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by
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Abstract

Viable articulated computer-graphic representations of the human figure
have recently been developed by O'Rourke, Zeltzer, and others. In this work, a
figure implemented by Maxwell provides the starting point for the development
of tools for controlling the movement and action of figures in a simulated three-
dimensional environment,

The figure's representational quality is improved for the purpose of
animation, and its capabilities are extended to allow multiple figures to follow
arbitrary paths, with posture and movement determined by any combination of
key-frames, body-tracking, and algorithmic movement description. Objects in
the figure's visual environment are designed using a program for computer
graphic sculpture. A sophisticated computer sound synthesis system was
implemented and provided the basis for a script-driven multiprocess approach to
specifying the interactions of multiple figures in a changing environment.

The resulting system, incorporating figures in an animated visual
environment with coordinated sound, may be considered as a vehicle for
realizing "electronic cinema”. While the animation scripts essentially define a
specialized non-procedural programming language, knowledge of a general
(procedural) computer language is not required, and figure animations have
been realized by artists and filmmakers having no previous background in three-
dimensional computer graphics.

Thesis Supervisor: Patrick Purcell
Title: Visiting Associate Professor of Computer Graphics

The work reported herein was supported by the NHK Broadcasting Corporation
of Japan
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Introduction

"Computer graphics has not yet delivered fully convincing
animations of the human figure." --Norman Badler [Badler 84].

1 Computer Graphic Models of the Human Figure

The computer modcelling of the human figure has been undertaken for a
varicty of purposes, including movement analysis (kincsiology),
biomechanics, figure animation, the development of movement notations,
and ergonomic research. While the visual representation and movement

capabilities of these models varies considerably with their purpose,

1.1 Bocing Man and SAMMIE
Early computer graphic body models such as the Bocing Man and SAMMIE

were developed for ergonomic evaluations [Fetter 82, Kingsley 81]. These
models emphasized correct proportions and volumes, and usually
incorporated the anatomical limitations of movement in the form of joint
angle and self-intersection constraints. The figure was positioned by
specifying the rotation angles at each joint, and movements were generated
using the specified postures as key frames. The figures were visually
represented by wireframes delimiting the body volumes. The Boeing Man
(Figure 1) has been used in applications such as aircraft cockpit design and

crash simulations.



Figure 1:The Boeing Man as pilot

1.2 Bubble Man
O'Rourke and Badler developed the versatile Bubble Man as the primary

fizure model for the human modelling project at the University of
Pennsylvania [Badler 79a, Badler 80]. The Bubble Man's body is represented
by spheres of varying radii arranged on a skeletal stick figure. This

representation partially conveys the volume and contours of the figure.

The use of the sphere as the modelling primitive has the advantages that
body self-intersection tests are reduced to a sequence of sphere intersection
tests, and that the perspective projection of a sphere from any viewpoint may
usefully be considered to be a circle (in fact, the linear perspective of a sphere
oblique to the view direction is an oval-- Raphael noted and corrected this
‘anomaly’ in portraying the spherical column heads in the School of Athens).
The sphere is also simple to render and the Bubble Man has lent itself to
portrayal of cast shadows and real-time animation [Badler 79a], and

microcomputer implementation [Calvert 82].



The stuck figure which provides the “skeleton™ of the Bubble Man s
implemented with what might be termed an articulation tree. "This is a simple
tree data structure whose nodces are 4x4 transformation matrices. Each node
corresponds roughly to a joint and its distal limb segment (if any). The
transformation matrix at each node specifies the rotation of the distal limb
segment relative to the proximal limb segment, and the length of the distal
limb. The limb segments in this description are those of the stick figure
rather than the human body, so the hips (for example) are considered
"limbs" (Figure 2). The position of any joint is determined by walking the
tree while concatenating the translation matrices at each node, and
concatenating the resulting matrix with the world (position and orientation)
matrix. [Badler 79a, O'Rourke 80a] present a detailed description and Pascal

code for the tree-walking procedure.

\

Figure 2:A line drawing version of the Bubble Man,
showing the stick figure "skeleton”



The articulation tree has several advantages.

- Limbs arce treated as units rather than as scparate entitics, since
changing the rotation angles at a proximal node will rotate the fimb
consisting of the sons of that node in the tree.

- The articulation tree is reminiscent of polar coordinates in its
separation of (limb) length and (joint) angle.  The posture and
movement of the stick figure are specified in terms of joint angles, so
a particular posture or movement, once designed, can be applied to
stick figures of different proportions (this would not be true of a
figure having joint locations specified as cartesian coordinates).

- The consistent tree structure simplifies implementation.

1.3 The AMG Cloud Figure

The goal of the graphical marionette project at the MIT Architecture
Machine Group is an "electronic puppet” figure which can be manipulated
with a body tracker in real time [Bolt 81}. A version of the Bubble Man was
implemented at the Architecture Machine Group by Maxwell [Maxwell 82}
and provided the starting point for the graphical marionette project and the
work described in this thesis. The spheroidal modelling of the the body
contours is simplified to an ellipsoid describing each limb segment, and the

self-intersection tests were removed.

The cloud figure representation of this implementation is a major innovation
with respect to the Bubble Man and an earlier ellipsoidal figure
[Herbison-Evans 78]. The ellipsoids are rendered as translucent volumes
("clouds") rather than as surfaces. This perceptually vague representation is
appropriate to the anatomical simplicity of the body model (this point is
discussed further in chapter two). A translucent representation also

eliminates the need for hidden surface removal.



While it is casy to determine whether a point in three- or two-dimensional
space lies within an cllipsoid or its perspective projection, it is more difficult
to provide a raster-scan algorithm for rendering the projection of the
ellipsoid. Maxwell's particle system cllipsoids are somewhat of a Monte Carlo
approach to this problem. A statistical sampling of points within the cllipsoid
arc projected to form the percept of a translucent cloud. The particle system
cloud is casy to implement, and the apparent volume density within the
cloud (and consequently its shape) can be controlled as a function of particle

position within the local (limb) coordinate system.

This algorithm has several drawbacks for animation, however. The apparent
density of the figure is reduces as the figure approaches the viewer, and
(conversely) the figure becomes solid as it recedes. The cloud particles are
very susceptible to aliasing, so the figure acquires a ‘'sandpaper’ texture when
it moves. The individual projection (and anti-aliasing) of the particles is
quite time consuming. In view of these difficulties, an image-space (raster-
scan) Gaussian elipsoid algorithm was implemented to represent the figure
for the purposc of animation (see the description of the figure program in

Appendix C).

1.4 Zeltzer’s Skeleton

While the cloud figure is perceptually and aesthetically satisfying (and
probably more so than any of the other existing figure models), viewers have
a strong appetite for additional detail and realism. Fetter (one of the
| originators of Boeing Man) has recently developed a polygonal model of the
body [Fetter 82]. A successful articulated solid body model has not yet
appeared, however, and probably will not be forthcoming in the near future.
The existing computer graphic solid modelling techniques cannot describe a

non-rigid, deforming surface such as the human body in motion.
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Zclizer and other workers at the Computer Graphics Rescarch Group at
Ohio State have taken a different approach to the problem of visually
representing the figure.  They chose the human skeleton as a figure
representation which may be approached in detail with current solid
modeclling techniques.  Zeltizer has also improved the articulation tree
implementation by distinguishing between supported and supporting limbs
[Zeltzer 82a). When the joint angles of a supporting limb are changed, the
rest of the body should move with respect to the limb, rather than the limb

moving.

2 The Specification of Articulated Motion

A variety of approaches to specifying the motion of the figure have been
tried. A flexible figure model, once implemented, may be directed by any of

these methods, or a combination of them:

- Dynamic movement simulation is perhaps the "deepest” approach, in

- which the movement is generated starting with a simulation of the
force of the muscle and the mass which it moves [Pierrynowski
82, Hatze 81].

- Key frame interpolation generates a movement by interpolating
between two predefined postures. A difficulty with this approach (as
with any approach which is not physically motivated) is that there is
more than one way of moving from one posture to another, even
after anatomical constraints are considered. - An interpolated
movement may be anatomically possible but nevertheless appear
unnatural.

- Analytical movement description mathematically characterizes a
known movement. This is a "shallow" description which does not
incorporate anatomical or physical considerations.  Cutting's
‘walking algorithm’ describes the motion of fifieen key points on a
walking figure as a vector-valued oscillation (line-to-space function)
[Cutting 78]. '

10



- Movement notation is a traditional pictogram method of recording
movement.  Movement simulation  systems  for - Labanotation
[Hutchinson 60] have been developed by several rescarchers
[Calvert 82, Badler 79b]. The interpreter for a movement notation
language must identify patterns of motion primitives and invoke the
corresponding movement macro.  The movement macro is a
predefined movement specification determined by any of the means
described here. The movement notation language is sufficiently
detailed that it is possible to construct an event-directed movement
specification directly on this basis.  An example of this type of
specification would be (as part of a "'walk™ macro): "Rotate both legs
backwards at the hips. When the rearmost leg leaves the ground,
bend its knee and swing that leg forward at twice the speed of the
backward rotation..."  This approach does not incorporate the
physical constraints of movement (cither via modelling or indirectly
by digitization) and consequently it runs the risk of appcaring stilted.
Zeltzer has demonstrated a convincing walking motion using this
approach, however [Zeltzer 82b).

- Body tracking digitizes real figure movement, rather than analyzing
or (re)constructing it. A model’s body is equipped with lights or
other easily-detected devices situated at key points on the body, and
a tracking computer calculates the motion of these points in three-
dimensional space in real time. In one approach the points are
determined by stereoscopic triangulation from a pair of digitizing
devices. [Ginsberg 83] describes the development of a prototype
system of this type for the Architecture Machine figure modelling
project. Another approach is electrogoniometry, or direct
measurement of joint angles. Electrogoniometry is more intrusive
than stereoscopic triangulation, but it has been used successfully at
the Simon Fraser University to produce a improvisation sequence
from the Nutcracker ballet.

- Image analysis is an alternative to body tracking. The movement is
first captured on film, perhaps stereoscopically, and later analyzed
frame-by-frame to deduce the three-dimensional location of key

_ points. These points are usually highlighted on the figure’s costume.
O'Rourke and others have applied pattern recognition techniques to
this task [O'Rourke 80a); Fetter obtained running and high-jump
motions by manually rotoscoping several of Muybridge's classic
movement studics [Fetter 82].

11



3 The Figure's Environment

While the specialized applications and extensive development time of a
human figure model usually result in a model of a lone figure moving in a
void, the current work is distinguished in its attempt to control the action and

interaction of multiple figures in an environment.

Our work started with the flexible but isolated figure model implemented by
Maxwell. The model was developed to allow the integration of several types
of motion control (body tracking, algorithmic movement description, and
key-framing), and the figure was placed in three-dimensional computer
graphic environment where it can interact with other figures and with objects
in the environment. The figure’s actions and the behavior of objects in its

environment are specified in a script.

Chapter one describes the development of a computer graphic sculpture
program. This program provides a fairly flexible means of realizing non-

articulated objects for the figure's environment.

Chapter two introduces a new use of the computer graphic person model.
Facial animation, movement simulation, and natural language techniques are

united to create an interlocutory metaphor for man-computer interaction.

Chapter three describes a computer sound synthesis system. This system
provided the inspiration and basis for the work in chapter four, and it also
may be used to produce a sophisticated, movement-synchronized sound

environment for the figure.

Chapter four describes a facility for scripting the actions of figures in a

virtual three-dimensional environment.



