
Design and Implementation of Small Satellite Inspection

Missions

by

Michael Christopher O'Connor

B.S., Astronautical Engineering and Mathematical Sciences (2010)
United States Air Force Academy

Submitted to the Department of Aeronautics and Astronautics RCHIVgg
in partial fulfillment of the requirements for the degree of MASSACHUSETTS INSTI E

V)OLGY
Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY B R ES

June 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

Author ...
Department of Aeronautics and Astronautics

May 24, 2012

Certified by.........................
Alvar Saenz-Otero
Research Scientist
Thesis SuDervisor

Certified by.......
David W. Miller

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by
Eytan H. Modiano

Professor of Aeronautics and Astronautics
Chairman, Department Committee on Graduate Theses

Design and Implementation of Small Satellite Inspection Missions

by

Michael Christopher O'Connor

Submitted to the Department of Aeronautics and Astronautics
on May 24, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

For a variety of missions, vision-based navigation and similar architectures provide the
advantage of detailed measurements for a fraction of the size and complexity of ground-
based imagers. This thesis provides a simple navigation algorithm using no more than a
visual centroid measurement to enable in-situ inspection of space objects.

This work evaluates those inspection maneuvers using the Synchronize Position Hold
Engage Reorient Experimental Satellites, known as SPHERES. Evaluation of hardware
performance was done using data from the International Space Station, in concert with
ground-based simulations. Ultimately, this work is in preparation for future experimenta-
tion using the VERTIGO vision-navigation payload for SPHERES.

The first step presented is an analysis of the measurement capabilities of the SPHERES
system and the predicted performance of the VERTIGO system. Using this analysis it
is shown that tests run using the former system are applicable to the latter in terms of
accuracy, precision, and observability.

The second step is an analysis of the tests run on the Space Station, a comparison to
those predicted by simulation, and an extension of those results to simulations of more
complex maneuvers. Further, a determination of the robustness of the control to distur-
bances is also performed.

Finally, this thesis reflects on the technical and programmatic challenges of develop-
ing the VERTIGO payload. From these challenges, lessons are drawn which may guide
future developers and program managers, particularly in the university engineering envi-
ronment.

Thesis Supervisor: Alvar Saenz-Otero
Title: Research Scientist

Thesis Supervisor: David W. Miller
Title: Professor of Aeronautics and Astronautics

DISCLAIMER: The views expressed in this article are those of the author and do not
reflect the official policy or position of the United States Air Force, Department of

Defense, or the U.S. Government.

3

4

Acknowledgements

While this work may be of my own hand, there were many along the way who contributed:

technically, emotionally, and even so far to make sure I didn't electrocute myself. I'd like

to first thank my parents for their constant support throughout my educational journey,

all the way to becoming an Air Force officer. You two are the ones who spent so much

time in the air that flight seems to be the natural state for the family. Mom and Dad, thank

you both for your guidance, my education, and starting me on this journey. To my sister,

Jessica, thank you for keeping me honest and ensuring when I do something crazy, it's not

too crazy. Here's to more years of that and more adventures around the world.

To Maria, thanks for making sure I didn't just study while at MIT, and for the support

and understanding you've shown throughout my two quick years here. I have enjoyed so

much more because of you. I'll see you in California.

To my advisors, Professor David Miller and Dr. Alvar Saenz-Otero, thank you for your

support and advice about my research. More importantly, thank you for your leadership

guidance. Whether I recognized it at the time or not, you kept me and the program on

track. To Paul Bauer, thanks for making sure I never broke anything too expensive.

To Matt K., thanks for always having leftovers. You've been a great roommate and

helped keep me sane through the whole MIT experience. To the VERTIGO team at MIT

and Aurora, thank you for bearing with me as I learned how to properly manage an engi-

neering program. Thanks for pushing to make VERTIGO a success. Brent and Konrad in

particular, thank you for your help bringing the project to where it is today.

To Colonel Condit, thank you always for your support, kind words, and for enabling

some of the great opportunities that I know lay ahead and for making sure that I always

have the best role models as I go forward in my Air Force and engineering career. I still

remember what you wrote those two years ago, and seek to be that professional. And in

spite of the stress, I'd consider myself one of the happiest people I know.

To the SEA officers past and present, thanks for your friendship and everything else

that comes with being a member of the SEA team. Thanks to Bruno and the rest of the SSL

as well. And thanks to the MIT fencing team for letting me join you for the past two years.

