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MSTRACT

A STUDY OF COMPUTER-BASED TECHNIQUES FOR MULTI-DIMENSIONAL EVALUATION
]IN JJRBAN PLANNING

Ihemas -Edmond Martin
§-ubmitted to the Department of Urban Studies and Planning on
eptember 24, 1971, in partial fulfillment of the requirements
for :the degree of Master of City Planning.

. ie thesis is directed towards the development of a computer-
assisted capability for the evaluation of planning projects with
iAxit-dimensional consequences. Evaluation models and routines are

aimp-lemented in DISCOURSE, an on-line computer language oriented
towards :spatially disaggregated environmental design problems.

A'Yaxiety of issues in the evaluation of complex problems are
Inkt:roduced: the role of evaluation in the planning process; re-
lations between design descriptors and evaluators; the multi-
dimensionality and hierarchicization of goals; preferences for
-value, risk, and time; and the representation of predicted con-
sequences in an impact matrix. This discussion forms the basis
for a taxonomy of multiple objective preference models which range
from simple ordering of consequences to complex multi-dimensional
utility theory. Preferences for certain consequences with no
tradeoffs among evaluators, tradeoff analysis under certainty,
,and multi-dimensional preferences for risky consequences, are
,outlined.

The next section develops hierarchical systems models in more detail,
describing three functional forms: decision complexity, description
and organization. A distinction is made between hierarchical goal
iodels, structured in terms of decision complexity, and hierarchical
planning models differentiated by levels of description or abstrac-
tion. A number of hierarchical goal models are described and
related to multi-dimensional preference structures; Manheim's
Bierarchical Structure is discussed as an example of hierarchical
planning models; and from this, desirable characteristics of a
multi-dimensional, hierarchically structured evaluation system
are developed.

A computer-aided evaluation system is presented, with capabilities
in three areas:

(a) "User Operations", a set of flexible, independent routines
for manipulating a design impact matrix;

(b) "Static Evaluation", a terminal assessment procedure, with
relative value, certainty, and risky, preference models;

(c) "Dynamic Evaluation,' a hierarchically structured planning
model, operating on both goal and design structures.
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All three groups of programs accept design alternatives which have

been generated at hierarchical levels of generality, but this is a

necessary requirement only for the Dynamic Evaluation model. How-

ever, if design alternatives have been so structured, then a corres-

ponding goal structure must also be input. M.I.T.'s North West Area

Project is used as an illustrative experiment for the testing of

the component evaluation. routines.

Extensions-of this work to include considerations, of social welfare

and social choice, user participation and gaming, cost-benefit

analysis and preferences for time, and incorporation of evaluation

techniques within a larger and more comprehensive evaluation
strategy, are also suggested.

Thesis Supervisor: William L. Porter

Title: Associate Professor of Urban Design
Department of Urban Studies and Planning
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1. INTRODUCTION

The solution to a problem pre-supposes several conditions:

(a) a decision language or formal system in which the

imediate problem may be disconnected from its larger

context and stated unambiguously; i.e. the "problem

representation";

(b) a set of computational procedures within a "plan",

which operate on an initial problem statement A, to

transform it into a succeeding state A': i.e.

A ==> A'

These are commonly termed "search" procedures;

(c) a set of criteria for determining when a given problem

transformation is satisfactory to the decision-maker.

This testing of design alternatives for their suitability

is termed "evaluation".

We can concentrate on evaluation as an issue in urban problem-

-solving because most environmental problems are "ill-defined", i.e.

with no systematic means of deciding when a proposed solution is ac-

ceptable. To illustrate, we adopt Reitman's (1) notation for

problem analysis:

(1) W. R. Reitman; "Heuristic decision procedures, open constraints,

and the structure of ill-defined problems", in M. W. Shelley, III

& G. L. Bryan, eds.; Human Judgments and Optimality, (New York,

N. Y., John Wiley & Sons, Inc., 1964), Ch. 15, pp. 282 - 315.
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A = an initial problem state

B = a transformed problem state

== a process, program, or sequence of operations for trans-

forming A into B

In classical, unconstrained optimization (as in calculus),

where A, B, and => are all well defined, evaluation is implicit

in the conditions for solution. In well-defined optimization

problems under constraints, where the solution procedure is an

iterative algorithm, separate search and evaluation components may

be distinguished within the same iteration: "search" generates a

transformation of the present alternative; "evaluation" tests for

optimality. In ill-defined problems, where any, or all of: A, the

initial state; B, the transformed state; or =4 , the set of

available operations; may be vaguely defined (if at all), we must

concentrate on elaborating the decision-maker's choice criteria

in order to determine when a given solution is satisfactory. In

this latter case, separate search and evaluation phases may. be

distinguished in the planning process.

Within search routines, a number of implicit or internal

tests may be emliedded. However, we will discuss only "external"

tests; i.e. the evaluation of alternatives with respect to explicit

goal statements. Three evaluation models are developed, each

corresponding to different roles that evaluation may take on in

the planning process. Figure No. 1.1 illustrates Reitman's

concept of the problem-solving process as a series of successive

transformations of problem states:
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A ==> A' ==. A" == ........ A --. ........ B -

initial terminal
state state

Figure No. 1.1

Each node in the path is a problem vector which satisfies the cons-

traints implied by the attributes of the vector preceding it in the

chain. Conversely, each transformation defines a set of constraints

that must .be met by subsequent transforms if they are to lead to a

solution of that problem. (2)

Evaluation procedures may be applied after any particular trans-

formed state A , in order to assess some aspect of the process. The

purpose of such evaluation may be to determine what transformation

to undertake next in the process. Such comparative procedures,

applied "in process", we call "user operations". If B, the terminal

state, consists of a number of alternative transformed states,

evaluation assesses which of the alternatives is most satisfactory

to the decision-maker. We call this terminal assessment procedure

"static evaluation". Finally, evaluation procedures may be

incorporated within a larger "meta-procedure" which guides the

planning relations among sequences of transformations; this is termed

"dynamic evaluation".

(2) Ibid.; p. 305.
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Manheim has defined evaluation as:

"...the process of arraying and aggregating the conse-

quences of an action to facilitate decision-making."(3)

The basic input component to an evaluation procedure is a set

of predicted consequences, usually arrayed in an impact matrix.

Design consequences are derived from descriptor attributes of the

design, through transformation by a set of prediction operators:

(cf. Figure No. 1.2). Prediction is intended to anticipate the

consequences which would result if the design were to be actually

implemented.

solution i2  consequence

space space

A Prediction
xD Operator z0:

qii

A m.(a ,a2,a3,...a ).I=( 1- ''X 1 2'3 n x 12. 3**m)

Figure No. 1.2

Each design alternative, A = (a1,a2 ,a3 ,...a) is associated with a

unique point in n-dimensional attribute space, and is mapped onto a

unique point I = (i1 i2 'i 3''' n) in m-dimensional consequence

(3) X. L. Manheim, et. al.; The Impacts of Highways upon Environ-

mental Values, (Cambridge, Mass., M.I.T. Urban Systems Labora-

tory, Report No. USL-69-1, March, 1969), p. 37.
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space (under certainty), or a unique set of m probability distributions

over consequences (under risk). Each consequence that is associated

with a facet of the decision-maker's preference structure, we term

an "evaluator". (In our efficient and parsimonious view of the

planning process, the decision-maker predicts only those consequences

which are relevant to evaluation.) An evaluator is transformed

consequence; at the very least, a consequence ordered to reflect

direction of preference. However, the distinction between design

"attributes" and "evaluators" is not always clear because of the

phenomenon of "constraint proliferation" in the planning process,

as suggested by Reitman:

"all attributes of any object or process introduced into the
problem may serve as constraints on the solution....As problem
solving proceeds, the progressively more differentiated problem
compone.nts themselves become increasingly more important as a
source of constraints." (4)

A large number of design attributes are left "open" (i.e. with

one or more parameters left unspecified) at the beginning of the

process. The assignment of a set of values to design attributes

reduces the size of the search space, within which, successively

more detailed alternatives are developed. This use of attribute

values as tempor'ary constraints has primarily local implications

for guiding search; they become the criteria for the internal tests

mentioned above. In contrast, "evaluators" are the global criteria

by which the external tests operate, to assess alternatives with

(4) W. R. Reitman; op. cit., p. 297.
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respect to explicit goal statements.

The result of "globally" evaluating a set of alternatives with

respect to a set of goal variables, is a one-dimensional ordinal

ranking of this set; thus,. for multi-dimensional problems, with more

than one consequence, evaluation necessarily entails a condensation

or reduction in this dimensionality. Depending on its nature, the

condensation or aggregation of consequences must be done by different

means, so as to reduce possible arbitrariness introduced by the loss

of information content. Spatial statistical distributions may be

used to summarize over spatially-disaggregated consequences. (5)

Political bargaining and logrolling processes may be required for

aggregation over a number of impacted actors or community groups.

In one-dimensional utility theory, aggregation over probabilistically

distributed consequences is done through the probability calculus.

In this paper, we focus on the aggregation of consequences over a

number of goal dimensions, through multi-dimensional value and

utility theory. Condensation of monetary consequences distributed

over time may be done by standard discounting formulae, though

multi-dimensional utility theory is applicable here also.

Evaluation also involves transformations of consequence space,

the extent of which, depends on how strongly the decision-maker has

elaborated his preferences. These "preferences",~or statements

(5) D. S. Neft; Statistical Analysis for Areal Distributions,

(Philadelphia, Pa., Regional Science Institute, Monograph

series, No. 2, 1966).
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about desirable states of the world, may take on three different

aspects:

(a) value (the numerical level of a consequence);

(b) risk (probability distributions of consequence values);

(c) time (when the consequence occurs).

Preferences for time are not discussed here, but are well de-

veloped in literature on cost-benefit analysis (6). A taxonomy

of preference models for value and risk, is developed in Section 2.

The result of the transformation for each consequence i%, is

an associated worth index, v

v = u (i )

(i ) ) (vi)

consequence j value j

The interpretation given to- this worth index depends on two kinds

of measurement:

(1) the accuracy of the value assigned to the predicted

tonsequence (a function of the prediction model and

its associated measurement scale);

(2) the discrimination and scaling of the decision-maker's

preferences with respect to the predicted consequence.

(6) for example: A. Maass & M. Hufschmidt; Design of Water

Resource Systems, (Cambridge, Mass., Harvard University
Press, 1962).
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The concept of "measurability" is crucial to evaluation, since

the real purpose of measuring is to be able to predict certain

events (such as choices). If the measures of events are ambiguous,

they must either be accepted as such (i.e. as a property of the

events), or. the ambtguity must be removed, since "decidability"

and ambiguity cannot co-exist in the same problematic context.

The relationship between measurement of consequences and of

preferences will not be discussed here, nor will theoretical bases

for measurement and scaling. (7) Comparability of all alternatives

with respect to the same evaluators is required, since evaluation

introduces a consistent form of comparability among alternatives.

In some contexts, ordinal measures may be sufficient for decid-

ability, however ordinal scaling is very limited, relative to a

specific set of alternative outcomes, and ambiguous outide this

set. Most complex evaluation situations require interval or higher

measures, both of consequences and of preferences (such as the

von Neumann-Morgenstern interval utility scale (8)). Fishburn (9)

develops an extensive set of theorems for "ordered metric" measures

in the domain between ordinal and interval scaling, but again,

(7) for example: C. H. Coombs, H. Raiffa, R. M. Thrall; "Some
Views on Mathematical Models and Measurement Theory", in
Thrall, Coombs, & Davis, eds..; Decision Processes, (New
York, N. Y., John Wiley & Sons, Inc., 1954), pp. 19 - 37;
or W. S. -Torgerson; Theory and Methods of Scaling, (New
York, Wiley, 1958).

(8) J. von Neumann & 0. Morgenstern; Theory of Games and Economic
Behaviour, (Princeton, N. J., Princeton University Press,
1947).

(9) P. C. Fishburn; Decision and Value Theory, (New York, N. Y.,
John Wiley & Sons, Inc., 1964).
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such measures are relative -to a specific set of outcomes. De-

cidability, i.e. the unambiguous selection of a preferred alterna-

tive, depends on the lowest level of measurement in a problem

context. Though not wishing to sidestep a complex issue, for the

purposes of .this paper, we assume that consequences and preferences

are measurable to the level required for unambiguous choice (i.e.

usually interval scaling). This assumption also implies acceptance

of a number of normative axioms such as transitivity, closure,

continuity, monotonicity, etc., (10) underlying measurement models;

principles which may be difficult to accept in a complex empirical

situation. Thus, we temporaily- disregard the subtle interplay

between descriptive and normative decision criteria.

Evaluation procedures should aim for economy in information

acquisition and processing, in the sense that dominance should be

established with the use of the lowest scale of measurement

consistent with unambiguous choice, since this makes the fewest

demands on the decision-maker. Higher measurement scales should

be invoked only when necessary to resolve these ambiguities.

However, this is almost entirely dependent on the structure of

the problem: when choice is clear-cut, the use of an "evaluation

method" is trivial; when it is ambiguous, the selection of

method depends on the nature and. extent of this ambiguity.

(10) for example: Coombs, Raiffa, & Thrall; op. cit.
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The concept of hierarchical levels of evaluation is related

to differentiation of measurement scales. Hierarchization is

synonymous with multi-dimensionality, since general goals usually

have to be disaggregated into multiple operational objectives

when the former are not measurable directly. If they are

measurable, upper level goals are more likely to be assessed on

ordinal or nominal scales, whereas lower level objectives are

likely to be measured on ordered metric or higher scales.

Analogously, alternatives may be developed at several hidrar--

chical levels of detail, at different stages throughout the planning

process. Whether or not a hierarchical planning process will be

used to generate alternatives, depends on the degree of inter-

dependence among different sub-problem components. If (as is

rarely the case) alternatives can be generated from the simple

aggregation of solutions to a number of subproblems (e.g. as in

linear programming), then design may proceed directly to the

solution of these components. On the other hand, if there is a

good deal of interdependence among sub-problem solutions, which

precludes their simple aggregation, both global and local aspects

of the problem must be considered together, throughout the pro-

cess, In this latter case, a hierarchically structured approach

to the generation of alternatives may be feasible. How accurately

these intermediate alternatives can be evaluated, depends on the

precision of the prediction models, which in turn, relates to the

number of design attributes and their level of measurement.
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Preferences can be more detailed for consequences which can be

measured accurately. Possible relationships between hierarchical

evaluation and the hierarchical generation of design alternatives,

are discussed further in Section 3.

To conclude, we consider again, the role of evaluation in

the planning process. Above, we outlined three different roles

for evaluation techniques:

(1) "user operations";

(2) "static", terminal evaluation;

(3) "dynamic" evaluation.

More fundamentally, these models also serve several more detailed

functions:

(1) Representation of design consequences and actor

preferences. Consequences are displayed in an "impact

matrix" which serves as a basis for operations by various

evaluation techniques. In its simplest form, an impact

matrix has the following elements: (cf. Figure No. 1.3)

Alternatives

A. A2 A . An

Evaluators E 112-- ij~~~ in

E i i
2 21 22

E i ....... i i.
M ml mj mn

Figure No. 1.3
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This basic format may be elaborated to include uncertainty

(by associating probabilities p j with every impact i ),

differentiation of impact types (e.g. costs, quantitative

effects, political effects, etc.), differentiation of

actors (as a preliminary to a community bargaining

process): (cf. Figure No. 1.4).

Alternatives Actors

A ... A . A
j n

Evaluators E i. i in

Ei A
ii.

E i i i
k kl........ kn

*E i i i
' 1 l1 lj ln

E B
m mj

E i 1 . . . . . . . . . pnrjpn

Er ir1'** rj* rn
Er i1 .. i iC

s : sj

E i .......... i
t t1 tn

Figure No. 1.4

differentiation of actor groups (e.g. principal actors,

secondary actors, special interests, etc.), tradeoffs

among evaluators, (cf. Figure No. 1.5), etc.
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Trade- Alternatives
off
Ratio A A ....... A

1* j n

Evaluators E w i i in

E iW.

E
E w ml........

Figure No: 1.5

(C2) omparison of a set of impact matrix elements with

reaspect to some other differentiated dimension (e.g.

alternatives with respect to evaluators, actors, or

preference functions; evaluators with respect to

alternatives, actors, etc.)

(3) Guidance of the planning effort: display of crucial

decision issues (e.g. points of agreement or dis-

agreement among actors, similarities or dissimilarities

between alternatives, unsatisfied goal variables, etc.);

selection of design attributes for incremental improve-

ment, bases for negotiation, etc.; derivation of trade-

offs or rough preference information from the decision-

maker; indication of decision nodes for information

acquisition and experimentation, etc.

(4) Computation and aggregation of worth indices and rankings

of alternatives with respect to evaluators and actors,

summary statistics, tradeoffs, analysis costs, etc.
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(5) Self-organization: derivation of new preference structures,

changing the dimensions of evaluation or search space;

guidance of the search effort towards sub-optimality;

optimal control of analysis resources.

The last point-is suggested as a direction for further re-

search, but is not within the scope of the paper. Evaluation

techniques and strategies may serve some or all of the above

functions, with variations from stage to stage in the planning

process; from problem context to context; and from model to

model. The proposed evaluation models provide f9r a range of

responses to these functions.
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2. MULTI-DIMENSIONAL PREFERENCE MODELS

A number of assumptions are introduced to simplify and shorten

the discussion to follow. We have already mentioned the require-

ments of strict comparability of alternatives, and measurability of

consequences. Others include:

(1) evaluation and search spaces are fixed for the duration of

the planning process;

(2) the "social choice" problem (i.e. construction of a fair

and acceptable ranking over alternatives for a large

number* of actors), and the "social welfare" problem

(i.e. the equitable distribution of the costs and benefits

of alternatives to all impacted actors) are not con-

sidered. Therefore, we assume a unitary decision-maker,

or rather, the construction of a goal fabric which

integrates the interests of all significant actors.

(3) goals can be disaggregated or decomposed to the detail

required for measurable performance indices; preference

information can be derived and assessed meaningfully.

(4) alternatives are assessed in terms of only two dimensions:

consequences "x" and "y"; these consequences can be

measured on a continuous (interval) scale, though a

decision-maker's preferences for them may vary in pre-

cision.
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Preferences for multi-dimensional consequences take on two

aspects:

(1) preferences for value, risk, and time, of individual

.consequences, as developed in unidimensional utility

theory;

(2) preferences or tradeoffs among types of consequences or

dimensions.

In this section, these aspects are arrayed roughly in order of

increasing demands made on the decision-maker's preference structure;

that is, in terms of increasing transformations of consequence space.

For certain outcomes with no risk or time dimensions, models range

from very rough preferences with no implied tradeoffs among evalu-

ators (e.g. ordering of consequences) to complex indifference curve

analysis with detailed value and tradeoff preferences. The rudi-

ments of multi-dimensional utility theory are developed for the

added dimension of risk. Preferences for time are not discussed;

practically, most theory in this area concentrates on single

evaluators (usually monetary), introducing multiple time periods

as the extra dimensions. Consideration of both multiple goals

and multiple time periods quickly builds up dimensionality to

unmanageable proportions.

We consider first, preference models for certain consequences,

with risk and time considerations suppressed, and no implied trade-

offs among evaluators. The simplest form is the ordering of con-

sequence space, i.e. the specification of directions of prefer-

ences: (cf. Figure No. 2.1)
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2.1 Ordering of Consequences

Ly'
Y

y T
(Xl' yil)

I (x2' y2

x

Consequence
Space

A 2'
(x (x y2

l(x1 y1) )increasing
preference

Ordered Consequence
(Evaluation) Space

Figure No. 2.1

Dominance of alternative A2 over A1 is defined if x2 1 and

> 1 ; or x and y2 > ; and vice versa for dominance of

A1 over A Dominated alternatives are eliminated from further

consideration. If this comparison is repeated over a large number

of alternatives, a set of alternatives in which no alternative

completely dominates any other, results. This set is called:

2.2 Pareto-Efficient Frontier

Figure No. 2.2 illustrates the Pareto frontier for a finite

number of alternatives:



24

(D efficient set

0 0

do minated 0 0
al ternatives

x

Figure No. 2.2

Dominated alternatives are eliminated from contention. If

evaluators can assume continuous values (i.e. an infinity of

alternatives is possible, as in linear programming), then the

Pareto frontier will be convex (since an alternative lying on a

straight line between any two alternatives on the frontier will

be dominated by another alternative on the frontier. Convexity

may not hold for a finite number of alternatives, however. In

subsequent models, we assume that all alternatives being evaluated

are on the Pareto-efficient frontier; thus higher preference models

are required to resolve ambituities among this undominated set.

In the "Static Evaluation" model, the Pareto-efficient frontier

is determined by constructing "quasi-levels", from directed graph

theory. Alternatives are compared and ranked for each evaluator.

For illustration, suppose that we have 7 alternatives, AA2,...,A7,

being assessed with respect to 4 evaluators, w,x,y, and z. For
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example, with evaluator "w", we may have the ordering:

A. > A2 A3 > A > AS > A 6 >

In directed graph form, this is represented as follows:' (cf.

Figure No. 2.3)

.A 1 A 2 A 3 A 4 A 5 A 6 A7A A2 3 4 5 6 7

Figure No. 2.3

If for evaluators x, y, and z, we also have:

A > A2 > A3 > A > A5 > A6 > A7 ,

then alternative A1 completely dominates all others, and further,

a complete -ordering results. On the other hand, suppose that for

evaluator y:

A > A 3> A2 > A5 > A6 > A > A ,

wh-ich is represented as:

A1 ^3 ^2 5 ^6 A4 A7
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for evaluator y we have:

A1 > A3 > A2 > A6 > A > A5 > A7

represented as:

A1  A3  A2  A6  A4  A5  A7

and for z, we have:

A2 > A > A3 > A4  > A6 > A5 > A7,

represented:

A2 A1 A3 A4 A6 A5 A7

The overall ranking is derived from the combined directed

graph, formed by including any line ij if it occurs in any one of

the directed graphs by evaluators: (cf. Figure No. 2.4)

A A3 . AA

A,

/

NI A22'

Quasi-level 1

Figure No. 2.4

Quasi-level 2 Quasi-level 3
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Alternatives A, A2, and A3 form an intransitive cycle, as do

A and A The resulting quasi-levels are then:

[1,2,3]> [4,5,6] > [7]

Quasi-level 1 Quasi-level 2 Quasi-level 3

Quasi-level 1 (consisting of 3 alternatives in this example) is the

undominated set, or Pareto-efficient frontier. For large numbers of

evaluators, the combined directed graph may be difficult to perceive

or construct; then, the quasi-ordering can be obtained from the

"reachability" matrix. (11) However, the probability of obtaining

even quasi-orderings (apart from the Pareto frontier), goes down as

the number of evaluators increases. Evaluation then operates on

working out the intransitivities within quasi-levels, through im-

proved measurement, or use of secondary evaluators..

2.3 Bounds on Preferences

Constraint levels put bounds on consequence values by dividing

-them into acceptable and unacceptable regions. Constraints must be

used with caution, since they can be manipulated until only one, any

one, or no alternatives remain in the acceptable consequence space.

The resolution quality of constraints is low, and therefore bound-

aries between acceptable and unacceptable regions should not be

(11) F. Harary, R. Z. Norman, D. Cartwright; Structural Models: An

Introduction to the Theory of Directed Graphs, (New York, N. Y.;

John Wiley & Sons, Inc., 1965), p. 117.
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treated as definitive, particularly at the beginning of the planning

process. Figure No. 2.5 illustrates the use of constraints in par-

ticioning consequences into acceptable and unacceptable regions:

y TO 00! infeasible

0

Figure

0 Q
0

0
O 0

acceptable

unacceptable

N *
No. 2. 5

Constraints may define acceptable regions through both upper and

lower bounds: (cf. Figure No. 2.6)

0010

-10
C

0

| 0
0

acceptable consequence space

0

0
0

X x

Figure No. 2.6

Even with preferences specified only to the degree of ordered con-

sequences, and lower bound constraints, a number of choice procedures

are possible, without requiring tradeoff information among evaluators:

-d

y

y
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(a) Satisficing Model: (12) set all evaluators with constraints,

and choose the first alternative which satisfies them all

(cf. Figure No. 2.7)

any Ai
(x ,yi)

xxF

Figure No. 2.7

(b) Single Objective Maximization:' set all but one evaluator

with constraints, and select the alternative with the

highest remaining evaluator: (cf. Figure No. 2.8)

C

A -

i

0

000 *

unacceptable

L 1 12ON,
x x

Figure No. 2.8

y

(12) H. A. Simon; "A Behavioural Model of Rational Choice", in

Simon; Models of Man, (New York, N. Y., John Wiley & Sons,
Inc., 1957).



