A STUDY OF COMPUTER-BASED TECHNIQUES
FOR

MULTI-DIMENSIONAL EVALUATION

N

URBAN PL4NNING

by

THOMAS E., MARTIN
B. Arch., University of Toronto
(1967)
M. Arch. U.D., Harvard University
(1971) '

Submitted in
Partial Fulfillment
of the Requirements for the
Degree of Master of City Planming
at the :
MASSACHUSETTS "INSTITUTE OF TECHNOLOGY

September, 1971

Signature Of Author"‘..‘.".l.O.Q..QC'QI...O0.00000......0..0.0‘.
Department of Urban Studies and Planning
September 24, 1971

Certified by...a..co.ooooo.no'.oooo.locl.lllt‘.th..bo.'....a..‘.v
Thesis Supervisor

Accepted by...-‘l.'...‘..."...‘.‘...‘.....‘b...'.......Q'l.“‘.‘
Chairman, Departmental Committee on Graduate Students

Mo

ROTCH LIBRARY
» Of Architecture and Planning
Massachusetts Institute of Technolagy
Room 7-238
Cambridge, Mass. 02139

CL L

ABSTRACT

A STUDY OF COMPUTER-BASED TECHNIQUES FOR MULTI-DIMENSIONAL EVALUATION
iIN ‘URBAN PLANNING

‘Thomas Edmond Martin

Submitted to the Department of Urban Studies and Planning on
September 24, 1971, in partial fulfillment of the requirements
for the degree of Master of City Planning.

“The thesis is directed towards the development of a computer-
assisted capability for the evaluation of planning projects with
multi-dimensional consequences. Evaluation models and routines are
jmplemented in DISCOURSE, an on-line computer language oriented
towards spatially disaggregated environmental design problems.

A wvariety of issues in the evaluation of complex problems are
jntroduced: the role of evaluation in the planning process; re-
lations between design descriptors and evaluators; the multi-
dimensionality and hierarchicization of goals; preferences for
value, risk, and time; and the representation of predicted con-
sequences in an impact matrix. This discussion forms the basis
for a taxonomy of multiple objective preference models which range
from simple ordering of consequences to complex multi-dimensional
utility theory. Preferences for certain consequences with no
tradeoffs among evaluators, tradeoff analysis under certainty,
and multi-dimensional preferences for risky consequences, are
outlined.

The next section develops hierarchical systems models in more detail,
describing three functional forms: decision complexity, description
and organization. A distinction is made between hierarchical goal
models, structured in terms of decision complexity, and hierarchical
planning models differentiated by levels of description or abstrac-
tion. A number of hierarchical goal models are described and
related to multi-dimensional preference structures; Manheim's
Hierarchical Structure is discussed as an example of hierarchical
planning models; and from this, desirable characteristics of a

multi-dimensional, hierarchically structured evaluation system
are developed. -«

L

A computer-aided evaluation system is presented, with capabilities
in three areas:

(a) "User Operations", a set of flexible, independent routines
for manipulating a design impact matrix;

{b) VStatic Evaluation'", a terminal assessment procedure, with
relative value, certainty, and risky, preference models;

(c) "Dynamic Evaluation', a hierarchically structured planning
model, operating on both goal and design structures.

3

All three groups of programs accept design alternatives which have
been generated at hierarchical levels of generality, but this is a
necessary requirement only for the Dynamic Evaluation model. How-
ever, if design alternatives have been so structured, then a corres-
ponding goal structure must also be input. M.I. T.'s North West Area
Project is used as an illustrative experiment for the testing of

the component evaluation routines.

Extensions.of this work to include considerations of social welfare
and social choice, user participation and gaming, cost-benefit
analysis and preferences for time, and incorporation of evaluation
techniques within a larger and more comprehensive evaluation
strategy, are also suggested.

Thesis Supervisor: William L. Porter
Title: Associate Professor of Urban Design
Department of Urban Studies and Planning

ACKNOWLEDGEMENTS

Professors Ralph Keeney and Aaron Fleisher ably provided
critical comments and corrections for much of the material; special
gratitude is due to Proféssor M;rvin L. Manheim for his inspiration
and commengs on the thesis, much of which traverses areas he has
thoroughly explored.

Wren McMains and Tim Lundeen provided many hours of programming
assistance in DISCOURSE and PL/l; and corrected numerous personal
and system idiosyncracies. Art Lidsky of the M.I.T. Planning Office
graciously allowed many interruptions of his time to answer questions
and provide information and data abéut the North West Area Project.
Brian Kemerer aided in programming prediction routines for the North
West Area Project, which serves as an illustrative empirical appli-
cation for the ideas in the thesis.

A substantial debt of thanks is owed to Central Mortgage and
Housing Corporation, Ottawa; which, while not directly supporting
the work herein, has materially assisted my graduate work in urban
studies over the past three years, through its program of Graduate
Fellowships in Urban and Regional Affairs. Cémputer time for the
project was provided through the Ford Foundation - Urgan Grant
to the Department of Urban Studies and Planning. .

Professor William L. Porter has provided assistance, stimu-
lation, advice, and encouragement in his role as advisor and guru.

Barbara Barnes typed quickly.and faultlessly in the prgparation

~of the theéis.

My wife Kristine, as always.

TABLE OF CONTENTS

'ABSTRACT L] * o e e @ 8 6 6 o © s s s e o © S " o

ACKNOWLEDGEMENTS « » « « o v o ovo o o o o &

IABLE OF CONTENTSQ e © ® e o e ° & O e o6 & e ° o

Section

1.

2.

3.

INTRODUCTIONo e o e o 2 8 e ® 3 & e o ¢ & o o

MULTI-DIMENSIONAL PREFERENCE MODELS

Ordering of Consequences
Pareto-Efficient Frontier

Bounds on Preferences

Lexicographic Ordering

Tradeoff Analysis: Constant Substitution
Tradeoff Analysis: Constant Substitution
One Transformed Variable

Tradeoff Analysis: Constant Substitution
Two to N Transformed Variables

Complex Indifference Curve Analysis

.9 Additive Utility

.10 Quasi-Additive Utility

.11 Asymmetric Quasi-Additive Utility

°« o o
X IR NN N

.
~

NN NNN N NMNNNBNDDNDDD
. .
(-]

HIERARCHICAL SYSTEMS MODELS « « . .

3.1 Hierarchical Goal Models
(a) Goal Fabric Analysis
(b) Miller's Additive Worth Hierarchy
(¢) Means-Ends Analysis

Rate
Rate with

Rate with

e e o o @

(d) Alexander's Hierarchical Decomposition

3.2 Hierarchical Planning Models
(a) Hierarchical Structure

A COMPUTER-AIDED EVALUATION SYSTEM~

4.1 User Operations
(a) Available Commands
(b) Possible Extensions

4.2 Statiec Evaluation o
(a) Fishburn Relative Value

102
110

3.

6.

7.

(b) Case Measure of Relative Value
(c) Linear Scoring Function
(d) Quasi-Additive Utility
4.3 Dynamic Evaluation Model
(a) Components
(b) Steps in the Hierarchical Planning Model
(c) Implementation Restrictions
(d) Implementation
(e) Quasi-Additive Utility Aggregation
(£f) Goal Decomposition

CONCLUSIONS AND EXTENSIONS /v & ¢ ¢ & o ¢ o o o o o o o

BIBLI 0 GRAPHY * o o ® o 8 & e @ & o o ¢ e © o o e e e o

APPWDIX e e o o o e » " ¢ @ & & o & o ¢ e ¢ & o o o

7.1 DISCOURSE Program Listings
7.2 Typical Output from Console Sessions
7.3 Description of the North West Area Project

175

178

178
215
233

1. INTRODUCTION

The solution to a problem pre-supposes several conditioms:

(a) a decision language or formal system in which the
immediate problem may be»disconnected from its larger
context and stated unambiguously;‘i.e. the "problem
representation”;

(b) a set of computational procedures within a "plan",
which operate on an initial problem statement A, to

transform it into a succeeding state A': i.e.
A => A'

These are commonly termed "search" procedures;

(c) a set of criteria for determining when a given problem
transformation is satisfactory to the decision-maker.
This testing of design alternatives for their suitability
is termed "evaluation".

We can concentrate on evaluation as an issue in urban problem-
.solving because most environmental problems are "ill-defined", i.e.
.With no systematic means of deciding when a proposed solution is ac-

ceptable., To illustrate, we adopt Reitman's (1) notaiion fbr

problem analysis:

(1) W. R. Reitman; "Heuristic decision procedures, open constraints,
and the structure of ill-defined problems', in M. W. Shelley, III
& G. L. Bryan, eds.; Human Judgments and Optimality, (New York,
N. Y., John Wiley & Sons, Inc., 1964), Ch. 15, pp. 282 - 315.

A = an initial problem state

B = a transformed problem state

= = a process, program, or sequence of operations for trams-

.forming A into B

In classical, unconstrained optimization (as in calculus),
where A, B, and = are all well‘defined, evaluation is implicit
in the conditions for solution. In well-defined optimization
problems under constraints, where the solution procedure is an
iterative algorithm, separate search and evaluation components may
be distinguished within the same iteration: '"search" generates a
transformation of the present alternative; "evaluation" tests for
optimality. In ill-defined problems, where any, or all of: A, the
initial state; B, the transformed state; or => , the set of
available operations; may be vaguely defined (if at all), we must
concentrate on elaborating the decision-maker's choice criteria
in order to determine when a given solution is satisfactory. In
this latter case, separate search and evaluation phases may. be
distinguished in the planning process.

Within search routines, a number of implicit or internal
tests may be emBedded. However, we will discuss only "external"
 tests; i.e. the evaluation of alternatives with respect to explicit
goal statements. Three.evaluation models are developed, each
cérrespondiﬁg to different roles that evaluation may take on in
the planning process; Figure No. 1.1 illustrates Reitman's
concept of the problem-solving process as a series of successive

transformations of problem states:

A = A' = A"= AN = ... B
initial terminal
state) state

Figure No. 1.1

Each node in the path is a problem vector which satisfies the cons-
traints implied by the attributes of the vector preceding it in the
chain. Conversely, each transformation defines a set of constraints
that must be met by subsequent transforms if they are to lead to é
solution of that problem. (2)

Evaluation procedures may.be abplied after any particular trans-
formed sﬁate Ai; in order to assess some aspect of the process. The
purpose‘of such evaluation may be to determine what transformation
to undertake next in the process. Such comparative procedures,
applied "in process", we call "user operations'. If B, the terminal
state, consists of a number of alternative transforﬁed states,
evaluation assesses which of‘the alternatives is most satisfactory
to the-decision—maker. We callithis terminal assessment procedure
"static evaluation". Finally, evaluation procedures may be
incorporatéd within a larger "meta-procedure" which guides the
planning relations.amohg sequences of transformations; this is termed °

"dynamic evaluation'.

{2) Ibid.; p. 305,

10
Manheim has defined evaluation as:

", ..the process of arraying and aggregating the conse-
quences of an action to facilitate decision-making."(3)

The basic input component to an evaluation procedure is a set
of predicted consequences, usually ar;ayed in an impact matrix.
Design consequences are derived frbm descriptor attributes of the
design, through transformation by a set of prediction operators:
(cf. Figure No. 1.2). Prediction is intended to anticipate the

consequences which would result if the design were to be actually

Implemented.
: AN
solution 12 consequence
space space
Prediction N
Operator 7@ x
@ >
il
“ Ax = (31’82,83’t|can) . Ix = (il,iz-’i3,'..im)

Figure No. 1.2

‘Each design alternative, Ax = (al,az,aS,...an) is associated with a
unique point in n-dimensional attribute space, and is mapped onto a

unique point Ix = (11,12,13,...in) in m-dimensional consequence

{3) M. L. Manheim, et. al.; The Impacts of Highways upon Environ-
mental Values, (Cambridge, Mass., M.I.T. Urban Systems Labora-
tory, Report No. USL-69-1, March, 1969), p. 37.

11

space (under certainty), or a unique set of m probability distributions
over consequences (under risk). Each consequence that is associated
with a facet of the decision—makerfs preference structure, we term
an "evalﬁator“. (In‘our efficient and parsimonious view of the
pianning process, the decision-maker predicts only those consequences
which are relevant to evaluation.) An evaluator is transformed
consequence; at the very leést, a consequence ofdered to reflect
direction of preference. However, the distinction between design
"attributes" and "evaluators" is not always clear because of the
phenomenon of "constraint proliferation" in the planning process,
as suggested by Reitman:

"all attributes of any object or process introduced into the

problem may serve as constraints on the solution....As problem

solving proceeds, the progressively more differentiated problem

components themselves become increasingly more important as a

source of constraints." (4)

A large number of design attributes are left 'open" (i.e. with
one or ﬁore parameters left unspecified) at the beginning of the
process. The assignment of a set of values to design attributes
reduces the size of the search space, within which, successi§e1y
more detailed alternatives are developed. This use of attribute
values as temporary constraints has primarily local implications
for guiding search; they become the criteria for the internal tests

mentioned above. In contrast, "evaluators' are the global criteria

by which the external tests operate, to assess alternatives with

(4) W. R. Reitman; op. cit., p. 297.

12
respect to explicit goal s;aéements.

The result of "globally" evaluating a set of alternatives with
respect to a set of goal variables, is a oﬁe-dimensional ordinal
ranking of this set; thus, for multi-dimensional problems, with more
than one consequence, evaluation necessarily entails a condénsation
or reduction in this dimensionality. Depending on its nature, the
condensation or aggregation of consequences must be done by different
means, so as to reduce possible arbitrariness introduced by the loss

~of information content. Spatial statistical distributions may be
used to summarize over spatially—disaggregated consequences. (5)
Politicai bargaining and logrolling processes may be required for
aggregation over a number of impacted actors or community groups.
In one-dimensional utility theory, aggregation over probabilistically
distributed consequenées is done through the probability calculus.
In this paper, we focus on the aggregation of conseﬁuences over a
number of goal dimensions, through multi-dimensional value and
utilit? theofy. Condensatioﬁ of monetary consequences distributed
over time may be done by stand#rd discounting formulae, though
multiwdimeasiOnal utility théory is applicable here also.

Evaluation also ipvolves transformations of consequence space,
the extent of which, depends on how strongly the decision-maker has

elaborated his preferences. These "preferences', or statements

(5) D. S. Neft; Statistical Analysis for Areal Distributioms,
(Philadelphia, Pa., Regional Science Institute, Monograph
gseries, No. 2, 1966).

13
about desirable states of the world, may take on three different
aspects: |

(a) value (the numerical level of a consequence) ;
(b) risk (probability distributions of consequence values);
(c) time (when the consequence occurs). | |
Preferences for time are not discussed here, but are well de-
veloped in literature on cosﬁ-benefit analysis (6). A taxonomy
of preference modeis for value and risk, is developed in Section 2.
The result of the transformation for each consequence ij, is

&n associated worth index, v,:

k|
vj = uj(ij)
N
(ij) 7 (Vj)

consequence jJ : value jJ

The interpretation given to- this worth index.depends on two kinds
of measurement: .
| (¢H) fhe accuracy of the #élue assigned to the predicted
consequence (a fungtion of the prediction model and
its associated measurement scaie);
(2) the discrimination and scaling of the decision-maker's
preferences with respect to the predicted consequence.

4

{6) for example: A. Maass & M. Hufschmidt; Design of Water
Resource Systems, (Cambridge, Mass., Harvard University
Press, 1962).

14

The concept of "measurability" is crucial to evaluation, since
the real purpose of measuring is to be able to predict certain
events (such as choices). If the measures of events are ambiguous,
they must either.be accepted as suéh (i.e. as a property of the
events), or. the ambigﬁity must be removed, since "decidability"
and ambiguity cannot co-exist in the same problematic context.

The relationship between measurement of consequences and of
preferences will not be discussed here, nor will theoretical bases
for measurement and scaling. (7) Comparability‘of all alternatives
with respect to the same evaluators is required,’since evaluation
introduces a consistent form of comparability among alternatives.
In some contexfs, ordinal measures may be sufficient for decid-
ability, however ordinal scaling is very limited, relative to a
‘specific set’ of alternative outcomes, and ambiguous outide this
set. Most complex evaluation situations require interval or higher
measures, both of consequences and of preferences (such as the
von Neumann-Morgenstern interval utility scale (8)). Fishburn 9
develops an extensive set of theorems for "ordered metric" measures

in the domain between ordinal and interval scaling, but again,

(7) for example: C. H. Coombs, H. Raiffa, R. M. Thrall; "Some
Views on Mathematical Models and Measurement Theory", in
Thrall, Coombs, & Davis, eds.; Decision Processes, (New
York, N. Y., John Wiley & Sons, Inc., 1954), pp. 19 - 37;
or W. S. Torgerson; Theory and Methods of Scaling, (New
York, Wiley, 1958).

{8) J. von Neumann & O. Morgenstern; Theory of Games and Economic
Behaviour, (Princeton, N. J., Princeton University Press,
1947).

(9) P. C. Fishburn; Decision and Value Theory, (New York, N. Y.,
John Wiley & Soms, Inc., 1964).

15

such measures are relative to a specific set of outcomes. De-
cidability, i.e. the unambiguous selection of a preferred alterna-
tive, depends on the lowest level of measurement in a problem
context. Though not wishing to sidestep a complex issue, for the
purposes of this paper, we assume that consequences aﬁd preferences
are measurable to the level required for unambiguous choice (i.e.
usually interval scaling). This assumption also implies acceptance
of a number of normative axioms such as transitivity, closure, |
tontinuity, monotonicity, ecc.,'(lo) underlying measurement models; '
printiples which may be difficﬁlt to accept in a complex empirical
situation. Thus, we temporaily disregard the subtle interplay
between descriptive and normative decision criteria.

Evaluation procedures should aim for economy in information
acquisition and processing, in the sense that dominance should be
established with the use of the lowest scéle of measurement
tonsistent with unambiguous choice, since this makes the fewest
demands on the decision-maker. Higher measurement scales should
be invoked only when necessary to resolve these ambiguities.
HoWever,'ﬂhis is almost entirely dependent on the structure of
the problem: when ﬁhoice is clear-cut, the use of an "evaluation
method" is trivial; when it is ambiguous, the selection of

method depends on the nature and- extent of this ambiguity.

(10) for example: Coombs, Raiffa, & Thrall; op. cit.

16

The concept of hierarchical levels of evaluation is related
to differentiation of measurement scales. Hierarchization is
synonymous with multi-dimensionality, since general goals usually
have to be disaggregated into multiple operational objectives
when the former are not measurable-difectly. If they are
measurable, upper level goals are more likely to bg assessed on
ordinal or nominal scales, wﬁereas lower level ijectives are
likely to be measu;ed on ordered metric or higher scales.

Analogously, alternatives may be developed at several hierar--
chical levels of detail, at different stages throughout the planning
process. Whether or not a hierarchical planning ﬁrocess will be
used to generate alternatives, depends on the degree of inter-
dependence among different sub-problem components. If (as is
rarely the case) alternatives c;n be generated from the simple
aggregation of solutions to- a number of Subpfoblems (e.g. as in
linear programming), then design may proceed directiy to the
solﬁtion &f these components. On the othef hand, if there is a
good deal of interdependence among sub-problem solutions, which
jprecludes their simple aggregation, both global and local aspects
of the problem must be considered together, throughout the pro-
tess. In this latter case, a hierarchically structured approach
to the generation of alternatives may be feasible. How accurately
thesz intermediate alternatives can be evaluated, depends on the
precision of the prediction models, which in turn, relates to the

number of design attributes and their level of measurement.

17

Preferences can be more detailed for consequences which can be
measured accurately. Possible relationships between hierarchical
evaluation and the hierarchical generation of design alternatives,
are discussed further in Section 3;

To conclude, we'consider again, the role of evaluation in
the planning process. Above, we outlined three d;fferent roles
for evaluation techniques:

(1) "user operations'';

(2) "static", terminal evaluation;

(3) "dynamic" evaluation. |)

More fundamentally, these models also serve several more detaiied

functions:

(1) Representation of design consequences and actor

preferences. Consequences are displayed in an "impact

matrix"

which serves as a basis for operations by various
evaluation techniques. In its simplest form, an impact

matrix has the following elements: (cf. Figure No. 1.3)

Alternatives
‘ A Ay Aj An
Evaluators El .—ill 112 iij ------ i;n_
f2 |t Y22 :
Ej 1;1‘“ 1ij

Figure No. 1.3

18

This basic format méy be eiaborated to include uncertainty
(by associating probabilities pij with every impact iij)’
differentiation of impact types (e.g.’costs, quantitative
effects, political effects, etc.), differentiation of
actors (as a preliminary to a community bargaining

process): (cf. Figure No. 1.4).

Alternatives ' Actors
Al.......lé;j......A.n
»Evaluators ?1 i;l ilj i}n W
Bty |
Bl i o
k | Tkl kn|)
R T e il
1| 71177
E ? i : $ B.
E 1:1 1:n
P L P p._ /
Eo | gty dpg)
E L1 § > ¢
s : s] :
Et itl itn
L . /

Figure No. 1.4

differentiation of actor groups (e.g. principal actors,
secondary actors, special interests, etc.), tradeoffs

among evaluators, (cf. Figure No. 1.5), etc.

(2)

3)

€4)

19

Trade- Alternatives

off
Ratio AI Aj Ah
| A L T S S
Evaluators ?l ?l' ;l.n. 137 i;n
Ei Yi 'iil iij
E W S i
n ml
N L il

Figure No. 1.5

,Coggatison of a set of impact matrix elements with
Yespect to some other differentiatéd dimension (e.g.
alternatives with respect to evaluators, actors, or
preference functions; evaluators with respect to
alternatives, actors, etc.)

Guidance of the planning effort: display of crucial
decision issues (e.g. points of agréement or dis-
agreement among actors, similarities or dissimilarities
between alternatives, unsatisfied.goal variables, etc.);
selection of design attributes for incremental improve-
ment, bases for negotiation, etc.; derivétion of trade~-
offs or rough preference information from the decision-
‘maker; indication of decision nodes for information

acquisition and experimentation, etc.

Computation and aggregation of worth indices and rankings

of alternatives with respect to evaluators and actors,

summary statistics, tradeoffs, analysis costs, etc.

20

(5) Self-organization: derivation of new preference structures,

changing the dimensions of evaluation or search space;
guidance of the search effort towards sub-optimality;
"optimal control of analysis resources.

The last point-is suggested as a direction for further re-
search, but is not within the scoée of the paper. Evaluation
techniques and strategies may serve some or all of the above
functions, with variations from stage to stage in the planning
process; from problem context to context; and from model to
model. The proposed evaluation models provide for a range of

responses to these functions.

21

2. MULTI-DIMENSIONAL PREFERENCE MODELS

A number of assumptions are introduced to simplify and shorten

the discussion to follow. We have already mentioned the require-

ments of strict comparabiiity of alternatives, and measurability of

consequences. Others include:

¢))

(2)

3)

(4)

evaluation and search spaces are fixed for the duration of
the planning process;
the "social choice" problem (i.e. construction of a fair

and acceptable ranking over alternatives for a large

‘number of actors), and the "social welfare" problem

(i.e. the equitable di;tribution of the costs and benefits
of alternatives to all impacted actors) are not cén-
sidered. Thérefore, we assume a unitary decision-maker,
or rather, the construction of a goal fabric which
integrates the intérests of all significant actors.

goals can be disaggfegated or decomposed to the detail

required for measurable performance indices; preference

information can be derived and assessed meaningfully.

alternatives are assessed in terms of only two dimensions:
consequences "x" and 'y"; these consequences can be
measured on a continuous (interval) scale, though a

decision-maker's preferences for them may vary in pre-

cision.

22

Preferences for multi-dimensional consequences take on two
aspects:
(1) preferences for value, risk, and ﬁime, of individual
.,consequénces, as developed in unidimensional utility
theory;
(2) preferences or tradeoffs among types of consequences or

dimensions.

In this section, these aspects are arrayed roughly in order of
increasing demands made on the decision-maker's preference structure;
that.is, in terms of increasing ﬁransformations ?f consequence space.
For certain outcomes with no risk or time dimensions, models range
from very rough preferences with no implied tradeoffs among evalu-
ators (e.g. ordering of consequences) to complex indifference curve
analysis with detailed value and tradeoff preferences. The rudi-
ments éf multi-dimensional utility theory are developed for the
added dimension of risk. Preferences for time are not discussed;
practically, most Fheory in this area concentrates on singlg
evaluatorsv(usually monetary), introducing multiple time periods
as the extra dimensioms. Conéideration of both multiple goals
and multiple time periods quickly builds up dimensionality to
unmanageable proportions.

We consider first,vﬁreference models for certain consequences,
with risk and time considerations suppressed, and no implied trade-~
offs among evaluatﬁrs. The simplest form is the ordering of con-
sequence space, i.e. the specification of directions of prefer-

ences: (cf. Figure No. 2.1)

23

2.1 Ordering of Consequences

L N y AN
v a1
x1’7yl
‘® .
OAz —> %
N Gy
== 7 A 4 —7 1increasing
X : preference
Consequence A Ordered Consequence
Space - (Evaluation) Space

Figure No. 2.1

Dominance of alternative Az over Al is defined if X, ; X and
Yy 2 ¥y5 0T x, > x; and y, > ¥,5 and vice versa for dominance of
Al over A2. Dominated alternatives are eliminated from further
;onsideration. If this‘coméarison is repeated over a large number

of alternatives, a set of alternatives in which no alternative

completely ddminates any other, results. This set is called:

2.2 Pareto-Efficient Frontier

Figure No. 2.2 illustrates the Pareto frontier for a finite

number of alternatives:

24

y A
(OX) ®
@
® efficient set
(0]

0 @0 -
O ° ®
dofninated o @
alkernatives ®
P ?
X

<

Figure No. 2.2

Dominated alternatives are eliminated from contention. If
evaluators can assume continuous values (i.e. an ihfinity of
alternatives is possible, as in linear programming), then the
Pareto frontier will be convex (since an alternative lying on a
straight line between any two aiternatives on the frontier will
be dominated by another alternative on the frontier. Convexity
may not hold for a finite number of alternétives, however. In
subéequenf models, we assume that all alternatives being evaluated
are on the Pareto-efficient frontier; thus higher preference models
“are required to resolve ambituities among this undominated set.

In the "Static Evaluation' model, the Pareto-efficient frontier
is determined by constructing ''quasi-levels", from directed graph
theory. Alternatives are compared and ranked for each evaluator.
For illustration, suppose that we have 7 alternatives, Al’AZ""’A7’

being assessed with respect to 4 evaluators, w,x,y, and z. For

25

example, with evaluator "w", we may have the ordering:

SR T SR A TR T

In directed graph fqrﬁt, this is representéd as follows:' (cf.

Figure No. 2.3)

Figure No. 2.3

1f for evaluators x, y, and z, we also have:

then alternative A1 completely dominates all others, and further,
a complete -ordering results. On the other hand, suppose that for

evaluator y:

26

for evaluator y we have:

and for z, we have:

f 2 A T Ay > k> A > A > Ay,

Yepresented:

OO N s

The overall ranking is derived from the combined directed
graph, formed by including any'line i,j if it occurs in any one of

the directed graphs by evaluators : (cf. Figure No. 2.4)

—— ——

Quasi-level 1 Quasi-level 2 Quasi-level 3

Figure No. 2.4

27

Alternatives Al, A2, and A3 form an intransitive éycle, as do

A4, As, and A6' The resulting quasi-levels are then:

28 > 14,56 >

(v 7 -

Quasi-level 1 Quasi—lgvel 2 Quasi-level 3
Q;As£;ie§éi i (consisting of 3 alternatives in this example) is the
;nd;minated set, or(Pareto—efficient fréntier. For large numbers of
évaluéﬁérs; the combinéd directed graph may be diffiéult to perceive
br_é6n;tfuct; then, the quasi-ordering éan bé obtained from the
"feééhébiiity" matrix. (11) However, the probability of obtaining
é;é; ;;;;i;orderings (apart from the Pareto frontier), goes down as
tﬁe ;nger of evaluators increases. Eval;ation then operates on
‘Qofkgég éﬁﬁ the intransitivities within quasi-levels, through im-

~

proved measurement, or use of secondary evaluators.

2.3 .ﬁgﬁﬁdévon Preferences

Constraint levels put bounds on consequence values by dividing
}hem into acceptable and unécceptable régions. Constraints must be
ﬁsed with caution, since tﬁey can be manipulated until only one, any
one, or no alternatives remain in the acceptable consequence space.
The fesolution quality of constraints is low, and therefore bound-

aries between acceptable and unacceptable regions should not be

(11) F. Harary, R. 2. Norman, D. Cartwright; Structural Models: An
Introduction to the Theory of Directed Graphs, (New York, N. Y.;
John Wiley & Sons, Inc., 1965), p. 117.