I'd also like to thank the individuals and organizations who have enabled me to further

my education and research, from USAFA and FalconSat to DARPA and SMC.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 17

1.1 M otivation . 17

1.1.1 Relevance of Spacecraft Relative Navigation and Inspection 17

1.2 O bjectives . 19

1.2.1 Develop Relative Navigation and Inspection Algorithms 19

1.2.2 Characterize System Performance and Sensor Noise 20

1.2.3 Quantify Algorithm Performance . 20

1.3 Previous Work . 21

2 Relative Navigation 23

2.1 Vision System Outputs . 23

2.2 Simulation of Vision Measurements . 24

2.3 Relative Navigation about Unknown Objects 26

2.3.1 Addition of Dead Reckoning . 27

2.3.2 Addition of Target Rotation Information 28

3 Inspection 31

3.1 Coverage Quantity . 32

3.2 Fuel/Time Tradeoff . 33

3.3 Inspection of an Unknown Target . 35

3.3.1 Expected Improvements using Rotation Information 35

3.3.2 Path Optimality . 36

4 Application to the SPHERES System 37

4.1 The SPHERES System . 37

7

4.1.1 What is SPHERES? .3

4.1.2 W hat is VERTIGO?

4.2 Measurement Fidelity

4.2.1 Vision System Fidelity

4.2.2 Metrology System Fidelity

4.3 Tests and Test Design

4.3.1 Target Translation.

4.3.2 Vision System Noise

4.3.3 Inspector M otion

4.3.4 Use of Rotation Information. .

4.4 Success M etrics

4.4.1 Coverage. ..

4.4.2 Fuel Use & Time

5 Results

5.1 Simulation and Station

5.1.1 Station Results

5.1.2 Simulation Results

5.1.3 Simulation and Station Comparison.....

5.1.4 Simulation Only

5.2 Maneuver Comparisons and Inspection Performance

5.2.1 Target Behavior

5.2.2 2- and 3-D Motion

5.2.3 Use of Rotation Information

5.3 Conclusion

6 Project Management of the VERTIGO Payload

6.1 Design Principles

6.1.1 Product Design

6.1.2 Process Design

6.2 Timeline and Earned Value Analysis

6.2.1 Initial Design Period

6.2.2 Design Completion

8

39

42

43

48

49

50

51

51

52

53

53

55

57

. . . 57

. . . 58

. . . 66

. . . 73

. . . 79

. . . 88

. . . 88

. . . 90

. . . 93

95

97

98

98

109

119

120

121

. 37

6.2.3 Initial Build and Test

6.2.4 Flight Hardware

6.3 Lessons Learned.

7 Conclusion

7.1 Conclusions

7.2 Future Work

A VERTIGO Inspection Maneuver Codes

A.1 Simple Maneuvers

A.2 Advanced Maneuvers

A.3 Example Code using Video Data

B VERTIGO System Requirements

9

123

125

125

129

129

130

133

. . . 133

.. . 141

.. . 152

169

. .

. .

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

2-1 Inertial and relative frames

2-2 Filtering and Centroiding

3-1 Feature Tracking and Reacquisition by Angle .

3-2 Shortest Inspection Path on a Sphere

4-1 A SPHERES satellite

4-2 SPHERES Global Metrology System

4-3 VERTIGO "Goggles" Assembly

4-4 VERTIGO Basic Inspection Path

4-5 VERTIGO System Block Diagram

4-6 Pinhole camera model, X-Z plane

4-7 Pinhole camera model, X-Y plane

4-8 Stereo Camera Combined Field of View

4-9 Target Object Surface Visibility

5-1

5-2

5-3

Planar Inspection: Position Data during Stationary Target Test . .

Planar Inspection: Relative Position during Stationary Target Test

Planar Inspection: Relative Velocity during Stationary Target Test

5-4 Planar Inspection: Inspector Rate during Stationary Target Test

5-5 Planar Inspection: Difference between Z-Rate and Total Angular Rate dur-

ing Stationary Target Test .

