
DEVELOPING
A COMPREHENSIVE SOFTWARE ENVIRONMENT

FOR PASSIVE SOLAR DESIGN

by

STEVEN E. LOTZ

B.A. in Architecture
University of Washington

Seattle, Washington
1982

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE

MASTER OF SCIENCE IN ARCHITECTURE STUDIES AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE, 1985

© Steven E. Lotz 1985

The Author hereby grants to M.I.T.
permission to reproduce and to distribute publicly copies

of this thesis document in whole or in part.

Y ''-7 1

Signature of the author
Sted'n E. Lotz

Department of Architecture
May 9, 1985

Certified by
z:54 Harvey J. Bryan

Assistant Professor of Building Technology
Thesis Supervisor

Accepted by -
Julian Beinart

Chairman
Departmental Committee for Graduate Students

(ot~ti

i

OF JCHNOLOGY

JUN 0 31985

DEVELOPING A COMPREHENSIVE SOFTWARE ENVIRONMENT
FOR PASSIVE SOLAR DESIGN

by
Steven E. Lotz

Submitted to the Department of Architecture on May 9, 1985
in partial fulfillmant of the requirements for the

Degree of Master of Science in Architecture Studies.

ABSTRACT

This thesis is a journal which describes the thoughts and
decisions leading up to the final design of a comprehensive
software environment for passive solar design. The main
purpose of this writing is to convey why a comprehensive
software environment for this particular field is needed in
order to help teach the principles of passive solar design, so
that they can be adequately taken into consideration in the
architectural design process, and how such a system could be
implemented.

A case study involving the use of previously available
passive solar design tools is used to point out areas where
these tools are deficient in their ability to focus a
designer's attention on pertinent building performance
simulation data, which could be more effectively used to
influence design decisions at the various stages of the design
process. This leads to a discussion of how these shortcomings
could be overcome through a new and different software design
strategy which utilizes a systems approach to build a more
flexible and powerful passive solar design tool. Through
further experiments, practical considerations and real-world
constraints are brought to light, and how they affected the
conceptual development of such a system which I undertook to
develop here at MIT for Project Athena.

Next, certain implementation details are given which seek
to bridge the gap between conceptual goals and practical
software design considerations. How the internal organization
of software code affects the external interactions between
the user and the system, and how it can promote the qualities
needed for software survival in an educational setting is
addressed. Finally, the outcome of an experimental prototype
for this system is discussed, as well as my concluding
thoughts regarding what I have learned through this endeavor
about writing architectural design tool software.

Thesis Supervisor: Harvey J. Bryan
Title: Assistant Professor of Building Technology

ii

ACKNOWLEDGEMENTS

Harvey Bryan

Project Athena
Staff

Flagship Crew:
Steve Ervin
Peter Jorgenson

Bill Wright

Ron Fergle

Warren Belfer
Robert Haley

James Griffith
David Cistola
Rick Riemersma
Scott Nason
Joe Nadoe

For his committment toward providing
open educational environment for his
students which encourages individual
experimentation, and for his support
an academic and thesis advisor.

an

as

Namely Joseph Ferierra, who saw the
possibilities this project possessed,
and helped to push it through Athena.

These particular guys were very
generous with their time when I became
too exasperated to debug code by
myself.

For the opportunity for some real-world
C-programming experience, and his
effort to provide valuable input on
this thesis.

For his enthusiasm and determination to
carry on this work via adding
enhancements. This thesis was written
for students like Ron.

Warren and Robert contributed the
original code this work is based on.
Many thanks for your generousity.

This work wouldn't have suceeded with
without the spiritual involvement of
these members of the Park Street
Church whose prayerful concern before
God on my behalf gave me the vision,
the insights, and the perseverence I
needed in order to pursue this work.
Keeping me centered on the spiritual
goals of life during those bogged-down
moments when this was hard to do. This
year of my life is indebted to you all!

iii

TABLE OF CONTENTS

Introduction .. 1

Chapter 0:

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Beginnings

Frustrations and Dead Ends

Gaining a Vision

13

32

48

Various Trials 68

Running with Endurance

The Results

Chapter 6: Conclusion

Chapter Notes

Appendix

93

132

147

156

i ap

iv

INTRODUCTION

It seems only fair to me that I take a few moments to try

to inform the reader of what this thesis is really about,

before he or she commits themselves to reading it. I have

picked up many a thesis myself, only to find out halfway

through reading it, that although it did contain information

on the general topic I was interested in, it wasn't quite what

I was looking for, so I had to go off in search of another

which was geared more toward my specific needs. The title of

this thesis is "Developing a Comprehensive Software

Environment for Passive Solar Design". While I will indeed be

talking about the nature of a comprehensive software design

package for this purpose, I must stress that the key word in

this title, is the word "developing".

What I am going to attempt to do is to convey what I have

learned over the last several years about developing

architectural software, in particular, as it relates to the

special sub-field of architectural design commonly known as

"energy-conscious design". My experiences in this realm have

been mostly experimental in nature having come from many

trails and errors, as opposed to a more humane "book-learned"

approach, although I do claim to have done some reading on the

,subject of software design. The fact is however, as most of

us working in this area concede, the use of computers to aid

design, while not new to the engineering profession, by and

large is new to the architectural profession. While many in

1

our profession now groan at this reality, now that we are all

faced with the seemingly horrendous task of becoming computer

literate in order to keep up in a competitive marketplace, it

has afforded us the relevant excuses to go back to "ground

zero", and seeing the somewhat negative experiences others in

other professions have had regarding computers, to rethink

how computers can best be utilized to advantage. I will have

much more to say on this topic in the next chapter, I just

want to lay out the scene for a moment so that the reader

understands why this work is so experimental in nature, even

though we all know that computers have been around for quite

some time. I think it is fair to say that our profession over

the years, most probably because we are so visually oriented,

has not been that impressed with the quality of the computer

user-interface as has been witnessed by the use of computers

in other professions. So we have taken the opportunity to

experiment upon ourselves in the hope of rectifying this

situation somewhat, particularly in view of the fact that

recent hardware and software advances at the commercial level

offer us a virtual guarantee that our time spent doing this is

liable to pay off.

At any rate, since my learning process has been so

experimental in nature, if I am going to communicate what I

have learned to the reader regarding my thoughts on software

development in this field, by necessity I must go into the

details of some of these experiments. Consequently, this

thesis is not the typical sort of engineering treatise where

2

one examines some phenomenon in light of someone else's

theories in an effort to convey how carefully one has read the

textbooks. Nor am I trying to defend my knowledge as if I had

the final say on some pertinent questions. What seems most

important to me, is that I convey to the reader in a very

personal light, how I went about doing the research in

software development that I have done in the past few years,

in order to bring to the surface the beginnings of a personal

design philosophy regarding software development in this

field. Being able to purport a design philosophy is after all

the true test in my mind as to whether or not a person has

gained anything of value from an architectural education-

which is what I have been endeavoring to do these last five

years of my life. With this goal in mind, the reader will

soon become aware of the very personal, conversational style

of this writing- as opposed to a more standard, technical

tone. In essence, this thesis is really a personal journal of

my attempts to get a grip on what software development in the

architectural field is all about. Although I hope this makes

this thesis more palatable than some I have had to read

recently in preparation for my own, the main reason I have

chosen this particular writing style, is so that I can attempt

to convey the behind-the-scenes reasons why my work took the

particular direction that it did. Since no design philosophy

can ever be "thee correct design philosophy" so to speak,

since there are always so many available avenues to take-

several of which may lead to the same place, I hope this

3

inside glimpse will help the reader understand how I have

arrived at the particular conclusions that I am beginning to

arrive at, through this experimental learning process.

To this end, the hypotheses that drove me to do this

research, rather than being explicitly stated here, will be

unveiled gradually throughout the earlier chapters as I get to

the particular points in this odyssey where they became issues

which subsequently affected*my journey. In this way, the

direction of my thinking should be clear to the reader, and

the reader will be better equipped to understand the

particular course of action that I eventually was to take as a

means of finding a solution to the software development

problems I foresaw. As I will state in my conclusion, I think

this particular style of thesis writing is not only beneficial

in terms of my goal- to communicate well to the reader, but

also a necessity, and a requirement of my final hypothesis,

that the process of software design is not a straightforward

linear process as the "engineering mind" would like to

believe, but in fact is a "wicked design problem" very similar

to the architectural design process (1). As such, I do not

believe there is one right answer to the problems I have

attempted to solve in this thesis. The particular direction I

have taken is only one of several that I could have taken, and

I took the one I did because I felt I was best equipped to

take it- meaning that I felt it would be the most successful

direction for me to go. As the reader will soon find out, my

superiors on this project were all the while purporting a

4

different solution strategy, which I did not buy as the one

which looked the most promising- which is not to say that I

think their's is in any way "wrong". Therefore, because I

believe the software design process, on the scale that I have

undertaken in this project is a "wicked design problem",

(scale is important- i.e.- one would hardly consider a garage

to be a "wicked" architectural problem, but most large

buildings certainly are), this thesis is not trying to "prove"

anything in the traditional sense, except that this needs to

be taken into account in one's design approach. In fact, this

thesis may very well leave more questions unanswered than it

does answered. Such is the very nature of this type of

problem, which is why they are so challenging to those who

have the "architectural mindset", who have the breadth needed

to realize that there are problems such as this, and therefore

don't mind what others would consider to be inconclusive

results.

Of course many of the factors that affected the

subsequent direction of this work involved the real-world

circum-stances of having to work with others at MIT, and in

particular, those on the School of Architecture's Project

Athena Staff, of which this project is a part. The reader

will soon find out that I have attempted to be very open and

frank about this part of my experience. Being in it's initial

start-up mode, Project Athena was in a constant state of flux

during the time of this software development effort. The many

"changes of mind" and constraints which I had to undergo,

5

greatly affected the avenue I was to eventually take. As

such, not to recount these experiences would be detrimental to

my current task. To anyone who may be in some manner insulted

by my "up-frontness" in this regard, I offer my sincere

appologies beforehand. Some people were forced to wear

"Athena hats" so to speak, by virtue of their role in this

project, and any antagonism felt by anybody through my words

in the following chapters must necessarily take this fact into

account. My arrows were all aimed at the hat, and I am truly

sorry if anyone feels that I missed my aim. It's not easy to

take these kinds of necessary shots!

For now, I want to express my sincere opinion that if the

reader finds any value out of what I will have to say in this

thesis, it only goes to show that others working before me

(and particularly here at MIT), have left me a rich legacy to

build upon. Much of it- even though some of it was done years

ago, still remains noteworthy today. Not too long ago, a

fellow colleague Tim Johnson offered his assistance to me

concerning my perceived need at the time to develop some

elaborate data structures for this project. In the context of

his offer, Tim mentioned that he was disappointed to learn

that "things haven't changed that much since the early work I

was involved in with Sketchpad (2)- at least as far as data

structures are concerned- and that was back in the late

'60's!" By and large, Tim's statement is probably correct,

which only goes to show that the early work of Negroponte,

Purcell, and others was ahead of it's time. It has taken the

6

rest of the world the intervening fifteen or twenty years to

catch up, mostly in terms of having the equivalent of their

computer power at a localized enough level to begin to take

advantage of their earlier work.

A few years ago, namely as soon as cheap microcomputers

began arriving on the scene, and others of us could finally

get glimpses of these machines that we had long heard about,

people here at MIT were again quick to jump at the opportunity

to explore the use of the computer as a design tool for

architectural purposes. Since these early microcomputers

were definitely short in the area of graphics display

capability, but at the same time were a marked improvement

over what most had in the area of an affordable computational

tool at the time- i.e.- programmable calculators, those who

were not inhibited with the fact that the micro could not

produce graphics began to experiment with this machine, trying

to discover it's potential as a valuable design tool. As the

reader might anticipate, the likelihood that these primative

micros could be put to some good use rested with those within

the engineering spectrum of the architectural field, who were

not dealing with such elaborate computer algorithyms that they

necessarily had to overlook the micro as a potentially

valuable tool. Those who's needs rested primarily with a good

graphics interface, or a highly efficient computational

engine- such as those involved in structural design or

computer graphics necessarily have overlooked the micro until

very recently.

7

This was not so with those who were involved in the

reinvented field of energy conservation and passive solar

design which in the wake of the oil crises of the '70's, began

to reemerge on a grassroots level during this period. By

necessity, because of their somewhat precarious stature within

the mainstream of the architectural profession, these people

were in desperate need of a "poor man's computer", and as such

in contrast to other factions within the profession, welcomed

the microcomputer with open arms. I am not trying to give my

sub-field within the profession at large the credit for being

first to discover the power of the micro- I can just hear my

colleagues in the urban planning department now!, and this is

not my purpose for this somewhat lengthy discourse. (As an

aside, I think they in a parallel fashion, probably discovered

the micro for the same reasons we did.) My only point is to'

give a somewhat historical perspective to my field's

introduction to the microcomputer, and to suggest that there

is a rich albeit short legacy which this work in particular

stands on.

I do not intend to duplicate the efforts of my

predecessors- either in my research work or in this thesis but

instead, refer the reader to the Chapter Notes, where the part

of this legacy which pertains most directly to a more thorough

understanding of this thesis can be found. Although I will

gloss over the work of these people in the next few chapters

in laying out for the reader the reasons why my own concerns

took the direction they did, I refer the reader to these other

8

references for much more detail. In particular, I encourage

the reader to look closely at the previous work of Professor

Harvey Bryan, and his compatriots, regarding the use of micros

to do building energy analyses of which this work is a

continuation thereof. The "et. all" in this case, refers

mostly to the previous work of David Krinkle, Charles St.

Clair, Constantine Seremetis and Makoto Hoshino, whose

explorations down various avenues- whether they bore immediate

fruit or not, certainly planted the seed by which future

research continues. I consider myself indebted to these

people, as well as to my other colleagues on the School of

Architecture's Project Athena staff, for what has turned out

to be a rewarding educational journey here at MIT. Not that

MIT deserves all the credit for this. As the reader will soon

find out, my educational journey in this particular realm

started somewhere else, and at times has taken some unexpected

twists, most importantly, an opportunity to work for William

A. Wright Associates last summer, on a rather large, "real-

world" software project. That experience turned out to be

invaluable in terms of helping me make decisions at specific

turning points during the course of this most recent

exploration. Not to mention the fact that Bill himself is a

very enthusiastic and serious C programmer, the type that

can't help but inspire a young upstart such as myself, and

there was always the occasion to ask myself "gee, how would

'Mr. WAW' himself handle a situation such as this!"

But this is how we all learn- in the wake of others,

9

which brings me to my last concern regarding this introductory

chapter- which is why I have undertaken the task of actually

writing this thesis. To be sure, the actual work behind this

thesis is ninety percent completed by this time, and to say

the least, I have never been of the type who could submit

themselves to the requirements of formality- unless I could

find an overriding better reason. MIT has recently

inaugerated "Project Athena"- which reminds me of President

Kennedy's national goal to put a man on the moon by the end of

the sixties. In a similar way, MIT has an institutional goal

to recomputerize itself (and therefore in a la-rger sense,

revitalize itself) using state of the art computer network

technology over a five-year period, And at this point, I

imagine that the outcome of this present goal will be similar-

i.e.- just barely scraping by,- only because it is a similarly

ominous task.

The work behind this particular thesis represents part of

the first wave of software projects aimed at making this goal

a reality, and therefore- being such a small part of such a

large project at such an early date,- in some ways it has

necessarily been a "stab in the dark". Not much in the way of

divine wisdom coming down from the goddess Athena above- to be

sure! What the reader will find out later- is that due to the

unfolding circumstances, (late delivery dates of hardware and

the related software support), from day one- I didn't expect

any either. Consequently this project for me has represented-

on a larger scale than the opportunity afforded me last

10

summer- the chance to take on a "real world" software project

by myself, because the decisions that had to be made at every

point were by necessity- business decisions as much as

anything else, and I had to make them myself. Of course I

wanted to anyway.

While the students involved in the next wave of projects

may get alittle more guidance from "up above"- I suspect that

to a large extent they will be forced to go it on their own

for the same reason. Large facilities necessitate large

beaurocracies- which can never keep up with the needs of an

individual project, nor with the latest innovative idea in the

mind of a creative software developer. And the logical

corollary I insist on adding: If you wait until the

beaurocracy can meet your needs, 1) within the time

constraint that you have, you will get virtually nothing

accomplished, and 2) your work will suffer the consequence of

not being as creative and innovative as you would like it to

be (which is a ruboff on how it has in turn affected you!)

Witness the results of the first wave of Athena projects which

I think bears this out. Consequently- like it or not, I know

that many will have to follow in these footsteps, faced with

the same choices an d- decisions along the way. Learning from

experience in a trail and error fashion- which means learning

how to recover gracefully and quickly from your blunders, just

as I had to.

It is my hope therefore, that the largest contribution I

will have made after I am long gone- is not the fact that I

11

will have left behind alittle more software for the school's

computer lab- but that this personal account of my own

attempts to write software will have been an inspiration and a

help to others. Indeed, if the software I have left behind is

not outmoded and replaced within two years (especially

considering it's experimental and therefore unsophisticated

nature), I will be very dismayed and concerned about Athena's

real effectiveness. With this perspective in mind, this

thesis writing is dedicated to those who at this point, are

contemplating following in these footsteps, in the hope that:

1) You won't be scared off.

2) Based on this forewarning, you will be able to avoid

my mistakes at least, and will be better prepared to

cope with your own.

3) You will have been more successful than I- was able

to be, in an equivalent time frame.

4) And finally- you will have learned as much as I did!

And I wish you the best of luck in your dealings with

Athena!

12

CHAPTER 0: BEGINNINGS

"A battered reed He will not break off,

and a smoldering wick He will not put out

until He leads justice to victory."

This is chapter zero. Everything starts at zero, and I

even dare to say that all C programmers who have ever

translated a program into C from BASIC, Pascal, or FORTRAN

know this. At least if they don't- I'll bet they're still

working on the program! I say this for the benefit of those

of you who are learning C and haven't yet had the opportunity

to track down a pointer that just flew into "outer space" (the

operating system). Usually disasterous consequences result

when one forgets for even a moment that pointers need to be

anchored to a beginning, and that arrays really start at zero,

and not at one. Projects always have beginnings too. Back in

'81 at the University of Washington, I happened to take a

course in passive solar architecture with Joel Lakin, an

instructor who ended up finishing his master's degree at UCLA

by writing a program with Murray Milne called "Solar 5". By

the time Joel arrived in Seattle, enough time had elapsed

since his previous intimate aquaintance with the solar design

tool world, that he- as well as those of us who- like him, had

been previously introduced to the computer world via FORTRAN

on large mainframe systems, had to be reeducated from zero!

The course was conducted as a studio, and on the first

13

day of class, we were broken down into groups of three to work

on a quarter long design project. The design problem was to

come up with a passively heated house that could be built on

any "standard" Seattle city lot with a southern exposure. The

house had to be as energy efficient as possible, with the

overlying constraint that it had to be able to be constructed

(exclusive of the cost of the lot, but inclusive of some

"sweat equity" on the part of the owner to do some unskilled

work) for a total of $40,000. Each design team was

respondsible for finishing their house- complete with working

drawings, a cost analysis, and a final energy analysis by the

end of the quarter when- providing things turned out well, and

the instructor got his act together, the drawings would be

bound in a "spec book" for public distribution. The object of

this undertaking was to provide young couples in the Seattle

area with an alternative toward the rising costs of housing-

and utility bills, which were fast becoming unaffordable to

those who were just starting out in the housing market.

What made this passive solar course unique (I had already

taken two others), was the requirement that computer design

tools be used during every phase of the design process- from

the schematic design stage right on through the completion of

the working drawings. Unfortunately because school resources

were limited, we were not able to use the very latest design

tools available. However, what we did manage to get proved to

be perfectly adequate. During the schematic design process,

we were able to use a "sun machine" designed by Professor Omer

14

Mithuen, as well as my HP-41c version of PASCALC, an SLR

program developed by Total Environmental Action (1). During

the design development stage we used TEANET, another TEA

software product which was a forerunner of many of the

subsequent microcomputer thermal network models, which ran on

a TI-59 programmable calculator (2). For the final working

drawing's energy analysis, we were able to "squeeze" the

department enough to give us what was necessary to set up an

account with Berkeley Solar Group whose mainframe program

CALPAS3 at that time, was considered to be the "cadillac" in

passive solar design tools (3).

At first, alittle confusion arose amongst the design

teams, because although several students in the class had

experience designing solar homes that actually got built,

nobody had any experience using computer design tools in the

process of design. Consequently the big questions that

everybody had to deal with were- what tool do you use when ?,

how does it get used to best augment the design process ?,

and how much do you rely on it ? After some initial fumbling

around, we all seemed to get the hang of it. At the onset,

most groups used the sun machine and Balcomb's Rules of Thumb

from the SLR method (4) to try to get a workable plan where

the various design parameters were in the right proportion to

each other- i.e.- the right percentage of glazing to floor

area, which was consistent with the amount of mass and the

particular passive system type chosen, etc Those of us

who had access to PASCALC used it as well. These methods gave

15

us an indication of whether or not a particular plan was

amenable to our goal of providing a high solar savings

fraction (5), along with the necessary architectural amenities

to make it a comfortable and interesting place to live. After

exploring various plans and discussing the many tradeoffs for

a few weeks, we took a vote as to what seemed to be the most

promising plan to develop. During the next phase which seemed

to encompass-most of the course, we used TEANET as a means of

tightening up our plan, and making sure that no significant

energy issues were being overlooked- such as overheating

problems during the "swing seasons" when fixed shading devices

could not cut out unwanted solar gain, etc

. By this time, we had all discovered that design tools

were indeed valuable tools, but that they couldn't be treated

simply as "black boxes" that cranked out answers. That each

design tool by way of the fact that it represented an abstract

mathematical model, required a considerable amount of

engineering wisdom when translating the various building

components into program input quantities. Moreover, each tool

was unique with regard to the algorithyms and assumptions that

it rested on. Consequently, alot of adaptation was required

in order to use these tools together. An example will serve

to illustrate this point. PASCALC and CALPAS3 both had an

ability to deal with overhangs, but TEANET did not. Due to

the limitations in computing power of the TI-59 calculator,

the authors left off this feature. The class operating budget

did not afford us the luxury of using CALPAS3 (the ideal tool)

16

during the design development stage, therefore TEANET had to

somehow be adapted for the purpose. As it stood, TEANET was

cranking out questionable results which did not seem

consistent with our PASCALC results, because this feature was

lacking. The model was seeing too much solar gain, and

consequently telling us that our building was overheating

during the warmer months.

We had reached the first big hurdle. What do we do-

throw away the design tools, and go back to our old method of

design ? This was of course a big temptation after finding

out that design tools couldn't be treated as black boxes.

Maybe we were just wasting our time. But a quick browse

through the TEANET user's manual (you know- that document that

may sometimes get used as a last resort!), told us that the

program's limitations required that it have a "smart user", so

we went back and tried again. Since PASCALC is a modularly

designed program having a separate and accessible overhang

calculation, we were able to apply it's overhang algorithym to

TEANET's required input before processing.

In retrospect, considering the overwhelming success of

the results of this project, I am very glad that we did this.

Because the second temptation was to believe TEANET and not

PASCALC, as TEANET- being a thermal network program gave us

more discrete output information such as temperatures within

the space. I think there is always the temptation to believe

the program that on the surface due to the type of output it

produces- looks more accurate. TEANET was programmed to spew

17

out temperatures with two significant digits of accuracy-

i.e.- "during the last hour, the inner surface of the trombe

wall was 67.16 degrees fahrenheit". This seems more

believable than "50% solar heated". If we had believed TEANET

and not made subsequent compensations in it's input, our

building would not have ended up as energy efficient as it

did. So I'm glad that one of us did check the manual as a

last resort!

Eventually we found out that similar inconsistencies

existed between TEANET and CALPAS3. The latter had a

provision for a ground temperature node, while the former did

not. Since we weren't going to be doing any CALPAS3 runs

until the end of the course, we weren't sure that this problem

was that significant, but a simple check of giving TEANET a

"fudged" ambient temperature value that was halfway between

the real ambient and the ground temperature for a winter

month, convinced us that we ought to do something about the

discrepancy. Otherwise, which tool were we going to believe in

the end ? Again alittle ingenuity proved adequate, and we

stuffed an additional resistance between the outside surface

node of the slab and the ambient temperature node. While this

wasn't exactly kosher because of the lack of a ground

capacitance, the value we used for this resistance was derived

from Balcomb's BLC calculation routine for perimeter slab loss

(6), and therefore we made the assumption which seemed logical

to us, that the effect of ground capacitance had been taken

into account. If not- at least it was then Balcomb's problem,

18

and in the meantime it made our TEANET runs consistent with

our PASCALC runs.

By now, I'm sure the reader is wondering whether we found

all this hassle worth it. The answer is an overwhelming

"yes". I already stated that several in the class had previous

experience designing actual- not just "academic" solar houses.