30

The decision as to which evaluator will be left uncon-

strained may be arbitrary; although this can be alleviated

somewhat by systematically loosening up each evaluator in

turn, comparing the resulting selections, and choosing the

alternative which appears most of ten.

The next set of models incorporate implied or expl-icit tradeoffs

among evaluators, but risk and time preferences are still suppressed.

All remaining alternatives under consideration lie on the efficient

frontier. One of the simplest such preference structures is:

2.4 Lexicographic Ordering

Evaluators are ranked in order of their importance; e.g.

evaluator x is more important than evaluator y. This principle

pushes the preferred alternative towards lower (or higher) points

on the efficient frontier: (cf. Figure No. 2.9)

YO
0 A

0

0
0 A A(x ,y 2 )

x

Figure No. 2.9
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A2 (x 2 y 2 ) will be preferred to A 1(xl,yl) because x2 x 1 . Only

if x 2 = xl, do we check for y values. Such a principle is generally

not reasonable because no increase in one evaluator (y) can compen-

sate for. even a small decrease in a more preferred evaluator (x).

However, over small ranges of evaluator values, it may be true. If

the preference structure is lexicographic, indifference curves cannot

be constructed since the decision-maker will never be indifferent

between two distinct alternatives A (xl,yl) and A2 2 'y 2  if

x 1' x2 , then the alternative with the greater x value is preferred;

if x1  x2 , the alternative with the greater y value is chosen.

The next set of models derives composite value functions by

means of explicit tradeoff analysis. This is concerned with de-

termining the rate of substitution of one evaluator with respect to

another so that their combination may be represented by a composite

function. The value function may be simplified if some form of

value-wise independence among evaluators can be assumed from

empirical testing.

Tradeoff analysis requires the use of indifference or iso-pre-

ference curves, which are defined by linking all (x,y) pairs to

which the decision-maker is indifferent. The local substitution

rate X , at any point (x ,y0) is the slope of the indifference

curve through (x ,y ): (cf. Figure No. 2.10)



32

0

YO yA {
Ax

x 0 x
0

Figure No. 2.10

and X = .

A value function V(x) reflects a decision-maker's preferences if:

and:

1 ' X2( V(Xl) > V(x2)

Four different preference models can be distinguished, in terms

of their simplifying assumptions about the assessment of indifference

curves, and the corresponding difficulty of analysis. The first

three of these permit composite value functions to be computed; the

last requires substantial empirical testing, and is only used if the

problem context does not justify the use of the first three models:
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(1) Constant linear indifference curves

(2) Constant form indifference curves

(3) Indifference curves with a constant rate of variation

(4) Complex indifference curves (not amenable to analytical

forms).

'2.5 Tradeoff Analysis: Constant Substitution Rate

If it can be determined that the substitution rate between

evaluators x and y, at any point (x 0 ,y) does not depend on the

particular values x0 and y0 , then the local substitution rate X,

is also the global substitution rate, and linear indifference curves

of the form:

x +X y k (constant)

result. The intersection of the Pareto-efficient frontier (which is

convex in the continuous case) by the family of curves x + Xy,

yields the most preferred alternative. (cf. Figure No. 2.11)

family of curves x + Xy

\ A(xl,y), the most preferred alternative

* '
x x

Figure No. 2.11
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.For a small number of alternatives, it may be sufficient to

determine substitution intervals, such that: one alternative A1

is preferred if X > X > X2 ; another, A2 is preferred if 2 > X3

and so on. Since the substitution rate does not depend on the values

of x and y, the two evaluators are considered to be "value-wise

independent" (13) of each other. This assumption underlies models

such as the Linear Scoring Function (*) and mathematical optimization

techniques such as linear and separable programming. In this case,

the composite value function takes the form:

V(x,y) = x + X y.

2.6 Tradeoff Analysis: Constant Substitution Rate with One

Transformed Variable

A slightly more complex form can be used if the local substi-

tution rate at (x0 ' 0 ) is found to depend on the value of one

evaluator, say y0 , but not on the value of the other evaluator,

-x0 . (cf. Figure No. 2.12).

(13) M. L. Manheim & F. Hall; Abstract Representation of Goals,
(Cambridge, Mass., M.I.T. Dept. of Civil Engineering,
Professional Paper P67-24, January, 1968), p. 5.

(*) discussed in detail on page 102
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y*
y

* X
x.: x

Figure No. 2.12

A composite value function which produces this pattern of

local substitution rates, is:

V(x,y) x + V (y),
y

where V (y) is a global substitution function between x and y,y

**

\\ \\
~

\ \ \

*z
x x0

Figure No. 2.13
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The V (y) function may be thought of, as a rescaling or trans-

y
formation of the evaluator y conditional on the interrelationship

between x and y. Denoting a new variable z = V (y), we illustrate
y

in Figure No. 2.14, a possible relationship between z and y:

z

V (y0

y yy

u No Y

Figure No. 2.14

These assumptions

values of x (or of y),

over the full range of

may be made more useful if held to restricted

and the analysis is repeated several times

either evaluator.

2.7 Tradeoff Analysis: Constant Substitution Rate with Two. to N

Transformed Variables

In general, the local substitution rate at any point (x0 'y0

will depend on the levels of both evaluators x0 and y0. However,

it -ay still -be possible to transform the x evaluator into a "w"-

scale, and the evaluator y into a "z"-scale so that the local

substitution rate at (w0,z0 ) will not depend on the levels of w0
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or z i.e. the transformed evaluators w and z are value-wise in-

dependent. To test whether this condition holds, we can attempt the

"Corresponding Tradeoffs" test (14) which determines for any y held

constant, at y0 if the local sub-stitution rate depends only on x

values; and. likewise, for any x held constant at x0, if the sub-

stitution rate depends only on values of y. Figure No. 2.15 illus-

trates this test:

*

y2
.

*
X* x x 2 X X

Figure No. 2.15

If the local substitution rates at (x y1 ), (x2,y2 ), (xl'y2)0

and (x 2'y 1 ) correspond as illustrated above, then the composite

value function has the form:

V('x,y) = V (x) + V (y)
x y

(14) H. Raiffa; "Tradeoffs under Certainty", (Cambridge, Mass.,
Harvard University, unpublished notes, 1968)
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The V (x) and V (y) functions are plotted from a conjoint re-scaling
x y

procedure which:

(a) selects an' arbitrary xM > x*, setting V x (xm

(b) chooses y so that (xmy) .(X** m

then V (y m 1;

(c) continues to determine intermediate values from indifference

relations; choosing x and y so that:

then V (x V (y ) = 2;

and so on, for x , y ; x q y ; etc.;

(d) fairs in resulting V (x) and V (y) curves. (cf. Figure

No. 2.16)

y 4 wz T\4
*

Yn
yMm 2 2

y (y)

n'''I

Y** 17 1

X* M nX X* m n ..X Y* Ym 3

Figure No. 2.16

As with 2.6, the V (x) and V y(y) functions may be thought of as

monotonic rescalings or transformations.of the evaluators x and y

so as to reflect their mutual interrelationship. These transformed
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functions cannot be derived independently of one another. The same

test may also be extended to n evaluators.

The Corresponding Tradeoffs Test requires constantly varying

indifference curves for x and y. If it cannot be verified, then the

V (x) and V (y) functions cannot be determined, and we are forcedx y
to- a more detailed empirical analysis. Operationally however, it

may be possible to accept the independence assumption over restricted

ranges of x and/or y.

2.8 Complex Indifference Curve Analysis (15)

Indifference curve analysis must be, used when the analytical

form of the preference curves cannot be fitted, or where there are

substantial interdependencies among evaluators, which if neglected,

would lead to significant distortions. Indifference curves are de-

rived by systematically comparing combinations of (x,y) evaluator

pairs and determining preferences between the pairs. (cf. Figure

No. 2.17)

(15) adapted from: K. R. MacCrimmon; Improving the System Design and
Evaluation Process by the Use of Trade-off Information-: An
Application to Northeast Corridor Transportation Planning,
(New York, N. Y.; Rand Corporation memo RM-5877-DOT, 1969).
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y

Y*

x x x

Figure No. 2.17

Indifference or "iso-preference" curves join all (x,y) pairs

which are indifferent to one another in the decision-maker's value

system. A significant disadvantage of the method is that the

decision-maker is forced to explore a wide range of (x,y) combina-

tions, only a few of which are likely to turn up in the various

alternatives being considered. Further, for more than a few

evaluators, the analysis is costly and time-consuming, since all

pairs of evaluators must be examined. Therefore, the various

value-wise independent models may serve as useful approximations

to more complex preference interdependencies. This point is

discussed in more detail in Section 3.

The final set of models continues tradeoff analysis, but

introduces preferences for risk as developed in one-dimensional

utility theory. Utility theory assumes that a continuous function

exists for each preference dimension; this may be hard to justify

empirically, since people would rather make real choices than define

their preference curves through hypothetical lotteries.



41

The various multi-dimensional utility models require that one-

dimensional utility functions for each evaluator be already assessed,

or at least computable. A variety of techniques have been suggested

to assess one-dimensional utility functions; a reasonable set of

axioms such as that of von Neumann and Morgenstern (16) is presupposed.

As with one-dimensional utility theory, rational decision-making under

risk consists of picking the alternative with the highest expected

(composite) utility.

2.9 Additive Utility

The additive value function representations of the preceding

models, i.e.:

V(x,y) = Vx(x) + V (y)

cannot be. adapted directly to decision-making under risk, since value

functions are appropriate only for certain consequences. The corres-

ponding utility model, i.e.-:

u(x,y) = u (x) + u (y),
x y

requires in addition, the assumption that the desirability of any

(16) J. von Neumann & 0. Morgenstern; op. cit.
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lottery depends only on the marginal probability distributions of

the consequence values, but not on their joint probability distri-

butions. (17) This can be tested by determining if the decision-

maker is indifferent between the following two lotteries: (assuming

* *
that x , y , x,, and y, have already been assessed)

* *
(x ,y.)

.50

L 1

.50

(x* ,)

L2

*
(x,,y )

.50

.50
*

(x ,y,)

Each lottery has the same marginal probability distributions for

x and y ordered consequences. Figure No. 2.18 represents these

lotteries:

y

y

L
L L2

x x x

Figure No. 2.18

(17) P. C. Fishburn; "Independence in Utility Theory with Whole
Product Sets", Operations Research, (Vol. 13, 1965), pp. 28 - 45.
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By scaling u(x*,y*) = u (x*) u y(yd ) 0,

* * * *
and u(x ,y )= u x) u (y ) =1,

x y

and defining: u (x) = u(xty*),

u (y) = u(x*,y),
y

Fishburn derives the additive representation:

u(x,y) u (x) + u (y).

However, Keeney notes:

"The main advantage to the additive utility function is its
relative simplicity. The assessment of the n-dimensional
utility function is reduced to the assessment of n one-
dimensional utility functions, and as previously mentioned,
adequate systematic procedures do e:Kist for assessing one-
dimensional utility functions. A major shortcoming of this
approach is the restrictiveness of the necessary assumptions.
We would often expect the utility of a lottery to be de-
pendent not only-on the marginal distributions of the re-
spective attributes (evaluators), but also on their joint
probability distribution." (18)

He goes on to develop the quasi-additive utility forms, which do not

suffer from this restriction.

2.10 Quasi-Additive Utility

The simpler form of this representation requires evaluator y

to be utility independent of x, and x to be utility independent of y.

(18) R. L. Keeney; Multidimensional Utility Functions: Theory
Assessment and Application, (Cambridge, Mass., M.I.T.
Operations Research Center, Technical Report No. 43, Oct.,
1969), p. 25.
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This implies that for a given value of one of the evaluators, say

y o y 0 , the compound utility function u(x,y 0 ) will depend only on a

function of the x values; similarly, for x = x0 , the function u(x ,y)

will depend only on a function of the y values. The joint utility

function u(x,y) is derived in four steps:

(1) Since x is utility independent of y; for any yO'

(y > Y0 > y*), we can define a conditional utility

function on x, u (x), so that:

*
(x ,y0 )

u (x)

(x,y0)

1-u (x)

(x~ ,y0)

(2) Since y is utility independent of x; for any x0'

(x > x0 > x*), we can define a conditional utility

function on y, u (y), so that:

*
(x0 ,y)

u (y)
y

(x0 y

1-u (y)

(x0 y*)
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(3) Determine the value. a1 , so that:

* *
(x ,y )

a,

* *
(x ,y,

1-ai

*
i.e. , a1 = u(x ,y,

(4) Determine the value a2 so that:

*
(x,,y )

* *
(x ,y )

aa2

1-a2

(x* ,y)

i.e., a2 = u(x*,y )

The compound utility function for two evaluators, is then:

u(x,y) = a1u + a 2u (y) + (1a 2) u (x)u (y)
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Figure No. 2.19 shows a graphical interpretation'of this result:

y
y

x x0

Figure No. 2.19

The compound utility for any point in the acceptable consequence

space is uniquely 'determined by the relative utilities of consequences

along y0 :(u (x)), and along x0 :(u y(u)), and the two points,

**
a1 :(u(x ,y*)), and a2 :(u(x*,y*)). What must be assessed are the

two utility functions represented by the heavy lines in the diagram,

and the two circled corner utility points.

Note that if a1 + a2 = 1, then the additive utility form results.

Therefore, the quasi-additive procedure should be adopted generally,

and if a1 + a2 - 1, then the simpler additive form will result

.anyway.

2.11 Asymmetric Quasi-Additive Utility

The more complex form of tuility independence requires at

least one evaluator, say x, to be utility independent of the other,

y; but not vice versa.
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The procedure uses:

(1) Step (1) above, to derive u (x) ;

(2) Step (3). above, to derive A;

(3) Step (4) above, to derive a2

(4) asseses a function u(x*,y), by getting p values, so that:

*
(x,,y )

p

1-P

(x(xy,)

i.e., u(x*,y) pa2;

(5) assesses a function u(x ,y) by getting s values, so that:

* *
(x ,y )

S

*
(x ,y)

1-s

*
(x ,y)

The following coinpound utility results:

u(x,y) = u (x)u(x ,y) + (1 - u (x))u(x*,y)
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Figure No. 2.20 shows graphically, the assessments which must

be made:

J3)
7 21

y

Y0

Y*

(5

(4)
S(2

0 a,
)

x x x

Figure No. 2.20

Keeney (19) also discusses cases in which one of the con-

ditional utility functions may be replaced by an iso-preference

or indifference curve; or two of the conditional utility functions

are replaced by two indifference curves. The assumption of

utility independence is also useful as an approximation even if

not all evaluators are utility independent of one another. In

such cases, the representation can be simplified by grouping

the evaluators into two or more utility-independent vectors;

and using the degrees of freedom inherent in the quasi-additive

form to fit empirically, the conditional utility functions.

Preferences for time (i.e. when a given consequence occurs)

are not considered here. In this section, we have examined a

number of preference models arrayed in order of precision of

(19) Ibid.; pp. 59 - 65.
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measurement. At one extreme, we have the simple ordering of con-

sequences; at the other, complex multi-dimensional utility theory.

Any of the preference models may be used as part of a larger

evaluation strategy, though ordinarily, it would be expected that

simpler techniques would be applicable in the early stages of

the planning process, and more complex techniques would be applied

to only a few alternatives (about which there is genuine am-

biguity), later on"in the process. For example, the proposed

"Static Evaluation" model (*) first uses a simple check for

dominance among alternatives, deletes dominated alternatives, and

then applies one of a set of more detailed preference models, for

selection among the remaining alternatives. Available techniques

then include the additive value, additive utility, and quasi-

additive utility models outlined above, as well as two "relative

value" preference models applicable only to a fixed set of

alternatives.

Multi-dimensional preference models are also relevant to

the discussion in Section 3, of hierarchical goal models. There,

-we describe in more detail, the relationships between general,

aggregate goal variables, and multi-dimensional disaggregated

evaluators; relationships which are usually arrayed in the form

of a goal hierarchy. The issues of independence vs. inter-

dependence among evaluators, crucial to hierarchicization, are

(*) see page 102
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also considered. The resulting conclusions underly the approach

taken in both the "static" and "Dynamic Evaluation" models described

in Section 4.
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3. HIERARCHICAL SYSTEMS MODELS

At the core of planning, particularly for urban activity

systems, is the simplification or abstraction of complex em-

pirical reality for the purposes of control. Behind this

striving for simplicity, lie two central factors:

(1) our limited information handling and computational

abilities, which inhibit our understanding of complex

systems;

(2) the redundancy present in most complex structures; a

factor which can be used to simplify our descriptions

of them.

In terms of (1), the "computation" issue, complicated prob-

lems can usually be solved only by dividing or decomposing them

into a number of parts, each of which can be attacked by a smaller

search effort. Minsky states:

"Generally speaking, a successful division (of a complex
problem) will reduce the search time not by a mere fraction,
but by a fractional exponent. ...thus, practically any
ability at all to "plan" or "analyse" a problem will be
profitable, if the problem is difficult." (20)

In terms of (2), the "representation" issue, Simon argues

that the perceived complexity or simplicity of a system depends

as much on our description or representation language, as on the

objective complexity of the system; the problem being to find a

representation which will eliminate most of the redundancies of

(20) M. A. -Minsky; "Steps Toward Artificial Intelligence" in'
E. A. Feigenbaum & J. Feldman, eds.; Computers and Thought,
(New York, N. Y., McGraw-Hill, 1963), p. 442.
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the empirical structure:

"....one path to the construction of a non-trivial theory
of complex systems is by way of a theory of hierarchy.
Empirically, a large proportion of the complex.systems we
observe in nature exhibit hierarchic structure- On
theoretical grounds we could expect complex systems to be
hierarchies in a world in which complexity had to evolve
from simplicity. In their dynamics, hierarchies have a
property, near decomposability, that greatly simplifies
their behaviour. Near decomposability also simplifies
the description of a complex system and makes it easier
to understand how the information needed for the develop-
ment or reproduction of the system can be stored in
reasonable compass." (21)

From the perspective of the planning process, there is a good

deal of intuitive justification therefore, for the hierarchical

factoring of particular problem spaces. Factoring of general

goals into multi-dimensional objectives serves as an approximation

for goals which cannot be measured in practice. Factoring of

solution spaces into different levels of description, permits

simplification in that certain kinds of information can be

included with each solution level, that may be reasonably omitted

or approximated at other levels. However, consistency of de-

composition is difficult to maintain from problem context to

problem context. Tests of "reasonableness" of application rather

than formal or theoretical rules, apply in this area.

However, there have been some tentative steps towards

formalizing the theoretical bases of hierarchicalsystems: one

(21) H. A. Simon; The Sciences of the Artificial, (Cambridge,
Mass., M.I.T. Press, 1969), p.
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fundamental work is that of Hesarovic et al (22). They define

a multi-level hierarchical structure as:

"...a vertical arrangement of subsystems which comprise the
overall system, the priority or right of intervention of the
higher level subsystems, and the dependence of higher level
subsystems upon the actual performance of the lower levels."

Figure No. 3.1 illustrates this concept graphically. The term

"system" refers to a transformation of input data into outputs.

Vertical Interaction between Levels of a Hierarchy

~Total System

Input Level 'n Output
Subsystem,'

7\Performance

Intervention Feedback

Input Level n-1 Output
Subsystem

P erformance
Feedback

Intervention'

Figure No. 3.1 (23)

(22) M. D. Mesarovic, D. Macko, Y. Takahara; Theory of Hierarchical,
Multilevel Systems, (New York, N. Y., Academic Press, 1970) , p. 34.

(23) Ibid.; Figure 21, p. 35.



The crucial task in defining a hierarchical system, is the

designation of system levels. Mesarovic notes that:

"(i) there is an order of magnitude difference in the size
of the units of concern on different levels.

(ii) what constitutes a unit on a particular level depends
on the interaction mech-anisms operative in that
particular level...." (24)

Simon's concept of "nearly-decomposable systems (25) is

similar: the interactions among subsystems are weak, but not

negligible. At any particular level in the system, the weak

interactions among subsystems are distinguishable from the

stronger interactions within the subsystems. The former are of

different orders of magnitude at different system levels. These

criteria do not have meaning however, out'side of the context of

a particular decision problem. More useful for our purposes,

is Mesarovic's distinction of three functional types of levels: (26)

(1) "strata" (levels of description or.abstraction);

(2) "layers" (levels of decision complexity);

(3) "echelons" (organizational levels).

In defining strata or description levels, a balance must be

struck between simplicity or economy of description, and the need

to include as many system variables as are relevant to decisions

(24) Ibid.; p. 31.

(25) Simon; op. cit. (1969).

(26) Ibid.; p. 37.

54
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at that level. Understanding of a system increases by crossing

strata: in moving down the hierarchy, one obtains a more detailed

explanation; while moving up the hierarchy, one obtains a deeper

understanding of its significance.

In defining layers or decision levels, the balance is between

the need to make a decision by a specified deadline, and the

desire to understand the problem more clearly. A hierarchical

structuring of decision layers defines a set of sequential decision

problems, and a control procedure for solving them: the solution

of a problem in the sequence, determines some of the inputs

necessary for successive problem solutions; the overall problem

is solved once all of the subproblems ai'e solved.

The definition of echelons or managerial levels does not

concern us here. In this sense, hierarchical levels serve as a

formal vehicle for communication and transfer of control in an

organization. Echelons must balance between information-handling

overload implied by centralized, unitary control; and the lack

of co-ordination implied by decentralized units.

There is by no means a necessary one-to-one -correspondence

between any of the functional types of levels: various combinations

of strata and layers may occur in multiple-echelon systems;

various interrelations of strata and layers for a unitary

decision-maker, are possible. However, all three concepts of

hierarchy have several principles in common (27):

(27) Ibid.; p. 54.
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(1) a higher level unit is concerned with broader aspects

of overall system behaviour;

(2) the decision period, or time horizon, of'higher levels,

is longer than for lower levels;

(3) higher leVels are concerned with the slower aspects of

overall systems behaviour;

(4) descriptions and problems on higher levels are less

structured, with more uncertainties, and are more

difficult to formalize quantitatively, than lower

levels.

In the evaluation model to follow, we make a distinction

between hierarchically-structured goals in the evaluation lang-

uage, and hierarchically-structured actions in the action space.

The latter corresponds to Mesarovic's "strata" or levels of

description; the former to "layers" of decision complexity.

Miller, Galanter and Pribram make the same distinction in their

theory of behaviour (28), where the fundamental unit is the

cybernetic feedback loop, or "TOTE" (test-operate-test-exit)

pattern: (cf. Figure No. 32).

(28) G. A. Miller, E. Galanter, and E. H. Pribram; Plans and the
Structure of Behaviour, (New York, N. Y., Holt, Rinehart
& Wilson, Inc., 1960), p. 26.
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TEST

exi t

(incongruity) (congruity)

OPRATE

Figure No. 3.2

TOTE units can be chained in sequence, or may form operational

components of 1-arger TOTE units in the hierarchical organization

of behaviour. Although they make a distinction between explorations

in action space (operations) and mechanisms by which actions are

tested for suitability (tests), there is always a one-to-one

correspondence between tests and actions in the TOTE pattern.

At the finest level of scrutiny, we would expect this corres-

pondence to hold; however, in terms of our model which formalizes

only "global" evaluation procedures, and leaves "local" tests

embedded within search procedures, this would not always be true.

For reasons of computational simplicity though, it is more

convenient to ensure that evaluation levels and action levels

coincide.

The units at each goal level (goals) and the units at each

action level (designs) will, in general, not correspond or map

directly onto each other. As quoted above:
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"...what constitutes a unit on any particular level,
depends on the interaction mechanisms operative in that
particular level." (29)

Since we have constructed languages for two different

purposes, the interaction mechanisms between components in the

separate domains will also be different, and therefore, their

respective units may not coincide. (*) The usual intent with

factoring global gpals into subgoals, is to get a set of

multiple objectives as disjoint or as independent from one

another as possible. The hierarchical stratification of

actions, however, results in a set of overlapping regions or

action spaces, within the region of including higher-level

actions. Models which attempt to integrate the two languages,

such as Alexander's hierarchical decomposition (30), are not

entirely successful in this regard. Manheim states:

"The underlying issue here is complex. There is one
language in which we naturally describe actions, and there
is another which expresses our evaluations of those
actions. Our natural tendency is to aggregate actions
within the frame of reference provided by the descriptor
language. But in order to get high similarity among
actions, we want to aggregate them with regard to the
evaluation language. The work of Christopher Alexander.
(Notes on the Synthesis of Form, Cambridge, Mass.,
Harvard University Press (1964))can be described as a way
of developing new descriptor languages such that there is

(29) Measrovic et. al.; op. cit., p. 31.