The final chapter describes how these tools have been used in the figure

modeclling project at the Architecture Machine.
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Chapter One

A Face for the Graphical Marionette

Providing the graphical marionette figure with a face is a priority. The
importance of the face is intuitively evident, and empirically underscored by
the existence of an area of the brain which, when damaged, hinders or
prevents the holistic identificaton of upright faces. The computer-graphic
representation of human faces is a difficult and essentially unsolved problem,
however.  While the effort to develope a face for the graphical marionette
figure was discontinued because it was not practical within the timescale of
this thesis, some of the tools developed in this work were later used in the
modeclling of the figure’s environment. The development of these tools will
be described initially in the context of their original purpose of facial

modelling.

1.1 Three-dimensional Computer Modelling of the Face

A face model for the graphical marionette figure must display different
(perspective) aspects of the face as the figure moves in its projected three-
dimensional environment. In addition, it is very desirable that the face be
- able to show emotion or simulated speech. The first of these requirements
implies a three-dimensional model of the head; an alternative two-
dimensional approach will be described later in this chapter. The facial
display of emotion and speech indicate a dynamic model of the face.
Together, these requirements mean that previous research which approaches
the face as a static or two-dimensional problem may not be immediately

applicable to a face model for the graphical marionette.
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The three-dimensional modelling of the face is nearly synonymous with the
work ol Fred Parke. In the carly 1970s Parke developed a polygonal model
of the face, with provision for animation of expressions and speech [Parke
72).  Parke also developed a stereoscopic method of digitizing a face to
determine the vertices of the polygonal model. Each face was digitized in a
number of positions which served as key frames for the animation of facial
gestures. The face was animated by lincar interpolation of the polygonal

vertices between frames.

Although Parke’s faces resemble the individuals whose faces were digitized,
the computer rendered faces are perceived rather as masks or robot heads,

and appear disturbingly mechanical (Figure 1-1).

Figure 1-1:Parke’s polygonal face

From a technical viewpoint, existing rendering techniques are suited for
representing objects having analytically defined, hard surfaces. The current

rendering techniques are correspondingly inadequate for representing soft,

15



irregular, or textured surfaces of natural objects including the human face.
Hair is an example of an “object” which is impossible to render using methods

which attempt to represent the object ‘surface’.

The surface orientation of current techniques also leads to difficulties when
the face is animated. Lincar interpolation of the facial surface gencrally
causes the it to pass through unrealistic poses. Platt and Badler recognized |
this difficulty and approached the facial modclling problem by considering
the skin to be an clastic surface moved by the underlying facial muscles;

unfortunately this work has not been pursued [Platt 81].

1.2 Gestalt

The mechanical appearance of Parke's faces is best considered as a

perceptual problem, however. Compare Figure 1-1 to Figure 1-2.

~ >
~
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Figure 1-2:Sketch of a face similar to Figure 1-1

The sketch in Figure 1-2 is incomplete with respect to Figure 1-1 (the
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contour lines of Figure 1-1 describe the surface contours of the face, while
the hines in Figure 1-2 merely delimit the facial surfaces), yet it is

perceptually complete, and more satisfying than Figure 1-1.

The perceptual closure of the sketch is an illustration of gestalt, and the face
1s a particularly good subject for this illustration. The computer-rendered
face exhibits what might be called a “counter-gestalt’:  the additional surface
information provided in Figure 1-1 is not inaccurate, but its precision and
detail incorrectly asserts that this face is exactly as we see it, when in fact this
figure 1s also incomplete. This is a case where the additional information
docs not help the representation of the face. Figure 1-2 is successful because
its "sketchiness” implies that it is not a complete specification of its

prototype. Parke describes this phenomenon in his own work [Parke 82]:

The closcr the images gct to reality, the more critical the viewer
becomes...if the image is clearly supposed to be realistic, the viewer
is very sensitive to any flaws.

A similar ‘vagueness principle’ is responsible for the success of the
Architecture Machine’s Identidisk [Weil 82]. In this project, the goal is to
construct a representation of a remembered or imagined face. Photographs
of faces from a ’face library’ stored on videodisk are mentally compared with
the imagined face. Those faces which were judged to be in some way similar
to the desired face are digitized and averaged in the computer to provide a
composite face. The photographs in the face library register a normalized

facial position to facilitate the averaging.

The Identidisk is thus similar in purpose and effect to the Identikit. The
Identikit provides a collection of facial features which are selected and
positioned to construct a representation of a remembered face. The firm

outlines of the Identikit features imply certainty in the reconstruction. The

17



compostte fuce generated with the Identidisk, however, is fuzzy as a result of
the compositing  procedure  (intensity  averaging), and it consequently
operates as an open-ended sketdii, informing the viewer that what is seen

should not be taken literally.

1.3 Computer-generated Sketch of the Face

Since the development of a realistic face modcl is certainly beyond the
timescale of this thesis, it was decided to use a representation which was
intentionally vague. The representation would take the form of a sketch
similar 1o Figtli'c 1-2. This representation avoids the "mechanical certainty”
of the polygonal rendering, and it also introduces acsthetic possibilities.
Maxwell's "cloud figure" version of the graphical marionette figure is also
perceptually vague and in this respect it makes a subtle but important

improvement over previous body models [Maxwell 82].

A line drawing is not so vague as to inhibit identification of expressions or
character, however. Brennan has explored (among other things) computer-
assisted means of portraiture and caricature in the line drawing [Brennan 82].
Our approach to computer-generated sketches is a continuation of Brennan’s

work using an underlying three-dimensional model.

In the pen-and-ink style of drawing used in Figure 1-2, an object is
represented by delineating its projected surface outlines as well as the
outlines of the perspective projection of important surface features or
colorations. The surface outline is fundamental to this representation, and
this term will be defined for the purpose of computer implementation as the
projection of those points on the object whose tangent is parallel to the local
projection ray (a vector from any position to the observer's eye or the center
of projection) (Figure 1-3).
18
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Figure 1-3:Perspective projection of an object:
surface outlines are the projection on the picture plane pp of points
on the object which are tangent to the projection ray from the
object point to the view point vp.

The sketch is generated from a three-dimensional surface description of the
face and head, such as the polygonal representation of Figure 1-1. The three-
dimensional surface description is rotated and translated to provide the
desired aspect before the sketch is generated. Surface outlines are found by
‘crawling’ around the surface and collecting points at which the surface is

tangent to the projection.

The three-dimensional surface description is composed of vertices, with
planar triangular facets implied between the vertices. The points in this
surface description which are tangent to a projection ray are the vertices in

common to particular pairs of adjacent facets. The criterion for these facet

19



pairs 15 that the forward-most facet faces forward with respect o the
projection ray. while the rearward facet faces backwards.  The facing
direction of a facet 1s determined by the sign of the angle between the surface
normal of that faccet and the projection ray from any point on that facet
(conveniently, one of its three vertices) to the center of projection. This angle
may be obtained as the dot product of the surface normal with the projection

ray.

The resulting collection of (projected) vertices is arranged in a coherent order
and the sketch s obtained by conncecting the vertices (Figure 1-4). A number
of heuristics were required to implement the tangent determination and

subsequent ordering of the projected vertices into outlines.

Figure 1-4:Surface outlines identified with the
‘tangent-finding crawler’ and heuristics.

20



A procedure for automatically identifying and drawing the surface outlines of
objects was implemented (as described above), but this work was abandoned
before o complete system  for computer-gencrated  sketches could be
developed. 1t was intended to gencrate surface features and facial
expressions for the computer-generated sketches of the face by texture-
mapping one-bit line drawings of the desired features onto the three-
dimensional surface representation, and projecting  these to  obtain

perspective versions of the features.

The features and expressions were 1o be developed as drawings (or sequences
of drawings) input using a digitizing tablet. Ekman’s work provides a pan-
cultural taxonomy of facial expressions as well as an underlying "emotion
space” which could be used to guide the evolution of facial expressions
[Ekman 73, Ekman 75]. The mapping of mouth positions for portraying
speech would draw upon the ’lip sync” work at the Architecture Machine

Group at MIT [Negroponte 80].

It was also intended that the perceptual vagueness and aesthetic quality of
the sketch be emphasized by post-processing the sketch with a computer
simulation of human line drawing [Lewis 82], Figure 1-4. This simulation
describes the motion of a hand-held pen tracing a path towards a target
point, given prescribed initial conditions. The motion is modelled as a

feedback system with memory (momentum).

1.4 Surface Reconstruction from Planar Contours

The remainder of this chapter will describe how the three-dimensional
surface description of the face was obtained. The modelling tools developed
for this purpose are now used to construct objects to populate the graphical
marionette figure's environment.

21



O TECTLEE WO NS
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RECHT TECTURE MACHINE
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Figure 1-5:CALCOMP plotter text processed with a line drawing simulator.
A “scribble’ parameter was incremented to obtain this progression.

The computer modelling of an object such as the face requires techniques
different than the analytical tools which are responsible for the spheres,
planes, and polyhedra which characterize computer graphics. While it is
straightforward to write a program to draw a sphere, the task writing a
program to draw a portrait of President Nixon (for example) is nonsensical.
A computer model of a face can realistically be obtained by measuring a face
and digitizing these measurements. A face is not a particularly easy thing to

measure, however.

Parke’s stereoscopic method is one successful approach to this problem. In
our case, the availability of data describing a head suggested another
approach. A company called Robotic Vision Systems uses a automated
method to digitize a solid object. A sculpture of the object is then machined
[Rongo 82]. A byproduct of this 'solid photograph’ is a detailed, digital
description of the object surface. The data describing a bust of Professor

Nicholas Negroponte of MIT was obtained (Figure 1-6).
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Figure 1-6:Data for a three-dimensional bust of Professor Nicholas Negroponte,
from Robotic Vision Systems’ solid photography system.

The data takes the form of the coordinates of points located on more than
300 horizontal cross-sections of the head, comprising more than 1,000,000
points in total (the terms section, contour, and slice will be used
synonymously hereafter). This amount of data was judged to be impractical
in terms of both memory and processing time, so a few thousand points were

obtained by roughly sampling the original data.
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The points are then connected w0 form facets defining a surface which
approximates the original head. Since there is more than one surface which
spans a given sct of 3D points (Figure 1-6), this is a heavy computer science
problem. Indeced. it has been postulated that the problem of finding the
optimal polyhedral approximation of the object described by a set of 3D
points is NP-hard [O'Rourke 81].

Figure 1-7:The 'tiling problem’: a set of points obtained by
digitizing sections of a three-dimensional object may be
spanned by many different surfaces, some of which approximate
the original object

The problem has the following constraints: a point on a particular slice may
only be connected to the adjacent points on that slice and to points on the
two adjacent slices, i.e., facets are formed between pairs of adjacent slices.
Planar facets are desired for convenience in the subsequent (polyhedral)
rendering process. Triangular facets are desired since a group of fqur or
more points distributed on two adjacent slices will rarely be contained in a

plane.
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Additional constraints which define an acceptable (non-sclf=intersecting)
surface are:

- Each contour segmeni (a segment joining two adjacent points from a
particular slice) will appear in exactly one facet. The number of
facets spanning a pair of adjacent slices will therefore be m+n, (the
number of points on the two slices).

- If a span (conncction of two points) is the left (right) edge of some
facet, it will appear as the right (left) edge of exactly onc other facet.

With these constraints, the number of acceptable surfaces spanning a pair of

adjacent slices having m,n points is
Alm,n] = [(m-1) + (n-D]' /7 [(m-1)! (n-1)!]

A criterion for picking one of these surfaces is desired. Keppel formulated
this “tiling problem” as an equivalent graph theory problem, in which the set
of all acceptable surfaces for the pair of slices defined by points
{ PO’Pl’""Pn-l}’ {QO,Q 1""’Qn-1} are represented by a directed graph G[V,Al.
The set of vertices V corresponds to the set of all possible spans between the
upper contour and the lower contour. The set of arcs A corresponds to the
sct of possible facets. An arc is defined as incident from the vertex which
represents the left span of the facet to the vertex which represents the right
span of the facet. The path of an acceptable surface will have m+n

connected arcs (modulo the size of the graph) on a graph of size m,n arcs.