Consequently, many of us considered designing solar houses to

be "basically simple- just follow Mazria's Rules of Thumb (7),

and you've got it made!" Not so simple, we found out. Design

tools proved two things that the seat-of-the-pants method of

design had not already proved to us. And boy, were we glad to

make these mistakes on paper rather than out in the real world

like most architects! Design tool rule no. 1 was that if you

incorporate anywhere near the amount of glazing that you would

like to use without adequately compensating for it (a

difficult task)- you are going to have "roast occupant" for a

July 4th barbecue! Notice that I said "anywhere near the

amount of glazing". Our group ran a total of 25 runs using

TEANET, of which 10 were final runs of legitimate plan

variations. The reason ? For all groups, the main design

problem for the course turned out to be- how do we accomplish

our stated goals without having our building end up looking

like a standard tract-home- i.e.- that has walls with a few

little "punchouts" for windows. In other words, the

overheating problem constantly defied us the opportunity to

design a passive solar house that had enough south glazing to

look like one, and thus "spoke" solar.

19

As if this weren't bad enough, on the other end of the

spectrum, design tool rule no. 2 was that if you didn't find a

practical alternative to night insulation- all the heat that

you gained during the day, you were going to lose at night.

Again, notice that I said "practical alternative"- because in

many cases, night insulation is either too impractical or too

costly, but in most cases- both. You can go without it, but

since our design program required that our building be as

efficient as possible- we didn't dare risk the chance that one

of the other groups would find a decent alternative.

All of us were overjoyed with the outcome of the results-

that with all the fiddling around that took place to make

things work, that (if I remember correctly) for the most

critical case, the results from CALPAS3 for peak temperatures

were within a degree fahranheit of those predicted by the

equivalent TEANET run. Not to mention the fact that CALPAS3

predicted that the building would require only $64 worth of

backup electric heating at the greater Seattle electric rate

without consequential overheating of the interior of the

building. But we were using wood for backup heat anyway.

(The sunspace would overheat, which was of course intentional

on our part, as a means of dumping alot of excess heat when we

didn't want it. Since the sunspace could be closed off from

the rest of the house, we considered this o.k. And by the way

I forgot to mention- since TEANET was a one-zone program,

another necessary adaptation during this experiment was to try

to model this building- sunspace included, as a direct gain

20

space. Of course, this required some more engineering guess-

timation, so we just figured that at a certain point the

building would just start dumping excess heat, but otherwise

this slight-of-hand procedure wouldn't affect things too

much.)

At the end of this class experiment, the class a-s a whole

got together to evaluate their experience. Everybody

concluded that their knowledge of passive solar design had be

raised considerably through the use of these design tools.

Both from our own experience in having to put them to use, and

in seeing how they had affected the outcome of other projects

as well as our own. For example, we all learned- without

having to make the mistake of trying one, that trombe walls

don't work well in Seattle. There's just not enough sun to

get that mass heated up, so you are much better off getting

what little solar gain you do have into your living space via

a direct-gain or sunspace system. We all concluded this

because none of the houses with trombe walls achieved as good

results from either network simulation program.

Much discussion has arisen amongst those in the design

professions as to the role design tools ought to play in

design practice. Some say that design tools should be

educational tools only- as vs. design tools which are used in

everyday practice. The promoters of this theory believe that

the designer after using design tools for awhile will begin to

"internalize" what knowledge he has gained from the tool, and

therefore after alittle experience with it will no longer need

21

to use it, except for that once in a blue moon oddball

situation (8). In light of the above outcome, I find this

argument to be very moot. One will never know what he doesn't

know until something shows him that he wasn't as smart as he

thought he was. In this particular case study, many of these

students had previous experience designing passive solar

houses, and were at the onset of our experiment, alittle

skeptical as to whether or not their time was going to be well

spent. In 20/20 hindsight, all felt that they had learned

alot through this experience. Of course I must remember that

we were students. Perhaps a designer with alot of experience

would find little use for a design tool. I suspect the real

answer would lie with the amount of risk an architect is

willing to endure while putting his reputation on the line.

Would one of these proponents be willing to design a building

such as the one used in this case study (say for argument's

sake that the client was the City of Seattle)- with similar

design objectives and guarantee that it would work, without

double checking his "designer's intuition" with a design tool?

(If he says "yes", he's either got lots of malpractice

insurance or he's going to call his engineer- who will use a

design tool!)

The real point to be grasped I think, is that whether or

not a design tool is used in the classroom or on the job, it

should be designed as a good learning tool- as verses a final

check, production oriented tool, because that is it's main

value in either case. The process of designing wherever it

22

takes place, is primarily a learning process by virtue of the

constant feedback required to keep it going. For a good

discussion of this issue and it's relevance to design tool

design, I refer the reader to the reference in the Chapter

Notes by David Krinkle (9). For my purposes, a more pragmatic

discussion is in order.

The class, while having many constructive comments about

the design tools we used, had some negative ones as well.

Everyone wished we could have had access to CALPAS3 all

through the design development phase, and not just at the

working drawing stage. With all it's limitations, TEANET was

not a powerful enough tool for design development purposes.

At the same time, the class agreed that CALPAS3 would have

been "too powerful" to have been the only design tool used

because the complexity of input required was inappropriate and

too cumbersome to have to deal with during the earliest stages

of design. This was in spite of the fact that the CALPAS3

manual boasted about the program's ability to default most of

the inputs in the case of a simple building such as a house.

One found out very quickly that this didn't really make your

life any easier, when you got your output back. The only way

to explain your results was to go digging through many pages

of information you hadn't needed to read before, in search of

the particular default value that could explain your

situation. And because there were so many variables

defaulted, you could never explain the mess you got!

Nobody liked the fact that it was so difficult to enter

23

data into any of these simulation programs. Data for TEANET

was awkwardly prompted for a keystroke at a time, without any

actual message which let the user know where he was in the

input sequence, and what was supposed to be entered at that

moment (the big reason why we did 25 total runs, but only ten

real runs- was that half the time we lost track of where we

were!) CALPAS3 on the other hand, required "batch input"

which was sent to the computer all at once as opposed to

TEANET's interactive input. The main problem with this was

that since CALPAS's input was so complex, the user would

invariably make lots of mistakes typing it in- which the

computer would not catch until it had the opportunity to

receive all the input. (Which due to the fact that it was a

timesharing system meant that you had to wait overnight just

to find out you made a typo!) In any event, the computer had

problems telling you exactly where your errors were- since by

this method it could only guess itself- in exactly the same

way that a compiler has to. And it was obvious that CALPAS3

was not as good as a compiler at parsing out text! What made

CALPAS3 so hard to use, was that errors in the beginning of

the input file would invariably make the program come back

with many erroneous error messages because of this problem.

Of course in a strict sense, the program was always right- but

unmercifully, due to the strict syntax this method of input

required. TEANET on the other hand, suffered' greatly from

lack of anything but a poorly designed interactive interface.

It greatly needed some form of batch input process as well.

24

(If I say anymore, the reader will have no trouble guessing

who the poor student was who ended up resetting his alarm

clock every half hour to feed TEANET another set of input!)

On the output end of things, I hope the reader sees in

Figs. 1 and 2, how easy it is to get a grasp on how this

building was performing at different time periods via the

nicely drawn graphs. Let it be known that two other students

spent hours slaving over plotting points from raw data that

these programs put out. No doubt wishing while they were doing

this that the programs had been smart enough to do it

themselves. No doubt with comments like "isn't this what

computers are supposed to be good for anyway ?" It was not

beyond our level of intelligence to realize that if CALPAS3

could put a table of numbers on the CRT in front of us, that

it could just as easily plot the dots on there itself- and a

heck of alot faster than we were doing! It would have been

alot easier to do away with the task of graphing all the

output, but we found out quickly that it doesn't take long to

get mesmerized when you are staring at a scrunched table of

numbers with FORTRAN variable name column labels- such as

CALPAS3 puts out. Variable names limited to three characters

in length I might add. Since the names have been stripped of

all their vowels in order to save space and are indiscernible,

you have to resort to comparing columns of numbers with each

other in order to try to identify what they are. And before

you can get it all figured out, you get mesmerized and forget

for a moment what you were doing. You can shift your eyes for

25

a moment to avoid this outcome- but then you've lost your

place! Either way, you end up having to start all over again.

Needless to say, we didn't appreciate this feature very much,

and found that this kind of distraction greatly inhibited our

learning process. Graphs are the only good way to get

anything worthwhile out of output data anyway, because what

you need to look at are trends over time. The best thing

about the TEANET program, was that the manual had an excellent

chapter on how to interpret the output using graphs. As a

matter of fact, we liked their method so much that we even

copied their graph. It's beyond the immediate goal of this

discussion to go into the details of this science, only to say

that we learned that graphed output immensely increases your

awareness of how a building is actually performing. It was an

absolute necessity, and because of this, we were very

disappointed that these design tools didn't incorporate such a

feature.

In between input and output is runtime! Our big problem

here was that our main calculation tool was a TI-59

calculator. Many people in the class had never seen a

programmable calculator before, and were immediately

fascinated by it. On the surface it seemed like such an

ingenious, powerful little device. Since we only had one, and

many design teams- it obviously had to be shared amongst many

eager users. This posed a problem the first few weeks, but

later on in the quarter, I was able to take it home for a full

week without anybody saying a word- not even a peep! By that

26

i1t.:~ L..Z...4.......A.. -. I V
a.. ~~AhU

A -

I Ii, i' iif , :

1 1 1 .-..............

I, 4a- -- - -.-.-

w

0o

5',

Ap

.... .. .
.....t

I.. *-~~~** a

.

'a a - a-.

6 $ i J4 a & p J" 4 6 $
TIME p.s

.I-]TI

--..-. a

GROUP 4 APRIL- 3 CLOUDY DAYS
wIH r'r*0rr*fD 6 ... INPT

3 DAY THERMAL ANALYSIS (TEANET)

t\)
-.4

I

. a -0.'. ._~ L..- ... - -- -

. , - . ' - * - - * *, 1S ' ' - - - * -
TIME -

till I Hitii Lu

a * -I ..

w- -- - - a- - ----- - ----. . --. .----. . --- ----

- -

[I

- - .- ---

a. :1:11
* li11 .. j a

a ~L~zLL j~j~4~

.jjjl :jj~ r!~TfF[jJ

log7

a a.4L 64 !4aeaj1- ,I~, l

* 2

CCPI .TrD C.0AR 1POiT

ERMAL ANALYSIS (TEANET)

Nr
W-

WITH

GROUP 4 APRIL- 2 CLEAR DAYS 3 DAY TH

- - I

- -

4j 6J4 4 2y
TIME 1

IIIIIIIII

time, everybody else had run out of patience with it because

each run took 25 minutes. Before you knew it, hours of

precious time was gone! Since nobody else wanted to use it

anymore, I figured I could get away with taking it home where

I could supervise it while doing other things- which is the

only way I could conceive of the thing being productively

useful myself.

I could not help but ponder how the status of a TI-59 had

fallen so rapidly in just a couple of years. Since I had

owned one myself when they first came out (but promptly

unloaded it when one day someone showed me their HP-41c). And

now, who would go out and buy an IBM-PC ? Just the uninformed

for the most part. It was obvious to me at the time, that

there necessarily had to be a good match between the problem

to be solved, and the capability of the hardware and software

to do it in an efficient manner, or the public simply was not

going to be patient with it for very long.

All the design tools we used had serious problems in this

area. The TI-59 although it could easily handle the math,

could not crank through it fast enough, and by the time the

HP-41c came along- neither could it. Although this machine

was nearly twice as fast, in the meantime, designer's

expectations had also risen in terms of what they wanted to do

with the calculator- i.e.- run bigger programs, so the

turnaround time for both calculators (even though one was

twice as fast as the other) was roughly on the order of 25

minutes. Which although these machines were obviously

29

cranking as fast as they could, was longer than expected for a

rather simple schematic or design development type of

calculation. CALPAS3 proved to be no better in this regard,

even though it's CPU time which was listed on the output, was

on the order of a few seconds. Since the user interface was

so awkward on both the input and output side of things, the

actual turnaround time was no better than with the

programmable calculators. In fact, because of the much larger

discrepancy between the amount of time and effort you had to

put in as compared to what the computer had to (say for

arguments sake- an hour as vs. four seconds!), it left many of

us in a more frustrated state than the programmable

calculators had. It all goes to show that psychology plays a

significant role, which can not be overlooked in the

development of a design tool. If it can't keep up with the

speed of technological inflation, it won't be on the winning

side.

As the reader might expect, all of this experience though

much of it was not real pleasant at the time, proved to be

much food for thought, and still is many years later. It gave

me a real appreciation for computer design tools, although I

learned that a great deal of engineering wisdom was needed to

use them- that they couldn't simply be treated as "black

boxes", or GIGO (garbage in- garbage out) would result. My

overriding feeling about them though, was that the present

state of design tools was very immature, and left alot to be

desired. However, this rather disappointing reality gave me

30

my first general hypothesis: that if certain aspects of the

computer were designed better so as to equip it to effectively

handle parametric analysis- i.e.- make it more educational in

nature, in a manner which matched it to an appropriate stage

of the design process, that the computer would become a much

more effective design tool, and an invaluable one for

architectural engineering purposes. I also learned that as a

matter of course, graphical output was not only a convenience,-

but an absolute must in terms of being able to see the output

results in such a way that enables one to get a clear picture

of what is going on.

Although the fire was to die out, several bright coals

were left burning, and it was not too long at all before these

sparks ignited a vision on my part, to make a plunge of my

own.

31

CHAPTER 1: FRUSTRATIONS AND DEAD ENDS

"You fool! That which you sow does not come

to life unless it dies; and that which you

sow, you do not sow the body which is to be,

but the bare grain, perhaps of wheat or of

something else."

"Tunnel vision" always seems to crop up in the absolutely

worst moment. Alot is usually at stake- and was, this

particular day in august on the Dead River in a remote part of

Maine. It was the biggest race of the year in this part of

the country- something akin to the New York Marathon, or the

annual "Klondike Derby" (Nome-to-Anchorage dogsled race),

depending on which'side of the country you're from. I was in

the bow, and my partner was in the stern. Somewhere in the

middle of twenty-two miles of "wildwater" as they call it,

half dead as I was by then, I was startled out of my trance by

a loud shriek behind me. Faintly recognizing it above the

roar of the river- as my name!, I instinctively stopped

paddling and through waterlogged eyes stinging from sweat,

gazed farther ahead. But straining through the spray and

mist, I could see nothing to get alarmed about-even though the

shrieks had turned to war-hoops by now. Not a rapid in site-

nothing in site, clean!, and as far as I could see, I had

picked a good course down the river. As I reflected on the

fact that there must be something I was not seeing- the

32

possibility finally hit me, and as I shifted my eyes and

finally caught it- I was so stunged that- I froze. Dead in

front of me, barely thirty feet away- was a barely

perceivable, fifty-foot wide sharp horizontal line on the

water!

As the war-hoops had changed to barking by now, I figured

I'd better try doing something, so I started back-watering

like crazy. A second later as we started veering to the side,

discovering that my partner was doing the exact opposite, I

came back to my senses- realizing that we had no time to fight

a big river. If you do get yourself caught by "tunnel

vision"- the first thing you've got to do is to get a good

grip on where you are. The second thing you've got to do

immediately after that- once you've decided what the most

graceful alternative is (knowing that there won't be much

grace!)- is to make a fast move. If you're going to go over a

waterfall- you're going to go, there's no two ways about it-

so the best thing you can do is to pick up some speed and go

sailing over. Unfortunately because of my misdirected

reactions- we didn't hit the edge fast enough to avoid the

"hole" of turbulence- nothing short of a "black hole" on the

other side. It'll suck up a canoe in a split second, and it

was all I could do hanging on to the gunnels with all my

might- not to become a permanent anchor in the bottom of the

river!

Many years later I was to remember this episode- walking

up the street from the UW's academic computer center in about

33

the same condition as I was in at the end of the Dead River

Race. Very slowly! Feeling very exhausted, and not knowing

whether it came from the strain of the exertion involved, or

the stress of not really being able to understand what had

happened. Sad that things hadn't come to an ideal end, but

relieved that it was finally all over. After the passive

solar class was over, I signed up for a full quarter's worth

of independent study with Joel. My purpose was to round out

my academic education with a real hands-on computer project,

exploring the possibility of developing a better user-

interface for passive solar design software. Joel got a copy

of the original CALPAS1 (1) from Harvey Bryan at MIT. It was

written in FORTRAN for a mainframe computer system, and I was

going to try to put it on a microcomputer for the school,

substituting it's batch interface for an interactive one. All

in one quarter.

It turned out to be a very exciting challenge for me. I

remembered a smattering of FORTRAN from an introductory

programming course a few years earlier. Which was of course

back in the "Middle-Ages" when everything was input with a

keypunch. I knew absolutely nothing about interactive

programming, had never written a complete working program, and

had heard nothing about the new science of "structured

programming" that was evolving at this time. But putting

PASCALC onto the HP-41c had been a fairly large undertaking,

so I felt I was prepared for this next step. Curious as to

why so many people were talking about this new language called

34

"Pascal", and remembering that FORTRAN had been a very "picky"

language, I picked up several books on Pascal, since our Terak

had a Pascal compiler. One of these books in particular- an

advanced book on Pascal which to this day is still the best

book on structured programming I know of (2), got me

thoroughly enthused on the subject and I couldn't put it down.

My scheme, and at that time I had no idea that anybody

had ever experimented with it much before, was to develop a

screen-oriented method of input based on something called

"direct-cursor-addressing". Hidden way back in the UCSD

Pascal manual were a few commands which allowed you to move

the cursor to any point on the screen, or to get from the

operating system the exact location of the cursor at any given

moment. I wanted to take advantage of this ability to develop

a "user-friendly" interactive interface, which had many

features which were far advanced over the more usual line-

oriented, question mark by question mark type of arrangement

that most programs offered at that time. Screen images would

be easily filled-in templates where the cursor itself would

prompt you for input, check your entry against a range of

allowable default values, then act accordingly. It would

either accept your answer- or give you an error message

telling you why your answer was unacceptable, back up, erase

your answer, and wait for a new one. Help messages could be

asked for at any point, and the carriage-return could be hit

repeatedly if you were in a hurry and just wanted to accept

the program defaults.

35

The day after I bought my eight-inch diskettes, the Terak

died. After discovering that an Apple II with a forty column

screen was useless, I was forced to move to a mini

environment, and spent the rest of the quarter working on a

Vax-11. I slaved away for weeks, following my books on

structured programming to the letter. The key concept which

they all talked about was something called "top-down design",

which basically was an organizational concept that was

supposed to aid in writing long and complex code. It's main

theme was to always work from "big to small", putting off

smaller needs until they absolutely had to be dealt with.

This kept you from getting muddled in trivia, always focusing

you on your largest goals so that you wouldn't lose sight of

where you were, and where you were going. In addition, it

incorporated a rather ingenious method of debugging where you

would continually check that your program was logically

correct by substituting these- as yet uncoded low-level

routines with fake procedure calls. The idea, was that you

would always know that the major part of your code was working

at any given moment, and you would then only have to debug the

small piece that you most recently added. Once you finally

added all the remaining small pieces in a similar fashion-

your program was almost guaranteed to work with very little

difficulty. Based on my previous experience with the

unmodularity of FORTRAN, this sounded all too good to be true!

I worked on it day in and day out checking out all the

procedures thoroughly, commenting the code, adding help

36

facilities, etc Since I didn't have any low-level

routines yet, and therefore the program was not completely

functional, I faked the input as well. Initializing arrays of

chars- just as though they had been filled by a low-level

routine, I was able to essentially run the program.

The program made extensive use of the terminal ascii

escape code sequences in order to do all it's fancy cursor

footwork. One day, after a final assembly of some 700 lines

or so of code, I was ready to try it out. To my astonishment,

although everything had worked up until then- nothing

happened! The terminal was dead- so it seemed. Then I

discovered that it would take in characters one at a time as

long as I hit the carriage-return in between each character.

That was ridiculous! After many hours of manual searching and

talking to the computer center consultants, it finally came

out that VAX-11 Pascal had absolutely no facility to get a

character from a terminal without first entering a carriage-

return to signal the computer that you had something to send

it. My whole scheme was ruined! Aside from rewriting the

whole program in VAX-11 FORTRAN which had this facility, or

redesigning all the algorithyms, my consultants told me that

there wasn't much I could do. One consultant knew how to call

FORTRAN from Pascal, and tried to rig me up with a FORTRAN

"patch", but contrary to the VAX manuals- it never did work,

and they finally concluded that certain inconsistencies

between how the two languages made parameter calls would not

allow it to work properly.

37

Two months of hard work completely down the drain! And

my first hard lessons about language extensions and

portability problems. That one version of a language was not

the same as another (UCSD Pascal had allowed this facility),

and that one computer word was not the same as someone else's

computer word. So much for "top-down design" as well! There

were obviously needs at a low level which needed to be dealt

with early on in the software development process, which

couldn't wait until last. So one day as I realized it was all

useless, and finding it pretty incredulous that I had so

thoroughly tested everything but the most obvious, I had

recollections of similar past failures due to "tunnel vision"

as I walked slowly up the hill.

Feeling really depressed, I went into a restaurant and

ordered a bowl of chili. No sooner had it arrived than a man

named Larry Palmiter walked in the door. Recognizing that he

had seen me before somewhere, he sat down on the empty seat

across from me. (If the reader doesn't know this name, Larry

Palmiter is in my opinion, the guru of the passive solar

design tool world. I don't what his IQ is, but at passive

solar conferences, you can't stop Larry from talking on and on

because quite frankly, most people can't comprehend what he's

talking about, and therefore can't shut him up. He's been

respondsible for such things as evaluating all the available

passive solar design tools for SERI (3), and has even been

able to do dastardly things to the government- like find bugs

in DOE-2! (4))

38

Since I didn't want him to ask me first, I asked him how

things were going, and as he unveiled his most recent sob

story to me- I perked up. "Problems in our new program at

ECOTOPE- to the point where a month ago, after nine months of

work and 11,000 lines of FORTRAN, I almost tossed it in the

wastebasket!" I couldn't believe it! He ordered a full-

course lunch, and I just sat there for the next four hours

listening to him talk about energy software design.

Everything from the pros and cons of the various heat transfer

algorithyms, to talk about various languages, methods of user-

interface, the next generation of computers and energy

software- you name it. As usual, he had so much to say on the

subject, that I never got around to telling him about my

problems, but they were piddley compared to his. He swore

that the next time he wrote a program, it would be a "program

generator and not just a program". "Because these programs

are now getting so big and complicated, that when someone

finds a bug that you've got to fix- it's so deeply embedded in

the code that you can't possibly do it!" "A what?- that's

because you're using FORTAN!"

And on it went. As I finally left at dusk I realized

that I had learned as much in the last four hours as I had in

the previous year about design tools and energy software. So

much for formal education! And in general, Larry and I had

agreed on almost everything in principle, on where the field

was, what was most lacking in energy software, and what the

roadblocks were. That the primary constraint for the moment,

39

was not in the algorithyms, nor in the user interfaces, nor in

the hardware (sixteen bits had just become the new norm), but

in the development software, and what it didn't allow you to

do. The man sitting across from me who had spent most of his

years pouring over various algorithyms, was now most concerned

about finding better ways to program, and programming tools

which really worked! It was a real about-face, and needless

to say, I was very impressed. As usual, Larry had already

done quite a bit of thinking on this new subject, and through

the course of the afternoon, he had energized my mind to a new

level- from "tunnel vision" to new visions which- little di-d I

know that night, would carry me 3,000 miles away to MIT!

When I arrived at MIT a year and a half later, I found

out that two people in particular- Charles St. Clair and

Constantine Seremetis, had been hard at work developing a

screen-oriented user interface just as I had, only with a

considerable amount of better succcess. Which was a real

relief to me because quite frankly, I was burned out on the

subject by then and was glad to be able to move on to other

things. Like better languages and better methods of

programming. The work they had accomplished although it was

not quite finished yet, was very similar to what I had

envisioned myself- except their screen images were more

complicated than mine had been. The main program that they

were interfacing to called Micropass (5), was a later version

of CALPAS1 which had been revamped for use on microcomputers.

More features had been added to it along the way, which

40

necessitated more input and therefore more complex screen

images. I really liked the work these two guys had done, but

was really appalled by one thing- they wrote it in BASIC! And

much to my horror, I found out that everything that had been

written for microcomputers in the architecture school up to

that point, had been written in BASIC. Of course, that had

been the easiest and the cheapest thing to do, since BASIC

came free with every purchased microcomputer. They also

argued that at that time, there weren't many high-level

language compilers on the market for PC's, and most PC user's

didn't even know what one was- let alone own one. And if they

did own one, the likelyhood that two PC owners would have the

same compiler was as good as remote, since compilers for PC's

was not the norm. Although Pascal was definitely the standard

for a high-level language at that time, I myself had learned

the hard way that no two versions of Pascal were alike in some

of the most fundamental ways.