5-6 Planar Inspection: Target Rate during Stationary Target Test

5-7 Planar Inspection: Position Data during Moving Target Test

5-8 Planar Inspection: Relative Position during Moving Target Test

5-9 Planar Inspection: Relative Velocity during Moving Target Test

11

. 2 5

27

. 3 3

. 3 6

. 3 8

. 3 8

. 3 9

. 4 2

. 4 3

. 4 4

. 4 6

. 5 4

. 5 4

59

59

60

. 61

61

62

62

63

64

5-10 Planar Inspection: Inspector Rate during Moving Target Test 64

5-11 Planar Inspection: Difference between Z-Rate and Total Angular Rate dur-

ing M oving Target Test . 65

5-12 Planar Inspection: Target Rate during Stationary Target Test 65

5-13 Planar Inspection: Position Data during Moving Target Simulation 67

5-14 Planar Inspection: Relative Position during Moving Target Simulation . . . 67

5-15 Planar Inspection: Relative Velocity during Moving Target Simulation . . . 68

5-16 Planar Inspection: Inspector Rate during Moving Target Simulation 68

5-17 Planar Inspection: Difference between Z-Rate and Total Angular Rate dur-

ing Moving Target Simulation . 69

5-18 Planar Inspection: Position Data during Moving Target Simulation 70

5-19 Planar Inspection: Relative Position during Moving Target Simulation . . . 71

5-20 Planar Inspection: Relative Velocity during Moving Target Simulation . . . 71

5-21 Planar Inspection: Inspector Rate during Moving Target Simulation 72

5-22 Planar Inspection: Difference between Z-Rate and Total Angular Rate dur-

ing Moving Target Simulation . 73

5-23 Planar Inspection: Position Data during "Additional Motion" Simulation. . 81

5-24 Planar Inspection: Relative Position during "Additional Motion" Simulation 81

5-25 Planar Inspection: Inspector Rate during "Additional Motion" Simulation . 82

5-26 Planar Inspection: Position Data during 3D Inspection Simulation 83

5-27 Planar Inspection: Relative Position during 3D Inspection Simulation 84

5-28 Planar Inspection: Inspector Rate during 3D Inspection Simulation 84

5-29 Planar Inspection: Position Data during Long Duration Simulation 85

5-30 Planar Inspection: Relative Position during Long Duration Simulation . . . 85

5-31 Planar Inspection: Inspector Rate during Long Duration Simulation 86

5-32 Planar Inspection: Position Data during "Rotation" Simulation 87

5-33 Planar Inspection: Relative Position during "Rotation" Simulation 87

5-34 Planar Inspection: Inspector Rate during "Rotation" Simulation 88

5-35 Coverage: ISS Stationary Test . 90

5-36 Coverage: ISS Motion Test . 91

5-37 Coverage: Simulated Additional Motion Test 91

5-38 Coverage: Simulated 3D Inspection Test 92

12

5-39

5-40

5-41

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

93

94

94

Coverage: Simulated Long Duration Test

Coverage: Simulated Using Rotation Information Test . .

Fuel Use: Rotation Information vs Baselines

Project and Process for Successful Design

Understanding your Design

Building your Hardware

Testing the Product .

Control Measurable Performance through Advocacy . .

Improving the Process by Learning from Failure

Developing Project Margin Estimates

Cost/Schedule/Performance Weighting at Contract Start

Schedule and Spending Progression

6-10 Cost/Schedule/Performance Weighting at During Hardware Build

13

. 98

. 101

. 103

. 106

. 109

.. 111

. 116

. 119

. 123

124

THIS PAGE INTENTIONALLY LEFT BLANK

14

List of Tables

5.1 Mass Properties of Modified Target Satellite 58

5.2 Estimated Navigation Accuracy . 95

6.1 VERTIGO PDR Software Schedule 99

6.2 VERTIGO CDR Software Schedule 100

6.3 VERTIGO Revised (Dec. 2011) Software Schedule 100

6.4 Post-CDR Hardware Delivery Schedule 104

6.5 VERTIGO Initial Delivery Schedule 119

6.6 VERTIGO Post-PDR Delivery Schedule 121

6.7 VERTIGO Post-CDR Delivery Schedule 123

6.8 VERTIGO Testing Schedule (Spring 2012) 124

6.9 VERTIGO Realized Delivery Schedule 125

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 1

Introduction

1.1 Motivation

Since the launch of the first artificial satellites over 50 years ago, there has always been a na-

tional interest in maintaining the high ground in every sense of the phrase. In resource con-

strained environments, certain advanced concepts provide value disproportionate to their

costs. Vision-based navigation, especially on small servicing satellites hold the promise of

being one such concept that delivers value in a way no other type of small system can.