A weight p assigned to cach arc. The oprimal tiling is selected from the set of
possible tilings using the global weighting function
_ sm+n
P=2270
A non-optimal tiling can proceed incrementally by choosing the arc leading
from each vertex in sequence as a function of a subset of the undetermined

and previously determined arcs. A non-optimal tiling which considers only
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the weights attached to the two ares leading from the current vertex runs in

lincar O(m+n) time.

The graph-theoretic formulation of the tiling problem is standard, and many
solution algorithms and weighting criteria have been proposed [Ganapathy
82, Boissonat 81, O'Rourke 81, Fuchs 77, Keppel 75, Christianson 76].  The
global “brute-force’ minimization of surface arca (suggested by Keppel) was
adopted and implemented. This method requires approximately an hour of
CPU time on a 32-bit minicomputer 10 reconstruct objects such as those in
Figure 1-9, containing several thousand faccts. Dunbar Birnie implemented
several other criteria and solution algorithms. The (local) minimum-cdge
distance criterion works well and does not require notable amounts of CPU

time for the objects which werc developed in this work (Figure 1-8).

1.5 Potatoslice: A Program for Computer Graphic Sculpture

The slice reconstruction modelling method and has applications beyond face
and head modelling and it is commonly used in medical imaging [Ganapathy
82]. In general, it allows one to design a variety of lumpy, semi-concave

objects which do not lend themselves to analytical description.

Once a (polygonal facet) surface has been reconstructed from the slices, it
may be rendered using standard methods such as those described in [Foley

82]. Several reconstructed heads are shown in Figure 1-9.

The PotatoSlice program (Appendix A) incorporates several tiling methods
with a rendering program. This system may be approached as a tool for
sculpture, and artists using it have become skilled at designing fanciful and

realistic objects by conceiving the object cross sections. The Cambridge
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Figure 1-8:Comparison of three criteria for the
tiling problem: left, local minimum distance; center, global minimum area;
right, local maximum distance (!). Figure by Dunbar Birnie.

sculptor Ralph Helmick uses a physically analogous approach; his large-scale
sculptures are produced by laminating plywood slices. The use of this
modelling tool to configure the graphical marionette figure’s environment

will be described in chapter five.

1.6 In Retrospect

While the approach described in this chapter may result in a flexible and
perceptually satisfying model of the face, it is far from practical within the
time scale of a short Master’s thesis. In retrospect, several simplifications
may be identified. The surface edge-detection procedure would be easier to

implement (though computationally less efficient) by band-pass filtering the
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IFFigure 1-9:Two heads created using the slice reconstruction
method described in this chapter. The head on the right was
generated using the data displayed in Figure 1-6, while
data for the Easter Island head was estimated by the author.

projected, shaded 3D image obtained from standard rendering techniques
(Figure 1-9, 1-10).

The requirement that the face be viewable from different directions suggests
but does not necessitate a three-dimensional face model. As. an
approximation, a planar representation of the face could be texture mapped
(front projected) onto an ellipsoid 'head’. This technique has been used at

the Computer Graphics Lab at the New York Institute of Technology.

A ‘“graphical robot’ which incorporates a real-time two-dimensional facial

animation technique will be described in the next chapter.
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Figure 1-10:A high-pass filter applied to Figure 1-9 emphasizes
surface outlines and detail. A band-pass filter (Figure 1-10)
produces bolder contours and eliminates less-important surface detail.
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Chapter Two

Conversations with a Graphical Robot

The graphical robot is an alternative to the graphical marionette, in which the
figure is given autonomy and interaction takes the form of purposeful
conversation rather than real-time puppetry. In the system described here,
purposc and autonomy derive from the robot's role as the interface to
conventional (command language driven) programs. A varicty of existing

tools are combined to create a true conversational interface.

The success of this work is in part indicated by the fact that many observers
of the system were initially skeptical of the computer’s performance. The key
to this success does not reside in improved speech hardware but in software
tools which provide a convenient and consistent means of tracking and
responding to conversational context. This work was judged to be
inappropriate, however, and it was succeeded by the more traditional

animation approach described in chapter four.
The following description is taken from [Lewis 84).
ABSTRACT

The man-computer interface has evolved from the teletypewriter to
workstations which accomplish a spatial metaphor for data management. In
the experimental system described here, speech and graphics techniques are
used to produce an interface in the form of a metaphorical person.

Interaction takes the form of an unconstrained spoken conversation with a
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"graphical robot™ whose animated likeness is displayed on a high-resolution
computer graphics display. This system is proposed as a prototype of "casual
interface” for machines which we do not usc often enough to justify learning
a command syntax.  The realization of such systems assumes the
development of limited-vocabulary speaker-independent continuous speech
recognizers.  The system architecture, performance, and assumptions are

discussed.
Introduction

The extent to which metaphors of existing systems have influenced
computing is suprising but undeniable. The computer interface modelled on
the teletypewriter restricted the interface to a single active line of characters,
resulting in line cditors, line-oriented languages, and 'linear’ (one event at a

time) command languages.

Graphic display terminals generalize the potential "interface space” from the
line of characters to a planar visual space. Pioneering work at the Xerox Palo
Alto Research Center used high resolution bit-mapped displays to create a
spatial metaphor in which concurre’ht processes are secn as spatially separate
objects located on a "desktop" display [Kay 77). The Spatial Data
Management System explored navigation through a “dataland” where the
data could consist of color images, movies, and sounds, as well as iconic

(quality font) representations of alphanumeric data [Bolt 79].

Beyond the developments provoked by spatial metaphors, other uses of
graphic displays are slower in evolving. One can speculate, for example, that
color, depth representation, and iconography may better represent aspects of
program structure and function such as scope, binding, and concurrent

process execution.
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In this work the power of the metaphor is explicitly acknowledged and a new
metaphor is created. The title of this paper derives from the use of the word
"soft" to describe computer interfaces whose design considers the computer
user.  Certainly the softest interface is another person--a programmer who

can be instructed to accomplish the desired task.

Soft machine demonstrates an interface to several conventional computer
programs (data-base query, clectronic mail) which resembles interaction with
a person.  The interaction is in the form of an unconstrained spoken
conversation with an clectronic conversational partner (alter ego). The alter
ego is an animated person-likeness which "speaks” with a high-quality
speech synthesizer and "listens™ with a continuous speech recognizer (Figure
2-1). The animated image reflects the activity of the alter ego: the head
motion of the likeness is consistent with attentive listening and the lips move
with the alter ego’s speech. The alter ego’s conversational interests and visual

character are easily personalized, suggesting "alter ego’ for this conversational

partner.
CONTINUOUS WORD CONVERSATION SPEECH FORMANT LIPSYNC
SPEECH =% CONTEXT PROGRAM ™ SYNTHESIZER [— TRACKER [—% FRAME
RECOGNIZER MONITOR . BUFFER

APPLICATION AUDIO
PROGRAMS SPEAKERS

Figure 2-1:Soft Machine system flowchart
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2.1 Conversational Technique

The alter cgo’s conversational ability resides in a pattern-matching script.
Patterns consist of ordered lists of words, optionally separated by wildcards
(which match anything) or digits (which match a particular number of
arbitrary words).  Each pattern is associated with a list of responses or
response procedures. Patterns are arranged in ascending order of generality.
The output of the speech recognizer is tested against the patterns until a
match is found. One of the associated responses is selected and cither spoken
or executed (the lisp EVAL function is used to execute program fragments

within the seript). As an example, the user might say
"why arc you taking so long?"

The corresponding output of the speech recognizer is
(?areyou??7)

which matches the pattern

(1 are you *)

and provokes the response

"Do you think I am?"

The speech recognizer used in this work returns up to five words recognized
from continuous speech (one or two wrods per sentence is typical

performance) with indication of words which are heard but not recognized.

The conversational script is similar to the Eliza program [Weizenbaum 64]
though less sophisticated. The purpose of soft machine’s conversational
ability is not to simulate conversation with another human but to complete
the personal metaphor while functioning as a sophisticated means of
conversational prompting and system feedback. Thus, script responses serve

in the following roles: 1) To indicate the system’s misunderstanding in a
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riendly and iteresting way. A variety of statements replace the usual
"Unrecognized Command”. This role is particularly effect in overcoming
the frustration which often results from the imitations of current speech
recognition systems. 2) To encourage the user’s continued and uninhibited
intcraction. The user’s inquiry or expression of frustration may result in the
amusing "clearly this is an existential matter” or the potentially constructive

"we were reading your mail” rather than the illegal command syndrome.

Unconstrained (amodal) conversation was a major goal of this work. The
user can adress any application program at any point; the currently-active
program is interrupted and its state is saved. Amodal conversation is
facilitated by the limited vocabulary of speech recognizers. The vocabulary
is carefully selected to consist of words which may be used in more than one
application, as well as general words which support the conversation. Each
word has a context list, and recognized speech is examined by a context
monitor program to determine whi;:h to program it is addressed. Thus, ‘next’
may refer to the next piece of mail or the next database entry, or (as a non-
sequiteur) become the object of a conversational remark. The context
monitor uses a number of obvious heuristics to determine the applicability of
the recognized words and to discard words which may be spuriously
recognized or are currently inapplicable. Application programs maintain a
status message which is spoken if no applicable input is recognized in the

course of several conversational exchanges.

A contrived but realistic example of a conversation with Soft Machine

follows (recognized words are italicized):

user: Hello
machine:
Welcome to the machine.
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nm:

m:

m:

m:

m:

[ want 1o see the Roteh database,
Speak up.

Sthow me the Rorch database.

The Rotch slideathon 1s available.

buildings in Massachusetts, 1950 to 1960.
Confirm state Massachusetts.

0K
Confirm dates 1950 to 1960.

0K
Initiating search
Ready.

Howmany?
What are you talking about?

How many?
There are 646 entries.

Show them.
(first slide appears)

Next slide.
(second slide appears)

Read my mail.
How do you know it is yours?

Shut up.
You do not like me very much.

Read my mail.

You have no unviewed messages.
Last message dated .... (the most recent message is read).
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2.2 Real 'Time Animation of Flectronic Persona

The text output by application programs is returned to the alter ego, who
reads it 1o the user. The textis first massaged to translate written conventions
into their -verbalizations, for example, the electronic mail  address
"eodzilla@mit-pamela” becomes "godzilla at M.LT. pamela”. The text is

then output to a high-quality speech synthesizer (Prose 2000).

The speech synthesizer's audio output is simultancously sent to speakers and
analyzed by a real-time formant-tracking computer (Fig. 1). Ten formant
configurations are selected, corresponding to visually distinct lip positions. A
1024x1024x8 frame buffer stores up to eighty 128x96x8 images of lip and
head movements. Currently two sequences of ten images provide "positive
emotion” and "negative emotion” lip positions. Thc formant tracker
reorigins and zooms the appropriate frame buffer images, so that the alter
ego appears to speak. This "lipsync” technique was developed at the
Architecture Machine Group for limited bandwidth teleconferencing

applications [Negroponte 79].

The basic lipsync technique is extended to include limited expression and
head movement. When the alter ego is not speaking its head moves in a
subtle but animated way characteristic of attentive listening. The remaining
frame buffer images (those which are not used for lip positions) include eye
and head positions. A transition matrix describes coherent random

sequencing of these images.
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2.3 Evaluation

Though a system such as this one would make a cumbersome interface to a
text editor (for example), it is an attractive interface to a machine which one
uses occastonally and does not wish to know in detail.  An on-line library
catalogue search facility is an example. In one library a catalogue-scarch
terminal was installed adjacent to the card catalogue. Library users were
either intimidated by the computer terminal or reluctant to learn its
command syntax, and the terminal was removed for indirect access via

information-desk personnel (Eisenhower library, Johns Hopkins).