28
treated as definitive, particularly at the beginning of the planning

process. Figure No. 2.5 illustrates the use of constraints in par-

ticioning consequences into acceptable and unacceptable regions:

y /\.00 '~ infeasible
O
©
®
@@@
: o[® acceptable
Y& @) ___ :
' o % unacceptable

™
*
v

Figure No. 2.5

Constraints may define acceptable regions through both upper and

lower bounds: (cf. Figure No. 2.6)

N
y
+ | 990
y @ v
O@ &+f————— acceptable consequence space
(o] GG
O o
Y& O o lo
O
- >
X% X x

Figure No. 2.6

-

Even with preferences specified only to the degree of ordered con-
sequences, and lower bound constraints, a number of choice procedures

are possible, without requiring tradeoff information among evaluators:

29

(a) Satisficing Model: (12) set all evaluators with constraints,

and choose the first alternative which satisfies them all

(cf. Figure No. 2.7)

y /N
any A
® i
Y&
¢ >
b4

Xg

Figure No. 2.7

(b) Single Objective Maximization: ' set all but one evaluator

with constraints, and select the alternative with the

highest remaining evaluator: (cf. Figure No. 2.8)

Y-\ Ai
Ook (x,,y)
C} i
0] unacceptable
0
® ©
9 o
0] ° |o
- 19
\rl w /
Xy X X

Figure No. 2.8

(12) H. A. Simon; "A Behavioural Model of Rational Choice", in
Simon; Models of Man, (New York, N. Y., John Wiley & Soms,
Inc., 1957). :

30
The decision as to which evaluator will be left uncon-
strained may be arbitrary; although this can be alleviated
somewhat by systematically loosening up each evaluator in
turn, comparing the resultiﬁg selections,'and choosing the

alternative which appears most often.

The next set of models incorporate implied or explicit tradeoffs
among evaluators, but risk and time preferences are still suppressed.
All remaining alternatives under consideration lie on the efficient

frontier. One of the simplest such preference structures is:

2.4 Lexicographic Ordering

Evaluators are‘ranked in order of their importance; e.g.
evaluator x is more important than evaluator y. This principle
pushes the preferred alternative towards lower (or higher) points

on the efficient frontier: (cf. Figure No. 2.9)

y N
04
®
®
®og A (x,,5,)
o @ A (xy,y4
(o} , ®
0
o)
@
& >
X

Figure ﬁo. 2.9

. 31
Az(xz,yz) will be preferred to Al(xl’yl) because X, > x,. Only

1
if X, = X, do we check for y values. Such a principle is generally
not reasonable because no increase in one evaluator (y) can compen-
sate for even a émall decrease in a more preferred evaluator (x).
However, over small ranges of evaluator values, it may be true., If
the preference structure is lexicographic, indifference curves cannot
be constructed since the decision-maker will never be indifferent
between two distinct alternatives Al(xl,yl) and Az(xz,yz). If
X # Xy» then the alternative with the greater x value is preferred;
if X = X,

The next set of models derives composite value functions by

, the alternative with the greater y value is chosen.
means of explicit tradeoff analysis. This 1s concerned with de-
termining the rate of substigution of one evaluator with respect to
another so that theif coﬁbination may be represented by a composite
function. The value functiﬁn may be simplified if some form of
value-wise independence among evaluators can be assumed from
empirical testing.

Tradeoff anaiysis requires the use of indifference or iso-pre-
ference curves, which are defined by linking all (x,y) pairs to
which the decision-maker is indifferent. The local substitution
rate A, at ény point (xo,yo) is the slope of the indifference

curve through (xo,yo): (cf. Figure No. 2.10)

32

/ \ \ \
y A \ \ \
\ AS
\ \ ~
\\ N
\ Y
! ~.
y Ay {
0 — K\
AX \\\‘
-l \
© /7
xo X

Figure No., 2.10

and A = %%-.

A value function V(x) reflects a decision-maker's preferences if:
X v Xy < V(x)) = V(x,)

and:
X| Y %4> V() > V(x,)

Four different preference models can be distinguished, in terms
of theirvsimplifying assumptions about the asséssment.of indifference‘
curves, and the corresponding difficulty of analysis. The first
three of these permit composite value functions to be computed; the
last requires substantial empiriéal testing, and is only used if the

problem context does not justify the use of the first three models:

33
(1) Constant linear indifference curves
(2) Constant form indifference curves
(3) Indifference curves with a constant rate of variation
(4) Complex indifference curves (nof amenable to analytical

forms).

2.5 Tradeoff Analysis: Constant Substitution Rate

I1f it can be determined that the substitution rate between
-evaluators x and y, at any point (xo,yo) does not depend on the
particular values X, and Yo? then the local substitution rate A,

is also the global substitution rate, and linear indifference curves

of the form:
x +Ay = k (constant)

result. The intersection of the Pareto-efficient frontier (which is
convex in the continuous case) by the family of curves x + Ay,

yields the most preferred alternative. (cf. Figure No. 2.11)

y j\
« 1 9900
y \\\ family of curves x + Ay
\>\\ N Al(xl’yl)’ the most preferred alternative
. 0\ 0 ‘
y* © (o) o) .
o 0\
\rf v £ 7 »
X, X X .

Figure No. 2.11

34

JFor a small number of alternatives, it may be sufficient to
determine substitution intervals, such that: one alternative Al
is preferred if)‘l >X > AZ; another, A, is preferred if)‘2 >A >k3;

2
and so on. Since the substitution rate does not depend on the values
of x and y, the two evaluators are‘coﬁsidered to be "value-wise
independent" (13) of each other. This assumption underlies models
such as the Linear‘Scoring function (*) and mathématical optimization

techniques such as linear and separable programming. In this case,

the composite value function takes the form:

V(x,y) = x +Ay.

2.6 Tradeoff Analysis: Constant Substitution Rate with One

Transformed Variable

A slightly more complex form can be used if the local substi-
tution rate at (xo,yo) is found to depend on the value of one
evaluator, say Yor but not on the value of the other evaluator,

- x4+ (cf. Figure No. 2.12).

(13) M. L. Manheiﬁ & F. Hall; Abstract Representation of Goals,
(Cambridge, Mass., M.I.T. Dept. of Civil Engineering,
Professional Paper P67-24, January, 1968), p. 5.

(*) discussed in detail on page 102

35

N
Y.]
y \\ A\ N\
i HAN
n“)VQQB\mkh
DO
N, NN \\ -~
N DN SN
:‘ ee P age '\'{‘\T: :Q;
Y% :
& i : \ .
[x 7
x* X X

Figure No. 2.12

A composite value function which produces this pattern of

local substitution rates, is:
V(x,y) = x + V&(y).

where Vy(y) is a global substitution function between x and y,

Sk
assessed along any line Xyr Xy <Xy <X 8 (cf. Figure No. 2.13)

0
Yy AN

* ‘
y "R A

(\
“ o\

X, xo
Figure No. 2.13

36
The V&(y) function may be thought of, as a rescaling or trans-

formation of the evaluator y conditional on the interrelationship
between x and y. Denoting a new variable z = V&(y), we illustrate

in Figure No. 2.14, a possible relationship between z and y:

I3

z AN\
Vy(yo)
4 N\ -
B 4 / -
Ve Yo y

Figure No. 2.14

These assumptions may be made more useful if held to restricted
values of x.(or of y), and the analysis is repeated several times

over the full range of either evaluator.

2.7 Tradeoff Analysis: Constant Substitution Rate with Two.to N

Transformed Variables

In general; the local substitution rate at any point (xo,yo)
will depend én the levels of both evaluators X and Yo° However,
At may stillabe_possible‘to transform the x evaluator into a "w''-
scale, and the evaluator y into a “z'"-scale so that the local

substitution rate'at»(wo,zo) will not depend on the levels of Y

37
or zo; i.e. the transformegl évaluators w and z are value-wise in-
dependent. To test whether this condition holds, we can attempt the
"Corresponding Tradeoffs" test (14) which determines for any y held
constant, at Yo if the local substitution rate depends only on x
values; and.likewise, for any x held constant at x,., if the sub-
stitution rate depends only on values of y. Figure No. 2.15 illus-

trates this test:

y A
*
y
Y2
41 .
Y&

28 AN

\r’ /

*
x* X xz X X

Figure Nol 2.15

If the local substitution rates at (xlyl), (xz ,yz), (xl,yz), '
and (xé,yl) correspond as illustrated above, then the composite

value function has the form:-

Vix,y) = Vx(x) + Vy(y)

(14) H. Raiffa; "Tradeoffs under Certainty", (Cambridge, Mass.,
Harvard University, unpublished notes, 1968)

- 38
The Vx(x) and Vy(y) functions are plotted from a conjoint re-scaling

procedure which:

(a) selects an arbitrary x> Xy setting Vx(xm) = 1;
(b) chooses y, S° that (xm,y;)r~'(x*,ym);
then Vy(ym) = 1;
(c) continues to determine intermediate values from indifference
relations; choosing X and Y, S° that:
(xn :y*) (Xm,ym) (x* 9yn) H
then V_(x) = Vy(yn) =23
and so on, for xp, yp; X , Y_3 etc.;

q q .
(d) fairs in resulting Vx(x) and Vy(y) curves. (cf. Figure

No. 2.16)

y N w N z N
*
y
Yy -
y 2 2 :
» V_(x) Vo)
Vi 1 |- x 1 Y

\? } <J > \(/'

*
T X X X : Xy X X eeeX Y Ym Yooy

Figure No. 2.16

As with 2.6, the Vx(x) and V&(y) functions may be thought of as
monotonic rescalings or transformations.of the evaluators x and y

so as to reflect their mutual interrelationship. These transformed

39
functions cannot be derived independently of one another. The same
test may also be extended to n-evaluators.

The Correqunding Tradeoffs Test requires constantlyﬂvarying
indifference curves for x and y. if it cannot be verified, then the
V;(x) and V&(y) funcfions cannot be détermined, and we are forced
to a more detailed empirical analysis. Operationally however, it
may be possible to accept the independence assumption over restricted

ranges of x and/or y.

2.8 Complex Indifference Curve Analysis (15)

Indifference curve analysis must be used when thé analytical
form of the preference curves cannot be fitted, or where there are
substantial~interdependencies among evaluators, which if neglected,
would lead to significant distortions. Indifference curves are de-
rived by systematically comparing combinations of (x,y) evaluator
pairs and determining preferences between the pairs. (cf. Figure

No. 2.17)

(15) adapted from: K. R. MacCrimmon; Improving the System Design and
Evaluation Process by the Use of Trade-off Information: An
Application to Northeast Corridor Transportation Planning,

(New York, N. Y.; Rand Corporation memo RM~5877-DOT, 1969).

40

D
D
D
D
D

v 4
j\

\
oF
oD Alzlz

09,

LYY

7

.

Y7]\J
BT
L

Y\

a4
4

p—p—

b 1\//\

A% /
h /A4
J/\I

4
\J]
» ¥ Ve
I/\J
»9 L

\A\

Voo\Y

/

£ o o ¥ PV 7 L5

A
A 2

q
q
q
¢

@
N

»

Xy X x

Figure No. 2.17

Indifference or "iso—preferenceﬁ cﬁrves joinAall (x,y) pairs
which are indifferent to one another in the decision-maker's value
system. A significant disadvan;age of the method ié that the
decision-maker is forced to explore a wide range of (x,y) combina-
tions, only a few of which are likely to turn up in the various
alternaﬁives being considered. Further, for more tban a few
evaluators, the analysis is costly and time-consuming, since all
pairs of evaluators must be examined. Therefore, the various
value-wise independent models may serve as useful approximations
to more complex preference interdependencies. This point is
discussed'in more detail in Section 3.

The final set‘of models continues tradeoff analysis, but
introduces preferences for risk as developed in one-dimensional
utility theory. Utility theory assumes that‘a continuous function
exists for each preference dimension; this may be hard to justify

empirically, since people would rather‘make real choices than define

their preference curves through hypothetical lotteries.

41
The various multi-dimensional utility models require that one-

dimensional utility functions for each evaluator be already assessed,
or at least computable. A variety of techniques have been suggested
to aésess one-dimensional utility functions; a reasonable set of
axioms such as that of von Neumann and Morgenstern (16) is presupposed.
As with one-dimensional utility theory, rational decision-making under

risk consists of picking the alternative with the highest expected

(composite) utiliti.

2.9 Additive Utility

The additive value function representations of the preceding

models, i.e.:

V) = V(0 + V)
cannot Be,adapted directly to decision-making under risk, since value
functions are appropriate only for certain consequences. The corres-
ponding utility model, i.e.:

u(x,y) = ux(x)‘+ uy(y),

requires in addition, the assumption that the desirability of any

(16) J. von Neumann & O. Morgenstern; op. cit.

42

lottery depends only on the marginal probability distributions of
the consequence values, but not on their joint probability distri-
butions. (17) This can be tested by determining if the decision-
maker is.indifferent between the fbllowing two lotteries: (assuming

* *)
that x , y , x,, and y, have already been assessed)

* % *
(x,y.) (x.5Y)

(x4574) | (x*.y*)

Each lottery has the same marginal probability distributions for

x and y ordered consequences. Figure No. 2.18 represents these

. lotteries:

y N
*
y
Y%
a N
\r) x Va
X, X X

Figure No. 2.18

(17) P. C. Fishburn; "Independence in Utility Theory with Whole
Product Sets', Operations Research, (Vol. 13, 1965), pp. 28 - 45.

. 43
By scaling u(x*,y*) = ux(x*)'= uy(y*) =0,

* % * *
and u(x ,y)=u(x)=u(y) =1,
pS y
and defining: u_(x) = u(x,y,),

uy(Y) = u(x*,y),

Fishburn derives the additive representation:
u(x,y) = u () + uy(y)- |

However, Keeney notes:

"The main advantage to the additive utility function is its
relative simplicity. The assessment of the n-dimensional
utility function is reduced to the assessment of n one-
dimensional utility functions, and as previously mentioned,
adequate systematic procedures do exist for assessing one-
dimensional utility functions. A major shortcoming of this
approach is the restrictiveness of the necessary assumptions.
We would often expect the utility of a lottery to be de~
pendent not only ‘on the marginal distributions of the re-
spective attributes (evaluators), but also on their joint
probability distribution." (18)

ﬁe goes on to develop the quasi-additive utility forms, which do not

suffer from this restriction.

2.10 Quasi-Additive Utility

The simpler form of this representation requires evaluator y

to be utility independent of x, and x to be utility independent of y.

-

(18) R. L. Keeney; Multidimensional Utility Functions: Theory
Assessment and Application, (Cambridge, Mass., M.I.T.
Operations Research Center, Technical Report No. 43, Oct.,
1969), p. 25.

44
This implies that for a given value of one of the evaiuators, say

Y = ¥po the compound utility function u(x,yo) will depend only on a
function of the x values; similarly, for x = Xg» the function u(xo,y)
will depend only on a function of the y values. The joint utility

function u(x,y) is derived in four steps:

(1) Since x is utility independent of y; for any Yoo

*
&y > Yo > y*), we can define a conditional utility

function on x, ux(x), so that:

(x*,yo)
u_(x)
(x,y) ~ | .
l—ux(x)

(x4554)

(2) Since y 1is utility independent of x; for anmy Xgs
. _
x > Xg > x,), we can-define a conditional utility

function on y, uy(y), so that:

(xo,y*)
uy(y)
(xg5y) =
l—uy(y)

(x5 4)

45
(3) Determine the value. a, so that:

,(X* ay*)

*
(x ,y,)
l-a
(xy5Yy,)
* L]
i.e., a, = u(x ,y,)
(4) Determine the value a, 80 that:
* %
(x Yy)

(%457 4)
.
il.e., a, = u(x,,y)

The compound -utility function for two evaluators, is then:

u(x,y) = aluxf azuy(y) + (1 - a; - az) u};(x)ﬁy(y)

46
Figure No. 2.19 shows a graphical interpretation of this result:

A\ "4

y* T a2< Ll—
y

yO -
— O
Y% 0 : a,
& N
N * 7
X, xd' X X

Figure No. 2.19

The compound utility for any point in the acceptable consequence
space is uniquely determined by the relative utilities of consequences
along yO:(ux(x)), and along xO:(uy(u)), ;nd the two points,
al:(u(x*,y*)), and a2:(u(x*,y*)). What must be assessed are the
two utility functions represented by the heavy lines in the diagram,
and the two circled corner utility points. .

1 2
Therefore, the quasi-additive procedure should be adopted generally,

 Note that if a, + a, = 1, then the additive utility form results.

and if al,+ a, = 1, then the simpler additive form will result

janyway.

2.11 Asymmetric Quasi-Additive Utility

The more complex form of tuility independence requires at
least one evaluator, say x, to be utility independent of the other,

y; but not vice versa.

47

The procedure uses:

(1) Step (1) above,'to derive ux(x);
(2) step (3) aboye, to derive.al;
(3).Step 4) above;'to derive 32;»

(4) asseses a function u(x,,y), by getting p values, so that:

*
. (x*’y)

(x* ’y) -

(x* $y*)

i.e., u(x,,y) = pa,;

* .
(5) assesses a function u(x ,y) by getting s values, so that:

| (x*,y*)

(X* ,Y*)

The following compound utility results:

u(x,y) = u Dulx',y) + (1= u (D)ulx,,y)

48

Figure No. 2.20 shows graphically, the assessments which must

be made:
3)
y /\g
2 1
* O L—
Y (5)
e Jo(L)
Yo | () ,
L(2)
Y« 07 Ta
" N N
\[1 % Ve
Xy X X

Figure No. 2.20

Keeney (19) élso discusses'caseé in which one of the con-
ditional utility functions ﬁay be replaced by an iso-preference
or indifference curve; or two of the conditional utility functions
are repléced by two indifference curves. The assumption of
utility independence is also useful as an approximation even if
not all evaluators are utility independent of one another. 1In
such cases; the representation can be simplified by grouping
tﬁe evalua;orsAinto two or more utility-independent vectors;
and using the degrees of freedom inherent in the quasi-additive
form to fit empirically, the conditional utility~functions.

Preferences for time (i.e. when a given consequence occurs)
are not considered here. In this section, we have examined a

number of preference models arrayed in order of precision of

49
measurement. At one extreme, we have the simple ordefing of con-

sequences; at the other, complex multi-dimensional utility theory.
Any of the preference models may be used as part of a larger
evaluation strategy, though ordinarily, it would be expected that
simpler techniques would be appli;able in thefearly stages of

the planning process, and more complex tecﬁpiques would be applied
to only a few alternatives (about which there is genuine am-
biguity), later on "in the process. For example, the proposed
"Static Evaluation" moael (*) first uses a simple check for
dominance among alternatives, deletes dominated alternatives, and
then applies one of a set of more detailed préference models, for
selection among the remaining alternatives. Available techniques
then include the additive value, additive utility, and quasi-
additive utility models outlined above, as well as two ''relative
value" preference models applicable only to a fixed set of
alternatives, |

" Multi-dimensional preference models are also relevant to

the discussion in Section 3, of hierarchical goal models. There,
-we describe in more detail,vthe relatidhships between general,
‘aggregate goal variables, andrmulti—dimensional disaggregated
evaluators; relationships which are usually arrayéd iﬁ the fotm
of a goal hierarchy. The issues of independence vs. inter-

dependence among evaluators, crucial to hierarchicization, are

(*) see page 102

50

also considered. The resulting conclusions underly the approach
taken in both the "static" and "Dynamic Evaluation' models described

in Section 4.

3. HIERARCHICAL SYSTEMS MODELS .

At the core of planning, particularly for urban activity
systems, is the simplification or abstraction of complex em-
pirical reality for the purposes of control. Behind this
striving for simplicity, lié two central factors:

(1) our limited information handling and computational
abilities, which inhibit our understanding of complex
systems ;

(2) the fedundancy present in most complex structures; a
factor which can be uéed to simplify our descriptions
:of theﬁ.'

In terms of (1), the "computation" issue, complicated prob-
lems can usually be solved only by dividing or decomposing them
into a number of parts, each of which can be attacked by a smaller
search effort. Minsky states:

"Generally speaking, a successful division (of a complex

problem) will reduce the search time not by a mere fraction,

but by a fractional exponent. ...thus, practically any
ability at all to "plan" or "analyse' a problem will be

profitable, if the prob}em is difficult." (20)

In terms of (2), the "representation" issue, Simon argues
that the perceived'complexity or simplicity of a system depends
as much‘on ourAdescription or representation language, as on the
objective complexity of the system;‘the problem béing to find a‘

representation which will eliminate most of the redundancies of

(20) M. A. Minsky; "Steps Toward Artificial Intelligence" in
E. A. Feigenbaum & J. Feldman, eds.; Computers and Thought,
(New York, N. Y., McGraw-Hill, 1963), p. 442,

52
the empirical structure:

"....one path to the construction of a non-trivial theory

of complex systems is by way of a theory of hierarchy.
Empirically, a large proportion of the complex systems we
observe in nature exhibit hierarchic structure:. On
theoretical grounds we could expect complex systems to be
hierarchies in a world in which complexity had to evolve
from simplicity. In their dynamics, hierarchies have a
property, near decomposability, that greatly simplifies
their behaviour. Near decomposability also simplifies
the description of a complex system and makes it easier
to understand how the information needed for the develop-
ment or reproduction of the system can be stored in
reasonable compass.' (21)

From'the~perspective of the élanning process, there is a good
deal of intuitive justification therefore, for the hierarchical
factoring of part;cular problem spaces., Factoring of general
goals info multi—dimensional‘objecti&es serves as an approximation
for goals which cannot be measured in practice. Factoting‘of
solution spaces into different levels of description, permits
simplification in that certain kinds of information can be
included with each solution level, that may be reasonably omitted
or approximated at other levels. However, consistency-of de-
cpmposition is difficult to maintain from problem confekt to
problemvcontext. Tests of "reasonableness" of application rather
than forﬁal or thecrefical rules, apply in thié area.

However, there have been some tentative‘steps towards

formalizing the theoretical bases of hierarchical systems: one

(21) H. A. Simon; The Sciences of the Artificial, (Cambridge,
Mass.,, M.I.T. Press, 1969), p. .

53
fundamental work is that of Mesarovic et al (22). They define
a multi-level hierarchical structure as:
“...a vertical arrangement of subsystems which comprise the
overall system, the priority or right of intervention of the
higher level subsystems, and the dependence of higher level
subsystems upon the actual performance of the lower levels."
Figure No. 3.1 illustrates this concept graphically. The term

"system'" refers to a transformation of input data into outputs.

Vertical Interaction between Levels of a Hierarchy

o — s —— — —— — — — ——r .

~

[Total System AN
| }
| |
I |
! Input \/Level m Output ! \
: /] Subsysten i 4
l N Performance |
| Intervention Feedback |
| ’ | '
| |
| Input Level n-1 Output ! \
i -7} Subsystem i 4
| ! Performance |
| . Feedback l
| | |
| | l
| | | |
} Intervention ' { l
L |
| Input Level 1 Output | \

. Figure No. 3.1 (23) .

(22) M. D. Mesarovic, D. Macko, Y. Takahara; Theory of Hierarchical,
Multilevel Systems, (New York, N. Y., Academic Press, 1970), p. 34.

(23) Ibid.; Figure 21, p. 35.

The crucial task in defining a hierarchical system, is the
designation of system levels. Mesarovic notes that:

"(1i) there is an order of magnitude difference in the size
of the units of concern on different levels.

(ii) what constitutes a unit on a particular level depends
on the interaction mechanisms operative in that
particular level...." (24)

Simon's concept of 'nearly-decomposable systems (25) is
similar: the interactions among subsystems are weék, but not
negligible. At anyvparticular level in the system, the weak
interactions émong subsystems are distinguishable from the
S£ronger interactions within the subsystems. The former are of
different orders of magnitude at different system levels. These

criteria do not have meaning however, outside of the context of

a particular decision problem. More useful for our purposes,

is Mesarovic's distinction of three functional types of levels: (26)

(1) "strata" (levels of description or.abstraction);
. (2) "layers" (levels of decision complexity);

(3) "echelons" (organizational levels).

In defining strata or description levels, a balance must be
struck between simplicity or economy of description, and the need

to include as many system variables as are relevant to decisions

(24) Ibid.; p. 31.
(25) Simon; op. cit. (1969).

(26) Ibid.; p. 37.

54

55
at that level. Understanding of a system increases by crossing

strata: in moving down the hierarchy, one obtains a’more detailed
explanation; while moving up the hierarchy, one obtains a deeper
understanding of its significance.

In defining layers or decision 1evels,'the balance is between
the need to make a decision by a specified deadline, and ihe
desire to uﬁderstand the problem more clearly. A hierarchical
structuring of decision layers defines a set of sequential decision
problems, and a contrél procedure for solving them: the solution
df a problem in the sequence, determines some of the inputs
necessary for successive problem solutions; the overall problem
is solved once all of the subproblems are solved.

The definition of echelons or managerial levels does not
concern us here. In this sense; hierarchical levels serve as a
formal vehicle for communication and transfer of eontrol in an
organization. Echelons must balance betweén information-handling
ovérload.implied by centralized, unitary control; and the lack
of co-ordination implied by decentralized units.

There is by no means é necessary one-~to-one correspondence
between any of the functional types of levels: varibgs combinations
of strata and layers may occur in multiple-echelon systems;
various interrelations of strata and layers for a unitary
decision-maker, are possible. However, all three concepts of

hierarchy have several principles in common (27):

(27) 1ibid.; p. 54.

56

(1) a higher level unit is concerned with broader aspects
of overall system behaviour;

(2) the decision period, or time horizon, of higher levels,
is longer thaﬂ for lower levels;

(3) higher levels are concerned with the slower aspects of
overall systems behaviouf; |

(4) descripEions and pfoblems on higher levels are less
structured, with more uncertainties, and are more
‘difficult to formalize quantitatively, than lower

levels.

In the evaluation model to follbw, we make a distinction
between hierarchiéally—structured goals in the evaluation lang-
uage, and hierarchically-structured actions in the action space.
The latter corresponds to Mésarovic's "strata" or levels of
description; the former to "layers" of decision complexity.
Miller, Galanter and Pribram make the same distinétion in their
theory of Behavioﬁr'(ZS), where thé fundamental unit is the
cybernetic feedback loop, or "TOTE" (test-operate-test-exit)

pattern: (cf. Figure No. 32).

(28) G. A. Miller, E. Galanter, and E. H. Pribram; Plans and the

Structure of Behaviour, (New York, N. Y., Holt, Rinehart
& Wilson, Inc., 1960), p. 26.

57

——> TEST ————>

exit

(incongruity) (congruity)

OPERATE

Figure No. 3.2

TOTE units can be chained in sequence, or may form operational
components of larger TOTE units in the hierarchical organization
of behaviour. Althoﬁgh they ﬁéke a'disqinction between explorations
in action space (operations) and mechanisms by which actions are
tested for suitability (tests), there is always a one-to-one
correspondence between tests and actions in the TOTE pattern.
‘At the finest level of scrutiny, we would expect this corres-
pondence to hold; however, in terms of our model which formalizes
only '"global" evaluation procedureé, and leaves ‘''local" tests
embedded within search procedures, this would not always be true.
For reasbns of computational simplicity thougﬁ, it is more
convenient to ensure that evaluation levels and actim.l levels
coincide.

The units at each goal level (goals) and the units at each
action level (designs) will, in general, not correspond or map

directly onto each other. As quoted above:

58

"...what constitutes a unit on any particular level,
depends on the interaction mechanisms operative in that
particular level.” (29)

Since we have constructed languages for two different
purposes, the Interaction mechanisms between components in the
separate domains will also be different, and therefore, their
respective units may not coincide. (%) Thé usual intent with
factoring global goals into subgoals, is to get a set of
multiple objectivés as disjoint or as independent from one
another as possible. The hierarchical stratification of
actions, however, results in a set of ovérlapping_regions or
action spaces, within the region of including higher-level
actions. Models which attempt to integrate the two languages,
such as Alexander's hierarchical decomposition (30), are not
entirely successful in this regard. Manheim states:

"The underlying issue here is complex. There is one

language in which we naturally describe actions, and there

is another which expresses our evaluations of those
actions. Our natural tendency is to aggregate actions
within the frame of reference provided by the descriptor
language. But in order to get high similarity among
actions, we want to aggregate them with regard to the
evaluation language. The work of Christopher Alexander.

(Notes on the Synthesis of Form, Cambridge, Mass.,

Harvard University Press (1964))can be described as a way
of developing new descriptor languages such that there is

(29) Measrovic et. al.; op. cit., p. 31,

(*) some operational reasons for this are described, beginning
on page

(30) Christopher Alexander; Notes on the Synthesis of Form,
(Cambridge, Mass., Harvard University Press, 1964).

. 59
a greater correspondence between the descriptor and evaluation

languages. In our terms, such a reworking of the descriptor

language would yield a new metric, or set of metrics, on

the action space." (31)

In the next section, we outline a number of models for
hierarchical goal structuring and hierarchical planning; discuss
and criticize each model, and suggest from that, some of the
reasoning behind the particular approach we have taken.

. @

3.1 Hierarchical Goal Models

Goals generated by, or assigned to, a planner, are usually
multidimensional. Emery (32) suggests three reasons for this:

(1) compression of several incommensurable goals into a
single objective, redgces their information content,
unless there is an agreed-upon tradeoff between goals,
which is acceptable for lower-leyei planning and
.control; . .

(2) multiple, measurable objectives c;n serve as approxima-
tions for more general goals which are not measurable

operationally;

(31) M. L. Manheim; Hierarchical Scructure (Cambridge, Mass.;
M.I.T. Press, 1966), p. 157.

(32) J. C. Emery; Organizational Planning and Control Systems:
Theory and Technology, (New York, N. Y.; MacMillan Co.,
1969), p. 115.

60
(3) multiple goals form a useful means of conveying sufficient
information about desired behaviour in the face of inter-

action effects among unpredictable context and design

variables.

Global goals afe made operational only after they have been
factored into a hierarchy of subégoéls. Each sub-goal generated
by this process may give rise to‘lower—level planning, which in
turn, may generate still lower level goals as a means of
achieving its own goals. The lowest level of goals is a set of
performance criteria whose valués can be assessed for each alterna-
tive under consideration. All of the hierarchical goal models to

be discussed, follow similar reasoning.