1.1.1 Relevance of Spacecraft Relative Navigation and Inspection

Spacecraft design, launch, and operation are expensive and often risky undertakings. A

major space-based observatory such as the Hubble Space Telescope, which has a lifetime

cost estimated at $11 billion represents a significant investment of human and financial

capital[1]. Hubble's successor, the James Webb Space Telescope is expected to cost even

more[2]. In the latter case, as Lagrange point orbit puts it far out of the reach of current

manned spacecraft and therefore would need to be serviced robotically if a problem were

to arise. The signal delays associated with such an orbit, coupled with complex orbital

dynamics about a Lagrange point preclude teleoperated systems. In order to effectively

diagnose failures, a free-flying spacecraft must be able to autonomously inspect the dam-

aged craft.

This ability to observe and repair a damaged spacecraft via a small inspector presents

a risk mitigation strategy for future missions. Commercial ventures may also be more cost

17

effective in the case of servicing and attendant volume savings[3], while in-situ spacecraft

salvage is currently an open research field[4]. In each case, solving the problem requires

the ability to inspect a spacecraft of unknown condition from a distance that is far enough

away to preclude a collision risk, but close enough to provide accurate resolution.

Long duration missions in earth orbit, such as those on the space station, lend them-

selves to human EVA to repair and maintenance. Missions travelling out of Earths mag-

netic field which require repairs would put astronauts at greater risk on two fronts: in-

creased environmental risk to the spacewalker and an inability to return injured astronauts

quickly to Earth. Autonomous inspector vehicles with the ability to identify problems

through computer vision or other sensor systems provide a safer alternative for diagnosis,

with the potential for follow-up repairs by crew.Before that can be realized, the inspection

problem should first be solved in the relative safety of low earth orbit.

Large modern spacecraft are designed with significant redundancies as the forces of

time and the space environment combine to cause part and system failures. Redundancy

provides an element of reliability, but at the cost of increased mass and complexity as entire

systems and subsystems must be duplicated. The ability to repair or replace single failed

parts rather than design backup systems into a satellite has the potential to reduce costs

by reducing the launch mass. Commercial systems on the ground often take this approach

- after all, a car has but one engine. Even if redundancy is built in, the ability to install

replacements, as was done during Hubble servicing missions can extend mission lifetimes

many times the design lifetime for a fraction of the cost of a new system.

In each of the potential applications of in-situ inspection described above, the operat-

ing environments are very different. In each, however, the use of relative measurements

between inspector and target are preferable to more global sensors or any earth-based ob-

servatories. In GEO orbits GPS measurements suffer from position errors on the orders

of meters to tens of meters[5], errors which are compounded by solar fluctuations and

their attendant ionospheric disturbances[6]. Forclose inspections such errors are unac-

ceptably large, especially when collision avoidance is a high priority. Additional problems

arise when an inspection target is uncooperative and GPS measurements or other global

measurements are therefore unavailable[7]. Star trackers may be problematic in determin-

ing relative position to a target: if they are not overwhelmed by reflected solar light from

the inspection target, their view of the starfield may be obstructed by a complex shape.

18

Ground-based radars are also of limited utility because of the distances and perspective

involved. When the inspector eclipses the ground station, the problem is only further

complicated. As mentioned before, using ground-based sensors also introduces time de-

lays due to light-speed propagation and processing time[81. In GEO this delay is on the

order of seconds; for missions beyond that point, the delays grow significantly longer in

proportion to the increased distance.

These physical constraints point to the need for space-based inspector vehicles using

relative measurements to maneuver around a target object, and to do so safely (without

colliding) and uncooperatively (no information passed from target to inspector). Further-

more, in contrast to other methods[9], the inspection should be performed with no a priori

knowledge of the target.

1.2 Objectives

To satisfy the mission requirements for a space-based inspector, there are a handful of tasks

which this thesis aims to address.

1.2.1 Develop Relative Navigation and Inspection Algorithms

The first objective is to develop algorithms to perform inspections of an unknown, poten-

tially spinning and tumbling, target object in order to build up a 3D map of the target. This

task is split into two parts:

1. Relative Navigation The ability to move about using measurements of a target object

in the body frame of the inspector. These measurements must not be in reference to

any "global" frame, but instead must be described as movements of the target in the

inspector's field of view.

2. Inspection The movement of the inspector about the target object for the purpose of

providing a vision payload with a view of the target.