Soft machine is fun to use. Novice users are fascinated by its conversational
ability and willingly explore the system. The combination of animation and

speech techniques succeed in creating an animated persona.

Suprisingly, a limited vocabulary of several hundred words, if carefully
chosen, is quite adequate to supﬁon both applications and an interesting
conversational capacity. This is because the system does not need to
understand all of what is said, but only to recognize words which may be
meaningful to application programs, and provide a reasonable conversational
response if none are found ("limited recognition™). Appropriate applications
have a limited set of commands. Some information retrieval systems are
appropriate both in this requirement and in being systems which one might
casually encounter. A videodisk-based architectural database was interfaced
to Soft Machine. Its input vocabulary of about 100 words comprising several
independent keys (state, date in decades, building type) allows access to all of

the 5000 entries in the database.

The speech recognizer is nevertheless the weak link in the system. The

conversational interface presumes the ability to reliably identify vocabulary
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words embedded in speech containing a large percentage of words which are
not in the vocabulary.  Current continuous specch recognizers perform
poorly at this task. In addition, continuous speech recognizers are usually
spcaker dependent, requiring retraining with each new user. It has been
recognized that the parsing of natural language often requires understanding,
which in turn may require human-like world knowledge and intelligence.
The recent development of finite state (phonemic) probability driven
recognition models argues that incremental developments in speech
recognition will continue however [Schwartz 84], and a limited-domain
speaker-independent recognizer capable of realizing an interface such as Soft
Machine may become available long before the problems of language

understanding are resolved.

39



Chapter Three

The Sound Environment

Given the author’s interests and skills, it was decided to provide the
marionctte with a sound environment as well as a visual environment. While
the latter 1s fundamental, the sound environment will be discussed first, in
part because this discussion will motivate some of the decisions which

affected the design and implementation of the visual environment.

Computer music languages are a good place to start in the development of a
computer-generated sound environment. A computer music language can
act as a sophisticated studio if it is desired to use natural sound sources. The
digital equivalents of sound mixing and splicing are easy to program and
have advantages of precision, control, and low noise. Programs to do
equalization and effects such as reverberation and chorus are found in some

computer music systems.

In addition, a computer music language has facilities to produce novel,
imaginary sounds or music. Most computer music systems are oriented
toward providing interactive control for novice (computer) users, and those
"architectural” features (design and implementation approaches) of the
computer music language which enable this control will be adapted to form
the basis of the system for configuring and controlling the figure’s visual
environment. It should be noted that, while computer music languages are
intuitive for the non-programmer (and particularly for the person who has
experience with analog musical synthesizers), they are essentially primitive

programming languages. The common sound-generating modules
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(oscillator, noise generator, filter, ete.) are provided as “pre-programmed
subroutines” and the user need only determine the parameters and calling
order of these modules.  Programming constructs such as iteration and
conditional branching are not essential and are not usually provided in the

computer music language.

3.1 The Music V Language

The major music languages, including Music 10, Music 11, Music 360, and
Cmusic, arc based on or developed from the Music V language developed by
Max Matthews during the early 1960s [Mathews 69]. Music V divides the
sound spccification task into an orchestra or "instrument" programs and a
score file. The instruments are designed as an ordered list of signal
generating modules which receive and update information passed by a
subroutine parameter list convengion. For example, a very simple (and

electronic-sounding) instrument looks like this:1

begin "il"

Al = o0scil(SINE,440,1.0) (1)
A2 = oscil(ENVELOPE,1.0,P4) (2)
out = out + Al * A2 (3)
end

Example 1

Statement (1) calls an oscillator to produce a 440 cycles-per-second (cps)
"sine" wave with amplitude one. The sine wave is assigned to the variable
Al. In statement (2) the waveform “envelope" (defined elsewhere) is
oscillated at one cps with the amplitude P4. P4 refers to the fourth parameter

of the score statement which will invoke this instrument (this will be

l'fhc cxamples in this chapter are written in a hypothetical music language which is essentially
similar to Music V, 10, 11, 360, and Cmusic.
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described below).  In statement (3) the sine wane Al s modulated by the
amplitude envelope A2 and the result is added to ouT which will be sent to

the audio speaker.

3.2 Digital Sound Synthesis: Sampling and Quantization

While it is intended that the variables A1LA2.0UT denote continuous signals,
in the digital implementation these signals are necessarly generated in a
sampled and quantized form. An audio signal is thus represented as a
sequence of numbers, which are converted into a voltage (to drive an audio
speaker) with a digital-to-analog converter (DAC). The fidelity of the
resulting sound depends on both the accuracy of the quantization and on the
sampling rate. The Shannon sampling theorem indicates that frequency
components higher than one-half of the sampling rate will not be reproduced
correctly [Shannon 49, Stearns 75]. Some individuals can detect frequency
components up to about 20,000 cps at a young age, entailing a sampling rate
of at least 40,000 cps. Musically interesting.frequencies appear to be well
below 10,000 cps, however, implying a more economical sampling rate of
20,000 cps. This judgement is best justified by listening to a sound
reproduced at various sample rates, but in passing it can be supported by
several observations: many people cannot hear above 10,000 cps, the
bandwidth of AM radio is about 5000 cps (FM radio has a bandwidth of
about 15,000 cps), and the fundamental harmonic of most musical tones is

below 1000 cps ("middle C" on the piano is 262 cps).

The commonly available digital-to-analog converters accept signals which are
quantized to between eight and sixteen bits. Quantization error most directly
affects the dynamic range of the signal, measured as the signal-1o-noise ratio

(SNR). Eight-bit quantization results in a SNR of about 48 decibels, which is
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approximately comparable to the quality of telephoned audio signals (a
decibel is a logarithm of the ratio of two amplitudes, defined so that +10
decibels is 3.162 = sqri(10) times the original amplitude [Benade 76]. Sixteen-
bit DACS have a SNR of about 96 decibels, which is very high fidelity.
Twelve-bit DACS have been used in computer music without causing

perceptually obvious quantization effects.

3.3 Specification of Sound Events: the Score File

The instrument in Example 1 is thus called thousands of times per second,
and the signal generating modules (OSCIL. in the example) are programmed
to return a single sample of their respective signals each time they are called.
A ‘conductor’ program reads the score file, determines the starting time and
duration of each 'note’ in sequence, and calls the appropriate instrument,
passing the instrument parameters from the score to the instrument.

Example 2 is a sample score:

srate=20000;

synth "sine" 1,1.0;

seg "envelope" 0.0,0.0 0.1,1.0 1.0,0.0;
i1 0 1 1000 ;
end;

: Example 2

This score activates "il" (the instrument defined in Example 1) at time zero
for ‘the period of one (virtual) second (20,000 samples) with the auxiliary
parameter P4=1000. In this score language, the first token of an instrument
statement (beginning with an "i") is the instrument number, and P2 and P3
are conventionally the start time and duration of the event or note defined by
the instrument statement. The "synth" statement creates a function table
("sine") and fills it with a Fourier summation having the first partial with
amplitude one (a pure sine wave). A finite Fourier summation
approximating a square wave would be
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synth "square" 1,1 3,0.3333, 5,0.2, 7,0.1429;
(odd harmonics with 17N amplitudes). The arguments to the "seg'” statement
spectfy the abscissa, ordinate pairs for a line segment (piccewise linear)
function. The abscissa and ordinate values are specified in the ranges {0,1}

and {-1,1} respectively.

3.4 Function Table Lookup Models

The preceeding discussion implies that signals are stored in function tables
and regencerated by table lookup, rather than by direct polynomial expansion
upproxinﬁnions. This is done for reasons of speed. In the carly 1960s people
were conscious of the cost of a computer hour and only the cheapest
techniques could be considered. This had a major effect on the development

of computer music languages.

The effect of this effect will be considered by considering the traditional
implementation of a synthetic guitar approximation (for example) using a
Music V-type language. It is common knowledge in musical acoustics that a
struck or hammered string generates odd harmonics with 1/N amplitude (a
square wave), while a plucked string generates 1/N* odd harmonics (triangle
wave). The natural decay of a plucked or struck string is exponential. The
sounding box of the guitar acts as a resonator or filter, and this will be
approximated with a gentle bandpass filter. This completes our "synthetic

guitar”,

Unfortunately this approximation does not bear the least resemblance to its
prototype.  Physical musical instruments are universally complex and
nonlinear in their porduction of sound, and the difference between the

computer and the physical instrument is as between a toy synthesizer and an
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expressive sound. We can attempt 1o describe the characteristics of musical
mstruments in various ways: a relatively successful approach is 1o consider
the frequency spectrum of the sound, and its evolution. It is known that for a
given (physical) instrument, characteristics of the spectrum will depend on
the amplitude, pitch, and performance of cach note in a nonlinear way.
Thus, the spectrum of a note with the pitch C5 (the note one octave above
middle C on the piano) will be distinctly different from the spectrum of a

note with pitch C4 which is shifted up one octave in frequency.

It has also been demonstrated that the cvolution of the sound spectrum,
particularly during the onsct of the note, contributes significantly to our
pereeption of timbre and to the idenfication of the instrument [Stumpf 90];
the spectrum which is constant or which evolves according to a simple

formula identifies the instrument as an electronic synthesizer.

In the time domain, it can be observed that physical vibrating systems are not
periodic but almost periodic. An effect of friction is to slightly alter the
harmonic frequencies of a vibrating system, so that they are not in the same
phase relationship from one period to the next. The contour of the acoustic
wave can change significantly during the course of a note.2 The effects of the
stiffness of the vibrating body and resonant coupling are similar to that of

friction in that they remove the musical signal from strict periodicity.

The selection of the oscillator as the fundamental modelling tool and sound
source for computer music is suggested by any analysis which considers

music to be a fundamentally harmonic or periodic phenomenon. Oscillator

2’]‘hc perception of timbre is fairly robust in that the physical correlate of the timbre is usually
a rapidly evolving waveform. The perception of timbre might in some cases be equated to the
colution of sounds rather than to a stcady-state spectrum.
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maodels are mappropriate, however, for modelling transient or inharmonic
sound features which may be perceptually important even if they do not by
themselves define a musical sound. - For example, the spectrum of many
instruments appears as harmonic peaks above a resonant "noise floor”
~(Figure 3-1). The periodicity and linearity entailed by the function table
lookup method as well as the triangle and square wave characterizations of
musical acoustics (mentioned previously) are approximations to physical

sound production.

Figure 3-1:The spectrum of real music: a guitar passage from Amon Duul
Live in London (1973)

3.5 Electronic Sounding Sounds

While we may take the opinion that the electronic synthesizer adds a new
range of sounds (albeit simple) to the composer's "pallette”, the composer

who uses computer-generated sounds exclusively is often disappointed. The
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compositional restrictions imposed by computer music can be dramatically
demonstrated: choose a popular or traditional melody  which has been
successfully orchestrated and performed with a variety of instruments. A
voice, flute, or guitar performance may be expressive; a piano performance
will sound "flat™ until it is harmonized, and the computer performance is
mechanical and even embarassing to the extent that it will not bear repeated
listening. The composer must "throw a lot of notes at the problem” in order
to compensate for the extreme acoustic simplicity of this medium, and the
"bleeps and beeps” which characterize computer music are not solely the
composer’s choice. It is common to find jazz bass players and closet heavy

metal enthusiasts side by side in making beeps in the computer music studio.

At this point it is appropriate to comment on the "purpose” of computer
music, since it is often said that the duplication of traditional instruments is
not a worthwhile goal for computer music. This discussion can be
approached from two fairly distinct orientations. According to one
orientation, computer music should be used to produce novel sounds or
sound structures which would be impractical or impossible to attempt using

other tools.