(a) Goal Fabric Analysis (33)

The Goal Fabric model has two stages:

(1) An analytical phase; in which all the known goals are
listed for the broject, and then, the various relations
among the goals are identified.

(2) A ranking of alternatives; in which each new alterna-
tive £; mapped onto the goal fabric, compared with one
préviously ranked alternative, and fitted into the

overall ranking. Only two alternatives at a time are

evaluated.

(33) Manheim & Hall; op. cit.

. 61
Phase (1), goal structuring, determines only those relation-

ships which are relevant to evaluation. Relations guide the
expansion of the goals list in order to clarify the vague, general
statements by which the problem may have been originally defined.

Relations between goals may be of four kinds:

(1) Specification: the lower-lével goal explains in more
detail, a~general goal;

(2) Means-ends: the lower level goal explains how a genéral'
goal will be acc;mplished. The means goal is important

only because it is instrumental in achieving an end;

(3) Value-wise dependence: denotes a goal which can only be

evaluated in conjunction with other goals;

(4) Value-wise independence: denotes a goal which can be

evaluated independently.

‘Once these relations are established and listed, they yield a
hierarchical tree (cf. Figure No. 3.3) in which the lowest goals
should be measurable. Evaluation first entails the mapping of
alternatiyes onto the goal fabric: i.e. predicting the performance
of alternatives with respect to goal subsets. " Dominance checks
are then applied to these subsets: if there is dominance over the
set, then it can be transferred to the more general, upper-level
goal; if there is not, combinations and tradeoffs among goals

must be used, to determine which altermative dominates. Manheim

and Hall suggest five techniques which are available at this point:

GOAL FABRIC ANALYSIS

“THE GOOD LIFE"

KEY

CONVENIENCE

SPECIFICATION —————— —

MEANS - END

62

TPROBABILITY

OF DELAY

VALUE - WISE INDEPENDENT _—"

VALUE - WISE DEPENDENT —L—

FIGURE NO. 33

TRAVEL
TIMES

| NOISE
-l
NON-USER e
<
~
/ ~. VISUAL
/
/
AESTHETICS / VISUAL
/7
\\ , y
| P AN //
_|USER]‘, NOISE
AN
RN
N [comrorT
\
DECREASE DECREASE PROB-
. J\PROPERTY ABILITY OF
// DAMAGE ACCIDENTS
SAFETY / ~ [DECREASE DECREASE PROB-
4 INJURIES ABILITY OF INJ-
N . [URY/ACCIDENT
' DECREASE INCREASE SPEED
FATALITIES OF MEDICAL
RESPONSE
OUT-OF-POCKET PRICING
CcOST : POLICIES

DECREASE BLOCK-
AGE OF FACILITIES
BY BREAKDOWN

INCREASE

WEATHER
RELIABILITY

INCREASE
TRAVEL
SPEED

INCREASE
ACCESSIBILITY
OF TERMINALS

63
(1) Dominance;

(2) Explicit choice by the decision-maker (essentially
arbitrary);
(3) Comparison of intervals: find the interval between

alternatives on each goal, then decide how these

intervals compare with each other;

(4) Indifference measures: for example, alternative A is

preferred’ over a certain goal variable range, and
alternative B over another fange; the actual goal
values determine which alternative is selected;

(5) Modified Utility Measure: a simplified linear scoring

function.

It is certainly possible to agree with the authors' objective
of not forcing detailed assessmént of the decision-maker's
preferences unless absolutely necessary; in fact, this is the
principal advantage of their model. Howevér, once one of the
tecﬁniqués for assessing more detailed preferences is invoked,
in order to clear up the ambiguity between two altefnatives, then
_this assessment 1s available for any subsequent comparison. Should
a large number of such ambiguities turn up inithe evaluation
procedure, the Goal Fabric model in practice requires the detailed
preferences iﬁ was trying to avoid. As the number of problem
dimensions increases, so does the probability that rough rankings

or imprecise value statements will be conclusive for choice.

64

Once one alternative is preferred in some dimensions, and its
competitor is preferred over the remainder, then a good deal
depends on fortuitous structuring of the problem, -or the ad-hoc
procedures suggested, for a definitive selection to ‘be made.

The reason for fhis quandry, is that decidability is related
to the weakest form of preferencé measurement in a decision context.
If the weakest form of mgaSurement.is an ordinal ranking, for some
goal variable, then dominance for all goal variables can be
assessed by constructing quasi-levels.* If there is still
ambiguity (i.e. more than one aiternative in each quasi-level),
then the resolution among the alternatives within each quasi-
level must be.made by iﬁvoking a higher‘level of preference
measurement (for non-arbitrariness). Given the von Neumann-
Morgenstern theorems for constructing utilities from lottery
comparisons (34), an interval utility scale can be constructed
for preference judgments of any higher order than ordinal.

The Goal Fabric model is ambiguous rather than systematic about

when such judgments may have to be made.

as discussed for example, on page no. 24

(34) von Neumann & Morgenstern; op. cit.

65

(b) Miller's Additive Worth Hierarchy

James R. Miller (35)'proposes a model for the assessment of

"worth" values, in which goals are factored hierarchically into

subgoals, these subgoals into further subgoals, and so on, until a

level of detail is reached where physical measurement can be

associated with each evaluator. His procedure is as follows:

(1)

(2)

&)

(4)

(5)

List the main pérformance objectives, which should be
complete and exhaustive, mutually exclusive, worth-
indepeﬁdent, and non-redundant,

Generate a hierarchical structure of pérformance criteria.
Select physical performance measures in the descriptor
1anguage; one for each lowest level performance criterion.
Establish worth relationships between the lowest-level
performance crite?ia and their associated physical
performance measures. (i.e. '"score' each alternative

with respect to each eavluator).

Eétablisﬁ a weighting or trade-off procedure for
combining worth scores, to arrive at a single overall

index gf worth.

(35)

J. R. Miller III: "The Assessment of Worth: A Systematic
Procedure and Its Experimental Validation', (Cambridge,

Mass., M.I.T. Sloan School of Management, unpublished
Ph.D. thesis, 1966).

66
Figure No. 3.4 illus;rates the hierarchical goal tree for an

example from Miller's thesis: the selection of a job by a recent
college graduate.j The subject broke his goals into four major
areas: monetary compenéation, geographical location, travel
requirements, and nature of work. Each of these is further sub-
divided: for example, "monetary compensation' is broken down into
"immediate“ and "futuref; "immediage" into "starting salary" and
"fringe benefits"; "fringe benefits" into fretirement" and
éinsurance".

The weights or tradeoff values assigned to each level sum
to l.O.< At thé lowest performgnce level, the weight assigned to
an evaluator is the product of the level weights assigned to its
direct chain of "parent" or including goals. Thus, "retirement"

(fringe benefits) receives a weight of:

13 = ,33 x .70 x .10 x .40 = .009

The overall worth of a set of performance evaluators
€15 €55 cevs €, is found by multiplying each worth score by its
associated performance tradeoff weight:

, : n
W(el, €y sty en) = iEl)\iwi(ei),

where A, represents the tradeoff rate for evaluator e

i and:

i’

I A, =1.0
i=1

MILLER'S ADDITIVE WORTH HIERARCHY

FIGURE NO. 3-4

(.20)
MANAGEMENT TRAINING
{.60) {.30)
CONTINUING | VARIETY
(.33) {50)
NATURE OF TEGHNICAL CONTENT
WORK
(.40)
IMMEDIATE .
{.80)
(.80) TRIP LENGTH
LONG TRIPS | (40y
Lo PROPORTION TIME AWAY
. TTRAVEL : |
(.20)
DAILY COMMUTING
_ TOTAL | (20)
WORTH CLIMATE
(.17) {.40)
LOCATION | DEGREE OF URBANITY
{.40)
PROXIMITY TO RELATIVES
, (.35)
(30) 10 YR, INCREASE
FUTURE (65i
3 YR, INCREASE
(33) (.40)
MONETARY (10} RETIREMENT
COMPENSA- '
TION FRINGE (60)
(.70) INSURANGE
IMMEDIATE
(90)

STARTING SALARY

(040)
(.059)
‘(.0495
(.132)
(082)
i(.054)
(03 4)
(034)
(o68)
(068)
- {035)
(064)
(009)
(014)

- (.209)

67

DIRECT WORTH
ESTIMATE

DIRECT WORTH
ESTIMATE

DIRECT WORTH
ESTIMATE

NUMBER MOS.
TRAINING

MAXIMUM TRIP_
LENGTH

% TIME AWAY
PER YEAR

NUM. HRS./YR.
I-WAY TRAVEL

DIRECT WORTH

ESTIMATE
SMA o
POPULATION

I-WAY JET
FLIGHT TIME

LOC. ADJ. -
A.T. DOLLARS

LOC. ADJ.
A.T. DOLLARS

LOC. ADJ.
A.T. DOLLARS

LOC ADJ.
A.T. DOLLARS

LOC. ADv. -
A.T. DOLLARS

68
The W(ei) values must all be consistently scaled in the

interval between 0 and 1.

The crucial requirement for a simple aggregation of worth
values, is the concept of 'worth independence" which implies a
substitution rate between evaluaéots,_constant for all values
that these evaluators may take on; (*) Miller outlines a
procedure for elimina;ing worth independenée if it occurs:
goal variables are eliminated, redefined, or combined
with other goal variables, to ensure independence; Worth
independence is also essential to additive utility models; it
ensures computability and thereby, decidability. By assuming
independence among goal variables, Miller's procedure is able
to derive an unambiguous overall total worth every time. On the
other hand, Manheim and Hall (36) cannot guarantee unambiguous
dominance in every comparison of alternatives since they permit
"value-wise dependence', b#t operationally they require less
preference information, and computation from the decision-maker.

Miller's worth concept is not applicable to probabilistic
outcomes since it does not measure aversion to risk. The

extension of the additive worth concept to risky decision problems,

i.e.:

(*) see constant substitution rate with linear indifference
curves, p. 33

(36) Manheim & Hall; op. cit.

69
m

z ui(ei)

u(e ,e se e) =
1 »2 m {=1

requires, in addition, the marginality assumption mentiomed

earlier.*

(c) Means-Ends Analysis

Means-ends analysis may be viewed both as a procedure for
decomposing a goal tree, and as a seqﬁential decision process
(as implemented in Newell, Shaw, & Simon's computer program,

GPS (37)). In terms of goal decomposition, it is also included
within both the Manheim & Hall, and Milier hierarchical goal
models described above, éé a component; although both of these
models also permit other relations among goal variables. Means-
ends analysis divides overall problem objectives into a set of
subgoals instrumental to achieving these objectives. The sub-
goals in aggregate specify what is meant by their parent objective;
they are important to the decision-maker only as intermediate
steps to satisfying these ends. Normally, all subgoals must be

satisfied before considering the parent objective fulfilled. The

(*) cf. page no.42

(37) A. Newell, J. C. Shaw, & H. A. Simon; "A general problem-
solving program for a computer,”" Computers and Automation,
(Vol. 8, No. 7, 1959), pp. 10-16.

70

subgoals in Eurn can be considered as "ends", each of which can .

be satisfied by further decomposed "means'

subgoals.

The process

continues to a level of detail where the performance of alterna-

tives with fespect to means subgoals can be assessed or measured;

the overall satisfaction for each alternative is computed by

aggregating means worth values through the chains of means-ends

“staircases". TFigure No. 3.5 illustrates a portion of a means-

ends analysis for a business firm choosing between specialized

or combined district managérs: (38)

profitability

sales

profitability

—

I

l

manufacturing
profitability

L

sales sales
volume costs
i l
i [| l
Time for faith of efficiency
sales customers of sales
S i [
[] l |
travel| | organiz- contact| |service| |specializing ||individual
ing work claims opportunities||adjustment

Figure No. 3.5

(38) E. Johnsen; Studies in Multi-Objective Decision Models,
(Lund, Studentlitteratur, Economic Research Center in
Lund, Monograph No. 1, 1968), p. 260.

. 71
The decomposition results in a goal tree with no overlapping

staircases; i.e. one subgoal cannot serve as a "means” to more than

one "ends" goal. The greatest difficulty in the method (or any
goal‘fabric method) lies in determining whether éach set of means
subgoals is compleﬁe in the sense of defining satisfaction for

thelr parent end goals. Thevrelative.contribution of each subgoal
to its parent goal is also an issue in the aggregation of'petformance
measures for an alternative. In this respect, means-ends analysis

-shares the same problems as Miller's goal hierarchy discussed

above.

In its mechanistic form, as a sequential decision model,
means-ends analysis is more interesting, since it bridges the gap
between hierarchical goal structures and planning models, albeit
in a simplistic manner. The logic of Newell, Shaw, & Simon's
computer program GPS, for example, is recursive: given the present
set of goals, it attempts to solve the problem from its given
repertoire of operators; if the problem is insoluble, the present
set of goals is decomposed into a set of subgoals, and the pro-
cedure calls itself again, as a subroutine. The problem is
dacomposed only to the point where its subproblems can be solved;
the aggregated solution to all subproblems at all goal levels,
defines a solution to the problem. GPS can only deal with well-
defined problems which have all goals specified as constraints:

even in this framework, a lot of backtracking and traversing of

72
not aggregate into a solution to a higher level sub-problem.*
Alexander's hierarchical decomposition model (39) does not even
consider this possibility: the diagramming phase (left unformal-
ized in that model) assumed that all sub-problem solutions would

be compatible, and could be meshed with each other in the final

solution.

(d) Alexander's Hierarchical Decomposition

In terms of our dichotomy between goal structure models and
hierarchical planning models, Alexander's hierarchical decomposi-
tion may be viewed as a procedure which combines elements of both

domains. The model has four phases:

(1) Formulation of requirements;

(2) Estimation .of interactions among requirements; .

(3) Decomposition: the result of which, is a "program" for
the solution of the problem;

(4) Solution of the problem according to the "program"

derived in phase (3).

-

(*) as in the "missionaries and cannibals' problem: (G. W. Ernst;
"GPS and Decision Making: An Overview', in R. Banerji, M. D.
Mesarovic, eds., Theoretical Approaches to Non-Numerical
Problem Solving, New York, N. Y., Springer-Verlag, 1970), p. 63.

(39) C. Alexander; op. cit.

73
The list of requirements is not a list of goal variables, but

rather a set of variables which specify misfits in the environment.
Requirements are further constrained in that they must be as gqual
as possible in importance, and independent of each other (i.e.

each is important to the problem by itself, and not in terms of
contributing to another requirement). Relations émong requirements
specify form implications, not evaluation rélations; they measure
the "difficulty" in finding solutions which will satisfy aﬁy two
.requirements simultaneously.

In the interaction phase, requirements are taken two at a
time, and a binary judgment is made as to whether or not the form
implications of one fequitement conflict or concur with the form
implications of the other: if so, an interaction islpresent. The

results are represented in a matrix of interactions: (cf. Figure

No. 3.6
L 3 E— x| X
?1 c}l C%j -'c%n
=]
e

Figure No. 3.6

74
where X = (xl,xz,...,xi,...;xn) is the set of requirements,
cij = 0 if there is no interaction between X, and xj,

= 1, otherwise.

The interactions and requirements are represented as a linear -

graph, with the requirements as nodes _and the interactions as links:

-

(cf. Figure No. 3.7)

Figure No. 3.7

The decomposition phase successively partitions‘the graph at
points of least information transfer, to a stage where subsets
of the graph are small enough as subproblems for the designer to
be able to handle them conveniently in a design solution.
Figure No. 3.8 illustrates how the linear graph of Figure No. 3.7
might be partitioned and.represented as a hierarchical tree or

"semi-lattice".

Figure No. 3.8

Diagramming begins at the bottom of the hierarchy, where each
of the subsystems is dealt with as a separate design problem. A
convention is used for all diagrams such that each diagram con-
taiqs the essential relational features of its subset, and as
little else as possible. The diagrams are combined according to ‘
the program indicated by the decomposition tree, until one diagram
is completed‘which shows all the essential features of the design.

The logic of Alexander's model is similar to that of means-ends
analysis as a sequential'decision process: the problem is decomposed
into sub-problems, the sub?problems are solved, and then recombined
to yield the solution to the.larger problem. From the perspective
of our dichotomy between evaluation and search, however, his
reasoning is quite differént. There is no means in Alexander's

model for pfedicting the performance of alternatives, or for

76
determining their level of achievement with respect to requirements

or goals. This res;lts because the designer, in deriving the
iﬂteractions between requirements, makes prior judgments about
certain predicted consequences of the design before he actually
generates it. The requirements are intended to "imply" form, but
not "specify" it; Alexander waﬁts them to be both® "partly open
and partly closed" constraints. In effect, the model attempts to
link directly small subsets of design attributes and evaluators
into "requirements" and anticipate the prediction and evaluaﬁion
phases of gpe planning process in determining interactions.

Figure No. 3.9 illustrates thisApoint:

evaluators: G = (31’22’e3""’ii""’em)

'requirement"”

design attributes: P
A. (al,az’.'.’aj:’%.’...’an)

Figure No. 3.9

The complex functional mapping of attributes onto evaluation.

space through prediction (cf. Figure No. 3.10):

77

A L G
4 !
%2 ®2
e
a 3
Zi e
k
a , e
n ; m |
design predicted evaluators
attributes consequences’

LIRS

Figure No. 3.10

has been replaced by an ensemble of certain attribute and evaluator
sets (in the form of requirements), yet complex interactions among

the requirements. (cf. Figure No. 3.11).

Figure No. 3.11 -

. . 78
There are no empirical methods for getting the correlations

represented by interactioné, apart from previous experience, which
cannot be completely valid. Alexander's method then, is more
properly, a search strategy, in which these interactions are
regarded as prior judgments about crucial igsues_;nrgbgwégs;gpi_mwﬂw
problem. His attempted integration of evaulation and descriptor
languaées is provocative, but still requireé a posterior eval-
uation phase in which resulting consequences and worths are
_assessed, (and the "prior" hierarchical structure of the problem
may be rgv;§3§).

The central conceptual issue appears to lie in the structuring
of inherent problem complexity, particularly when uncertainty is
introduced. If we accept Alexander's linkage of attributes and
evaluators into requirements, a complex-semi-lattice hierarchical
decomposition results, which may have to be altered on posterior
analysis. On the other hand, if we accept separate, simple goal
and action decompositions, problem complexity is transferred to
the mapping between these hierarchicies. Our natural tendency
is'to prefer the latter model, given our concern with evaluation.
More importantly, Alexander's‘model, in not alleviating the need
for prediction and evaluation, also does not structure the pfoblem
in a form which lends itself to the aggregation of preferences.
Thus, it is difficult to compare and assess alternatives, except -
at the smallest subcomponent "simplex" level. Accordingly, for

this paper, we retain the separation of evaluation and descriptor

79
languages; i.e. the distinction between hierarchical goal and

planning models.
The remaining basic issue with respect to hierarchical goal
models, is whether to accept the "tree" goal decomposition of

means-ends analysis, Miller, Fishbp:glﬂggg:,ﬂyhicpwalso’iqg}%es

computability, or whether to acknowledge the "lattice" decomposi-
tion suggested by Manheim and Hall, who nermit value-wise dependence
among evaluators. Arguments for simplicity in the goal fabric so
as to make it éasy to cémpute compound utilities, are valid, but not
central to the issue. ‘fishburn (40) suggests that interdependent
goal variables should be aggregated or recast into independent
utilities so as to allow the use of additive utilities. However,
this is expedient also. The most uséful argument for evaluator
independence can be derived from Torgerson (41), who distinguishes
three kinds of measurement:

(1) Fundamental measurement;

(2) Measuremeﬂt by-arbitrary definition;

(3) Derived measurement.

Even at an elemental level, utilities or preference measures
are derived from fundamental attributes of the system, which can-

not be inferred directly.' Therefore, evaluators which are inter-

(40) P. C. Fishburn; op. cit. (1964), p. 346.

(41) W. S. Torgerson; op. cit., p. 21.

80

dependent, must be in some sense, derived from a common fundamental
measure. Thus, it appears valid to attempt to reformulate evaluators
in such -a way that each evaluator is derived from a distinct, -non-
repeated fundéhentél measure. The formidable difficulties that may
be involved in attempting to this-operationally, should“uot“be"'"‘

discounted, though.

3.2 Hierarchical Planning Models—

In Miller, Galanter & Pribram's theory of behaviour, a Plan is:

"...any hierarchical érocess in the organism that can

control the order in which a sequence of operations is t

be performed". (42) '
Planning is concerned with the strategic aspects of behaviour
rather than simply tactical actions: an organism which plams,
maintains an internal representation of a complete course of
action or "strategy". Hierarchical planning, then,is concerned
with "strategies of strategies”: the components over which control
is,maintaineé, are themselves plans, rather than direct courses of
action. The purpose of this ''metaplanning"” is to control and
economize on the organism's search effort.

Miller et. al. also note the interrelationships between values

and the execution of plans:

(42) Miller et. al.; op. cit., p. 16.

81

"...the test phases of the more strategic portions of a

Plan are associated with overriding evaluations. Thus a

hierarchy of TOTE units may also represent a hierarchy of

values." (43)

In hierarhhical planning models, the association of plans with
values varies from level to level. -Lowest level plans may be -
thought of aé points in n-dimensional evaluation space, with utility
or valué functions associated with each point. Each utility is a
composite function of the goal variables which-define the point.
Higher level plans comprise regions in which a number of lowest-
level plans”may be nested: since these regions each encompass. a
number of points, (not all of which have the same utility),
high level plans have distributions of values, rather than single
‘values. This notion underlies Manheim's Hierarchical Structure
model (44) as well as the Dynamic Evaluation model developed

in the thesis.

(a) Hierarchical Structure

Hierarchical Structure is conceived of as a "metaprocess" in
that it is concerned with orgénizing the planning process, rather
than specifying solutions to a given problem.*) The érocess of

finding a solution proceeds by a series of "experiments" or

(43) Ibid.; p. 63.
(44) M. L. Manheim; op. cit. (1966).

(%) Some ways in which the model also gives information about the.
nature of solutions are described on page

82
operations in which- information is acquired about the nature of
possible solutions.

The "hierarchical structure" of the design process is the
specification of levels of description ("strata" in Mesarovic's ter-
minology-(45)) from very general plans, down to solutions specified— -
in all the detail necessary for implementation. Only lowest level
designs (i.é. at the most completely specified level of detail) can
be considered as solutions to the preblem. Levels in the structure—
are defined in terms of the precision and discriminability among.
actions in "the action space. The concept of "metric" is related to
that of level:

"The metric of an operator (i.e, search-selection pro-

cedure) is a division of the action space into sets of

actions such that the selection of the SLO (Single Level

Operator) can distinguish between two actions if they are

from different sets, but cannot distinguish between

actions from the same set. A metric is a set of exhaustive

disjoint subsets of the set of points in the action

space." (46)

Metrics should be chosen so that there is a high degree of
difference between actions on the same level, but a high degree
of similarity among lower-level actions included within these

actions. Alexander's Hierarchical Decomposition algorithm (47)

partitions a set of interdependent elemental variables according

(45) Mesarovic et. al.; op. cit., p. 37
(46) Manheim; op. cit., p. 35. —_—

(47) C. Alexander; op. cit.

83
to roughly the same requirement. Each decomposition level has the

same total set of elemental variables, but differs from other levels
in the way that the variables are grouped.. In this sense, a metric
may be viewed as a framework which is appropriate to describe and
identify the structuring or grouping at each level.

An experiment is defined as the application of a level
operator 1 to a non-elemental action which was produced previously,
to yield another action. (¢48) The results of an experimentvare a
new action with its associated cost or value. The new action is at
a lower lewel than the action from which it was produced: as an
example, an experiment could be thought of, as the design.of large~
scale room layouts from smaller-scale and more general floor plans.
The cost of executing anvexperiment depends only on the level, and
is constant over the process.

The outcomes of experiments are characterized probabilistically;
the action or alternative design resulting from an experim;nt, and
its cost, are uncertain. The mo&el assumes that the analyst has:

"...a distribution £ ,(8) for every action j which he has

produced so fat....Egch time he obtains a new action and

its associated cost, he acquires information about the

true distribution of costs of "actions" included within

various non-elemental actions." (49)

f j(e) is the subjective judgment 'of the likelihood éf different

values of 6, where § is some parameter of costs (i.e. worth) of

(48) M. L. Manheim; op. cit., (1966), p. 43.

(49) Ibid.; p. 46.

84
experiments. The objeciive of the model is to determine, at any
point in the design process, which "experiment", at what level of
detail, should be performed next. The planning process stops when
there is no experihent_(cost of experiment deducted) which will
obtain a significantly better solution than one developed so far,

Each level operﬁtor is characterized by a conditional probability
distribution which essentially measures the relative amount Qf in-
formation supplied by that operator (i.e. designing at a certain--
level of detail). This distribution gi(yle) is defined:

"Given- that some action j is characterized by a particular

value of the parameter 6, say 80, (yleo) is the prob-

ability that application of operator i to that action will

produce an action with a cost equal to y." (50)

Once an experiment is executed, and a design with cost § is
produced, Bayes theorem is used to revise the analyst's prior

distribution, f;(e):

£1(0) g, (§/0)

£1(0/9) = A
L£'(8) g, (§/6)
pd 1

The prior distributions for actions on higher levels which
include the present action j (i.e. its "grandparents" and "parents")
are also changed. In these cases, the gi(fr‘/e) function remains the

same, but the priors for actions at different levels will usually

85
be different. The prior distributions over ungenerated actioans

are governed by a homogeneity assumption: their priors are the
priors over their parent, least including action, since there is
no way of distinguishing them from all others, until they have
actually been generated.

The evolution of the planning process is described thus:

"When the process begins, the marginal distributions f(ek)

over the components O, are identical, because no actions

have been generated. Each time an experiment is executed,
one or more marginals ‘become differentiated. As the process-
unfolds through the execution of experiments, more and more
marginals go off on separate paths in a complex and inter-
related manner determined by the inclusion relationships
among ‘the actions." (51). ‘

In choosing among possible experiments to do next, the
objective is to balance the cost of producing a design alternative
against the possible returns: i.e. the hope of getting a less
costly or more efficient solution to the problem. For a single
stage analysis, the expected utility of each possible experiment
is computed by taking each possible result y, computing pij(y);

temporarily updating the status of the process to compute-u(eij,y)

and integrating over all results y:

u(eij) = [pij(k)u(eij,y)dy

(51) Ibid.; p. 74.

86
The expected value of terminating (the null experiment) is the

value of the best elemental (iowest-level) action so far. The
experiment with the highest expected utility is chosen.

For a multiple stage analysis, computation is much more
involved, since.it must extend out over many linked experiments _
rather than just one: all possible combinafions of 1st stage, 2nd
stage,...nth stage experiments must be examiﬁed.

In order to reduce computation, several kinds of conséraincs
on the process are suggested:

(1) Sequence constraint: the process must continue through

an orderly progression of levels;

(2) Jump-back constraint: once control has been transferred

from one level of analysis to a lower level, new actionms
- can no longer be generated at higher levels (this
appears to be an unreasonable restriction);

(3) Bandwidth constraint: only a limited number of potential

experiments will be examined;

(4) Look-ahead constraint: restricts the number of levels

ahead that a new design may be generated from a

présent action.

Some variations on these constraints are used in the Dynamic
Evaluation model.
It should be noted that there are essentially two arbitrary

points in the process:

87
(1) the specification of the initial subjective distribution

fj(e) over the universal design. Given the learning
aspect of the model, this is not a serious point: all
that is required is that the d;stribution cover a range
of all values of 6 that are likely to be encountered _ .
in evaluating lower-level designs.

(2) the specification of the conditional operator character-
istics; gi(y/S). 4n extension of the Hierarchical
Structure model mentioned by Manheim (52) and Pecknold
(53) allows the analyst to specify a family of distri-
butions for the g function. Through the process, he
learns not only about his changes of ;uccess (the
£"(9/y) distributions), but also about the amount of
information contained in a Single Level Operator. De-
noting P'(B) as the estimate of the relative like;}hood
of different combinations of probability distributions
for the operators, the Bayesian model also revises this
distribution posteriorly, after observing the result

§, of an experiment:

(52) Ibid.; pp. 163-164. :

(53) W. M. Pecknold; The Evolution of Transport Systems: An
Analysis of Time-Staged Investment Strategies Under Un-
certainty (Cambridge,; Mass., unpublished Ph.D. thesis,
M.I.T. Dept. of Civil Engineering, 1970), Appendix D.

88

P' (B)gq, (5/8)

IP"(8) g, (§/8)
B

P"(B/Y) =

The complete posterior distribution for an gction j, is:

Pj(B)Xg(f/B,G)P'(B)

PICO/S) = J
IP'(B)IP'(B)g($/8,0)
o3 g

Pecknold also gives a more exact treatment of this, when
it cannot be assumed that the posterior distribu;ions,
P"(B) and P"(0) are independent, and therefore, joint
distributions over both B aﬁd 0 must be used. (54)

Over the history of the process therefore, we would expect the
designer to be able to generate intermediate level designs whose
expected evaluations are closer to the ultima;e distributions of
evaluations over their included designs, as yet ungenerated. Thus,
the gi(yle) distribution for a particular level would become-
"tighter" (i.e. with a smaller coefficient of variation) as the

process evolves; for example:

g, (v/9) !