An algorithm which combines these two approaches should enable an inspector to

view all surfaces of a target object, and do so with no reference other than target itself,

as well as onboard inertial navigation sensors like gyroscopes and accelerometers. The

19

combination of Inspection and Relative Navigation elements should allow for planning of

paths around an unknown object.

Additionally, the algorithm should be as simple as possible to reduce the processing

burden and make the algorithm applicable to as many space systems as possible.

Notionally, the algorithm should not require any information about the target object's

rotation states. By discarding or not collecting this information, the algorithm should allow

for inspections on a larger set of objects, including those that are rotating at high rates.

1.2.2 Characterize System Performance and Sensor Noise

This thesis must also develop a model of the vision system to be used and to compare that

model with the existing SPHERES satellite system, both in simulation and in ISS testing.

Characterizing sensor noise allows for the application of the SPHERES system to the

to-be-launched vision system that this thesis seeks to support. By comparing the noise

sources and noise characteristics of the SPHERES metrology and inertial sensors to those

predicted in a vision system, an understanding of the expected performance of the inte-

grated inspection system can be gained.

1.2.3 Quantify Algorithm Performance

In order to apply the navigation and inspection algorithms that this thesis develops, the

performance of the inspector system must be assessed with a number of characteristics in

mind. The most significant of those performance characteristics are:

1. Fuel Efficiency Minimizing fuel use in an inspection maneuver is preferred. This

will be measured in the amount of CO2 fuel used by the test satellites.

2. Time Efficiency Faster inspections are desired, though more inspection time pro-

vides better coverage. Algorithms which minimize the time to complete an inspec-

tion are preferred.

3. Coverage Each algorithm must provide a full view of an unknown target object to

the inspector satellite. This serves as a constraint on each maneuver. It can also be

used to discriminate between inspection paths based on the quality of inspections -

better inspections provide less oblique views of the target object's surfaces, and may

provide multiple views of the same surface.

20

These factors will be quantified, and used to compare the performance of different algo-

rithms against one another, as well as the reactions of the given algorithms to target object

behaviors. Additional factors, such as the complexity of the algorithm, code size, and col-

lision risk may also be taken into account, but only to discriminate when the three above

qualities are insufficient.

1.3 Previous Work

Previous work done with vision systems has been used for purposes that vary from space

station assembly (Canadian Space Vision System[10]) to autonomous rendezvous and dock-

ing (DARPAs Orbital Express[11], among others[12]). Relative navigation using vision

sensors may also be the control of autonomous underwater vehicles, with applications

in iceberg-relative navigation[13],[14] and benthic surveys[15],[16]. Research with appli-

cation to vision is ongoing in rendezvous to a tumbling object[17], formation flight[18].

What is well understood is the use of vision and other sensing methods to safely approach

a target prior to a rendezvous maneuver[19]. The success of these methods has been inte-

gral to the US space program, especially in the Shuttle/Station era. Difficulties, however,

arise when the inspection target has an unknown form and no fiducials for easy reference

in navigation. Studies addressing this problem often rely on pre-planned trajectories[20]

around the object or are not easily adaptable to modification of the inspection path based

on the tumbling motion of the target object.

This thesis will outline an algorithm for use in vision-based navigation applications to

perform inspections while maintaining a safe keep-out distance. The algorithm makes use

of range and bearing data which would be available to calibrated stereo cameras, along

with a 3-axis gyroscope onboard the inspecting satellite. The approach will be based on a

rotating inspector that maintains a body-fixed orientation with respect to a target object.

Success will be evaluated primarily on the ability to maintain a safe distance, to maintain

a closed planar path, and demonstrate robustness to certain disturbances. The algorithm

is tested on the SPHERES satellite simulation and onboard the International Space Station

(ISS). The ultrasonic, time-of-flight based navigation system is used on the ISS for truth

measurements.

While more precise algorithms and optimal approaches exist[21], paper focuses on the

21

development of a simple inspection algorithm for use in a wide range of systems in which

the control system may be computationally constrained and to experimentally demon-

strate the effectiveness of that algorithm in a microgravity environment.

The first contribution of this thesis is the development of an algorithm for inspection

that only requires a vision system to compute the range and range rates using a simple

stereo algorithm that can easily be implemented in an embedded system with limited pro-

cessing power. The computational simplicity of this algorithm is due to the fact that it does

not need to compute the relative orientation[22], between frames. Instead, it dead reckons

its position on a spherical surface surrounding the target object using its gyroscopes. The

secondary contribution of this paper is an experimental validation of this algorithm in

a microgravity environment (i.e. the International Space Station) using a gyroscope and

simulated range measurements. This experiment showed that the amount of vertical drift

during a 3 minute test was less than 10 degrees for a stationary target, with 25-minute

simulations showing less than 12 degrees. The third contribution of this paper is an error

analysis to compare the estimation accuracy between the simulated range measurements

and what is expected of an actual stereo vision system.