Composers are often drawn to computer music for its potential as a
performer or realizer of their work, as well as for its possibilities as an
electronic medium. This orientation is especially applicable for beginning
composers, or when novel compositional techniques are employed and
feedback is desired. Computer music may short-circuit the syndrome of the
composer who must wait many years for a composition to be discovered and
performed for the first time. If the computer is considered primarily as a
medium for realization or personal expression, providing the expressive and

performance capabilities of traditional instruments is not an inappropriate
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eoal.  OF course, if there existed a computer model which perceptually
duplicated the properties of a physical instrument, the model could easily be
fiddled” 10 produce novel sounds which exceed the practical or physical

limitations of its prototype.

Given the ostensible emphasis of computer music on the production of novel
sounds, it is somewhat suprising to note that the fundamental computer
sound synthesis techniques, including additive and subtractive synthesis,
waveshaping, and frequency modulation, were either pioncered or are
commonly employed in analog musical synthesizers. The exceptions to this
observation are techniques which process (natural) sounds; lincar prediction

in particular can produce effects beyond those of the analog vocoder.

It may also be suprising to note that practicing musicians often complain

about the sound quality of digital synthesizers:

"The only way to get any sound that comes close to being
considered fat on a digital synth is to have 64 oscillators playing the
same thing. With the older analog synthes, you could often use
just two oscillators, and the sound had a certain warmth and size
that you can't really find now." --Eddie Jobson (keyboard player
with Alan Holdsworth and U.K.) [Keyboard 84]

The old electronic oscillators did not stay in tune for very long, and the
electronic oscillator may share some of the nonlinear characteristics and

"imperfections” of mechanical vibrators [Chamberlin 80, p.489].

3.6 Modelling the Sound versus Modelling the Instrument

The presumption motivating the preceeding discussion is that these
imperfections and nonlinear effects are the final product of centuries of

design and evolution of musical instruments, and they are the foundation of

48



the character and expressiveness of the instrument. The original motivation
for computer music is surely its unlimited potential, so it is not appropriate at

this point to declare computer music to be hopelessly inexpressive,

A major focus of computer music rescarch has been the study of physical
instruments and the investigation of modclling methods which might rival
the acoustic complexity of physical instruments. Effects identified in acoustic
rescarch have been incorporated in the oscillator/function table models. For
example, the stretched (slightly inharmonic) spectrum of the piano has been
simulated by detuning the oscillators in an additive synthesis model

[Schottstaedt 77].

It is interesting to reflect on our knowledge of musical acoustics, and its
implications for our modelling strategy. Though we may know how to build
“a particular physical instrument. the computer modelling of the sound of that
instrument requires years of research, and (at present) the resulting model

can usually be distinguished from its prototype without difficulty.

An alternative approach is to transfer our knowledge of the instrument’s
sound from the physical domain to the computer by digitizing the sound.
There are several obvious objections to this approach. It entails digitizing all
of the pitch, amplitude, and performance combinations which the instrument
is capable of producing, because (as was described previously) the sound of a
note at a particular amplitude (for example) is generally distinct from an
amplified version of a quieter note of the same pitch. A second objection is
that there is usually no point in merely digitizing a sound and playing it back
without modification. Both of these objections are overcome if the data can
be conveniently parameterized in a data reduction procedure such as

[Schindler 84]. A third drawback of this approach is that one is dependent
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on natural sounds for source material, and that it yields a shallow and specific
model (if the parameterized data is considered as such) which may not be
casily adapted beyond its original context. The parameterized data does not

contribute much to our understanding of the instrument or its sound.

A third modelling approach is to start with the physics of the instrument
rather than its sound. This distinction is illustrated in the following

cquations:
Y = SIN(WT)  sine wave - (3-1)
Y = -W2Y harmonic oscillator (3-2)

(Y™ denotes the second derivative of Y with respect to time). Both 3-1 and
3-2 result in a sinusoid in Y, but 3-2 suggests a physical model rather than the

closed form solution or approximation to that model.

3.7 Models of Physical Vibrators

While computer models of the sound of an instrument are a significant
research topic, our knowledge of the physical construction of an instrument
may be transferred to a digital model which generates some of the nuances
and expressiveness of its prototype. As an example, the vibrating string is
modelled by the wave equation rather than as an oscillator:

Y(T) = K*Y’(X)
(Y"() denotes the second partial derivative of Y with respect to the

parenthesized variable). The constant K is related to the string tension and

density.

The closed form solution of the wave equation is well known, but analytical
solution becomes difficult as terms describing friction and string stiffness,

and other factors are added. An initial formulation of friction is
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Y)Y = K*EYT(N)-B*Y(D
1.c., Bis a damping term proportional to the string velocity. A more accurate
formulation of friction accounts for the effect that energy at higher
frequencies is damped or dissipated more quickly than at lower frequencies.
[Hiller 71] derived an approximation for string stiffness as well as an

improved friction term.

In general, physical models take the form of differential or integral
cquations, which may be implemented digitally by several methods. The
author has been working with finite difference implementations of the wave
equation for several years, and more recently several stochastic delay-
differential equations have been explored. In implementation, physical
models are immediately distinguished from oscillator models. For example,
the wave equation string model must be tuned by adjusting its tension! (The
author was not able to analytically calibrate the a particular value of
tension/density constant to a particular absolute frequency, so tuning was a
fairly time-consuming process). The harmonic content of the string model
also depends on where it is plucked or struck, and how hard. These
performance nuances would be tedious to approximate with an oscillator
model. Figures 3-2, 3-3 show the outputs of pickups placed at different

locations on the string model.

Appendix B is a program listing of the simple stochastic delay-differential
equation

Y=FTX(T)|Y" ' =X-KI*Y+K2*Y _ +K3*Y
where X is a random shock excitation and Y refers to the value of Y delayed
by time D. This equation resembles a digital filter except that it is nonlinear
and does not obey the principle of superposition. When differential

equations (such as this one) are invented for the purposes of complex sound
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Figure 3-2:Initial string position representing a pluck
(displacement as a function of location), and
several periods of string motion shown at equally spaced pickups
along the string (displacement as a function of time).
Damping is exaggerated.



Figure 3-3:Initial string position approximating a metallic sound
(displacement as a function of location), and
several periods of string motion. Damping is exaggerated.
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gencration, stability is often a problem. particularly if the cquation involves
feedback. A solution to this problem (and one which is not inappropriate if
the physical implications of the cquation are considered) is to insert a limiter
or clipper into the feedback portion of the equation. The feedback terms
should also be damped, and if the damping is carcfully adjusted then the
limiter or clipper will only be invoked during portions of cach sound event.
This may provide a complex sub-cvent with a perceptual function similar to
the attack portion of most physical instruments. [Saaty 81] describes
analytical techniques for determining the stability conditions of equations

such as this one.

In a listening evaluation, the digital implementation of a non-trivial physical
model has several striking qualities. The author’s string model, which
accounts (to a greater or lesser extent) for air friction, string stiffness,
resonant coupling, and the resonance of a sounding board, does not duplicate
or even strongly suggest the sound of a plucked string! While the bridge
coupling and sounding board are poorly modelled at this point, the
complexity and elusiveness of such a perceptually simple sound as a plucked

string has been quite suprising.

On the favorable side, the string model does not sound particularly like an
electronic synthesizer, and the performance nuances and acoustic complexity
of the model are sufficient to sustain a simple or even monophonic score.
Some of the acoustic features identified in working with this model have
been approximated with an oscillator/wave table model. The resulting
‘instrument’ has been able to "support” music written for piano, thus
contradicting the dictum that the computer is such a distinct medium that it
will not support music written for other instruments. On the contrary, it is the

author's assumption that the computer is at least potentially the universal

medium.
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With few exceptions, physical models have not been used in computer music.
The major computer languages do not contain all the necessary programming
constructs (conditional statements, arrays, and iteration) to permit the
implementation of these models, and the design of these languages was
guided by the belief that the physical modelling approach is too expensive.
This belicf was unarguable ten years ago, when one could hope to afford a
few minutes of CPU time per day. At present, the computational resources
available in a computer graphics lab (for example) can usually offer several
hours of cquivalent CPU time per day. The physical modelling approach is
not "hopelessly inefficient™ at this point; in fact, the harmonic oscillator
implemented by finite differences is the most efficient ways of generating a

sinusoidal oscillation other than by table lookup.

The author’s computer music composition Ossature Metalligue, performed at
the spring 1984 computer music concert at MIT, contained two instruments
which utilized finite difference eduatons. Most of this composition was
synthesized using a computer music language developed by the author. The
development of this language was prompted by the lack of portability of the
existing computer music languages (Musics 10 and 11 are written in PDP-10
and PDP-11 assembler languages), as well as to provide a tool for exploring

synthesis methods.

3.8 A Script-driven Multiprocess Programming System

The architecture of this computer music language was shaped by the
requirements that it be portable and provide a ‘open-ended’ programming
environment comparable to existing programming languages. Facilities for
the basic synthesis techniques, including additive synthesis, frequency

modulation, moving average and autoregressive filters, waveshaping, and
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Iincar prediction would be provided, but the major capability of the language
would be its programming constructs. Returning to Example 1, notice that
the implementation of this instrument consisting of several OSClLs in a
(non-music) programming language is only a matter of several table lookups

and incremented indices:
/* OSCIL */
value table [index];
index index + fregq mod tablesize;
return(value);

I

With the exception of lincar prediction, the other standard synthesis

techniques are also fairly simple to program.

The major task in writing a computer music language is the cvidently the
development of the language interpreter or compiler, and the writing of an
interpreter or compiler for a new language is a task which should be
mecasured in man-years. Given our requirement that the new music language
should provide a programming environment comparable to a programming
language, it made a lot of sense to start with an existing programming
language, and modify it for sound generation. The conversion of a language
compiler or interpreter for a particular machine conflicts with the desire for

portability, however.

Portability is achieved if we develope a language translator whose ourput is
an existing higher-level language. The music language will be translated into
a common programming language and then compiled. The language
translator is easily (if not ideally) implemented using a macro processor. The
language Ratfor, which is translated into Fortran with a macro processor,
provides a precedent for this approach. The source for a version of the M4
macro processor was available and used for this purpose [Kernighan 76]. The

disadvantage of implementing the translator with a general-purpose macro
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processor is that Tungaage-specific error checking is not possible. The music
fanguage has cnough syntax requirements beyond that of the underlying
programming language o justify the term "language”, and crrors in the
music language are not detected until run time in the current

implementation.

Much of this "syntax” is determined by the additional requirements the sound
synthesis process be driven by a score file, and that the instruments be
reentrant. Once an orchestra (collection of instruments) has been designed
and compiled, a particular composition which uses that orchestra is described
in a score file such as was shown in Example 2. It is particularly desirable
that an instrument be capable of acting with scveral sets of parameters
‘simultaneously” (in virtual time) to generate concurrent sound events such as
chords. This capability will be termed ‘reentrant’. Unfortunately the most
common programming languages do not have the multiprocessing and

scheduling constructs to directly support these features.

Abstracting from the musical context, the facility of a system providing
script-driven control of multiple processes in time is equally applicable in
computer animation. The implementation and use of this facility in a script-

driven computer animation system is described in the next chapter.
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Chapter Four

The Visual Environment

In this chapter, the graphical marionette figure and the objects comprising its
environment are united in a script-driven animation system named Fish.
Some of the vocabulary describing the system reflects its origin in the

computer music language described in the previous chapter.

The system consists of a script interpreter written in a symbolic interpreted
language such as Lisp, an orchestra manager which oversees the animation
process, and instruments which accomplish the animation rendering. The
instruments are written in a compiled language such as Pascal or PL/1 for
~efficiency. For practical reasons (specifically, the limitations of the local

Lisp/PL/1 interface) the animation is accomplished as two passes.