D
o4
I o

t=t, t

89

Further issues such as?
(1) constant costs over level operators;
(2) the function gi(yle) is constant for all 8: i.e. gi(y/G)

can also be expressed as a function hy(y - 0);

are discussed under the Dynamic Evaluation-model, where they have
been simplified or modified, along with other assumptions from

Hierarchical Structure.

90

4. COMPUTER AIDED EVALUATION SYSTEM

The following set of programs provides an interactive
capability in DISCOURSE for the multi-dimensional evaluation of
design or planning projects, whose predicted consequences have been

arrayed in an impact matrix. The component roucinesldiuide_roughly.

into three areas:

(1) User Operations: a set of independent programs for operat-

ing on the impact matrix at any stage in the planning-
process, with or without an associated preference
structure. They provide a variety of means for

assessing the current status of the process, for comparing,
ranking, checking for-domidance, or satisfaction of al-

ternatives with respect to defined goals.

(2) Static Evaluation: termina; assessment of a set of
design alternatives ﬁith respect to a multi-dimensional’
preference structure. The program checks for dominance
among alternatives and allows the user to select from
a number bf evaluation methods which assess‘relative
value, value (certainty), or utility (uncertainty) for
each alternative.

(3) Dynamic Evaluation: a hieratchicaily-structured planning

model in which every design alternative is evaluated as
soon as it has been generated. The evaluations are used

to structure the design process, and through Bayesian

91

revision of prior evaluations, use the experience
accumulated by the decision-maker as a guide to future

action.

All three groups of programs accept design alternatives which
have been structurédmhierarﬁhiéarly"at different levels of general="—~ ~
ity, but this is a nécessary requirement only for the Dynamic
Evaluation model. However, if design alternatives have been so
structured, then-a corresponding goal structure must also be inputi—

The programs provide for user interaction in accepting de-
scriptions of design alternatives and preference strucfures; and
allowing him to specify at certain points how he wishes execution
to proceed. Provided the necessary project information is arrayed
in files accessible to DISCOURSE, the progréms are self-contained,
and may be used without modification. However, a user familiar
with DISCOURSE will be able to alter the programs or intervene
during execution so as to tailor them more closely to his

particular project requirements.

4.1 User Operations

The need for independent user evaluation operations can arise
during the course of the planning process, whenever the decision-
maker wishes to improve his understanding of the problem issues,
or the present status of glternacives; without undergoing a full

terminal evaluation of all alternatives, as in the "Static" model.

92

He may also be unwilling to put the planniné process under the
degree of formal control s;ggés:ed in the "Dynamic Evaluation"
model. ‘Although such procedures are more ad-hoc and less for@alized
than the other two models to be described, they can contribute in
the role of guiding the search process, and preparing the con-
ditions for more complete formal analyses.'

User operations comprise a variety of éomputational pro-
cedures for operating on, and manipulating, the impact matfix
.current at any point in the process. For most operatioms,
limited information about the decision-maker's preference struc-
ture 1s required, since this may not be clarified at inte;mediate
stages. - Possible ekplorations pf problem domains include the

following:

(1) Value System: varying the preference structure, or trade-

offs among evaluators, to jﬁdge the impact on the rankiﬁg
of the presént set of alternatives; and in the opposite
vein: checking the present performance alternatives with
respect to evaluators, and identifying which goal
variables or aspiration levels should be adjusted ({i.e.
the effect of the current levels of achievement in de-
termining the value system).

(2) Solution Space: identifying the significant differences

among alternatives; identifying which decision wvariables

to manipulate in the search for improved solutions.

93
(3) Display: representing the current status of the project:

preference structure, solution space, or the mappings

between then.

The set of operations curtentiy implemented provides only rudiment-
ary capabilities. qusible extensions to the routines are outlined
after the description of available commands.
All user-operation programs require that the following updated
project information to be inown and resident in the system:
(1) the names of evaluators and designs
(2) the total number of designs (all levels)
(3) the total number of evaluators or goal variables’
(all levels)
(4) the goal and design structures (if the problem is
hierarchically structured)
(5) the overall impact matrix, by evaluators and designs.
If the problem is hierarchically structured in levels, the user
selects the level for which he wishes the analysis to be done.
The retrieval of this information from disk files and from the
user, is carried out by the DISCOURSE program "Preliminary”.

The flow of control for the programs is shown in Figure No. 4.1.

USER OPERATIONS

PROGRAM FLOW

94

EVALUATORS| __ ONLY IF HIERARCHICAL STRUCTURE _ \JPRELIMINARY |
\ N N N2 N
ORDER| [DIsPLAY_IMPACTS| [PARETO] [cOMPARE| [DISPLAY_TRANSFORM

FIGURE NO. 4|

SATISFACTION

95
(a) Available commands:

(1) "order" (all designs on one level, with respect to a

named evaluator,.by increasing or decreasing values)

The program accepts from the user, 'the name of the evaluaﬁor
he has selected, and whether the ranking is .to be done by
increasing value (highest value receives a rank of 1), or by
decreasing value (lowest value receives a rank of 1).

"order" derives and displays this ranking in the following™

format:
Designs Ranking
namel rl
naxgeZ r_:2
namenl rnl

(2) "Pareto" (quasi-orders all desigqs on one level, with

respect to-all evaluators)

The program first queries the user as to the direction-
of his preferencés for each eavluator. An ordinal ranking- -
matrix for all designs with respect to each evaluator, is
derived, and a domirnance check is performed by ‘constructing
qgasi-levels. The PL/1 function "quasi-order" first con-
structs a "reachability' matrix for all the designs for which
each design is better on, ("reaches") for at least one

evaluator; quasi-levels are formed by grouping all designs

‘ 96
with the same yow sum in the reachability matrix. These sums

are then ordered; all designs with rank 1 are undominated, and
form the Pareto-efficient frontier; designs with ranks 2, 3,
etc. form lower quasi-levels, which contain dominated al-

ternatives. The results are displayed as follows:

-«

Quasi-level 1: Pareto-efficient frontier

namel
name2

name 1

Quasi-level 2: Dominated alternatives

namej

namek

Quasi-level n: Dominated alternatives

namep

nameq
(A later version might allow consideration of probabilistic
dominance: quasi-levels would then be derived according to

some specified criterion of dominance.)

(3) "display-impacts" (for 2 to 5 specified designms,
with respect to all evaluatoré, on one level)
The program acéepts-from the user, the names of 2 to 5
designs to be displayed; retrives the relevant impacts from
the overall impact matrix, and arrays them in the following

format:

97

Designs: namel name2 ceesae
Impacts:

goal 1 | 11,1 . 11’2

goa% 2 1221 12!2

goal m) iy, 1h1,2

(4) "display-transforms" (for 2 to 5 specified designs,

with respect éo all evaluators, on one level)

The program accepts from the user, the names of 2 to 5
desigﬁs to be displayed. A step value function a%tay for
each evaluator is presuppgsed. (A later version might allow
the functional form of the utility curve to be input as
well.) It then maps the reduced impact matrix onto the value

array, and displays the resulting value transformation in

the following format: .

Designs: namel name2 i

Transforms:

goal 1 tl,l ‘1,2
~goal 2 .1 £2,2
goal m, tml,l, ~ tml,Z’

(5) “"compare" (2 selected designs with respect to all
compare

evaluators, on one level)

98
The program accepts from the user, the names of 2

designs to be compared. For each evaluator, the difference
between impact 1 and impa;t 2 is computed, and displayed,

along with the present impacts for both designs.

namel name2 Difference 1 - 2
Evaluators
goal 1 _11,1 11’2 (f)dl
goal 2 1 1,2 4,
goal m imi,l iml,Z ®d , |

(6) "satisfaction" (for 1 selected design, with respect

to all evaluators, on one level)

The program accepts from the user, the name Qf the design
to be analysed.l A value transform array is presupposed (or
program "display-transform" has already been executed). The
utility or transform values fo: each evaluator are ranked

and displayed in the following format:

Evaluator Utility Rank

goal 1 tl,k » 1

goal 2 r best

2,k

worst

goal m, ol k Tm1

99

With "satisfaction", it is also of interest to compute
utility satisfaction ranks for a number of selected designs,
and call the PL/1 function "quasi-order". The resulting
quasi-levels will give the evaluators which are consistently
well-satisfied among all designs (Quasi-level 1), to those
which are consistently poorly satisfied among all designs
(lower quasi-levels).

(b) Possible Extensions

Usefui additions to the current repertoire of available
commands would provide for more sophisticated identification of

problem issues. Two areas suggest themselves:

(1) Break-even analysis

(2) Incremental or marginal improvement.

Computationally, some of these routines are quite complex, since
they require more intervention in the planning process than
present commands, approaching the level of evaluation models.

Break-even analysis: Deals with the question: "what tradeoff

ratios among evaluators would produce indifference among all
alternatives at one level?" For the linear scoring functionj a

solution may be attempted by simultaneous linear equations;

100

ALe +)\2e

1%11 = k,

21 + ... +)‘mexn1

‘A,e..+tA e, + oo +Ahe =k,
m

1712 2722 m2

‘mvo
M o o o

Since the resulting form is n equations in m unknowns, if n = m,
then a solution is possible. However, if.n > m, then the get may
.be overconstrained and insoluble; if n < m, the set is under-
specified. . In this latter case though, tradeoff values may be
expressed in terms of one another, and a variety of solutions
under constraints, tried.

Simpler forms of break-even analysis could address the
following questions for any two alternatives at one level:

(a) for any one evaluator, what change in its tradeoff
coefficient would make the two alternatives indifferent to one
another, if at all? |

(b) for any one evaluator, what changes in the impact value
of one alternative vould.be required to make two alternatives
equal or indifferent, if at all? Since this involves mapping
of impact values onto the ptefgrence structure, a ngmber of .
solutions may have to be attempted before approximating in-
difference. For quasi-separable utilities, the added computa-

tional cost of aggregating for all levels, must be considered.

101

(c) for a particular set of design attributes (i.e. control
variables) which can be varied incrementally, what changes in one
design are required to get indifference between twl alternatives?
Since design attributes must pass thréugh two complex mappings,
predicting the direction of value shifts for any one attribute
change, may be quite difficult. (the added compuggtional cost
for quasi-separable utility aggregation rust also be considered.)
Incorporating a Bayesian learning model within the routine would

aid in the prediction of value shifts.

Incremental improvement is simpler than break-even analysis,

bﬁt deals with similar issues: the evaluation effects of incre-
mental variation in certain control variables:

(a) for a particular predicted impact for one design; change
the impact incrementally by a significant amount, and determine
the effect, if any, on the overall ranking of alternétives.

(b) for any one evaluator ei‘for all designs, change incre-
mentally the weight Xi assigﬁed to e, by a signifitaqt amount
(normalizing the other weights (A 10 ’)‘1-1) (A 141700 ,Am)
in the process), and determine the effect, if any, on the overall
ranking of alternativeé.' This is not applicable to the Fishburn
or Case relative vélue methods, where the wéighting is proportion-
al to the spread of evalﬁator values among alternatives.

(¢) for any one or more control variables of a design:
change incrementally the variables by significant amounts, and

determine the effect if any, on the overall ranking of alternatives.

102
As with (c) above, this is a complex search issue, which probably

must be integrated within a learning model in order to improve

efficiency.

4.2 Static Evaluation

"Static Evaluatién" refers té evaluation carried out in the
context of the standard statistical decision problem. The aperae
tion-is performed near the end of the design process; a large
~ number of alternatives (which may or may not be developed to
several levels of detail) is assessed at one pass (hence the term
"static'"). As with user operations, a good deal of preparatory
information specific to the project under consideration, is
required before evaluation can take place.

The DISCOURSE programs "Preliminary" (Figure No. 4.2) and
“Evaluators" (only if applicable) retrieve the initial project
information required: 7

(1) the names of evaluators and designs;

(2) the total number of designs (all levels);

(3) the total number of evaluators or goal variables (all

levels);

(4) the goal and design structures (if the problem is

hierarchically struétured);

(5) the overall impact matrix.

The user selects the level for analysis from the console.

PRELIMINARY (DISCOURSE) ' ' 103

MAIN . SUBPROGRAM) PL/I FUNCTICNS

READ LEVEL ' ‘ Pt

\

READ NUMBER OF EVALUA-
TORS (TOTAL)

READ NUMBER OF DESIGNS
(TOTAL)
i

READ NAMES OF DESIGNS
8 EVALUATORS

\

READ STRUCTURE OF
EVALUATORS 8 DESIGNS
(IF APPLICABLE)

\/
READ IMPACTS

- FIGURE NO. 4-2

104

Figure No. 4.3 represents the Process Flow Chart and the

associated Project-Dependent Information retrieved from disk

files, and updated by the output from subroutines. The overall

Program Control is illustrated in Figure No. 4.4. Once an

~overall Prediction Phase has been completed, (which serves to

transform design descriptor attributes into evaluation attri-

butes), the DISCOURSE program "Single-Pass" (Figure No. 4.5) is

called, which:

1)

(2)

3)

o

derives rankings for all designs with respect to each
evaluator (the Ordinal Ranking Matrix). Alternatively,
an Ordinal Impact Matrix may serve as input to tbe
program (but then, the analysié cannot be carried beyond
step 2).

checks for dominated alternatives by constructing quasi;’
levels. If dominated alternatives occur, they are
deleted, and the impact matrix is reduced accordi;gly.
queries the user as to which of several evaluatiqn
methods he wants to use for assessing the remaining un—
dominated alternatives. The requisite value or utility
functions and weights are assumed to be available before
this choice is made. (Alternatively, the pfocess control
may transfer out of 'the computer environment so as to
allow the user to prepafe the necessary preference func-
tions, input them, and transfer baqk to the final computer-

based assessment.)

STATIC EVALUATION

PROCESS FLOW CHART

PREDICTION~

—APICK DESIGN, LEVEL I

NO

K

105

i PROJECT-DEPENDENT

NFORMATION

IS

N

PREDICT IMPACTS FOR
EACH EVALUATOR

N

{ARRAY IMPACTS

\

HAVE ALL DESIGNS &

LEVELS BEEN EXAMINED

l_

SINGLE-PASS

[CHOOSE LEVEL 1 |

bt

COMPUTE ORDINAL RANK:

{DESIGN STRUCTURE |

/——e—{comexru;u. DATA |

__,_{:Remcnw MODELS |

CURRENT IMPACT
MATRIX

EXTRACT
LEVEL I

N

ING MATRIX

TEMP_IMPACT MATRIX

FIGURE NO. 4-3

CHECK FOR DOMINANCE

BY QUASI-LEVELS

ELIMINATE DOMINATED REDUCED IMPACT

ALTERNATIVES, COMPUTE MATRIX

REDUCED IMPACT MATRIX

CHOOSE EVALUATION

METHOD
: RELATIVE VALUE CERTAINTY : UNCERTAINTY ,
D J N % PREFERENCE N%
; JUDGMENTS
:[FiSHBURN| [cASE [LINEAR QUASI— |
: |RELATIVE | | RELATIVE|: SCORING SEPARABLE!
{ [VALUE VALUE | UTILITY |
[CONSTRUCTICOMPUTE |, _____ [compuTE L, __ __ _ COMPUTE | | VALUE_ ARRAY STEP
: I TRANSFORM|TRANSFORM:; TRANSFORM(: LEVEL I ¥ |UTILITY FUNCTION)
: |MATRIX MATRIX MATRIX [UTILITIES |
N
 [COMPUTE [AGGREG- %CORNE‘R_UTILITY_
{[STANDARD ATE LEVEL[N | TABLE
| IMATRIX [-1 UTILI- |- —
i TIES K GOAL_STRUCTURE
“ N % / \I/
:[COMPUTE | [COMPUTE |: [ADD COMPUTE |:[ADD _ AGGREG- |:
{|RELATIVE | [RELATIVE | [VALUES | [TOTAL |:|[UTILITIES | |ATE LEVEL|;
;IVALUES | |VALUES : VALUES | 0 ,

N2 N N J = ——————{WelGHTTABLE]
/RANK ALT-] [RANK ALT-]:[RANK ALT-] [RANK ALT-]:[RANK ALT- [RANK ALT-J:
{[ERNATIVES| [ERNATIVES|: ERNATIVES| {ERNATIVES|:[ERNATIVES| |ERNATIVES |
: ' { INDEPEND- LINEAR " INDEPEND- {
! ENT VALUE SCORING ﬁrg(r UTIL-

STATIC EVALUATION 106

PROGRAM CONTROL

EVALUATORS | ONLY IF HIERARCHICAL STRUCTURE .>_PRELIM1NARY

-

|

|

[(NECESSARY) SINGLE _PASS

| . - il _

} I
Al N N% WV

QUASI_SEPARABLE LINEAR_SCORING CASE_RELATIVE. IFISHBURN_RELATIVE .
VALUE VALUE

- FIGURE NO. 4-4

SINGLE_PASS (DISCOURSE) 107

MAIN

SUBPROGRAMS PL/l FUNCTIONS

READ VALUE
(STEP UTILITY FUNCTION)

v

COMPUTE ORDINAL RANK-
EVALUATOR

ING MATRIX FOR EACH |-

N

CHECK FOR DOMINANCE BY
CONSTRUCTING QUASI~

J .
QUASI_ORDER |

LEVELS
N

DISPLAY QUASI-LEVELS

N

CONSTRUCT REDUCED
IMPACT MATRIX

N

CHOOSE EVALUATION
METHOD (CONSOLE)

__> FISHBURN_RELATIVE_VALUE

__) CASE_RELATIVE_VALUE N

FIGURE NO. 45

LINEAR_SCORING

| QUASI_SEPARABLE

———————————JORDERING__|

108

Four evaluation methods are available, which cover a variety
of possible value systems and decision environments:

(a) Fishburn Relative Value (relative value)

(b) Case Relative Value (relativé value)

(¢) Linear Scoring Function (certainty and uncértainty)

(d) Quasi-additive utility functions (uncertainty).

In the present implementation, no distinction is made between
uncertainty and certainty: the utility values derived are assumed
to represent "expected Qtility". Adding a capability for |
assessment of probabilistically distributed impacts, is simple
conceptually, but increases the'size of the impact matrix by a
factor of (2 x the number of probability steps) and the n;mber

of utility computations similarly. Also, the storing of utilities
and values as step functions, makes no distinction as to how the
original preference étructure was derived: through indifference
curve analysis, analytical function éolution, canonical lottery
results, etc. The ability to assess and inpuﬁ user preferences
directly, could also be added to the system.

From the point of view of the decision-maker, the distinction
betwgen "relative value" a;d "utility" is important only if the
Static Evaluation is not.going to be trulyv"sta:ic"'(i.e. with a
fixed preference structure incrementally, etc. Both "relative
value" and "utility" are '"relative" in the sense of applying to a -
single decision-maker: utility is commonly held to be not inter-

personally comparable among decision-makers. However, in our

A , 109
distinction, "relative value" is also held to be relative to the

present set of alternatives.and their associated impact values:
adding another non-dominated alternative to the set of designs
under cénsideggtion (or deleting one from the set), requires éhat
the relative values'for all alternatives and evaluators be re-
calculated. .

OﬁAthe other hand, "utility" is held to be portable in the
sense that another alternative may be included for evaluation;
‘and yet, the current worth of the present alternatives will not
change (alghough the rankings among them, being an ordinal and
therefore, relative measure, will change). This is assured by
assessing utilities over a large number of coﬁsequences aﬁd
"pseudo-consequences" for each evaluator; pseudo-consequences
being values of the goal variable that future alternatives might
také on. Once an alternative is gneerated, a set of real con-
sequence values is selected from‘the set of possible consequences
and pseudo-consequences.

Since assessments fesulting from the use of different
evaluation methods are not strictly comparable, the decision-
maker must clarify which inteipretations he wishes to be put on
the '"worth" of an alternative, before selecting the appropriate

procedure.

110

(a) Fishburn Relative Value

Fishbum's general additive value model (55) is similar
to the Linear Scoring Function in terms of requiring
independence among evaluators, but is more rigorous in
its determination of the relﬁtive importance of different
parameters. Figure No. 4.6 ;utlines the logic of the

DISCOURSE progranm, "Fishburn-Relative-Value":

(1) The impact matrix of design consequences is mapped on-
to the value array or function, for each evaluator, to

yield a transformed matrix:

Impact Matrix Value Array | Transform Matrix
airmajmuAh ..k . .r ‘AI Aj"""Ah
B [hy 1] By [Vip- Yo 1: B [0 13 t1a)
By iu@ —> E;i —>5 @
Envinl L ﬁm{; v;t En| tm m
U, =)

(2) A standardized score matrix is constructed from the
transform matrix by stepping through each evaluator,

assigning the consequence with the best transform

(35) P. C. Fishburn; op. cit.; (1965)

FISHBURN_RELATIVE_VALUE (DISCOURSE) - 1

MAIN - SUBPROGRAMS ' PL/I FUNCTIONS

COMPUTE TRANSFORM

MATRIX
N
COMPUTE STANDARDIZED)llMAXLIS'I’ l
MATRIX & WEIGHTS FOR .
EACH EVALUATOR -)}MlNLIST l
N

COMPUTE FISHBURN RELA-
TIVE VALUE & TOTAL
RELATIVE VALUE FOR
EACH DESIGN

: A 4 ;
READ NAMES OF 2 TO S
DESIGNS TO BE DISPLAYED
DISPLAY RELATIVE VALUE
BY EVALUATOR FOR EACH
DESIGN, & TOTAL RELA-
TIVE VALUES

N

COMPUTE AND DISPLAY

RANKING FOR EACH DES-)}ORDERING l

IGN

FIGURE NO. 4-6

Transform Matrix

112

value, 1.0; the worst 0.0; and linearly scaling the

other transform values between these two bounds.
*
i

evaluator 1i; énd t

Denoting t, as the value of the best consequence, for

4% 38 the value of the worst con-
sequence, for evaluator i; we have, for any element

sij of the standardized matrix:

Standardized Matrix

AI""M

|5

Byl

Em tﬁl“
-
(3)

11"

Aj“”"Ah A1 Aj A.n
t t] E —g s s B
15 ;n } }I 15"In

Gy e
- ...tm 1‘1‘n Sml..... -8

The relative weight for each evaluator i, is de-
termined by the difference between its highest and

lowest transform values:

* .
v, = (ti - ti*) rvij = wisij’ where
rvij is the relative value of alternative j with

.respect to evaluator i.

(*) note that
procedure

this is roughly equivalent to the conjoint scaling
mentioned on page 38.

(4)

- (5)
(6)

113

The. total relative value is derived by multiplying

each sij by its appropriate weight w,, and summing over

i’
all evaluators, for each design:

m
TRV = 2 W8 - —
I oqp 1Y

All designs are ranked by total relative value.

The program accepts from the user, the names of 2 to
5 designs to be displayed. The computational results:
relative values for each design with respect to each
evaluator, total relative value for each des%gn, and

ranking for each design, are displayed:

Designs: name 1 name 2

Relative

Values

goal 1 ™1 rvlz .
goal 2 ™o ™y,

goal m ™V rvmz

Total: . TRVl TRV2

Ranking: T

[

114

(b) Case Measure of Relative Value

The Case measure of relative value (56) assumes that one
can obtain from the decision-maker, a set of probabilities
(pl,...,pn) such tha; the ‘consequences for all alternatives,

when multiplied by their respective probabilities, are
v !

-

equally preferred; i.e.:

i for each

Pty Pootyz Pasfis covrer Paolyee

evaluator 1{i.

In each case where pij refers to the probability of

obtaining consequence i, , the alternative outcome with

ij
probability (1 - p,,) is assumed to be the "status quo".
: ij

On the assumption of maximizing expected value, we derive:

Py1-TVy) T Py TVyp = Pyg Vg = ve = Py TV, for

each evaluator i

1

where rv,, is the relative value of alternative j for

1]

evaluator 1i.

In the program "Case-Relative~Value" (Figure No. 4.7), the
procedure:

(1) maps the impact matrix onto a value function or array

(56) R. L. Ackoff; Scientific Method: Optimizing Applied Research
Decisions (New York, N. Y., John Wiley & Sons, Inc.; 1962),
pPp. 91-93, v : '

CASE _RELATIVE_VALUE (DISCOURSE) - . 115

MAIN . SUBPROGRAMS ’ PL/I FUNCTIONS

COMPUTE TRANSFORM
MATRIX

COMPUTE CASE_RELATIVE.
VALUE & TOTAL RELATIVE
VALUE FOR EACH DESIGN

READ NAMES OF 2 TO 5
DESIGNS TO BE DISPLAYED

NE

DISPLAY RELATIVE VALUE
BY EVALUATOR FOR EACH
DESIGN, & TOTAL RELA-
TIVE VALUES

COMPUTE AND DISPLAY

RGANKING FOR EACH DES-—-){ORDERNG l
IGN .

FIGURE NO. 47

116

for each evaluator, to yield the probabilities

matrix:

Impact Matrix Value Array Probabilities Matrix

AI“"”Aj A.n ‘ lfm"“krun"r Al.......A3 Ah

[T S T E ‘v] E T3 P]
e s i KRy T B M1V 1|P11-P1§-Pin
AR OOE N e SAR IO N e
E : ol 1 E | Vi Vor E o | Pml Pn

(1~-k)

Altefnatively, the program can accept direct input
of the probabilities matrix, since operationally,
its direct aséessment would require fewer judgments
from the decision-maker than the derivation of a .
value function for each evaluator.

(2) letting ?rvij = 1.0 (or any arbitrarily selected

constant) obtains the value of rvil from:

Py IV P;, TV P:, TV
rv,, + 117741 P41 41 Pl AL) o
) Py2 Py3 Pin
Iv,, = 1
1 P P P
1+ i1 + -31-+ ces + il)

117

(3) once vy, is established, computes the relative
values

IVins TVigs ooe rvij, cee TV by:

v

N U 1ié
13 Py

(4) repeats steps (1) through (3) for each evaluator;
(5) derives the total relative value for each alternative

j by summing over all evaluators:

m
TRV, = I rv
I oy U

Alternatively, a relative weight, w, for each
evaluator i, determined from the difference between
the highest and lowest relative values (as in Fish-

burn Relative Value) can be computed:

* *
1 g - rvi*), where rv, is the relative value of

w, = (rv 1

the best consequence, evaluator 1;
and Vi is the relative value of
the worst consequence, evaluator
i. .

Then, the total relative value for each design j, is

obtained from:

m

TRV, = L W, v, .
3 yaq i i)

118

(6) ranks all désigns by total relative value.
(7) The program accepts from the user, the names of 2 to
5 designs to be displayed. The computational results:

relative value for each alternative with respect to

each evaluator; total relative value for each alterma=

tive, and the rank of each alternative, are displayed:

Designs: name 1 name 2
Relative

Values:

goal 1 vy v,

goal 2 vy, v,,

goal m rvml rvm2

Totél: TR.V1 TRVZ

Ranking: ry T,

Both the Case and Fishburn relative value measures are
dependent on the set of outcomes defined by the present set

of alternatives.

(¢) Linear Scoring Function

A linear scoring function (57) requires that all impacts

or consequences be assigned a numerical value (possibly

(57) M. L. Manheim et. al.; op. cit. (1969), p. 15.

119
through transformation from a preference function) .
Rankings result from éomputing the weighted sum of
evaluator transformed values for each alternative. If
the value function is linear with respect to the predicted
consequences, the weights caﬁ be adjusted, and the total
gscore may be computed dirgcti& from multiplying the
numerical impacts by their respective weights, and
summing over all evaluators. All impacts must be cast

in a mode of increasing preference for this latter,

simpler form to be used.

The DISCOURSE program "Linear-Scoring" (Figure No. 4.8),
assumes the transformation of impact values by a prefer-
ence fﬁnction. If the value functionS'éere independently
assessed, each evaluator weight wi(iwi = 1.0) represents
the tradeoff or substitution rate between evaluators.

If the value or utility functions are independent, but
each is conditional on the minimum values of each other

value function, then each evaluator weight w, = 1.0

i
(i.e. the value functions are properly scaled so as to
incorporate the tradeoff ratios within them). This

latter form corresponds to Fishburn's additive utility

concept (*). The proper combination of weights with -

(*) see discussion on page 42

LINEAR_SCORING (DISCOURSE) : . 120

MAIN . SUBPROGRAMS ’ PL/I FUNCTIONS

READ WEIGHT TABLE

N
COMPUTE TRANSFORM
MATRIX i
/ .-

COMPUTE SCORE BY EVAL-
UATOR & TOTAL SCORE
FOR EACH DESIGN

READ NAMES OF 2 TO.5. _}
DESIGNS TO BE DISPLAYED | -

DISPLAY SCORE BY EVALU-}— -
ATOR, 8 TOTAL SCORE,
FOR_EACH DESIGN

COMPUTE AND DISPLAY

RANKING FOR EACH DES- {orRDERING |

IGN

. FIGURE NO. 48

121

value functions must be determined before the program

is executed.

The steps in the process are:
(1) The impact matrix of design consequences is mapped
onto the value array or function for each evaluator,

to yield a transformed matrix:

Impact Matrix Value Array Transform Matrix

Al......Aj.......An l....k...r Al"""'Aj"""fAn
— _ _ _ o
B G-ty tn | B[1k'""‘v}] B [Egpetygntyy
5 & Py @ Py G
E- 1n1 imn Em Va1 mr Em tml tam

i, .=k

(13)

tz) The score for alternative j with respect to evaluator

weight L with the transform value t,,, i.e.:

. i]
859 = Yi%ij
Transform Matrix Weights Score Matrix
Ay L —
AET 13 "‘:1: x [%] R —;1 53%1n |
E} @ x @ > Eii
S Rl N e T

122

(3) The total score, TSi, for each alternative i, is
obtained by summing sij over all evaluators j; i.e.:
m

TS, = L s
1og Y

(4) Designs are ranked by total score.
(5) The program accepts the name of 2 to 5 designs from

the user. Results are displayed in the following

format:
Designs: name 1 name 2 oo
Score:
goal 1 811 815 veo
goal 2 s21 S50 cee
goal.m sml sm2 cee)
Total: TS1 TS2 cee
Ranking: T, I, cen

(d) Quasi-Additive .Utility

As discussed above, the quasi-additive form of utility
aggregation (58) reéuires evaluators to be mutually
utility independent of each other. This can be tested
empirically by détemining if the compound preference

function of all but one evaluator held fixed, is

(58) R. L. Keeney; op. cit.