(*) some operational reasons for this are described, beginning
on page

(30) Christopher Alexander; Notes on the Synthesis of Form,
(Cambridge, Mass., Harvard University Press, 1964).
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a greater correspondence between the descriptor and evaluation
languages. In our terms, such a reworking of the descriptor
language would yield a new metric, or set of metrics, on
the action space." (31)

In the next section, we outline a number of models for

hierarchical goal structuring and hierarchical planning; discuss

and criticize each model, and suggest from that, some of the

reasoning behind the particular approach we have taken.

3.1 Hierarchical Goal Models

Goals generated by, or assigned to, a planner, are usually

multidimensional. Emery (32) suggests three reasons for this:

(1) compression of several incommensurable goals into a

single objective, reduces their information content,

unless there is an agreed-upon tradeoff between goals,

which is acceptable for lower-level planning and

control;

(2) multiple, measurable objectives can serve as approxima-

tions for more general goals which are not measurable

operationally;

(31) M. L. Manheim; Hierarchical ;:structure (Cambridge, Mass.;
M.I.T. Press, 1966), p. 157.

(32) J. C. Emery; Organizational Planning and Control Systems:
Theory and Technooy, (New York, N. Y.; MacMillan Co.,
1969), p. 115.
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(3) multiple goals form a useful means of conveying sufficient

information about desired behaviour in the face of inter-

action effects among unpredictable context and design

variables.

Global goals are made operational only after they have been

factored into a hierarchy of sub-goals. Each sub-goal generated

by this process may give rise to lower-level planning, which in

turn, may generate still lower level goals as a means of

achieving its own goals. The lowest level of goals is a set of

performance criteria whose values can be assessed for each alterna-

tive under consideration. All of the hierarchical goal models to

be discussed, follow similar reasoning.

(a) Goal Fabric Analysis (33)

The Goal Fabric model has two stages:

(1) An analytical phase; in which all the known goals are

listed for the project, and then, the various relations

among the goalo are identified.

(2) A ranking of alternatives; in which each new alterna-

tive is mapped onto the goal fabric, compared with one

previously ranked alternative, and fitted into the

overall ranking. Only two alternatives at a time are

evaluated.

(33) Manheim & Hall; op. cit.
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Phase (1), goal structuring, determines only those relation-

ships which are relevant to evaluation. Relations guide the

expansion of the goals list in order to clarify the vague, general

statements by which the problem may have been originally defined.

Relations between goals may be of four kinds:

(1) Specification: the lower-level goal explains in more

detail, a general goal;

(2) Means-ends: the lower level goal explains how a general

goal will be accomplished. The means goal is important

only because it is instrumental in achieving an end;

(3) Value-wise dependence:. denotes a goal which can only be

evaluated in conjunction with other goals;

(4) Value-wise independence: denotes a goal which can be

evaluated independently.

Once these relations are established and listed, they yield a

hierarchical tree (cf. Figure No. 3.3) in which the lowest goals

should be measurable. Evaluation first entails the mapping of

alternatives onto the goal fabric: i.e. predicting the performance

of alternatives with respect to goal subsets.' Dominance checks

are then applied to these subsets: if there is dominance over the

set, then it can be transferred to the more general, upper-level

goal; if there is not, combinations and tradeoffs among goals

maust be used, to determine which alternative dominates. Manheim

and Hall suggest five techniques which are available at this point:
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(1) Dominance;

(2) Explicit choice by the decision-maker (essentially

arbitrary);

(3) Comparison of intervals: find the interval between

alternatives on each goal, then decide how these

intervals compare with each other;

(4) Indifference measures: for example, alternative A is

preferred'over a certain goal variable range, and

alternative B over another range; the actual goal

values determine which alternative is selected;

(5) Modified Utility Measure: a simplified linear scoring

function.

It is certainly possible to agree with the authors' objective

of not forcing detailed assessment of the decision-maker's

preferences unless absolutely necessary; in fact, this is the

principal advantage of their model. However, once one of the

techniques for assessing more detailed preferences is invoked,

in order to clear up the ambiguity between two alternatives, then

this assessment is available for any subsequent comparison. Should

a large number of such ambiguities turn up in the evaluation

procedure, the Goal Fabric model in practice requires the detailed

preferences it was trying to avoid. As the number of problem

dimensions increases, so does the probability that rough rankings

or imprecise value statements will be conclusive for choice.
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Once one alternative is preferred in some dimensions, and its

competitor is preferred over the remainder, then a good deal

depends on fortuitous structuring of the problem,-or the ad-hoc

procedures suggested, for a definitive selection to -be made.

The reason for this quandry, is that decidability is related

to the weakest form of preference measurement in a dedision context.

If the weakest form of measurement is an ordinal ranking, for some

goal variable, then dominance for all goal variables can be

*
assessed by constructing quasi-levels. If there is still

ambiguity (i.e. more than one alternative in each quasi-level),

then the resolution among the alternatives within each quasi-

level must be made by invoking a higher level of preference

measurement (for non-arbitrariness). Given the von Neumann-

Morgenstern' theorems for constructing utilities from lottery

comparisons (34), an interval utility scale can be constructed

for preference judgments of any higher order than ordinal.

The Goal Fabric model is ambiguous rather than systematic about

when such judgments may have to be made.

*

as discussed for example, on page no. 24

(34) von Neumann & Morgenstern; op. cit.
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(b) Miller's Additive Worth Hierarchy

James R. Miller (35) proposes a model for the assessment of

"worth" values, in which goals are factored hieraichically into

subgoals, these subgoals into further subgoals, and 'so on, until a

level of detail is reached where physical measurement can be

associated with each evaluator. His procedure is as follows:

(1) List the main performance objectives, which should be

complete and exhaustive, mutually exclusive, worth-

independent, and non-redundant.

(2) Generate a hierarchical structure of performance criteria.

(3) Select physical performance measures in the descriptor

language, one for each lowest level performance criterion.

(4) Establish worth relationships between the lowest-level

performance criteria and their associated physical

performance measures. (i.e. "score" each alternative

with respect to each eavluator).

(5) Establish a weighting or trade-off procedure for

combining worth scores, to arrive at a single overall

index of worth.

(35) J. R. Miller III: "The Assessment of Worth: A Systematic
Procedure and Its Experimental Validation", (Cambridge,
Mass., M.I.T. Sloan School of Management, unpublished
Ph.D. thesis, 1966).
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Figure No. 3.4 illustrates the hierarchical goal tree for an

example from Miller's thesis: the selection of a job by a recent

college graduate. The subject broke his goals into four major

areas: monetary compensation, geographical location, travel

requirements, and nature of work. Each of these is further sub-

divided: for example, "monetary compensation" is broken down into

"immediate" and "future"; "immediate" into "starting salary" and

"fringe benefits"; "fringe benefits" into "retirement" and

insurance".

The weights or tradeoff values assigned to each level sum

to 1.0. At the lowest performance level, the weight assigned to

an evaluator is the product of the level weights assigned to its

direct chain of "parent" or including goals. Thus, "retirement"

(fringe benefits) receives a weight of:

X 3 .33 x .70 x .10 x .40 = .009

The overall worth of a set of performance evaluators

el, e2 ' ''' e n, is found by multiplying each worth score by its

associated performance tradeoff weight:

n
W(e1 , e2 ' '' en i '(ei),

where A represents the tradeoff rate for evaluator ei, and:

n
XA = 1.0

1-1
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The W(e ) values must all be consistently scaled in the

interval between 0 and 1.

The crucial requirement for a simple aggregation of worth

values, is the concept of "worth independence" which implies a

substitution rate between evaluators, constant for all values

that these evaluators may take on. (*) Miller outlines a

procedure for eliminating worth independence if it occurs:

goal variables are- eliminated, redefined, or combined

with other goal variables, to ensure independence. Worth

independence is also essential to additive utility models; it

ensures computability and thereby, decidability. By assuming

independence among goal variables, Miller's procedure is able

to derive an unambiguous overall total worth every time. On the

other hand, Manheim and Hall (36) cannot guarantee unambiguous

dominance in every comparison of alternatives since they permit

"value-wise dependence", but operationally- they require less

preference information, and computation from the decision-maker.

Miller's worth concept is not applicable to probabilistic

outcomes since it does not measure aversion to risk. The

extension of the additive worth concept to risky decision problems,

i.e.:

(*) see constant substitution rate with linear indifference
curves , p. 33

(36) Manheim & Hall; op. cit.
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M

u(e ,e 2'''m .. m u (e )
i-1

requires, in addition, the marginality assumption mentioned

earlier.*

(c) Means-Ends Analysis

Means-ends analysis may be viewed both as a procedure for

decomposing a goal tree, and as a sequential decision process

(as implemented in Newell, Shaw, & Simon's computer program,

GPS (37)). In terms of goal decomposition, it is also included

within both the Manheim & Hall, and Miller hierarchical goal

models described above, as a component; although both of these

models also permit other relations among goal variables. Means-

ends analysis divides overall problem objectives into a set of

subgoals instrumental to achieving these objectives. The sub-

goals in aggregate specify what is meant by their parent objective;

they are important to the decision-maker only as intermediate

steps to satisfying these ends. Normally, all subgoals must be

satisfied before considering the parent objective fulfilled. The

(*) cf. page no. 4 2

(37) A. Newell, J. C. Shaw, & H. A. Simon; "A general problem-
solving program for a computer," Computers and Automation,
(Vol. 8, No. 7, 1959), pp. 10-16.
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subgoals ii turn can be considered as "ends", each of which can

be satisfied by further decomposed "means" subgoals. The process

continues to a level of detail where the performance of alterna-

tives with respect to means subgoals can be assessed or measured;

the overall satisfaction for each alternative is computed by

aggregating iaeans worth values through the chains of means-ends

"staircases". Figure No. 3.5 illustrates a portion of a means-

ends analysis for a business firm choosing between specialized

or combined district managers: (38)

Figure No. 3.5

(38) E. Johnsen; Studies in Multi-Objective Decision Models,

(Lund, -Studentlitteratur, Economic Research Center in

Lund, Monograph No. 1, 1968) , p. 260.
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The decomposition results in a goal tree with no overlapping

staircases; i.e. one subgoal cannot serve as a "means" to more than

one "ends" goal. The greatest difficulty in the method (or any

goal fabric method) lies in determining whether each set of means

subgoals is complete in the sense of defining satisfaction for

their parent end goals. The relative contribution of each subgoal

to its parent goal is also an issue in the aggregation of performance

measures for an alternative. In this respect, means-ends analysis

shares the same problems as Miller's goal hierarchy discussed

above.

In its mechanistic form, as a sequential decision model,

means-ends analysis is more interesting', since it bridges the gap

between hierarchical goal structures and planning models, albeit

in a simplistic manner. The logic of Newell, Shaw, & Simon's

computer program GPS, for example, is recursive: given the present

set of goals, it attempts to solve the problem from its given

repertoire of operators; if the problem is insoluble, the present

set of goals is decomposed into a set of subgoals, and the pro-

cedure calls itself again, as a subroutine. The problem is

decomposed only to the point where its subproblems can be solved;

the aggregated solution to all subproblems at all goal levels,

defines a solution to the problem. GPS can only deal with well-

defined problems which have all goals specified as constraints:

even in this framework, a lot of backtracking and traversing of
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not aggregate into a solution to a higher level sub-problem.*

Alexander's hierarchical decomposition model (39) does not even

consider this possibility: the diagramming-phase (left unformal-

ized in that model) assumed that all sub-problem solutions would

be compatible, and could-be-meshed-with-each- other in- the-final

solution.

(d) Alexander's Hierarchical Decomposition

In terms of our dichotomy between goal structure models and

hierarchical planning models, Alexander's hierarchical decomposi-

tion may be viewed as a procedure which combines elements of both

domains. The model has four phases:

(1) Formulation of requirements;

(2) Estimation -of interactions among requirements;

(3) Decomposition: the result of which, is a "program" for

the solution of the problem;

(4) Solution of the problem according to the "program"

derived in phase (3).

(*) as in the "missionaries and cannibals" problem: (G. W. Ernst;
"GPS and Decision Making: An Overview", in R. Banerji, M. D.
Mesarovic, eds., Theoretical Approaches to Non-Numerical
Problem Solving, New York, N. Y., Springer-Verlag, 1970), p. 63.

(39) C. Alexander; op. cit.
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The list of requirements is not a list of goal variables, but

rather a set of variables which specify misfits in the environment.

Requirements are further constrained in that they must be as equal

as possible in importance, and independent of each other (i.e.

each is important to the problem by itself, and not in terms of_

contributing to another requirement). Relations among requirements

specify form implications, not evaluation relations; they measure

the "difficulty" in finding solutions which will satisfy any two

requirements simultaneously.

In the. interaction phase, requirements are taken two at a

time, and a binary judgment is made as to whether or not the form

implications of one requirement conflict or concur with the form

implications of the other: if so, an interaction is present. The

results are represented in a matrix of interactions: (cf. Figure

No. 3.6

x 1 ....... x .- xn

x 1  c 1 1 . . . . . . c ........ C

x ......c .......

x c -n nl n

Figure No. 3.6
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where X = (x 2 ''''**xi''''' n) is the set of requirements,

c = 0 if there is no interaction between x and x

= 1, otherwise.

The interactions and requirements are represented as a linear

graph, with the requirements as nodes and the interactions as links:

(cf. Figure No. 3.7)

Figure No. 3.7

The decomposition phase successively partitions the graph at

points of least information transfer, to a stage where subsets

of the graph are small enough as subproblems for the designer to

be able to handle them conveniently in a design solution.

Figure No. 3.8 illustrates how the linear graph of Figure No. 3.7

might be partitioned and represented as a hierarchical tree or

"semi-lattice".
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Figure No. 3.8

Diagramming begins at the bottom of the hierarchy, where each

of the subsystems is dealt with as a separate design problem. A

convention is used for all diagrams such that each diagram con-

tains the essential relational features of its subset, and as

little else as possible. The diagrams are combined according to

the program indicated by the decomposition tree, until one diagram

is completed which shows all the essential features of the design.

The logic of Alexander's model is similar to that of means-ends

analysis as a sequential decision process: the problem is decomposed

into sub-problems, the sub-problems are solved, and then recombined

to yield the solution to the larger problem. From the perspective

of our dichotomy between evaluation and search, however, his

reasoning is quite different. There is no means in Alexander's

model for predicting the performance of alternatives, or for
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determining their level of achievement with respect to requirements

or goals. This results because the designer, in deriving the

interactions between requirements, makes prior judgments about

certain predicted consequences of the 'design before he actually

generates it. The requirements are intended to "imply" form, but

not "specify" it; Alexander wants them to be botW "partly open

and partly closed" constraints. In effect, the model attempts to

link directly small subsets of design attributes and evaluators-

into "requirements" and anticipate the prediction and evaluation

phases of the planning process in determining interactions.

Figure No. 3.9 illustrates this point:

evaluators: G -(e,e2 e'''''eM

"requirement"
a ,a.

design attributes:

A = (a ,a 2*,.,a , a. ,...,an)

Figure No. 3.9

The complex functional mapping of attributes onto evaluation

space through prediction (cf. Figure No. 3.10):
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has been replaced

sets (in the form

the requirements.

by an ensemble of certain attribute and evaluator

of requirements), yet complex interactions among

(cf. Figure No. 3.11).

rr.

Figure No. 3.11
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There are no empirical methods for getting the correlations

represented by interactions, apart from previous experience, which

cannot be completely valid. Alexander's method then, is more

properly, a search strategy, in which these interactions are

regarded as prior judgments about crucial issues in the design

problem. His attempted integration of evaulation and descriptor

languages is provocative, but still requires a posterior eval-

uation phase in which resulting consequences and worths are

assessed, (and the "prior" hierarchical structure of the problem

may be revised).

The central conceptual issue appears to lie in the structuring

of inherent problem complexity, particularly when uncertainty is

introduced. If we accept Alexander's linkage of attributes and

evaluators into requirements, a complex-semi-lattice hierarchical

decomposition results, which may have to be altered on posterior

analysis. On the other hand, if we accept separate, simple goal

and action decompositions, problem complexity is transferred to

the mapping between these hierarchicies. Our natural tendency

is to prefer the latter model, given our concern with evaluation.

More importantly, Alexander's model, in not alleviating the need

for prediction and evaluation, also does not structure the problem

in a form which lends itself to the aggregation of preferences.

Thus, it is difficult to compare and assess alternatives, except

at the smallest subcomponent "simplex" level. Accordingly, for

this paper, we retain the separation of evaluation and descriptor
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languages; i.e. the distinction between hierarchical goal and

planning models.

The remaining basic issue with respect to hierarchical goal

models, is whether to accept the "tree" goal. decomposition of

means-ends analysis, Miller, Fishburn, etc., which also implies

computability, or whether to acknowledge the "lattice" decomposi-

tion suggested by Manheim and Hall, who permit value-wise dependence

among evaluators. Arguments for simplicity in the goal fabric so

as to make it easy to compute compound utilities, are valid, but not

central to.the issue. Fishburn (40) suggests that interdependent

goal variables should be aggregated or recast into independent

utilities so as to allow the use of additive utilities. However,

this is expedient also. The most useful argument for evaluator

independence can be derived from Torgerson (41), who distinguishes

three kinds of measurement:

(1) Fundamental measurement;

(2) Measurement by arbitrary definition;

(3) Derived measurement.

Even at an elemental level, utilities or preference measures

are derived from fundamental attributes of the system, which can-

notbe inferred directly.- Therefore, evaluators which are inter-

(40) P. C. Fishburn; op. cit. (1964), p. 346.

(41) W. S. Torgerson; op. cit., p. 21.
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dependent, must be in some sense, derived from a common fundamental

measure. Thus, it appears valid to attempt to reformulate evaluators

in such -a way that each evaluator is derived from a distinct, non-

repeated fundamental measure. The formidable difficulties that may

be involved in attempting to this- operationally, should-not be-----

discounted, though.

3.2 Hierarchical Planning Models-

In Miller, Galanter & Pribram's theory of behaviour, a Plan is:

any hierarchical process in the organism that can
control the order in which a sequence of operations is to
be performed". (42)

Planning is concerned with the strategic aspects of behaviour

rather than simply tactical actions: an organism which plans,

maintains an internal representation of a complete course of

action or "strategy". Hierarchical planning, thenis concerned

with "strategies of strategies": the components over which control

is.maintained, are themselves plans, rather than direct courses of

action. The purpose of this "metaplanning" is to control and

economize on the organism's search effort.

Miller et. al. also note the interrelationships between values

and the execution of plans:

(42) Miller et. al.; op. cit., p. 16.
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...the test phases of the more strategic portions of a
Plan are associated with overriding evaluations. Thus a
hierarchy of TOTE units may also represent a hierarchy of
values." (43)

In hierarchical planning models, the association of plans with

values varies from level to -level- Loesrtleverplans-may be

thought of as points in n-dimensional evalua.tion space, with utility

or value functions associated with each point. Each utility is a

composite function of the goal variables which- define the-point.

Higher level plans comprise regions in which a number of lowest-

level plans-may be nested: since these regions each encompass a

number of points, (not all of which have the same utility),

high level plans have distributions of values, rather than single

values. This notion underlies Manheim's Hierarchical Structure

model (44) as well as the Dynamic Evaluation model developed

in the thesis.

(a) Hierarchical Structure

Hierarchical Structure is conceived of as a "metaprocess" in

that it is concerned with organizing the planning process, rather

than specifying solutions to a given problem.(*) The process of

finding a solution proceeds by a series of "experiments" or

(43) Ibid.; p. 63.

(44) M. L. Manheim; op. cit. (1966).

(*)Some ways in which the model also gives information about the
nature of solutions are described on page
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operations in which-information is acquired about the nature of

possible solutions.

The "hierarchical structure" of the design process is the

specification of levels of description ("strata" in Mesarovic's ter-

minology- (45)4--from- very- general- p1-ans-, down-to solutions specified-

in all the detail necessary for implementation. Only lowest level

designs (i.e. at the most completely specified level of detail) can

be considered as solutions- to the problem. Levels in the structure-

are defined in terms of the precision and discriminability among

actions in'the action space. The concept of "metric" is related to

that of level:

"The metric of an operator (i.e. search-selection pro-
cedure) is a division of the action space into sets of
actions such that the selection of the SLO (Single Level
Operator) can distinguish between two actions if they are
from different sets, but cannot distinguish between
actions from the same set. A metric is a set of exhaustive
disjoint subsets of the set of points in the action
space." (46)

Metrics should be chosen so that there is a high degree of

difference between actions on the same level, but a high degree

of similarity among lower-level actions included within these

actions. Alexander's Hierarchical Decomposition algorithm (47)

partitions a set of interdependent elemental variables according

(45) Mesarovic et. al.; op. cit., p. 37

(46) Manheim; op. cit., p. 35.

(47) C. Alexander; op. cit.
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to -roughly the same requirement. Each decomposition level has the

same total set of elemental variables, but differs from other levels

in the way that the variables are grouped. . In this sense, a metric

may be viewed as a framework which is appropriate to describe and

identify the structuring or grouping at each level.

An experiment is defined as the application of a level

operator i to a non-elemental action which was produced previously,

to yield another action. (48) The results of an experiment are a

new action with its associated cost or value. The new action is at

a lower level than the action from which it was produced: as an

example, an experiment could be thought of , as the design of large-

scale room layouts from smaller-scale and more general floor plans.

The cost of executing an experiment depends only on the level, and

is constant over the process.

The outcomes of experiments are characterized probabilistically;

the action or alternative design resulting from an experiment, and

its cost, are uncertain. The model assumes that the analyst has:

"...a distribution f (6) for every action j which he has
produced so far....Elch time he obtains a new action and
its associated cost, he acquires information about the
true distribution of costs of "actions" included within
various non-elemental actions." (49)

f 1() is the subjective judgment of the likelihood of different

values of 0, where 8 is some' parameter of costs (i.e. worth) of

(48) M. L. Manheim; op. cit., (1966), p. 43.

(49) Ibid.; p. 46.
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experiments. The objective of the model is to determine, at any

point in the design process, which "experiment", at what level of

detail, should be performed next. The planning process stops when

there is no experiment (cost of experiment deducted) which will

obtain a significantly better solution than one developed so far.

Each level operator is characterized by a conditional probability

distribution which essentially measures the relative amount of in-

formation supplied by that 'operator (i.e. designing at a certain-

level of detail). This distribution g (y/O) is defined:

"Given- that some action j is characterized by a particular
value of the parameter 6, say 60' gk (0Y) is the prob--
ability that application of operator i to that action will
produce an action with a cost equal to y." (50)

Once an experiment is executed, and a design with cost y is

produced, Bayes theorem is used to revise the analyst's prior

distribution, f'(0):

'() g (/e)

The prior distributions for actions on higher levels which

include the present action j (i.e. its "grandparents" and "parents")

are also changed. In these c.ases, the g (/6) function remains the

same, but the priors for actions at different levels will usually

(50) Ibid.; p. 47.
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be different. The prior distributions over ungenerated actions

are governed by a homogeneity assumption: their priors are the

priors over their parent, least including action, since there is

no way of distinguishing them from all others, until they have

actually been generated.

The evolution of the planning process is described thus:

"When the process begins, the marginal distributions f(Ok
over the components ek are identical, because no actions
have been generated. Each time an experiment is executed,
one or more marginals become differentiated. As the process-
unfolds through the execution of experiments, more and more
marginals go off on separate paths in a complex and inter-
related manner determined by the inclusion relationships
among 'the actions." (51)

In choosing among possible experiments to do next, the

objective is to balance the cost of producing a design alternative

against the possible returns: i.e. the hope of getting a less

costly or more efficient solution to the problem. For a single

stage analysis, the expected utility of each possible expetiment

is computed by taking each possible result y, computing pj (y),

temporarily updating the status of the process to compute-u(eij ,y)

and integrating over all results y:

u(e )i p fp (y)u(e i,y)dy

(51) Ibid.; p. 74.
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The expected value of terminating (the null experiment) is the

value of the -best elemental (lowest-level) action so far. The

experiment with the highest expected utility is chosen.