4.1 The Script Interpreter

The "Lung" script interpreter reads and evaluates the script to produce a

script output file. For example, the script input

(Repeat 10
(setq name (gensym))
(makemove Curtime name 1.0
(pickrts bounds) (pickdrts drtsbounds))
(@ Curtime)
(mary fletcher scale (?in 0.5 1.2))

generates twenty lines of script output in which the position and movement
direction of ten figures (rendered by the MARY program) are chosen at
random. The sizes of the figures are also chosen at random, in the range

0.5..1.2 of the default size.
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The Lung program contains relatively few preprogrammed constructs: the
power of the program is that of the Lisp language itself.  Any script input
which is not identified as valid input to the animation system is assumed to
be a Lisp program fragment and is evaluated. If the Lisp code occurs within
a known script statement, the result of the evaluation is substituted into the
statement.  Lisp code occuring outside of script statements is evaluated for
side effects. The predefined constructs can thus be grouped in macros or

extended by defining new functions (Appendix D).

4.2 Script-Driven Animation

The scripting facility of this animation system defines a
declarative/procedural interface, in which the declarative form of the script is
converted to drive the procedural (programmed) animation rendering
software. Thus, no programming is needed to develop an animation. The
scripting process is further simplified by the use of spatial digitizers to

directly specify motion (described in the next chapter).

The orchestra manager partially implements a multiprocessing metaphor, in
which multiple copies of any instrument may be simultaneously active.
Unfortunately the widely available computer languages do not support
multiprocessing. In this system multiprocessing is implemented by imposing
standard calling conventions (at the procedural level) on instruments and by
use of a macro processor. In the resulting environment one instrument or
renderer can be active in as many instances as desired, regardless of the
extent of the static (impure) data required by each instance. No global data
structures are suggested, so a variety of distinct approaches to computer
rendering may be present in a single animation. This is evident in the

"Nick's grove" animation, where cloud (particle system) figures stroll
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through an environment represented by polygonal facets, and are observed

by an invisible camera (Figure 4-1).

Figure 4-1:A frame from the "Nick’s Grove" animation. The [alling object
is a head which is about to drop onto the shoulders of the first figure.

A user’s view of some of the features of this animation system is presented
below, with reference to the standard terminology of ASAS for comparison
[Reynolds 82].

Motions fall inbetween the ASAS concepts of Newton and Actor. They are
called once per frame, in a consistent but unspecified order. As the name

implies, motions typically define motion, but they are also an appropriate
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mechanism for specifying any quantities which change during the course of
the animation.  For example, a camera zoom could be accomplished by

creating a motion to change the camera’s focal lcnglh.3

Motions are created and destroyed by script statements or by instruments.
The required parameters are a name, start time, delta time, starting value,
and delta value. The values may be literal or symbolic scalars or vectors. A

typical script motion statement is:

(move riseandspin Curtime 1.0 vector(1 0 -1) upabit)
In this example, the motion RISEANDSPIN defines an interpolated vector
quantity which changes from (1 0 -1) at time CURTIME by the amount

UPABIT (a predefined vector) during one second.

Motions are origined relative to other positions or motions. This feature
facilitates object intcractions by relative or coordinated movement (the
"message board"” system described below is also used for this purpose). For
example, the primary figure in an animation sequence might be identified as
such by keeping the camera stationary relative to the (moving) figure. A
more sophisticated example is the "hungry bectles” chase, in which each of
several "beetles” chases the next beetle, starting from a distant position
(Figure 4-1). The size, orientation, and location of a group of objects may
optionally be changed by changing an origin common to the motions of the

objects.4

Instruments are similar to the Actor type in ASAS: when the instrument

3Thc current camera program requirces its focal length to be a literal.
4ththcr this happens is currently a compile-time paramcter; in some cascs it may be

desirable to change the size and oricntation of an object independently of any other objects
which arc origined relative to it.
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Figure 4-2:Diagram of the spiral paths generated by four
"hungry beetles™ starting at the vertices of a square
(from [Abclson 81))

instance is active, it will be awakened once each frame and provided with the
local data space of that instance. The instrument executes and then returns

control to its caller.

This view of the instrument as a somewhat autonomous entity which executes
(effectively) in parallel with other processes is subtly but distinctly different
from the traditional architecture in which control resides in a single program
which invokes a hierarchy of subroutines. Reynolds calls the instrument’s
world view "object oriented" (other definitions for this term have been

proposed).

The order in which instruments are called is defined by coordinates which
are updated and broadcast by each instrument instance. Usually the
instrument is responsible for rendering a particular type of object at a
particular place, and the coordinate is the distance of the object from the
camera. Typically the place is defined as a motion instance. Instruments
need not do rendering, so they provide a way to perform once-per-frame
tasks which are not served by the motion concept. In fact, the 'motion server’

is itself such an instrument, with all of the motions as its instances.
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Instruments are activated by instrument calls in the seript (G pically) or by
other instruments. The instrument call consists of an activation time, the
name of the mstrument, and parameters to the instrument.  Each instrument
defines its own parameter convention, so there is no need to impose a unified
parameter structure on diverse instruments. A typical script call, featuring an
instrument which is a renderer, is: |
(@ timel) (bnuts6 riseandspin carrot offset 0 range 300)

In this example, at TIMEL an instance of the bnuts6 renderer is created. This

instance renders the CARRO'T object following the motion RISEANDSPIN,

An instrument can deactivate ("unplay™) itself, or it can be deactivated by a

script statement or by another instrument.

Instruments can communicate with one another by entering their messages in
a "message board" database. The utilities which are used for this purpose are
the same as those which accomplish the declarative/procedural data transfer
and which provide each instrument instance with its local data. A limited
example of instrument communication is seen in the "Nick’s grove"
animation, where Nick’s head drops out of a tree and lands on one of the
figures (Figure 4-1). This figure is broadcasting the position of its head. The
Nick head picks up this position, origins itself relative to it, and moves to the

origin. In this way a very precise movement is easily scripted.

4.3 Evaluation

As a system for scripting animation, the Fish has proved fairly robust and
flexible. As an animation system, Fish suffers from simplistic rendering and
hidden surface algorithms. Like the proverbial four-lane highway, the

system has been ‘filled to capacity’ sooner than expected. Part of the
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difficulty here is a local operating system limitation on the size of programs.
Currently unneeded instruments must be removed before new instruments

can be added.

The applications and results of this system are described in the next chapter.
This work was judged to be inappropriate, however, and it was succeeded by

the fairly nebulous approach indicated chapter six.



Chapter Five

The Marionette in its Environment

The current work has succeeded in its intended application of portrayal of
figures in an environment, as well in an unforescen application (computer
generated holography).  Progress and remaining difficulties in the area of

body tracking will be described before discussing these applications.

5.1 Motion Specification by Digitization

As originally conceived, the Architecture Machine Group figure modelling
project posited a real-time graphic representation of a body-tracked figure
[Bolt 81]. A full-body tracker is currently under development but is not
operational at this time. In the absence of a body tracker, the motion of the
graphical marionette figure has been specified using the walking algorithm,

key-frame interpolation, and partial body tracking.

Shigeru Suzuki has adapted a spatial digitizer manufactured by Polhemus
Navigational Sciences to provide a partial body-tracking capability [Suzuki
84]. The spatial digitizer returns the position and orientation (azimuth,
elevation, and roll) of a hand-held digitizing sensor. Suzuki observed that
the spatial digitizer could track a limb (two nodes in the figure model) by

making use of the orientation data.

The digitizing sensor is attached to a distal limb segment (e.g. to the
forearm). The position and orientation data together define an axis in space

parallel to the axis of the distal limb segment. The position of the distal limb
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scement is then fixed by considering its position relative to the attached
sensor. - When the position of the distal limb segment is determined, the
proximal limb secment is known to connect a stationary body node to the

proximal nodc of the distal limb segment.

Inaccuracies in the spatial digitization cause the proximal limb scgment to
stretch or compress. This difficulty is overcome when the limb position is
converted to the articulation tree representation.  The position of the
proximal node of the distal limb segment (= the distal node of the proximal
limb segment) is used to determine the articulation matrix rotation angles for
the proximal limb segment, and the absolute position of this node is replaced
with the correct length of the proximal limb. Similarly, the absolute position
of the distal limb segment is discarded after rotational angles are determined.
The articulation tree walk will then generate a correctly proportioned figure,
“and the position of the body-tracked limb will deviate from its prototype only

as a result of digitization error.

The author augmented the figure model to allow the motion of one or more
of its limbs to be specified by partial body tracking while the figure as a
whole is moved by the walking algorithm or by keyframe interpolation.
Programs to direct the figure’s walking and the motion of objects in the
environment using a digitizing tablet (the "posit" program in Appendix C)

and by algorithmic methods (Appendix D) were also implemented.

What initially appeared to be minor technical difficulties in this body
tracking effort were found to be serious or even crippling. When the spatial
digitizer is used as an interactive pointing or positioning device, the
digitization noise is easily compensated by the operator. When it is used as a
tracking device, however, the digitization noise causes the figure motion to

appear mechanical or insect-like.
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Sceveral attempts at filtering the noise have not entirely climinated i, The
magnetic operation of this digitizer is disrupted by the graphic display, so
that the digitized space is not only nonlincar but non-monotonic. The author
would like 1o propose that simply reducing the amplitude of the noise (with a
low order filter) will not be sufficient for the body tracking application,
because the residual low-amplitude, high-frequency noise stands out in
observation.  Human visual perception appears to be quite sensitive to
discontinuitics in velocity as well as in position. An attempt to splice body
tracking motion to key-frame or algorithmic motion would need to consider
the discontinuity in velocity at the splice; this problem was judged to be

beyond the time scale of this thesis.

Another problem is the limited tracking space (approximately 2-4 cubic feet)
of the digitizer. When combined with the restriction that only one limb may
be tracked, the result is that only some fairly mundanc gestures can be input.
The integration of a bod)’-traci(ed limb motion in figure movement
generated by the walking algorithm does not always appear natural. In our
experience, the body tracking application is distinct from spatial digitizing

and requires specialized tools.

Perhaps the biggest drawback of the current body-tracking effort is the
absence of a real-time display device. The turn-around time between
tracking and display is several minutes due to the filtering, and the
subsequent frame-by-frame display portrays a sequence of positions rather
than a motion. The real-time display of a stick figure is well within the
capability of cheap vector displays, but the body-tracking (triangulation) and
filtering tasks on the full body will require dedicated computation. A new
body tracker using one or more dedicated microprocessors is currently being

developed by Tetsuo Semba.
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5.2 Computer-Generated Figure Animation

While the development of a full body tracker is still underway, several
animations depicting figures moving and interacting in virtual three-

dimensional environments have been produced.5

Michael Roper's animation "Concrcte Jungle” juxtaposes the stark,
geometrical character of the graphical marionnete and its environment with
the complexity and warmth of several streetside types, captured on video.

This animation is a sctting of the song by Bob Marley.

Jennifer Hall, an artist at the MIT Center for Advanced Visual Studics,
produced an animation which uses computer graphics to successively expand
the viewer's perceptions beyond the inevitable attempt to assign a
conventional (real world) spatial interpretation. The initial appearance of
figures walking upside-down suggests that the camera is upside dowh, but
the appearance of upright figures in the same scene brings the realization that
the other figures are "walking on the ceiling”. A shift in the camera’s

position reveals that the initial scene was only one "wall" of a larger space.

Sarah Dickenson’s animation places the graphical marionette figures against
an abstract, industrial backdrop inspired by the artist Leger. This animation
makes extensive use of single-limb body tracking to effect a “mechanical
ballet".

The "Nick’s Grove" animation by Michael Teitel and Jennifer Hall was

described in the previous chapter.