123

dependent only on values of the remaining evaluator.
This condition must be satisfied for each evaluator in
turn. We showed that the compound utility function

for two evaluators, x and y,.is:
u(x,y) = aju (x) '+ a‘?_uy(y) + (I-a;-a))u (x uy(y), 1

where ux(x) and uy(y) are utilities in our value array
sense, and a, and a, are additional "corner" utility
assessments which interrelate the two evaluators. For

three evaluators, x,y, and z, the form is:’
u(x,y,z) = alux(x) + azuy‘y) + a3uz(z) + (bl-ai-az)ux(x)uy(y)
+ (bz-al-a3)ux(x)uz(z) + (b3-a2—a3)uy(y)uz(z) +

(l-bl-bz—b3fal+az+a3)ux(x)uy(?)uz(z). (2)

where al,az,a3,b2 and b3,are corner utility assessments.

The DISCOURSE program "Quasi-Separable" (Figure No. 4.9)
does not deal with groups of more than three evaluators,
since the number of required corner utility assessments
goes up rapidly as m, the number of evaluators, increases.
(For 4 evaluator;, the number required is 2m-2, or 14;
for 5 evaluators, it is 25-2, or 30; and so on.) For
large numbers of grouped evaluators, the additive utility
or linear scoring function, is a reaéonable approximation

to the quasi-additive form.

QUASI_SEPARABLE (DISCOURSE)) ’ 124

MAIN SUBPROGRAMS PL/I FUNCTIONS

READ GROUPING_EVALUATORS

N
COMPUTE LEVEL I UTILITIES
FOR EACH LEVEL I EVALU-
ATOR, FOR EACH DESIGN- "~ ~

READ CORNER UTILITIES
TABLE
[T = LEVEL 1

AGGREGATE LEVEL (I—1)
UTILITIES FOR EACH DESIGN{- — -~

NS
I=1-1]

IF I # O, CONTINUE AGGREGA-
TION

READ NAMES OF 2 TO §
DESIGNS TO BE DISPLAYED

DISPLAY LEVEL I UTILITY
BY EVALUATOR FOR EACH
DESIGN, 8 LEVEL O (LE.

TOTAL) UTILITIES

COMPUTE AND DISPLAY

RANKING FOR EACH DESIGN %ORDERING l

FIGURE NO. 49

125
For quasi-additive utility assessment, a goal structure
must be input, since the program must determine which
groups of evaluators are to be aggregated (which will
vary from problem to problem), and retrieve the appro-
priate corner utilit& values.' Qualitatively, the pro-
cédure is as follows: 1
(1) The impact matrix of design consequences for level 1
is mapped onto the value array or function for each

evaluator at level i, to yield a transformed matrix

of single-evaluator utilities:

Impaét Matrix Transform Matrix

Value Array

[—— LKoo @ TS —

B |44 i] E. |v 1 e e]

:1 ‘11 lj . :!.ﬂ :l v].lvlk Vv Z:l.r :1 lltlj ;.n

& ey @y &

En 1m1..... ..‘im Em AR TS, A Em tml""' .;m

e — L — L P
(iij = k)

t2) For each group of evaluators at level i, the program
determines from the number in each group, whether
formula (1) or (2) (above) applies, or whether the
utility can simply be transferred to the next level.
The requiréd corner utility values are retrieved as

each set of evaluators is: examined in turn, and the

(3)

(4)
(5)
(6)

126

compound group utility for level i-1 is computed.
Step (2) is repeated for each level of aggregationm,
until a single multi-dimensional utility assessment,
u(0,1,3), results. (First subscript = level,

second = group designation, third = alternative
designation). Fo? each inférmediaté'léQel, the
grouping of goal variables in the structure must be
determined, and the necessary computations performed,
dependent bn that grouping. |
Steps (2) and (3) are repeated for each design. _

Designs are ranked by level 0 utility; u(0,1,3).

The program accepts the names of 2 to 5 designs for
display. The computational results for level i
utilities, level 0 aggregated utility, and ranking

for each design, are shown:

Designs: name 1 name 2 ese
Utilities
Level 1:
oal 1
4 ‘ tll t12 cee
al
go : 2 t21 t22 ces
goal m t » t. cee
: ml m2
Aggregated
Utility: u(0,1,1) u(l,1,2) oo
Ranking r r

1 2

127
4.3 Dynamic Evaluation ‘Model

The Dynamic Evaluation Model uses the concept of hierarchically
structured levels for both éoals ("evaluatbrs") and actions
("design alternatives"). In the hierarchy of evaluators, upper
level general goals are explicated, specified, or clarified by
lower level objectives. Lower level goals are components therefore,
or parent goal vectors. In the hierarchy of description of design:
alternatives, lower level éesigns may be seen as variations within
the partial constraints of their parent, least including designs.
These more‘detailed alternatives do not explicate or speciff what
is meant by the descriptors of parent designs; they suppl& attri-
butes, or attribute values left undefined by the metric of the
immediately preceding level.

The relationships between the evaluator language and the
descriptor 1anguage‘are complex. Computationally, we would
prefer each of the structures to be internally simple; however,'
in so constructing them, we make the external relations between
the hierarchies very complex, and analysable only probabilist-
ically, if at all. Figure No. 4.10 illustrates this relationship

between description and evaluation:

[=
B Prediction [; 7] Evaluation N
A Operator 4 | x Operator | x|
| —
— = — _ .|
! | 4 1
) s %
- .. i v, = u/(I) =
T I\ Tl bt SN 1740 Sy
P . . K
a ik = fk(cd..cp, N ;k Vi uk(ik) }} 'F
: ;77 ai..as) i |
{ v
8 m m -
| " |7 B
' f Design A
Desi A prediction of Design A mapping o
des§1p§or impacts from impact x impacts onto evaluation
vector design descrip- vector value vector
tion structure :
Result of : Result of Result of
Search prediction evaluation

C= (cd,...cp) is the set of context variables.

Suppose for example, for the design alternative Ax:
descriptor a; is a variable "type of construction";
function fj(-cl""cn.’ai"'ar) is the prediction of

unit rentals;

function fk(cd,...cp,ai,...as) is the prediction of
building maintenance costs;

and the resulting valuations are:
vj = Jow (i.e. high rentals);

vk" high ‘(i.e. low maintenanceAcosts).

' 129
If we attempt to improve Ax by trying to find some way of

increasingvvj(i.e. lowering rents) while increasing or maintaining
the samg vk (i.e. the same or lower maintenance costs), one o?

the possible dgsign.variables we could vary would be a (for
example, change type of construction from concrete to wood).

The resulting designs thus generated might result in an increase in
vj (i.e. lower rentals), but simultaneously; a decrease in vk
(i.e. higher building maintenance costs). By varying the éompon-
‘ents of a set of variables in one domain, we cannot directly and
with certainty, infer the impact effect on the other domain

without going through the complex prediction, and then evaluation
mappings. However, within each domain (goal or action) we may

have relative freedom to manipulate subsets of the overall variable
set independently of other subsets.

The model assumes that relatively simple goal and design
hierarchies can be constructed, and will remain relatively stable
over the planning process. In particular, we require a goals
hierarchy which can be formulated at least in conditional utility
inaependent form, and a design hierarchy with well-defined
transitions from level to levél, and inclusion relationships from
"parent" to "offspring" designs.

Furthermore, at least one goal level can be found to correspond
to each level in the design structure. The converse is not

necessarily true: there may be more goal levels than design levels

if some of the intermediate design metrics are not sufficiently

130

so as to make another ;evel of search (and therefore, prediction
and evaluaﬁion) worthwhile in terms of additional information
gained. On the other hand, intermediate aggregations of goal
variables may be useful in the extension of the goal tree. For

simplicity, we assume goal and action levels coincide.

-

defined problems, where searches and tests are embedded within
each algorithm, there is a direct correspondence between action
and goal levels. There cannot be more action levels than goal
levels, since this would imply the generation of actions which
cannot be compared or evaluated on the same level, which goes
against the notion of level as a metric~ or measurement-based
concept. (cf. Figure No. 4.11).

The purpose of the evaluation model is to guide the designer
through the planning process, in suggesting which experiments to
undertake, and using the accumulatéd history (in terms of ex-
periential knowledge) of the process as a guide to future actiom.
The model also allows tﬁe designer to draw some inferences about
the ﬂature of experiments, given by the description field of
the system. An example will illustrate this point:

After the initialization of a planning process, the
generation of the first alternative and its degctiptot set,
is arbitrary. (The "universél design" is not really an
alternative, but rather a vehicle for the initial subjective

distribution over expected evaluations emanating from it).

In well-

COINCIDENCE OF GOAL & DESIGN HIERARCHIES

131
. SIMPLE COINCIDENCE
GOALS HIERARCHY DESIGN HIERARCHY
LEVEL O
LEVEL |
LEVEL 2
LEVEL 3

2. MORE GOAL LEVELS THAN DESIGN LEVELS

LEVEL o
LEVEL 1
LEVEL 2
i.EVEI; 3

LEVEL 4

3 NOT ALLOWED: MORE DESIGN LEVELS THAN GOAL LEVELS

"LEVEL O
LEVEL |
LEVEL 2

LEVEL 3

LEVEL 4

FIGURE NO. 41

132

level O "universal design"

level 1 "A100-1"

Figure No. 4.12
!

However, after the generation of this first arbitrary
design, subsequent designs are constrained and influenced by the

results of the process. For a second pass, we would have:

level O "universal design"
- /,
//)
level 1 "ono-l"(:ﬁ' “A100-1"
level 2 &f} "p110-2"

Figure No. 4.13

where "P200-1" and "P110-2" are potential design experiments, not
yet executed. Potential design P200-1, on thé same level as
executed design A100~1, is constrained in several senses:
(a) it must possess the same descriptor attributes as
Al100-1, at least in terms of those relevant to
evaluation, so that A100-1 and A200-1 (if executed)

may be meaningfully compared;

133
(b) on the other hand, it must search out a different
portion of the solution space from Al00-1, in terms
of descriptors appropriate to that level. That is,
it cannot be so similar co'AlOOQI that some lower-
level design, say AxxO-Zn'could be developed from
both A100-1, and A200-1 ;; parents. Different parent
designs imply distinctly different "offspring"
designs if the concept of metric is to have any

meaning.

Learning from the results of the planning process covers a
number of other areas' as weli; for example, the perceived
characteristics of levels, and single-level operations, change.
Initially we require that a design at level j be developed from
an existing parent at level j-1. In other words, a jump to
detailed building configurations without having executed the

parent land use plan, is not allowed. Figure No. 4.14 illustrates

this point:
level O universal design"
. not permitted
levgl 1 "A100 l" Jy
. .. ' /\‘(" " N
level 2 P :§§ > P110-2 (legal)
level 3 f“%;‘ ¢ %i
et o S’

Figure No. 4.14

134

The reasoning behind this restriction, is that the designer
cannot skip levels of description until he has learned about the
' kinds of information that may be gemerated at each level, par-
ticularly when attributes 6f upper;levelvalteinatives serve as
partial constraints for lower leQels. \

As the planning process continues, learning about the nature
of ‘the solution space at each level improves; certain attribute
sets are perceived as being crucial to solutions at that level;
other avenues of exploration are cut off as alternatives at that
level experiment with portions of the solution space. Therefore,
'we would expect the cost of.generating al alternative at a
particular 1e§el to decrease over the history of the process,
since the unexplored space becomes progressively smaller (and
the costs of search are related to the area and density of that
space). This is especially true for alternatives generated from
a pafent which has already produced "brother" designs at that

level; for example:

level 0 "universal design"
level:1l "A100-1""

N

\ -
level 2 "AT110-2" (Y] ﬁl) . "P120-2"

-

Figure No. 4.15

135

It should cost less-to generate A}ZO-Z than it was to
generate Al110-2 because in many respects A120-2 will be similar
to its "brother'"; in fact, it may be an incremental variant of
Al110-2, suggested by the latter's ;valuation, which identified
the'strong and weak points of that design. Invocation of user
operations such as "'satisfaction", or iés proposed extensions, may
point'the way to incremental improvement of executed designs, by
identifying goal variables which are pooriy satisfied (where
, design effort should be concentrated) and goal variables which are
well satisfied (which may either be loosened, or point to design
variables which should be held fixed from experiment to experiment
on that level).

Later on in the process, multi-level jumps of the kind

restricted earlier could be allowed; for example:

level O
_ s N
/ N
level 1 // N
// / // \\
/

e X &“\
./ '_/

-

level 2 yd y
7 /

v
level 3 (1)
~/ ~

Figure No. 4.16

because the designer has learned enough about the kind of informa-

tion acquired from intervening levels, so as to be able to dispense

136

with them, and economize on. his search effort. However, in its
present implementation, the model does not allow such jumps,
(and therefore loses whatever heuristic value there may be in.
first exploriné lower levels as ‘a means to improving search

performance at intermediate levels).

(a) Components:

(1) Goal Structure:

(1) A set of evaluators decomposed in a goal fabrie,
with level and inclusion relationships, must be
defined(*). The computer program "Evaluators"
accepts the names and level designation of e§aluators
from the user at the console, and generates an array
"structure-goals" which defines these level and in-
clusion relationships for use by subsequent programs.
(2) a value array table (step utility function) or
preference function for each elemental goal variable.
(3) a table of corner utilities or tradeoffs between
subsets of goal variables for each level.

Figure No. 4.17.represents the goal structure for the
M.I.T. North West Area Project, an illustrative
application; Figure No. 4.18 illustrates how this

structure is stored in the Discourse array ''structure-

(*) a description of what is meant by goal decomposition is given,
on page

© 137

GOAL STRUCTURE — MLT NORTH WEST AREA PROJECT

MAXIMIZE NET
BENEFITS

| LEVEL O

|

CAMBRIDGE

SERVICES
COSTS

FINANCIAL
BENEFITS—

TAX
YIELDS

MLT.

PROJECT

CoSsT

EMPLOYMENT

RETURN

WHITE

COLLAR-JOBS{

NUMBER &

VARIETY JOBS

BLUE

COLLAR JOBS

HOUSING

SERVICE
JOBS

AVERAGE
RENTALS

SOCIAL, ENVIR-
ONMENTAL

SPATIAL
VARIETY

SOCIAL

SERVICES

SOCIAL
INTERACTION

| LEVEL |

- FIGURE NO. 4.17

ACCESS TO
SERVICES

MOVEMENT
SYSTEMS

% INCREASE
IN TRAFFIC

| LEVEL 2

ACCESS TO
PARKING

| LEVEL 3

MIN

MIN

MAX

MAX

MIN

MAX

MIN

138
REPRESENTATION OF GOAL STRUCTURE

GENERAL ‘ \, OPERATIONAL

GOALS 7 MEASURABLE
- OBJECTIVES
(1,,0) .)
| O
1,10 . .2)
. .
420) uzn .
O
() 422

@,
_(20,0) 2,0
: (24,2)
@00 () ‘ \\O 2,,3)

(3,1,0) , . (3,1,

() Gr2

(30,0) (3200 " 3,2,1)

(3,2,2)

(33,0 () B3N

O 32
LEVEL O LEVEL | LEVEL 2 LEVEL 3
U(0,1,K) U(1,J,K) U(2,0,K) U(3,0,K)

J=1 J=1T03 J=1TO6 J= 1 TO 13 -

GROUP(I) =3 GROUP(2,) =2 GROUPI(S,)
GROUP(2,2) = | GROUP(3,2)

GROUP(23) =3 GROUP(33)

GROUP(3,4) = 2

GROUP(35) = 2

GROUP(36) = 2

"n "

woun o
(VRN I)

J = GROUP DESIGNATION ’
K = DESIGN DESIGNATION (ORDER OF EXECUTION)
GROUP(LEVEL J) = NUMBER OF GOALS IN A GROUP

FIGURE NO. 418

139
goals", as well as in other arrays.

(ii)Design Structure:

(1)A set of levels to which each level of the Goal
AStructurg corresponds, 1s defined. In the DISCOURSE
system, which>compr1ses a Aata structure for spétial
metrics, the definition of level is poésibly simpler
than for non spatially-oriented computer systems, since
the consistent progression of scaled representations
(usually by factors of 2) is commonly accepted

practice in architecture and planning.

.For the M.I.T. North West Area Project, an arbitrary,
though useful scale factor of 4 defines levels and
their associatéd metrics: each grid cell in a lower
level metric is 1/4 the size of a grid cell in the

immediately precediﬁg level: (cf. Figure No. 4.19).

level 1: scale: 200" x 240°'
level 2: scale: 100' x 120"
level 3: scale: 50' x 60

Figure No; 4,19

140

The advantages of this definition are:

(1) through progressive scale factors of 4, any desired

level of detail can be reached in a small number of

steps; |

(2) the scale factor‘relaﬁés to commonly accepted

practice; |

(3) the influence of attributes as partial constraints
~ from higher levels to lower levels; as well as the

aggregation of values from lower level grid cells to

higher level grid}cells, can be easily done through a

pointer system which references the different metrics

to each other. Figure No. 4.20 shows this metric

inclusion: ‘

level 3 metric

level 2 metric

level 1 metric

Figure No. 4.20

»

This referencing is riot easily done if the metrics
are not so aligned and consistently scaled, for

example (cf.‘Figure No. 4.21):

141

level 2 metric

)/

level 1 metric

v

Figure No. 4.21

To accept this latter representation implies that the
spatial disposition of attributes is not as important
as some other distinction or scaling in defining

metrics.

(2) a set of level and inclusion relationships for
each new action (generated internally by the Discourse
program "Dynamic-Conti:ol“, and stored in the array
"structure-designs".

(3) a list of names for each new design (accepted
from the user).

’(4) an impact vector by appropriate level evaluators,

for each new design.

Figure No. 4.22 illustrates the Discourse array
representation of a hypothetical terminal design

structure;

{iii) Probability Distributions:

(1) current vaiue distribution:

' - 142
REPRESENTATION OF TERMINAL DESIGN STRUCTURE

l "UNIVERSAL GENERAL LAND USE al BUILDING l
DESIGN" LAND USE DENSITY CONFIGURATION
(1,10) O L
O
1,00 () w2
() ‘
1,2,0) () u2)
O
() 1,2,2)
(2,1,0) () e
O
2,00 () @3,2)
> 220 ezp
. .
. ()22
(0,0,0) .
o {3,1,0) () B
O
(3,0,0) () @32
O (320 () @2,
O
() B22)
(4,1,0) () @
O
(4,0,0) () @2
@
4,20 | () .a2)
O
() @22
LEVEL O. LEVEL | LEVEL 2 LEVEL 3

" FIGURE NO. 4-22

143

fﬁ(e) for each executed design k;

(2) Single Level Operator distributions:

h, (u(0,1,k) - 6), for each level 1.

(b) Steps in the Hierarchical Planning Model

(1) Determine the legal pbtential design experiments from
the current design structure. Given the'restriéﬁion
én the derivation of experiments, the humber of po-
tential experiments will never exceed the current
number of executed designs. An experiment is de-

4 fined as the application of a single level (i+l)
search-selection operator to a current design, level
i,‘to yield a new design level it+l.

(2) Compute the expected prior utilities‘for all potential
experiments, and select the experiment k, with the
highest utility for implementation:

-E(u(0,1,k)) = C pkpty) * u(k,y) where kp is the
v :

immediate parent of experiment k.
' ok *
u(k,y) = u(0,1,k) where k 1is the best current
*
elemental action if y < u(0,1,k)

= u(0,1,k) if y > u(0,1,k")

144

(3) Test whethei the expected improvement from the best
design experiment over the current best elemental
design (if it exists) is greater than the threshold
criterion. If it is not, stop the process.

(4) Generate the new chosen-design-k; prediet-its— -
appropriéte level i impacts, and store the impact
vector Ik = (iik,...imk) in the current impact file.
(This step may transfer out of the compﬁter environ-. .
ment, or to another set of computer-based, project-
dependent routines)

(5) Compute the level i utility u(i,j,k), for each
appropriate evaluator j, for the executed design, k.

(6) Tracing through the goal tree level by level, aggre-
gate utilities to compute the level 0 utility, u(0,1,k)
for the new design. .

(7) Revise the prior current values over the generated

design, and its including designs, by Bayes'.Theorem:
for design k and its par;nt:

fi(e).hi(u(o,l,k)—e)

gfé(e).hi(u(o,l,k)-e)

£,(6/u(0,1,k)) =

and similarly for the remaining including designs.
This revision is performed even if new design k is at

the lowest level, since we assume a probabilistic

- (8)

-

145
interpretation-of utilities at all levels, arising
from possible errors in defining evaluators.

If the generated design k was an elemental design,

compute its expected value, and revise the currnet

rankings of elemental designs.

Return to Step (1) and repeat the process for the

next cycle.

This logic is followed in the DISCOURSE program "Dynamic-

Control".

(¢) Implementation Restrictions

1)

(2)

(3)

Potential design experiments: a design experiment is

legal only if its immediate parent, least including
design has been generated. The reasoning behind this
has been discussed above. The number of potential ‘
designs will always be less than, or equal to the
current number of executed designs. Figure No. 4.23
illustrates the effect of this restriction in a hypo-
thetical design process development.

Single Stage analysis: only single design experiments

are examined, not strategies of two or more experi-
ments. This restriction is primarily to reduce
computation.

Operator characteristics: the hi(u(O,l,k)-G) function

is assumed constant over all 8, and over the history

HYPOTHETICAL DESIGN PROCESS DEVELOPMENT

Q= DESIGNS ALREADY GENERATED
()= POTENTIAL DESIGN EXPERIMENTS

LEVELO ° LEVELI LEVEL 2 LEVEL 3
(0,00) (1,0,0)
e N
~7
(0,00) (\I}O_{)) (1,10
N Ny
O\\ A VA B
\\\\(2,0,0)
20
(0,00) (1,0,0) (1,1,0) ()
e ——— \
~_ /_/\\\ | I
~._ (200 ~_ 120
~ ~
X5 20
(0,0,0) 01,00) - 1,10)
@S >3O >XO= >O
~ /\/\\\ NS \\
TN @200 TN 1200 N (L12)
RN AN ~\ ~ -\'
) (W) | W
g0 . 100 0,10) (L0

2000 T~ (200 T~ (142)

~ - S~
O 0 20
\\glo,m. T~ (2100
~ >~
) @

- FIGURE NO. 423

146

IST PASS

' 2ND PASS

3RD PASS

4TH PASS

5TH PASS

6TH PASS

147
of the process; for each level i. No revision of
operator characteristics is implemented.

" (4) Cost of experiments: are not included in the utility

calculations, since they are assumed to be highly
variable (as discussed above). A threshold criterion

for improvement, is substituted.

{(d) Implementation

The Dynamic Evaluation model comprises a set of programs,
one of which, "Dynamic-Control", is executed after every new de-
sign alternative has been generated and its predicted consequences
stored in the current impact file. Overall Program Control is
illustrated in Figure No. 4.24. A process flow chart, with
associated project information file retrieval and updating, is
shovn in Figure No. 4.25.

Execution proceeds as follows:

(1) Initially, the DISCOURSE program "Evaluators" is
executed to accept evaluator names from the console,
and derive level and inclusion relationships among
evaluators.

Formal program control begins after the first mandatory
design experiment, Al100-1, has been generated, and assessed.

(2) The DISCOURSE program, ''Dynamic-Control-1" (Figure
No. 4.26) is callgd only once since it has only a

subset of the functions of the main program, Dynamic-

(3)

148
Qqntroi. It determines potential design experi-
ments, computes their expected values from the priors
of their immediate parents, and selects the best

experiment for implementation, through calling the

sub-program, "seleétion" (Figure N;.;4;255. Tﬁe
program accepts a name for the new design from the
user, transfers its status from "potential" to.
"current” and outputs updated parameters.
Subsequently, after any design experiment.has been-
generated, and its-predicted impacts stored in the
current impact file, the DISCOURSE program "f)ynamic-—

Control", (Figure No. 4;28), is executed. Since

there probabily will have been a transfer out of the

computer environment preceding this, thg program

first reads in a number of information files, such as

the preference structure, current impact matrix, de-

sign and goal structures, and program parameters.

Following this, it then:

(a) computes the utility of the new design with respect -
to each evaluator at the apprqpriate level;

(b) aggregates utilities in the quasi-additive form

to derive an overall utility for the alternative;

(c) revises prior distributions over the new design and

its including designs, through calling subprogram

"Bayes-Posterior" (Figure No. 4.29);

DYNAMIC EVALUATION i . 149

PROGRAM FLOW CHART

EVALUATORS

i

DYNAMIC_CONTROL..!

N

] GENERATE NEW
| bESIGN

PREDICT IMPACTS

DYNAMIC..CONTROL

S

_END

FIGURE NO. 424

DYNAMIC EVALUATION

PROCESS FLOW CHART

DYNAMIC.CONTROL |

COMPUTE STRUGTURE OF
POTENTIAL DESIGN EX-
PERIMENTS

\l/.

PERIMENT, LEVEL |

- 150

PROJECT — DEPENDENT
INFORMATION (KNOWN)

DESIGN STRUCTURE

]

SELECT BEST DESIGN EX-||

2
N

—_—

P]

7

{ CURRENT_VALUE_ARRAY |

PREDICTION

JGENERATE NEW DESIGN - K~ —=—+~——-

—{ DESCRIPTION OF ,CUR-:-_.

N2

PREDICT IMPACTS OF GEN-|
ERATED DESIGN

J

| ARRAY IMPACTS

. 4

DYNAMIC_CONTROL

COMPUTE UTILITY FOR

Pl RENT DESIGNS .
S 1

CONTEXTUAL DATA 1
PREDICTION ROUTINES |

CURRENT IMPAC¥~ - 1~
MATRIX

AN
71

EACH EVALUATOR

L

\;—[VALUE_ARRAY]

[AGGREGATE UTILITY

- GOAL STRUCTURE 1

REVISE CURRENT VALUES
OF IMPACTED DESIGNS

N2

COMPUTE CURRENT BEST

CURRENT_VALUE_ARRAY

L

ELEMENTAL CESIGN

\l/ .

COMPUTE STRUCTURE OF

{RANKING ARRAY

i

DESIGN STRUCTURE

POTENTIAL DESIGN EX-
PERIMENTS

SELECT BEST DESIGN EX-
PERIMENT, LEVEL |

YES

IS THE MARGINAL EXPEC-

FIGURE NO. 4-25

TED VALUE > THRESHOLD?

_ NO
| stor |

151
DYNAMIC_CONTROL I (DISCOURSE)

MAIN , : 'SUBPROGRAMS PL/1 FUNCTIONS

READ NUMBER OF EVALU-
.|ATORS

READ NAMES OF EVALATORS
& FIRST DESIGN

NY

COMPUTE STRUCTURES FOR N
POTENTIAL NEW DESIGN >INEW_DESIGNS]
EXPERIMENTS

DISPLAY POTENTIAL DESIGN .
EXPERIMENTS

READ CURRENT_VALUE_.

ARRAY

SELECT BEST DESIGN EXP- N ;
ERIMENT SELECTION D{MAXLIST |

ACCEPT NAME FOR BEST .
DESIGN EXPERIMENT

N3

OUTPUT UPDATED PARAM-
ETERS

" FIGURE NO. 426

SELECTION (DISCOURSE) ‘ ’ 152

MAIN SUBPROGRAMS PL/l FUNCTIONS

COMPUTE STRUCTURE OF
PARENT FOR EACH POTEN-
TIAL DESIGN

J

IDENTIFY PARENT OF EACH] ..
POTENTIAL DESIGN

4 .
COMPUTE PRIOR EXPECTED
VALUE OVER EACH POTEN-
TIAL DESIGN BY TAKING
EXPECTED VALUE OF PAR-
ENT'S CURRENT_VALUE

\J

CHOOSE DESIGN EXPERI— | -

MENT WITH HIGHEST EX- >]!MAXUST l

PECTED VALUE

ADD SELECTED DESIGN &
ITS STRUCTURE TO CUR-
RENT REPERTOIRE OF
DESIGNS

FIGURE NO. 4-27

DYNAMIC_CONTROL (DISCOURSE)

MAIN

READ UPDATED PARAMETERS
GROUPING_EVALUATORS
STRUCTURES OF DES-
IGNS & EVALUATORS
VALUE_ARRAY
IMPACT.TABLE

COMPUTE UTILITY OF EXE~
CUTED DESIGN FOR EACH
EVALUATOR

ITY FOR EXECUTED DESIGN

COMPUTE AGGREGATED UTIl=]

SUBPROGRAMS

REVISE PRIOR CURRENT_VAL-
UES OVER GENERATED DES-
IGN & ITS PARENTS

> BAYES_POSTERIOR]|

N

COMPUTE NEW EXPECTED
VALUES FOR ALL DESIGNS
IMPACTED BY PRECEDING
EXPERIMENT

COMPUTE CURRENT BEST

153

PL/I FUNCTIONS

ELEMENTAL DESIGN

N2

COMPUTE STRUCTURES OF

N
S MAXLIST]

MENTS

POTENTIAL DESIGN EXPERI-}

N2

DISPLAY POTENTIAL DESIGN
EXPERIMENTS

“
SELECT BEST DESIGN EXPER-

IMENT
J

ACCEPT NAME FOR CHOSEN

DESIGN EXPERIMENT

NE

[STORE NAMES 1

OUTPUT UPDATED PARAME-
TERS

FIGURE NO. 4-28

—ASELECTION]

| N
| NEW_DESIGNS |

BAYES_POSTERIOR (DISCOURSE)

MAIN SUBPROGRAMS

[READ GURRENT_VALUE_ARRAY|

READ THETA (LEVEL FUNGC-
TION DISTRIBUTION)

N

L= LEVEL OF EXECUTED DES;

IGN
N

COMPUTE REVISED CURRENT..

