. GOu raid.
COnltinuOLIS shading of curv;ed surfaces.
ILL TIransaction7s on Computers 20(6):623-628, Juiie, 1971.

[Hatze 81]
H. Hatze.
A vochybern elic Con trol A odels of Sk eletal Aluscle.
University of South A frica Press, 1981.

[Herbison-Evans 78]
1). H erbison-Evans.
NUDES 2: A numeric utility for displaying ellipsoid solids.
Computer Graphics 12(3):354-356, August, 1978.

[H iller 71]
L. Hiller and P. Ruiz.
Synthesizing musical sounds by solving the wave equation for

vibrating objects.
Journal of the Audio Engineering Society 19(7), July/August, 1971.

[Hutchinson 60]
A. Hutchinson.
Labanotation.
Theater Arts Books, 1960.

[Kay 77]
A. Kay and A. Goldberg.
Personal dynamic media.
Computer, March, 1977.

[Keppel 75]
E. Keppel.
Approximating complex surfaces by triangulation of contour lines.
IBM Journal of Research and Development 21:2-11, January, 1975.

[Kernighan 76]
B. W. Kernighan and P. J. Plauger.
Software Tools.
Addison-Wesley, 1976.

85



[K eN board 84]
kc ihoard sta ff.
The power and glory oflead synthesizer.
Kcyboard 10(3), February, 1984.

[Kingsley 81]
E. C. Kingsley, N. Schofield, and K. Case.
SAM MI E-a computer aid for man-machine modelling.
Computer Graphics 15(3):163-169, A ugust, 1981.

[Lewis 82]
J. Lewis.
Computer simulation of human line drawing.
Unpublished paper

[Lewis 84]
J. Lewis and P. Purcell.
Soft Machine: a personable interface.
In Graphics Interface. 1984.

[Mathews 69]
M. V. Mathews.
The technology of computer music.
M IT Press, 1969.

[Maxwell 82]
D. MaxewlI.
Caricature Generator.
Master's thesis, MIT, August, 1982.

[Menowsky 82]
J. Menowsky.
Video graphics and grand jetes: choreography by computer.
Science 82 3(4), May, 1982.

[Negroponte 79]
N. Negroponte.
Talking heads--display techniquesfor persona.
Technical Report, MIT Architecture Machine Group, 1979.
Unpublished paper.

86



[Negr)ponte 80]
N. Negrop)onte, A. I ippIian, and R.. Bolt.
TranSmhiSSion1 of preSeICC.

Technical Report, MIT Architecture Machine Group, 1980.
Proposal to the Cybernetics Technology Office, DAR PA

[Negroponte 81]
N. Negroponte.
Media Room.
In Societiyfor Information Display', Proceedings, Volume 22. 1981.

[Nisselson 83]
J. Nisselson.
Model Kit.
Master's thesis, M IT, June, 1983.

[Nitchie 79]
E. Nitchie.
H ow to Read Lips for Fun and Profit.
Hawthorne, 1979.

[O'Rourke 80a]
J. O'Rourke.
Image Analysis of Human Motion.
PhD thesis, University of Pennsylvania, 1980.

[O'Rourke 80b]
J. O'Rourke and N. Badler.
Model-based image analysis of human motion using constraint

propagation.
IEEE Trans. PAMI 2(6):522-536, November, 1980.

[O'Rourke 81]
J. O'Rourke.
Triangulation of minimal area as 3D object models.
In Proceedings of the 1981 International Joint Conference on Artificial

Intelligence, pages 664-666. 1981.

[Oppenheimm 75]
A. Oppenheim and R. Schafer.
Digital Signal Processing.
Prentice-Hall, 1975.

87



[Parke 72]
F. Parke.
Con puter generated animation of faces.
In Proceedings of the ACAI Annual Conference, VolIie 1. 1972.

[Parke 82]
F. Parke.
Parameterized models for facial animation.
IEE Computer Graphics and Applications 2(3), November, 1982.

[Pearson 76]
K. Pearson.
The control of walking.
Scientific American 235(6), December, 1976.

[Pierrynowski 82]
M. Pierrynowski.
A Physiological Afodel for the Solution of Individual Muscle Forces

during Normal Locomotion.
PhD thesis, Simon Fraser University, 1982.

[Platt 81]
S. M. Platt and N. 1. Badler.
Animating Facial Expressions.
Computer Graphics (Siggraph 1981) 15(3), August, 1981.

[Rabiner 78]
L. Rabiner and R. Schafer.
Digital Processing of Speech Signals.
Prentice-Hall, 1978.

[Rashid 80]
R. Rashid.
Lights: A system for the interpretation of moving light diplays.
PhD thesis, University of Rochester, 1980.

[Reynolds 82]
C. W. Reynolds.
Computer animation with scripts and actors.
Computer Graphics 16(3):289-296, 1982.

88



[Rongo 82]
R. Rongo.
Robotic Vision Sisens, Inc. Data-Base lsers' anual..
Robotic Vision Systems (formerly Solid Photography), 1982.

[Saaty 81]
T. L. Saaty.
Modern Nonlinear Equations.
Dover, 1981.

[Schindler 84]
K. Schindler.
Dyniamic timbre control for real-time digital synthesis.
Computer Alusic Iournal:46-50, Spring, 1984.

[Schottstaedt 77]
B. Schottstaedt.
The simulation of natural instrument tones using frequency

modulation with a complex modulating wave.
Computer Music .ournal :46-50, November, 1977.

[Schwartz 84]
R. Schwartz, Y. Chow, S. Roucos, M. Krasner, and J. Makhoul.
Improved hidden Markov modelling of phonemes for continuous

speech recognition.
In International Conference on Acoustics, Speech, and Signal

Processing. IEEE, 1984.

[Shannon 49]
C. Shannon.
Communication in the presence of noise.
Proc. Inst. Radio Eng. 37(1):10-21, January, 1949.

[Stearns 75]
S. D. Stearns.
Digital Signal Analysis.
Hayden, 1975.

[Stumpf 90]
C. Stumpf.
Tonpsychologie.
S. Hirzel, 1890.

89



[Suzuki 84]
Shigcru Suzuki.
Bodi' irack ing by spatial digitization.
Technical Report, M IT Architecture Machine Group, 1984.

[Weil 82]
P. Weil.
About Face.
Master's thesis, MIT, August, 1982.

[Weizenbaum 64]
J. Weizenbaum.
ELIZA--A computer program for the study of natural language

communication between man and machine.
Communications of i/ic ACA/ 9(1), 1964.

[Zeltzer 82a]
D. Zeltzer.
Representation of complex animated figures.
I n Graphics Interface. 1982.

[Zeltzer 82b]
D. Zeltzer.
Motion planning task manager for a skeleton animation system.
Technical Report, Siggraph Tutorial, 1982.

90