SThCSC animations arc well under a minute in length. duc to limitations on computer time (the
more complex scenes in these animations required approximately two-hours of computer time to
produce cach second of animation).
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5.3 Computer-Generated Holograms

A system for producing lenticular holograms has been constructed at the
Polaroid corporation.  Approximately onc-hundred photographs of a scene
arc obtained at equally spaced intervals as a camera moves from right to left
across the scene. The resulting hologram is monochromatic and has parallax

in the horizontal direction only [Benton 83).

The virtual camera and regular sampling of an animation system such as Fish
make it an appropriate tool for producing a computer-gencerated lenticular
hologram. The virtual camera is panncd across the imaginary scene at the
speed required to obtain the desired number of frames and the desired

perspective shift.

Several computer-generated holograms have been produced using Fish.
These are not the first computer-generated holograms of this type, but they
appear to be the first computer-generated holograms to incorporated

medium-resolution, shaded imagery.

5.4 Conclusion

While the scope of the Architecture Machine figure modelling project is
partially paralleled by work at the University of Pennsylvania, the Computer
Graphics Research Group at the Ohio State University, and particularly at
the Simon Fraser University, the previously-described animations depicting
the motion and action of multiple figures in imaginary environments appear

to be unique at this time.

It is hoped that this work will provide the basis for further deviopment.

Priorities in the future will continue to include the development of a full-
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body tracker.  The aquisition of a real-time picture system will allow
immediate  feedback  in - body-tracking and and enable interactive
scripting-by-enactment [Bolt 81]. A sccondary goal is the development of the
figure model to provide facial expressions, speech, and better overall

representation.
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Appendix A

PotatoSlice manual

This appendix is the users’ manual for the PotatoSlice programs described in
o

Chapter 2.

A.1 Overview

Suppose you are creating an object which you will call potato”. The
following (annotated) sequence of commands will run the programs to allow
you to input and view an object described by parallel planar slices. The

commands themselves are distinguished in bold type.

1. Type ewd >udcoursedpotato. Files will be created in your directory
though the programs are located in this directory.

2. Type editslice potato to create the object. Remember to specify y
values in increasing order, and to enter slices counterclockwisely.
The first and last points on a particular slice are assumed to be
connected, so it is not necessary to ‘close’ a slice by entering two
points at the same location.

3. Type brunch potato. This runs various number crunching programs
and prints out mathematical-looking things.

4. Type Bnuts6é potato. Bnuts6 is the program for producing a

perspective, shaded display of the object. A minimal command
sequence for using Bnuts6 is:  init trans 0 0 1000 go
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A.2 Display Commands

The commands accepted by the Bnutso display program are described below.

The starred commands are toggles, i.c., il their current value is FALSE then

the command sets them to TRUE:

init

X, Iy,IZ
scale<x y z>
trans<x y z>

* flipshade

* gourd
* outline
* backfacing

light<x y >

writefunc

saveposition

setposition

newfile

resets the perspective transformation matrix, including
any previous translations, rotations, or scaling commands.

rotate the object about X, y, or z axes

scale the object in three directions

translate the object

if flipshade is true a solid rendering is performed,
otherwise a wire-frame is shown. flipshade is initially
false.

specifies smooth (Gouraud) shading

causes tiles to be outlined with jaggy black lines

causes back-facing tiles to be shaded red (initially FALSE)
specifies three components of the direction vector to the
light source. The z component should be negative if you
want to see anything. Light must be specified before the
flipshade command is given.

This allows the rendering of translucent objects and other
effects. Try ‘writefunc avg’. ‘writefunc 7 lists the

command abbreviations. See help ram$param’ also.

saves the rotations/translations/scales for the current
position in a file in your directory

retrieves a position saved earlier

opens a new object file
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20 begins the rendering

Bnuts6 uses the lefti-handed coordinate system:

The x-axis extends in the positive direction to the right on the screen.
The y-axis extends in the positive direction up on the screen.

The z-axis extends in the positive direction into the screen.

Therefore, 1o view a normal object you should do the rotations first, and then
translate the object away from the origin into the viewing space. This usually

includes a large positive (c.g. 500) translation in z.

A.3 Other Programs

bnuts7 & nuts7 are like (B)nuts6 except that the ‘gourd’ shading command
produces a primitive texture mapping rather than Gouraud shading. To run

these programs, specify

datapath: >u>username
p218file - try pam240 or sin240
object the name of the object

It is necessary to give the ‘ox’ and ‘ampl” commands bcefore translating and

displaying the object. A sample command sequence is:
init
ox
amp1 60
rx 0.3 ry 0.3 rz 0.3
trans 0 0 700
gourd go

The texturing process sometimes exceeds the grayscale range (0-255). To fix
this, do (after quitting the program):

Tinear

range? 0 330

initial color? 0 0 O
final color? 111

73



There are several variations on the brunch program:

brunch

crunch

crunch4

crunch$

reflector

countiles
sysfilter

TSRS.doc

is very fast & usually acceptable. Bnuts6é & bnuts7 can
display objects produced using “brunch’. Try things out
with brunch first, then run crunch$ if desired.

i1s slow for large objects (‘bonchead™ takes about an hour if
you are the only person on the machine). crunch does
“elobal optimization™ and it produces slightly better results
than brunch. crunch objects are displayed with nuts6 &
nuts7.

like crunch, but displayed with Bnuts6 or bnuts7. This
program is rccommended over crunch. Slow for large
objects.

crunchd produces the best results, especially for objects
which slant (successive contours/slices arc horizontally
shifted). Slow for large objects. Use Bnuts6,bnuts7 to
view.

Several other useful programs:

reflects each slice about the first point in the slice. Use
this for making objects with one axis of symmetry, eg a
head.

counts the number of tiles (triangles) in an object

this program low-pass filters the screen image. Try it.

documentation of the object data structure
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Appendix B

Program for a stochastic differential equation

A program listing of a finite difference implementation of an example
stochastic differential equation:

DDE:proc;  /* stochastic delay-difference equation example */

/* derivation..

y~ = -ky  harmonic oscillator

y' = -kly + k2y"  w/ friction

y© = -kly + k2y(-t) + k3y" w/ feedback

y© = x-kly + k2y(-t) + k3y" w/ random shock excitation

notation, y+ = y(t+1),dt=1

y+ -2y= +y- = x-kly= + k2y-t + k3y= - k3y-
y+ =x-kly= + 2y= + k3y= -y- - k3y- + k2y-t

y+ =x 4+ (2-k1 + k3)y= - (1 + K3)y- + (k2)y-t-kl

k1 force
k2 feedback
k3 friction

retime
y==2-k1 +K3)y- - (1 + k3)y-2 + (k2)y-t-1

*/
call ioa(" for speech-like signal, try 0.01, 0.005, -0.001, 10 ");

dcl F[1:512] fIt;

dcl i fix;

dcl memory[0:20] flt; dcl Mlen fix init(20);
do i=0 to Mlen; memory[i]=0.0; end;

del (k1,k2,k3) fit;

dcl (iMlen,iMlenl,iMlen2,0Mlen) fix;

dcly flt;

75



del x flt;

I

call askn("excitation force,feedback,friction constants,pitch period 7 " k1);
call askn(" feedback ? " k2);

call askn(" friction 7 " k3):

call askn("pitch period > ",p);

dcl (p.ip) fix; ip=0;

excit = SL$oof();  /* correlated random 1/12 excitation */

iMlen = 3;
doi=11to0512;

ip=ip + 1; ifip>p then do;
ip=0;
call ioan(".");
x = SL$oof();
end;
iMlenl = iMlen - 1; ifiMlenl <0 then iMlenl = iMlenl + Mlen;
iMlen2 = iMlenl - 1; ifiMlen2 <0 then iMlen2 = iMlen2 + Mlen;
oMlen = iMlen + 1;  if oMlen > Mlen then oMlen = 0;

/¥ y==2-k1 +k3)y- - A+ Kk3)y-2 + (k2)y-t-1*/
y = (2.0 - k1 + k3) * memory[iMlen]];
y =y - (L0 + k3) * memory[iMlen2];
y =y + k2 * memory[oMlen];
y=y+Xx
memory[iMlen] = y;
Fi] = y;

iMlen = iMlen + 1; ifiMlen > Mlen then iMlen = 0;
x=0.0;
end;

goto I;

end ;
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Appendix C

FISH manual

Several important preexisting instruments for generating the marioncette and

its environment are described here (see Chapter 5).  In the descriptions,

"PKND refers 1o the instruments’ Nth parameter, and "&OPT" means that the

remaining parameters arc optional (defaults are assumed) and may be

specified in any order.

cursor

grid

bnuts6

hack

A 3d coordinate system/cursor which is useful for cheaply
representing objects while their motions are defined. It
draws x,y,z axes in red,green,blue. The default size is 100.
If P3 is not a number it is ignored.

P2 =motion
&OPT P3=size

A rectangular grid of square "spots" which can be used to
represent a planar surface in space.

P2 =motion
&OPT xmin,xmax,zmin,zmax,dx,dz,color,spotsize

The renderer for PotatoSlice objects (see Chapter 2 and
Appendix A).

P2 =motionid

P3=object

&OPT gourd, plate, wire,
outline, toutline range offset

This is the "graphical marionette” stick figure. The figure
may be rendered by line segments or by "clouds”. Several
types of clouds have been developed. Particle system
clouds composed of a distribution of one-pixel "particles”
are perceptually integrated in the eye but result in fairly
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billboard

strong ahasing  during movement.  Gaussian - clouds
remove the high spatial frequencies of particle clouds but
practically restrict the animation to monochrome if a 8- or
9-bit picture display is used.

P2 =motion

P3=template file (fletcher)

&OPT

cloud particle ficld clouds

gcloud Gaussian clouds

stick stick figure _

scale (default size is 100 pixels)

range range in color matrix;
offset..offset-+ range-1

offsct offset in color matrix; default is 255

radius “fatness’ fraction: 1.0 gencrates a
normally proportioned figure; 1.5 is a fat
figure

track fname nodc speed

The track command replaces the Cutting ’'walking
algorithm’ data with data for a limb obtained with
Shigeru’s Polhemus body tracking data. <fname> is the
file name of the tracking data. The extension .trackdata is
assumed. <node> is the node where the tracked motion is
attached. It replaces the walking data at that node & its
son. nodes 10,13 are left,right shoulders in the fletcher
template. <speed> is a floating speed; 1.0=real time (as it
came from the Polhemus).

Because the stick figure moves differently than other
objects (e.g. it does not move at a constant velocity), it
should be scaled using the scale parameter rather than (as
is usually done) by scaling a motion.