Although I couldn't buy at all the idea that BASIC was

going to remain strong in the microcomputer world for very

long, there wasn't much I could do except to bite the bullet,

and again, go along with the way the river was flowing. I did

spend some time on my own that fall searching around for

language compilers. I bought a copy of Niklaus Wirth's new

book on MODULA-2 (6), an upgraded version of Pascal which

promised to cure all it's evils, and a special issue of BYTE

magazine which was devoted to espousing the pros and cons of a

new language called "C" (7), but at that time, none of the

41

experts could agree on what language was going to become the

new standard production language superceding FORTRAN, so it

was really too early to choose.

The final blow for BASIC came when during that fall, I

tried to convert a fairly sophisticated HVAC program (8), from

Apple BASIC to IBM BASIC for the Designer's Software Exchange

(9), a non-profit, public-domain software distribution center

which I helped organize with Professor Harvey Bryan at MIT.

Talk about a hopeless task! One reason I am sure why my

predecessors at MIT were not as vehemently outspoken against

unmodular languages as I was- was the fact that they hadn't

yet experienced the virtues of a modular language, and didn't

really understand the philosophy of structured programming.

Later experience seemed to bear this theory out. That winter,

after much initial resistance, I managed to convince one of

these people to take a C-programming course with me, and

consequently- I have never seen a faster conversion! But by

this time this guy was really ripe. Because both of us spent

endless hours struggling with our respective BASIC programs

that fall- and really to no avail. After weeks and weeks of

head-pounding, mine eventually got finished which by that time

I considered to be nothing short of a miracle.

Since BASIC does not allow a programmer to declare his

variables at the beginning of a program except for those that

are dimensioned as arrays, new variables get made up along the

way in the moment they are needed. It is common practice to

give a variable a name which is a close derivation of others

42

it is associated with, because the linear arrangement of code

gives you virtually no other way to keep track of things

otherwise. The result is that after more than a page of code

(about all that BASIC was originally intended to do as a

beginner's language), it's about as easy to read as chinese:

Crammed together, everything looks almost the same- but not

quite, and you can't tell whether you should be reading

forward or backward! A hopeless confusion where it is

impossible to find all of your coding errors without extensive

use of a cross-referencing program. And as Larry Palmiter said

of FORTRAN which is similarly structured, "bugs are so deeply

embedded in the code that you can't get them out", and "after

a certain point, it's just impossible to add any new program

features!" If the reader thinks I am trying to stretch their

imagination too far, let it be known that the program that

this other student was working on (which will remain

anonymous), even though it was of such high quality as to be

presented at an annual national conference- to this day

remains unfinished, and I seriously doubt if it ever will be.

After a certain point had been reached, this programmer found

himself painted into a corner by the computer language,

literally unable to move!

At the end of that whole experience, many of us said

good-bye to BASIC forever. Another set of factors however,

had been influencing us toward this end in a somewhat parallel

fashion. Around six months after it's inception, the

Designer's Software Exchange became successful, as software

43

from outside sources began to role in. In all, we collected

about a dozen programs of various sorts which were deemed to

be in good enough shape to offer in The Exchange- which

without exception, were all written in BASIC. Most of the

software that was submitted simply was not usable, primarily

because of two reasons. It usually had a very inferior user-

interface, on the order of the question mark after question

mark type. And quite honestly, it usually didn't accomplish

very much. After using it you felt let down because although

the programmer may have had a great idea, the software fell

way short of actually accomplishing it, and it left you with a

piece of what you thought you were going to get- and not the

whole thing. Consequently, you weren't too excited about it

after all. The reason for this of course, was that BASIC

lacked the power to do anything without getting inherently

convoluted, so most programmer/designers- even if they had the

experience to do more, simply used their PC's as an oversized

calculator and not much more.

On the other extreme were the programmer/designers who

tried tackling a rhinoceros- and unlike my friend, didn't get

stomped on! These programs were so grossly complex that I

dreaded hearing the phone ring for fear that someone wanted

some technical information on them. I could never begin to

unravel them enough to be able to give an intelligent answer.

Even the HVAC program I wrote, 3 months after the fact, I

could not answer a simgle technical question on. People would

answer the phone and say, "you'll be happy to know that the

44

author of that program is right here, just wait a minute" and

I would cringe inside, knowing that just like the last time, I

would not be able to answer their question. BASIC in essence,

became the "Achille's heal" of The Designer's Software

Exchange. When it came time to choose available application

programs as "modules" to be used in the work for this thesis

some six months later, all of the likely candidates except one

in the BASIC catagory were thrown out because of the

infeasibility of translating them, even though some of them

were perhaps better programs than the ones that were

eventually chosen.

During the same time period, the School of Architecture

and Urban Planning established a computer lab where .

microcomputer facilities existed for student use. Through the

software exchange and other sources, the lab began to

accumulate various pieces of architectural software. Some of

this was your typical canned business software, and the rest

was of the homegrown BASIC variety. And pretty soon the

students were inundated with twelve varieties of user-

interfaces, six kinds of file usage, and more different menu

items to choose from than the best restaurant in downtown

Boston! It was apparent to some of us that some drastic

cleaning-up needed to take place because this clutter made it

impossible for those who were not daily users of the lab to be

able to get anything accomplished there. From one week to the

next, it was not possible to be able to remember one user-

interface from the next. And with six different methods of

45

file storage, you simply had to know twelve user-interfaces

because there was no way to pass files between applications.

Consequently, as a student you were forced to either use the

lab all the time- so that you remembered how to use it the

next time, or not to use it at all. For some students like

myself who's coursework did not require us to use the

facilities on a regular basis, the only alternative- since we

couldn't be there often enough, was not to use it at all.

In summary, my journey thus far gave me more insights in

the area of what not to do, and what not to repeat again, than

it did positive and concrete findings which I could move

forward with. But knowing what not to do, by a process of

elimination can many times lead one to positive insights as to

what one therefore ought to do instead, and this was very much

the case here. My big failure with "top-down design", having

been caught by "tunnel vision", taught me that my thinking

needed to be very broad in scope, much broader than most

people were thinking at the time. My subsequent talks with

Larry Palmiter succeeded in cementing this idea in my mind.

That my earlier hypothesis had been correct: indeed, there was

alot to be done, and nobody seemed to have a viable solution

yet. That the main bottleneck for the moment was the fact

that the current capabilities of existing software put major

hurdles in the way of the design tool designer, effectively

thwarting the outcome of his gallant endeavors. That what to

code was not the major issue, but how to code. And

consequently newer, more flexible and powerful software

46

development tools were required before existing design tool

inadequacies could be done away with. And this meant that it

was time to kiss conventional practices good-bye, and strike

out for a new frontier.

This was a very sad state of affa'irs to say the very

least about it- but then along came hope. News about Project

Athena began slowly to filter down to the masses, including~

the rumor that the Athena committee was "distressed" about the

lack of a really good software development environment here at

MIT. I was elated to hear that someone else had reached the

same conclusions! And in fact, Athena meant business and not

only was going to offer some courses in UNIX and C, but was

looking for software developers who were interested in

developing software well beyond the current limited horizons.

This was very exciting news to me, because it afforded me the

opportunity to branch off from past directions, and go in the

direction I wanted to go. So far, all of my predecessors

within the School of Architecture at MIT, had been absorbed by

the question of what to code. Nobody as yet, had really

touched on the issue of how to code, which I was by now all

the more convinced, was the primary issue of the times. The

issue which if solved, would do alot to break the current

bottleneck in design tool design.

47

CHAPTER 2: GAINING A VISION

"Now faith is the assurance of things hoped for,

the conviction of things not seen."

The good news that Project Athena brought to my ears was

that BASIC was dead! Although Athena would continue to

support FORTRAN and Pascal as software development languages

at MIT, BASIC would not be supported and therefore was down

the tubes. Some people in my department, having nostalgic

feelings about their early romances with microcomputers I

think, felt alittle remorse at this- but not me! I was eager

to push onward and let bygones be bygones. And since Project

Athena had already chosen UNIX as it operating system of

choice, my problem of having to choose a new software

development language was solved. Since 85% of UNIX is written

in C, it was clear in my mind that C would become the dominant

applications language at MIT for-years to come. Therefore it

was time for me to find out more about this controversial new

language. As I was soon to find out, the whole software

development industry was beginning to look seriously at C as

well, having been thoroughly frustrated with the more

established languages at this point, just as I had been.

Consequently during the last year, there has been a fair

amount of press over the issue of just what is the best

applications language for the scientific and engineering

fields.

48

As a recent article points out, most of this type of

discussion usually falls on deaf ears, as programmers

staunchly argue in favor of what they know themselves to be

"the best language"- which only turns out too often to be the

one they are most familiar with. For many decades, FORTRAN

has been the mainstay of the scientific & engineering fields,

as it has a large repertoire of built-in math functions

covering almost every conceivable need. But the popularity of

FORTRAN has largely been replaced by C. Except for those

situations where too great a software investment must be

forsaken in terms of compatibility with older code, it seems

that most current commercial programming is being carried out

in C. A rather illuminating article in Computer Language

magazine entitled "C instead of FORTRAN ?" looks into the

software development issues behind this recent switch (1).

One of the biggest concerns in software development these

days in the wake of the many recent advances in computer

hardware, is software portability. Many software vendors

ended up getting burned quite badly when the computer industry

made the switch from 8-bit to 16-bit processors in the early

part of this decade, as they discovered that the software they

had written would not work on the newer machines. This

occurred because low-level hardware dependent features were

built into the languages that were being used, making it

impossible for a program to work on a new processor without

rewriting the code. Newer languages such as C and MODULA-2,

avoid this problem by putting all operating system dependent

49

features- such as calls to I/O devices, in an outside standard

library which is not part of the formal language itself. When

a version of a program is needed for a new microprocessor, one

only needs to change the standard library to one which

supports the new processor, instead of having to rewrite the

code. In an era when new processors seem to pop up overnight,

this language feature is a must for software house survival.

Although the standard library varies somewhat from one

compiler to the next, it is usually not hard to make the

relatively few adaptations required to port a progam to

another machine.

Truly modular languages offer other crucial advantages

besides portability and compatibility. Because they support

the ability to reference external chunks of code residing in

other files (i.e.- libraries), it it now possible to divvy up

a large programming task amongst a team of programmers who can

then go off to their own computers to work on their respective

part. Team-programming was not as easy to do with the older

non-modular languages which required a program to be one

continuous source file, to say the least! Nowadays, when

competition for user-friendliness and performance has forced

virtually all software development ventures to be highly

sophisticated in nature, team-programming is a must, and thus

the popularity of C has risen dramatically in the last few

years.

Speaking of performance, C has a definite edge over other

application-oriented languages for a number of reasons. In

50

terms of code size, C is a very compact language making it an

ideal language for use on microcomputers where storage space-

both in terms of memory and disk space, is at a premium. A C

compiler is a very lean machine, simply because the extra

baggage that the all-inclusive, non-modular compilers needed

has been done away-with. Executable code therefore only

includes what is essentially needed in order to get the job

done, and nothing more. This contrasts markedly with a heavy-

weight language such as FORTRAN. Write a five line program in

FORTRAN and to your horror you will discover that the

executable code takes up about 30k! From my own experience, a

similar program compiled in C would be under 10k. In terms of

execution speed, C offers two distinct advantages over most

other number-crunching languages. C supports many low-level

operators which mimic the assembly language instructions that

microprocessors use. This reduces the number of clock cycles

required to execute a sequence of instructions resulting in

faster code (2). The other advantage which has become of

paramount importance now that the public is clamoring for

things such as pull-down menus, viewports, and other screen

intensive functions, is the ability to directly interface with

the assembly language that the operating system uses to

control the whole computer (3). These features would be much

too slow without the use of assembly code. But the fact of

the matter is that they can't be done without it anyway. In

the past, the only alternative was to write the whole program

in assembly code in order to provide these features. This

51

made the code completely unportable, which is where alot of

software companies got burned in the switch to 16-bit

processors. Realizing that the corresponding switch to 32-bit

processors is inevitable once the industry is pressured to the

point, many of these companies are now writing the majority of

their code in C, keeping what assembly code is absolutely

necessary off in separate library modules which can then be

easily replaced in the future.

Contrary to what most people might believe, software

maintenance costs take up roughly fifty percent of the total

software budget (4). Thus the main emphasis in software

development projects in recent years, has been to try to write

code which is "packaged" in a compartmentalized fashion so

that any programmer (not just the original author), can pick

it up somewhere down the road and easily make changes to it.

Thus the emphasis these days on structured programming and so-

called "top-down design". These programming style techniques

which make programs easier to understand, are for the sake of

programmer productivity. Consequently, the odds are good that

a new programmer can pick up a program that has been written

in a procedure-oriented language such as Pascal, and quickly

see what has to be done in order to maintain it. But other

than to save the programmer some time twiddling his thumbs, it

does not necessarily make his task that much easier, because

changing code usually involves to some extent, changing the

underlying data structures.

One big advantage of C due to it's ability to address

52

both data and blocks of code in memory via pointers, is that

it affords the programmer the opportunity to write segments of

code which are "generic" in that the underlying algorithym

becomes independent of the particular data structures used

(5). If in the future it becomes necessary to change the form

of the data the program uses, the program can then be made to

"point" to new data structures, and the corresponding new

pieces of code which manipulate them. For example, it is

entirely possible to write a program which sorts data where

the program really couldn't care less what it sorts (6). One

day it might sort integers, the next day it might be called on

to sort double precision floating-point numbers, or even

something considerably more exotic, using essentially the same

sorting algorithym. This ability, in conjunction with the

facility to create libraries of source code means that the

programmer has the opportunity to write code where large

segments of it can be "plugged-in" and "plugged-out" on

relatively short notice to accomodate some new and unexpected

need which has arisen.

Due to the fact that C offered so much power and at the

same time, so much flexibility, it quickly became evident to

me after finding out how well accepted C has become in the

scientific and engineering fields, that C was the language of

choice for any near-future architectural applications. That as

a software development tool, it offers the programmer more

hope than any other applications language does at this time,

that something started may even get finished, and won't have

53

to be scrapped later on for lack of compatibility with newer

hardware and software products, or because nobody can maintain

it. Problems which had fatally put to death all previous

attempts by my colleagues in the architecture school to

produce viable in-house software. Moreover, UNIX's symbiotic

relationship with C meant that students would be encouraged to

learn it, and therefore two or three years after I left MIT,

someone within the department would most likely still be

interested in maintaining any software I developed in C, as a

means of initially aquainting themselves with the language.

With all of this new learning on the tip of my mind, I

was only too eager to take Project Athena up on it's C-

programming course offering. The best aspect of the C-

programming course was not the fact that I learned the

language. The most important thing C did for me as I started

experimenting with it's power, was that it began to open up my

mind to a new awareness. An awareness that showed me that I

shouldn't be inhibited by the frustrations of the past- but

that I should begin to think on an entirely new level where

you didn't need to set artificial limits on what you thought

was possible. The most far-reaching aspect of this new

awareness, was that it was time to stop thinking about

individual programs. Experience had shown me that in the long

run, individual programs didn't accomplish a whole lot because

they were in effect, like little isolated islands in a huge

ocean. In many respects, this adequately describes the state

of affairs in the architectural software world, and how it

54

came to be. Lots of architects off on their own little

islands, doing their own thing on a different computer. Not

much chance that any of them would find much use for what

their counterpart somewhere else had been doing (once the

communications link between islands got invented). C brought

about the possibility given a new perspective from the start-

i.e. a more global perspective, that individual applications

could be written not as individual programs, but as "modules"

which could then be plugged into a larger framework which

supplied the necessary communications and support facilities

to allow these applications to function together. The result

would be a synergistic system where the sum would definitely

be greater than the sum of the individual parts.

For example, it would then be possible to try to optimize

the design of a building based on more than one criteria,

which- due to the isolation of programs, has been the norm in

the past for building technology software. Every architect

knows that you simply can not design a building around a

single set of criteria because at some point this will

conflict with another important need. A case in point where

such a "software system" would be valuable in the design

process would be something like the following, which is not

all too uncommon these days: An architect designs a

commercial building based on an open-plan scheme so as to be

able to use daylighting to cut down on air-conditioning loads.

An energy analysis program is employed in order to optimize

the design of special design features which enable the

55

building to maximize it'.s use of daylighting. Once the

building gets built and the occupants move in, all of a sudden

they find out there is a big acoustical problem because there

are no internal walls or partitions. So they add some. Now

the daylighting scheme no longer works adequately enough

because the space has been chopped up, and they now are forced

to turn on much more artificial lighting. Consequently the

air-conditioning load jumps up (during peak hours of course)

accordingly. Since the building was originally designed with

special daylighting features, you can bet that it's cost per

square foot is greater than a "normal building" which utilizes

artificial lighting as the primary light source. At this

point, the economical advantage behind using daylighting has

been lost, since the owners will not be able to recover it's

additional capital cost.

A situation such as this could have been avoided if from

the start, the software employed had the ability to explore

the trade-offs between different building system requirements,

and somehow was able to keep track of the marginal cost

associated with each design scheme as it was being simulated.

The results could be depicted graphically on a CRT, giving the

designer a quick and easy means for making a rational

judgement as to what scheme produced the best results

according to the criteria chosen. Also, by making many runs

while changing only one or two building parameters,

"sensitivity studies" could be udertaken to try to determine

what building system elements were most critical, and thus

56

should receive the most attention in this optimization

process.

Such a software system composed of integrated program

"modules", would obviously require certain features which from

an initial conceptual standpoint, seemed quite doable given

the facilities of the C language as I have previously

described. These modules would need the ability to function

independently as separate islands within the larger context of

a whole system of design tools, yet be able to communicate

with each other in such a fashion that they could be used

together as problem solving tools. This of course means that

they must be able to share their input and output data so as

to be able to benefit from each others analyses.

On the input side of things, since there would invariably

be alot of unnecessary (and time consuming!) redundancy if

each module was solely respondsible for getting it's own data

from the user, either a common "universal" user-interface was

needed which could accept all the information pertinent to all

modules, or some means of sharing input data- i.e.- conserving

data from one module to the next was required. There would of

course be many inconsistencies amongst the datasets of the

modules. Although modules might require the same basic data

about a building, they might require this data in a slightly

different format from each other, and this would pose

compatibility problems which would have to be dealt with.

On the output side, all output from any given module must

reside in a form which is compatible with that of all other

-57

modules- otherwise there would be no means of comparing the

results of one module's simulation with another. Since the

user could, and inevitably would in order to take full

advantage of having such a system- be making a wide range of

parametric studies on a project, all of which would not be

made at the same time, some method of archiving module output

data must exist so that it could be recalled at any later time

from some kind of database storage device. Thus the

particular output data format chosen would have to be

compatible with this facility as well. Although this output

data would probably be most naturally displayed in typical

tabular form, my previous experiences reminded me that it must

easily be amenable to graphical display formats as well.

Of course the ultimate "fly in the ointment", was that

there simply was no way of knowing what the data requirements

of future modules would be, and therefore, whatever was

developed in the meantime would have to have within it, an

infinite amount of flexibility for the sake of future software

maintenance. As long as this flexibility would not

detrimentally degrade performance!

In terms of user-interface considerations, such a system

could obviously be a nightmare to work with, and some means

needed to be found which would afford consistency- both for

the sake of streamlining the process so that it would be

efficient enough for parametric analysis purposes, and also

for the sake of the user. Since the user's mind is limited in

it's capacity to remember pertinent details, a particular

58

"style" of user-interface should be chosen and remain

consistent in it's use throughout the whole software

environment. Then if the user forgot a particular command for

instance, at least he would have a "feel" for what to try.

This would hopefully eliminate somewhat what I call the "user

blues" associated with some large user-interfaces, such as

elaborate text editors where it's impossible to get anything

done unless you really know the system. Many of the commands

are so complicated and seem so unnatural that you spend half

your day hitting the "help" key!

The user-interface would for the sake of portability and

maintenance, have to be detachable from the underlying

algorithyms in the modules. Otherwise the same hopeless mess

would result as had always resulted in BASIC and FORTRAN

programs whenever changes were required in the code. Enough

has been said previously about the difficulties this poses for

the programmer. Getting rid of complicated screen calls by

making them generic enough to be stuffed in an outside library

would help this situation immensely. Of course the other

reason for detaching the user-interface is that some sort of

interface would have to exist at the system level, independent

of any module, because there would be times when the user

would need to interact with the system as a whole. This

system interface would need to be consistent with all module

interfaces, giving the user the opportunity to do such things

as specify a batch job to be run overnight, allowing the user

to peruse data files, or connect the user to other programs

59

residing outside of the software system for subsequent data

analysis or documentation purposes. Not to mention the

necessary task of just plain explaining all the various system

options.

The concept of an autonomous "software system" was easily

conceived in my mind because UNIX allows one to define and set

up his own "command shell"- i.e. the command-interface part of

the operating system which remains "in control" after a

program is executed. This would both from the point of view

of the programmer and the user, give the system the aspect of

coherence- as the software system would be able to maintain

control once a particular module ended until the user

explicitly told it to relinquish control back to the operating

system's command-interface. Thus the user could spend time in

the software system's local environment- graphing results,

doing some spreadsheet analysis on some of the output data,

transferring data to an external database, etc.... without

having to be actively engaged in running modules.

These were some of my initial visionary thoughts when it

became known that Project Athena was actively looking for

software development proposals for the upcoming year.

Although I didn't have a clear idea in my mind of exactly what

kind of form such a system should take, I at least had a

pretty good understanding I felt, of what it's major

requirements were. Enough at least to be able to put these

ideas and understandings together in a presentable "package"

which Project Athena might buy. For the sake of presenting a

60

clearly defined package to Athena, these concepts were given a

tenative form- i.e.- the concept of a centralized "building

systems data processor" for lack of a better phrase, which

somehow quite miraculaously could do all these things. Of

course the reader/designer will realize that this "talking off

the top of our heads" was just part of the normal, creative,

scheming process that we designers always go through- and in

retrospect considering the eventual course of action, are

usually afterwards- somewhat embarrased about!

One interesting anecdote concerns my diagram which

depicts what such a system would look like on a conceptual

level (See Fig. 1). At the same time, JF (Joseph Ferriera),

in the Urban Planning Department was working on his proposal

to Athena concerning his vision of what the Architecture

School's future computer facility should look like. Although

his diagram was more elaborate because it included a broader

scope than just building technology software, the overall

structure of his envisioned system, including how various

elements were tied together was virtually the same as ours.

Although there might have been a question of "which came

first- the chicken or the egg", to my knowledge these

virtually identical views of the ideal architectural software

world were conceived in isolation from each other. It was a

welcomed encouragement for me, signifying there was a chance

at least that I might be on the right track. There was

nothing to do in the meantime but to mull over these concepts

during the summer while the Athena committee mulled over what

61

Tr.-m-.AL ART=FICA DAYLIGHT ACCUSTICS zC...
LOADS LIGETING

Fig. 1 The BSDP's central role in a Building
Technology Software System as an
integrated part of the Project Athena
Architectural Workstation.

62

they were going to do, and try to pick up some more experience

programming in C. And as a stroke of divine providence would

have it, the opportunity arose to do just this.

W.A. Wright Associates is a small firm located in

Lexington, MA. The man at the helm of this group, is an avid

C enthusiast who was currently involved in writing an energy

design tool for- shall we say for the sake of confidentiality-

"a rather large an inefficient beauracracy". And as cases

like this usually require, he was looking for some help. Over

the course of the summer, I was to get a tremendous amount of

hands-on experience writing C-code, much of which I found out

later on was directly applicable to the needs of this project.

But by far (and I say this using 20/20 hindsight, as at the

time I could hardly appreciate it), the best aspect of this

summer work experience was the opportunity to be able to write

software under "real-world circumstances"- i.e.- working for

"a rather large and inefficient beaurocracy" because little

did I know at the time, I was going to have to deal with this

later on by myself.

What ended up happening, was that the client was unable

to make decisions as to what exactly it was that they really

wanted, no internal walls or partitions. So they add some. Now

the daylighting scheme no longer works adequately enough

becaua different idea regarding what they were looking

for in the end, which meant week by week, those of us who were

writing code didn't really know what we were shooting at. But

at the same time, business going on as usual, we had to make

63

sure that we were doing something productive. All I can say

is that our saving grace was the fact that we were programming

in C. We couldn't exactly do "top-down" programming because

quite frankly, we weren't sure what "top" was, but at least we

could do "from the middle- up and down programming", which was

a heck of a lot better than just plain "shoot'n from the hip",

which would have been our only choice with a nonmodular

language. So we were able to say to ourselves, "well, if

we're going to do something like this in the end, then we know

that we'll need something like these functions here, so if we

go ahead and code them using fairly generic library routines,

then they'll end up being useful in the end, whether we end up

using them in the exact manner we've envisioned or not." As

luck would sometimes have it, three weeks after we had started

a program and were on the verge of finishing it, the phone

would ring, and we'd find out that it wasn't going to be as

useful as we had thought. The client was off on a new

tangent. But luckily, the new tangent wouldn't be that far

off from the old one, which meant most of the functions we had

developed to code the program were still useful. It was just

a matter of revising and reorganizing them into a new program.