VALUE DISTRIBUTION BY AP-
PLYING LEVEL L FUNGTION

(L= L-1)

IF L) O, COMPUTE PARENT

OF PRECEDING DESIGN
NO

STORE REVISED CURRENT.
VALUE _ARRAY

FIGURE NO. 4-29

154

PL/I FUNCTIONS

155
(d) computes expected current values of all designs
impacted by the new design;
(e) determines the current best elemental design if
one has been'executed,.otherwise states that nolelement-
al design yet exists;
(f) continues as in Dynamic-Control-l, to compute the
structure of potential design experiments~(through
PL.1 function "new designs");
(g) executes DISCOURSE subprogram "selection" to
. pick the best design experiment from the expected
“prior current values of their parents;
(h) accepts a name for.the selected design, transfers
it from potential to current status, and files updated

parameters.

;If at the completion of Dynamic Cohtrol, the designer decides
that the expected improvement from the selected experiment does
not meet his threshold criterion, then he does not generate the
new design, the process stops, and he accepts the current results
as output by the program. |

The structure of the DISCOURSE sub-programs 'selection' and
"Bayes-Posterior" is faiély self~evident from their respective
flow-charts. '"selection" computes éxpected values for potential
experiments and identifies the highest scoring possibility.

“"Bayes-Posterior' searches the Current design structure to derive

156
the chain of inclusion from the new design, and updates the
f;(elu(O,l,k)) distributions for each impacted design, by Bayes'

Theoren.

(e) Quasi-Additive Utilii:y Aggregation
For two evaluators, x and y, the decision-maker in geﬁeral,
will have two one-dimensional utility functions; ux(x) fovr x, and
.ﬁy(y) for y. These are related to the compound utility function by

the scaling convention:
u(x,,y,) = u(x,) ='uy(y*) = 0;
* % * *
"u(x) = ux(x) = uy(y) = 1.0;
then, upon determination of a, and a,, ve have as above;

u(x,y) = alux(x) + azuy(y) + (1 - a - az)ux(x)uy(y)._

For ease of computation, we could assume instead that the
decision-maker has input the functions:
u(x,,y) = a5u (y)

u(x,y,) = au ()

-

In this case the compound utility function becomes:
u(x,y) = u(x,y,) + }l(x*,Y) + ku(x,y,)u(x,,y), where

1 - al --a,

33

k =

157
For three scalar evaluators, x,y, and z, the assessment of the
compound utility function is somewhat more complex. Given the
three single-evaluator uti}ity functions, ux(x), uy(y), and ui(z),

related to the compound function by the scaling convention:
u(x*’Y*Dz*) = ux(x*) - uy(Y*) = uz(z*) = 0'0
* x Kk * ' *
u(x ,y ,z2) = “x(x) ’luy(y) = uz(z) = l.o_a

upon the assessment of the 6 corner utilities a

b,, b

1* %20 %30 P10 P2

and b,, we derive:
| u(x,y,z) = alux(x)‘+ aZuySY) + a3uz(z) + (bl-al-az)ux(x)uy(y) +
(bz-al-a3)ux(x)uz(z) + (b3-a2-a3)uy(y)uz(z) +
(1-b1-b2-b3+a1+a2+a3)ux(x)uy(y)uz(z)

A geometrical interpretation is given in Figure No. 4.30.
What must be assessed are the three utility functions represented

by the heavy lines in the diagram, and the six circled corner

utilities.

158

NS

@1

Figure No. 4.30.

Again, for computational purposes, we could assume instead,

that the decision-maker has the conditional utility functioms:

‘-i(x’Y*’z*) = alux(x)
u(x,,y,z,) = azuy(y)

u(x,,y,2) = a3uz(2)

The resulting compound utility is:

u(xQY’z) = u(x’y_*’z*) + u(x*:)',z*) + u(x*QY*’z) +
kiu(x,y*,z*)u(x*,y,z*) + kyulx,ya)u(x,,y,,2) +

kau(x,,¥,2,)ulx,,y,,2) + k u(x,y,,z)ulx,,y,z,)ulx,,y,,z)

159

where:

1 - b1 - b2 - b3.+ a, + az'+ a3

k, = 213,34

This form would be desirable if we were only aggregating
utilities over a single level, say from level i to level i-l:
e.g.

level i-1 X

level 1 x

However, dver a multi-level goal hierarchy, the aggregation
of utilitiés from a lower level to the immediately higher level,
results in single (;ector)~eValuator utilities, for arbitrary
values of the other vector evaluaéors; rather than the conditional

compound form. Therefore, we must work directly with the al"‘;an'

160
and bl""bn corner utilities, rather than the pre-computed k
factors. As an example, consider a simple 3 level goal tree,

represented in Figure No. 4.31:

level i-2 (x,Y)

level i-1 X Y
level 1 x; x, Yy Yy

Figure No. 4.31

where X = (xl,xz) and Y = (yl,yz). We denote the first subscript
as the level designation, and the second as group designation;

aggregating from level i-1 to level i:

(x,) + a

(x) = 21,0% ,x, M1 (x)) +

Yi-1°x 1,cui,x2

'(1 - a - a - (x)u

Ju (x,) -
1,0~ %,c" M ,x x, *2

i,x X,
ui-l,Y(Y) - ai,eui,yl(yl) + ai,eui,yz(yz) +

(-2 4-23 . 1,yl(y1)“i,y2(yz)‘

l6l

Aggregating from level i-1l to level 1i-2:

Uy gy (KY) = ay g,pm 5,0 () + ai—l’gui-l’Y(Y) +

Q1 -a Xu

-a 1-1°Y

i-1°f

" This procedure is followed in the computer programs, "Dynamic-

" Control”, and "Quasi-Separable”.

(£f) Goal Decomposition

Given a set of n elemental goal variables or "evaluators",
G= (el,ez,...,en)

the goals hierarchy is structured by successively partitioning the
set G into subsets of goal vectors which are mutually utility in-
dependent of one another; partitioning these subsets into further
utility independent subsets, and so on, to the level of elemental
evalﬁatoré. Each set of‘goal partitions defines a goal level. The
partitioning may be done intuitively by the decision-maker for a
small set of evaluators, or more str;;tured decomposition algorithms
such as Alexander's Hierarchical Decomposition (59) may be used.
Decomposition via‘Alexander's method can serve to define the same

levels for both evaluators and action descriptors (given our earlier

discussion (*) which described ic as a procedure which bridges both

(59) C. Alexander; op. cit.

(*) see page 72.

162
goal and planning domains). Figure No. 4.32 illustrates a possible
decomposition for the 13 elemental evaluators of the North West

Area Project:
level 0 : (el ’ez PR ,elz ,813)
level 1 o (el’e2’53’e4)

(egseg.eq) (egieq.e gse))req558;4)

leVEl 2 . : (el,ez) (e3,ea) (85’36’37) Fe8,e9)(e10’ell) (e12’el3)

level 3 e 8 ey €9 ell e12 e13

Figure No. 4.32

~ Evaluation at any level i proceeds by deriving utility assess-
ments over individual level i goal vectors, aggregating in groups
by the quasi-additive form to the next level i-1, and continuing
to aggregate grouped utilities, level by level, until a single
aggregatedvutility level 0 results. However, in practice, it may

be:

(a) very difficult to get accurate assessments over, Or
measure vector evaluators, as opposed to scalar

evaluators;

163

(b) less possible to measure evaluators (or even more
important, to derive suitable evaluators) at upper
levels, because of a less precise metric and fewer

attributes vis-a-vis lower levels.

Therefore, we resort to an approximation which lends itself
to the use of the hierarchically sfructured planning model, in that
we assign probability disbtributions. to intemediate level utiiitieé,
which reflect this lack of precision in goal measurement.

For each non-elemental, intermediate level i, we:

(1) determine the measurable evaluators or impacts which can

be approximated by the level i metric;

(2) select, for each goal vector j, a principal component of
that vector (or a weighted average of several components)
from the measurable evaluators. Each selected evaluator
serves as a surrogate for the level i goal vector of which
ig is a component. Surrogates approximate the real goals
in the sense that they should induce behaviour consistent
with, or as close as possible to, the real goals.

For example, iﬁ place of the level 1 evaluator, "maximize
financial benefits", we select a principal component, such as
"minimize overall project cost", as the surrogate; since it can
be‘roughly measured at level 1. Figure No. 4.33 illustrates the
North West Area Project goal structure again, with surrogate

evaluators assigned to goal vectors:

164

level 0: surrogate) €000
vector (el,ez,...,e13)
level 1 %100 %200 €300 -
(epreyrepie) lesuegoey) leguegiegiegyiegpie;y)
level 2 e.//////i> e / e e e
- 110 120 ~210 310 320 330

(el’ez) (ezse4) (35’36137) (es seg) (elosell) (é;z ’313)

AN NAN N

level 3 ey e2 e3 ea e5 e, e7 eg e9 elO ey, e12 e13

Figure No. 4.33

Level 3, as the elemental level, has no surrogate evaluators;

"e ”"

00 * 25 the overall goal surrogate, is assigned the initial

fé(e) distribution, which is the decision-maker's assessment of
‘the distribution of aggregated utilities resulting from the entire
design process, and which starts off the entire dynamic search and
evaluation process. As they are assessed throughout the process,
';he intermediate level i goal surrogates are also given probability

distributions over their utility values, which reflect:

(a) the lack of precision at level i (a function of the
scale of the metric);

{b) uncertainty as to how well the surrogate measure represents

165

preferences for the entire goal vector.

The Bayesian posterior revision of the prior probability dis-
tributions over non-elemental utilities_after each evaluation,
allows the decision-maker to adjust the bias of the surrogate
‘evaluator with respect to its lowér le;elkgoal vector. It does
not suggest if some other component in the goal vector would have
been a better predictor. Of course, some goal variables may not
be even roughly measurable at upper levels.

Two further points should_be note& by way of explanation:

(1) we assume that utility functioné can be assessed only for

elemental evaluators, therefore, tﬁe utility measure for
a surrogate'ebaluator is its elemental utility function.
However, it is assumed, that the decision-maker can
assess the corner ﬁtilities or tradeoffs among goal
vectors at intermediate. levels. (since this only
involves combinations of the "best” and 'worst" values
of goals) Therefore, the aggregation of utilities from
an intermediate goal level i, to level i-1l, uses elemental
level surrogate utility values, but combines these
measures by means of corner utilities appropriate for
lével i. (However, aggreg;tion from a lower level i+1,
would yielé vector utility values at level i, which are
then combined with level.i corner utilities for aggre-

gation to level i-1).

166
(2) it is not required that evaluators be independent of one
another (as required in the Fishburn additive utility
model (60), for example) but rather than they can be
combined into groups which are utility independent of
each other. However, the resulting goal decomposition
"

must be in a "planar tree" form, with no overlapping

links.

(60) P. C. Fishburn; op. cit. (1965):

167

5. CONCLUSIONS AND EXTENSIONS

"This study originally began with an investigation of the role
of evaluation in the planning process as a terminal assessment
procedure of design'consquences with respect to explicit goal
statements. It soon became apparent that restficting evaluation
to this role also imposed an unnecessarily rigid conception of the
problem-solving process on the plamner or designer.

firstly, the planner does not want to evaluate only full-
developed alternatives at the end of the process, but may also wish
to shortcut the planning process by gauging.his progress at inter-
mediate stages. Secondly, evaluation can play a useful interactive
role in guiding the analyst towards better solutions and more
efficient control of the planning process. The former consideration
led to the inclusion of a set of independent routines which manipul-
ate a basic impact matrix in various ways; the latter led to the
incorporation of evaluation techniques within a hierarchical
planning model. The three techniques: "User Operations", "Static
Evaluation" and "Dynamic Evaluation" are separate and distinct
entities in this paper; however, it should be stressed that
ultimately they should be integrated into an overall evaluation
"strategy', which would;

(1) judge the overall status of the planning process at amy

particular stage of execution;

168

(2) array the costs and benefits of various evaluation tech-

niques (in terms of their contribution to the process), and
suggest to ;he planner, which of these is most appropriate
for his use at this stage. Th#t is, the techniques would
be evaluated as experiments in the Bayesian decision

theory sense.

The usefulness of any evaluation technique is both project-
independent and dependent: the costs and results of computation
are relatively fixgd, but the applicability to a problem context
is closely tied to the projectbinformation (impacts, preferences,
attributes; etc.) current at any time. Thus, benefits are highly
variable from stage to stage within any particular planning
process, as well as from project to project.

It may be of interest to the reader to compare the approach
taken here with that of two other writers:

(1) John Boorn's CHOICE system for environmental design; (61)

(2) the capabilities in DODOTRANS, a computer language

within the ICES System, for the evaluation of transport-
ation systems, as exemplified by the work of John R.

Mumford. (62)

(61) J. P. Boorn; A Choice System for Environmental Design and
Development, (Cambridge, Mass., M.I.T. Dept. of Urban Studies
and Planning, unpublished PhD. thesis, 1969).

(62) J. R. Mumford; Computer-Aided Evaluation of Transport Systems,
(Cambridge, Mass., M.I.T. Dept. of Civil Engineering, Research
Report R69-41, July, 1969),

169
Mumford's work implements a number of evaluation techniques,
similar to those in "Static Evaluation:
(1) linear scoring function;
- €2) utility theory(additive);
(3) cost-benefit analysis;

(4) goal fabric analysis. (63)

Operations allow the analyst to define goal hierarchies and
evaluators, to evaluate, rank, and compare alternatives, generate
‘new evaluators, and store the results in data files.

Boorn's thesis describes CHOICE, an evaluation system imple-
mented in CTSS, and developed in conjunction with DISCOURSE. The
user creates a system of'eQaluation accounts or matrices, on which
various Operatidns may be performed: arithmetic, definition of
evaulators, computation of project costs and benefits, ordering,
averages and standard deviations, discounting, scoring, etc.

The routines implemented in CHOICE roughly correspond to the
"user operations' described here.

Many of the basic operations described by both Boorn and

- Mumford did not have to be programmed explicitly here, bécause

analogous capabilities already exist in DISCOURSE. (64) For

(63) Ibid.; p. 29.

(64) W. McMains et. al.; DISCOURSE Users' Manual, (Cambridge, Mass.,
M.I.T., 1971)0 -

170
example, character string manipﬁlacion (for the naming of variables),
file management and storage, arithmetic and logical operatioms,
user interaction, etc. are all.used implicitly in the present
programs. Furthermo:e, the attribute data structure of DISCOURSE
is adaptable to transformations of design attributes into conse-~
quences and evaluators; and tﬁe-matrix operations required.in
evaluation, are readily programmed. |

Howevef, what may not be immediately apparent before actual
use of a generalized evaluation system, is the immense amount of
project- agd user-specific information which must be prepared and
input before the interactive-capabilities of the system can be
exploited. The time'spen£ in’using the evaluation techniques may
only be a small percentage of the total time required for speéifi-
cation of the project in the éystem. In Mumford's work, the
DODOTRANS system is tied to a highly specific set of predictiom
and analysis models and data for Northeast Corridor transportation
planning, and although restricted to a relatively narrow class of
problems, is also very operational on this account. Boorn de-
velops a more generalized evaluation system, but since it is not |
related to a specific set of problems or model of the planning
process, réquires substantial data, prediction, and preference
information, before it can be made operational for a specific
project. ‘

The approach here_has trieq to balance specific vs. general-

ized techniques. The component evaluation techniques are

171
generalized only in the sense of illustrating a set of computations
which would have to be adapted by a user for specific context.
However, this meshes with the céncept of DISCOURSE as a user-
oriented computer language for urban design: the planner would
develop his own models for the generation of designs and pre-
diction of their consequehées; and then adapt the techniques
described here, for the assessment of the relative merits of
alternatives. In contrast to both Boorn and Mumford, this paper
has also tried to admit of more varied roles or problem-solving
models, within which evaluation could functién, in the planning
process; and to link the concepts of multi-dimensionality and
hierarchical problem structuring together in developing component
routines.

Section 1, "INTRODUCTION", discussed a number of issues which

point to possible extensions of the thesis:

‘(1) social choice: the elaboration of preference structures
and choices for each significant actor group, and the
display of impact matrices, comparisoms, crucial trade~
offs, points of agreement and disagreement among actors,
etc. The system of accounts would serve aé an information
base for use in an negotiation and barganing process.
Alternatively, a primary decision-maker may want to do a
surrogate analysis in which he attempts to predict overall

worth indices for alternatives, weighting actor preferences

(2)

&)}

172
by power and interest scores, Or tradeoff_measures. Many
of the techniques for multi-dimensional evaluation are
applicable in this latter case (i.e..intefpreting actors
as dimensions), however, r;sults must be interpreted
more cautiously,vsince surrogate aggregation is no

substitute for true community interaction processes.

User participation: the techniques here may be integrated

into a comprehensive computer-based user interaction pro-
cess, in which actors experiment with a number of alter-
native states (information bases) and vary their prefer-
ences and choices with respect to different consequence
dimensions, and also through feedback from the preference

of other actors. Evaluation techniques are applicable

“both to:

(a) gaming situations in which actors take on hypo-
thetical, though reasonable roles and problem con-
texts; .

(b) true negotiation situations, in which the informa-
tion base and actor roles are relevant to #n ongoing

problemn.

Cost-benefit analysis and elaboration of preferences for

time: routines may be added for computing Net Present
Value, Internal Rate of Return, Benefit-Cost Ratios, etc.

Multidimensional utility theory may also be used if standard

173
discounting formulae are not suitable to express the
decision-maker's preference structure. Such capabilities
were not implemented in the current set of programs, partly
because of the concentration on multi-dimensionality
across mone?aty and non—mnnetéry consequences, and partly
because the various discounting formulae give contra-
dictory criteria for choice even among projects with only

monetary consequences.

(4) self-organization: this refers to non-arbitrary ways of
introducing new "images" of the problem within the planning
pfoce#s: deriving new preference structures, changing
dimensions of the evaluation or search spaces, guidance
of the search effort towards sub-optimal results, control
and allocation of énalysis resources among the different
problem-solving activities. Extensions in this area‘
involve expanding the more conventional notions of
evaluation within problem-solving paradigms such as
systems analysis or decision theory, towards research
_in artificial intelligence, as suggested, for example
in Minsky's article, quoted above. (65)

The ﬁork here could also be usefully complemented by an

empirically-based &escriptive study, which attempts to outline

the difficulties in deriﬁing preference information from actors

(65) M. Minsky; op. cit.

174
in complex urban planning problems, in aggregating these prefer-
ences over a mumber of consequence dimensions, and in applying
the models described in on-going planning and design processes.
By taking a more theoretical perspective of evaluation techniques,
we may have partially avoided the inevi.tahle confrontation which
must accompany the transition of these ideas ﬁo their implementation

in the real world.

60
1)

(2)

(3)

(4)

(5)
(6)

€))

(8)
9

(10)
(11)

(12)

(13)

1725

BIBLIOGRAPHY

Ackoff, R. L.; Scientific Method: Optimizing Applied Research
Decisions, (New York, N. Y., John Wiley & Sons, Inc., 1962)

Alexander, C.; Notes on the Synthesis of Form, (Cambridge,
Mass., Harvard University Press, 1964)

Boorn, J. P.; A Choice System for Environmental Design and
Development, (Cambridge, Mass., M.I.T. Dept. of Urban Studies
& Planning, unpublished PhD. thesis, 1969)

Coombs, C. H.; Raiffa, H.; Thrall, R. M.; "Some Views on .
Mathematical Models and Measurement Theory', in Thrall,
Coombs, & Davis, eds.; Decision Process, (New York, N. Y.,
John Wiley & Sons, Inc., 1954), pp. 19 - 37

Corporation Joint Advisory Committee on Institute-Wide Affairs;
Report on Simplex and Related Development, (Cambridge, Mass.,

M.I.T., 5 June, 1970) :

Emery, J. C.; Organizational Planning and Control Systems:
Theory and Technology, (New York, N. Y., MacMillan Co., 1969)

Emst, G. W.; "GPS and Decision Making: An Overview, in
Banerji, R.; & Mesarovic, M.D.; eds.; Theoretical Approaches
to Non-Numerical Problem-Solving, (New York, N. Y., Springer-
Verlag, 1970)

Fishburn, P. C.; Decision and Value Theory, (New York, N. Y.,
John Wiley & Sons, Inc., 1964)

——=-=-3; "Independence in Utility Theory with Whole Product
Sets", Operations Research, (Vol. 13, 1965), pp. 28 = 45

Harary, F.; Norma, R.Z.; Cartwright, D.; Structural Models:
An Introduction to the Theory of Directed Graphs, (New York,
N. Y., John Wiley & Sons, Inc., 1965)

Johnsen, E.; Studies in Multi-Objective Decision Models,
(Lund, Studentlitteratur, Economic Research Center in Lund,
Monograph No. 1, 1968)

Johnson, H.W.; public announcement re Simplex purchase,
(Cambridge, Mass., 10 July, 1969)

Keeney, R.L.: Multidimensional Utility Functions: Theory,
Assessment and Application, (Cambridge, Mass., M.I.T.
Operations Research Center, Technical Report No. 43, Oct.,
1969)

(14)

(15)

(16)

17)

(18)

19)

(20)

(21)

(22)

(23)

(24)

(25)

176

Maass, A.; & Hufschmidt, H.; Design of Water Resource Systems,
(Cambridge, Mass., Harvard University Press, 1962)

MacCrimmon, K.R.: Improving the System Design and Evaluation
Process by the Use of Trade—off Information: An Application’

to Northeast Corridor Transportation Planning, (New York,
N. Y., Rand Corporation memo RM-5877-DOT, 1969)

Manheim, M. L.; Hierarchical Structure: A Model of Design and
Planning Processes, (Cambridge, Mass., M.I.T. Press, 1966)

- & Hall, F.; Abstract Representation of Goals, (Cambridge
Mass., M.I.T. Dept. of Civil Engineering, Professional Paper
P67-24, January, 1968)

- et. al.; The Impacts of Highways upon Environmental
Values, (Cambridge, Mass., M.I.T. Urban Systems Laboratory,
Report No. USL-69-1, March, 1969)

McMains, W.; et. al.; DISCOURSE User's Manual, (Cambridge,
Mass., MII.T.’ 1971)) -

Mesarovic, M.D.: Macko, D.; Takahara, Y.; Theory of Hierarchi-
cal Multilevel Systems, (New York, N. Y., Academic Press,
1970) .

Miller, G.A.; Galanter, E.; & Pribram, K.H.: Plans and the
Structure of Behaviour, (New York, N.Y., Holt, Rinehart &
Wilson, Inc., 1960)

Miller, J.R., III; The Assessment of Worth: A Systematic
Procedure and Its Experimental Validation, (Cambridge, Mass.,

M.I.T. Sloan School of Management,. unpublished PhD. thesis,
1966)

Minsky, M.A.; "Staps Toward Artificial Intelligence", in
Feigenbaum, E.A.; & Feldman, J.; eds.; Computers and Thought,
(New York, N. Y., McGraw-Hill, 1963)

Mumford, J.R.: Computer-Aidéd Evaluation of Transport Systems,
(Cambridge, Mass., M.I.T. Dept. of Civil Engineering, Research
Report R69-41, 1969)

Neft, D.S.; Statistical Analyvsis for Areal Distributions,
(Philadelphia, Pa., Regional Science Institute, Monograph
series no. 2, 1966) '

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

177

von Neumann, J.; & Morgenstern, O.; Theory of Games and
Economic Behaviour, (Princeton, N.J., Princeton University
Press, 1947) :

Newell, A.; Shaw, J.C.; & Simon, H.A.; "A general problem-
solving program for a computer", Computers and Automation,
(Vol. 8, No. 7, 1959), pp. 10 - 16

Pecknold, W.M.; The Evolution of Transport Systems: An'
Analysis of Time-Staged Investment Strategies Under Uncertainty,

(Cambridge, Mass., M.I.T. Dept. of Civil Englneering, unpub-
lished PhD. thesis, 1970)

Raiffa, H.; Tradeoffs Under Certainty, (Cambridge, Mass.,
Harvard University, unpublished notes, 1968) :

Reitman, W.R.; "Heuristic decision procedures, open con-
straints, and the structure of ill-defined problems", in
Shelley, M.W., III; & Bryan, G.L.: eds.; Human Judgments
and Optimality, (New York, N.Y., John Wiley & Sons, Inc.,

1964), Ch. 15, pp. 282 - 315

Simon, H.A.; "A Behavioural Model of Rational Choice", in
~==-=3 Models of Man, (New York, N.Y., John Wiley & Sonmns,
Inc., 1957))

-——--; The Sciences of the Artificial, (Cambridge, Mass.,
M.1.T. Press, 1969) .