Calls polymap, to simulate placement of a ‘billboard’ in
space. This instrument was written by Michael Teitel. A
sample script line:

0 billboard motionid picname <options>;
options:
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crop (x1 y1 x2y2x3y3x4y4)

clear (percent)

Describes  the  boundaries  of  the
billboard in a pic file in Ramtck
coordinates (0,0 = top left;
639,439 = bottom right). If cntered in
clockwise order beginning with the top
left, the billboard will start oriented as
scen with loadpic

otherwise x1 y1 will be top left

x2y2 top right
x3y3 bot right
x4 y4 bot left

percent  between 0 and 1
(O=transparent; l1=opaque, lower
than .2 seems uscless).

fade (time start finish)

zorg (2)

time =time2fade
start = start percent
finish = finish percent

z is the z coordinate of the origin for

rotations. (billboards are origined at
the center of the picture in x and y)
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Appendix D

Functions for randomized movement

The control constructs provided in Lung (Chapter 4) can be extended by

defining new functions. The Lung (incl <filename>) command will load Lisp

(setq rtsbounds '(-1000 1000 0 O 0 2000))
(setq drtsbounds '(-30 30 0 0 -30 30))
{(inc1 "randommoves")
:tel1 mary fletcher to stagger for 10 seconds
(stagger name time dur srate:nsteps/sec
rtsbounds drtsbounds frac)
(stagger (gensym) 0.0 10.0 5 rtsbounds drtsbounds 0.2)

(dc1R mary)
(mary stagger fletcher gcloud)
(end)

These sample functions illustrate the definition of a staggering motion and

motion in a random direction:

(defun stagger (name starttime dur nsteps-scc rtsrange drtsrange-sec frac)

(prog (time dt startpos dir speed)
(setq startpos (pickrts rtsrange))
(setq speed (7in (/$ (veclen drtsrange-sec) 2.0) (veclen drtsrange-sec)))
(setq dir (vecnormalize (pickrts drtsrange-sec)))
(setq dt (/$ 1.0 (float nsteps-sec)))
(setq speed (*$ speed dt))  ;assume drtsrange-sec in time 1.0
;now speed is per-sample magnitude
(cond ((flolessp dt SPERIOD) (error "toomany steps”)))
(setq time starttime)
(make time "'move name dt 'rts (append '(0 0 0) startpos)
"drts (vec->drts (vecscale dir speed)))
a 3(go)
(setq time (+ $ time dt))
(setq dir (vecdriftxz dir frac))
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(make tme ‘move name dtdrts (vee->drts (veescale dir speed)))
(cond ((Molessp (+ % time du) (4 $ starttime dur)) (go a)))

(setg time (+ % starttime dur))
(cond ((flolessp Maxtime time) (setq time Maxtime)))
))  stagger

(defun rmdmove (rtsrange drtsrange-sec)
:generate a straight line motion in a random direction
:initial position is chosen within rtsrange
:speed is chosen within drisrange-sec
(prog (name)
(setqg name (gensym))
(setq Moves (cons name Moves))
(putprop name t ‘Move)
(putprop name (picrts rtsrange) 'Start)
(putprop name (picrts drtsrange-sec) 'Delta)
(return name)
)) ;rndmove

81



[Abclson 81]
H. Abelson and A. diSessa.
Turtle Geometry.
MIT Press, 1981.

[Badler 79a]
N. Badler, J. O'Rourke, and H. Toltzis.
A spheroidal representation of a human body for visualizing
movement.

Proc. 1EEL 67(10):1397-1403, October, 1979.

[Badler 79b]
N. Badler and S. Smoliar.
Digital representations of human movement.
Computing Surveys 11(1), March, 1979.

[Badler 80]
N. Badler, J. O'Rourke, and B. Kaufman.
Special problems in human movement simulation.
Computer Graphics 14(3), 1980.

[Badler 84]
N. Badler.
What is required for effective human figure animation?
In Graphics Interface. 1984.

[Benade 76]
A. H. Benade.
Fundamentals of Musical Acoustics.
Oxford University Press, 1976.

[Benton 83]
S. Benton.
Photographic holography.
SPIE Journal 391, 1983.

[Boissonat 81]
J. D. Boissonnat and O. D. Faugeras.
Triangulation of 3D objects. .
In Proceedings of the 1981 International Joint Conference on Artificial
Intelligence, pages 658-660. 1981.

82



[Bolt 79]
R. Bolt.
Spatial Data-Management.
Technical Report, MIT Architecture Machine Group, March, 1979.
DARPA Report

[Bolt 80]
R. Bolt.
"Put-That-There": voice and gesture at the graphics interface.
Computer Graphics , August, 1980.

[Bolt 81]
R. Bolt.
Proposal for the development of a Graphical Marionette.
Technical Report, MIT Architecture Machine Group, 1981.

[Brennan 82]
S. Brennan.
Caricature Generator.
Master’s thesis, MIT, August, 1982.

[Calvert 82]
T. W. Calvert, J. Chapman, and A. Patla.
Aspects of the kinematic simulation of human movement.
IEEE Computer Graphics and Applications 2(3), November, 1982.

[Chamberlin 80]
H. Chamberlin.
Musical Applications of Microprocessors.
Hayden, 1980.

[Christianson 76]
H. Christianson and T. W. Sederberg.
Conversion of complex contour line definitions into polygonal

element mosaics.
Computer Graphics 13(2):187-192, August, 1976.

[Cutting 78]
J. E. Cutting.
A program to generate synthetic walkers as dynamic point-light
displays.
Behavior Research Methods and Instrumentation 10(1):91-94, 1978.

83



[Dooley 82]
M. Dooley.
Anthropometric modelling programs -- a survey.,
IEEL Computer graphics and applications 2(3), November, 1982,

[Ekman 73]
P. Ekman.
Universal facial expressions in emotion.
Studia Psychologica 25(2):140-146, 1973.

[Ekman 75}
P.Ekman,
Facial Affect Scoring Technique (fast): A First Validity Study.
Semiotica , 1975.

[Fetter 82]
W. Fetter.
A progression of human figures simulated by computer graphics.
IEEE Computer Graphics and Applications 2(3), November, 1982,

[Foley 82]
. J. D. Foley and A. Van Dam.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley, 1982.

[Fuchs 77]
H. Fuchs.
Optimal surface reconstruction from planar contours.
Communications of the CACM 20(10), October, 1977.

[Ganapathy 82]
S. Ganapathy and T. G. Dennehy.
A new general triangulation method for planar contours.
Computer Graphics (Siggraph 1982) 16(3):69-75, 1982.

[Ginsberg 83]
C. Ginsberg.
Human body motion as input to an animated graphical display.
Master’s thesis, MIT, May, 1983.

84



[Gouraud 71]
H. Gouraud.
Continuous shading of curved surfaces.
IELE Transactions on Computers 20(6):623-628, June, 1971.

[Hatze 81]
H. Hatze.
Myocybernetic Control Models of Skeleial Muscle.
University of South Africa Press, 1981.

[Herbison-Evans 78]
~ D. Herbison-Evans.
NUDES 2: A numeric utility for displaying ellipsoid solids.
Computer Graphics 12(3):354-356, August, 1978.

[Hiller 71]
L. Hiller and P. Ruiz.
Synthesizing musical sounds by solving the wave equation for
vibrating objects.
Journal of the Audio Engincering Society 19(7), July/August, 1971.

[Hutchinson 60]
A. Hutchinson.

Labanotation.
Theater Arts Books, 1960.

[Kay 77]
A. Kay and A. Goldberg.
Personal dynamic media.
Computer , March, 1977.

[Keppel 75]
E. Keppel.
Approximating complex surfaces by triangulation of contour lines.
IBM Journal of Research and Development 21:2-11, January, 1975.

[Kernighan 76] :
B. W. Kernighan and P. J. Plauger.
Software Tools.

Addison-Wesley, 1976.

85



[Keyboard 84]
ANevboard staff.
‘The power and glory of lead synthesizer.,
Keyboard 103), February, 1984,

[Kingsley 81]
E. C. Kingsley, N. Schofield, and K. Case.
SAMMIE-a computer aid for man-machine modelling.
Computer Graphics 15(3):163-169, August, 1981.

[Lewis 82]
J. Lewis.
Computer simulation of human line drawing.
Unpublished paper

[Lewis 84]
J. Lewis and P. Purcell.
Soft Machine: a personable interface.
In Graphics Interface. 1984.

[Mathews 69]
M. V. Mathews.
The technology of computer music.
MIT Press, 1969.

[Maxwell 82]
D. Maxewll.
Caricature Generator.
Master's thesis, MIT, August, 1982.

[Menowsky 82]
J. Menowsky.
Video graphics and grand jetes: chorecography by computer.
Science 82 3(4), May, 1982. ’

[Negroponte 79]
N. Negroponte.
Talking heads--display techniques for persona.
Technical Report, MIT Architecture Machine Group, 1979,

Unpublished paper.

86



[Negroponte 80]
N. Negroponte, A. Lippman, and R. Bolt.
Transmission of presence.
Technical Report, MET Architecture Machine Group, 1980.
Proposal to the Cybernctics Technology Office, DARPA

[Negroponte 81]
N. Negroponte.
Mcdia Room.
In Society for Information Display, Proceedings, Volume 22. 1981.

[Nissclson 83]
J. Nisselson.
Model Kit.
Master’s thesis, MIT, June, 1983.

[Nitchie 79]
E. Nitchie.
How to Read Lips for Fun and Profit.
Hawthorne, 1979.

[O'Rourke 80a]
1. O’'Rourke.
Image Analysis of Human Motion.
PhD thesis, University of Pennsylvania, 1980.

[O'Rourke 80b]
J. O'Rourke and N. Badler.
Model-based image analysis of human motion using constraint
propagation.
IEEFE Trans. PAMI 2(6):522-536, November, 1980.

[O'Rourke 81]
J. O'Rourke.
Triangulation of minimal area as 3D object models.
In Proceedings of the 1981 International Joint Conference on Artificial
Intelligence, pages 664-666. 1981.

[Oppenheimm 75]
A. Oppenheim and R. Schafer.
Digital Signal Processing.
Prentice-Hall, 1975.

87



[Parke 72]
F. Parke.
Computer generated animation of faces.
In Proceedings of the ACM Annual Conference, Volume 1. 1972.

[Parke 82]
F. Parke.
Parameterized models for facial animation.
IEEL Computer Graphics and Applications 2(3), November, 1982,

[Pearson 76)
K. Pearson.
The control of walking.
Scientific American 235(6), December, 1976.

[Picrrynowski 82)
M. Pierrynowski.
A Physiological Model for the Solution of Individual Muscle Forces
during Normal Locomotion.
PhD thesis, Simon Fraser University, 1982.

[Platt 81]
S. M. Platt and N. 1. Badler.
Animating Facial Expressions.
Computer Graphics (Siggraph 1981) 15(3), August, 1981.

[Rabiner 78]
L. Rabiner and R. Schafer.
Digital Processing of Speech Signals.
Prentice-Hall, 1978.

[Rashid 80]
R. Rashid.
Lights: A system for the interpretation of moving light diplays.
PhD thesis, University of Rochester, 1980.

[Reynolds 82]
C. W. Reynolds.
Computer animation with scripts and actors.
Computer Graphics 16(3):289-296, 1982.

88



[Rongo 82]
R. Rongo.
Robotic Vision Systems, Inc. Data- Base Users' Manual..
Robotic Vision Systems (formerly Solid Photography), 1982,

[Saaty 81]
T. L. Saaty.
Modern Nonlinear Equations.
Dover, 1981.

[Schindler 84]
K. Schindler.
Dynamic timbre control for real-time digital synthesis.
Computer Music Journal :46-50, Spring, 1984.

[Schottstaedt 77]
B. Schottstaedt.
The simulation of natural instrument tones using frequency
modulation with a complex modulating wave.
Computer Music Journal :46-50, November, 1977.

[Schwartz 84]
R. Schwartz, Y. Chow, S. Roucos, M. Krasner, and J. Makhoul.
Improved hidden Markov modelling of phonemes for continuous
speech recognition.
In International Conference on Acoustics, Speech, and Signal
Processing. 1EEE, 1984.

[Shannon 49]
C. Shannon.
Communication in the presence of noise.
Proc. Inst. Radio Eng. 37(1):10-21, January, 1949.

[Stearns 75]
S. D. Stearns.
Digiial Signal Analysis.
Hayden, 1975.

[Stumpf 90]
C. Stumpf.
Tonpsychologie.
S. Hirzel, 1890.

89



[Suzuki 84]
Shigeru Suzuki.
Body tracking by spatial digitization.
"Technical Report, MIT Architecture Machine Group, 1984,

[Weil 82]
P. Weil.
About Face.
Master's thesis, MIT, August, 1982.

[Weizenbaum 64]
J. Weizenbaum.
ELIZA--A computer program for the study of natural language
communication between man and machine.
Communications of the ACM 9(1), 1964.

[Zeltzer 82a]
D. Zeltzer.
Representation of complex animated figures.
In Graphics Interface. 1982.

[Zeltzer 82b]
D. Zeltzer.
Motion planning task manager for a skeleton animation system.
Technical Report, Siggraph Tutorial, 1982.