For a multiple stage analysis, computation is much more

involved, sinceit must extend out over many linked experiments-

rather than just one: all possible combinations of 1st stage, 2nd

stage,...nth stage experiments must be examined.

In order to reduce computation, several kinds of constraints

.on the process are suggested:

(1) Sequence constraint: the process must continue through

an orderly progression of levels;

(2) Jump-back constraint: once control has been transferred

from one level of analysis to a lower level, new actions

can no longer be generated at higher levels (this

appears to be an unreasonable restriction);

(3) Bandwidth constraint: only a limited number of potential

experiments will be examined;

(4) Look-ahead constraint: restricts the number of levels

ahead that a new design may be generated from a

present action.

Some variations on these constraints are used in the Dynamic

Evaluation model.

It should be noted that there are essentially two arbitrary

points in the process:
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(1) the specification of the initial subjective distribution

f(e) over the universal design. Given the learning

aspect of the model-, this is not a serious point: all

that is required is that the distribution cover a range

of all values of e that are likely to be encountered-

in evaluating lower-level designs.

(2) the specification of the conditional operator character-

istics; g (y/6). An extension of the Hierarchical

Structure model mentioned by Manheim (52) and Pecknold

(53) allows the analyst to specify a family of distri-

butions for the g function. Through the process, he

learns not only about his changes of success (the

f"(O/y) distributions), but also about the amount of

information contained in a Single Level Operator. De-

noting P'($) as the estimate of the relative likelihood

of different combinations of probability distributions

for the operators, the Bayesian model also revises this

distribution posteriorly, after observing the result

y, of an experiment:

(52) Ibid.; pp. 163-164.

(53) W. M. Pecknold; The Evolution of Transport Systems: An
Analysis of Time-Staged Investment Strategies Under Un-
certainty (Cambridge 1 Mass., unpublished Ph.D. thesis,
M.I.T. Dept. of Civil Engineering, 1970), Appendix D.



88

P'(Sg (y^/S)

The complete posterior distribution for an action j, is:

PP '(/y = 0 EP 5 /ae

Pecknold also gives a more exact treatment of this, when

it cannot be assumed that the posterior distributions,

P"(S) and P"(0) are independent, and therefore, joint

distributions over both $ and 0 must be used. (54)

Over the history of the process therefore, we would expect the

designer to be able to generate intermediate level designs whose

expected evaluations are closer to the ultimate distributions of

evaluations over their included designs, as yet ungenerated. Thus,

the g (y/6) distribution for a particular level would become-

"tighter" (i.e. with a smaller coefficient of variation) as the

process evolves; for example:

0 0 0
t- t 0 t= t tint?"

(54) Ibid.; p. D-10,
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Further issues such as-

(1) constant costs over level operators;

(2) the function g (y/8) is constant for all e: i.e. g (y/O)

can also be expressed as a function h i(y - );

are discussed under the Dynamic Evaluation-model, where they have

been simplified or modified, along with other assumptions from

Hierarchical Structure.
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4. COMPUTER AIDED, EVALUATION SYSTEM

The following set of programs provides an interactive

capability in DISCOURSE for the multi-dimensional evaluation of

design or planning projects, whose predicted consequences have been

arrayed in an impact matrix. The component routines divida-roughly

into three areas:

(1) User Operations: a set of independent programs for operat-

ing on the impact matrix at any stage in the planning-

process, with or without an associated preference

structure. They provide a variety of means for

assessing the current status of the process, for- comparing,

ranking, checking for dominance, or satisfaction of al-

ternatives with respect to defined goals.

(2) Static Evaluation: terminal assessment of a set of

design alternatives with respect to a multi-dimensional

preference structure. The program checks for dominance

among alternatives and allows the user to select from

a number of evaluation methods which assess relative

value, value (certainty), or utility (uncertainty) for

each alternative.

(3) Dynamic Evaluation: a hierarchically-structured planning

model in which every design alternative is evaluated as

soon as it has been generated. The evaluations are used

to structure the design process, and through Bayesian
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revision of prior evaluations, use the experience

accumulated by the decision-maker as a guide to future

action.

All three groups of programs accep-t design alternatives which

have been structured hierarchically at different levels of genertal

ity, but this is a necessary requirement only for the Dynamic

Evaluation model. However, if design alternatives have been so

structured, then a corresponding goal structure must also be input-

The programs provide for user interaction in accepting de-

scriptions of design alternatives and preference structures, and

allowing him to specify at certain points how he wishes execution

to proceed. Provided the necessary project information is arrayed

in files accessible to DISCOURSE, the programs are self-contained,

and may be used without modification. However, a user familiar

with DISCOURSE will 'be able to alter the programs or intervene

during execution so as to tailor them more closely to his

particular project requirements.

4.1 User Operations

The need for independent user evaluation operations can arise

during the course of the planning process, whenever the decision-

maker wishes to- improve his understanding of the problem issues,

or the present status of alternatives; without undergoing a full

terminal evaluation of all alternatives, as in the "Static" model.
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He may also be unwilling to put the planning process under the

degree of formal control suggested in the "Dynamic Evaluation"

model. Although such procedures are more ad-hoc and less formalized

than the othet two models to be described, they can contribute in

the role of guiding the search process, and preparing the con-

ditions for more complete formal analyses.

User operations comprise a variety of computational pro-

cedures for operating on, and manipulating, the impact matrix

current at any point in the process. For most operations,

limited information about the decision-maker's preference struc-

ture is required, since this may not be clarified at intermediate

stages. Possible explorations of problem domains include the

following:

(1) Value System: varying the preference structure, or trade-

offs among evaluators, to judge the impact on the ranking

of the present set of alternatives; and in the opposite

vein: checking the present performance alternatives with

respect to evaluators, and identifying which goal

variables or aspiration levels should be adjusted (i.e.

the effect of the current levels of achievement in de-

termining the value system).

(2) Solution Space: identifying the significant differencea

among alternatives; identifying which decision variables

to manipulate in the search for improved solutions.
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(3) Display: representing the current status of the project:

preference structure, solution space, or the mappings

between them.

The set of operations currently implemented provides only rudiment-

ary capabilities. Possible extensions to tie routines are outlined

after the description of available commands.

All user-operation programs require that the following updated

project information to be known and resident in the system:

(1) the names of evaluators and designs

(2) the total number of designs (all levels)

(3) the total number of evaluators or goal variables"

(all levels)

(4) the goal and design structures (if the problem is

hierarchically structured)

(5) the overall impact matrix, by evaluators and designs.

If the problem is hierarchically structured in levels, the user

selects the level for which he wishes the analysis to be done.

The retrieval of this information from disk files and from the

user, is carried out by the DISCOURSE program "Preliminary".

The flow of control for the programs is shown in Figure No. 4.1.
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PROGRAM FLOW

EVALUATORS _ ONLY IF HIERARCHICAL STRUCTURE

FIGURE NO. 4-I
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(a) Available commands:

(1) "order" (all designs on one level, with respect to a

named evaluator, by increasing or decreasing values)

The program accepts from the user, the name of the evaluator

he has selected, and whether the ranking is to be done by

increasing value (highest value receives a rank of 1), or by

decreasing value (lowest value receives a rank of 1).

"order" derives and displays this ranking in the following

format:

Designs Ranking

namel rl

name2 r2

namen rn1

(2) "Pareto" (quasi-orders all designs on one level, with

respect to all evaluators)

The program first queries the user as to the direction-

of his preferences for each eavluator. An ordinal ranking--

matrix for all designs with respect to each evaluator, is

derived, and a domirance check is performed by constructing

quasi-levels. The PL/1 function "quasi-order" first con-

structs a "reachability" matrix for all the designs for which

each design is better on, ("reaches") for at least one

evaluator; quasi-levels are formed by grouping all designs
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with the same row sum in the reachability matrix. These sums

are then ordered; all designs with rank 1 are undominated, and

form the Pareto-efficient frontier; designs with ranks 2, 3,

etc. form lower quasi-levels, which contain dominated al-

ternatives. The results are displayed as follows:

Quasi-level 1: Pareto-efficient frontier.

namel
name2

name i

Quasi-level 2: Dominated alternatives

namej
namek

Quasi-level n: Dominated alternatives

namep
nameq

(A later version might allow consideration of probabilistic

dominance: quasi-levels would then be derived according to

some specified criterion of dominance.)

(3) "display-impacts" (for 2 to 5 specified designs,

with respect to all evaluators, on one level)

The program accepts- from the user, the names of 2 to 5

designs to be displayed; retrives the relevant impacts from

the overall impact matrix, and arrays them in the following

format:
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Designs: n-amel name2

Impacts:

goal 1 1 1  1,2

goal 2 12,1 i2 ,

goal m lM,1 ml,2

(4) "display-transforms" (for 2 to 5 specified designs,

with respect to all evaluators, on one level)

The program accepts from the user, the names of 2 to 5

designs to be displayed. A step value function array for

each evaluator is presupposed. (A later version might allow

the functional form of the utility curve to be input as

well.) It then maps the reduced impact matrix onto the value

array, and displays the resulting value transformation in

the following format:

Designs: namel name2

Transforms:

goal 1 t1 1  t2

goal 2 t t

goal M, tl,1. tml,2

(5) "compare' (2 selected designs with respect to all

evaluators, on one level)
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The program accepts from the user, the names of 2

designs to be compared. For each evaluator, the difference

between impact 1 and impact 2 is cQmputed, and displayed,

along with the present impacts for both designs.

namel name2 Difference 1 - 2

Evaluators

goal 1 i1  1 (+)d

goal 2 i i 22,1 2,2 (+)d 2

goal mm , m1,2 (+)dml

(6) "satisfaction" (for 1 selected design, with respect

to all evaluators, on one level)

The program accepts from the user, the name of the design

to be analysed. A value transform array is presupposed (or

program "display-transform" has already been executed). The

utility or transform values for each evaluator are ranked

and displayed in the following format:

Evaluator Uti).ity Rank

goal 1 t r

goal 2 t2,k r best

worst

goal m, t.,k r
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With "satisfact-ion", it is also of interest to compute

utility satisfaction ranks for a number of selected designs,

and call the PL/1 function "quasi-order". The resulting

quasi-levels will give the evaluators which are consistently

well-satisfied among all designs (Quasi-level 1), to those

which are consistently poorly satisfied among all designs

(lower quasi-levels).

(b) Possible Extensions

Useful additions to the current repertoire of available

commands would provide for more sophisticated identification of

problem issues. Two areas suggest themselves:

(1) Break-even analysis

(2) Incremental or marginal improvement.

Computationally, some of these routines are quite complex, since

they require more intervention in the planning process than

present commands, approaching the level of evaluation models.

Break-even analysis: Deals with the question: "what tradeoff

ratios among evaluators would produce indifference among all

alternatives at one level?" For the linear scoring functioni a

solution may be attempted by simultaneous linear equations;
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IXe 1 + 2e 21+ ... + ml - k,

1 e12 + 2e22 + . + mem2 - k,

Xe +" e + ... + X e - k..
1l-In 2 2n am

Since the resulting form is n equations in m unknowns, if n -m,

then a solution is possible. However, if n > m, then the set may

be overconstrained and insoluble; if n < m, the set is under-

specified. - In this latter case though, tradeoff values may be

expressed in terms of one another, and a variety of solutions

under constraints, tried.

Simpler forms of break-even analysis could address the

following questions for any two alternatives at one level:

(a) for any one evaluator, what change in its tradeoff

coefficient would make the two alternatives indifferent to one

another, if at all?

(b) for any one evaluator, what changes in the impact value

of one alternative would be required to make two alternatives

equal or indifferent, if at all? Since this involves mapping

of impact values onto the preference structure, a number of

solutions may have to be attempted before approximating in-

difference. For quasi-separable utilities, the added computa-

tional cost of aggregating for all levels, must be considered.
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Cc) for a particular set of design attributes (i.e. control

variables) which can be varied incrementally, what changes in one

design are required to get indifference' between twl alternatives?

Since design attributes must pass through two complex mappings,

predicting the direction of value shifts for any one attribute

change, may be quite difficult. (the added computational cost

for quasi-separable utility aggregation L:ust also be considered.)

Incorporating a Bayesian learning model within the routine would

aid in the prediction of value shifts.

Incremental improvement is simpler than break-even analysis,

but deals with similar issues: the evaluation effects of incre-

mental variation in certain control variables:

(a) for a particular predicted impact for one design: change

the impact incrementally by a significant amount, and determine

the effect, if any, on the overall ranking of alternatives.

(b) for any one evaluator ei for all designs, change incre-

mentally the weight A assigned to e by a significant amount

(normalizing the other weights ( l,. Xil) ,(X i+l'I m)

in the process), and determine the effect, if any, on the overall

ranking of alternatives. This is not applicable to the Fishburn

or Case relative value methods, where the weighting is proportion-

al to the spread of evaluator values among alternatives.

(c) for any one or more control variables of a design:

change incrementally the variables by significant amounts, and

determine the effect if any, on the overall ranking of alternatives.
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As with (c) above, this .is a complex search issue, which probably

must be integrated within a learning model in order to improve

efficiency.

4.2 Static Evaluation

"Static Evaluation" refers to evaluation carried out in the

context of the standard statistical decision problem. The opera-

tion is performed near the'end of the design process; a large.

number of alternatives (which may or may not be developed to

several levels of detail) is assessed at one pass (hence the term

"static"). As with user operations, a good deal of preparatory

information specific to the, project under consideration, is

required before evaluation can take place.

The DISCOURSE programs "Preliminary" (Figure No. 4.2) and

"Evaluators" (only if applicable) retrieve the initial project

information required:

(1) the names of evaluators and designs;

(2) the total number of designs (all levels);

(3) the total number of evaluators or goal variables (all

levels);

(4) the goal and design structures (if the problem is

hierarchically structured);

(5) the overall impact matrix.

The user selects the lev4l for analysis from the console.
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Figure No. 4.3 represents the Process Flow Chart and the

associated Project-Dependent Information retrieved from disk

files, and updated by the output from subroutines. The overall

Program Control is illustrated in Figure No. 4.4. Once an

overall Prediction Phase has been completed, (which serves to

transform design descriptor attributes into evaluation attri-

butes), the DISCOURSE program "Single-Pass" (Figure No. 4.5) is

called, which:

(1) derives rankings for all designs with respect to each

evaluator (the Ordinal Ranking Matrix). Alte-rnatively,

an Ordinal Impact Matrix may serve as input to the

program (but then, the analysis cannot be carried beyond

step 2).

(2) checks for dominated alternatives by constructing quasi-

levels. If dominated alternatives occur, they are

deleted, and the impact matrix is reduced accordingly.

(3) queries the user as to which of several evaluation

methods he wants to use for assessing the remaining un-

dominated alternatives. The requisite value or utility

functions and weights are assumed to be available before

this choice is made. (Alternatively, the process control

may transfer out of 'the computer environment so as to

allow the user to prepare the necessary preference func-

tions, input them, and transfer back to the final computer-

based assessment.)
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Four evaluation methods are available, which cover a variety

of possible value systems and decision environments:

(a) Fishburn Relative Value (relative value)

(b) Case Relative Value (relative value)

(c) Linear Scoring Function (certainty and uncertainty)

(d) Quasi-additive utility functions (uncertainty).

In the present implementation, no distinction is made -between

uncertainty and certainty: the utility values derived are assumed

to represent "expected utility". Adding a capability for

assessment of probabilistically distributed impacts, is simple

conceptually, but increases the size of the impact matrix by a

factor of (2 x the number of probability steps) and the number

of utility computations similarly. Also, the storing of utilities

and values as step functions, makes no distinction as to how the

original preference structure was derived: through indifference

curve analysis, analytical function solution, canonical lottery

results, etc. The ability to assess and input user preferences

directly, could also be added to the system.

From the point of view of the decision-maker, the distinction

between "relative value" and "utility" is important only if the

Static Evaluation is not -going to be truly "static" (i.e. with a

fixed preference structure incrementally, etc. Both "relative

value" and "utility" are "relative" in the sense of applying to a

single decision-maker: utility is commonly held to be not inter-

personally comparable among decision-makers. However, in our
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distinction, "relative value" is also held to be relative to the

present set of alternatives and their associated impact values:

adding another non-dominated alternative to the set of designs

under consideration (or deleting one from the set), requires that

the relative values for all alternatives and evaluators be re-

calculated..

On. the other hand, "utility" is held to be portable in the

sense that another alternative may be included for evaluation,

and yet, the current worth of the present alternatives will not

change (although the rankings among them, being an ordinal and

therefore, relative measure, will change). This is assured by

assessing utilities over a large number of consequences and

"pseudo-consequences" for each evaluator; pseudo-consequences

being values of the goal variable that future alternatives might

take on. Once an alternative is gneerated, a set of real con-

sequence values is selected from the set of possible consequences

and pseudo-consequences.

Since assessments resulting from the use of different

evaluation methods are not strictly comparable, the decision-

maker must clarify which interpretations he wishes to be put on

the "worth" of an alternative, before selecting the appropriate

procedure.
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(a) Fishburn Relative Value

Fishburn's general additive value model (55) is similar

to the Linear Scoring Function in terms of requiring

independence among evaluators, but is more rigorous in

its determination of the relative importance of different

parameters. Figure No. 4.6 outlines the logic of the

DISCOURSE program, "Fishburn-Relative-Value":

(1) The impact matrix of design consequences is mapped on-

to the value array or function, for each evaluator, to

yield a transformed matrix:

IMact Matrix Value Array Transform Matrix

A ...... r...A , A .... A ..An

El i nv ...v ...v1r E t ..... t ..... tln

E ... m ar Em .l...............tm

(L. - k)

(2) A standardized score matrix is constructed from the

transform matrix by stepping through each evaluator,

assigning the consequence with the best transform

(55) P. C. Fishburn; op. cit.; (1965)
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value, 1.0; the worst 0.0; and linearly scaling the

other transform values between these two bounds.

*
Denoting t as the value of the best consequence, for

evaluator i; and t as the value of the worst con-

sequence, for evaluator i; we have, for any element

a of the standardized matrix:

i j

t -t*

i ti

Transform Matrix

A.....A.A

E t t ...... t_

in ml.

E tt
M ml,-*-*------' mn

Standardized Matrix

E s s s

E S s
M Ml. M

(3) The relative weight for each evaluator i, is de-

termined by the difference between its highest and

lowest. transform values:

*
W I(t i- ti) rv ij W s , where

rv is the relative value of alternative j with

respect to evaluator i.

(*) note that
procedure

this is roughly equivalent to the conjoint scaling

mentioned on page 38. .
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(4) The. total relative value is derived by multiplying

each s by its appropriate weight wi, and summing over

all evaluators, for each design:

TRV wi

(5) All designs are ranked by total relative value.

(6) The program accepts from the user, the names of 2 to

5 designs to be displayed. The computational results:

relative values for each design with respect to each

evaluator, total relative value for each design, and

ranking for each design, are displayed:

Designs: name 1 name 2

Relative
Values

goal 1 rv rv 1 2

goal 2 rv21 "22

goal m rvl rv2

Total: TRV TR 2

Ranking: r r 2
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(b) Case Measure of Relative Value

The Case measure of relative value (56) assumes that one

can obtain from the decision-maker, a set of probabilities

(p,...,pn ) such that the'consequences for all alternatives,

when multiplied by their respective probabilities, are

equally preferred; i.e.:

p i 0p2 12 p i U3' Pin i i for each

evaluator i.

In each case where p j refers to the probability of

obtaining consequence i , the alternative outcome with

probability (1 - p j) is assumed to be the "status quo".

On the assumption of maximizing expected value, we derive:

p 1 .rvi pi=ri y3'n3  ... p- p.rv, for
Pil r il'ap 12 rv 12  PO,3SV 1Pin' rrin',fo

each evaluator i

where rv is the relative value of alternative j for
ij

evaluator i.

In the program "Case-Relative-Value" (Figure No. 4.7), the

procedure:

(1) maps the inipact matrix onto a value function or array

(56) R. L. Ackoff; Scientific Method: Optimizing Applied Research

Decisions (New York, N. Y., John Wiley & Sons, Inc.; 1962),
pp. 91-93.



CASERELATIVEVALUE (DISCOURSE)

MAIN SUBPROGRAMS PL/I FUNCTIONS

COMPUTE TRANSFORM
MATRIX

COMPUTE CASE.RELATIVE.
VALUE a TOTAL RELATIVE
VALUE FOR EACH DESIGN

READ NAMES OF 2 TO 5
DESIGNS TO BE DISPLAYED

DISPLAY RELATIVE VALUE
BY EVALUATOR FOR EACH
DESIGN, & TOTAL RELA-
TIVE VALUES

COMPUTE AND DISPLAY
RANKING FOR EACH DES-
IGN N/

FIGURE NO. 4-7

115

-- ORDERING



116

for each evaluator, to yield the probabilities

matrix:

Impact Matrix

A, ....... A ....... A
i n

i17 ij"' i l11i . in

Probabilities MatrixValue Array

E

E.

E

.11-- l Ir

V r.......... mr

E

m

A ....... A ........ A

(i.. - k)

Alternatively, the program can accept direct input

of the probabilities matrix, since operationally,

its direct assessment would require fewer judgments

from the decision-maker than the derivation of a

value function for each evaluator.

(2) letting Erv = 1.0 (or any arbitrarily selected

constant) obtains the value of rvil from:

rv + + + *.. += 1.0

P12 P13 Ein

1
"il W

1 P 1  Pj1  Pil
(+ -- + -+ ... +-)

P12 3 Pin

E
*1

E

E
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(3) once rv is e.stablished, computes the relative

values

1i2' 1sV 1 3 ' '' rvij, ' rvin by:

p1 lj
rv =

ij p

(4) repeats steps (1) through (3) for each evaluator;

(5) derives the total relative value for each alternative

j by summing over all evaluators:

m
TRV = rv

Alternatively, a relative weight, w for each

evaluator i, determined from the difference between

the highest and lowest relative values (as in Fish-

burn Relative Value) can be computed:

* *
w, =(rv, - rv), where rv is the relative value of

the best consequence, evaluator i;

and rv is the relative value of

the worst consequence, evaluator

i.

Then, the total relative value for each design j, is

obtained from:

m

TRV = w rv
i=l
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(6).ranks all designs by total relative value.

(7) The program accepts from the user, the names of 2 to

5 designs to be displayed. The computational results:

relative value for each alternative with respect to

each evaluator, total relative value for-each alterrrar--

tive, and the rank of each alternative, are displayed:

Designs:

Relative
Values:

goal 1

goal 2

goal m

Total:

Ranking:

name 1

rv 11

rv 21

rv

TRV 1

r 1

name 2

rv
1 2

S22

rYM2

TRV2

r 
2

Both the Case and Fishburn relative value measures are

dependent on the set of outcomes defined by the present set

of alternatives.

(c) Linear Scoring Function

A linear scoring fuuction (57) requires that all impacts

or consequences be assigned a numerical value (possibly

(57) M. L. Manheim et. al.; op. cit. (1969), p. 15.
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through transformation from a preference function).

Rankings result from computing the weighted sum of

evaluator transformed values for each alternative. If

the value function is linear with respect to the predicted

consequences, the weights can be adjusted, and the total

score may be computed directly from multiplying the

numerical impacts by their respective weights, and

summing over all evaluators. All impacts must be cast

in a mode of increasing preference for this latter,

simpler form to be used.

The DISCOURSE program "Linear-Scoring" (Figure No. 4.8),

assumes the transformation of impact values by a prefer-

ence function. If the value functions were independently

assessed, each evaluator weight wi (Ew = 1.0) represents
i

the tradeoff or substitution rate between evaluators.

If the value or utility functions are independent, but

each is conditional on the minimum values of each other

value function, then each evaluator weight w = 1.0

(i.e. the 'value functions are properly scaled so as to

incorporate the tradeoff ratios within them). This

latter form corresponds to Fishburn's additive utility

concept (*). The proper combination of weights with

(*) see discussion on page 42
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value functions must be determined before the program

is executed.

The steps in the process are:

(1) The impact matrix of design consequences is mapped

onto the value array or function for each evaluator,

to yield a transformed matrix:

Impact Matrix

A A ....... An
jn

E I i:

Value Array

1.......... r

E1 v1 1  1 rVlkv

E v .......a ml: m

Transform Matrix

Al..... A ....... A
j n

E t t t
.1 l1 lj ln

E t
m mlm

(i = k)

(2) The score for alternative j with respect to evaluator

weight w , with the transform value t i, i.e.:
ij

s i w t i

Transform Matrix

A1 A
n

t .... t ... ln

E t tm Mu

X.

x

X

W,

m

E

Em

Dre Matrix

A ........ A ....... A
j n

s .... s .... si

s sn
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(3) -The total score, TSi for each alternative I, is

obtained by summing sjj over all evaluators J; i.e.:

TS = is

(4) Designs are ranked by total score.