Not quite this simple, but a far cry from having to write

something new from scratch.

One of our biggest continual hassles in this regard, was

that the program we were writing required the use of some huge

data files, which our client was compiling from various

sources. Two of these sources we had access to fairly early

64

on, while the format of the rest of the data we would

eventually use- was as good as anybody's guess. Our overall

goal was to in essence, find the common denominator between

the various input files and the program data structure

requirements- so that we could produce a final input file

which was compatible with all these needs. But because we

could never quite figure out what all these needs were, we

were constantly put in the defensive position, having to say

to ourselves- "what is the safest course of action, the one

that is least likely to catch us in the end ?" Because I had

never worked in this sort of environment before, the thought

had never occurred to me that most of your time on a big

project gets eaten up with these sorts of tasks and vagaries-

but it's the truth! Consequently, this real-world experience

of learning that coding in an academic environment is miles

apart from coding in a business environment (unless of course

you are coding for THEE academic environment), was a real eye-

opener, and an invaluable one at that. Once you've learned

this fact of life, then you've got to deal with the real

problem of "how in the world am I going to get anything done

if I continually get side-tracked by these off-beat tasks!"

All I can say in retrospect, is that everything you do in some

way, shape or form- has to count toward the whole picture in

the end, or you'll never see it! Through all this, I was

beginning to see that the task ahead of me in the fall was a

monumental one- much bigger than I had ever realized. I was

glad that I had the foresight to pad the Project Athena

65

proposal with months of time devoted to "background research".

At the time I wrote the proposal, I had no intentions of doing

such a thing, I just knew that I'd better stick something in

the schedule that would chew up a significant amount of time-

just in case I needed it. And at this point, I was sure I

would.

By the end of the summer we were both pretty fed up with

"rather large and inefficient beaurocracies", having run out

of patience by then, and I was eager to get on with my own

work. Although I still had no firm idea really of how to go

about developing a complete "software system"- on the scale

that I had envisioned, at least I had become fairly proficient

at writing C code, and just plain learning the art of how to

get things done. And I had learned an incredible amount about

how to go about developing software when the end was too far

away from the beginning to be seen. I knew this was an

invaluable discovery, and one which would probably end up

being my saving grace- the knowledge that true faith is a

virtue no programmer can be without!

But aside from growing in my capacity to be an effective

programmer, by now I had gained some very positive, concrete

insights into the task at hand, as I was beginning to see

clearly the real-world details of the overall problem, and

what it was going to take in order to solve it. This meant

that I had finally arrived at my first real concrete

hypotheses: That an entirely new perspective was needed where

architectural application programs could no longer be thought

66

of (and therefore coded as) independent entities, but due to

the fact that architectural design is multifaceted, a systems

approach was necessary if architectural software was to be of

any real value for design optimization purposes. This meant

th'at powerful and at the same time- flexible software design

tools and methods were needed, and I was glad to be convinced

that the C programming language could offer both. Moreover,

that code-organization had to achieve a new level of quality,

which up until this point in time, architectural software had

managed to avoid. That the issues of coherence, compatibility

and flexibility- both from the standpoint of the code and it's

ability to be expanded and maintained, and of the user in his

various interactions with the design process, had to be dealt

with in an effective way. And that these issues in an

educational setting, have a far greater priority than the

traditional notion of "performance". That this in turn,

opened up many avenues which needed exploring in the way of

coding technique, including the idea of some sort of

"integration". And last but not least, due to the realities

of real-world software development- investigating these issues

was not going to be easy, therefore one's frame of mind must

constantly be "what course of action is least likely to catch

me in the end!"

67

CHAPTER 3: VARIOUS TRIALS

"Consider it all joy, my brethren, when you

encounter various trials, knowing that the

testing of your faith produces endurance."

When september finally came around, it was all too

apparent to me that working for Project Athena as a software

developer was definitely not going to be a gravy job. That my

experiences dealing with "rather large and inefficient

beaurocracies" had only begun. My first inkling of this stark

reality came during the summer when Athena became quite far

behind schedule in determining which projects they were going

to support during the following academic year. While their

original request for proposals had originally been slated for

June 1st, at the last minute, this deadline was extended to

July 1st. Consequently, although I had originally planned to

hear back from Athena somewhere around the first of july

concerning the outcome, it was nearly september when I finally

got the news that our proposal had been accepted. This was of

course good news, and I was delighted to hear it.

Joseph Ferriera was the man at the helm of our brig

(nicknamed "the flagship"), and as a brigadier, the rest of us

deck-hands soon found out that he runs a very tight ship!

Having a tough commanding officer is not so bad if you happen

to agree with him on the way to approach most issues.

Unfortunately I think to some of us who were accustomed to the

68

very unregimented nature of architectural design, there was

all too often the threat of having to "walk the plank" looming

somewhere on the horizon. At least I am speaking for myself,

as one who was acutely aware that Project Athena's slowdown

was going to cause me some real difficulties during the year,

and although Athena wasn't going to come through on it's end

of the deal (i.e.- the promised and proper support for

software developers), I would be fully expected to come

through on my end. All I can say in retrospect is- thank God

I'm a good dinghy rower! I can usually manuever quite well in

heavy water without capsizing (notwithstanding my one

adventure with waterfalls), and make it safely to shore. So

consequently when the inevitable finally came up which it did

a few times, "well hey- if you don't want to tow the Athena

line- well there it is!", I found myself madly rowing on my

own.

Of course this is all a well chosen figure of speech.

What I mean to imply by it, is to give the reader some idea of

what it was like for me to be a part of the architecture

school's flagship at times, and especially at the beginning.

I'll be the first to admit that JF is a good commanding

officer and there was never any question in my mind as to

whether he knew how to run a flagship or not. But because he

was in charge of the whole fleet, he also considered himself

to be the captain of dinghies as well, and at times I

seriously questioned whether he could row a dinghy to save his

life! Which under the circumstances, is literally what us

69

dinghy rowers were being asked to do. I am not trying to be

facetious here. Being a captain of a flagship and being a

great dinghy master are two entirely different things,

requiring a different set of skills as well as a totally

different mindset. When you're the captain of a flagship,

you're looking down on the waves from a nice safe spot up

above. When you're a dinghy master, you're right in the

middle of them, and they are bigger than you are! You have to

respond to them and you have to do it quickly. Consequently

the perspective of a dinghy master is usually at the opposite

end of the spectrum to that of a flagship commander, and your

priorities in the moment are almost always completely

different. My chief concern was always "given the size of the

swell, how can I save my dinghy". I always had to have my bow

pointed directly into the waves, or I'd ship too much water

and run the risk of capsizing. I needed some good oars too,

which the flagship didn't provide me with, and this made my

task that much more difficult. The flagship commander wasn't

concerned about waves at all. He had to get his fleet to

Treasure Island within a certain time period- i.e.- nine

months, consequently he spent his time wandering all over the

high seas looking for it. No sooner would I get my little

dinghy lined up properly into the waves, when I'd discover

that the flagship had altered course and I was no longer

following it. If I changed my course to follow it I would

surely capsize, so there was nothing I could do but to keep

heading the direction I was going and have faith that Treasure

70

Island was out there straight ahead somewhere. That after it

had checked out all the surrounding islands, the flagship

would end up somewhere down along my course. And as long as I

kept on rowing hard, maintaining a straight course, we'd

eventually meet up again. This is what eventually happened

nine months later in most respects.

My first encounter with "walking the plank" occurred over

my decision not to follow the flagship's lead regarding the

choice of a software development environment for this year's

software development efforts. I did not go along with the

myth that some version of UNIX would be in place on the IBM-

side of Athena (the architecture school was given IBM hardware

by Athena instead of DEC hardware), in time for us software

developers to make good use of it. From my point of view, I

knew that I had so much to do that I could not afford to waste

any time during the year tinkering with anything that didn't

by this time look like it was a guaranteed winner. I knew

that my need to rewrite code written in BASIC and FORTRAN

would chew up an enormous amount of time. Consequently I

could not afford the luxury of devoting precious time to

learning how to use the UNIX mail facilities, editors, and

other features of the-UNIX operating system in the DEC

environment, on a far-fetched supposition that before long

Athena would have this stuff running on the IBM machines as

well. If Athena wasn't prepared to offer us a fully working

UNIX environment by september when our projects were required

to start, then from my perspective on the water, nobody from

71

Athena had any business asking us software developers to

prepare to port our work to a hypothetical future operating

environment- given the fact that they also wanted us to have a

substantial product to show at the end of the year. That was

too much like wanting your cake- and eating it too!

Consequently, from day one I pretty much refused to work

with UNIX and devoted my efforts toward the "MS-DOS" operating

environment, which by that time had almost become a naughty

word to Athena personel. The problem with this course of

action was that since Athena had not intended to support MS-

DOS in the beginning at all, they were not willing to invest

any money to provide us software developers with a good

software development environment in the interim period, during

the time it would take IBM to get the IBM-side of Athena fully

operative. Although we had access to the Lattice C compiler,

we did not have access to any of Lattice's other software

development tools such as symbolic debuggers, cross-

referencers, and screen I/O libraries, which are considered to

be essential tools these days by most C code writers. Knowing

that translating code from a non-modular language was a

formidable task, I opted to use the DeSmet C compiler with

it's full compliment of software development tools which

included in addition to the above, an assembler, linker,

profiler, and libraries of graphics and screen I/O primatives,

all of which I have used during the course of this year. I

was sure that JF was not going to let me get away with it in

the end (which he has recently assured me he will not!), but

72

at least in the mean time I was confident that I could really

get some work done, and consequently would have a good product

to show when it came to demonstration time, which came around

much sooner than I expected. Luckily, I did in fact have

something substantial to show at that time, and I attribute

this directly to the fact that I had a symbolic debugger which

I made constant use of. In the aftermath of it all, it

appears that Athena has reneged on it's committment to a UNIX-

like operating environment on the IBM-side for a period of two

years, due to the difficulty it has had getting the proper

supporting hardware links set up (1). I'm glad that some of

us dinghy.rowers had enough foresight to see this coming, and

spent our precious time working with MS-DOS, using our own

software development tools. (It looks like Athena has decided

that software development tools such as symbolic debuggers are

pretty indispensable after all, as they plan to offer these

tools next fall for Lattice C, along with a library of screen

I/O routines.)

Not only did the flagship have a predetermined course as

far as the use of a software development environment, it

turned out that it had a policy regarding how code should be

developed, at least to the extent of defining how existing

software resources within the school should be used in order

to save us dinghy rowers some effort. While I give JF full

credit for the brilliancy of this idea- (I think one would

surely have to be at least a three-star admiral to have

thought of it in the first place), I wondered however, if it

73

would look as good from the level of a dinghy on the water as

it did from the bridge of the flagship. The idea was that as

much as possible, we software developers would utilize

existing canned software to perform our tasks, which would in

the end save us alot of code writing. For example, we would

use the spreadsheet environment as an input and output

environment for our analytical programs- (which of course

totally encompassed the work I was doing). The programming

power afforded through the use of spreadsheet macros for

instance, would enable the spreadsheet to maintain control

over a series of input screens, providing a coherent user

interface for students who were already accustomed to using a

spreadsheet envoironment. In the same manner, the spreadsheet

could be used to display program results. Output data being

fed back into the spreadsheet from a calculation routine

written in C, could then be tabularized and automatically

graphed by the spreadsheet's integrated graphics commands.

While I didn't doubt that the spreadsheet could be used for

graphing output, I did doubt that it had the capacity to cope

with a highly interactive process such as a user-interface.

Even if it could be made to work at all through enough

programmer trickery, I didn't believe that the level of

performance you'd end up with would make it all worth it. I

had already found out that writing a user-interface was a

difficult task using an interpreted language like BASIC, and I

couldn't possibly imagine that spreadsheet macros would be

fast enough to do the job.

74

Mostly in order to try to prove to the rest of the

flagship crew that it probably wasn't worth much explorative

effort on our part, I did undertake the task of trying out a

spreadsheet inter face for one of my modules. I ran into some

hangups concerning the limits of the spreadsheet's programming

capabilities, and a subsequent phone call to the software

developer told me that the clean way of solving the problem

was not an alternative. The dirty way left me horrified,

because at certain points in the program it forced the user to

watch the programmable macros jumping through all their

antics. Although my experience with spreadsheets at this

point was very limited, due to the slowdown in performance, I

concluded that this technique was not a viable option. Months

later I found out that JF wrote a program which demonstrated a

queing process using spreadsheet macros which was considerably

cleaner than my attempt had been. However, it took an

unbelievably long time to execute. I was happy to hear this

because it backed up my earlier decision that this was not a

good technique from a production standpoint.

Another major aspect of the flagship's first battle plan

was to rely heavily on central batteries (i.e. centralized

databases) for all major operations. Mainframe relational

databases running on a VAX were to be used for all file

storage aside from temporary intermediate files which could

reside locally on a hard disk. The purported advantage to this

strategy was that many applications could have access to the

same data via networking to this central file archive. Also

75

file redundancy would be eliminated for the most part, for

those applications which used essentially the same data. Of

course the price to pay for all this legendary file efficiency

was inefficiency in terms of the added time it took to perform

all the networking and connect calls between an application

and this database, not to mention the fact that the data may

not at this point be in the proper format to be directly used

by the application. Nobody knew what these costs would

actually turn out to be since the networking hardware was not

yet in place to test things out. The writing on the wall came

however when Athena became very reluctant to give out database

log-on accounts to software developers for fear that they

would soon overload the system (2).

Although few were willing to take the risk of "walking

the plank"- (they were going to have to live with Athena's

flagship alot longer than I was), I think there were a few

issues here which did not go over real well with those on the

crew who were trained with the "architectural mindset".

Primarily because of the fearful political implications that

were implied by some of the Athena committee's decisions,

which made us feel like we were no longer part of a small

design group, but had just been deceived into joining a big

corporation. The original idea behind Project Athena was that

the Athena environment would end up being a network of

microcomputers, microcomputers which were powerful and fully

capable of handling their own concerns. Somewhere al.ong the

line this plan was altered. Whether this was due to actual

76

hardware realities, or more to the political reality that

those who had long been acquainted with large pieces of

hardware such as VAXes and had alot invested in "high end"

computing environments at MIT were in a very good position to

heavily influence Project Athena's direction, I do not know.

Somewhere however, Athena decided that micros were not going

to be powerful enough to handle the institute's needs, and

VAXes were needed to provide adequate CPU power for the micros

which would in effect become more or less "dumb terminals".

At least this is what our initial fear was, particularly when

the whole issue of storing all files via a mainframe database

came up. I think several of us felt that this was a wrong

decision on the part of Athena, which six months of 20/20

hindsight later, is beginning to be proven true. There has

been a considerable delay in the implementation of Project

Athena's scheme due in part to the difficulties imposed by

trying to network together "high end" computing devices with

"low end" microcomputers. In the meantime, microcomputers

have already jumped to the next generation. The two companies

which perhaps have the most influence in the microcomputer

hardware world- IBM and AT&T, have just unleashed new micros

with formidible power, which are a big step forward in

bringing what was previously in the catagory of the "32-bit

supermicro", down to the price level which design offices and

institutions can afford (3). These machines are also powerful

enough to run versions of UNIX by themselves, sporting low

cost 20 megabyte hard-disks. In addition, networking

77

facilities are available to couple these "low end" machines

together so that they can share files across the MS-DOS-UNIX

boundary, linking together UNIX power and file-serving

capability with MS-DOS's vast stronghold of applications

software.

Many of us foresaw this happening when we started our

Athena Projects- as well as the inevitable outcome that by the

time Athena eventually does get it's current 5-year plan

working, real "32-bit supermicros" linked together via some

form of low-cost narrow-band networking, will have become the

new norm in the business world. In effect, each black box

sitting on a desk will have the full power and capabilities of

a VAX, and as the war in the Falkland Islands proved to the

rest of the world (where was the Athena committee ?), old

heavy guns sitting on big flagships are no match at all for a

squadron of fleet-footed cruise missiles! My prediction is

that by the time Athena gets it's plan fully implemented- it

will be from the rest of the world's standpoint, an outdated

system, and they will be looking to dump their VAXes and

replace their low-medium end PC's with the 32-bit atom smasher

variety. If for any other reason, just to stay current with

the rest of the world- which was their original plan via

STRITECK cards in the first place. While rumor has it

that the STRITECK cards were not found to be powerful enough

to do the job, it seems ironic that in the small time period

since the Athena flagship changed it's original course, these

new 32-bit atom smashers have been lurking right around the

78

corner. If someone standing on the bridge doesn't see them

soon, the flagship may loose alot of headway toward it's

ultimate destination!

While I respect JF's need to wear his "Athena hat" so to

speak, I did not agree at all with the logic behind

establishing a parasitic relationship between the software we

were developing and "high end", big-gun Athena resources- any

more than I wanted to develop a parasitic relationship between

our software and "canned software", and I was willing to do

so with my software if and only if it was proven to me that

there was an acceptable match in terms of flexibility &

performance, and moreover that this parasitic relationship

could be broken at any given time without any painful side

effects. And I did not think developing a dependency on "big

guns" would be an easy relationship to get out of down the

road. This is not to say that I was against using the concept

of central file storage across applications via the use of

database software- what I objected to was that we were in fact

developing a doomed, parasitic relationship with mainframes.

The sensational success of personal microcomputers stems

from the fact that they are indeed "personal" machines, and I

couldn't believe that the Athena committee was oblivious to

this. Did they not wonder why the "fishbowl" with it's

awesome power in comparison is always half empty, while the

architecture school's makeshift computer lab full of second

generation PC's is always packed with students? Did they want

to reinvent the intimidating psychological affects large time-

79

sharing mainframe systems had on university students during

the '60s and '70s? Were we going back to the days when one

had to be familiar with a whole wall-rack of manuals in order

to be able to use a computer- so that the only people who do

use computers are the computer jocks? If database software

was to be used on the local level, I was all for it in cases

where it provided a good performance match with a given

application or a few closely related ones. Otherwise due to

the political implications, I thought this scheme was very

unwise. Come to find out, Athena has since changed it's

flagship course again, and is going with a microcomputer

relational database system instead of a mainframe database

system.

The next topic of concern to the flagship crew was the

issue of data integration. This is something that we spent

weeks and weeks talking about and got nowwhere. Eventually,

other issues needed to be dealt with later on in the semester

and this topic was so dispersed by this point, that I think it

just dissipated itself into thin air. While my original

Project Athena proposal will show that I was an early

proponent for tight data integration, several factors

contributed to my later about-face on the issue, many of which

were of a political nature similar to my distaste for "high

end" resources. What happened was that we could never agree

on what kinds of data should be tightly integrated together,

and what kind of format some sort of "universal data

structure" should take. JF was really bent on having a

80

graphics oriented interface for nearly everything, including

analytical software. We spent endless hours talking about how

a universal data structure needed to be able to handle both 2-

D and 3-D data, and have all the facilities to handle

attributes. These were necessarily attached to points and

lines on a drawing so that information from a drawing could be

passed to analytical modules which could then crank out

building performance analyses. This was far removed from my

original concept of data integration, which had assumed only

an integration of data between building systems program

modules.

The problem was that there were two divergent needs here.

The graphics oriented crew members were constantly referring

to data as "components" because they were most concerned with

the display of the parts of a drawing. Those of us who were

dealing with analytical tasks were not interested in drawing

parts at all, but more abstract quantities and qualities such

as the gross areas of building form which had different

material properties. I was conscious of the fact- due to my

experience with computer simulation in the past, that it was

crucial that the level of data abstraction properly match the

level of abstraction inherent in the particular stage of the

design process being dealt with at the moment. In this

regard, the storing of data as discrete physical components

definitely got in the way. The graphics oriented people did

not understand this problem at all in the beginning. JF was

surprised to find out that for the purposes of thermal

81

analysis, except for the need to know which building surface

faced south, the aspect of knowing the physical relationships

between building systems components was for the most part

completely irrelevant, due to the assumptions inherent in the

modelling techniques used, which supposed a level of

abstraction above that of the real world. Moreover, the

graphics-oriented crew members could not even agree on what

type of graphics was most appropriate for our needs- solid

modelling vs. line-based, vector vs. raster display, etc....,

which of course all depend on an entirely different sort of

underlying data structure. After spinning our propellers for

weeks over these issues, a few pragmatic realizations seemed

to surface. First was the fact that trying to find a

"universal data structure" was a huge undertaking which we

were in no way prepared to deal with as a group. We were all

talking at each other at this point, none of us having a

complete enough understanding of the issue to be able to force

the flagship in any given direction- much like tugboats each

pushing from a different side. Eventually the pressure to

have to stop talking and get some work done, seemed to force

the issue to a close- thank God!

I'm not trying to say that this issue is unimportant. I

think it is a very interesting one, but my practical mind told

me it was also one which in big corporations would be

delegated to a group of Ph. D's sitting off in some corner

somewhere, who had lots of real-world experience with all the

issues involved. And it would take them several years to get

82

anywhere with it. None of us had that kind of real-world

experience (as opposed to academic experience), nor did we

have the time to spend getting fat heads thinking that we did,

if we wanted to present something concrete to Athena at the

end of the year- which is what JF wanted.

What became apparent to me though through our efforts,

was that alot more was at stake than I had imagined earlier

during my naive Athena proposal speculations concerning real

data integration. That it was in fact one of these all or

nothing situations, because the tighter things were

integrated, the more disasterous the consequences would be if

something were left out. What this did, was force you to try

to come up with a "universal" data representation scheme,

which had the potential to include everything- including quite

literally from the point of view of possible architectural

components- the kitchen sink! Of course it was never

possible to foresee everything that might be needed in the

future which easily discredited the notion that anything you

came up with would in fact be "universal". And if it did

work- it would inevitably end up being a colossal monster! At

about the same time that these ideas were mulling around in my

head, feeback via the world of PC users was beginning to be

heard with reference to some of the software industries

largest integrated software development efforts to date, to

come up with "thee all you ever need in one business program"

(4). It seems that the public is fast becoming discouraged

with these heavy-weights, and would much rather see an

83

assortment of fast, compact "cruise missiles" which can- due

to their sleekness in design, really pack a wallop! A recent

editorial in the well-reputed magazine INFOWORLD, discusses

the recent fallout of integrated software, claiming that

stand-alone applications programs continue to dominate the

market (5). Reviewing the outcome of JAZZ, Lotus's new

ver'sion of 1-2-3 for the Apple Macintosh, the editor has to

say:

"Once again, we are reminded of the inherent weakness of

integrated programs. They are like Swiss army knives: fine to

have when you need a little of everything but not particularly

powerful for any given task. Experienced personal computer

users tend to focus on single tasks important to their work.

Anyone who uses his computer principally to prepare financial

analyses or to do extensive word processing needs the

equivalent of either a financial jackhammer or a word

processing Cuisinart, not a Swiss army knife."

When the news reached me last fall that the sales of

integrated software packages was falling way behind the

software industries original estimate, I began to seriously

question whether in fact tight data integration was a good

idea at all. Whether or not any of us were adequately

prepared to deal with the issue became a side issue at this

point. I began looking around for other alternatives as I

remembered from my summer experiences that flexibility was my

most critical need because I was trying to develop a

prototypical "software system", in an operating environment

84

which was almost certainly going to change, and most likely

would even before the software was completed. That the

concept of tightly integrated data- while having a certain

seductive appeal on the surface, was in fact a wolf in sheep's

clothing, because it's needs ran contrary to that of

flexibility. It was at this point that I picked up on a

phrase of Harvey's which he had remembered from Eastman's

early work in architectural software development at Carnegie-

Mellon University (6). The general idea was that independent

programs would work together in a "cascading fashion". My

attempts to dig up literature on this concept proved to no

avail, nevertheless I latched on to the concept once I

realized what it offered me compared to the concept of data

integration. Basically what it offered was the "cruise

missile" approach, where a fighter carried an assortment of

firepower, each designed to work best in a particular

situation. Some were directed at their target via a heat

sensitive interface, while others used radar, while still

others used a more sophisticated T.V.-graphics interpreter

device to latch onto their target. An arsenal designed to be

able to deliver the best tool for any particular situation,

yet one that has the flexibility to handle those more

complicated, overlapping situations. What flagship could

stand up against such a diverse and powerful system!

Putting all rhetoric aside for the moment, I think a

frank discussion of all the implications involved in what I

have said so far is in order. It should be apparent to the

85

reader by now, that two factions were developing amongst the

flagship crew over the large issue of how to go about

developing a large scale computing environment, which is a

very similar problem to that which faced the early colonists

200 years ago when after winning the revolution, they were

faced with the similar question- "how do you go about

developing a large scale country?" In both cases, what was

going to be developed, was far greater than anybody's

experience, and as I see it, neither group had the ability to

foretell what the consequences of their actions would be more

than five or ten years later. On a large scale however, both

bands of colonists could see that there were big philosophical

implications, and the proverbial question in both instances

seems to be "are you a Federalist, or an Anti-Federalist?" In

other words, taking away the cultural context, "do you believe

mostly in a big centralized system, or in a less tightly bound

decentralized system?", and "which do you think in the long

run, will offer the most stability, protection,.and therefore

usefulness for it's individual constituents?" Thus in terms

of Athena resource development policy, there are those who see

the decentralization of computing resources- i.e. a system of

networked, but largely autonomous micros as nothing short of

anarchy, while the rest of us, contemplating the stifling

notion of microcomputers which are mere pawns to all powerful

VAXes, would much rather say "live free or die!"