Simplex Advisory Committee§ Considerations in the Future
Development of Simplex and Related M.I.T. Properties,

(Cambridge, Mass., M.1.T., Feb., 1970)

Torgerson, W.S.; Theory and Methods of Scaling, (New York,
N.Y.; John Wiley & Soms, Inc., 1958)

7. APPENDIX

7.1 DISCOURSE Program Listings

(a)

(®)

(c)

User Operations

Evaluators
Preliminary

order
display-impacts
Pareto

compare
display~-transform

satisfaction

Static Evaluation

Single-Passv
Fishburn-Relative-Value
Case-Relative-Value
Linear-Scoring

Quasi-Separable

Dynamic Evaluation

Dynamic-Control-1
Dynamic-Control-
selection

Bayes-Posterior

178

179

(d) PL/1 Functions

ordering.pl 1
maxlist.pl 1
minlist.pl 1
quasi-order.pl 1

new-designs.pl 1

Evaluators

dfa levell 1: (1,25)

dfa name_evaluaters 2: (1,25),(0,2)

dfa structure_goals 2: (1,25),(1,4)

expand "//" v

saY Type in the numbper of evaluator names to be input

expand "“/"

read_set console

read: S1num_evaluators=

expand “//"

sayY Type in the name of each evaluator (maximum 10 characters) in
say order, preceded bY a Single diagit level number, For example:

say :0 Maxbenefit (overall goal)

sayY :1 Financial (18t secondary ob-diective, under overall goal)
gayY 2 Cambridge (18t tertiary objective, under "Financial")
gay :3 tax_yields (1st lovwer=level cgoal, under *Cambridage")

say 3 serv_costs (2nd lower=-level aocal, under "Cambridae®™)

say 2 MIT {2nd tertiary objective, under "Financial")

expand “//"

through NE1, for i= 1, until num_evaluators
read: $1level1(i) $2name_evaluators(i,0)
NE1$ continue)
through NE2, for j= 2, until num_evaluators
k:jm1.

level2 = levell(d)

if (level2,leq.1.0) aoto NEG

end = level2~1,

through NE3, for 1= 1, until end
structure_goals(d,1) = structure_goals(k,1l)
NE3$ continue)

NE6$ structure_geals(j,level2) = structure_goals{k,level2)+1,
NE2$ continue

sa structure structure_goals ,
expand "/array structure_goals stored//"

sa names name_evaluators

expand "array narme_evaluators stored//"
read_conscole_return

dfa group 2: (1,3),(1,10)

through NE4, for m = 1, until 3,

i= 1.

through NE5, for 4 = 2. until num_evaluators
if (structure_goals(i,m),eql,0,.,) goto NE6

1f (structure_goals(i,(m+1)).neq.0.) goto NES
group(m,d) = group(m.3i) + 1,

goto NE5)

NE6$ if (structure goals((i=-1),m),eql,0,) goto NE5
3= 3+1

NESS$ continue

NE4S continuye

sa grouping_evaluators group

gsay array "group" stored

read_console

Preliminary

expand "/Type in the number of evaluators//"

read_set console

read?! $1num_evaluators=

expand "//" _

expand "Type in the number of designs//"

read! S$1current_desians=

expand "//"

dfa impact 2: (2,25).(1,20)

rs impacts

through X1, for i = 2, until num_evaluators

read: S$1impact(i,2)...impact(i,current_designs)

X1$ continue

rs off

exrand "Filename impacts read//"

ex names

expand "Filename names read//"

dfa rank 2: (1,28),(1,20)

dfa temp 2: (1,5),(0,2)

zoink = 0,

saY Programs accept single-level or hierarchically~structured
say evaluation prohlems: ,

say Type 1 if designs and goals both have only one level of
saY generality; the numper of hierarchical levels otherwvise,
expand "/"

read_set console

read: $1zoink =

if (2zoink,eql,1,) goto P7

dfa e1 13 (1,15)

Afa 41 12 (1,15)

expand "/"

expand "Type in the level number desired: 1, 2, or 3//"
read: S$1level=

expand "//"

eXx structure

expand "Filename structure read//"

m = 00

n =0, v

through P5, for 4 = 2, until num_evaluators

if ((structure_goalsti,level),eql.0.).or.{structure acals(i,(level+1))&
.neq.0,)) goto p5

m = m+i,

el(m) = 1§

P5% continue

mi =m

comment: m1 is the number of evaluators at the chosen level
through P6, for 3 = 1, until current_designs

if ((structure_designs(j,level),eql.0,),0or.(structure _desians(3j,&
(level+1)).neq,0.)) aoto PE

n = n+1o

d1(n) = 3

P6$ continue

ntT = n

comment: n1 is the number of designs at the chosen level
goto P10

P7$ m1 = num_evaluators

n1 = current_designs

through P8, for i = 1, until m1
el1(i) = {1

P8$ continue

through P9, for 4 = 1, until n1
a1(3) = 3

P9$ continue

P10$ return

order

00$ dfa temp_impact 1: (1,20)

aff ordering (,2C,rank,0,1)

expand “/" ‘

SayY TypPe in the name of the evaluator to be used

expand "/"

read_set console

read: $2temp(1,0)

expand "//") 4

say Type in “"increasing” for ranking by increasing value,
saY type in "decreasing" for ranking by decreasing value,
expand "/"

read: $2temp(2,0)

through 01, for i = 1, until m1

x = el(i)

if ceql_F(name_evaluators(x,0),temp(1,0)) goto 02

01$% continue

02% n = x

1f ceql_P(temp(2,0),"*decreasing”) m = 1,
if ceql_F(temp(2,0),"increasing”) m = 0,
through 03, for 1 = 1, until n1

y = 41(3)

temp_impact(j) = impact(n,y)

03$ continue

comment:

cal) ordering(terp impact,ni,rank,m,1)
comment:

set_field_width 12

set_carriage_width 72
set_decimal_places 0

expand "///Designs Ranking//7"
through 04, for kX = 1, until n1

y = d1(k)

expand "S$1name _designs(y,0)* $3rank(1,kx)//"
O4$ continue
expand “"///"
read_ccocnsole

or

display_impacts

expand "/" .

say For display, choose 2 to 5 designs from the following list:
through D1, for 1 = 4, until n1

y = 41(1)

expand * $3y:! $1name_designs(y,0)/"

D1$ continue)

expand "//Type in ¢he number of designs to be displaved://"
read_set console

reads s$1num_desionss

expand "/Type in the names of the designs//"

through D2, for 4 = 4, until num_designs

read! S$2temp(3,0)

D2$ continue

expand "///"

comment:

set_field_width 12

set_decimal_places 2

expand "Designs: "

dfa temp1 1: (1,5)
through D3, for k
through P4, for 1
y = 41(1) ‘ .)
if ceql_F(temp(k,0),name_designs(y,0)) goto D5
pDuU$ continue

D5S% tempi1(k) = 41(1)

expand "$1name_designs(y,0)* "

D3% continue

expand "//Impacte//"”

through Dé, for i = 1., until m1

x = el1(4)

expand "$1name_evaluators(x,0)* *

through D7, for 3 = 1. uyntil num_designs

y = temp1(3)

expand "S1impact(x,y)*"

D78 continue

expand "//"

D6 continue

expand “//*"

read_console

1. until num_designs
1, until n1

Pareto

afa sum 2:(1,20),(1,20)

dfa reach 2:(1,20),(1,20)

dfa temp_impact 23 (1.,158)5(1,15)

dff ordering(,20,rank,0,1)

dff quasi_order(rank.sum,reach,mi,n1)

4ff maxlist(,30,0,1) ‘

expand "/Construetion of Ordinal Ranking Matrix//"
say Type in "increasing" for ranking by increasing value,
saY type in "decreasing” for ranking by decreasing value,
say each evaluater:!

expand "//"

t =0,

through P1, for 4 = 1, until m1

x = el(i)

through P2, for 4 = 1, until n1

y = 41(3)

temp_impact(i,d) = impact{x,y)

P2$ continue

P1$ continue

read_set console

through P3, for i = 1, until m1

x = el(i)

expand "$1name_evaluators(x,0)/"
read! S2temp(1,0)

expand "//" ,

if ceql_F(temp(1,0),"decreasing”) t = 1,
if ceql_F(temp(1,0),"increasing”) t = 0,
comment:

call ordering(terp impact(i,1),nt,rank(i,1),t,1)
comment:

P3$ continue

expand "/0rdinal Ranking Matrix completed///"
saY Dominance check bY constructing quasi~levels
comment:

call quasi_order(rank,sumyreach,mi,n1)

comment:

m=0.

call ordering(sur,ni,rank,m,1)

comment

set_decimal_places 0

set_carriage_vwidth 72

set_field_width ©

expand "//Quasi-level 1: Pareto-efficient frontier//"
through P4, for i = 1, until n1

if rank(1,i).neq.1.) goto P4

y = 41(41))

expand "$1name_designs(y,0)/"

P4$ continue

expand "///"

val = 0,

index = 1,

comment:

or
for

call maxlist(rank(1,1),n1,val,index)

comment; val givesS the number of quasi<levels produced
if (val,eql,1,) coto end

through P5, for i = 2, until val

expand "Quasi~level $3i: Dominated alternatives//"
through P6, for 3 = 1, until n1

if (rank(%j).ne@.i) goto P6

y = d1(3) i

expand "$1name_designs(y,0)/"

P6$ continue

expand “///"

P5% continue

end$ read_console

compare

dfa difference 1: (1.,15)

expand "/" v
say Tyre in the names 0of the two designs to be compared
expand "/"

read_set console

through €1, for 4 = 1, until 2,

read: $2temp(3i,0)

C1$ continue

through C2, for k = 1, until nt

y = 41(k) , ,

if ceql _F(name_designs(y,0),temp(1,0)) goto C3
C2$ continue

C3$ n1 = y

through C4, for 1 = 4, until n1

y = 41(1) .

if ceql_F(name_designs(y,0),temp(2,0)) goto C5
C4$ continue

C58 n2 =y _

through €6, for 4 = 1, until m1

x = el1(i)

difference(i) = impaet(x,n1) =~ impact(x,n2)

C6e$ continue

set_carriage_width 72

set_field_width 12

set_decimal_vplaces 2

expand " S1name_designs(n1,0)*"
expand " S1iname_designs(n2,0)*"

expand “Difference///"

expand “"Evaluvators //"

through €7, for 4 = 4, until m1

x = el(3)

expand "$1name_evaluators{x,0)* S$1impact(x,n1)*"
expand "$1impact(x,n2)* $1difference(d)//"

C7% continue

expand "//"

read_console

display_transform

dfa value 2: (2,25),(1,24)

rs valuve_array

through DT1, for 1 = 2. until num_evaluators
read! $ivalue(i,1),,.value(i,24)

DT1$ continue

expand "/Filename value_array read//"

rs off

dfa transform 2: (2.25)0(1120)

through PT2, for j = 1. until m1

x = el1(3)
through DT3, for k = 1, until n1
y = 41(k)

z = impact(x,Yy)

transform(x,y) = value(x,Zz)

DT3$ continue

DPT28 continue

comment:

sa transform_array transform

saY For display, choose 2 to 5 designs from the followina list:
expand "/"

through DT4, for 1 = 1. until n1

y = 41(4)

expand ¥ $3y: $1name_designs(y,0)/"

DTU4S$ continue

expand "//"

comment: ,

expand "Type in the number of designs to be displaved//"
read_set console

read?! $1num_desjens=

expand “/Type in the names of the designs//"

through DTS, for 3 = 1. until num_designs

read! $2temp(3,0)
DT5$ continue
expand “///"
comment:

dfa tempi 1% (1,5)
set_field_width 12
set_decimal_places
expand "Designs: "

through DT6, for k 1. until num_desiagns
through DT7, for 1 1. until n1

y = 41(1)

if ceql_F(temp(k,0),name_designs(y,0)) goto DTS
DT7$ continue

DT8$ tempi(k) = d1(1)

expand "$1name_designs(y.0)* "

DT6$ continue

expand "//Transforms//"

through DT9, for i = 1, until m1

x = el(i)

expand "$1name_evaluators(x,0)* "

through DT10, for 4 = 1, until num_gdesigns

N

k = temp1(3) :
expand "S$1transform(x,k)*"
pDT10¢$ continue

expand "//"

DT9% continuye

read_console

satisfaction

S0$ dff ordering(,20,rank,0,1)

expand "/°

saY Typre in the name of the desian to be analysed
expand "/"

read_set console

read?! S$2temp(1,0)

through 51, for 4 = 1, until n1

y = 41(3) ,
if ceql_F(temp(1,0),name_designs(y,0)) goto S2
S1% continue

S28 n = ¥y

dfa temp_goals 1: (1,20)

through sS4, for 4 = 1, until m1

x = el1(3)

temp_goals(j) = transform(x,n)

S48 continue

comment:

£f =0,

g =1, i

call ordering(terp _goals,mi,rank,.f,q)
comment:

set_field_width 12

set_carriage_width 72

set_decimal_prlaces 2

expand "//Design: $1temp(1,0)///"

expand "Evaluator Utility Rank//*"
through 55, for i = 1, until m1

x = el1(i)

expand “"$1name_evaluators(x,0)* $1temp_goals(i)* *
expand "$3rank(1,i)//"

S5% continue

expand "//"

read_console

Single_Pass

dfa reach 2:(1,20),(1,20)

dfa sum 22:(1,20),(1,20)

dfa temp_impact 2: (1,15),(1,15)

dff ordering(,30,rank,mi,n1)

through SP1, for i = 1., until m1

x = e1(1)

through S5P2, for 3 = 1. until n1

y = 41(34)

temp_impact(i,j) = impacti{x,y)

SP2$ continue

SP1$ continue ,

comment: construct Ordinal Ranking Matrix

expand "//" i ‘

say Type in "increasing” for ranking by increasing value, or
say type in "decreasing" for ranking by decreasing valuep for
say each evalyator

expand "//"

t:o.

through Sp8, for i = 1, until m1

x = e1(i)

expand "$1name_evaluators{x,0)/"

read_set conscle
readt $S2temp(1,0)
expand "//"

if ceql_F(temp(1,0
if ceql F(temp(1,0
comments

call ordering(terp impact(i,1),nt,rank{i,1),t,1)
comment:

SPBS continue

expand "//0rdinal ranking matrix completed//"

sayY Dominance check bY constructing quasi-levels
dff quasi_order(rank.sum,reach,mi,n1)

comment:

call quasi_order(rank,sumpreach,mi,n1)

comment:

call ordering(sur,nt,rank,0,1)

comment:

set_decimal_places 0

set_carriage_width 72

set_field_wiath 0

expand "//Quasi~level 1: Pareto-efficient frontier//"
through SP9, for 1 = 1., until n1

if (rank(1,1i).nea.1,) goto SP9

x = 41(4)

expand "$1name_designs(x,0)/"

SP9% continue

expand "///"

val = 0,

index = 1,

dff maxlist(,30,0,1)

comment:

ys"decreasing"”) t=1,
Ye"increasing"”) t=0,

call maxlist(rank(1,1),n1,val,index)

comment: val gives the numbher of quasi~levels produced
if (val,eql,1,) a@oto SP14

through SP10, for 1 = 2, until val

expand “Quasi-level $3i: Dominated alternatives//"
through SP11, for 4 = 1, until n?

if (rank(1,3j),nea,i) goto SP11

x = 41(3)

expand "$1name_designs(x,0)/"

SP11% continue

expand "///"

SP10$ continue

dfa reduced_impact 2t (1,15),(1,15)

comment: construction of reduced impact matrix
comment: (this section is by-passed if there are no dominated altern-
comment: atives)

n =20,

through SP12, for i = 1, until n1

if (rank(1,i).neqg.1.) goto SP12

n = n+1,

a1(n) = a1(4) _

through SP13, for 4 = 1, until m1
reduced_impact(j,n) = temp_impact(i,i)

SP13% continue

SP12% continue

n1 = n

comment: reduced impact matrix completed

goto SF17

SP14$ Aff movel(,.,)

dfa reduced_impact 2:(1,15),(1,15)

comment:

call move(temp_irpact,reduced_impact)

comment:

expand "/temp_imract copied into reduced impact//"
SP17% read_console return

dfa value 2: (2,25),(1,24)

rs value_array _ ‘

through 5P18, for 4 = 2, until num_evaluators

read! $ivalue(i,1)...value(i,24)

SP18% continue

rs off

expand "/Filename value_array read/"

say Choose evaluation method by tyring in one of the followving
5ayY names:

say (1) Fishburn Relative Value

say (2) Case Relative Value

say (3) Linear Scoring {(also Independent Utility)
say (4) Quasi-Separable Utility

expand "/"

SP19% read_set console

read: $2temp(2,0)

if ceql_F(temp(2, 0)."Fishburn") eXx Fishburn_Relative_value
if ceql_F(temp(2,0),"Case”) ex Case_Relative_Value
if ceql_F(temp(2,0),"Linear") ex linear_Scoring

if ceql_F(temp(2,0),"Quasi~-Separ"”) ex Quasi_Separable
sayY spelling mistake: type name again

goto SP19

read_console

Fishhurn_Relative_Value

set_decimal_rlaces 2

dfa weight 1: (1,18)

dfa standard 2: (1,15),(1»15)

dfa Fishburn_rv 2! (1,158),(1,15)
dfa total_frv 1: (1,15)

ex transform_array

expand "//Filenare transform_array read//"
dff maxlist(,30,0,1)

dff minlist(,30,1000,1)

comment:

Afa €1 2:(1,158),(1,158)

through FRV1, for 4 = 1, until m1

x = e1(4)

through FRV2, for 4 = 1, until n1

y = 41(3))

t1(i,3) = transform(x.y)

FRV2% continue

FRV1$ continue

val = 0,

index = 1,

sum_wveight = 0, _ ,
through FRV3, for 4 = 1, until m1

x = el(l) ,

call maxlist(t1(i,1).n1,val,index)
max = val

call minlist(t1(i,1).n1,val,index)
min = val

through FRVY, for 4 = 1, until n1

y = 41(3)

standard(i,3) = (t1(i,3)=-min)/(max=min)
FRY4$ continue

velght(i) = max~-rin

sum_veight = sum_veiaht + weight(i)
FRV3S$ continue

through FRV, for i = 1, until m1
veight(i) = weight(i)/sum_wveight
FRVS continue

comment:

through FPRVS, for 1 = 1, until n1
through FRVE, for kX = 1, until m1
Fishburn_rv(k,1) = weight(k)*standard(k,1)
total _frv(l) = total frv(l) + Fishburn_rvi(k,1)
FRV6S continue

FRV5$ continue

dfa temp1 1: (1,5)

expand "“//"

set_field_widath 12

say For display, choosSe 2 to 5 designs from the followina list:
expand "/"

through FRV7, for i = 1, until n1

y = 41(41) }

expand "$3y: S$1name designs(y,0)/"

FRV7$ continue

expandg "/"

comment:

saYy Tvpe in the number of designs to be displayYed?
expand "/"

read_set console

read: $1num_desiqgns=

expand /"

saY Type in the names of the designs:
expand /"

through FRVS8, for 4 = 1, until num_designs
read? S$2¢temp(3i,0)

FRY8$ continue

expand "/”

comment:

set_decimal_places 2

expand "Designs: "

through FRVg, for k = 1, until num_designs
through FRV10, fer 1 = 1, until n1

x = 41(1)

if ceql_F(temp(k,0),name_designs(x,0)) goto FRV11
FRV10$ continue

FRV11$ tempi(k) = 1

expand " $1name_designs(x,0)*"

FRV9S$ continue

expand "//Weighted/values//"

through FRV12, fer i = 1. until m1

y = el(i)

expand "$1name_evaluators(y,0)"

through FRV13, for 4 = 1. until num_desians
k = temp1(3)

expand "S$1Fishburn rv(i,k)*"

FRV13$ continue

expand "//"

FRV12% continue

expand "Weighted/Total "

through FRV14, fer k = 1. until num_desians
1 5 tempi1(k) '

expand "S$1total_fry(L)*"

FRV14$ continue

expand "//"

comment:

£ =20,

g =1,]

call ordering(total_frv,ni,rank,£f,9)
comment:

expand "Ranking: *

through FRV15, for i = 1, until num_desions
X = temp1(i)

expand "$3rank(1,x)*"

FRV15% continue

expand “//"

read_console

Case_Relative_Value

set_decimal_places &

dfa Case_rv 2: (1,15),(1,15)

dfa total_crv 1: (1,15)

dfa weight 1:(2,25)

rs weight_table

read: $1veight(2),.,.veight(num_evaluators)
rs off)

expand "/Filename weight_table read//"

ex transform_array

expand "Filename transform_array read//"
dfa 1 2:(1,15),(1,18)

through CaV1, for 4 = 1, until m1

x = el(1)

through CRV2, for 4 = 1, until n1

y = 41(94)

if (transform(x,Y).eal.0,) goto CRV

t1(1,3d) = weight(x)/transform(x,y)

goto CRvY2

CRVS t1(i,3J) = 1000,

CRV2$ continue

CRV1$ continue

comment: ‘

through CRV3, for i = 1, until m1
denominator = 1,

through CRVy, for 4 = 2, until n1
denominator = denominator + t1(i,1)/t1{i,3)
CRV4S continue

Case_rv(i,1) = (1,/denominator)

through CRVS, for kx = 2, until n1
Case_rv(i,k) = (t1(4.1)/¢t1(i,k))*Case_rv(i,1)
CRVS5S continue
CRY3$ continue
through CRVV, for i =
through CRVW, for 4 =
x = el(i) . ,
total_crv(j) = tctal crv(Jj) + weight(x)*case_ rv(i,d)

CRVWS continue

CRVVS continue

comment:

dfa temp1 1: (1,58)

set_field_width 12

say For display, choose 2 to 5 designs from the followinae list:
expand "/"))

through CRVe, for 4 = 1, until n1

y = d41(41) .

expand "$3y: $1name designs(y,0)/"

CcRV6S$ continue

expand /"

comment:

say Type in the number of designs to be displaved:

expand "/"

read_set console

1, until n1
1, until m1

read! $inum_designs=

expand "/"

saY Tyre in the names of the designs to he dispvlayed!
expand "/" _

through CRV7, for 4 = 1, until num_designs
read: $2temp(3j,0)

CRV7S$ continue

expand n/"

comment:

expand "Designs: "]

through CRvV8, for k¥ = 1, until num_designs
through CRV9, for 1 = 1, until n1

x =41(1)

i1f ceql_F(temp(k,0),name_designs(x,0)) goto CRV10
CRVQ9S continue

CRV10$ tempi1(k) = 1

expand " $1name_designs(x,0)%"

CRV8S continue

set_decimal_places 2

expand "//Unweighted/Relative/Values//"
through CRV11, fer 4 = 1, until m1

y = el(4)

expand "$1name_evaluators(y,0)* "

through CRV12, fer j = 1, until num_desions
k = temp1(3) .

expand "$1Case_rv(i,kx)*"

CRV12$ continue

expand "//"

CRV11$ continue

expand "Welghted/Total: "

through CRV13, for k # 1, until num.desions
1 = temp1(k)

expand "$1total_crv(1)*"

CRV13$ continue

expand "//"

comment:

f=O.

g=1,

call ordering(total_crv,ni,rank,f,q)
comment:

expand "Ranking: "

through CRV14, for 4 = 1, until num_desians
x = tamp1(i)

expand "$3rank(1,x)*"

CRV14$ continue

expand "//"

read_console

Linear_Scoring

set_decimal _places 4

dfa score 2: (1,15),(1,15)

dfa total_score 1: (1,158)

dfa weight 1: (2,28)

rs weight_table

read: $1veight(2)...wveight(num_evaluators)
rs& off

expand "//Filenare welight_table read//"

ex transform_array

expand "Filename transform_array read//"

comment:

through 15D, for i = 1, until m1
x = e1(1)

through LS4, for j = 1, until n1
y = 41(3)

score(i,3j) = Wweight(x)*transform(x,yv)
total_score(3j) = total_score(3j) + score(i»i)
LSUS$ continuye

LSDS$ continue

comment:

dfa temp1 1: (1,5)

say For display, choosSe 2 to 5 designs from the followino list:
expand “/" _

through .85, for k = 1, until n1

y = 4d1(k) .

expand "$3y: $1name designs(y,0)/"

1.85% continue

expand "//"

comment:

saY TyPe in the number of designs to be displaved:
expand n/n

read_set console

read! $1num_desions=

expand " /"

saY Type in the names 0of the designs to be displaved?
expand "“/"

through 186, for 1 = 1, until num_designs

read: $2temp(l,0)

1.56S continue

expand "//"

comment:

set_field_width 12

expand "Designs: "

through 187, for i = 1, until num_designs
through Ls8, for j = 1. until n1

x = d1(3) _ _

if ceql F(temp(i,0),name_designs(x,0)) goto LS9
158% continue

1S9$ temp1(i) = 7 _

expand " $1name_designs(x,0)*"

1S7$ continue

expand "//Wweighted/values//"

set_decimal_places 2

through 1810, for k = 1, until m1

y = e1(k)

expand "$1name_evaluatorsty,0)*

through 1511, for 1 = 1, until num_designs
i = temp1(1l)

expand "$1score(k,i)*"

1511% continue

expand "//"

LS10% continue

expand "Total " _

through 1812, for 4 = 1, until num_designs
k = temp1(3)

expand "S$1total_score(k)*"

1L512% continue

expand "//"

comment:

f =0,

a =1,

call ordering(total_score(1),n1,rank,£f,;q)
comment:

expand "Ranking:

through 1513, for kx = 1, until num_designs
x = tempi(k)

expand "S$3rank(1,x)*"

1S13% continue

expand “//"

read_console

Quasi_Separable

set_decimal_places 4

set_field_width 12

dfa a 3!(103)0(1:5)0§1o6) ‘
comment: 1st dimension: level; 2nd: group designation; 3rd: values,
dfa u 3:(0,3),(1,15).(1,8) .
comment: 1st dimension: level; 2nd: level evaluators; 3rd: level designs,
ex grouping_evaluators

expand "/Filename grouping_evaluators read//"

ex transform_array

expand "Filename transform_array read//"

through 081, for i = 1, until m1

x = el(i) ‘

through QS2, for j = 1, until n1

y = 41(3))

u(level,i,j) = transform(x,y)

0S2% continue

0S1$ continue

rs corner_utilities

through 0S4, for i = 1, until 3,

through 085, for j = 1, until 6.

read: $1a(i,jsr1)escati,i,e)

055§ continue

QS4$ continue

rs off ;

expand "Filename corner_utilities read//"

through 0511, for aa = 1, until n?

i = level

k = aa

0S6$ 4 = 0,

mm=0|

through 0s, for 43j = 1, until 6,

mm = mm + group(i,id)

QS$ continue

ii = 1,

0S7$ 4 = 3+1. ‘

if (group(i,d).eql,2,) goto 0S9

if (group(i,j).esl,3,) goto 0810

u((i=-1),3,k) = u(i,ii,k)

goto QS8)

QS8$ u((i=1),3,k) = a(i,de1)*uli,ii,k)¥a(i,j,2)*8
u(d, (ii+1) k) + (1,=aldisdet)=ali,ds2))*u(i,iisk)*g
uli,(ii+1),k)

goto QS8

0810% k1 = a(i,j,4)~a(i,ds1)~al(i,3,2)

k2 = a(i,3,5)=a(i,4,1)"a(i,3,3)
k3 = a(itj06)’a(10j02)’3(injl3)
k4 = 1~a(i.j.6)-a(ioi.S)-a(i.j.u)+a(io5.1)+a(iai.2)+a(i.1.3)

u((i=1),3,k) = a(i,j.1)*u(i,ii,k) + a(i,,2)*&
u(i, (ii+1),k) + a(d,4,3)*u(i, (ii+2),k) + &
Ki*u(i,ii,k)*u(i, (Li+1),k) + k2*u(i,ii,k)*&

Ui, (ii+2),k) + k3*udi, (ii+1)sk)*u(i,(ii+2),k) + &
kU*u(i,id, k) u(i, (1i+1) k) *u(di, (ii+2),k)

058$ ii = ii + group(i.j) + 1,

if (ii,les.mm) goto 0S7

i = i-1, .

if(i.grt.0.) gotc 0S6

0S11% continue

comment:

dfa temp1 1: (1,5)

saYy For display, chooSe 2 to 5 designs from the followino list:
expand N/"

through 05812, for k¥ = 1, until n1

y = d41(k) . _

expand "$3y: $1name designs(y,0)/"

QS12% continue

expand "/"

comment:

sayY Type in the number of designs to be displaved:
expand "/"

read_set console

read: $inum_desiongs=

expand "/"

saY Type in the names of the designs to he displaved:
expand "/" '

through 0s13, for 1 = 1, until num_designs
read; S$2temp(l,0)

0$13% continue

expand "/"

comment:

expand "Designs: v ,

through QS14, for i = 1, until num_designs
through Q0S15, for 4 = 1, until n1

y = 41(3) ,

if ceql_F(temp(i,O),name_designs(y,Q)) goto Q0S16
0S15% continue

0S16$ temp1(i) = 3

expand " $1name_designs(y,0)*”

QS14% continue

expand "//Utility/values//"

through 05817, for kx = 1, until m1

x = el(k)

expand "S$1name_evaluatorsé¢x,0)*
set_decimal_places 2

through 0S18, for 1 = 1, until num_designs
i = temp1(1))

expand "S$1u(level,k,i)*"”

0S18$ continue

expand "//"

0S17% continue

expand "Aggregated/ytility "
set_decimal_places 4

through QS19, for 4 = 1, until num_designs
k = temp1(3)

expand "S$1u(0,1,3)*"

0S19% continue

expand "“//"

dfa temp_u 1: (1,20)

through 0820, for i = 1, until nt
temp_ul(i) = u(0,1,1)

0S20% continue

comment:

f =20

g = 1:

call ordering(terp u.ni,rank,£f,g)
comment:

expand "Ranking: "

through 0s$21, for k =
x = tempi1(k)

expand "$3rank(1,x)**
0S21% continue

expand "//"
read_console

1.

until num_designs

Dynamic_Control_1

max1 = 0,

dfa potential_designs 27 €1,30),(1,4)

dff maxlist(,20,0,1)

expand "/Type in the number of evaluators//"

read_set console

read: $1num_evalvatorss=

rs off

a = 1,

current_designs = 1,

ex names

exprand “/Filename names read//"

ex sStructure

expand "Filename Structure read//"

dff new_designs(,,current_desians,a)

saY Determination of structure of votential desiagns
comment:)
call nevw_designs(sStructure_designs,potential_designs,current_desiagns,a)
comment:

set_decimal_places 4

set_field_width 3

expand "/Potential Designs://"

a"a"".

through ¢c3, for k¥ = 1, until a

if (potential_designs(k,1),eaql.0.) goto c3 v

expand "No, $3k: $3potential_designs{k,1),..Potential desians(k,3)//"
c3% continue

dfa current_value 3: (1,20),(1,5),(1,2})

comment: 1st dimension: designs, 2nd: steps, 3rd! p,theta
rs current_value_array

through C, for i = 1, until current_desians

through C0, for 4 = 1, until 5,

read! $1current_value(i,i»1).s.current_value(i,i,2)

c0$ continue

C$ continue

rs off

expand "Filename current_value_array read//"

sayY Selection of best desiogn experiment follows

comment:

ex sSelection

comment: .

say TyPe in a nare for the selected desion (up to 10 characters
say in length):

read_set console

expand "/" _

read: $2name_designs(current_designs,0)

rs off

expand "//"

store session

read_console

Dynamic_Control

dfa rank 2 (1025)1(1l20)

dfa 41 12 (1,15)

dfa e1 12 (1,15)

aff maxlist (,30,0,1)

eX session

expand "/Previous session retrieved//"

dfa value 23(2,25),(1,24)

rs value_array

through DC3, for k = 2. until num_evaluators

read: $1value(k,1)...value(k,24)

DC3$ continue

rs off

expand "Filename value_array read//”

dfa impact 2: (2,25).(1,20)

rs impact_tabhle

through DC4, for 1 = 2, until num_evaluators

read: $1impact(1,2)

DCUS$ continue

rs off

expand "Filename impact_table read//"

dfa u 33 (0.3)0(1015)a(118)

comment: 1st dimension: level, 2nd: evaluators, 3rd: designs,
p =0,

through pC5, for 4 = 1, until num_evaluators

if ((structure _gcals(i,level),eql,0.).0or,(structure aoals(i,(level+1))R
.ne‘LO-)) goto pCh

p = p + 1. .

x = impact(i,current designs)
u(level,p,current_designs) = value(i,x)

DC5$% continue i

say Utility calculations for chosen desian are complete
expand "/Quasi-additive utility agaregation//"

ex grouping_evalvators

dfa ab 3:1(1,3),(196).(1,6)

comment: 1St dimension: level; 2nd: arour designation; 3rd: values.
rs corner_utilities

through DCé6, for i = 1, until 3,
through DC7, for 3 = 1, until 6,
read: $1ab(i,3,1)e..ab(i,3,6)

DC7$ continue

DCe$ continue

rs off

expand “"Filename cornmer_utilities read//"
k = current_desians

i = level

DCces j = 0O,

mm=0'

through DC, for ij = 1, until 6,
mm = mm + group(i,ii)

DC$ continue

ii = 1.