(5) The program accepts the name of 2 to 5 designs from

the user. Results are displayed in the following

format:

Designs: name 1 name 2

Score:

goal 1 S11 s12

goal 2 s21 s22

goalm as Sm.

Total: TS1 TS2

Ranking: r1  r2

(d) Quasi-Additive .Utility

As discussed above, the quasi-additive form of utility

aggregation (58) requires evaluators to be mutually

utility independent of each other. This can be tested

empirically by determining if the compound preference

function of all but one evaluator held fixed, is

(58) R. L. Keeney; op. cit.
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dependent only on values of the remaining evaluator.

This condition must be satisfied for each evaluator in

turn. We showed that the compound utility function

for two evaluators, x and y, is:

u(x,y)= a u (x)+ a u (y)+ (1-a -a2 ),u x y,

where u (x) and u (y) are utilities in our value arrayx y

sense, and a and a are additional "corner" utility

assessments which interrelate the two evaluators. For

three evaluators, x,y, and z, the form is:

u(x,y,z) = au (x) + a u (y) + au z) + (b-a' -a )u (x)u (Y)l x 2 Y 3 z 1 12 x y

+ (b -a -a )u (x)u (z) + (b -a -a )U (y)u (z) +2 13.x z 3 2 3y z

(1-b1-b2-b 3+a 1+a2+a 3)u (x)u (y)u (z). (2)

where a ,a2 ,a3,b2 and b3 are corner utility assessments.

The DISCOURSE program "Quasi-Separable" (Figure No. 4.9)

does not deal with groups of more than three evaluators,

since the number of required corner utility assessments

goes up rapidly as m, the number of evaluators, increases.

(For 4 evaluators, the number required is 2m- 2 , or 14;

for 5 evaluators, it is 25-2, or 30; and so on.) For-

large numbers of grouped evaluators, the additive utility

or linear scoring function, is a reasonable approximation

to the quasi-additive form.
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For quasi-additive utility assessment, a goal structure

must be input, since the program must determine which

groups of evaluators are to be aggregated (which will

vary from problem to problem), and retrieve the appro-

priate corner utility values. Qualitatively, the pro-

cedure is as follows:

(1) The impact matrix of design consequences for level i

is mapped onto the value array or function for each

evaluator at level i, to yield a transformed matrix

of single-evaluator utilities:

Impact Matrix Value Array Transform Matrix

A,,-A ....... A 1... k.........r A ....... AA A

E i .i i E -v .v v E t *t1.tlj n .1 1j1k r 1 1lj n

E i i E v: E t t
=1 mn m ml**"** mr m mli mn

(i = k)ij

(2) For each group of evaluators at level i, the program

determines from the number in each group, whether

formula (1) or (2) (above) applies, or whether the

utility can isimply be transferred to the next level.

The required corner utility values are retrieved as

each set of evaluators is' exam.ined in turn, and the
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compound group utility for level i-I is computed.

(3) Step (2) is repeated for each level of aggregation,

until a single multi-dimensional utility assessment,

u(0,1,j), results. (First subscript = level,

second = group designation, third = alternative

designation). For each intermediate level, the

grouping of goal variables in the structure must be

determined, and the necessary computations performed,

dependent on that grouping.

(4) Steps (2) and (3) are repeated for each design.

(5) Designs are ranked by level 0 utility; u(0,1,j).

(6) The program accepts the names of 2 to 5 designs for

display. The computational results for level i

utilities, level 0 aggregated utility, and ranking

for each design, are shown:

Designs: name 1 name 2

Utilities
Level i:

goal 1 t11 t12

goal 2 t 2 1  t 2 2

goal m tl tm2

Aggregated
Utility: u(0,,1) u(1,1,2)

Ranking rI r2
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4.3 Dynamic Evaluation 'Model

The Dynamic Evaluation Model uses the concept of hierarchically

structured levels for both goals ("evaluators") and actions

("design alternatives"). In the hierarchy of evaluators, upper

level general goals are explicated, specified, or clarified by

lower level objectives. Lower level goals are components therefore,

or parent goal vectors. In the hierarchy of description of design

alternatives, lower level designs may be seen as variations within

the partial constraints of their parent, least including designs.

These more detailed alternatives do not explicate or specify what

is meant by the descriptors of parent designs; they supply attri-

butes, or attribute values left undefined by the metric of the

immediately preceding level.

The relationships between the evaluator language and the

descriptor language are complex. Computationally, we would

prefer each of the structures to be internally simple; however,

in so constructing them, we make the external relations between

the hierarchies very complex, and analysable only probabilist-

ically, if at all. Figure No. 4.10 illustrates this relationship

between description and evaluation:
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Prediction > Evaluation
[AX] Operator x Operator >L1 x]

a2

2V

i M f (C .. c M u (I)
a j J1 1 n N i V J

:3 a .. ar

aik f k(c d..c 'kVk -uk(7

a .. as

a Isv
a m

sign A prediction of Design A mapping of Design A
escripfor impacts from impact impacts onto evaluation

vector design descrip- vector value vector
tion structure

sult of -Rsult of Result of

Search prediction evaluation

C = (cd,...c ) is the set of context variables.

Suppose for example, for the design alternative A
x

descriptor ai is a variable "type of construction";

function f (c ,...c ,ai...ar) is the prediction of

unit rentals;

function fk( ds '' '', ai,...a.) is the pr'ediction of

building maintenance costs;

and the resulting valuations are:

v j= low (i.e. high rentals);

vk - high (i.e. low maintenance costs).
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If we attempt to improve A by trying to find some way of

increasing v (i.e. lowering rents) while increasing or maintaining

the same vk (i.e. the same or lower maintenance costs), one of

the possible design variables we could vary would be ai (for

example, change type of construction from concrete to wood).

The resulting designs thus generated might result in an increase in

v (i.e. lower rentals), but simultaneously, a decrease in Vk

(i.e. higher building maintenance costs). By varying the compon-

ents of a set of variables in one domain, we cannot directly and

with certainty, infer the impact effect on the other domain

without going through the complex prediction, and then evaluation

mappings. However, within each domain (goal or action) we may

have relative freedom to manipulate subsets of the overall variable

set independently of other subsets.

The model assumes that relatively simple goal and design

hierarchies can be constructed, and will remain relatively stable

over the planning process. In particular, we require a goals

hierarchy which can be formulated at least in conditional utility

independent form, and a design hierarchy with well-defined

transitions from level to level, and inclusion relationships from

"parent" to "offspring" designs.

Furthermore, at least one goal level can be found to correspond

to each level in the design structure. The converse is not

necessarily true: there may be more goal levels than design levels

if some of the intermediate design metrics are not sufficiently
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so as to make another level of search (and therefore, prediction

and evaluation) worthwhile in terms of additional information

gained. On the other hand, intermediate aggregations of goal

variables may be useful in the extension of the goal tree. For

simplicity, we assume goal and action levels coincide. In well-

defined problems, where searches and tests are embedded within

each algorithm, there is a direct correspondence between action

and goal levels. There cannot be more action levels than goal

levels, since this would imply the generation of actions which

cannot be compared or evaluated on the same level, which goes

against the notion of level as a metric- or measurement-based

concept. (cf. Figure No. 4.11).

The purpose of the evaluation model is to guide the designer

through the planning process, in suggesting which experiments to

undertake, and using the accumulated history (in terms of ex-

periential knowledge) of the process as a guide to future action.

The model also allows the designer to draw some inferences about

the nature of experiments, given by the description field of

the system. An example will illustrate this point:

After the initialization of a planning process, the

generation of the first alternative and its descriptor set,

is arbitrary. (The "universal design" is not really an

alternative, but rather a vehicle for the initial subjective

distribution over expected evaluations emanating from it).
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level 0 "universal design"

level 1 "AlOO-1"

Figure No. 4.12

However, after the generation of this first arbitrary

design, subsequent designs are constrained and influenced by the

results of the process. For a second pass, we would have:

level 0 "universal design"

level 1 "P200-1" "AlOO-1"

level 2 "P110-2"

Figure No. 4.13

where "P200-1" and "P110-2" are potential design experiments, not

yet executed. Potential design P200-=1, on the same level as

executed design AlOO-l, is constrained in several senses:

(a) it must possess the same descriptor attributes as

A100-1, at least in terms of those relevant to

evaluation,'so that A100-1 and A200-1 (if executed)

may be meaningfully compared;
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(b) on the other hand, it must search out a different

portion of the solution space from A100-1, in terms

of descriptors appropriate to that level. That is,

it cannot be so similar to A100-1 that some lower-

level design, say AxxO-2, -could be developed from

both A100-1, and A200-1 as parents. Different parent

designs imply distinctly different "offspring"

designs if the concept of metric is to have any

meaning.

Learning from the results of the planning process covers a

utaber of other areas as well; for example, the perceived

characteristics of levels, and single-level operations, change.

Initially we require that a design at level j be developed from

an existing parent at level j-1. In other words, a jump to

detailed building configurations without having executed the

parent land use plan, is not allowed. Figure No. 4.14 illustrates

this point:

level 0 "universal design"

4 ---.. not permitted

level 1 Q "AlOO-1"'--..

level 2 i"P110-2" (legal)

level 3

Figure No. 4.14
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The reasoning behind this restriction, is that the designer

camot skip levels of description until he has learned about the

kinds of information that may be generated at each level, par-

ticularly when attributes of upper-level alternatives serve as

partial constraints for lower levels.

As the planning process continues, learning about the nature

of 'the solution space at each level improves; certain attribute

sets are perceived as being crucial to solutions at that level;

other avenues of exploration are cut off as alternatives at that

level experiment with portions of the solution space. Therefore,

we would expect the cost of generating al alternative at a

particular level to decrease over the history of the process,

since the unexplored space becomes progressively smaller (and

the costs of search are related to the area and density of that

space). This is especially true for alternatives generated from

a parent which has already produced "brother" designs at that

level; for example:

level 0 "universal design"

level 1 - "A100-l"

level 2 "A110-2" . "P120-2"

Figure No. 4.15
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It should cost less to generate A120-2 than it was to

generate A110-2 because in many respects A120-2 will be similar

to its "brother"; in fact, it may be an incremental variant of

A11O-2, suggested by the latter's evaluation, which identified

the strong and weak points of that design. Invocation of user

operations such as "satisfaction", or its proposed extensions, may

point the way to incremental improvement of executed designs, by

identifying goal variables which are poorly satisfied (where

design effort should be concentrated) and goal variables which are

well satisfied (which may either be loosened, or point to design

variables which should be held fixed from experiment to experiment

on that level).

Later on in the process, multi-level jumps of the kind

restricted earlier could be allowed; for example:

level 0

level 1

level2 

level 3 i

Figure No. 4.16

because the designer has learned enough about the kind of informa-

tion acquired from intervening levels, so as to.be able to dispense
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with them, and economize on.his search effort. However, in its

present implementation, the model does not allow such jumps,

(and therefore loses whatever heuristic value there may be in-

first exploring lower levels as a means to improving search

performance at intermediate levels).

(a) Components:

(i) Goal Structure:

(1) A set of evaluators decomposed in a goal fabric,

with level and inclusion relationships, must be

defined(*). The computer program "Evaluators"

accepts the names and level designation of evaluators

from the user at the console, and generates an array

"structure-goals" which defines these level and in-

clusion relationships for use by subsequent programs.

(2) a value array table (step utility function) or

preference function for each elemental goal variable.

(3) a table of corner utilities or tradeoffs between

subsets of goal variables for each level.

Figure No. 4.17 represents the goal structure for the

M.I.T. North West Area Project, an illustrative

application; Figure No. 4.18 illustrates how this

structure is stored in the Discourse array "structure-

(*) a description of what is meant by goal decomposition is given,

on page
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REPRESENTATION OF GOAL STRUCTURE
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goals", as well as in other arrays.

(ii)Design Structure:

(1)A set of levels to which each level of the Goal

Structure corresponds, is defined. In the DISCOURSE

system, which comprises a data structure for spatial

metrics, the definition of level is possibly simpler

than for non spatially-oriented computer systems, since

the consistent progression of scaled representations

(usually by factors of 2) is commonly accepted

practice in architecture and planning.

For the M.I.T. North West Area Project, an arbitrary,

though useful scale factor of 4 defines levels and

their associated metrics: each grid cell in a lower

level metric is 1/4 the size of a grid cell in the

immediately preceding level: (cf. Figure No. 4.19).

level 1: scale: 200' x 240'

level 2: scale: 100' x 120'

level 3: scale: 50' x 60'

Figure No. 4.19
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The advantages of this definition are:

(1) through progressive scale factors of 4, any desired

level of detail can be reached in a small number of

steps;

(2) the scale factor relates to commonly accepted

practice;

(3) the influence of attributes as partial constraints

from higher levels to lower levels; as well as the

aggregation of values from lower level grid cells to

higher level grid cells, can be easily done through a

pointer system which references the different metrics

to each other. Figure No. 4.20 shows this metric

inclusion:

level 3 metric

level 2 metric

level 1 metric

Figure No. 4.20

This referencing is iot easily done if the metrics

are not. so aligned and consistently scaled, for

example (cf. Figure No. 4.21):



Figure No. 4.21

To accept this latter representation implies that the

spatial disposition of attributes is not as important

as some other distinction or scaling in defining

metrics.

(2) a set of level and inclusion relationships for

each new action (generated internally by the Discourse

program "Dynamic-Control", and stored in the array

"structure-designs".

(3) a list of names for each new design (accepted

from the user).

(4) an impact vector by appropriate level evaluators,

for each new design.

Figure No. 4.22 illustrates the Discourse array

representation of a hypothetical terminal design

structure;

(iii) Probability Distributions:

(1) current value distribution:

141

level 2 metric

level 1 metric

Mr
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f "(0) for each executed design k;

(2) Single Level Operator distributions:

h i(u(0,1,k) - 0), for each level i.

(b) Steps in the Hierarchical Planning Model

(1) Determine the legal potential design experiments from

the current design structure. Given the restriction

on the derivation of experiments, the number of po-

tential experiments will never exceed the current

number of executed designs. An experiment is de-

fined as the application of a single level (i+l)

search-selection operator to a current design, level

i, to yield a new design level i+l.

(2) Compute the expected prior utilities for all potential

experiments, and select the experiment k, with the

highest utility for implementation:

E(u(0,1,k)) = Z pkp(y) * u(k,y) where k is the

y

immediate parent of experiment k.

* *
u(k,y) - u(0,1,k ) where k is the best current

*
elemental action if y < u(0,1,k )

*
- u(0,1,k ) if y > u(0,1,k )~
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(3).Test whether the expected improvement from the best

design experiment over the current best elemental

design (if it exists) is greater than the threshold

criterion. If it is not, stop the process.

(4)- Generate-the new chosen-design-k- pred iet-4ts---

appropriate level i impacts, and store the impact

vector Ik (ik''''mk) in the current impact file.

(This step maj transfer out of the computer environ-

ment, or to another set of computer-based, project-

dependent routines)

(5) Compute the level i utility u(i,jk), for each

appropriate evaluator j, for the executed design, k.

(6) Tracing through the goal tree level by level, aggre-

gate utilities to compute the level 0 utility, u(0,1,k)

for the new design.

(7) Revise the prior current values over the generated

design, and its including designs, by Bayes'. Theorem:

for design k and its parent:

fl(6) .h (u(0,1,k)-e)
f"(6/u(0,l,k)) = Tf () .hi(u(0,,k)-)

and similarly for the remaining including designs.

This revision is performed even if new design k is at

the lowest level, since we assume a probabilistic
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interpretation -of utilities at all levels, arising

from possible errors in defining evaluators.

(8) If the generated design k was an elemental design',

compute its expected value, and revise the currnet

rankings of elemental designs.

(9) Return to Step (1) and repeat the process for the

next cycle.

This logic is followed in the DISCOURSE program~"Dynaidc-

Control".

(c) Implementation Restrictions

(1) Potential design experiments: a design experiment is

legal only if its immediate parent,- least including

design has been generated. The reasoning behind this

has been discussed above. The number of potential

designs will always be less than, or equal to the

current number of executed designs. Figure No. 4.23

illustrates the effect of this restriction in a hypo-

thetical design process development.

(2) Single Stage analysis: only single design experiments

are examined, not strategies of two or more expe'ri-

ments. This restriction is primarily to reduce

computation.

(3) Operator characteristics: the h (u(0,1,k)-e) function

is assumed constant over all 6, and over the history
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FIGURE NO. 4-23



147

of the process; for each level i. No revision of

operator characteristics is implemented.

(4) Cost of experiments: are not included in the util'ity

calculations, since they are assumed to be highly

variable (as discussed above). A threshold criterion

for improvement, is substituted.

(d)Implementation

The Dynamic Evaluation model comprises a set of programs,

one of which, "Dynamic-Control", is executed after every new de-

sign alternative has been generated and its predicted consequences

stored in the current impact file. Overall Program Control is

illustrated in Figure No. 4.24. A process flow chart, with

associated project information file retrieval and updating, is

shown in Figure No. 4.25.

Execution proceeds as follows:

(1) Initially, the DISCOURSE program "Evaluators" is

executed to accept evaluator names from the console,

and derive level and inclusion relationships among

evaluators.

Formal program control begins after the first mandatory

design experiment, A100-1, has been generated, and assessed.

(2) The DISCOURSE program, "Dynamic-Control-l" (Figure

No. 4.26) is called only once since it has only a

subset of the functions of the main program, Dynamic-
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Control. It determines potential design experi-

ments, computes their expected values from the priors

of their immediate parents, and selects the best

experiment for implementation, through calling the

sub-program, "selection" (Figure No. 4.27). The

program accepts a name for the new design from the

user, transfers its status from "potential" to.

"current" and outputs updated parameters.

(3) Subsequently, after any design experiment has been

generated, and its predicted impacts stored in the

current impact file, the DISCOURSE program "Dynamic-

Control", (Figure No. 4.28), is executed. Since

there probabily will have been a transfer out of the

computer environment preceding this, the program

first reads in a number of information files, such as

the preference structure, current impact matrix, de-

sign and goal structures, and program parameters.

Following this, it then:

(a) computes the utility of the new design with respect

to each evaluator at the appropriate level;

(b) aggregates utilities in the quasi-additive form

to derive an overall utility for the alternative;

(c) revises prior distributions over the new design and

its including designs, through calling subprogram

"Bayes-Posterior" (Figure No. 4.29);
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(d) computes expected current values of all designs

impacted by the new design;

(e) determines the current best elemental design if

one has been executed, otherwise states that no element-

al design yet exists;

(f) continues as in Dynamic-Control-1, to compute the

structure of potential design experiments (through

PL.1 function "new designs");

(g) executes DISCOURSE subprogram "selection" to

- pick the best design experiment from the expected

prior current values of their parents;

(h) accepts a name for the selected design, transfers

it from potential to current status, and files updated

parameters.

If at the completion of Dynamic Control, the designer decides

that the expected improvement from the selected experiment does

not meet his threshold criterion, then he does not generate the

new design, the process stops, and he accepts the current results

as output by the program.

The structure of the DISCOURSE sub-programs "selection" and

"Bayes-Posterior" is fairly self-evident from their respective

flow-charts. "selection" computes expected values for potential

experiments and identifies the highest scoring possibility.

"Bayes-Posterior" searches the Current d'esign structure to derive
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the chain of inclusion from the new design, and updates the

f"(0/u(0,1,k)) distributions for each impacted design, by Bayes'

Theorem.

(e) Quasi-Additive Utility Aggregation

For two evaluators, x and y, the decision-maker in general,

will have two one-dimensional utility functions; u (x) for x, andx

u (y) for y. These are related to the compound utility function by
y

the scaling convention:

u(x*,y*) = u (x*) - u (Y*) = 0;

u(x ,y ) = u (x ) - u (y ) = 1.0;
x y

then, upon determination of a1 and a2, we have as above;

u(x,y) = aiu (x) + a2u y(y) + l - a1 - a 2 )ux(x)uy(y) .

For ease of computation, we could assume instead that the

decision-maker has input the functions:

u(x*,y) = a2u (y)

u(x,y*) - a1 u (x)

In this case the compound utility function becomes:

u(x,y) - u(x,y*) + u(x*,y) + ku(x,y*)u(x*,y), where

1- a -- a2
aa 2
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For three scalar evaluators, x,y, and z, the assessment of the

compound utility function is somewhat more complex. Given the

three single-evaluator utility functions, u (x), u (y), and u Z(z),

related to the compound function by the scaling convention:

u(x*,y*,z*) - u (x*) - u (Y*) - uz(z*) = 0.0

u(x ,y ,z ) - u (x )= u (y ) - uzCz ) - 1.0,
x ~y

upon the assessment of the 6 corner utilities a1, a2, a3, b1 , b2 '

and b3, we derive:

u(xy,z) = alu (x) + a2u (y) + a3us(z) + (b1-a1-a2 )u (x)u (y) +

(b2-a1-a3)u (x)uz (z) + (b 3 -a 2 -a 3 )uy (y)u z(Z) +

( 1-b 2-b 3+ai+a 2+a3) ux)uy y)uz (z)

A geometrical interpretation is given in Figure No. 4.30.

What must be assessed are the three utility functions represented

by the heavy lines in the diagram, and the six circled corner

utilities.
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Y 12

/X- 3/

Figure No. 4.30

Again, for computational purposes, we could assume instead,

that the decision-maker has the conditional utility functions:

u(x,y*,z*) = alu (x)

u(x*,y,z*) - a 2u(y)

u(x*,y,,z) = a3uz(z)

The resulting compound utility is:

u(x,y,z) = u(x,y*,z*) + u(x*,y,z*) + u(x,,ygz) +

kiu(x,y*,z*)u(x*,y,z*) + k 2 u(x,y~a*)u(x*,y,,z) +

k 3u(x*,yz*)u(x*,y*,z) + k 4 u(x,y,,z*)u(x* ,yz*)u(x*,,y*,z)
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where:

b -a - a2
1'21 a.ya 2

b -a - a3
2 ala 3

b - a2 - a3
3. a2a3

k 4

1 -b 2 - b3.+ a,+ a2+ a3
a a 2a3

This form

utilities over

e.g.

would be desirable if we were only aggregating

a single level, say from level i to level i-1:

level i-l X

level i x x2 x3

However, dver a multi-level goal hierarchy, the aggregation

of utilities from a lower level to the immediately higher level,

results in single (vector)- evaluator utilities, for arbitrary

values of the other vector evaluators; rather than the conditional

compound form. Therefore, we must work directly with the al,...a
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and b1 ,...b corner utilities, rather than the pre-computed k

factors. As an example, consider a simple 3 level goal tree,

represented in Figure No. 4.31:

level 1-2 (MY)

level i-1 X Y

level i x1  x2 Y1 Y2

Figure No. 4.31

where X - (x1 ,x2) and Y = (y ,y2). We denote the first subscript

as the level designation, and the second as group designation;

aggregating from level i-l to level i:

ui iX (X) - aibu i(x1) + aicuix 2 2 +

(1 - aib - ai c)U (x)ui(x2

u (Y) a ieu iy(Yl) + ai u i72 2 +

(1 - aid - a ie)u iy(Y)ui'y2 2
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Aggregating from level i-1 to level 1-2:

u Y Y)= al, u ,(X) + a ,gu +

(1 - a 1 , *f aii)u W(X)u ,M

This procedure is followed in the computer programs, "Dynamic-

Control", and "Quasi-Separable".

(f) Goal Decomposition

Given a set of n elemental goal variables or "evaluators",

G - (e 1 ,e 2 ''en

the goals hierarchy is structured by successively partitioning the

set G into subsets of goal vectors which are mutually utility in-

dependent of one another; partitioning these subsets into further

utility independent subsets, and so on, to the level of elemental

evaluators. Each set of goal partitions defines a goal level. The

partitioning may be done intuitively by the decision-maker for a

small set of evaluators, or more structured decomposition algorithms

such as Alexander's Hierarchical Decomposition (59) may be used.

Decomposition via Alexander's method can serve to define the same

levels for both evaluators and action descriptors (given our earlier

discussion (*) which described it as a procedure which bridges both

(59) C. Alexander; op. cit.