Yes in fact, when you do look at the far-reaching

implications, software development being a big part of

86

computer system development, is indeed a "wicked design

problem". While no one can say with 100% certainty which

course will turn out to be the best one, one is forced to

either consciously or unconsciously, choose one of these two

courses of action. You are either a daring pilot at heart,

and believe your arsenal of small cruise missiles can

outmanuever the big guns of a flagship, or you're a flagship

commander at heart, feeling more comfortable with a huge steel

deck under your feet, and like carrying a standard-issue,

Swiss army knife in your pocket! But until the war is

actually fought, who's to say who will ultimately win.

Needless to say at this point, after being gradually

forced to go one way or the other in contending with all of

the aforementioned, politically loaded issues, I did

ultimately go with the "cruise missile" approach as my general

software design philosophy, although I did use the concept of

integration as a means of "bundling" data within applications

modules, enabling each module to transfer it's unique set of

data back and forth to disk, etc... as a self-contained

"packet". In other words, I used integration where it did not

conflict with my overriding goal to provide flexibility. I

also later made an attempt to develop a utility program which

pulled attributes from a CAD drawing program and sent them out

to an applications module for analytical processing. Since

the program had a very limited repertoire of attributes, I

tried to design a "universal" way of packaging this data on

the sending side. Of course it did require a unique decoding

87

scheme on the receiving side which was specific to the

requirements of the application. Because the data structure

chosen needed to be capable of handling both types of

attribute data that the drawing program could put out- i.e.-

numbers and character strings, it's "universality" did require

that it be "full of holes" so to speak, which was indeed

inefficient. Because of the generality of this data structure

however, the code itself was pretty efficient. Since right

now, this utility has only been invoked for one applications

module, I have no idea whether the scheme is really a

practical one or not. In other words, one battle has been

fought, but the war is not over.

As the reader is no doubt beginning to see, all of these

issues gradually pushed me in a certain direction, which

turned out to be the same direction I found myself being

pushed during the summer. If the inability of our flagship

crew to agree on anything specific was a "telltale" sign of

something, it certainly had to be the fact that software

written for an educational setting must be able to cope with

constant change- i.e. "points of tangency", or else in a very

short time it will be absolutely useless. A major problem

that MIT has had in the past regarding software development

efforts in the architectural school is that because all the

projects have been small in scale, there is very little

continuity from one year to the next as graduate students come

and go. Quite often software that is started is never brought

to the point of being a finished product, simply because to do

88

so is much more than one graduate student can possibly do in

the time he is there- unless he is a Ph. D. student. The next

guy to come along doesn't want to spend his time wrapping up

the last guy's project as he's under alot of pressure to

experiment with new ideas which he can then use in his own

thesis work. Therefore because it is not a team-programming

environment like the real-world, many good ideas are never

realized to their true potential. Most code that gets written

is very mediocre in nature because it is never taken beyond

the level of a "first cut", and program maintenance is a major

problem. Knowing just how ominous this problem is, I knew

that in terms of my own work, I had to find some way to deal

with this situation. Otherwise a year after I left, my

programs would suffer the same fate as all the others. This

was perhaps the most convincing argument that I should stay

away from tight data integration. It was more than I could

personally deal with in one year in terms of coming up with a

finished product, and the chance that another student would

pick it up and continue on with it after I left was

practically nil, due to the pressure he would be under to come

up with his own thesis ideas. Since Project Athena was paying

for my education, I needed to be sure I could hand them

something that worked at the end of the year.

Due to all of the issues and constraints talked about so

far, a reevaluation of my initial Project Athena proposal

direction seemed necessary. It became clear to me that my

first objective ought to be to write some useful code for MIT

89

building technology courses that had what it would take to

survive in an educational setting. Therefore I diverted my

attention from the more luxurious, and now less important

previous endeavors like those of data integration, to that of

the question of how best to code the modules I would be

working on. The question of data storage was finally solved

when I began to think more carefully about this issue with

regards to the runtime envi ronment my software- would

ultimately end up in. Project Athena sooner or later would be

making a full committment to a UNIX flavored environment of

some sort. -Even if Athena used MS-DOS in the interim period,

all MS-DOS software would eventually have to port to UNIX- or

go by the wayside. No doubt for the sake of getting students

prepared for UNIX, the MS-DOS environment would be made to

emulate UNIX as much as possible in terms of directory

structure and available utilities. Since text files are the

de-facto standard way of dealing with data in UNIX (7), along

with the system's wide variety of utilities- all or most of

which are designed to work with text files, it made alot of

sense to me to use text files as my primary means of data

storage. This would provide an extra backup margin of

flexibility beyond what I already knew through my previous

experiences, I could do with text files myself. Given the

proposition that the software environment would be in a

perpetual state of change- due to new software packages coming

and going such as new graphics packages and databases- all of

which would be designed to interface with UNIX, it made sense

90

to me to take advantage of this extra flexibility rather than

trying to go against the UNIX grain. While this might be

inefficient in terms of file size, it afforded a built-in

level of continuity, assuring that code could be written in a

"plug-in, plug-out" kind of fashion which is the UNIX standard

(8). Moreover, since UNIX utilities and text editors could be

used to view data, it saved me the problem of having to use

intricate data decoding schemes within modules just for this

purpose. All data would reside in one primary form, which was

most compatible with the overall system environment.

I don't want to underestimate the importance of the

implications I saw. Data consistency with other operating

system utilities and applications programs meant that the

software I wrote was likely to have a much longer life span,

given the problems I have alluded to regarding software

development within the architecture department in the past.

Even though I was only going to develop some prototypical

building technology software, data consistency in this

flexible fashion, provided the likelihood that my software

could become a foundation which could be built upon, as long

as it was coded properly.

At this point, I felt that I had a tangible grip on my

task of designing a building technology software system for

architects, because I had finally crossed the intervening

philosophical bridge, which gave me a focus on my direction.

Since I now had a concrete conceptualization of my system, the

remaining work simply involved filling in all the details

91

which fulfilled all the conceptual requirements which I now

had nailed down. In a sense, it all seemed very ironic to me

since I didn't do much but to react to the larger

circumstances I was faced with, but again, this is what

designing in the real-world is all about. The direction the

flagship was headed seemed contrary to my already determined

need for flexibility- which of course meant that I required a

large amount of autonomy, not a bunch of predetermined rules

and regulations to follow. What seemed appropriate from the

bridge of the flagship, did- not look well from the waterline

at all!, and seemed to me even to be antithetical to the

spirit of UNIX and C. Consequently, I had come up with my own

alternative- i.e.- the "cruise missile approach", which I

found to be more logically consistent not only with the

programming environment that I would be working in, but also

with the overall-goals of my project, which demanded that my

software system have the same flexibility and tenacity as

UNIX. Therefore, it only made sense that the UNIX/C

environment should become somewhat of a model for my own

system, particularly in view of the fact that UNIX has a

substantial track record in higher level educational

institutions and in research labs all across this country (9).

Which I guess you could say, was my next hypothesis.

92

CHAPTER 4: RUNNING WITH ENDURANCE.

"Therefore, since we have so great a cloud of

witnesses surrounding us, let us also lay aside

every encumberance, and the sin which so easily

entangles us, and let us run with endurance the

race that is set before us."

Given all the constraints imposed on this project by the

"flagship", including the fact that part of the project had to

be completed by a "mid-year demo" to Project Athena, there was

no time to loose. A week after the fall semester began, what

I had been informed concerning the current status of Athena

foretold the rest, and it was clear that I had to get moving

right away. The first order of business was to pick two

applications that would be appropriate choices for modules

which along with the building system's command shell and it's

needed utilities, would comprise the prototypical building

systems software system.

As I mentioned earlier, we had a fair number of programs

to choose from since we had been getting quite a few donations

to the Designer's Software Exchange. However, most of them

left alot to be desired because they had been written very

crudely in BASIC, and were the bare skeleton of a good

program- i.e. "toy programs" from the Apple II vintage. There

were one or two BASIC programs which were of very high

quality, however, since their source code was without comments

93

and they were quite lengthy, they would have been a real bear

to translate into C. This included MICROLITE (1), a

daylighting analysis program written here at MIT, and TNODE

(2), a rather sophisticated thermal network analysis program

written at Georgia Tech. My goal was to find some useful

programs which would not take months and months to translate,

since I could not devote that much time to such a preliminary

activity. Also, I wanted to find two applications that would

be able to work together well and provide a comprehensive and

meaningful software package to the designer, via the notion of

"cascading software" as I discussed before.

The opportunity arose when we received a FORTRAN program

in the mail which was the original version of CALPAS1 (3), the

forerunner of the CALPAS3 program I had used at the University

of Washington. The code was strictly "bare bones" with no

frills- not even a user interface. The program had been

written for a mainframe environment, and expected that an

input file would be created by some other means. The fact

that the program was "bare bones" meant that it could only

handle a small building with a single thermal zone, such as a

medium-sized house. However, I did not consider this to be a

major-drawback considering that my goal was to experiment with

a prototypical sort of software package- i.e. a real "first-

cut". My immediate objective was to learn how to design and

code two modules so that they could work effectively together

within their charted environment, and were maintainable. If

this were done properly, unlike the past software written in

94

the architecture school, once the system worked, these "first-

cut" modules could be "unplugged" and replaced by better,

more sophisticated versions later on when someone had the time

to do it. For the purpose of training students in the

fundamentals of building systems design, it was undesireable

to have modules with a full allotment of bells and whistles

anyhow, since these would only serve to confuse the primary

learning issues involved. The fact that the code was without

any frills also meant that it would be alot easier to

translate into C. Although due to the complexity of the

undocumented algorithym, it still looked like a horrendous

task. Definitely a lesser evil than a real production-

oriented program though.

CALPAS1 was to be the second of two modules- i.e.- the

more sophisticated module which would provide a thermal

analysis of a building during the later stages of design, just

as we had used CALPAS3 before. In order to get a grip on a

building's potential energy usage during the early stages of

design, a much simpler and much faster algorithym was needed.

And because such a simple algorithym ought to be easily coded

in BASIC, by chance we just happened to have such a program

sitting in the software exchange. SOLPAS was a Solar Load

Ratio program which had been written in BASIC for the IBM-PC

(4). The beauty of SOLPAS was that it required very little

input, it ran very fast- i.e.- on the order of a few seconds,

and it gave output concerning the general energy performance

level of a building, given the particular types of passive

95

solar systems used. In other words, it was great at "ball-

parking" the energy performance of a scheme early on during

the schematic design stage when the plan was still loose, and

not much was known about the building besides it's basic form

and system types. Since the method incorporated weather data

for so many cities, it also gave the designer the option of

looking to see if a proposed design would work as well in

different locations. This was definitely an advantage to

those who were designing tract rather than custom houses.

The reason SOLPAS was so well adapted for preliminary

studies at the schematic design level, was that it was based

on a correlation method, rather than a more involved "first

principles" method, such as an hour by hour direct simulation.

The Solar Load Ratio method was invented at Los Alamos

National Laboratories by Balcomb and company (5), after years

of studying actual physical test buildings where various types

of passive systems could be monitored over an extended period

of time. Extensive data was collected and via statistical

data reduction techniques, correlated with climatic data based

on some underlying assumptions as to the thermodynamic

principles involved in the particular passive system type.

Extensive cross-checking was done via "first principle"

simulation methods running on large mainframe computers, to

arrive at the proper correlation equation which when it's

variables were replaced by the correlated values applicable

for a particular system type, would work for all systems at

the test location within a reasonable percentage of error.

96

These correlations were then further extrapolated to other

locations with different average weather parameters so that

the method now works with a total of 219 cities across the

continent.

At the heart of the method is the LCR, or Load Collector

Ratio, which is the net building load divided by the solar

collector area. In other words, this ratio expresses the

potential for solar heating- a small LCR tells you that you

can expect a large amount of solar energy savings relative to

an alternate scheme which has a large LCR (6). Of course the

actual amount of solar savings will depend on the system type,

and the climatic conditions this building will undergo. Once

this information is fed into the process, the SSF or Solar

Savings Fraction can be calculated, which expresses on a

percentage basis how much energy this building will save

relative to an identical "reference building", where the solar

collector has been replaced by an energy neutral wall which

neither gains nor looses heat. Multiplying the Solar Savings

Fraction by the net heating load and the degree days for a

specific location, gives the actual solar contribution for

that system. On a house comprised of more than one system,

this calculation can be area-weighted to derive the

contribution of each system. Conversely, mutiplying the net

heating load and the degree days of the locaion in question by

(1 - SSF) will give the annual auxilliary energy required to

match the annual heating load. While this method is basically

simple and doesn't give any elaborate information such as a

97

"first principles" method would concerning the actual comfort

within a building- which is the most important issue, it does

at a glance, give the designer a good indication as to how one

scheme will stack up against another at a specific building

location (7). Which is of course precisely the kind of

information which is needed and highly valued during the

schematic stages of design.

Later on, once the design process has narrowed down the

choices to a few attractive alternatives, more detailed

information is desired as one begins to try to optimize each

scheme in conjunction with the architectural requirements, to

try to pick the winning design. Here's where a program like

CALPAS1 comes in. Based on an hour by hour, "first

principles" simulation process, CALPASI can actually give an

indication of the actual comfort conditions within a building

for any specified time period during the year (8). The method

utilized is called a "network analysis" whereby a mathematical

relationship is assumed among the various primary building

components that make up the building. Each primary building

component becomes an element in a mathematical matrix,

specified by a series of thermal properties. These thermal

properties determine theoretical heat transfer relationships

between all the various elements of the matrix. Given some

input to this thermal system, a matrix solution method is used

to indicate how the system has changed- i.e.- what effect this

input has had on all the corresponding system elements, given

the complexity of interactions that occur among them- due to

98

the fact that the overall system has changed state. A dynamic

analysis is thereby performed whereby for every incremental

time step during the period of analysis- which is normally a

year, the after state of the previous time step of the system

becomes the starting state for the next time step. At the

beginning of each new time step, more input data is entered

which specifies the assumed external affects on the building

system at that particular hour of the year. This includes

factors such as outside temperature, solar insolation levels,

wind speed and direction, etc.... Thus at the end of a year,

the thermal conditions of the various building nodes is known-

i.e. - their final temperatures, as well as the final tally of

accumulated heat transfer among the various nodes. In

addition if it is asked for in the beginning, intermediate

results can be gotten at any point in time within the period

of simulation because intermediate conditions can be tallied

as well.

Although the method is based on averaged weather data for

a specific location, over the long haul the method is claimed

to be fairly accurate. Of course whether the actual numbers

are in fact on the mark or not, the program's biggest asset is

that it allows you to "fine-tune" the basic design you have

chosen via the simpler and quicker SLR method. Once the

design has proceeded to the point where the designer must know

details such as the appropriate number of glazings or the

appropriate thickness of a floor slab or trombe wall, a

network simulation method such as the one employed by CALPAS1

99

ca-n be used to explore these nitty gritty questions. The

criteria for success can be determined by the detailed

temperature and energy use information that CALPAS1 puts out.

Temperatures are predicted for both the space and the various

building masses on a 24 hour basis, and heating, venting, and

cooling energy totals are available on an hourly, daily,

monthly, and annual basis. If the building has an acceptable

comfort level during the cooler winter months, yet does not

overheat during the summer or "swing seasons", and saves more

energy than other design variations, then a design can be

considered for all practical purposes to be optimized-

providing it can still be built within the design budget.

Of course there is a heavy price to pay for such an

extensive analysis. The original version of CALPAS1 takes on

the order of twenty to twenty-five minutes to run once all the

input data has been entered, which is a laborious process in

itself since over ninety pieces of information are required.

In other words, CALPAS1 is not the kind of program to use

early on in the design process. Even if it's input parameters

were somehow known at this early stage, the program is far too

slow to be used in an interactive fashion. And even if this

were not the case, in my opinion a network analysis program-

such as CALPASI isn't an appropriate design tool at this stage

because the input required is too complicated. Rumor has it

that Berkeley Solar Group, an outfit that has written more

intricate versions of CALPAS1 for the microcomputer

environment (they wrote the CALPAS3 program I used at the

100

University of Washington), has reduced the runtime period to

between ten and twenty minutes via data compression

techniques, and the same system of defaults I have spoken

about earlier. Again, I stand by my earlier conviction that

if defaulted and compressed data saves you ten minutes of

runtime, it certainly won't make up for the time you spend

twiddling your thumbs when you get your output back! In

effect, trying to adapt a complicated algorithym to a rather

simple design phase just does not work very well. It is

better to use this type of algorithym exclusively for what it

is good for, which is the detailed analysis.

Something must be done to alleviate the long hours it

would take to do design optimization using such a tool which

takes on the order of ten to twenty-five minutes to run

however. From my way of thinking, once a designer gets to the

point where he should in fact use this more advanced. tool, he

probably knows enough about the architectural design

constraints to narrow down his possible design optimization

options. Thus he probably does not have a whole smorgasboard

of options to choose from at this stage in the design process,

but only a few. Here's where a batch-processing environment

would come in handy. Rather than waiting around to try these

options in a consecutive fashion, why not load up CALPAS1 with

a few variations of the main theme and run them all at once?

He need not waste his time waiting around like in the old

TEANET days, as long as the code is designed correctly so as

to accomodate this type of facility. In the time it takes him

101

to go out to a lunch meeting, CALPAS1 could be sitting there

cranking through two or three design development variations.

An analysis of the output after lunch via some at-a quick-

glance graphics, would undoubtedly give some more design

inspiration for perhaps the final fine-tuning. Load up the

program with these variations before going home at five, and

when he returns at eight the next morning, a final design

development candidate will likely be waiting on disk for his

final approval!

As I had mentioned earlier, my battle plan was to code

the algorithyms of these modules separately so that they could

be used independently of each other, yet in such.a way that

allows both input and output data to be "cascaded" from the

SOLPAS to the CALPAS1 module. In effect, once the results of

the simple analysis were known, they would be used to set up

the more complicated analysis, thereby alleviating the user of

some of the hassle of dealing with it's more complicated input

data. The reason this system can work well is that although

the SLR method doesn't require alot of input, many detailed

assumptions are implicit in the correlation numbers for the

various passive system types (9). This detailed data is

precisely the kind of material specific information which the

more sophisticated methods such as the network analysis used

in CALPAS1 requires as input. Thus once the system type is

chosen- which is exactly what the SOLPAS module is primarily

good for, a whole series of inputs for the CALPASI environment

can be set automatically. These inputs are the most "nitty-

102

gritty" of them all, consisting of various property

coefficients that the designer would other wise have to look up

in a reference book on heat transfer, such as ASHRAE's

Handbook of Fundamentals. Other information which is not

specific to the system type can be "cascaded" as well, such as

building dimensions, infiltration rates, etc... although some

of this information is not exactly in the form that CALPAS1

can use. As much as possible, this information would have to

be converted to the proper format, in order to reduce to a

minimum the amount of data that has to be reentered through

CALPASI's own user-interface environment. Separate utility

programs would be the purpose of training In other words,

CALPAS1 would have an option which allowed data to be received

via a SOLPAS file. Since this facility would not be needed

during stand-alone CALPAS1 runs, the code required to do this

data transfer would not be included in the body of the CALPAS1

program. Another sleek cruise missile would be around to do

that specific job.

The whole crux to my plan was to write code as a series

of built-up, modular parts which could be used alone or used

together, just like designing a modular building. I like to

think of it in terms of a "Tinker-toy" analogy: Tinker-toy

components come in two basic variations. Each component either

functions as a small strut- i.e. something that can be used to

extend something that has been previously made alittle far

ther, or as a joint, something that is used to join together a

series of struts into an object. Of course since these compo

103

nents are very generic in nature, many variations are possible

simply by rejoining the components in a new manner. The more

components are designed to be reusable via their generic

nature, the more likely they will still remain serviceable in

the future as new requirenrents dictate the need for new kinds

of objects which had not been originally planned for. In this

regard, the smaller and more compact the components, the more

flexible and therefore usable they become as generic building

blocks. The components themselves, can be used to create

fancier components at the next level which can then be used as

building blocks for more specific purposes, just as one can

construct a geodesic dome from a series of triangles which in

turn are made of a series of struts joined together, etc....

This is in essence, how I went about developing the code

for these modules and utilities. The end result in my mind,

is very much a software system with extensive "plug-in, plug-

out" capabilities, composed of reuseable software components.

The components are reuseable primary because a primary means

of data storage was chosen i.e.- text files for the reasons I

have mentioned before, and also because I have adhered very

strictly to structured programming principles and the K & R

coding style of designing very short functions which are

themselves composed of other very short functions. In effect,

the "small is beautiful" UNIX/C-coding concept, which differs

dramatically from the more traditional coding concepts.

This is exactly the sort of "building block software

system" that I am arguing is so necessary for software

104

development to continue in a growing fashion, in an

educational environment which has been plagued with all the

problems that I have previously alluded to. You will notice

that I said "structured programming", not "top-down design".

While "top-down design" had to be kept in mind for the overall

goal, once the need for specific pieces of code was

established via this principle, the code itself was almost

always coded "from the bottom up", via the use of very small

components, or aggregations thereof, many of which had been

coded previously for another purpose. While this necessary

process may seem like an inherent contradiction, all I can say

is that it again goes to show that software design is very

similar to the "wicked design problem" that architectural

design is (10), and that any further simplification into a

more linear process in my mind can only lead to poorly

designed software- just as it does to poorly designed

buildings!

To illustrate what I am saying, I will briefly discuss

some of the aspects of the code, aside from the basic

algorithyms involved which have already been discussed. At

the highest level, the system is broken up into several large

modules, plus any utility programs which are needed to

transfer data between modules. If the SOLPAS and CALPASI

programs were comparable in size (they aren't now, but with

future improvements to SOLPAS they probably will be), these

large modules would roughly coincide with an input,

calculation, and an output module for each program, plus a

105

library of ascii and time-related functions which all these

modules share as a resource of low-level components. In

addition, each of the separate utilities are themselves coded

as one module (See Fig. 1). Depending on the situation,

several modules and/or utilities are needed to execute a task.

All calculation results are transferred to system storage as

text files where the next module invoked looks for it's input

data. Any intermediate results used soley within a module are

written to storage as a solid block of binary data via the

fact that program variables are kept in unifying C

"structures", since this data need not be accessible to other

modules. While file I/O is in general a very slow process,

and one would be inclined to think that this way of

modularizing the system code would detrimentally affect

performance- this is not the case, primarily for two reasons.

The first is that ramdisk is used as the home of all utilities

and files, as much as this is feasible. Since a data move in

memory is many orders of magnitude faster than a read or write

operation from a floppy disk , the normal agonizing waiting

period one must endure with disk I/O is for the most part

alleviated, as all files are relatively small. Secondly,

modules that need to be loaded into memory from ramdisk, are

loaded when a file is read in. Thus this additional operation

is effectively masked. From a psychological standpoint, the

user shouldn't get uptight about this extra process, since he

or she isn't even aware that it's happening.

On the intermediate coding level, these large modules are

106

OPERATING1

SYSTEM

SUPPORT'

CALCULATION

MODULES

S

L
P1
A1
S

C

F
A
C
T
0
R
S

FILE/

i DATABASE

STORAGE

C
A
L
P
A
S

(SOLPAS
enhance-
ment)

A view of the software at
the finished product stage.

107

USER-INTERFACE

-Btech Shell Main Menu

-CALPAS Input Module

-SOLPAS Input Module

-LOTUS 123 Graphics
or Custom Graphics

BTECH SHELL RESOURCES

-Common Library Functions
Menu, Text, Time, & Graphics
-CAD FILTER Utility

-SOLPAS Accessory Utilities
-Output Processor Utility
-File Arhiver Utility
-Default .Setting Utility

Fig. 1

broken down into smaller sub-modules using a unified means of

handling data between these various functions- i.e.-

structures, so that one function can easily be replaced with a

new version- ala true K & R coding style. Because of a

particular code organization technique which will be described

below, a hierarchy of reuseable parts is generally available

to all these modules via the libraries, including some built-

up, higher level components which function as building blocks

and can be further built up in various manners to do more

complicated input and output operations.