DC9% 3 = J+1.)

if (group(i,dj).eql.2.) goto DC11

if (group(i,j).eal.3.) goto DC12

ul((i=1),3,k) = u(i,ii,k)

aqoto DC10

DC11% u((i=1,),3.,k) = ab(i'jn1)*U(iaiiik)+ab(io1n2)*8
u(i,(ii+1),k) + (1.=ab(i,3,1)=ab(i,4,2Y)*u(i,ii,k)*&
u(i,(ii+1),k)

goto DC10 _

DC12$ k1 = ab(iojlg)?ab(iojn1)”ab(ioj12)

k2 = ab(i,3,5)=ak(i,4,1)-ab(1,3,3)

k3 ab(i,3,6)~ab(1,4,2)=ab(1,3,3)

k4 1=ab(i,39,6)=ab(i,3,5)~ab(i,dsU)+ab(isds1)*ab(1,3,2)+ab(i,,3)
u((di=1),3,k) = ab(i,4,1)*u(i,idi,k) + ab(i,j.2)*8&

u(i, (ii+1),k) + ab(i.3,3)*u(ia(ii+2),k) + &
k1*u(ifii’k)*“(il(ii+1)lk) + kz*u(igiiik)*&

u(i,(1i+2),k) + k3*u(i, (id+1)sk)*u(i, (1i+2),k) + &
ku*u(i,id,k)*u(di, (ii+1),k)*u(d, (1i+2),k)

DC10s ii = ii + QrOUD(l.j) + 1,

if (ii,les,.mm) goto DCY

i = 4i-1,

if(inqrtpoo) Qoto ch

say Utility aggregation for the selected design is complete
show u(0,1,current designs)

expand "/"

read_console_return

say BaYesS_Posterior is called, to revise priors over the generategd
say design and its parents,

eX Bayves_Posterior

dfa expected value 1: (1,20)

dfa index1 1: (1.,20)

m1 = 0,

comment: m1 is the number of level 3, elemental designs
through NC1%, for 4 = 1, until current_designs

if (structure_designs(i,3),eql,.0,) goto DC15

ml =ml! + 1,

through DC16, for 4 = 1, until 5,

expected_value(m1) = expected_value(m1) + current_value(i,3,1)*4&
current_value(i,3,2)

DC16% continue

index1(m1) = i

DC15¢ continue =

if (m1.eql.0.) goto DC20

index = 1,

comment:

call maxlist(expected_value(1),m1,max1;4index)

i1 = indext(index)

set_field_width 3

expand "Current hest elemental desiqn is "

expand "$3structure_designs(i1,1)...Structure_designs(i1,3)/"
expand "Expected value = $53$1maxt//"

goto DC17

DC20% expand "/No level 3 design has been generated as vet//"
DC17$ say Determination of potential new designs and selection of the
sayY best design eXperiment from among these,

expand "“//"

a = 1,

dfa potential_desians 2: (1,30),(1,4)

dff nev_desiagns(,,current_designs,a)

"1

say Determination of the sStructures of potential designs

comment:)
call new_designs(structure_designs,potential_designs,current_designs,a)
comment:

set_decimal_places 0

set_field_width 2

expand "/Potential Designs://"

a = a=1,

through DCc18, for k = 1, Until a

if (potential_desiagns(k,1).eal,0.) goto DC18

expand "No, $3k: $3potential_designs(k,1)...p0tential _designs(k,3)//"
DC18$ continue

read_console_return

saY Selection of the best design experiment follows

comment:

ex selection

comment:

¢ = current_desiens -~ 1,)
sayY TyPe in a nare for the selected desion (up to 10 characters in
saY length):

expand "/

read_set console

expand “/" ,

read: $2name_designs(current_designs,0)

expand "//"

comment:

store session

read_console

selection

dfa temp_structure 2: (1,20),(1,4)

comment: sStructure of parent design

dfa kk 1% (1,30)

comment: index of potential_desion

dfa prior 1: (1,30)

comment: prior is the exrected value of the parent design’s current
comment: value

m =0, ‘

comment: derive structure for immediate rarent of each potential
comment: design

through 81, for i = 1, until a

if (potential_designs(i,1).eql,0,) goto &1

m=m+1,)

through $2, for 4 = 1, until &,

if (potential_designs(i,3j).neq.0.) goto &3
temp_structure(m, (4=1)) = 0,

qoto 52

$3% temp_structure(m,Jj) = potential_desions(i,3)

§2% continue

kk(m) = i

mi = m

1 continue

expand "/

saY Structure of immediate parents for each votential desian

say determined

comment: determine immediate Parent for each potential design and
comment: compute its eXpected current_value asS the orior of the pot-
comment: ential desian

through sS4, for ¥ = 1, until m1

through S5, for { = 1, until current_designs

zap = 0,

through S6, for i = 1, until 3, ;

if (temp_structure(k,Jj).eql,.structure_designs(i,d)) zar = zar + 1,
56% continue

if (zap,neq,3,) goto S5

n1 = i

goto S8

58% continue

s8$ through S7, for m = 1, until 5,

if (current_value(ni,m,2),leq.max1) goto SS

prior(k) = prior(k) + current_value(ni;m,1)*current _value(ni.m,2)
qoto S7

§S$ prior(k) = prior(k) + current_value(ni,m,1)*max1

57% continue

S4$ continue

max = 0,

index = 1,

comment: choose desion with the highest exrected prior

call maxlist(pricr(1y,mi,max,index)

comment:

k = kk(index)

level = 0,

urrent_designs = current.designs + 1,

.hrough $9, for 1 = 1, until 3,
‘tructure_desiagns(current_designs,i) = potential_designs(k,1i)
£f (potential_designs(k,i).neq.0,) level = level + 1,

9% continue

et_field_width 2

xpand “"//Best experiment is $3potential designs(k.1)...potential _desians(k,3)//"
xpand "EXxpected value?!: $5u$1max//"

xpand "lLevel No, $3level//"

et_decimal_places 4

eturn

Bayvyes_Posterior

dfa level_functicn 2: (1,3),(0,6)

comment: 1St dimension: levels, 2nd: sters

rs theta

through BpP3, for k = 1, until 3

read?: $1level_function(k,1)...level_ function(k,5)

BP3% continue

rs off

expand "/Filename theta read//"

num = 0,

n2 = nl)

comment: n{ is the number of the parent of the generated design

nl = current_designs

1l = level

BP4S num = num + 1,

denominator = 0,

through BPs, for 4 = 1, until s,

xi = 0,30 + current_value(n2,1i,2) - u(0,1,current_desians)

xa = xi*10, + 0,5)

if ((xa.les.0,).cr,.(xa.geq,7.,)) aoto BPS

denominator = denoOminator + current.value(n2,i,1)Y*level_function(level,xa)
BP5$ continue

through BpP6, for 3 = 1, until §,

xi = 0,30 + current_value(n2,3,2) - u(0,1,current_desians)

xa = xi*10. + 0,5 ,

if ((xa,les,0,).,cr,.(xa.qgeq.7,0)) goto BP ‘
current_value(n1,3,1) = current_value(n2,3j,1)*level function(level,xa)&
/denominator

BP$ current_value(n1,3,2) = current_value(n2,3j,2)

BP6$ continue

1 = -1.‘1.

if (num,geq,2,) aoto BP7

nt = n2

nt = n1

goto BPY .

Bp7% if (l.les,0,) goto BP10 "

comment: generated design was on level 1, therefore two rasses are
comment: sufficiene

if (l.grt.O.) goto BPS

comment: generated design was on level 3, therefore its level 1 rarent
comment: must be determined

nt = 1,

n2 = 1,

aoto BPU)
comment: generated design was on level 2, therefore the third pass will
comment; be the revision of the distribution over the universal action,
BP8$ ¢ = current_designs ~ 2,

through BP9, for 1 = 1. until ¢ _

if (structure_designs(n1,1),.,neq,structure-designs(i,1)) agoto BPS

nt =i

n2 = i

goto BP4

BP9S continue

BP10% expand "Bayves_Posterior complete//"
return

ordering.pl1

ordering! proc(vector,upver_limit,rank,m,n);
dcl (vector(20,20),rank(20,20),uprper_limit,l,m,n,t) float bin;
if (m=1) then go to label2;
/* ranking by increasing values */
else 40 1 = 1 to uppver_limit;
rank{n,i) = 1; end:
do 1 = 1 to (upper_limit);
t = vector(n,i); 1 = 0}
40 3 = (i+1) to upper:limit;
if t>vector(n,j) then rank(n,ij)=rank(n,i)+1;
else
if t=vector(n,3j) then do; l=1+1;
if 1>1 then go to labhelB’;
else
do k=1 to upper_limit;
if vector(n.k)<vector(n,i) then
rank(n,k)=rank(n,k)=1;
else; end}
label5: endj;
else rank(n.i)=rank(n,i)+1;
end;
end;
g0 to lahelld;
/* ranking by decreasing values */
label2: do i = 1 to upper_limit;
rank(n,i) = 1; end;
do i = 1 to (upper_limit);
t = vector(n,i); 1 = 07
do j = (i+1) to upper_limit;
if t<vector(n,4) then rank(n.3j)=rank(n,4)+1;
) else
if t=vector(n,j) then do; 1=1+1;
if 1>1 then go to label6;
else)
do k=1 to upper_limit}
if vector(na.k)>vector(n.i) then
rank(n,k)=rank(n,k)=~1;
else; end;
label6: endj} ,
else rank(n,i)=rank(n,i)+1;
end;
end;
labelid: return;
end;

maxlist,.prl

maxlist: proc(vector,upper_limit,value,index);
dcl (vector(30),vpper_limit,value,index)float bin;
value = =1e30;
do i = 1 to upper_limit;
if vector(i)>value then d4o0; value = vector(i);
index = i; end;
else;

end;
return;
end;

minlist,prl1

minlist: proc(vector,urper_limit,value;index);

dcl (vector(20),uvpper_limit,value) float bin;

value = 1e30;

do 1 = 1 to upper_limit;

if vector(i)<value then do; value = vector(i);
index = 1i; end;
else;

end;

return;

end;

quasi_order,pl1

quasi_order: proc(rank,sum,reachability,num_e,num_d4);}
dcl (rank(20,20),reachability(20,20),sum(20,20),m,n,
num_e,num_4) f£loat bin;
do i = 1 to num_e;
do 3 = 1 to num_4;
do k = 1 te num_d;
if rank(i,4)<rank(i,k) then reachability(4i,k) = 1;
else;
end;
end;
end;
do 1 = 1 to num_4;
do 3 = 1 to num_ d;
sum(1,i) = sur(1,i) + reachability(i,q);
end;
end;
return;
end;

nevw_designs,pl1

new_designs: proc(structure,potential,current,a);
dcl (structure(20,4).potential(40,4) ,a,current,zap) float bin;
/* generates new designs */
if current = 1 then d0; potential(a,1) = 1; a = a + 1;
go to P7; end;
else;
do 4 = 2 to current;
do 3 = 1 to 43
1f structure(i,§)=0 then ao to P3;
else do; potential(a,j) = structure(i.d);
potential(a+1,3) = structure(i,i);
go to P2; end;
P3: potential(a,i) = structure(i,ij) + 13
potential(a+1,3-1) = structure(i,-i~1) + 1}
potential(a+1,3) = 0;
if j<3 then do; potential(a+1,3i¥1) =
potential(a,i+1y = 0;
a = a+2;
go to P5; end;
else do; a = a + 2;
go to P5; end;

0;

P2: end;
P5! end; o .
/* checks and eliminates designs already developed */
do J = 1 to a;
do 1 = 2 to current;
zap = 0; _
do k = 1 to 3;
if potential(j.k)=structure(i,k) then zap=zap+1;
else;
end; ‘
if 2ap=3 then do; potential(3i,1) = 0;
go to P6; end;
else;
end;
P6: end;
P7: return;
end;

7.2 Typical Qutput from Console Sessions

(a)

(b)

()

User Operations

Evaluators
Preliminary
order
display-impacts
Pareto

compare
display-transform

satisfaction

Static Evaluation

SinglejPass
Rishburn-Relative-Value
Case-Relative-Value
Linear-Scoring

Quasi-Separable

Dynamic Evaluation

Dynamic-Control-1

Dynamic-Control

ex Evaluators

Type in the number of evaluator names to be input

=23

Type in the name of each evaluator (maximum 10 characters) in
order, preceded by a single digit level number. For example:

D Maxbenefit (overall goal)

1 Financial (1st secondary objective, under overall goal)
2 Cambridee (1st tertiary objective, under "Financial")
3 tax_yields (1st lower-level goal, under "Cambridge")

3 serv_costs (2nd lower=-level goal, under "Cambridze")

2 MIT (2nd tertiary objective, under "Financial")

:D Maxbenefit

21 Financial

32 Tambridze

23 serv_tosts

33 tax_yields

=2 MIT

23 total_cost

3 returns

1 Employment
22 Numberjobs
:3 white_coll
*3 blue_roll
3 service

21 Socio_Envr
:2 Hous'ing

=3 rental
3 wariety
2 Sotial

z3 inmteract
3 access
2 Movement
x3 capacity
=3 parking

ex Preliminary
Type in the number of evaluators

223

TJype in the number of designs

=15

Filename impacts read

Filename names read

Provrams accept single=-level or hlerarch:cally structured
evaluation problems:

Type 1 if designs and goals both have only one level of
generality; the number of hierarchical levels otherwise.
23

Type in the level number desired: 1, 2, or 3

3

Filename structure read

>

ex order
Type in the name of the evaluator to be used’

stotal_cost

Type in "increasing'" for ranking by increasing value, or
type in “"decreasing' for ranking by decreasing value.

sdecreasing

Designs Ranking
A211_3 L
A221_3 2
A222_3 3
A231_3 5
A321_3 1

ex display_impacts

For display,

= =2

choose 2 to 5 designs from the following list:

5: A211_3

: A221_.3-
9: A222_3
3: A231_3
5: A321_3

Type in the number of designs to be disp]ayedi

b

Type in the names of the designs

tA211_3
tA221_3
tA222_3
tA231_3

Designs:
Impacts
serv_costs
tax_yields
total_cost
returns
-white_coll
blue_coll
service
rental
variety
interact
access
capacity

parking

A211_3

1650000.00
1500000.00
84500000.00
89.00
1900.00
200.00
150.00
"305.00
.45

.30

480.00
45.00

250.00

A221_3

1300000.00
1150000.00
82000000.00
85.00
1650.00
0.00
100.00
280.00

.55

.35

440.00
35.00
220.00

A222_3

1350000.00
1300000.00
83000000.00
86.00
1500.00
0.00
125.00
260.00

.40

40

510.00
31.00
250.00

A231_3

1900000.00
1950000.00
85500000.00
91.00
1900.00
300.00
200.00
300.00

.50

.40

290.00
52.00
200.00

ex Pareto

Construction of Ordinal Ranking Matrix

Type in "“increasing" for ranking by increasing value, or

~type in "decreasing" for ranking by decreasing value, for
each evaluator: '

Cambridge
cincreasing

MIT ' H
:decreasing '

~ Numberjobs
tincreasing

Housing
:decreasing

Social
t:decreasing

Movement
:decreasing

Ordinal Ranking Matrix completed
Dominance check by constructing guasi-levels

Quasi-level 1: Pareto-efficient frontier

A210_2
A220_2
A230_2
A320_2

Quasi-level 2: Dominated alternatives

A310_2

€XxX compare

Type in the names of the two designs to be compared

$A221_53
2A222_3

Evaluators
serv_costs
tax_yields
total_cost
returns
white_coll
blue_col1l
service
renfal
variety
interact
access
capacity

-parking

A221_3

1300000.00
1150000.00

82000000.00

95.00

1650.00
0.00
100.00
280.00
.55

.35
4540.00
35.00

220.00

A222_3

1350000.00
1500000.00
83000000.00
86.00
1500.00
0.00
125.00
260.00

40

.40

510.00
31.00

250.00

Difference ’

-50000.00
~150000.00
-1000000.00
9.0D
150.00
.00
-25.00
20.D0
.15

-.05
-70.00
4.00
-30.0D

ex display_transform

Filename value_array read

transform_array is being appended
For disp]ay, choose 2 to 5 designs from the following list:

5: A211_3
8: A221_3
9: A222_3
13: A231_3
15: A321_3

Type in the number of’designs to be displayed
b

Type in the names of the designs

tA211_3

$A221_3

tA222_3

tA321_3

Designs: ‘ A211_3 A221_3 A222_3 A321_3
Transforms

serv_costs .14 .26 .26 .40
tax_yields .71 54 .59 .38
total_cost .07 .10 .10 .33
returns .40 .53 .32 .71
white_coll .96 .84k .80 .32
blue_col1 .20 0.00 0.00 0.00
service .48 .34 U4l 3L
rental .37 - .53 .37
variety .56 .65 .51 .65
interact | .49 .55 .60 .64
access .60 .69 .60 ..69
capacity 41 .53 .59 .71
parking .38 bh .38 .58

>

ex satisfaction

Type in the name of the design to be analysed

2A321_3

Design: A321_3

Evaluator Utility , Rank
serv_costs - .40 5
tax_yields .38 b
total_cost .33 9.
-returns .71 1
white_coll .32 ' 10
blue_coll . 0.00 11
service © .34 8
rental .37 7}
varlety .65 3
interact .64 L
access .69 2
capacity .71 1
parking .38 6

ex Single_pass

Type in "increasing' for ranking by increasing value, or
type in '"decreasing'" for ranking by decreasing value; for
each evaluator

serv_costs
rdecreasing

tax_yields
sincreasing

total_cost
1decreasing

returns
sincreasing

white_coll
tincreasing

blue_coll ‘
sincreasing .

service
tincreasing

rental .
sdecreasing

variety
sincreasing

interact
vincreasing

access
sdecreasing

Tapacity
sdecreasing

parking
rdecreasing

Ordinal ranking matrix completed

- Dominance check by constructing quasi-levels

Quasi-level 1: Pareto-efficient frontier

A211.3
A221_3
A222_3
A231_3
A321_3

temp_impact copied into reduced_impact

READ_CONSOLE_RETURN
>store Single

ex Fishburn_Relative_Value

Filename transform_array read

For display, choose 2 to 5 designs from the following list:

5: A211_3
8: A221_3
9: A222_3
13: A231_3
15: A321_3

Type in the number of designs to be displayed:
th

Type in the names of the designs:

tA211_3

tA221_3

tA222_3

tA231_3

Designs: A211_3 | A221_3 A222_3 A231_3
Weighted |
Values

serv_costs .04 .07 ’ .07 0.00
tax_yvields .08 .0b .05 .13
total_cost _ 0.00 .03 .03 0.00
returns .02 .05 0.00 .02
white_coll .16 .13 .12 .16
blue_col1 .05 0.00 ~0.00 .08
service . 0L 0.00 .02 .06
rental 0.00 .02 0L 0.00
variety . .01 0L 0.00 .02
interact 0.00 .02 .03 .03
access 0.00 | .02 0.00 .05
capacity .01 .0 .06 0.00
parking 0.00 .02 0.00 .03
Weighted

Total 42 b7 41 .58
Ranking: L 3 5 1

b

Case_Relative_Value

Filename weight_table read

Filename transforrm_array read

For display, choose 2 to 5 designs from the following list:

5:
8:
9:
13:
15:

A211_3
A221_3
A222_3

Type in the number of designs to be displayed:

4

Type in the names of the designs to be displayed:

TA211_3
tA221_3
TA222_3
tA231_3

Designs:
Unweighted

Relative
Values

serv_costs

tax_yields
total_cost
returns
white_col]l
blue_coll
service
rental
variety
interact
access
capacity
parking

Weighted
Total:

Ranking:

b

A211_3

.13
.23
.00
.17
.25
40
$22
.18
.19
.17
.18

.16

.18

.17

A221_53

.25
.17
.19

A222_3

.25
.19
.19
o1l
.21
.00
.19
.25
.17

.21

.18
.23
.18

.18

A231_3

.00
.28
.00

ex Linear_Scoring

Filename weight_table read

Filename transform_array read

For display, choose 2 to 5 designs from the following list:

5: A211.3
8: A221_3
9: A222_3
13: A231_3

15: A321_3

Type in the number of designs to be displayed:

4

Type in the names of the designs to be displayed:

© :A211_3
1A221_3
tA222_3
TA231.3
Designs: A211_3 A221_3 A222_3
Weighted
Values
serv_costs .01 : .02 .02
tax_yields .08 .06 .06
total_cost 0.00 .02 .02
returns : .03 .0k .03
white_coll .08 .07 .06
blue_coll .02 0.00 0.00
service .02 .01 .02
rental .0b 0L .05
variety .02 .03 .02
interact .03 .03 .0b
access | .0b . 0L .04
ecapacity .02 .03 .04
parking .01 .01 .01
Total .39 b1 40

Ranking: 5 3 L

A231_3

0.00
.10
0.00
.03
.08
.02
.02
.04
.02
0L
.05
.02
.01

43

Quasi_Separable
Filenane grouping_evaluators read
Filenane transform_array read

Filename corner_utilities, read

For display, choose 2 to 5 designs from the following list:

5: A211_3
8: A221_3
9: A222_3

13: A231°3
15: A321_3

Type in the number of designs to be displayed:
ol

Type in the names of the designs to be displayed:

tA211_3

- tA221_3
tA222_3

tA231_3 S e
Designs: A211_3 A221_5 A222_3
Utility
Values
serv_costs .14 .26 .26
tax_yields ‘ .71 .50 .59
total_cost 0.00 .10 .10
returns L0 .53 .32
whiﬁe;coll .96 : LR .80
blue_coll .20 0.00 0.00
service 48 .34 A1
rental . W37 b .53
variety .56 . .65 .51
interact L9 .55 .60
access .60 .69 .60
capacity L1 ' .53 .59
parking .38 b .38
Aggregated
utility - . .3385 L3683 3240

Ranking: b 2 5

A231.3

- 0.00

.40
.96
.30
.59
.37
.60
.60
.78
.36
.50

.3658

ex Dynamic_Control_1
Type In the number of evaluators
:23 |
Filename names read
Filename structure read
Determination of structure of potential designs
Potential Designs:
No. 1: 1 0 0
Filename cdrrent_value_array read
Selection of best design experiment follows

Structure of immediate parents for each potential design
determined

. —

Best experiment is 1 0 0.
Expected value: 0.439999990
Level No.: 1

Type in a name for the selected design (up to 10 characters
in length):

~:A100_1

Dynanic_Control
Previous session retrieved
Filename value_array read
Filenane inpact_table read .
Utility calculations for chosen design are complete
Quasi-additive utility aggregation
Filename corner_&tifities read
Utility aggregation for the selected design is comptete
u(0,1,2) = 0.32 |
READ_CONSOLE_RETURN
>rtd

Bayes_Posterior is called, to revise priors over the generated
design and its parents.

Filename theta read

Bayes_Posterior complete

No level 3 design has been generated as yet

Determination of potential new designs and selection of the
best design experiment from among these.

Deterhination of the structures of potential designs
Potential Designs:

No. 1: 110

No. 2: 200

READ_CONSOLE_RETURN
>rtd

Selection of the best design experiment follows

Structure of immediate parents for each potential design
determined

Best experiment is 11 0

Expected value: 0.363529406
Level No. 2

Type in a name for the selected design (up to 10 characters in
length):

tA110_2

233

7.3 Description of the North West Area Project

On July 10, 1969, President Howard W. Johnson announced that
M.I.T. was purchasing the Cambridge property of the Simplex Wire
and Cable Company, which had previously announced its transfer to
Maine in 1970. (66) The Simplex ptupe;ty in Cambridge is 18.7
acres of land and Buildings in 11 closely gtouped parcels to the
north of M.I.T.'s West Campus. Before its sale to M.I.T., the
Simplex préperty paid $240,000 in yearly real estate taxes (1970)
to Cambridge, and employed 600 persons,Aabout»Z;l/ZZ of the total
manufacturing employment in the city.

M.I.T.'s purchase is located in an industrial sector of
Cambridge, termed the 'North West Area", hence the name of the
project. This sector covers 135 gross acres (109 net acres) of
industry, of which, M.I.T. properties (owned or under optiom,
including Simplex) total 44 acres.

In his public announcement, President Johnson noted the
effect that the transfer of the Simplex property to M.I.T. would
have on Cambridge, particularly in terms of tax revenues and

employment losses:

-

"M.I.T. is acquiring the Simplex property as a resource
for making further contributions to the construction of
urgently needed new housing in Cambridge, and not for the

(66) H.W. Johnson; public announcement re Simplex purchase,
(Cambridge, Mass., 10 July, 1969) i

234

expansion of M.I.T.'s academic campus. It is M.I.T.'s

intention also to bring about new commercial development

on the site that will add significantly to tax revenues

and employment opportunities in Cambridge. All expected

uses of the site will be taxable.....The site also pre-

sents an opportunity to add substantially through new
commercial development to the tax revenues and to the
number and variety of jobs in Cambridge.....'"(67)

The Simplex Advisory Committee was a 9 member group of
faculty and administration set up in October, 1969, to recommend
means of developing the Simplex site. It noted that the Simplex
property was the only land resource available to M.I.T. with the
acreage and development capacity to absorb a large quantity of
the additional housing required for faculty and staff. The members
recommended the development of housing for M.I.T. personnel,
which would allow Cambridge to benefit from M.I.T.'s purchase,
under the U.S. Housing Act of 1949, Section 112, by acquiring
"credits' to apply to redevelopment projects elsewhere in
Cambridge. They also expressed a preference for a mix of
several small commercial activities on the site. (68)

The Corporation Joint Advisory Committee likewise stressed

the development of housing for the M.I.T. community; primarily

for faculty and staff, but also for visiting faculty and married

(67) Ibid.

(68) Simplex Advisory Committee; Considerations in the Future
Development of Simplex and Related M.I.T. Properties,
(Cambridge, Mass., M.I.T., Feb., 1970)

235

students. The members also advocated "non-polluting, labour-
intensive" commercial and industrial usés for the site, and
neighborhood centers both for the new development énd for
Cambridgeport. A "fine-grained mix of M.I.T. people and non-
M.I.T. people" (69) was to be encouraged in the housing develop-
ment if possible. Community involvement and integration of the
project with Cambridgeport and Central Square, were also desirable.
CJAC admitted though, that there were difficulties in attempting
to create a residential neighborhood in the midst of an industrial
sector with much noise and heavy truck traffic. The short-run
conditions in the area are’not conducive to residential development:
the appearance of the surroundings, the presence of rail spurs,
truck traffic, and the lack of access to the West Campus, (separ-
ated by railroad tracks), are all negative factors.

Further, major uncertainties in the North West Area make the
planﬁing of a comprehensive development difficult: major industries
in the area may leave, (although exactly when, is uncertain); tﬁe
-market for commercial and office space is poor; interest rates for
unsubsidized development are high; the railroad right-of;way
separating the project from M.I.T. has been proposed as a possible

location for the Inner Belt expressway and also for a D.O.T.

.

(69) Corporation Joint Advisory Committee on Institute-Wide
Affalrs; Report on Simplex and Related Development,
(Cambridge, Mass., M.1.T., 5 June, 1970)

236
inner-city transit demonstration project; and the reactions of both
the city of Cambridge (which must approve required zoni@g changes)
and Cambridgeport residents, are uncertain.

The preparation of alternative development plans for the
North West Area Project is being undertaken by the M.I.T. Planning
Office, with co-ordination by a Sfeering Committee which also
acts as a liaison with the M.I.T. Administration and community
groups. The principal objectives and design alternatives as
refined by the M.I.T. Planning Office, form the basis for the
illustrative application of the techniques described in Section 4,

Four issues are seen as crucial to the project:

(1) the assurance of adequate tax yields to the city of
Cambridge;

(2) the development of a variety of jéb opportunities in the
project; A

3) ;dequate housiﬁg for the M.I.T. and Cambridgeport
communities;

(4) improvement of the North West Area environment.

These issues are elaborated into the hierarchical structure
of goals and sub-goals illustrated in Figure No. 4.17, "GOAL
STRUCTURE - M.I.T. NORTH WEST AREA PROJECT". The goal fabric is
intended to be integrative of all the impacted actor groups in the

project: i.e. there is no differentiation of objectives by actors.

237

Design variables which are presently perceived as crucial in

the generation of development alternatives, fall roughly into

5 classes:

1)

(2)

3)

4)

(5)

Overall financing mechanisms: private developers, M.IL.T.,

Federal and State government programs, and various com-
binations of these;

Housing Ownership: condominium, co-operative, conventional

(ovming or rental) and student housing in various locations

and phased combinations in the project.

Programming Alternatives: the number and types of
housing units, the area of commercial and office develop-

ment, and community resources center;

Phasing Strategies: the timing, financing and location of
programmed uses, along with M.I.T. acquisition strategies
for buying new properties as they become available;

Locational patterns: the arrangement, mix, and density

of programmed land uses, the design of open space and
recreational areas, planning of parking, automobile

‘access, and traffic flows within the project area.

-

Obviously, many permutationé of these variables are possible;

therefore, the small number of alternatives arrayed for evaluation

must present as diverse and distinct a coverage of these dimen-

sions as possible. The various grid metrics and level designa-

tions in DISCOURSE showed that -some of these variables are better

. 238
included at certain levels rather than others. For example, the

largest grid scale (240' x 200') was most appropriate for repre-
_ senting contextual attributes such as community services, commer-
cial, and Cambridgeport housing patterns; the intermediate écale
was most appropriate for traffic flows, detailed population
chiiacteristics, and general land use; while the smallest grid
scale {50' x 60') represented no contextual variables, but
permitted housing configurations, open space design, user assign-
ment, and ownership patterns within the project area, to be

described.