(*) see page 72.
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goal and planning domains). Figure No. 4.32 illustrates a possible

decomposition for the 13 elemental evaluators of the North West

Area Project:

level 0 (e ,e2 ''-' 1 2 e13)

level 1 (ee,e 3e 4) e5 'e6 'e 7 (e8 'e9 e10 se11 'e12 " 13)

level 2 (e1 ,e2) (e3 e 4 (e5,e6 e 7 (e8 e9 )(e 10 ,e1 1 )(e12 'e1 3)

level 3 e1 e2 3 5 6 8 e9 10 11 12 e 13

Figure No. 4.32

Evaluation at any level i proceeds by deriving utility assess-

ments over individual level i goal vectors, aggregating in groups

by the quasi-additive form to the next level i-1, and continuing

to aggregate grouped utilities, level by level, until a single

aggregated utility level 0 results. However, in practice, it may

be:

(a) very difficult to get accurate assessments over, or

measure vector evaluators, as opposed to scalar

evaluators;
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(b) less possible to measure evaluators (or even more

important, to derive suitable evaluators) at upper

levels, because of a less precise metric and fewer

attributes vis-a-vis lower levels.

Therefore, we resort- to an approximation which lends itself

to the use of the hierarchically structured planning model, in that

we assign probability distributions to intermediate level utilities,

which reflect this lack of precision in goal measurement.

For each non-elemental, intermediate level i, we:

(1) determine the measurable evaluators or impacts which can

be approximated by the level i metric;

(2) select, for each goal-vector j, a principal component of

that vector (or a weighted average of several components)

from the measurable evaluators. Each selected evaluator

serves as a surrogate for the level i goal vector of which

it is a component. Surrogates approximate the real goals

in the sense that they should induce behaviour consistent

with, or as close as possible to, the real goals.

For example, in place of the level 1 evaluator, "maximize

financial benefits", we select a principal component, such as

"minimize overall project cost", as the surrogate, since it can

be roughly measured at level 1. Figure No. 4.33 illustrates the

North West Area Project goal structure again, with surrogate

evaluators assigned to goal vectors:
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level 0: surrogate 000
vector (e ,e2 ''''e 1 3

level 1 e e200  e100 20 300

(e1 ,e2 e3 e4 59 6'7 Ce8 9 e 10 ' 1 1  12 ' 13

level 2 e110  e120  210 e310  e320  330
(e1 e2) (e53 e4  (e,,e 6 e7  9) 10 el ee)

level 3 e1  e2  e3  4 e5  e6 e7  8 e9 10  e11  e12  e13

Figure No. 4.33

Level 3, as the elemental level, has no surrogate evaluators;

"e ", as the overall goal surrogate, is assigned the initial

f (G) distribution, which is the decision-maker's assessment of

the distribution of aggregated utilities resulting from the entire

design process, and which starts off the entire dynamic search and

evaluation process. As they are assessed throughout the process,

the intermediate level i goal surrogates are also given probability

distributions over their utility values, which reflect:

(a) the lack of .precision at level i (a function of the

scale of the metric);

(b) uncertainty as to how well the surrogate measure represents
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preferences for the entire goal vector.

The Bayesian posterior revision of the prior probability dis-

tributions over non-elemental utilities after each evaluation,

allows the decision-maker to adjust the bias of the surrogate

evaluator with respect to its lower level goal vector. It does

not suggest if some other component in the goal vector would have

been a better predictor. Of course, some goal variables may not

be even roughly measurable at upper levels.

Two further points should be noted by way of explanation:

(1) we assume that utility functions can be assessed only for

elemental evaluators, therefore, the utility measure for

a surrogate evaluator is its elemental utility function.

However, it is assumed, that the decision-maker can

assess the corner utilities or tradeoffs among goal

vectors at intermediate. levels. (since this only

involves combinations of the "best" and "worst" values

of goals) Therefore, the aggregation of utilities from

an intermediate goal level i, to level i-1, uses elemental

level surrogate utility values, but combines these

measufes by means of corner utilities appropriate for

level i. (However, aggregation from a lower level i+l,

would yield vector utility values at level i, which are

then combined with level i corner utilities for aggre-

gation to level i-1).
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(2) it is not required that evaluators be independent of one

another (as required in the Fishburn additive utility

model (60), for example) but rather than they can be

combined into groups which are utility independent of

each other. However, the resulting goal decomposition

must be in a "planar tree" form, with no overlapping

links.

(60) P. C. Fishburn; op. cit. (1965).
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5. CONCLUSIONS AND EXTENSIONS

This study originally began with an investigation of the role

of evaluation in the planning process as a terminal assessment

procedure of design consequences with respect to explicit goal

statements. It soon became apparent that restricting evaluation

to this role also imposed an unnecessarily rigid conception of the

problem-solving process on the planner or designer.

Firstly, the planner does not want to evaluate only full-

developed alternatives at the end of the process, but may also wish

to shortcut the planning process by gauging his progress at inter-

mediate stages. Secondly, evaluation can play a useful interactive

role in guiding the analyst towards better solutions and more

efficient control of the planning process. The former consideration

led to the inclusion of a set of independent routines which manipul-

ate a basic impact matrix in various ways; the latter led to the

incorporation of evaluation techniques within a hierarchical

planning model. The three techniquei: "User Operations", "Static

Evaluation" and "Dynamic Evaluation" are separate and distinct

entities in this paper; however, it should be stressed that

ultimately they should be integrated into an overall evaluation

"strategy", which would:

(1) judge the overall status of the planning process at any

particular stage of execution;
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(2) array the costs and benefits of various evaluation tech-

niques (in terms of their contribution to the process), and

suggest to the planner, which of these is most appropriate

for his use at this stage. That is, the techniques would

be evaluated as experiments in' the Bayesian decision

theory sense.

The usefulness of any evaluation technique is both project-

independent and dependent: the costs and results of computation

are relatively fixed, but the applicability to a problem context

is closely tied to the project information (impacts, preferences,

attributes, etc.) current at-any time. Thus, benefits are highly

variable from stage to stage within any particular planning

process, as well as from project to project.

It may be of interest to the reader to compare the approach

taken here with that of two other writers:

(1) John Boorn's CHOICE system for environmental design; (61)

(2) the capabilities in DODOTRANS, a computer language

within the ICES System, for the evaluation of transport-

ation systems, as exemplified by the work of John R.

Mumford. (62)

(61) J. P. Boorn; A Choice System for Environmental Design and
Development, (Cambridge, Mass., M.I.T. Dept. of Urban Studies
and Planning, unpublished PhD. thesis, 1969).

(62) J. R. Mumford; Computer-Aided Evaluation of Transport Systems,
(Cambridge, Mass., M.I.T. Dept. of Civil Engineering, Research
Report R69-41, July, 1969),
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Mumford's work implements a number of evaluation techniques,

similar to those in "Static Evaluation":

(1) linear scoring function;

(2) utility theory(additive);

(3) cost-benefit analysis;

(4) goal fabric analysis. (63)

Operations allow the analyst to define goal hierarchies and

evaluators, to evaluate, rank, and compare alternatives, generate

new evaluators, and store the results in data files.

Boorn's thesis describes CHOICE, an evaluation system imple-

mented in CTSS, and developed in conjunction with DISCOURSE. The

user creates a system of evaluation accounts or matrices, on which

various operations may be performed: arithmetic, definition of

evaulators, computation of project costs and benefits, ordering,

averages and standard deviations, discounting, scoring, etc.

The routines implemented in CHOICE roughly correspond to the

"user operations" described here.

Many of the basic operations described by both Boorn and

Mumford did not have to be programmed explicitly here, because

analogous capabilities already exist in DISCOURSE. (64) For

(63) Ibid.; p. 29.

(64) W. McMains et. al.; DISCOURSE Users' Manual, (Cambridge, Mass.,
M.I.T., 1971).
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example, character string manipulation (for the naming of variables),

file management and storage, arithmetic and logical operations,

user interaction, etc. are all used implicitly in the present

programs. Furthermore, the attribute data structure of DISCOURSE

is adaptable to transformations of design attributes into conse-

quences and evaluators; and the matrix operations required in

evaluation, are readily programmed.

However, what may not be immediately apparent before actual

use of a generalized evaluation system, is the immense- amount of

project- and user-specific information which must be prepared and

input before the interactive capabilities of the system can be

exploited. The time spent in using the evaluation techniques may

only be a small percentage of the total time required for specifi-

cation of the project in the system. In Mumford's work, the

DODOTRANS system is tied to a highly specific set of prediction

and analysis models and data for Northeast Corridor transportation

planning, and although restricted to a relatively narrow class of

problems, is also very operational on this account. Boorn de-

velops a more generalized evaluation system, but since it is not

related to a specific set of problems or model of the planning

process, requires substantial data, prediction, and preference

information, before it can'be made operational for a specific

project.

The approach here has tried to balance specific vs. general-

ized techniques. The component evaluation techniques are
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generalized only in the sense of illustrating a set of computations

which would have to be adapted by a user for specific context.

However, this meshes with the concept of DISCOURSE as a user-

oriented computer language for urban design: the planner would

develop his own models for the generation of designs and pre-

diction of their consequences; and then adapt the techniques

described here, for the assessment of the relative merits of

alternatives. In contrast to both Boorn and Mumford, this paper

has also tried to admit of more varied roles or problem-solving

models, within which evaluation could function, in the planning

process; and to link the concepts of multi-dimensionality and

hierarchical problem structuring together in developing component

routines.

Section 1, "INTRODUCTION", discussed a number of issues which

point to possible extensions of the thesis:

(1) social choice: the elaboration of preference structures

and choices for each significant actor group, and the

display of impact matrices, comparisons, crucial trade-

offs, points of agreement and disagreement among actors,

etc. The sy'stem of accounts would serve as an information

base for use in an negotiation and barganing process.

Alternatively, a primary decision-maker may want to do a

surrogate analysis in which he attempts to predict overall

worth indices for alternatives, weighting actor preferences
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by power and interest scores, or tradeoff measures. Many

of the techniques for multi-dimensional evaluation are

applicable in this latter case (i.e. interpreting actors

as dimensions), however, results must be interpreted

more cautiously, since surrogate aggregation is no

substitute for true comunity interaction processes.

(2) User participation: the techniques here may be integrated

into a comprehensive computer-based user interaction pro-

cess, in which actors experiment with a number of alter-

native states (information bases) and vary their prefer-

ences and choices with respect to different consequence

dimensions, and also through feedback from the preference

of other actors. Evaluation techniques are applicable

both to:

(a) gaming situations in which actors take on hypo-

thetical, though reasonable roles and problem con-

texts;

(b) true negotiation situations, in which the informa-

tion base and actor roles are relevant to an ongoing

problem.

(3) Cost-benefit analysis and elaboration of preferences for

time: routines- may be added for computing Net Present

Value, Internal Rate of Return, Benefit-Cost Ratios, etc.

ultidimensional utility theory may also be used if standard
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discounting formulae are not suitable to express the

decision-maker's preference structure. Such capabilities

were not implemented in the current set of programs, partly

because of the concentration on multi-dimensionality

across monetary and non-monetary consequences, and partly

because the various discounting formulae give contra-

dictory criteria for choice even among projects with only

monetary consequences.

(4) self-organization: this refers to non-arbitrary ways of

introducing new "images" of the problem within the planning

process: deriving new preference structures, changing

dimensions of the evaluation or search spaces, guidance

of the search effort towards sub-optimal results, control

and allocation of analysis resources among the different

problem-solving activities. Extensions in this area

involve expanding the more conventional notions of

evaluation within problem-solving paradigms such as

systems analysis or decision theory, towards research

in artificial intelligence, as suggested, for example

in Minsky's article, quoted above. (65)

The work here could also be usefully complemented by an

empirically-based descriptive study, which attempts to outline

the difficulties in deriving preference information from actors

(65) M. Minsky; op. cit.
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in complex urban planning problems, in aggregating these prefer-

nces over a number of consequence dimensions, and in applying

the models described in on-going planning and design processes.

By taking a more theoretical perspective of evaluation techniques,

we may have partially avoided the inevitahle confrontation which

must accompany the transition of these ideas to their implementation

in the real world.
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7. APPENDIX

7.1 DISCOURSE Program Listings

(a) User Operations

Evaluators

Preliminary

order

display-impacts

Pareto

iompare

display-transform

satisfaction

(b) Static Evaluation

Single-Pass

Fishburn-Relative-Value

Case-Relative-Value

Linear-Scoring

Quasi-Separable

(c) Dynamic Evaluation

Dynamic-Control-l

Dynamic-Control-

selection

Bayes-Posterior
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(d) PL/1 Functions

ordering.pl 1

maxlist.pl 1

minlist.pl 1

quasi-order.pl 1

new-designs.pl 1



Fvaluators

dfa levell 1: (1#25)
dfa nameevaluators 2: (1,25),(0,2)
dfa structure.goals 2: (1025),(1,4)
expand "//"
say Type in the number of evaluator names to be input
expand "/"
read-set console
read: $lnum-evaluators=
expand "1//"
say Type in the name of each evaluator (maximum 10 characters) in
say order, preceded by a single digit level number, For example:
say :0 Maxbenefit (overall goal)
say :1 Financial (1st secondary obiective, under overall goal)
say :2 Cambridge (1st tertiary objective, under "Financial")
say :3 taxyields (1st lower-level coal, under "Cambridge")
say :3 serv costs (2nd lower-level goal, under "cambridge")
say :2 MIT (2nd tertiary objective, under "Financial")
expand "W"
through NE1, for i= 1. until numevaluators
read: $11evell(i) $2name-evaluators(i,0)
NE1$ continue
through NE2, for j= 2, until num-evaluators
k=j"1.
level2 = levell(i)
if (level2.leq.1.0) aoto NE6
end = level2-1.
through N3, for 1= 1. until end
structure-goals(jl) structuregoals(kl)
NE3$ continue
NE6$ structure-goalst j,level2) = structure-goals(klevel2)+1.
NE2$ continue
sa structure structure-goals
expand "/array structure-goals stored/I"
sa names name.evaluators
expand "array nare-evaluators stored//"
read-consolereturn
dfa group 2: (1,3),(1,10)
through NE4, for m = 1. until 3.
j = 1,
through NE5, for i = 2. until num-evalmators
if (structure.goals(jm).eql.0.) goto NE6
if (structure-goals(L,(m+1)).neq.O.) goto NES
group(mj) = group(m.j) + 1.
goto NF5
NE6$ if (structure _goals((i-1),m).egl.0.) goto NF5
j = J+1
NE5$ continue
NE4$ continue
sa grouping-evaluators group
say array "group" stored
read-console



Preliminary

expand "/Type in the number of evaluators//"
read-set console
read: $1num-evaluatorS=
expand "//"
expand "Type in the number of designs//"
read: $1current-desians=
expand "//"
dfa impact 2: (2,25).(1,20)
rs impacts
through X1, for i = 2. until num-evaluators
read: $1impact(i,2),.impact(i,current-designs)
X1$ continue
rs off
expand "Filename impacts read//"
ex names
expand "Filename names read//"
dfa rank 2; (1,25),(1,20)
dfa temp 2: (1,5),(0,2)
zoink = 0,
say Programs accept single-level or hierarchicallywstructured
say evaluation problems;
say Type 1 if designs and goals both have only one level of
say generality; the number of hierarchical levels otherwise.
expand "I"
read-set console
read: $1zoink =
if (zoink.eql.1.) goto P7
dfa el 1: (1,15)
dfa di 10 (1,15)
expand "/"
expand "Type in the level number desired: 1, 2, or 3//"
read: $11evel=
expand "I/"
ex structure
expand "Filename structure read//"

0,
n = 0,
through p5, for i = 2. until num_evaluators
if ((structure-goalsfi,level),eql.0.),or.(structure goals(i,(level+1))&

.neq.0,)) goto P5
m = M+1,
el(m) = i
P5$ continue
m1 = m
comment: m1 is the number of evaluators at the chosen level
through P6, for - = 1, until currentdesigns
if ((structure-designs(jlevel),eql.O),or.(structure-designs(i,&
(level+1)).neq.Q.)) aoto P6
n = n+1.
d1(n) = J
P6S continue
n1 = n



comment: n1 is the number of designs at the chosen level
goto P10
p7$ m1 = num-evaluat-ors
n1 = current-designs
through P8, for i = 1. until m1
el(i) = i
P8$ continue
through P9, for I = 1. until n1
d1(j) = j
P9$ continue
P10$ return



order

00$ dfa temp-impact 1: (1,20)
4ff ordering (,20,rank,0,1)
expand "/'
say Type in the name of the evaluator to be used
expand "/"
read-set console
read: $2temp(1,0)
expand "//"
say Type in "increasing" for ranking by increasing value, or

say type in "decreasin" for ranking by decreasing value.
expand "/"
read: $2temp(2,0)
through 01, for i = 1. until ml
x = el(i)
if ceqlF(name-evaluators(xO),temP(1,0)) goto 02
01$ continue
02$ n = x
if ceql_F(temp(2,0),"decreasing") M= 1,
if ceql_F(temp(2,0),"increasing") m 0,
through 03, for I = 1. until ni
y = 81(j)
tempjimpact(j) = impact(noy)
03$ continue
comment:
call ordering(terpimpactinllrank,ml1)
comment:
set.field-width 12
set-carriagewidth 72
set-decimal-places 0
expand "///Designs Ranking///"
through 04, for k = 1. until ni
y = dl(k)
expand '$1name_desiqns(y,0)* $3rank(1,k)//"
04$ continue
expand "///"
read.console



display-impacts

expand "
say For display, choose 2 to 5 designs from
through D1, for i = 1. until ni
y = 61(i)
expand " $3y: $1name-designs(y,O)/"
D1$ continue
expand "//Type in the number of designs to b
read-set console
read: $1numdesions=
expand "/Type in the names of the desinns//"
through D2, for I = 1. until num-designs
read: $2temp(jO)
D2$ continue
expand "///"
comment:
set.field.width 12
set.decimal-places 2
expand "Designs: "
dfa templ 1: (1,5)
through D3, for k = 1. until num-designs
through D4, for I = 1, until n1
v = d1(3)
if ceql-(temp(k,0),name-designs(yO)) goto
D4$ continue
D5$ templ(k) w d1(1)
expand "$1name-designs(y,)*
D3$ continue
expand "//Impacts//"
through D6, for I = 1. until mi
x = e1(i)
expand "$1nameevaluators(x,0)* "
through D7, for I = 1. until numdesigns
y = templ(j)
expand "$1impact(x~y)*"
D7$ continue
expand "//"
D6$ continue
expand "//"
read.console

the following list:

e dispIaYed:// "

D5



Pareto

dfa sum 2:(1,20),(1,20)
dfa reach 2;(1,20),(1,20)
dfa tempimpact 2: (1,15)0(1,15)
dff ordering(,20,rank,0,1)
dff quasi-order(ranksumreach,m1,n1)
dff maxlist(,30,0,i)
expand "/Construction of Ordinal Ranking Matrix//"
say Type in "Increasing" for ranking by increasing
say type in "decreasing" for ranking by decreasing
say each evaluator:
expand "//"
t = 0,
through P1, for ± = 1, until ml
x = el(i)
through P2, for 1 = 1. until ni
y = d1(j)
temp-impact(iJ) = impactix,y)
P2$ continue
P1$ continue
read-set console
through P3, for i = 1 until ml
x = el(i)
expand "$iname-evaluators(x,0)/"
read: $2temp(1,0)
expand "//"
if ceql_F(temp(1,0),"'decreasing") t = 1.
if ceqlF(temp(1,0),"increasinq") t = 0,
comment:
call ordering(terp impact(i,1),nlrank(i,1),t,1)
comment:
P3$ continue
expand "/Ordinal Ranking Matrix completed///"
say Dominance check by constructing quasi-levels
comment:
call quasi~order(ranksumbreach,ml,nl)
comment:
1P = 0,

value, or
value, for

call ordering(sur,n1,rank,m,l)
comment
set-decimalplaces 0
set-carriage-width 72
set.field-width 0
expand "//Quasi-level 1; Pareto-efficient frontier//"
through P4, for i = i until n1
if rank(li).neq.1.) goto P4
y = d1(i)
expand "$1name_designs(y,0)/'
P4$ continue
expand "///"
val = 0,
index = 1.
comment:



call maxlist(rank(1,1),n1,valaindex)
comment: Val gives the number of quasiAlevels produced
if (val.eql,1.) coto end
through PS for i = 2, until val
expand "Quasi-level s31: Dominated alternatives//"
through P6, for I = 1, until n1
if (rank(1,J).neq.1) goto P6
y di( )
expand "$1namedesigns(yQ)/"
P6$ continue
expand "///"
P5$ continue
end$ read-console



compare

dfa difference 1: (1.15)
expand "/"
say Type in the names of the two designs to be compared
expand "/"
read-set console
through Cl, for I = 1. until 2.
read: $2temp(J,0)
C1$ continue
through C2, for k = 1, until n1
y = d1(k)
if ceql-F(name-deSiqns(y,O),temp(1,0)) goto C3
C2$ continue
C3$ n1 = y
through C4, for I. = 1. until n1
Y = d1(l)
if ceql-r(namedesigns(y,O),temp(2,0)) goto CS
C4$ continue
C5$ n2 = y
through C6, for I = 1. until ml
x = el(i)
difference(i) = imPact(xn1) - impact(xn2)
C6$ continue
set.carriage-width 72
set.field.width 12
set.decimal-places 2
expand " $1name'designs(n1,0)*"
expand " $1name-designs(n2,O)*"$
expand "Difference///"
expand "Evaluators //"
through C7, for I = 1, until ml
x = e1(j)
expand "$1name-evaluators(x,O)* $1impact(x,n 1) *"
expand "$limpact(x,n2)* $1difference(i)//"
c7$ continue
expand "//"
read.console



display_transform

dfa value 2: (2,25),(1,24)
rs value-array
through DT1, for i = 2. until numevaluators
read: $1value(i,1)..'.value(i,24)
DT1$ continue
expand "/Filename value_array read//"
rs off
dfa transform 2: (2,25),(1,20)
through DT2, for j = 1. until ml
x = el(J)
through DT3, for k = 1. until n1
y d1(k)
z = impact(x,y)
transform(xoy) = value(xz)
DT3$ continue
DT2$ continue
comment*
sa transform_array transform
say For display, choose 2 to 5 desiqns from the following list'.
expand "I"
through DT4, for i = 1. until ni
y = d1(i)
expand " $3y: $1name-designs(yO)/"
DT4$ continue
expand "//"
comment:
expand "Type in the number of designs to be displayed//"
read-set console
read: $1num_desjqns=
expand "/Type in the names of the designs//"
through DT5, for j = 1. until num-designs
read: $2temp(J,Q)
DT5$ continue
expand "///"
comment:
dfa tempi 1: (1,5)
set.field-width 12
set.decimal-places 2
expand "Designs:
through DT6, for k = 1. until numdesigns
through DT7, for 1 = 1. until n1
y = d1(l)
if ceqlF(temp(k,),name-designs(yO)) goto DT8
DT7$ continue
DTS$ temp1(k) = d1(lI
expand "$1name-designs(y0)*"
DT6$ continue
expand "//Transfcrms//"
through DT9, for i = 1. until m1
x = el(i)
expand "$1name-evaluators (x,0)* "
through DT1O, for I = 1. until num-designs



k = templ(j)
expand "S1transform(x,k)*"
DTIO$ continue
expand "//"
DT9$ continue
readconsole



satisfaction

SO$ dff ordering(,20,rank*O,,)
expand "1"
say Type in the name of the desian to be analysed
expand "/P
read-set console
read: $2temp(1,0)
through S1, for 1 = 1. until n1
y = d1(j)
if ceqlF(temp(1,0),namedesigns(yO)) goto S2
S1$ continue
S2$ n = y
dfa temp_goals 1: (1,20)
through S4, for I = i. until ml
x = el(J)
temp-goals(j) = transform(x,n)
S4$ continue
comment:
f = 0,
g =1,
call ordering(terp-goals,mlrank,f,o)
comment:
set-fieldvwidth 12
set-carriage-width 72
set..decimal-places 2
expand "//Design: $1temp(i,0)///"
expand "Evaluator Utility Rank//"
through S5, for i = 1. until ml
x = el(i)
expand "$1name_evaluators(x,0)* $1temp goals(i)* "
expand "$3rank(1,i)//"
S5$ continue
expand "//"
read.console