Where things start to really happen however, is at the

"component" level. The basic components of my system are in

fact little routines which do primary operations on text

strings. This worked out to great advantage because not only

was the majority of stored data in textual form, so was the

data that was required to be input via a user-interface. For

the purpose of getting data into a module, I needed a series

of building blocks which had the ability to read certain kinds

of data. Some of this was straight characters or text, while

the majority of it was text in the form of either integer or

real numbers. For the purposes of flexibility and code

maintenance as I mentioned earlier, a primary goal I had was

to break the BASIC habit of intermixing screen I/O calls with

the underlying algorithym, as this is primarily what makes

these programs so difficult to translate and transport. My

goal was to develop a series of component functions which made

all this I/0, no matter how complicated it was- transparent to

108

the program. This had the added advantage of allowing the

incorporation of a better user-interface at a later date after

the whole system had been designed. In other words, it allowed

for a "second-cut". Consequently, after I chose the style of

user-interface I thought was most appropriate for the time

being, I went about developing component functions which could

read data into the particular format required. While these

components are quite advanced in terms of fancy cursor

footwork, all of this lower level stuff is completely

transparent. All the module itself sees, is an assignment

statement which assigns the particular piece of data received

to the proper variable. Thus the segment of code that enters

a real number, doing all kinds of cursor footwork and error

checking in the process is simply a statement of the form:

value = getreal();

where the function getreal() resides off in a separate source

code library of text related functions. By extention, a whole

input screen who's task it is to get all input relating to a

specific aspect of a building, such as the south wall for

instance, consists of a screen title, plus a series of simple

assignment statements- and that's it! Nothing else to cover

up the underlying algorithym. Thus the whole input section of

a module is almost solely composed of a series of these simple

screen functions which themselves are just a series of

assignment statements- i.e.- the whole thing is just a series

109

of building blocks, themselves composed of smaller building

blocks.

Since user-interfaces are normally fairly complex, the

reader might wonder about such things as prompts, defaults,

and error messages. All of these are separate building blocks

which are called into other building blocks as parameters.

For instance, all SOLPAS and CALPASI input prompts are

aggregated together in separate building blocks which are in

essence arrays of text strings. All defaults of which there

are three kinds in all- a lower limit, a current default, and

an upper limit, are aggregated together as arrays of

structures composed of these defaults. All program variables

are arranged in a structure of structures as well- of which

each substructure pertains to a particular screen. Not only

does this allow the input data to be sent somewhere as a

complete "packet", it also sets up a facility whereby a

complicated input mechanism can be handled very simply via an

assignment statement. This is because a one to one

correspondence has been established between these types of

building blocks. In essence, the components of building

blocks of a particular type are all numbered, and all building

block components with the same number relate together in some

predetermined fashion. It is really a process of code

integration. For example, the more exact call required to

pull in a data item would be something as follows:

value = getreal(mesg,def->low,def->high,def->curprecs);

110

where each variable is in fact an array element, which

currently is set to the same indice level (I purposely left

off the indices so I could get the assignment statement all on

one line). Multiply this one statement by six, add a title at

the top, and you have yourself a complete screen function

which reads in six pieces of data (See Figs. 2-3). A function

where the user-interface itself is transparent, and in fact

replacable at a future date with a different sort of user-

interface, as long as the function calls involved appear to

the module in the same fashion.

Written in this manner, the algorithyms of SOLPAS and

CALPAS1 are completely decoupled from the input section, and

in fact in CALPAS1 (SOLPAS was not big enough to bother with),

reside in entirely different source files (See Fig. 4). In a

similar building.block fashion, after the input sections do

their job, one line does it all:

calculate();

whence you are finally ready for the output section which is

set up in a similar fashion to the input section. (Calculate()

however, is composed of many building blocks itself in terms

of logical subdivisions of the underlying calculation

algorithym.)

The output section is built up of various components

which in general, couldn't care less where the output was

111

southwall()

char string[20];

while (TRUE) {
scrclr();
scr rowcol(O,31);
puts("SOUTH WALL MODULE\n\n");
sth[O] = getintgr(mesg[8],def[O]->low,def[O]->high,

def[O]->cur);
sth(1] = getintgr(mesg[9],def[1]->low,def[1]->high,

def[1]->cur);
sth[2] = getintgr(mesg[10],def[2]->low,def[2]->high

def[2)->cur);
sth[3] = sth[O] * sth[1];
itoa((long)sth[3],string);
printf(mesg[11],string);

I

putchar('\n');
if (getintgr(mesg[69],(long)

southzones();
break;

I

0, (long) 1, (long) 'y')) {

SOLPAS code which asks for south wall input,
shows function calls which detach the user-
interface from the underlying algorithym.

112

}

Fig. 2

,

long getintgr(prompt,low,high,def)
char *prompt;
long low,high,def;
{

char string[20],buf[20],strlow[12],strhigh[12],rng[40],c;
static char backup[10] = "range: ",rngl[5] = " to ",

rng2[7] = "y or n";
static char yes[2][4] = {"yes","y"};
static char no[2][3] ={"no","n"};
int i,row,col,beg=0,end,save,invalid=TRUE,num=TRUE;
long var,fatol();

if (def == 'y' || def ==

num = FALSE;
strcpy(rng,backup);
strcat(rng,rng2);

}
else {

strcpy(rng,backup);
itoa(low,strlow);
itoa(high,strhigh);
strcat(rng,strlow);
strcat(rng,rngl);
strcat(rng,strhigh);

'n') {

}
string[O] = '\0'
row = scrsrow();
col = scrscol();
while (invalid) {

if (!string[O]) {
if (num)

itoa(defstring);
else {

string[O] = ' ';
string[1] = (def ==
string[2] = '\0';

}
}
else {

scrrowcol(row,beg);
puts("

}

'y') ? ('y')

scrrowcol(row,col);
printf(prompt,string);
end = scr scol();
beg = end - strlen(string) + ((def <
scr rowcol(row,beg);
if (get(buf,'i') == XERR) return(
if (isalpha(buf[O])) {

scrrowcol(row,beg+strlen(buf));
puts(" ");
if (num) { (See caption

scr rowcol(row,RNGLOC);

def);

on next page)

113

0) ? (0) : (1)) ;

if

I
else

scr_aputs(rng,REV);
continue;

I
for (i=O; buf[i]; i++)

buf[i] = tolower(buf[i]);
buf[i] = '\0'
for (i=O; i<2; i++) {

if (strcmp(buf,yes[i]) == 0) {
scr rowcol(row,RNGLOC);
scr-aputs("
putchar('\n');
return(1);

}
else if (strcmp(buf,no[i]) == 0)

scr rowcol(row,RNGLOC);
scr-aputs("
putchar ('\n');
return(0);

}
}
scr rowcol(row,RNGLOC);
scr_aputs(rngREV);
continue;

(buf[0]) {
scrrowcol(row,beg+strlen(buf));
puts(" ");
if (!num) {

scrrowcol(row,RNGLOC);
scr aputs(rng,REV);
continue;

}
var = fatol(buf);
if (var < low || var > high) {

scrrowcol(row,RNGLOC);
scraputs(rng,REV);

I
else {

scrrowcol(row,RNGLOC);
scraputs("
putchar ('\n');
return(var);

}

{
scr_rowcol(row,RNGLOC);
scr_aputs("
putchar ('\n');
return((!num) ? ((def == 'n')? (0):(1))

g. 3 This function which handles screen
interfacingfor integers resides in
separate source file,hiding tricky
from SOLPAS's algorithym.

Fi

{

",NRML);

,NRML);

,NRML);

(def));

a
code

114

",NRML);

}
I

I

calpas.c
mesg.h
default.h
struct.h
liba.s
libt.s
libg.s
exec.o

calcalc. c
fnc.c
struct.h
libt.s
exec. o

graph. c
liba. s
libt.s
libg.s
exec.o

CALPAS

OUTPUT

PROCESSOR

1,/

Diagram of the CALPAS module
showing the different reusable
building blocks which are used.

115

CALPAS

INPUT

MODULE

CALPAS

CALCULATION

MODULE

PROCESSED

OUTPUT

TEXT/GRAPHICS

Fig. 4

\r-

BATCH

INPUT

FILES

MAIN

OUTPUT

F I LE

LOTUS 123

MODULE

going, whether it be to the screen, the printer, or a file.

The simpler components simply write a line of text out to an

output device. More complicated building blocks of such

components provide fairly extensive formatting facilities, for

example the ability to reformat a screenful of output data in

a tabular form, grabbing data from a larger, more complete

ascii data file. These processes are table driven to allow

for future new accomodations and updates. This is precisely

the technique that was used in the CALPAS1 output processor,

which also serves a dual function as the graphics preprocessor

to LOTUS 123 (the only canned utility used), or to any other

outside spreadsheet or database. The philosophy behind the

development of this all-round utility was as follows:

If the reader will remember, CALPASI puts out an enormous

amount of varied output, including several ranges of

temperatures, and many heating, venting, and cooling energy-

tallies for various time periods during the simulation year.

From one run to the next, the user could obviously choose

amonst all the various options as to what he or she wanted to

see, graph them via LOTUS 123, and/or archive them for later

reference. Of course the BASIC way to handle something like

this, would be to put out a whole bunch of little files in

binary, each pertaining to one of these options. These little

files can of course be aggregated together via a header into

one big amorphous file, yet the outcome is the same- one huge

mess where output files can vary considerably.

It was also very conceivable that at some time in the

116

future, new forms of output from either SOLPAS or CALPAS1

would be desirable. For instance once the system was up and

running, many enhancements could be "plugged into" SOLPAS

including the ability to handle something called "conservation

factors", and some means of performing a quick check on

cooling needs. Thus additional data would need to be displayed

and written to storage in a manner which is transparent to the

existing module, so that no code needs to be rewritten. This

additional output would not always be used during every

simulation, and would increase the amount of output to a point

where it would take several screens to display it all. In the

case of CALPAS1,. if all the necessary screens had all been

"hardwired" into the code, the code would have been encumbered

with about ten separate routines which formatted pieces of

output and spewed them onto the CRT. At the same time, after

each of these screen images had been sent off to storage, some

means of recalling them at a later date and redisplaying them

against other data archived from other runs was necessary.

This brings up the necessary aspect of file merging- providing

some means to aggregate chunks of archived data from different

simulation runs so that the results can be viewed together.

Thus some means of perusing data files at large in order to

pick out the various segments of archived data which one would

want to view together was needed as well.

If this data were stored as ascii characters in the same

format in which it originally appeared on the screen, a simple

word processor or screen editor could be used for this file

117

perusal task. In addition because the data is in textual

format, under UNIX, a simple CAT command would concatenate two

or more text files together at the operating system level

providing a painless file merging service. Also available at

the UNIX system level are numerous search, find, and count

utilities which could be used to help find data files which

contained specific text data (11). And last but not least,

the fact that data stored in field-formatted, text fashion is

easily read into any spreadsheet or database program (12),

provided the clincher that an ascii data format was the way to

go, just as I had anticipated earlier.

So the problem became, how do you store all this

information as text, and yet have the ability to pick out at

any given moment exactly what the user wants to see ? The

answer is of course some kind of utility which can preprocess

an ascii file before it's data is used. Thus the CALPAS1

output processor was written as a separate module which like a

general utility could be used for a broader scope of purposes.

The same reusable components that make up this utility were

also used in the utility which processed CAD drawing program

output files for attributes and sent them to SOLPAS, since

that process involved formatted text data as well.

Central to the whole concept behind these utilities is

the notion of buffered file I/O. Because of all the

variations possible with output options, it was never possible

to know in advance how long a given file would be. Thus the

building blocks of these utilities would have to be able to

118

process chunks of ascii data, and yet be able to go back and

find any remaining file chunks and begin processing them

exactly where it left off. Thus buffering was needed. At the

same time, it was not possible to know in advance how much

memory was available to be used as a buffer, since the various

modules and utilities running within the system needed various

amounts of memory in order to run. Sometimes several of these

processes would have to be loaded into memory at the same

time, such as when LOTUS 123 is called up by SOLPAS for the

purpose of graphing output data. Thus depending upon the

applications modules these building blocks were to be used

with, the size of the buffer had to be redefinable. This

feature was implemented and later proved to be a.saving grace.

In processing CALPAS1 output data, the most logical buffer

size was 8192 which is a multiple of 512 (a performance

advantage) that is big enough to be able to handle the biggest

file CALPAS1 was likely to put out. However, later when the

link to LOTUS 123 was established, this size proved to be too

large, as the operating system did not have enough memory left

to be able to load 123.EXE behind the output processor.

Changing one line in the output processor source code which

reduced all references in the code to a new buffer size of 512

bytes easily adapted the utility so that it would work in this

situation. And no performance disadvantage was noticed at

all!

Since the first record in a line of CALPAS1 output data

always refers to a time within the simulation year, whether

119

this be in reference to an hour, day, month, or year, the

ouput processor runs off a pattern-matching component which

searches the buffer for all the output pertaining to the time

period in question. Once this data is located, various other

components have the ability to pick off patterns of ascii

data, converting them into appropriate numbers based on a

table-driven process which records which pattern in the text

is for what purpose. In other words, if you are looking for

monthly cooling data, the processor knows that once it finds

monthly data, cooling data happens to be in the 8th column

over from the left, etc.... (See figs. 5-7)

Due to the fact that this table-driven pattern-matching

method has inherent flexibility, it is a rather trivial matter

to compare output which resides in different run files. Just

CAT the two files together first- then run the result on the

output processor module. As long as the proper keys were in

both files before they were concatenated together, the proper

data can be drawn out and compared. While this process is

basically a slow one utilizing sequential searches, since the

files involved are always small- i.e. less than 10k in length,

the time involved is trivial, especially if the files reside

in ramdisk. One can hardly tell if the split-second taken is

a consequence of the searching procedure, or just due to the

fact that screen I/O is a very inefficient process. SOLPAS as

it stands now only puts out three columns of output data for

each month of the year, so at the time I coded this module, I

did not bother incorporating in an output processor such as

120

HOURLY SUMMARY:

TIM TZ HTD HVTS

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

39.0
38.0
37.0
35.0
35.0
35.0
35.0
37.0
36.0
40.0
43.0
47.0
47.0
50.0
52.0
52.0
52.0
51.0
50.0
49.0
48.0
48.0
44.0
44.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
7.3

51.6
100.9
135.2
151.2
149.1
129.9

94.4
53.2
16.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

Fig. 5

0.0
0.0
0.0
0.0
0.0
0.0
0.0

15.2
81.2

147.8
191.4
211.8
211.4
194.6
153.9
100.9

9.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0

SHG

0.0
0.0
0.0
0.0
0.0
0.0
0.0

196.1
878.5

1257.8
1252.5
1027.1
1721.2
2254.7
2430.8
2127.8

262.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0

TA TAIR TS21 TS15 TS3

70.0
69.3
68.6
67.8
67.2
66.8
66.5
66.9
67.8
69.3
71.1
72.4
73.7
74.7
75.3
75.4
75.0
74.6
74.3
73.7
73.2
72.9
72.2
71.3

70.0
69.3
68.6
67.8
67.2
66.8
66.5
66.9
67.8
69.3
71.1
72.4
73.7
74.7
75.3
75.4
75.0
74.6
74.3
73.7
73.2
72.9
72.2
71.3

71.9
71.5
70.9
70.5
69.9
69.4
69.0
68.7
68.9
69.4
70.3
71.2
72.2
73.1
73.8
74.2
74.1
74.0
73.7
73.5
73.3
73.0
72.7
72.4

65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0

65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0

The portion of CALPAS's output file showing
hourly temperature data which the Output Pro-
cessor can find, reformat, display and graph.
The processor skips every other line of data in
the file to retrieve hourly temperatures at two
hour intervals.

121

CALPAS HOURLY OUTPUT
SPACE & STORAGE TEMPERATURES

HOUR OF
DAY

2am
4am
6am
8am

10am
12am

2pm
4pm
6pm-
8pm

10pm
12pm

Fig. 6

AIR
TEMPC

69.3
67.8
66.8
66.9
69.3
72.4
74.7
75.4
74.6
73.7
72.9
71.3

WALL
TEMP

71.5
70.5
69.4
68.7
69.4
71.2
73.1
74.2
74.0
73.5
73.0
72.4

FLOOR
TEMP

65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0

QUICKWALL
TEMP

65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0

This is the table of output that is produced
from the data in Fig. 5 by the Output
Processor.

122

stortemps()
{

int i,lncnt=O,match,r;

scr_clr();
scr rowcol(0,O);
for (i=0; i<2; i++)

fputs(v"\n
{

OUTPUT\n",fd[i]);
CALPAS HOURLY

fputs("

fputs("

fputs("

TEMPERATU
HC

FLOOR

TEMP

}
zerobuf (buf ,0 ,BSIZE)

SPACE & STORAGE
RES\n\n",fd[i]);
UR OF AIR

QUICKWALL\n",fd[i]);
DAY TEMPC

TEMP\n\n",fd[i]);

charptr = 0;
if (fread(buf,1,BSIZE,fd[3]) == 0) {

printf("\nError reading input file:
return(0);

I
match = fhr[O];
while (!(r = locate("TIM

WALL

TEMP

%s\n\n",file[0]);

,matchfd[3])))

if (r == ERR) return(0);
charptr = save;
id[O] = 0;
id[1] = 7;
id[2] = 8;
id[3] = 9;
id[4] = 10;
pad[0] = 4;
pad[1] = 2;
pad[2] = 2;
pad[3] = 2;
pad[4] = 2;
while (TRUE) {

if (!getline(fd[3])) break;
if (getline(fd[3]) && getrtvals(id,tag,5))

time(atoi(tag[0]),frec);
putvals(tag,frec,pad,1,5,0,fd[1]);
++lncnt;

}
else

}
fputc('\n'
fputc(EOFC

break;

fd[1]);
,fd[1)

Fig. 7 Main C function used to
of storage temperatures
CALPAS output file data

create the above table
in Fig. 6 from the
shown in Fig. 5.

123

{

}

the one CALPAS1 uses. However, when the new features are

added down the road that I have previously spoken of, the fact

that these building blocks already exist, will prove to be a

saving grace again.

Indeed, this "tinker-toy" endeavor has already proved to

be a saving grace in terms of extending the useful life of my

code, just as I hypothesized. For the "midyear demo", 'it was

deemed prudent to have an application running that could pull

in information that had been previously stored via a CAD

drawing package. Therefore I wrote the FILTER utility which

is the name of the module which grabs data from a drawing

program attribute file and sends it off to SOLPAS. On the

drawing program end, this process is very inefficient, and

since our original experimentation with it, the flagship crew

has decided that it would be much better for the program to

put out a simple indexing key to an external database where

this bulky data could reside. This frees up the drawing

program workspace considerably since all this unnecessary

garbage is off somewhere else, giving the program full rein to

do it's thing, which is drawing. Luckily, because of the

building blocks involved, the components of FILTER couldn't

care less where the data resides as long as it's in a text

formatted form, and it should be a rather trivial matter to

amend this utility so that it grabs it's data from a database

package instead, which has this formatting facility (See Figs.

8-10). Matter of fact, as long as the database software has

an ability to make it's record format known to outside

124

char attrtag[10][20] = { "name" ,"special","length","width",
"rvalue ", "ohx", "ohy" , "glzarea" ,
"numglz",""}I

char key[7][20] = { "south","east","west",
"north","roof","floor","" };

char numdef[20] = "-999";

char exttemp[20] = ".txt";

char extattr[20] = ".txt";

char extstruct[20] = ".str";

char extdbase[20] = ".atr";

Fig. 8 All program variables which refer to tag names
and indexing keys which are specific to a par-
CAD program or database, are in a separate
source file from the FILTER main program to
facilitate easy maintenance.

125

extern char attrtag[][TAGSIZE];
extern char key[][TAGSIZE];
extern char numdef[];
extern char exttemp[];
extern char extattr[];
extern char extstruct[];
extern char extdbase[];

char tag[MAXTAG][TAGSIZE] = { "bl:level","bl:name","bl:x",
"bl:y","bl:layer","bl:orient",
"bl:xscale","bl:yscale" 1;

struct tmp { char nname[TAGSIZE];
char aattrr[TAGSIZE];
char ffmt;
int field;

struct tmp template[MAXTAG];

struct data { union {
char sval[TAGSIZE];
real nval;
} uval;
char utype;

};

struct data _blevel;
struct data _blname;
struct data _blx;
struct data bly;
struct data _bllayer;
struct data _blorient;
struct data _blxscale;
struct data _blyscale;
struct data _attributel;
struct data _attribute2;
struct data _attribute3;
struct data _attribute4;
struct data _attribute5;
struct data _attribute6;
struct data _attribute7;
struct data _attribute8;
struct data _attribute9;

struct data *dataptr;

(See caption on next page)

126

struct obj { struct data _blevel;
struct data blname;
struct data _blx;
struct data bly;
struct data _bllayer;
struct data _blorient;
struct data blxscale;
struct data _blyscale;
struct data attributel;
struct data _attribute2;
struct data _attribute3;
struct data _attribute4;
struct data attribute5;
struct data _attribute6;
struct data _attribute7;
struct data attribute8;
struct data _attribute9;

struct obj object1;
struct obj object2;
struct obj object3;
struct obj object4;
struct obj object5;
struct obj object6;

struct obj *objptr;

struct group { struct obj object1;
struct obj object2;
struct obj object3;
struct obj object4;
struct obj object5;
struct obj object6;

struct group all;

Fig. 9 "Universal data structure" used by the FILTER
utility to store number or text attributes from
a CAD drawing or database. This data structure
is hierarchical and independent of attribute
tag names, since any element can be accessed by
pointer arithmetic. It currently holds 17
attributes for 6 surfaces of a building, but
can be easily extended.

127

senddata()
{

FILE fd,fopen(;
int i,j;
char string[20],file[20];

objptr = &all;
dataptr = objptr;
strcpy(fileattrfile);
strcat(file,extstruct);
if ((fd = fopen(file,"w")) == 0) {

printf("\nCan't write output file: %s\n",file);
puts(".... program aborting!\n\n");
return(0);

}
fwrite(all,1,sizeof(all),fd);
fclose(fd);
strcat(attrfile,extdbase);
if ((fd = fopen(attrfile,"w")) == 0) {

printf("\nCan't open output file: %s\n",attrfile);
puts(".... program aborting!\n\n");
return(0);

for (i=0; i<numkey; i++,objptr++) {
dataptr = objptr;
for (j=0; j<numtag; j++,dataptr++) {

if (id[j] != ERR) {
if (dataptr->utype == 'n') {

ftoa(dataptr->uval.nval,(double)
template[id[j]]->field,2.,string);

fprintf (fd, "%s",string);
}
else if (dataptr->utype == 's') {

fprintf(fd,"%s",dataptr->uval.sval);
}

}
}
fputc('\n',fd);

fclose(fd);
return(1);

}

Fig. 10 A simple function that stores the attribute
data on disk using pointer arithmetic. Two
versions are stored, one in binary, and one as
field-formatted text for screen display,
spreadsheet/graphics input, or database
storage.

128

software, no adaptation to FILTER will be necessary at all.

One last word on the subject is that these same building

blocks have been used to improve the performance of CALPAS1

substantially over the original FORTRAN version, in terms of

the reading of it's weather file- which is a mammoth 270k!

The original version used a FORTRAN routine which actually had

to read the next record in the file each time it looped

through it's calculation routine- a total of 8,854 iterations!

Consequently, if this file was stored on floppy disk, the

drive was running continously. Being by far the slowest

operation, the program forever needed to read the drive again

to retrieve the next hour's weather data. Talk about an

inefficient process! With my ascii building blocks, I

replaced this piece of code with a routine which not only

buffered the weather data in 23k chunks (i.e.- a whole months

worth of data was read into memory at a time where it was

subsequently processed), it also allowed the weather data to

-reside in a "free format" where each element of weather data

no longer had to occupy an exact byte location within a data

record. This provided a considerable amount of necessary

freedom for the poor guy who ends up porting weather files

from other applications which can be used by CALPAS1. As a

result, instead of having to read the disk 8,854 times during

a simulation, my new version only has to read the disk 13

times! Since I never had the patience to run a comparison

between these two versions off of floppy or hard disk (I've

always used ramdisk where the difference is not that

129

noticable), I'm not sure what the performance advantage is,

but it must be considerable.

A case like this by the way, is where I think performance

should be given close attention. The extra time taken to load

up an extra utility module in ramdisk to massage some data is

negli gible. However, this is not the case when an operation

occurs within a huge calculation loop which gets executed

8,854 times. The moral? -- put your coding effort where it

really counts!

For the time being, rather than adding more system

features, I am concentrating my efforts on porting my code to

a Lattice C environment, so that our flagship commander will

be happy after I am no longer around MIT. Unfortunately,

Athena did not discover in time before it made it's selection,

that DeSmet had a much cheaper and tighter C software

development package, so I am forced to port over to Lattice.

But at least I was able to get a significant amount of code

written this year, in a manner which hopefully has laid a good

foundation for future building technology software development

efforts at MIT. This is of course due to the strict adherence

to structured programming principles, and the coding of vast

libraries of reusable "building blocks" which can be utilized

by various software modules. As I mentioned above, I already

have an inkling that this particular coding technique- indeed

will lay a foundation by which other software developers can

build on, providing that they go along with my "cruise

missile" approach, and use text files as a compatible footing

130

on which building blocks can be laid. My success in writing

integrated code, laying building blocks upon other building

blocks, and my ability to reuse these components across

various modules and utilities seems to point to the fact that

the system as I have developed it does in fact have UNIX-like

tenacity, due to it's inherent "plug-in, plug-out"

capabilities. The fact that the CALPAS1 ouput processor is

such a flexible and generic tool which can easily accomodate

future needs, even some which may as yet be unanticipated, in

my mind adds a significant amount of hope that this type of

software system can survive the hazards of an educational

environment, just as UNIX has been able to. The fact that

UNIX is the local operating system here at MIT adds even more

hope, due to the compatibility of these systems on two levels-

i.e.- at the conceptual level in terms of coding philosophy,

and on an implementation level, due to the fact that they have

the same means of primary data storage.