SinglePass

dfa reach 2:(1,20),(1,20)
dfa sum 2:(l,20),(1,20)
dfa temp-impact 2: (1,15),(1,15)
dff ordering(,30,rank,ml,nl)
through SP1, for 1 = 1. until m1
x = el(i)
through SP2, for J = 1. until ni
y d1(j)
tempjimpact(i,1) = impact(x,y)
SP2$ continue
SPI$ continue
comment: construct Ordinal Ranking Matrix
expand "//"
say Type in "increasing" for ranking by increasing value, or
say type in "decreasing" for ranking by decreasing value: for
say each evaluator
expand "//"
t = 0,
through SP8, for i = 1. until ml
x = e1(i)
expand "$1nameevaluators(x,0)/"
read-set console
read$ $2temp(1,O)
expand "//"
if ceqlF(temp(lQ),"decreasinq") t=1,
if ceqlF(temp(1,0),"increasing") t=O
comment:
call ordering(terpimpact(i,1),nlrankti, 1),t, 1)
comment:
SPB$ continue
expand "//Ordinal ranking matrix completed/I"
say Dominance check by constructinq quasi-levels
dff quasiorder(rankasumreach,m1,n1)
comment:
call quasi-order(ranksumoreach,ml,nl)
comment:
call ordering(sur,n1.rank,0 1l)
comment:
set.decimal-places 0
set-carriage-width 72
set.field-width 0
expand "//Quasi-level 1: Pareto-efficient frontier//"
through SP9, for i = 1. until n1
if (rank(1,1).neQ.1,) goto SP9
x = d1(i)
expand "$1name-designs(x,0)/"
SP9$ continue
expand "///"
val = 0,
index = 1,
dff maxlist(,30,0,1)
comment:



call maxlist(rank(1*1),n1,valindex)
comment: Val gives the number of quasi-levels Produced
if (val,eql.1,) qoto SP14
through SP10, for i = 2, until val
expand "Quasi-level $31: Dominated alternatives//"
through SPi, for I = 1, until n1
if (rank(1,j),neqi) goto SP1i
x = d1(j)
expand "$1name-designs(x,0)/"
SP11$ continue
expand "///"
SP10$ continue
dfa reduced-impact 2: (1,15),(1,15)
comment: construction of reduced impact matrix
comment: (this section is by-passed if there are no dominated altern-
comment: atives)
n = 0,
through SP12, for i = 1. until n1
if (rank(1,i),neql.1 goto SP12
n = n+1,
d1(n) = di(i)
through 5P13, for i = 1, until ml
reduced-impact(jn) = temp-impact(J,i)
SP13$ continue
SP12$ continue
n1 = n
comment: reduced impact matrix completed
goto SP17
SP14$ dff move(,,)
dfa reduced-impact 2:(1,15),(1,15)
comment:
call move(temp-iractreducedimpact)
comment:
expand "/temp.impact copied into reduced impact/I"
SP17$ read-console return
dfa value 2: (2,25),(1,24)
rs value-array
through SPi, for i = 2, until num-evaluators
read: $1value(i,1). ..value(i,24)
SPI8$ continue
rs off
expand "/Filename valuearray read/"
say Choose evaluation method by typing in one of the following
say names:
say (1) Fishburn Relative Value
say (2) Case Relative Value
say (3) Linear Scoring (also Independent Utility)
say (4) Quasi-Separable Utility
expand "/"
SP19$ read-set console
read: $2temp(2,0)
if ceqlF(temp(2,0),"Fishburn") ex FishburnRelative_value
if ceqlF(temp(2,0),"Case") ex Case RelativeValue
if ceql-F(temp(2,0),"Linear") ex Linearscoring
if ceqlF(temp(2,0),"Quasi-Separ") ex Quasi_Separable
say spelling mistake: type name again
goto SP19
read-console



FishburnRelativeValue

set_decimalplaces 2
dfa weight 1: (1,15)
dfa standard 2: (1,15),(l
dfa Fishburn-rv 26 (1,15)
dfa total.frv 1: (1,15)
ex transform-array
expand "//Filenare transf
dff maxlist(,30,0,1)
dff minlist(,30,1000.1)
comment:
afa tl 2q(1,15),(1,15)
through FRV1, for i = 1,
x = el(i)
through FRV2, for I = 1,
y = dl(j)
t1(ij) = transform(xy)
FRV2$ continue
FRV1$ continue
val = 0,
index = 1,
sum.weight =
through FRV3,
x = el(i)
call maxlist(
max = Val
call minlist(
min = Val
through FRV4,
y = d1(j)
standard(i#J)

0,
for i = 1,

,15)
(1, 15)

ormarray read//"

until ml

until ni

until m1

t1(i,1).n1,valindex)

ti(i 1).n1,val,index)

for I = 1, until ni

= (t1(i,5)-min)/max-min)
FRV4$ continue
weight(i) max-min
sum-weight sum-weight + weight(i)
FRV3$ continue
through FRV, for i = 1. until ml
weight(i) = weight(i)/sum.weight
FRV$ continue
comment:
through rRV5, for i = 1, until n1
through FRV6, for k = 1, until ml
Fishburn-rv(kl) = weightk)standard(k,1)
total-frv(l) w total frv(l) + Fishburn-rv(kl)
FRV6$ continue
FRV5$ continue
dfa tempi 1: (1,5)
expand "//"
set.field-width 12
say For display, choose 2 to 5 designs from the following list:
expand "/"
through FAV7, for i = 1, until n1
y = d1(i)
expand "$3y: $1namedesigns(yO)/"



FRV7$ continue
expand "/"
comment:
say Type in the number of designs to be displaYed:
expand "/"
read-set console
read: $lnum-desiens=
expand "/"
say Type in the names of the designs:
expand '"
through FRV8, for I = 1, until num-designs
read: $2temp(JO)
FRV8$ continue
expand "/"
comment;
set-decimal-places 2
expand "Designs:
through FRV9, for k = 1. until num-designs
through FRV10, for 1 1. until n1
x = d1(l)
if ceqlF(temp(kO),name-designs(xO)) goto FRV11
FRV10$ continue
FRV11$ templ(k) = 1
expand " $1name-designs(x,0)*"
FRV9$ continue
expand "//Weighted/Values//"
through FRV12, for i = 1. until ml
y = el(i)
expand "$1nameevaluators(y,O)"
through FRV13, for J = 1. until num-designs
k = templ(j)
expand "SFishburn rv(i~k)*"
FRV13$ continue
expand "//"
FRV12$ continue
expand "Weighted/Total "
through FRV14, for k = 1. until numjdesions
1 = temp1(k)
expand "$1total_frv(i)*"
FRV14$ continue
expand "//"
comment:
f =

S=1,
call ordering(total-frv,nlrank,f,g)
comment:
expand "Ranking: "

through FRV15, for i = 1, until num-desimns
x = temp1(i)
expand "$3rank(l,x)*"
FRV15$ continue
expand "//"
read-console



CaseRelative-Value

set-.decimal-places 4
dfa Case-rv 2: (1,15),(1,15)
dfa total-crv 1: (1,15)
dfa weight 1:(2,25)
rs weight-table
read: $1weight(2)...weight(num-evaluators)
rs off
expand "/Filename weight-table read//"
ex transformarray
expand "Filename transform-array read//"
dfa tl 2;(1,15),(1,15)
through CRV1, for i = 1, until ml
x = el(i)
through CRV2, for I = 1, until n1
y = dl(j)
if (transform(xpy).eal.0,) goto CRV
t1(ii) = weight(x)/transform(x,y)
goto CRV2
CRY$ t1(i,5) = 1000,
CRV2$ continue
CRV1$ continue
comment:
through CRV3, for i = 1, until m1
denominator = 1,
through CRV4, for = 2, until n1
denominator = denominator + t1(i,1)/t1(ij)
CRV4$ continue
Case-rv(il) = (1./denominator)
through CRV5, for k = 2, until n1
Case-rv(ik) = (t1(i,1)/t1(ik))*Case-rv(i,1)
CRV5$ continue
CRV3$ continue
through CRVV, for I = 1. until n1
through CRVW, for i = 1, until ml
x = el(i)
total.crv(j) = total' crv(j) + weight(x)*case-rv(i,1)
CRVW$ continue
CRVV$ continue
comment:
dfa templ 1: (1,5)
set.field-width 12
say For display, choose 2 to 5 designs from the following list:
expand "/"
through CRV6, for i = 1, until nI
y = d1(i)
expand "$3y: $1name designs(y,0)/"
CRV6$ continue
expand "/"
comment:
say Type in the number of designs to be displayed:
expand "/"
read-set console



read: $1num-designs=
expand "/"
say Type in the names of the designs to be displayedi
expand "/"
through CRV7, for I = 1. until numdesigns
read: $2temp(j,0)
CRV7$ continue
expand "I/"
comment:
expand "Designs:
through CRV8, for k = 1, until nuM-designs
through CRV9, for 1 = 1, until n1
x =d1(l)
if ceqlF(temp(kO),name-designs(xO)) goto CRV10
CRV9$ continue
CRV1O$ templ(k) = .
expand " $1name-designs(x,0)*"
CRV8$ continue
set-decimal-places 2
expand "//Unweighted/Relative/Values//"
through CRV11, for i = 1. until ml
y a P1W
expand "$1name _evaluators(y,0)*
through CRV12, for j = 1, until num-desians
k = temp1(j)
expand "$1Case-rv(i,k)*"
CRV12$ continue
expand "//"
CRV11$ continue
expand "Weighted/Total: "
through CRV13, for k = 1. until numdesigns
1 = templ(k)
expand "$1total_crv(1)*"
cRV13$ continue
expand "//"
comment:
f 0,

=1 1,
call ordering(total~crv,n1,rank,f,q)
comment:
expand "Ranking: "
through CRV14, for i = 1. until num-desians
x = templ(i)
expand "$3rank(1,x)*9
CRV14$ continue
expand "//"
read-console



Linear-Scoring

set-decimal-places 4
dfa score 2: (1,15),e1,15)
dfa total-score 1: (1,15)
dfa weight 1: (2,25)
rs weight-table
read: $1weight(2),..weight(num-evaluators)
rs off
expand "//Filenayre weight.table read//"
ex transform.array
expand "Filename transformnarray read//"
comment:
through iSD, for i = 1. until ml
x w el(i)
through LS4, for j = 1. until n1
y = d1(j)
score(i,j) = weiqht(x)*transform(x,y)
total-score(j) = total-score(j) + score(iij)
LS4$ continue
LSD$ continue
comment:
dfa temp1 1: (1,5q)
say For display, choose 2 to 5 designs from the following list:
expand "/"
through LS5, for X = 1. until n1
y a d1(k)
expand "$3y: $1nameIdesigns(y,0)/"
LS5$ continue
expand "//"
comment:
say Type in the number of designs to be displayed:
expand "/"
read-set console
read; $1num-desions=
expand "
say Type in the names of the designs to be displayed:
expand "/"
through L56, for 1 = 1. until num-desiqns
read: $2temp(lO)
LS6$ continue
expand "//"
comment:
set.field-width 12
expand "Designs: "
through LS7, for i = 1. until num-designs
through LS8, for j = 1. until n1
x = 61(j)
if ceqlF(temp(iO),name-designs(x,0)) goto LS9
LS8$ continue
LS9$ tempi~i) = I
expand " $1name-designs(x,0)*"
LS7$ continue
expand "//Weighted/Values//"



set-decimal-places 2
through LS10, for k = 1. until ml
y = el(k)
expand "$1name_evaluators(y,O)* "
through LS11, for I = 1. until num--designs
i = temnpl(l)
expand "S1score(ki)*"
LS11$ continue
expand "//"
LS10$ continue
expand "Total "
through LS12, for 1 = 1, until num-designs
k = templ(J)
expand "$1total_scor(k)*"
LS12$ continue
expand "//"
comment:
f = 0,

S= 1.
call ordering(total_score(l),nlrank,feg)
comment:
expand "Ranking:;
through LS13, for k = 1, until num-designs
x = templ(k)
expand "$3rank(1,x)*"
LS13$ continue
expand "//"
read-console



QuasiSeparable

get-decimalplaces 4
set.field-width 12
difa a 3:(1,3),(1,6),(1,6)
comment: 1st dimension: level; 2nd: group designation; 3rd: values.
dfa u 3:(O,3),(1,15).(1,8)
comment: 1st dimension: level; 2nd: level evaluators; 3rd: level designs.
ex grouping-evaluators
expand "/Filename grouping-evaluators read//"
ex transformarray
expand "Filename transform-array read/I"
through QS1, for i = 1. until m1
x = el(i)
through QS2, for j = 1. until n1
y = d1(j)
u(level,i,j) = transform(xy)
QS2$ continue
QS1$ continue
rs corner-utilities
through QS4, for i = 1. until 3.
through QS5, for j = 1, until 6.
read: $1a(i,j,1).,.afi,,6)
0S5$ continue
QS4$ continue
rs off
expand "Filename corner.utilities read//"
through QS11, for aa 1. until n1
i = level
k = aa
QS6$ j = 0.
mm = 0.
through QS, for ii = 1, until 6.
mm = mm + group(i,ij)
QS$ continue
11 = 1.
QS7$ j = J+1.
if (group(ij).eql.2.) goto QS9
if (group(iJ).eql.3.) goto 0510
u((J-1),Jk) = u(i,ii,k)
goto QS8
QS9$ u((i-1),jk) = a(ii,1)*u(iii,k)a(i,j,2)*A
u(i, (ii+1),k) + (1.-a(i,j, 1)-a(i,j,2) )*u(i,ii,k)*d
u(i,(ii+1),k)

goto QS8
QS10$ ki a(i,j,4)-a(ii,1)-a(ii,2)
k2 = a(i,j,5)-a(i,1,1)-a(i,j,3 )
k3 = a(ij,6)-a(i,1,2)-a(i,j,3 )
k4 = 1-a(iJ,6)-a(i,1,5)-a(ij,4)+a(ii,1)+a(i,i 2)+a(i,1,3)
u((J-1),ik) = a(i,j.1)*u(iiik) + a(1,1,2)*&
u(i,(ii+1),k) + a(ji,,3)*u(i,(ii+2),k) + &

kl*u(iiik)*u(i,(ii+l),k) + k2*u(iiiOk)*&
u(i,(ii+2),k) + k3*u(i,(ii+1),k)*u(i,(ii+2),k) + &

k4*u(iiik)*u(i,(ii+1),k)*u(i,(ii+2),k)



0S8$ = ji + groupti,j) + 1.
if (iiles.mm) goto oS7
i -
if(i.grt,0.) gotc 0S6
QS11$ continue
comment:
dfa tempi 1: (1,5)
say For display, choose 2 to 5 designs from the following list:
expand "/"

through QS12, for k = 1, until n1
y = d1(k)
expand "$3y: $1name"designs(yO)/"
QS12$ continue
expand "/"
comment,
say Type in the number of designs to be displayed:
expand "/"

readset console
read: $1numdesians=
expand "/'
say Type in the names of the designs to be displayed:
expand ""
through QS13, for 1 = 1, until num-desigrs
read: $2temp(l,0)
QS13S continue
expand "/"
comment:
expand "Designs:
through QS14, for i = 1, until num.-designs
through QS15, for 1 = 1, until n1
y = d1(j)
if ceglF(temp(i,0),name-designs(y,0)) goto QS16
QS15$ continue
QS16$ templ(i) = j
expand " Siname-designs(yO)"
QS14$ continue
expand "//Utility/Values//"
through 0S17, for k = 1. until ml
x = el(k)
expand "$1name-evaluatorstxO)* "
set.decimal-places 2
through QS18, for I = 1, until num-designs
i = temp1(l)
expand "$1u(level,k,j)*"
QS8S$ continue
expand "//"
QS17$ continue
expand "Aggregated/Utility "
set.decimal-places 4
through QS19, for 1 = 1, until num-designs
k = templ(j)
expand "$1u(O,1,j)*"
QS19$ continue
expand "//"
dfa tempu 1: (1,20)
through QS20, for i = 1, until n1
temp.u(i) = u(0,1,)
QS20$ continue
comment:



f = 0,
q = 1.
call ordering(terp u~n1,rank~f,g)
comment;
expand "Ranking: "
through QS21, for k = 1. until num-designs
x = temp1(k)
expand "$3rank(1,x)**
QS21$ continue
expand "//"
read-console



Dynamic-Control_1

max1 = 0.
dfa potential-designs 2; -1,3O),(1,4)
dff lhaxlist(,20,O,1)
exPand "/Type in the number of evaluators//"
read-set console
read: $lnumeevaluators=
rs off
a = 1.
current.designs 1.
ex names
expand "/Filename names read//"
ex structure
expand "Filename structure read//"
dff newdesigns(,,eurrent-designsa)
saY Determination of structure of potential desins
comment:
call newdesigns(structure-designs,potential_designscurrent-designsa)
comment:
setdecimal-places 4
set.field-width 3
expand "/Potential Designs://"
a = a - 1.
through C3, for Y = i. until a
if (potential-desians(k,1).eql.0,) qoto c3
expand "No. $3k: $3potential-designstk,1)...potentialAdesigns(k,3)//"
C3$ continue
dfa current-value 3: (1,20),(1,5),(1,2)
comment: 1st dimension: designs, 2nd: steps, 3rdt p.theta
rs current-value-array
through C, for i = 1'. until currentdesigns
through CO, for I = 1. until 5.
read: $lcurrent_value(iI,1)...current-value(ii,2)
CO$ continue
C$ continue
rs off
expand "Filename current-value_array read//"
say Selection of best design experiment follows
comment:
ex selection
comment:
say Type in a nare for the selected design (up to 10 characters
say in length):
readset console
expand "/"
read: $2namedesigns(current_designsO)
rs off
expand "//"
store session
read-console



DynamicControl

dfa rank 2: (1,25),(1,20
dfa temp 2: (1,5),(0.2)
dfa dl 1* (1,15)
dfa e1 1: (1,15)
dff maxiist (,30,0,1)
ex session
expand "/Previous sessio
dfa value 20(2,25),(1,24
rs valuearray
through DC3, for k = 2.
read: $1value(k,1)...val
DC3$ continue
rs off
expand "Filename Value-a
dfa impact 2: (2,25).(1,
rs impact-table
through DC4, for 1 = 2.
read: $1impact(l,2)
DC4$ continue
rs off
expand "Filename impact,
df a u3: (0,3),(1,15),(1

n retrieved//"

until numevaluators
ue(k,24)

rray read//"
20)

until num-evaluators

table read//"
,8)

comment: 1st dimension: level, 2nd: evaluators, 3rd: designs.
P = 0,
through DC5, for i = 1. until num-evaluators
if ((structure_gcals(i,level),eql.0.).or.(structure coals(i,(level+1))8
.neq.0.)) goto DC5

P = P + 1,
x = impact(icurrent designs)
u(level,p,current-designs) = value(i,x)
DC5$ continue
say Utility calculations for chosen desicn are complete
expand "/Quasi-additive utility aggregation//"
ex grouping.evaluators
dfa ab 3:(1,3),(1,6).(1,6)
comment: 1st dimension: level; 2nd: arour designation; 3rd: values.
rs corner-utilities
through DC6, for i = 1. until 3.
through DC7, for j = 1. until 6.
read: $iab(i,j,1)...ab(i,j,6)
DC7$ continue
DC6$ continue
rs off
expand "Filename cornerutilities read/I"
k = current-desions
i = level
DC8$ j = 0.
mm = 0.
through DC, for id = 1. until 6,
mm = mm + group(iij)
DC$ continue
ii = 1.



DC9$ i = J+1.
if (group(ij).eql.2.) goto DC11
if (group(iJ).eol.3'.) goto DC12
u((i-1),j,k) = u(i,iiok)
loto DC10
DC11$ u((i-1.),j,k) = ab(i,j,1)*u(1,iik)+ab(i,1,2)*8
u(i,(ii+1),k) + ( 1.-ab(ij,1)-ab(i,1,2))*u(i,iisk)*&
u(i,(ii+1),X)
goto DC10
DC12S ki = ab(ip,4)-ab(ij,1)-ab(ii,2)
k2 w ab(i,j,5)-ab(1,I)-ab(ij,,3)
k3 = ab(ij,6)-ab(j,1,2)-ab(i~j,3)
k4 = 1-ab(i,j,6)-ab(iJ,5)-ab(ij,4)+ab(i,j,1)+ab(i,,2)+ab(i
u((i-l),jok) = ab(i1 )*u(i,iik) + ab(i,j,2)*8
u(i,(ii+1),k) + eb(i.i,3)*u(i#(ii+2),k) + &
k1*u(i,ii,k)*u(i,(iil1),k) + k2*u(iiiok)*&
u(i,(ii+2),k) + k3*uti,(ii+1),k)*u(i,(ii+2),k) + &
k4*u(i,iik)*u(i,(ii+l),k)*u(i,(ii+2),k)
DC10$ ii = i1 + erouD(ij) + 1,
if (ii.lesmm) goto DC9
i. = i-I,
if(i.grt.0.) goto Dc8
say Utility aggregation for the selected design is complete
show u(0,1,current designs)
expand "/"
read...consolereturn
say BayesPosterior is called, to revise priors over the gene
say design and its parents,
ex BayesPosterior
dfa expected value 1: (1,20)
dfa indexl 1: (1,20)
ml = 0,
comment: ml is the number of level 3, elemental desions
through DC15, for i = 1, until current_designs
if (structure-desins(i,3).eql,Q.) goto DC15
M1 = mi + 1.
through DC16, for I = 1. until 5.
expected-,value(ml) = expected-value(ml) + current-value(i,1,1
currentvalue(i, ,2)
DC16$ continue
indexl(ml) = i
DC15$ continue
if (ml.egl.0.) goto DC20
index = I
comment:
call maxlist(expected-value(l),mlmaxlaindex)
i = indexl(index)
set.field-width 3
expand "Current best elemental design is "

expand "$3structure_dIesigns(i1,1)...structuredesigns(i1,3)/"
expand "ExPected value = $53$lmaxl//"
goto DC17
DC20$ expand "INc level 3 design has been generated as yet//"
DC17$ say Determination of potential new designs and selectio
say best design experiment from among these,
expand "//"
a = 1.
dfa potential-designs 2: (1,30),(1,4)
aff new desins(,,current-designsa)

,1,3)

rated

n of the

)*d



say Petermination of the structures of potential designs
comment:
call new-designs(structure designs,potential_designscurrent-designsa)
comment:
set-decimal-places 0
setfield-width 2
expand "/Potential Designs://"
a = a-1*
through DC18, for k = 1, until a
if (Potential.designs(k,1).eql.O.) qoto DC18
expand "No. $3k: $3ootential-designs(k,1),,.Potentialdesigns(k,3)//"
DC18$ continue
readconsole-return
say Selection of the best design experiment follows
comment:
ex selection
comment:
c = current-desions " 1,
say TyPe in a nape for the selected design (up to 10 characters in
say length):
expand "/"
read-set console
expand "/"
read: $2namedesigns(currentdesigns,0)
expand "//"
comment:
store session
read-console



selection

afa temp-structure 2: (1,20),(1,4)
comment: structure of parent design
dfa kk 1: (1,30)
comment: index of potential-design
dfa prior 1: (1,30)
comment: prior is the expected value of the parent desion's current
comment: value
M = 0,
comment: derive structure for immediate parent of each potential
comment: design
through S1, for i = 1, until a
if (potential-desiqns(i,1).eqlO.0,) goto s1
m = i + 1,
through S2, for = 1. until 4.
if (potential-designs(i.,).neq.0.) goto s3
temp-structure(m,(1-1)) = 0.
goto S2
53$ temp-structure(m.j) = potentialdesians(ij)
52$ continue
kk(m) = i
ml = m
S1$ continue
expand "/"
say structure of immediate parents for each Potential desion
say determined
comment: determine immediate Parent for each potential design and
comment: compute its expected current-value as the Prior of the pot-
comment: ential desian
through S4, for X = 1, until mi
through 55, for i = 1. until current-designs
zap = 0,
through 56, for = 1. until 3,
if (temp-structure(kj),eql.structure-designs(i,1)) zap = zap + 1.
S6$ continue
if (zap.neq.3,) qoto S5
n1 = i
goto S8
55$ continue
S8$ through s7, for m = 1, until 5.
if (current-value(nl.m,2),leqamaxl) goto SS
prior(k) = prior(k) + current-value(nl;m,1)*current-value(nl,m,2)
goto 57
ss$ prior(k) = priorik) + current-value(n1,m,1)*max1
57$ continue
S4$ continue
max = 0.
index = 1.
comment: choose desion with the highest expected prior
call maxlist(prior(1),mlmaxindex)
comment:
k = kk(index)
level = 0,



urrent-designs = currentmdesigns + 1.
hrough S9, for i = 1. until 3.
:tructure-designs(current-designsi) = potential-desiqns(ki)
f (potential-designs(ki).neq.O,) level = level + 1.
9$ continue
et.field-width 2
xpand "//Best experiment is $3potential designs(k,1)..Potential-desicgns(k,3)//"
xpand "Fxpected value: $54$1max//"
xpand "Level No. $31evel//"
et.decimal-places 4
eturn



BayesPosterior

dfa level-functicn 2: (1,3),(0,6)
comment: 1st dimension: levels, 2nd: steps
rs theta
through BP3, for k =.1. until 3
read: $1level-function(k,1).,.level function(k,5)
BP3$ continue
rs off
expand "/Filename theta read//"
num = 0,
n2 =n1
comment: ni is the number of the parent of the qenerated design
n1 = current-designs
1 = level
BP4$ num = num + 1,
denominator = 0,
through BPS, for i = 1. until 5.
xi = 0.30 + current_value(n2,i,2) - u(0,currentdesigns)
xa = xi*10. + 0.5
it ((xales.0.).cr.(xa.geq,7,)) ooto BP5
denominator = denominator + current.valuein2,i,1)*level-function(levex
BP5$ continue
through BP6, for J = 1. until 5.
xi = 0.30 + currentvalue(n2j,,2) - u(0,1,current-designs)
XA = xi*10. + 0.5
if ((xa.les.0,),cr.(xa.geq.7,0)) goto BP
current-value(nlj,1) = current-value(n2,j,1)*level function(levelxa)&
/denominator
BP$ currentvalue(nl.j,2) = current value(n2oj,2)
BP6$ continue
1 = 1-1.
if (num.geq.2.) qoto BP7
ni = n2
n1 = n1
goto BP4
BP7$ if (ldes.0,) goto BP10
comment: generated design was on level 1, therefore two passes are
comment: sufficient
if (l.grt.0.) goto Bp8
comment: generated design was on level 3, therefore its level I parent
comment: must be determined
n1 = 1.
n2 = 1.
aoto BP4
comment: generated design was on level 2, therefore the third pass will
comment: be the revision of the distribution over the universal action.
BP8$ c current-designs - 2.
through BP9, for i = 1. until c
if (structure-designs(n1,1),neqgstructureldesigns(i,1)) goto BP9
n1 = i
n2 = i
goto BP4
BP9$ continue



BP10S expand "BayesPosterior complete//"
return



ordering.pl1

ordering: proc(vectorupoerjlimitrankampn);
dcl (vector(20,20),rank(20,20),upper-limit,l,m,nst) float bin;
if (m=1) then go to label2;
/* ranking by increasing values */

else do i = 1 to upper-limit;
rankin,i) = 1; end;
do i = 1 to (upper-limit);
t = vector(ni); 1

4o j (j+1) to upper.Jimit;
if t>vector(ni) then rank(nJ)=rank(n,1)+

/* ranking by de
label2:

label4: return;
end;

if t=vector(ni

end;

1;
else

) then do; 1=1+1;
if 1>1 then go to label5;

else
do k=1 to upperjlimit;
if vector(nak)<vector(nJ)
rank (nk)=rank(n,k)-1;
else; end;
label 5 ; end;
else rank(ni)=rank(nai)+1;

then

end;
go to label4;
creasing Values */
do i = 1 to upperjlimit;
rankin,i) = 1; end;
do i = 1 to (UPperlimit);
t = vector(ni); 1 = 04

do j = (i+1) to upperjimit;
if t<vector(n,1) then rank(n.j)=rank(nj)+1;

else
if t=vector(ni) then do; 1=1+1;

if l>1 then go to label6;
else

do k=1 to upperlimit;
if vector(nak)>vector(nai) then
rank(n~k)=rank(n,k)-1;
else; end;
label6 end;
else rank(ni)=rank(n#i)+1;

end;
end;



maxlist . r11

maxlist: proc(vector.upperjlimittvalueindex);
dcl (vector(30),upper-limitvalueindex)float bin;
value P 1e30;
do i = 1 to upper_limit;
if vector(i)>value then do; value = vector(i);

index = i; end;
else;

end;
return;
end;



minlist.pl1

minlist: proc(vector.upper-limitvalueindex);
acl (vector(20),upeperlimitvalue) float bin;
value = 1e3Q;
do = 1 to upper-limit;

if vector(i)<value then do; value = vector(l);
index = i; end;

else;
end;
return;
end;



quasi-order.pl1

quasi-order: proc(rank,sumreachability,num-e,num-d);
dcl (rank(20,20),reachability(20,20),sum(20,20),m,n,

num_epnumn_d) float bin;
do i = 1 to num-e;

do J = I to num-d;
do k = 1 to num.d;
if rank(i{,)<rank(iek) then teachability(1,k) = 1;

else;
end;

end;
end;

do i = 1 to num-d;
do j = 1 to nuin d
sum(1,.t) = sur(1,i) + reachability(i,1);
end;

end;
return;
end;



new-desiqns.pll

new-designs: proc(structurepotential,currenta);
dcl (structure(20,4).potential(40,4) ,ascurrentzar) float bin;
/* generates new designs */
if current = 1 then do; potential(a,1) = 1; a = a + 1;

qo to P7; end;
else;

do i = 2 to current;
do j = 1 to 4;
if structure(ii)=0 then ao to P3;

else do; potential(ai) = structure(i,1);
potentialta+1,j) = structure(i,1);
co to P2; end;

P3: potential(aj) = structure(i,j) + 1;
potential(a+1.j-1) = structure(i,1-1) + 1;
potential(a+1.j) = 0;
if j<3 then do; potential(a+1,j*1) = 0;

potential(ai+1T = 0;
a = a+2;
go to P5; end;

else do; a a + 2;
go to P5; end;

P2: end;
P5: end;
/* checks and eliminates designs already developed */
do j = 1 to a;

do i = 2 to current;
zap = 0;

do k = 1 to 3;
if potential(j.k)=structure(ik) then zap=zao+I;

else;
end;

if zap=3 then do; potential(j,1) = 0;
go to P6; end;

else;
end;

P6: end;
P7: return;
end;
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7.2 Typical Output from Console Sessions

(a) User Operations

Evaluators

Preliminary

order

display-impacts

Pareto

compare

display-transform

satisfaction

(b) Static Evaluation

Single-Pass

Rishburn-Relative-Value

Case-Relative-Value

Linear-Scoring

Quasi-Separable

(c) Dynamic Evaluation

Dynamic-Control-1

Dynamic-Con trol



ex Evaluators

Type iin the number of evaluator names to be input

:23

Type in the nam
order, preceded
D M axbene fit
I F inancia 1
2 Cambridge
3 taxyieds
3 servcosts
2 MT (2

:2
:2
3
.3
:2
:3
:3

:2

:3
:3
:3

:2

:3
:3
:2
:3
:3
:2
:3
:3

e o
by

(
(
(
(
(

nd

f each evaluator (maxi mum 10 characters
a single digit level number. For examp

overall goal)
1st secondary objective, under overall
1st tertiary objective, under "Financia
1st lower-level goal, unrder "Cambridge"
2nd lower-level goal, under "Cambridge"
tertiary objective, under "FInancial")

) in
le:

goal)
1")
)
)

Axbene- i t
FliTnc i al
Cmbri dge
serv_costs
tax._y1elds

total_cost
retatrns
Empl o ymen t
Lumbterj obs
.wh'itecoll
bthretcoll
serVi ce
S-o-c'io_Envr
us ing

'rental1
warlety

lijnteratt
access
ov ement
ap-ac'I t'y

;pr'Vn



ex Preliminary

Type in the number of evaluators

:23

Type in the number of designs

:15

Fillename impacts read

Filename names read

Programs accept single-level or hierarchically-structured
evaluation problems:
Type 2 if designs and goals both have only one level of
generality; the number of hierarchical levels otherwise.

:3

Type in the level number desired: 1, 2, or 3

z3

Filename structure read



ex order

Type in the name of the evaluator to be used

:total_cost

Type in "increasing" for ranking by increasing value, or
type in "decreasing" for ranking by decreasing value.

: decreas i ng

Designs

A211_3

A221_3

A222_3

A23 _3

A321_3

Ranking

4

2

3

5

1



ex display_impacts

For display, choose 2 to 5 designs from the following list:
5: A211_3
8: A221_3
9: A222_3

13: A231_3
15: A321_3

Type in

:4

Type in

:A211_3
:A221_3
:A222_3
:A231_3

the number of designs to be displayed:

the names of the designs

Designs:

Impacts

servcosts

taxyields

totalcost

returns

whitecoil

bluecoil

service

rental

variety

interact

access

capacity

parking

A211_3

1650000.00

1500000.00

84500000.00

89.00

1900.00

200.00

150.00

305.00

.45

.30

480.00

45.00

250.00

A221_3

1300000.00

1150000.00

82000000.00

95.00

1650.00

0.00

100.00

280.00

.55

.35

440.00

35.00

220.00

A222_3

1350000.00

1300000.00

83000000.00

86.00

1500.00

0.00

125.00

260.00

.40

.40

510.00

31.00

250.00

A231_3

1900000.00

1950000.00

85500000.00

91.00

1900.00

300.00

200.00

300.00

.50

.40

290.00

52.00

200.00



ex Pareto

Construction.of Ordinal Ranking Matrix

in "increasing"
in "decreasing"
evaluator:

for ranking by increasing value,
for ranking by decreasing value,

Cambridge
:increasing

M IT
:decreasing

Numberj obs
:increasing

Housing
:decreasing

Social
:decreasing

Movemen t
:decreasing

Ordinal Ranking Matrix completed

Dominance check by constructing quasi-levels

1: Pareto-efficient frontier

A210_2
A220_2
A230_2
A320_2

Quasi-level 2: Dominated alternatives

A310_2

)

Type
type
each

or
for

Quasi-level



ex compare

Type in the names of the two designs to be compared

:A221_3
:A222_3

A221_3

Evaluators

serv_costs

taxyields

totalcost

returns

whitecoil

bluecoil

service

rental

variety

interact

access

capacity

-parking

1300000.00

1150000.00

82000000.00

95.00

1650.00

0.00

100.00

280.00

.55

.35

440.00

35.00

220.00

A222_3

1350000.00

1300000.00

83000000.00

86.00

1500.00

0.00

125.00

260.00

.40

.40

510.00

31.00

250.00

Difference

-50000.00

-150000.00

-1000000.00

9.DD

150.00

D.DD

-25.DD

20.00

.15

-. 5
-7D.DD

4.DD

-3-D.lDD



ex display_transform

Filename valuearray read

transformarray is being appended
For display, choose 2 to 5 designs from the following list:

5: A211_3
8: A221_3
9: A222_3

13: A231_3
15: A321_3

Type in the number of designs to be displayed

:4

Type in the names of the designs

:A211_3
-A221_3
:A222_3
:A321_3

Designs: A211_3 A221_3 A222_3 A321_3

Transforms

servcosts .14 .26 .26 .40

tax_yields .71 .54 .59 .38

totalcost .07 .10 .10 .33

returns .40 .53 .32 .71

whitecoll .96 .84 .80 .32

bluecoil .20 0.00 0.00 0.00

service .48 .34 .41 .34

rental .37 .44 .53 .37

variety .56 .65 .51 .65

interact .49 .55 .60 .64

access .60 .69 .60 .69

capacity .41 .53 .59 .71

parking .38 .44 .38 .38



ex satisfaction

Type in the name of the design to be analysed

:A321_3

Design: A321_3

Evaluator Utility Rank

serv_costs .Q40 5

tax_yields .38 6

totalcost .33 9

returns .71 1

whitecoll .32 10

bluecoll 0.00 11

service .34 8

rental .37 7

variety .65 3

interact .64 4

access .69 2

capacity .71 1

parking .38 6



ex Singlepass

Type in "increasing" for
type in "decreasing" for
each evaluator

ranking
ranking

by
by

increasing value,
decreasing value;

servcosts
:decreasing

tax.yi elds
:Increasing

total_cost
:decreasing

returns
.ncreasing

whitecoll
: icnreas ing

blue_col1
:Increasing

service
:Increasing

rental
,decreasing

variety

Utzract
ntcreasi ng

: dIncreas i nig
acc-ess
decreas i ng

zdetcreas ing

parking
decreas ing

or
for



Ordinal ranking matrix completed

Dominance check by constructing quasi-levels

Quasi-level 1: Pareto-efficient frontier

A21 13
A221.3
A222.3
A231_3
A321.3

temp.impact copied into reduced-impact

READ.CONSOLE_RETURN
>store Single



ex Fishburn_RelativeValue

Filename transform-array read

For display, choose 2 to 5 designs from the following list:

5: A211_3
8: A221_3
9: A222_3

13: A231_3
15: A321_3

Type in the number of designs to be displayed:

: 4

Type in th

:A211_3
:A221_3
:A222_3
:A231_3

Desi gns:

Weighted
Values

serv_costs

taxyields

totalcost

returns

whitecol1

bluecoll

service

rental

variety

interact

access

capacity

parking

Weighted
Total

Ranking:

e names of the designs:

A211_3

.04

.08

0.00

.02

.16

.05

.04

0.00

.01

0.00

0.00

.01

0.00

.42

4

A221_3

.07

.04

.03

.05

.13

0.00

0.00

.02

.04

.02

.02

.04

.02

.47

3

A222_3

.07

.05

.03

0.00

.12

0.00

.02

.04

0.00

.03

0.00

.06

0.00

.41

5

A231_3

0.00

.13

0.00

.02

.16

.08

.06

0.00

.02

.03

.05

0.00

.03

.58

1



CaseRelativeValue

Filename weighttable read

Filename transform array read

For display, choose 2 to 5 designs from the following list:

5: A211_3
8: A221_3
9: A222_3

13: A231_3
15: A321_3

Type in the number of designs to be displayed:

.4

Type in the

:A211_3
:A221_3
-A222_3
:A231_3

Des i gns:

Unwe i ghted
Relative
Values

servcosts

taxyields

total_cost

returns

whitecoll

bluecol1

service

rental

variety

interact

access

capacity

parking

Weighted
Total:

Ranki nag:

names of the designs to be displayed:

A211_3

.13

.23

.00

.17

.25

.40

.22

.18

.19

.17

.18

.16

.18

.17

5

A2 21_3

.25

.17

.19

.22

.22

.00

.16

.21

.22

.19

.21

.20

.21

.19

3

A222_3

.25

.19

.19

.14

.21

.00

.19

.25

.17

.21

.18

.23

.18

.18

4

A231_3

.00

.28

.00

.17

.25

.60

.27

.18

.20

~.21

.23

.14

.24

.19

2f



ex Linear_Scoring

Filename weighttable read

Filename transform-array read

For display, choose 2 to 5 designs from the following list:

5: A211_3
8: A221_3
9: A222_3

13: A231_3
15: A321_3

Type in th

:4

Type in th

-A211_3
:A221_3
:A222_3
:A231_3

Des i gns:

Weighted
Values

serv_costs

taxyields

totalcost

returns

white_coll

blue_coll

service

rental

variety

Interact

access

tapacity

parking

R o t *

number of designs to be

e names of the designs to

A211_3

.01

.08

0.00

.03

.08

.02

.02

.04

.02

.03

.04

.02

.01

.39

5

A 221_3

.02

.06

.02

.04

.07

0.00

.01

.04

.03

.03

.04

.03

.01

.41

3

displayed:

be displayed:

A22 2_3

.02

.06

.02

.03

.06

0.00

.02

.05

.02

.04

.04

.04

.01

.40

4

A231_3

0.00

.10

0.00

.03

.08

.02

.02

.04

.02

.04

.05

.02

.01

.43

1



QuasiSeparable

Filename groupingevaluators ri

Filename transformnarray read

Filename cornerutilities read

For display, choose 2 to 5 des

5: A211_3
8: A221_3
9: A222_3

13: A231_3
15: A321_3

Type in the number of designs

igns from the following list:

to be displayed:

:4

Type in the names

:A211_3
:A221_3
:A222_3
:A231_3

Des i gns:

Utility
Values

servcosts

taxyields

totalcost

returns

white_coll

blue_coll

serv i ce

rental

variety

interact

access

capacity

parking

Aggregated
Utility -

Ranking:

of the designs

A211_3

.14

.71

0.00

.40

.96

.20

.48

.37

.56

.49

.60

.41

.335

4

to be displayed:

A221_3

.26

.54

.10

.53

. P4

0.00

.34

.44

.65

.55

.69

.53

.44

3683

2

A222_3

.26

.59

.10

.32

.80

0.00

.41

.53

.51

.60

.60

.59

.38

.324 0

5

A231_3

0.00

.88

0.00

.40

.96

.30

.59

.37

.60

.60

.78

.36

.50

.3658

3



ex DynamicControl_1

Type In the number of evaluators

:23

Filename names read

Filename structure read

Determination of structure of potential designs

Potential Designs:

No. 1: 1 0 0

Filename currentvaluearray read

Selection of best design experiment follows

Structure of immediate parents for each potential design
determined

Best experiment is 1 0 0

Expected value: 0.439999990

Level No.: 1

Type in a name for the selected design (up to 10 characters
in length):

:A100_1



Dynariic_Control

Previous session retrieved

Filename valuearray read

Filenane impacttable read

Utility calculations for chosen design are complete

Quasi-addit-ive utility aggregation

Filename cornerOtili-ties read

Utility aggregation for the selected design is complete

u(0,1,2) = 0.32

READCONSOLERETURN
>rtd

BayesPosterior is called, to revise priors over the generated
design and its parents.

Filename theta read

Bayes_Posterior complete

No level 3 design has been generated as yet

Determination of potential new designs and selection of the
best design experiment from among these.

Determination of the structures of potential designs

Potential Designs:

No. 1: 1 1 0

No. 2: 2 0 0

READCONSOLE_RETURN
>rtd

Selection of the best design experiment follows

Structure of immediate parents for each potential design
determined



Best experiment is 1 1 0

Expected value: 0.363529406

Level No. 2

Type in a name for the selected design (up to 10 characters in
length):

:A110_2
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7.3 Description of the North West Area Project

On July 10, 1969, President Horard W. Johnson announced that

M.I.T. was purchasing the Cambridge property of the Simplex Wire

and Cable Company, which had previously announced its transfer to

Maine in 1970. (66) The Simplex property in Cambridge is 18.7

acres of land and buildings in 11 closely grouped parcels to the

north of M.I.T.'s West Campus. Before its sale to M.I.T., the

Simplex property paid $240,000 in yearly real estate taxes (1970)

to Cambridge, and employed 600 persons, about 2-1/2% of the total

manufacturing employment in the city.

M.I.T.'s purchase is located in an industrial sector of

Cambridge, termed the "North West Area", hence the name of the

project. This sector covers 135 gross acres (109 net acres) of

industry, of which, M.I.T. properties (owned or under option,

including Simplex) total 44 acres.

In his public announcement, President Johnson noted the

effect that the transfer of the Simplex-property to M.I.T. would

have on Cambridge, particularly in terms of tax revenues and

employment losses:

"M.I.T. is acquiring the Simplex property as a resource
for making further contributions to the construction of
urgently needed new housing in Cambridge, and not for the

(66) H.W. Johnson; public announcement re Simplex purchase,
(Cambridge, Mass. , 10 July, 1969)



234

expansion of M.I.T.'s academic campus. It is M.I.T.'s
intention also to bring about new commercial development
on the site that will add significantly to tax revenues
and employment opportunities in Cambridge. All expected
uses of the site will be taxable.....The site also pre-
sents an opportunity to add substantially through new
commercial development to the tax revenues and to the
number and variety of jobs in Cambridge....."(67)

The Simplex Advisory Committee was a 9 member group of

faculty and administration set up in October, 1969, to recommend

means of developing the Simplex site. It noted that the Simplex

property was the only land resource available to M.I.T. with the

acreage and development capacity to absorb a large quantity of

the additional housing required for faculty and staff. The members

recommended the development of housing for M.I.T. personnel,

which would allow Cambridge to benefit from M.I.T.'s purchase,

under the U.S. Housing Act of 1949, Section 112, by acquiring

"credits" to apply to redevelopment projects elsewhere in

Cambridge. They also expressed a preference for a mix of

several small commercial activities on the site. (68)

The Corporation Joint Advisory Committee likewise stressed

the development of housing for the M.I.T. community; primarily

for faculty and staff, but also for visiting faculty and married

(67) Ibid.

(68) Simplex Advisory Committee; Considerations in the Future
Development of Simplex and Related M.I..T. Properties,
(Cambridge, Mass.-, M.I.T.,*Feb., 1970)
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students. The members also advocated "non-polluting, labour-

intensive" commercial and industrial uses for the site, and

neighborhood centers both for the new development and for

Cambridgeport. A "fine-grained mix of M.I.T. people and non-

M.I.T. people" (69) was to be encouraged in the housing develop-

ment if possible. Community involvement and integration of the

project with Cambridgeport and Central Square, were also desirable.

CJAC admitted though, that there were difficulties in attempting

to create a residential neighborhood in the midst of an industrial

sector with much noise and heavy truck traffic. The short-run

conditions in the area are not conducive to residential development:

the appearance of the surroundings, the presence of rail spurs,

truck traffic, and the lack of access to the West Campus, (separ-

ated by railroad tracks), are all negative factors.

Further, major uncertainties in the North West Area make the

planning of a comprehensive development difficult: major industries

in the area may leave, (although exactly when, is uncertain); the

market for commercial and office space is poor; interest rates for

unsubsidized development are high; the railroad right-of-way

separating the project from M.I.T. has been proposed as a possible

location for the Inner Belt expressway and also for a D.O.T.

(69) Corporation Joint Advisory Comittee on Institute-Wide
Affairs; Report on Simplex and Related Development,
(Cambridge, Mass., M.I.T., 5 June, 1970)
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inner-city transit demonstration project; and the reactions of both

the city of Cambridge (which must approve required zoning changes)

and Cambridgeport residents, are uncertain.

The preparation of alternative development plans for the

North West Area Project is being undertaken by the M.I.T. Planning

Office, with co-ordination by a Steering Committee which also

acts as a liaison with the M.I.T. Administration and community

groups. The principal objectives and design alternatives as

refined by the M.I.T. Planning Office, form the basis for the

illustrative application of the techniques described in Section 4.

Four issues are seen as crucial to the projiect:

(1) the assurance of adequate tax yields to the city of

Cambridge;

(2) the development of a variety of job opportunities in the

project;

(3) adequate housing for the M.I.T. and Cambridgeport

communities;

(4) improvement of the North West Area environment.

These issues are elaborated into the hierarchical structure

of goals and sub-goals illustrated in Figure No. 4.17, "GOAL

STRUCTURE - M.I.T. NORTH WEST AREA PROJECT". The goal fabric is

intended to be integrative of all the impacted actor groups in the

project: i.e. there is no differentiation of objectives by actors.
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Design variables which are presently perceived as crucial in

the generation of development alternatives, fall roughly into

5 classes:

(1) Overall financing mechanisms: private developers, M.I.T.,

Federal and State government programs, and various com-

binations of these;

(2) Housing Ownership: condominium, co-operative, conventional

(owning or rental) and student housing in various locations

and phased combinations in the project.

(3) Programming Alternatives: the number and types of

housing units, the area of commercial and office develop-

ment, and community resources center;

(4) Phasing Strategies: the timing, financing and location of

programmed uses, along with M.I.T. acquisition strategies

for buying new properties as they become available;

(5) Locational patterns: the arrangement, mix, and density

of programmed land uses, the design of open space and

recreational areas, planning of parking, automobile

access, and traffic flows within the project area.

Obviously, many permutations of these variables are possible;

therefore, the small number of alternatives arrayed for evaluation

must present as diverse and distinct a coverage of these dimen-

sions as possible. The various grid metrics and level designa-

tions in DISCOURSE showed that -some of these variables are better
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Included at certain levels rather than others. For example, the

largest grid scale (240' x 200') was most appropriate for repre-

senting contextual attributes such as community services, commer-

cial, and Cambridgeport housing patterns; the intermediate scale

was most appropriate for traffic flows, detailed population

characteristics, and general land use; while the smallest grid

scale (50' x 60') represented no contextual variables, but

peritted housing configurations, open space design, user assign-

ment, and ownership patterns within the project area, to be

described.