Maybe there can now be more continuity, and some real

growth here in the future- as now I can say to the next MIT

graduate student who comes along: "Here is your foundation to

build on, if you will continue the work I have started, your

own work will be alot easier, since I have already created all

these building blocks. Now it is all up to you!"

131

CHAPTER 5: THE RESULTS

"All discipline for the moment seems not to be

joyful, but sorrowful; yet those who have been

trained by it, afterwards it yields the peaceful

fruit of righteousness."

At this point in time, this comprehensive passive solar

software environment- which is the subject of this thesis,

lacks a few modules to be complete. This is besides all the

fancy enhancements that I've said will probably be added down

the road to SOLPAS. The file archive facility which in some

fashion will keep track of a user's various run files has not

been coded. It is the intention that this facility will

enable one to keep track of his or her files as one uses this

software day by day on a design project. When one stores a

file to disk, the opportunity will arise to store this file in

the current working directory, or to store it more permanently

in a file archive where one has the ability to associate the

name of the file with a string of text, which at a glance will

help one to identify it. An eight charater filename simply

isn't long enough to do the job properly, as it doesn't take

very many files for this method to get out of hand, as we all

know. The ability to replace a filename such as "SG200R11",

with a phrase such as "3rd variation w/ 200sf south glazing

and R11 insul." should relieve a significant amount of user

frustration. It is also anticipated that this facility will

132

have the power to associate a run file with it's various

counterparts such as the associated weather and input files

which were significant in it's creation. Whether this

facility will take advantage of existing canned software such

as a spreadsheet or database, or be written entirely in C, I

do not know at this point since I have not really though about

all the implications. Either way, the building blocks are

lying around somewhere to get the job done when I finally get

around to it.

The last piece of code is the BTECH shell which is the

"housing" where all these modules and utilities will exist.

It will most likely be just a simple menu interface shell

which will give the user the choices of running SOLPAS or

CALPASI, letting him peruse his database of existing files via

the FILE ARCHIVER or his own favorite screen editor, or

letting him display and graph various output files via the

OUTPUT PROCESSOR- whether or not he actually intends to run

any new simulations or not. Since the current CALPASI output

processor already contains all the building blocks that are

necessary for such a LOTUS-type menu front-end, coding it

should not be a difficult task once all the other modules are

in their completed form.

Other features will be "plugged-in" to the system later

as time and motivation levels permit. Harvey already has a

student working on one enhancement to SOLPAS- i.e.-

incorporating SLR "conservation factors" into the scheme,

which will enable a designer to balance passive solar

133

stategies against energy conservation strategies in the design

optimization process. Other enhancements to SOLPAS are

planned, such as adding Phil Nile's cooling algorithym as a

quick schematic design check against an overheating problem.

As far as CALPAS1 is concerned, the original version had the

major drawback that only one sequence of detailed output data

could be asked for in the input process. In other words, if

one wanted to see hourly data for january 15th and also for

june 15th, one's only choice was to specify all hourly data

between these two dates- i.e. there was no way to specify more

than one range of output data. To date, all of the low-level

building blocks needed to alleviate this problem have been

coded, but I have not gone back and incorporated them into

CALPASI's user-interface yet. But in the future, if you say

that you want only output for january 15th, june 15th, and for

the days of october 3 thru october 6- so be it, that's exactly

what you'll get!

While my attempt to design and code a comprehensive

software package to aid in passive solar design has alot of

loose ends right now, the main modules which comprise the

primary working elements of this software system have been

fully coded and debugged at this stage. As the system

currently exists, it is possible with alittle more effort than

will be required in the end, to go through a complete passive

solar design problem using the output from SOLPAS to generate

appropriate input for a CALPASI run. The results of either

method can be displayed graphically as well as tabularly,

134

using LOTUS 123 as a graphing utility. Once output is graphed

using this means, the user is free to continue on in a

cyclical fashion revising and rerunning his proposed design in

an attempt to optimize the performance of the passive systems

involved. As I mentioned above, the only major differences

between the current product and the finished product at this

point, is the lack of the FILE ARCHIVER, and a user-friendly

BTECH shell-main menu which depicts all the system options.

The utility which will automatically set CALPAS1 input

defaults based on the outcome of a SOLPAS run has not been

implemented either, but this operation can easily be done by

hand through the normal CALPAS1 user-interface. Cascading the

data is entirely possible at this stage, however, it may take

a few extra minutes during the CALPAS1 input process. Since

CALPAS1 need not run directly behind SOLPAS, it is anticipated

that this cascading utility once it is developed, will take

advantage of the FILE ARCHIVER's ability to pull up run files

which have been run at a previous time, which is the reason I

am holding off on the coding of this final utility.

I think it is possible however at this stage to get a

pretty good glimpse of how the system will perform, and how it

may be an improvement over past building technology design

tools. The first thing to be said, is that the system is

indeed coherent, both from the standpoint of the user, and

from those who will end up having to maintain the software in

the future. In the last chapter I alluded to coherence with

respect to software maintenance, since everything within the

135

system has been coded with the same reusable "building

blocks". This chapter describes the system in respect to it's

use, and how the system tries to maintain a "logical

coherence" from the standpoint of the user. Performance in

terms of ease and efficiency of use is also discussed.

An important consideration with respect to "logical

coherence", is how the individual modules within the system

look with respect to each other. I went through an extensive

amount of effort to make sure that the SOLPAS and CALPAS1

modules appear almost as twins in terms of how the user is

required to interact with them. In other words, if the user

is already familiar with one of the modules, he or she should

have absolutely no trouble using the other. This in itself,

is a marked improvement over building technology software that

has been previously designed as I mentioned in the

introductory chapters of this thesis. What I mean when I use

the word "twins", is that in every aspect, one module emulates

the other in respect to how one interacts with the user-

interface- when program options are asked, when file I/O takes

place, how the graphing and parametric analysis features are

invoked, etc..... If it were not for the fact that each

module when run comes up displaying it's own identification

banner, the uninitiated user would have a very hard time

telling the two modules apart! In other words, the fact that

the these modules are consistent on the inside at the coding

level, has given them a consistency on the outside as well-

which was one of my original hypotheses.

136

The particular style of user-interface that I chose to

implement is very consistent with UNIX operating system style

as well. In other words, it is alittle on the terse side, but

this was entirely intentional for several reasons. I might

add here that a few people have commented on the fact that

this interface is indeed terse, and wondered why I did not

implement something which was a little more "user-friendly".

My general comment in return, is that I think the system is

user-friendly in much the same way that UNIX is user-friendly

to those who have already been introduced to the computer

world, and are interested in really getting some work done!

Thus the particular style chosen is not of the "hold the

user's hand", menu-driven variety, nor of the "free to choose

anything", full screen editor variety, but one which was

designed specifically to be very fast and psychologically

painless for the parametric analysis user. In other words, it

was designed to relieve the competent user of the overwhelming

boredom of the former, while at the same time, providing

enough structure so as to eliminate the extra decisions and

keystrokes which are usually associated with the latter, which

could certainly lead to undue fatique during an involved

parametric analysis study. The fact that the result is

alittle terse as compared to these alternatives does not

really bother me in the least, because MIT students will get

familiar with the this style soon enough. It gives exactly

the same sort of "feel" as UNIX does, and in my opinion in the

long run- which is only a short haul from here, this

137

particular style chosen will have turned out to be a real

blessing.

Thus the user-interfaces of SOLPAS and CALPASI are not

encumbered with the typical gaudiness that I associate with

most software products such as word processors and other

canned software packages that have been marketed with a pretty

wrapping. Not only does this interface appear much cleaner in

nature, it also consequentially allows for it's "plug-in,

plug-out" capability. The result is that screen images put

forth a straightforward, no frills, no nonsense image, as the

reader will gather by looking at the Appendix, where he or she

will find an example of the input and output produced by these

modules. Questions are asked one at a time in a structured

fashion, presenting the current default option, which the user

is free to quickly accept via the carriage-return, or to

reject by writing over the default with his own answer. The

user's response is checked by the interface, and rejected if

it does not fall within allowable outer limits. If this is

the case, a simple error message appears beside the answer on

the same line, telling the user what the allowable outer

limits are. When the user finally gives a reasonable

response, the error message disappears, the answer is

accepted, and the interface moves on to the next question. In

most situations assuming this software will in fact be used

for parametric analysis- as opposed to previous building

systems software, the user will for the most part only need to

continually hit the carriage-return to enter most of the

138

input. While this is an added task not needed with the full-

screen editor variety of user-interface, it has the advantage

of requiring the user to quickly check each default option,

making sure it is indeed appropriate before proceeding. Thus

this feature was inaugerated intentionally to save time in the

long run, due to it's tendency to alleviate careless input

errors. All input is logically organized into screens which

have logically related data elements. Thus if one pulls in an

existing file to reedit for parametric analysis purposes, the

user needs only to look at the screens which contain the

pertinent data to be varied. Thus a minimum of decisions and

keystrokes are required which in my mind, bring together the

best of both of the alternative methods mentioned above, and

the system is quite fast. It normally only takes a matter of

seconds to call up the one or two screens, and change the one

or two items which are to be varied for the next parametric

study, before the system is off and running again.

I should backtrack for a second and mention my use of

program input defaults. Since the reader remembers my earlier

rhetoric on the subject, he or she is no doubt wondering by

now why I included them, and if they have the same purpose as

they have traditionally served in building systems software.

My purpose for including input defaults was twofold. First,

given the fact that this software is to be used in a

parametric analysis fashion, there will normally be an input

default for every screen item- which is simply the value from

the last parametric run. Secondly, high and low limits are

139

used so that a designer can "set the environment" for

parametric analysis- so to speak, so that things will go

faster, and he or she doesn't have to be totally conscious

every moment to make sure that various heat transfer

coefficients, etc.... which won't normally be varied from

moment to moment, stay in bounds so as not to throw -the

results off. Thus these limits are meant to be set at the

beginning of a project which will undergo parametric analysis.

To me, this is a valuable feature, and is a far cry from the

traditional use of defaults whereby they are used solely to

save the user some inputting effort, letting him put a rather

simple building through a "garbage in- garbage out" process.

Since I didn't inaugurate a full screen editor type of user-

interface which lets the user get away with skipping over vast

amounts of input, my default scheme is less apt to be used in

this rather useless fashion.

I should also mention that one traditional feature which

has not been incorporated into the user-interface scheme at

this time, is a "help" facility. Such a facility was not

included in the original user-interface components because I

didn't want to overencumber them with extraneous code.

Instead, I plan to make use of DeSmet's "flip-screen" assembly

functions, once I finally get around to adding this facility,

as I think it will be a much cleaner approach. Such a

facility would not erase a screen to display background

information regarding input data at the user's request.

Instead, at the touch of a key, the text page in memory which

140

is sent to the CRT would be instantaneously "flipped" to

display a new page which has this information, then at a

second touch of the key, the user would find himself

instantaneously back where he left off. This is a much faster

approach than the traditional BASIC method, and also leads to

further code modularity. In addition, if one already has the

assembly routines available, it should in general be much

easier to implement.

In terms of performance and ease of overall use, a

subsequent parametric recalculation takes only a second or two

to complete before the new SOLPAS results replace the old

results on the CRT. Up to four runs can then be graphed

together using LOTUS's spreadsheet graphing facilities,

allowing one to compare a number of slightly modified building

designs in a particular city, or to see how the same scheme

would perform in various cities. All the graphing is handled

automatically via LOTUS macros, all that remains for the user

to do is to specify how many situations are to be graphed at

once- a pretty painless process. Hitting the carriage-return

after viewing the last graph, will automatically put the user

back in the SOLPAS module, giving he or she the options of

archiving the last run and/or doing another one, until the

module is finally exited. All in all, the process of using

SOLPAS is quite fast, requiring a minimum amount of learning

effort. In addition, a utility called SHOW is available which

gives the user the opportunity to peruse weather files for any

of the cities available, or any previously stored input files,

141

as well as information pertaining to the assumptions inherent

in the 94 different kinds of passive systems. A MAKEFILE

utility is also included for SOLPAS which lets the user create

new weather files for the system from the reference

information available on the SLR method (1).

Because CALPASi takes on the order of 25 minutes to run,

the sequence involved is alittle bit different. Although the

input screens are set up in exactly the same fashion as SOLPAS

input screens, a calculation is not automatically done

following the completion of program input. Instead, you have

the option to run a simulation on the input file you've just

created, or go back and immediately build other variations on

your original theme. These building description files are

placed in a batch que to be processed all at once, alleviating

the need for the user to sit there waiting for one process to

complete itself before he or she starts the next process. The

whole idea relates back to my scheme in an earlier chapter

where an architect at this stage of the design process, since

his options are probably more limited, can effectively try out

a few variations at once and come back later when they are

finished to check out how the results differ. There's really

no reason for him to sit around and wait, and the batch que

can currently be loaded up with as many as ten variations,

which could even be left to run overnight. Since the CALPAS1

Output Processor is completely decoupled from both the input

and calculation sections as described earlier, the results of

any design variations run can be called up, looked at, and

142

graphed via LOTUS 123 at any later time. Any data that

CALPAS1 puts out can be graphed, including space & storage

temperatures during any given hour of the year, and heating,

venting & cooling tallies on an hourly, daily, or monthly

basis. In addition, the Output Processor will even graph

yearly summary results between various CALPASI runs, which at

a glance gives the user an indication as to which of his

design variations is the most energy efficient. Via the

method described in the previous chapter, in the finished

product, output data from various runs will be able to be

intermixed, tabularized, and graphed in a wide variety of

ways, and the user will be able to specify that he or she

wants multiple ranges of detailed output. While CALPAS1 isn't

a fast module to run, all of these features make the time

delay involved easier to live with, and the result is a marked

improvement over the original "bare-bones" program.

To date, this software system has not undergone any

substantial use, which is always the true grit test. The

links between the various modules were rather slow in evolving

due to the need to get this thesis written. Consequently, our

original hope of testing out the finished product in this

semester's building systems courses, has not materialized.

Therefore I can not offer the reader any substantial proof

other than my own experimentations as it was being developed,

as to whether the system actually works as anticipated in an

educational setting or not. I can however reiterate the fact

that what has been written is adaptable to change, if this is

143

found to be necessary at a later date. For instance, if my

rather terse user-interface is found to be too terse for

beginning computer users, it can rather easily be replaced

with the "hold your hand" variety, by substituting components

which work in this manner. Since a prototypical software

system is by it's very nature experimental, I have no doubt

that changes will be required down the road, as new and

previously unanticipated needs arise.

As I have mentioned, this software is still under

development and probably will be throughout the summer. Next

fall's MIT students should be able to use the finished product

in their building technology courses. Aside from the

improvements that I have already mentioned, a final

enhancement I would like to make, is to do away with LOTUS 123

as a graphical output tool. While LOTUS, being written in

assembly code does indeed throw graphs up on the screen fast,

here is where the system as it stands now looses it's

coherence. Calling up 123.EXE is indeed awkward, and the

process of having to use macros to get the data in and the

graphs up is slow, and not a very clean approach. If I were

to write my own business graphics routines of which

algorithyms are readily available, the actual process of

getting the graphs drawn would be slower, but the whole

process would be transparent, and would not adversely affect

the overall coherence of the software system as it does now.

As the system stands now, this is my greatest complain, and

one which I will surely address when I finally get the time-

144

which will probably be when I retire! The only other major

side experiment on my agenda, would be to experiment with a

local database program which is callable in C, to see if it

can be used in an efficient and coherent fashion as a file

archiving device. If it can, this obviously will open up some

new avenues to explore. Otherwise, if coherence and

efficiency can not be maintained so that the overall effect is

similar to using LOTUS 123 as a graphical output tool,

exploring this direction is in my mind, not worth it.

Other than this, the system is coherent at both the user,

and the software maintenance levels, and it's algorithyms are

appropriately matched with the phases of the architectural

design process in which it will be used. The algorithyms were

also very carefully chosen so as to be able to work together

well- to compliment the strengths and weaknesses of each other

so as to provide a comprehensive design tool which remains

useful throughout the full range of the architectural design

process. This should go a long ways toward making this

system a useful software development package for training

students in the fundamentals of passive solar design. The

fact that the system was built to communicate a graphical

representation of output results, as well as to facilitate

efficient parametric analysis, should make this design tool a

much more effective educational tool than it's predecessors in

fact were, as the reader saw in the first chapter of this

thesis.

After a final evaluation by the Athena flagship, and a

145

final "tune-up" based on the recommendations received, this

software will be placed on-line on the Project Athena system

here at MIT, where the true test of time will tell whether my

hypotheses, and the subsequent coding effort involved were

worth anything at all. Since as yet, no substantive Athena

software has been written in this department using the

"flagship- big guns approach", although a few potshots have

been taken here and there, the real battle between these

opposing aggressors will not take place for quite awhile.

Given the fact that Athena has had lots of trouble getting

it's big guns in place, the waiting period could be endlessly

prolonged- to the point where the battle never takes place at

all!

In the meantime, if my software actually gets used by a

fair number of students, and is maintained by those who may be

intrigued enough by it to want to experiment with the code and

add new features, I will consider this project highly

successful, as this will be a real " first" for a software

development project in the field of building energy analysis,

here within the architecture school at MIT.

146

CHAPTER 6: CONCLUSION

"Therefore, my beloved brethren, be steadfast,

immovable, always abounding in the work of the

Lord, knowing that your toil is not in vain, in

the Lord."

Without reiterating half of this thesis, I would like to

say some concluding remarks regarding this ongoing experiment,

and how it has affected my thoughts on software development,

and in particular, the design of educational software. If I

have anything at all to conclude from my experiences using and

developing design tools, it is this: Design tool software

must enhance creativity- not stifle it! Or else even if it

does crank out numbers which have some. usefulness, the

software will still be of little value and will consequently

be relegated to the back shelf! This overall objective seems

directly tied to the fact that architectural design is a so-

called "wicked design problem" (1), therefore whatever

particular design problem is at hand needs to be explored from

various angles since there is no "right answer" to such a

design problem, nor is there a "right way of getting there".

To this end, a design tool requires good parametric design

capabilities, not only allowing- but actually encouraging

experimentation, so as to be able to teach the user something

that he or she did not already know, thus opening up avenues

for design exploration. This overriding need has many

147

implications.

First, the number one quality a design tool must have in

my mind, is flexibility, because without it- it can do little

to foster creativity. Of course it must have other qualities

as well- such as efficiency and "user-friendliness", or else

it will not be useful at all. These really basic needs have

been addressed before in earlier design tools, as I mentioned

in the earlier chapters, but in general these early tools fell

way short in terms of their primary educational need- which is

a high level of built-in flexibility which can accomodate the

tool's main objective, which is to foster design creativity in

those areas of design where a calculation tool can be

beneficial.

It is generally acknowledged that UNIX/C is currently the

most popular operating system/development environment for

software development (2), to those who are engaged in this

highly creative endeavor day by day, and this has led me to

ask the question: Why? It seems that there ought to be some

fairly strong implications here. If the UNIX/C environment is

successful in providing a user environment which has the

qualities which foster creative software development, then it

seems natural to deduce that these external characteristics

are simply an outward manifestation of it's internal

structure, which has in it enough integrity to make it's true

nature show through on the surface. I am no expert in

linguistic theory, but it makes common sense to me that if a

language has a certain consistency on the inside, that this

148

will make it have a particular consistency on the outside as

well.

Early on in this project, I discovered the power and

flexibility of the C programming language, that in fact C

provided a highly creative software development environment.

In essence, the closer I looked at C, the more I saw that C

had the exact qualities about it, that a good design tool in

an educational environment needed. Since these qualities have

been spoken about in great detail already, I will not

reiterate them here. But this awareness combined with the

above common sense hypothesis, led me to think that if I used

C as my programming environment, and as much as possible,

emulated the internal structure of this language in my own

software, by utilizing it's full power and expression, then my

software would be able to take on these same characteristics

itself. This is why I am so adamant in my assertion that

existing code should not be simply directly translated into C

from another languages such as BASIC or FORTRAN. To do so is

a grave injustice because the result will still most likely

emulate the flavor of these languages, and not take on the

pristine qualities of C.

This in turn guided me in choosing a software system

development philosophy which seemed to be the most logically

consistent with the internal structure of the UNIX/C

environment, so that the qualities in this environment that I

wanted to see in my own applications software system would not

be degraded, but actually built-up to an even greater degree.

149

The resulting "cruise missile approach", was so consistent on

a conceptual level, with both my design tool goals, and the

overall software system that I was working under, that I had

no trouble at all turning my software design theory into

actual implemented code. The end result being that the

underlying qualities I wanted in my design tool system to

enhance creativity, (and prolong the useful life of the

software, promoting future growth)- actually do I think show

through on the surface, just as I had postulated.

I do not think the results would be anywhere near as

dramatic had this internal consistency not be maintained

between the. overall goals for the software, the software

design approach taken, and the software used to produce it.

Had I been forced into using Athena's "flagship- big guns"

software design approach, or through constraints had been

forced to use one of the more traditional scientific &

engineering computer languages, I think the results would

suffer the inevitable consequence- i.e.- the resulting

software would be inhibited from fully expressing the

qualities that were originally sought in it's design. In this

regard, designing a large piece of software, is just like

designing a large building, and software designer's would do

well I think, to study the designs of this centuries more

famous designers- whether it be the industrial designs of

Charles Eames, or the architectural masterpieces of someone

like Frank Lloyd Wright. One would soon discover after

looking over the design endeavors these men undertook, that

150

design expression on the outside fundamentally relates to how

design components are used together, and what material

qualities these components lend to the greater scheme of

things- as Louis Khan has so eloquently written about (3).

(Notice that I am not referring the ceader to any "post-

modern" architectural designers such as Venturi or Graves!)

Being aware of this fundamental design axiom through my

previous architectural training, I began looking for the right

material- i.e.- the right generic components of which modular,

reusable building elements could be fashioned that could then

be used to build up my software system according to the plan I

had conceptualized. Making sure that the components used had

the right integral qualities so as to enhance and preserve the

qualities desired in the final built product. Hence all my

efforts to develop a library of succinct, ascii C functions

which could be used over and over again, providing the

essential link between the various algorithyms of the

different modules, and the text-oriented, outside world of the

UNIX environment. The internal integrity afforded through the

proper choice of components I believe, has lent the whole

system a real degree of coherence on the outside, both from

the point of view of the user, and of the programmer who must

maintain the system.

In choosing these components, just like in choosing the

proper building elements for a building, the question of the

optimal size of these components can not be overlooked. In

other words, the proper scale of these elements is important.

151

Here's where an understanding of modular building theory came

into the picture. My analogy of a geodesic dome was carefully

chosen, to illustrate the flexibility and strength afforded as

a result of generic components which are sized properly in

relation to each other. This required a real dedication to

true K & R C-coding philosophy where compact functions are

built up via other svelte functions, creating a multivalent

effect which gives the overall system a "tinker-toy" capacity

to evolve in multiple ways, providing the sought qualities of

flexibility and tenacity.

An additional by-product of my adherence to modular

building theory, was the opportunity to pursue a high level of

code integration, which made the coding of.these rather large

modules much easier, because many small pieces of code could

be logically grouped together and segregated off into outside

source files. This dramatically "cleaned-up" the local

environment, leaving the module algorithyms intact and

unencumbered by extraneous garbage. Which- just like modular

buildings, makes the system code easily maintainable, and

gives it a "plug-in, plug-out" nature, allowing for a high

degree of adaptation and future expansive growth.

At this point, only time will tell, but I do believe that

through this experimentation, I have discovered some valuable

insights on how to go about designing and coding software

which must have certain qualities to be able to survive in an

educational setting. (In my mind, the phrases "educational

setting" and "design setting" are synonymous.) After spending

152

the last several years using and maintaining architectural

design tool software, I also believe that the code I have

written on a qualitative level, is much different from most of

the code that has been written before it, for all of the

reasons and implications that are stated above. And had I not

discovered the C language- when I did, just like my

predecessors, what I have done would not have been possible to

do.

Through my trials and errors, I know that for myself, I

have discovered what I consider to be a bonafide software

design theory, which is the conceptual process that I have

outlined above, as seen in the context of how it evolved-

which is what the main portion of this thesis has tried to

explain. It is not based on the traditional linear theory of

"top-down design", but is much closer in nature to the more

cyclic and convoluted design process that architectural design

is (1). While it does on the largest level encompass a "from

big to small" approach- as does "top-down design", it also

concurrently operates on other levels which require a "from

the bottom up" thinking process as well, in order to maintain

design integrity from small to big. This design integrity is

of course essential in being able to achieve one's overall

software design goals. This process is indeed "wicked" in

that in any given moment, where the design process leads next

is not entirely predictable (to the creative designer). There

is always more than one avenue to choose from in order to head

in a given direction, and usually at least at the onset, more

153

than one direction to go in. While the procedure I have

outlined above was indeed what I actually did, for the sake of

explaining it in a logical fashion, I have "straightened it

out"- as it did not actually occur in the straightforward

manner that I described it in, but in the more architectural

design fashion of working at one end of the spectrum for a

little while, then shifting to the other end. (If the reader

has found this thesis alittle hard to follow at some points,

since it was written chronologically as a journal, it only

goes to show what I am now trying to point out.) This was not

a conscious procedure on my part, it just happened to be the

way things needed to happen, as experiments at one end of the

spectrum would open up new ideas at the other end. In my

mind, such a design process is essential in order to produce

"good software", just as it is essential in designing a "good

building"! And just like designing a building in the real-

world, whether or not you have the resources and time on your

hands in order to be able to do this is the key factor.

Probably not!, which makes coming up with a personal design

philosophy which seems to work well, all the more important as

it gives you that needed edge- i.e.- bag of tricks which can

save you alot of time on your next job.

For an overall evaluation of my experience to date,

although this project is still ongoing (and due to the fact

that I have that true designer's spirit, forever will be in

one way or another), I consider this thesis closed, because

the overall goals that I have stated for it in the

154

introduction, I believe have been fulfilled. The most

important aspect I think a designer needs to gain from his or

her education, is to be able to come up with a personal design

philosophy of one sort or another at the end. While such a

philosophy hopefully will grow and may even evolve into

something quite abit different later, at least it is a solid

foundation to build on for the time being. Again, my second

goal is that this work will provide in one way or another, a

big inspiration for others to try to get their "sea legs" as

well. Even if they don't agree with me and would rather carry

a swiss army knife around in their pocket- rather than

learning how to row, at least this second goal will have been

met as well.

155

CHAPTER NOTES

Introduction

1. Krinkle, David L., Integration of Energy Analyses in
Design Through the Use of Microcomputers, Masters Thesis,
Massachusetts Institute of Technology, 1983, p. 19.

2. Sutherland, I.E., Sketchpad: A Man-made Graphical
Communication System, MIT Lincoln Lab Tech. Rep. 296, May
1965.

Chapter 0

1. Kohler, Joseph T., Douglas E. Mahone, and Paul W.
Sullivan, Pascalc II, Total Environmental Action, Inc.,
Harrisville, NH, 1980.

2. Kohler, Joseph T., and Paul W. Sullivan, TEANET User's
Manual, Total Environmental Action, Inc., Harrisville,
NH, 1979.

3. CALPAS3 User Manual, Berkeley Solar Group, Berkeley,
California, 1982.

4. Balcomb, J. Douglas, et.al., Passive Solar Design
Handbook, Volume Two of Two Volumes: Passive Solar Design
Analysis, U.S. Department of Energy, 1980, Chap. D.

5. ibid., p. 9.

6. ibid., p. 33.

7. Mazria, Edward, The Passive Solar Energy Handbook, Rodale
Press, 1979, Chap. IV.

8. St. Clair, Charles, QUICKPAS: A Microcomputer Based
Passive Solar Analytical Design Tool, Masters Thesis,
Massachusetts Institute of Technology, 1984, p. 29-31..

9. Krinkle, David L., Integration of Energy Analyses in
Design Through the Use of Microcomputers, Masters Thesis,
Massachusetts Institute of Technology, 1983.

Chapter 1.

1. California Energy Commission, CALPASI Program User's
Guide, Sacramento, California, 1981.

156

2. Schneider, G.M., and S.C. Bruell, Advanced Programming
and Problem Solving with Pascal, John Wiley & Sons,
New York, 1981.

3. Microcomputer Methods for Solar Design and Analysis,
SERI, February 1981, p. 0.

4. DOE-2 Program Manual, Los Alamos Scientific Laboratory,
U.S. Department of Energy, 1979.

5. California Office of Appropriate Technology, MICROPAS - A
Microcomputer Program for Residential Building Energy
Analysis, User's Manual, Sacramento, California, 1982.

6. Wirth, Niklaus, Programming in MODULA-2, Springer-Verlag,
New York, NY, 1982.

7. BYTE, Byte Publications, Inc., October, 1983.

8. W.S. Fleming and Associates, ASEAM - A Simplified Energy
Analysis Method; Report to the U.S. Department of Energy,
Washington, D.C., 1983.

9. Bryan, Harvey J., and Steven E. Lotz, Welcome to the
Designers Software Exchange, Lab of Architecture and
Urban Planning, Massachusetts Institute of.Technology,
1983.

Chapter 2.

1. Skjellum, Anthony: "C Instead of FORTRAN?", Compu. Lang.
2(2):33-40, February, 1985.

2. Burger, Brian H.: "C to Assembly Interface", Compu. Lang.
2(2):50, February, 1985.

3. ibid., p. 49-57.

4. Pressman, Roger S., Software Engineering: A
Practitioner's Approach, McGraw-Hill, Inc., 1982, p. 4.

5. Skjellum, Anthony: "C Instead of FORTRAN?", Compu. Lang.
2(2):34, February, 1985.

6. Purdum, Jack J., Timothy C. Leslie, and Alan L.
Stegemoller, C Programmer's Library, Que Corporation,
Indianapolis, Indianna, 1984, Chap. 2.

Chapter 3.

1. Ferierra, Joseph, Conversation at weekly Athena meeting.

157

2. ibid., Conversation at weekly Ayhena meeting.

3. Williams, Gregg: "The AT&T UNIX PC", BYTE 10(5):98-105,
May, 1985.

4. Fawcette, James E.: "Watch Out JAZZ", Infoworld 7(13):5,
April, 1985.

5. ibid.

6. Eastman, C.M. and M. Henrion: "GLIDE: A Language for
Designing Information Systems", Computer Graphics
11(2):24, Summer 1977.

7. Yates, Jean L.: "UNIX and the Standardization of Small
Computer Systems", BYTE 8(10):161, October, 1983.

8. ibid., p. 210-211.

9. Krieger, Mark and Fred Pack: "UNIX as an Applications
Environment", BYTE 8(10):212, October, 1983.

Chapter.4.

1. Bryan, Harvey J. and David Krinkle, "MICROLITE: A
Microcomputer Program for Daylighting Design",
Proceedings of the Seventh National Passive Solar
Conference, Knoxville, Tennessee, September, 1982.
p. 405.

2. The Energy Group, TNODE: A Thermal Network Analysis
Program for the IBM Personal Computer, Georgia Tech,
August, 1984.

3. California Energy Commission, CALPAS1 Program User's
Guide, Sacramento, California, 1981.

4. Haley, Robert B., SOLPAS - A Passive Solar Design
Program, 1983.

5. Balcomb, J. Douglas, et.al., Passive Solar Design
Handbook, Volume Two of Two Volumes: Passive Solar Design
Analysis, U.S. Department of Energy, 1980.

6. Morris, W. Scott: "Road Map for Passive Design", Solar
Age, May 1983, p. 50.

7. ibid., p. 49.

8. California Energy Commission, Passive Solar Handbook,
Sacramento, California, p. 312.

158

9. Balcomb, J. Douglas, et.al., Passive Solar Design
-Handbook, Volume Two of Two Volumes: Passive Solar Design
Analysis, U.S. Department of Energy, 1980.

10. Krinkle, David L., Integration of Energy Analyses in
Design Through the Use of Microcomputers, Masters Thesis,
Massachusetts Institute of Technology, 1983, p. 19.

11. Krieger, Mark and Fred Pack: "UNIX as an Applications
Environment", BYTE 8(10):212, October, 1983.

12. The AutoCAD 2 Drafting Package User Guide, Autodesk Inc.,
1984.

Chapter 5.

1. Balcomb, J. Douglas, et.al., Passive Solar Design
Handbook III, U.S. Department of Energy, 1980.

Chapter 6.

1. Krinkle, David L., Integration of Energy Analyses in'
Design Through the Use of Microcomputers, Masters Thesis,
Massachusetts Institute of Technology, 1983, p. 19.

2. Krieger, Mark and Fred Pack: "UNIX as an Applications
Environment", BYTE 8(10):210, October, 1983.

3. Lobell, John, Between Silence and Light: Spirit in the
Architecture of Louis Kahn, Shambhah, Boulder, Colorado
1979.

159

NOTE

All chapter opening quotations are from the BIBLE, NASB
version, an excellent and practical guide to spiritual living:

"All Scripture is inspired by God and profitable
for teaching, for reproof, for correction, for
training in righteousness; that the man of God
may be equipped for every good work."

2 TIM 3:16

References for the chapter opening quotes are as follows:

Chapter 0:
Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:

MAT 12:20
1 COR 15:37
HEB 11:1
JAM 2
HEB 12:1
HEB 12:11
1 COR 15:58

A highly recommended book!

160

APPENDIX

SOLPAS Input

SOLPAS Output

CALPAS Input

CALPAS Output

.................... 1ii

.. viii

.. xiii

i ap

You will be asked to enter the dimensions of your building in
to have the program compute the Building Load Coefficient(BLC)
you have already computed the BLC and wish to skip this proces
'skip'. If you want to use an existing file, either an attrib
or a previously stored blc file- enter 'file'. Otherwise just
'return' to continue

Use an attribute file: (y,n) ? n

You may have a building that utilizes more than one of the pas
systems. For clarity, let us call each system a 'zone'. You
select from one to three zones. You will be asked to give the
facing glazing dimensions for each zone.

No. of zones(1-3): 1

SOUTH WALL MODULE

South wall height: 9
South wall width: 51
South wall r-value: 12
South wall area: 459

Is all data correct: (y,n) ? y

DATA FOR ZONE NUMBER 1

System number(1-94): 64
Overhang ratio(x/h): 0.500
Overhang ratio(y/h): 0.250
South glazing height: 4.5
South glazing width: 18.0
South glazing area: 81.0

Total south glass: 81.0
Net south wall area: 378.0

Access east wall module (y,n)? y

ii an

EAST WALL MODULE

East wall height: 9
East wall width: 26
East wall r-value: 12
East wall area: 234
East glazing area: 49.0
Number of glazings: 2
Net east wall area: 185.0

Is all data correct: (y,n) ? y

WEST WALL MODULE

West wall height: 9
West wall width: 26
West wall r-value: 12
West wall area: 234
West glazing area: 73.0
Number of glazings: 2
Net west wall area: 161.0

Is all data correct: (y,n) ? y

NORTH WALL MODULE

North wall height: 9
North wall width: 51
North wall r-value: 12
North wall area: 459
North glazing area: 25.0
Number of glazings: 2
Net north wall area: 434.0

Is all data correct: (y,n) ? y

ROOF MODULE

Roof length: 51
Roof width: 26
Roof r-value: 20
Roof area: 1326

Is all data correct: (y,n) ? y

iii ap

FOUNDATION MODULE

Foundation: (s,c,b,<ESC>) ? s
Perimeter length: 152
Perimeter r-value: 12

Is all data correct: (y,n) ? y

AIR CHANGECEILING HEIGHT, AND COMBINED FLOOR AREA

Air changes/hr:
Ceiling height:
Combined floor area:

0.5
8
1250

Is all data correct: (y,n) ? y

BLC CALCULATION

8872
109

Access thermostat module (y,n) ? y

THERMOSTAT SET-POINT AND INTERNAL GAINS MODUL

thermostat setting:
Internal gains:

65
40000

Is all data correct: (y,n) ? y

iv an

Blc:
Lcr:

SOLPAS1
BOSTON

january
february
march
april
may
june
july
august
september
october
november
december

ANNUAL

SOLAR SAVINGS
FRACTION

0.001
0.023
0.047
0.095
0.316
0.883
0.987
0.972
0.929
0.446
0.086
0.001

0.063

AUXILIARY HEATING
REQUIREMENT

8788396
7520579
6028486
2965615
852605

43711
1934
7049

38722
1098814
3916398
7691378

38953686

Btu
Btu
Btu
Btu
Btu
Btu
Btu
Btu
Btu
Btu
Btu
Btu

Btu

ANNUAL ENERGY SAVINGS OVER
REFERENCE NON-SOLAR BUILDING

Want a hardcopy: (y,n) ?

3550762 Btu

n

v ap

SOLAR LOAD RATIO RESULTS
SOLAR SAVINGS FRACTION

-D.III

0.9

0.8

0.7

0.6

Ll.
CA 0.5

0.4

0.3

0.2

0.1

0

9

8

7

6

'/ I,, Al -4
J F M A M J J A S 0 N D

MONTH~

vi ap

1

J F M A M J J A S 0 N 0

MONTH

SOLAR LOAD RATIO RESULTS
AUXILIARY HEAT REQUIRED

-r

z
0

5

4

3

2

1

0

SOLAR LOAD RATIO RESULTS
SOLAR SAVINGS FRACTION

0.4

0.3

0.2

0.1

0

9

a

7

M A

= RL

M J J

MONTH
N 1

A S 0 N

RUN 2

vii ap

1-

0.9-

0.8 -

0.7-

0.6-

L&.
(n
(0

0.5 1

/
/
/
/
/
/ I

-1 1 . jg - Z i , 1 % r 1- I *- -
J F M A M J J A S 0 N D

MONTH
RUN 1 = RUN 2

SOLAR LOAD RATIO RESULTS
AUXIUARY HEAT REQUIRED

7

717

-\ \ \.I0 /\

z
0

6

5

4

3

2

1

0
J 0

-

You will be asked to enter information concerning the building
wish to have an energy analysis performed on by Calpas, as wel
other data pertaining to the building's location and operating
schedule. If you have already been through this process and w
to use an existing building description file that you have pre
stored, or you want to enter data from an attribute file creat
another program, enter 'file', otherwise just press 'return' t
continue

Use an attribute file (y,n)? n

RUN DATA MODULE

first month of run:
last month of run:
first month of summer mode:
last month of summer mode:

Is all this data correct (y,n)?

jan
jan
j un
jun

y

OUTPUT OPTIONS MODULE

skip monthly output (y,n)?
skip daily output (y,n)?
skip hourly output (y,n)?
first day of daily output:
last day of daily output:
first hour of hourly output:
last hour of hourly output:

Is all this data correct (y,n)?

n
n
n
jan 17
jan 17
lam
12pm

y

LOCATION DATA MODULE

latitude of site:
azimuth of south wall:
mean temp of month preceeding run:
mean ground reflect. (e,w,s):
initial air & storage temps. :
total internal heat gain/day:

Is all this data correct (y,n)?

37.70
0.00
49.90
0.20
65.00
68260.00

y

viii ap

BUILDING ENVELOPE AREAS/VOLUME

area of north wall (opaque): 269.50
area of east wall (opaque): 258.25
area of west wall (opaque): 249.50
area of south wall (opaque): 219.50
area of roof: 711.00

area of north glazing: 8.75
area of east glazing: 8.75
area of west glazing: 17.50
area of south glazing: 206.00

volume of conditioned space: 9934.00

Is all this data correct (y,n)? y

BUILDING ENVELOPE SURFACE DATA MODULE

ave u-value of all exterior walls: 0.05
u-value of roof/ceiling: 0.03
heat loss multiplier for infilt: 89.40
heat loss multiplier for slab: 97.90
mean u-value of nonsouth glazing: 0.58
u-value of direct-gain glazing: 0.10
ave absorbtance of walls & roof: 0.67

trans. of n,e,w glaz. in summer: 0.76
trans. of n,e,w glaz. in winter: 0.78
trans. of south glaz. in summer: 0.32
trans. of south glaz. in winter: 0.43

Is all this data correct (y,n)? y

INTERNAL HEAT GAIN ABSORBTION MODULE

% of int. gain to air: 1.00
% of int. heat to s.side m.wall: 0.00
% of int. heat to n.side m.wall: 0.00
% of int. heat to slab/floor: 0.00
% of int. heat to quickwall: 0.00

Is all this data correct (y,n)? y

ix ap

SOUTH SOLAR HEAT GAIN ABSORBTION MODULE

% of south sum sun to air: 0.30
% of south sum sun to s.side m.wall: 0.20
% of south sum sun to slab/floor: 0.50
% of south sum sun to quickwall: 0.00

% of south win sun to air: 0.30
% of south win sun to s.side m.wall: 0.20
% of south win sun to slab/floor: 0.50
% of south win sun to quickwall: 0.00

Is all this data correct (y,n)? y

NON-SOUTH SOLAR HEAT GAIN ABSORBTION MODULE

% of non-s sum sun to air: 0.30
% of non-s sum sun to s.side m.wall: 0.10
% of non-s sum sun to n.side m.wall: 0.10
% of non-s sum sun to slab/floor: 0.50
% of non-s sum sun to quickwall: 0.00

% of non-s win sun to air: 0.30
% of non-s win sun to s.side m.wall: 0.10
% of non-s win sun to n.side m.wall: 0.10
% of non-s win sun to slab/floor: 0.50
% of non-s win sun to quickwall: 0.00

Is all this data correct (y,n)? y

VENTILATION DATA MODULE

low elev. operable vent. area: 38.50
high elev. operable vent. area: 18.00
elev diff. between low & high vent: 8.50
azimuth of low elev. vent. area: 0.00
wind correction factor: 0.25
forced vent. fan energy: 0.00
airchg/hr due to forced ventilation: 1.00
do you want wind ventilation (y,n)? n

Is all this data correct (y,n)? y

X ap

THERMOSTAT SETPOINTS MODULE

cooling thermo. setpnt: 80.00
temp setpnt beg/end vent cool mode: 65.00
temp setpnt beg/end vent. heat mode: 80.00
heating thermostat setpnt: 65.00
temp diff. req'd for forced vent: 0.00

'Is all this data correct (y,n)? y

MASS WALL STORAGE DATA MODULE

area of s. side m.wall: 0.00
air film cond. of s. side m.wall: 0.00
air film cond. of n. side m.wall: 0.00
thickness of m.wall (in): 1.00
vol. heat capacity of m.wall: 1.00
conductivity of m.wall (ft): 1.00
u-value of m.wall glazing: 0.10
rad. heat trans betw glaz. & m.wall: 0.00
air film cond. betw glaz. & room air: 1.50
u-value of m.wall to outside air: 0.00

Is all this data correct (y,n)? y

SLAB/FLOOR STORAGE DATA MODULE

area of slab/floor: 992.00
air film cond. of slab/floor: 1.10
thickness of slab/floor (in): 4.00
vol. heat capacity of slab/floor: 30.80
conductivity of slab/floor (ft): 9.00

Is all this data correct (y,n)? y

xi ap

QUICK WALL STORAGE DATA MODULE

area of s. side of quickwall: 0.00
air film cond. s. side of quickwall: 0.00
thickness of quickwall (in): 1.00
vol. heat cap. of quickwall: 1.00

vol. heat cap. of light materials: 2488.00

Is all this data correct (y,n)? y

SOLAR SHADING/INSULATION MODULE

mean hght. of south glazing: 4.50
horiz dist. of ovrhg from s. glazing: 1.50
vert. dist. betw. s. glazing & ovrhg: 0.67
r-value of mov. insul., s. glazing: 0.00

. . . . running CALPAS 1.0
bldg desc. file: lakin2
weather file: a:oakland

xii ap

CALPAS OUTPUT.SELECTION

MONTHLY YEARLY SUMMARY QUIT

dates: jan 17

CALPAS HOURLY OUTPUT
SPACE & STORAGE TEMPERATURES

AIR
TEMPC

68.8
67.4
66.3
66.5
68.9
72.1
74.3
75.1
74.3
73.4
72.5
71.0

WALL
TEMP

70.9
70.0
69.0
68.2
69.0
70.7
72.7
73.9
73.6
73.2
72.7
72.0

FLOOR
TEMP

65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0

QUICKWALL
TEMP

65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0
65.0

CALPAS HOURLY OUTPUT
ALL TEMPERATURES

AIR
TEMP

68.8
67.4
66.3
66.5
68.9
72.1
74.3
75.1
74.3
73.4
72.5
71.0

AIR
TEMP

68.8
67.4
66.3
66.5
68.9
72.1
74.3
75.1
74.3
73.4
72.5
71.0

FLOOR
TEMP

70.9
70.0
69.0
68.2
69.0
70.7
72.7
73.9
73.6
73.2
72.7
72.0

xiii ao

HOURLY DAILY

HOUR OF
DAY

2am
4am
6am
8am

10am
12am

2pm
4pm
6pm
8pm

10pm
12pm

HOUR OF
DAY

2am
4am
6am
8am

1Oam
12am

2pm
4pm
6pm
8pm

10pm
12pm

AMBIENT
TEMP

38.0
35.0
35.0
37.0
40.0
47.0
50.0
52.0
51.0
49.0
48.0
44.0

CALPAS DAILY OUTPUT
ENERGY FLOWS

DAY OF HEATING VENTING COOLING
YEAR KBTU'S KBTU'S KBTU'S

"jan 17" 92.00 25.00 15.00
"apr 4" 67.00 46.00 35.00
"may 18" 35.00 87.00 76.00
"oct 12" 43.00 55.00 58.00

CALPAS DAILY OUTPUT
AVERAGE TEMPERATURES

DAY OF AMBIENT AIR FLOOR WALL
YEAR AVE AVE AVE AVE

"jan 17" 23.50 68.36 71.30 65.00
"apr 4" 55.70 72.86 77.20 72.40
"may 18" 73.20 77.86 81.30 77.70
"oct 12" 43.50 74.86 73.80 67.30

CALPAS MONTHLY OUTPUT
ENERGY FLOWS

MONTH OF HEATING VENTING COOLING
YEAR KBTU'S KBTU'S KBTU'S

january 100 223 23
february 9 0 0
march 0 18 3
april 2 1076 79
may 0 1635 14
june 0 1576 179
july 0 1788 3
august 0 1558 219
september 0 1676 152
october 0 1706 68
november 0 1505 0
december 37 3 0

xiv an

CALPAS MONTHLY OUTPUT
HEATING & COOLING PEAK TEMPERATURES

MONTH OF
YEAR

january
february
march
april
may
june
july
august
september
october
november
december

HEATING
PEAK

5026
1827

0
804

0
0
0
0
0
0

44
2741

CALPAS YEARLY OUTPUT
ENERGY FLOWS

NAME OF
FILE

"lakin"

HEATING
KBTU'S

148

VENTING
KBTU'S

12763

CALPAS YEARLY OUTPUT
HEATING & COOLING PEAK TEMPERATURES

NAME OF
FILE

"lakin"

HEATING
PEAK

5026

xv ap

COOLING
PEAK

3819
0

2674
4861
3574
8191
1851
6409
7408
7049

0
0

COOLING
KBTU'S

741

COOLING
PEAK

8191

76 - -

75-

74-

73-

72-

71 -

70-

69

68-

67-

66-

65 ,
2

80- -

75-

70

65 - -

60-

55-

50-

45-

40 -

35 --

2

0 AM

CALPAS HOURLY OUTPUT
SPACE & STORAGE TEMPERATURES

4 6 8 10 12 2 4 6 8 10 12

HOUR OF DAY
2 AIR + FLOOR 0 WALL A QUICK

CALPAS HOURLY OUTPUT
ALL TEMPERATURES

4 6 8 10 12 2 4 6 8 10 12

HOUR OF DAY
+ Al o A2 a FL x WL ' QK

xvi ap

CALPAS DAILY OUTPUT
ENERGY FLOWS

jan 17 apr 4 may 18 act 12

DAY OF YEAR
SHE-AnNG VENTING COCUNG

CALPAS DAILY OUTPUT
AVERAGE TEMPERATURES

jan 17 apr 4 may 18

DAY OF YEAR
AM ~AR =IFL

oct 12

M WL

ap

C

x-

200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

0

90

i-

CL

so

70

s0

50

40

30

20

10

0

77

77

CALPAS MONTHLY OUTPUT
ENERGY FLOWS

J F M A M J J A S 0 N 0

MONTH OF YEAR
HEATING VENTING // COOUNG

CALPAS MONTHLY OUTPUT
PEAK HEATING & COOLING RATE

iio
J F M A M J J A S 0 N

MONTH OF YEAR
HEATING = COOUNG

xviii ap

I1.9 -

1.8 -
1.7 -

1.6 -

1.5 -

1.4 -
1.3 -

1.2-
1.1 -

0.9-
0.8 -

0.7 -

0.6 -

0.5 -

0.4-
0.3 -

0.2 -
0.1 -

09
*4%c

cfot

x

K
O

9

8-

7 -

6 -

aacn

3

2

1

0
0

CALPAS YEARLY OUTPUT
ENERGY FLOWS

V= HEATING
BUILDING DESCRIPTION FILE

= VENTING , COOLING

CALPAS YEARLY OUTPUT
PEAK HEATING & COOLING RATE

[akin

BUILDING DESCRIPTION FILE
HEATING = COOLING

xix

C-

2c
0

(fl

14

13

12

11

10

9

8

7

6

5

4

3

2

0
Iakin

9

a-

7-

5D0

5

4

3-

2-

1 -

0-