22

Chapter 2

Relative Navigation

2.1 Vision System Outputs

Stereo cameras, LIDAR/RADAR, structured light systems, and other "vision" systems

provide information about objects in their field of view that include depth, motion, and

a host of surface properties. Each of these systems addresses the same problem using

different hardware, but the principles are the same. Just as LIDAR provides relative dis-

tance measurements to a target's surface, a two-camera (or more) system will provide 3-

dimensional measurements from a reference point to surface features on the target object

that are in view. This is achieved by triangulating a feature which appears in the field

of view of both cameras using knowledge of the distance between the two cameras and

where the object falls on the focal plane of both imagers. Using trigonometric relation-

ships, each feature can be assigned an estimated distance with respect to some pre-defined

reference point. This reference point is customarily placed in the upper left of the leftmost

camera, and range and bearing to a target are the set of 3-D measurements provided by

the cameras. As they are later implemented in the relative navigation algorithm, this range

and bearing is translated into range and horizontal translation measurements.

A typical stereo vision system provides synchronized images from each camera. Each

camera and lens, however, distorts the true image. Therefore, in order to accurately de-

termine the range and bearing to features, the cameras must first be calibrated. This is

accomplished by providing a set of known features, most commonly a checkerboard pat-

tern, and taking a set of images. Since the image of the checkerboard is distorted by the

lenses and cameras, a recursive batch algorithm can be applied to the image set to provides

23

a least-squares estimate of the distortion parameters. After determining these parameters

and creating matricies to undo the distortion, future images can be quickly adjusted to

remove their effects. This process, the particulars of which will not be described in signifi-

cant detail in this thesis, results in image pairs which are undistorted and rectified and are

able to be used for the aforementioned ranging.

After the calibration, since distortions may be considered removed, the images can be

treated as the output of a pinhole camera.

2.2 Simulation of Vision Measurements

Because of the launch schedule of the vision system hardware (described later, in Chapter

4), we do not yet have the capability to use the VERTIGO Goggles stereo cameras on orbit.

Instead, the SPHERES global metrology system was used to simulate stereo vision mea-

surements. It uses a time-of-flight ultrasonic ranging system system. Using measurements

from a set of five ultrasonic beacons placed around the ISS test volume, the satellites are

able to determine their position. Background telemetry over a wireless link allows each

SPHERE to find the location of others in the test area. Differentiating (via an Extended

Kalman Filter) provides velocity measurements, while the time of flight difference be-

tween faces of the SPHERE provides pointing information. To translate from the global

to relative frame, there are a few steps.

The first step is to convert the global position measurements into the body frame. The

process is illustrated in Figure 2-1, which shows the Inspector, Target, and the Inspector's

body frame. The vector difference allows us to find the length and direction of rB in the

inertial ISS frame:

rB(ISS) rA(ISS) (2.1)

rTGT - rINSP

iB(ISS) =A(ISS) (2.2)

iTGT - fINSP

The origin of the coordinate frame, though not important to the relative state, is located at

a point in the center of the test volume framed by the SPHERES ultrasonic beacons. Using

the quaternion calculated by the ultrasonic metrology system, a rotation matrix from the

24

Figure 2-1: Inertial and relative frames

ISS (global) frame to the body, RG2B, places rB, which is the vector from the inspector to

the target in the body-fixed reference frame of the inspector.

B= rA
(2.3)

= RG2BT[rB(ISS)

Since B is a rotating frame, the velocity measurement is not as straightforward, and again

requires gyroscope measurements to measure the rotation rate. Using the rules for differ-

entiation in a coordinate frame,

rA RG2B(fB(ISS)) (2.4)

iB =A - W X rB
(2.5)

= RG2B(fTGT - rINSP) - W x RG2B(rTGT - rINSP)

These measurements are then differenced with the desired states to determine the state

error. A standard linear PD controller was then used to calculate thruster inputs for the

position error, and a nonlinear PD controller was used to control only for the rotation rate

(though the controller is effectively proportional as implemented). While more optimal

controllers are available, the use of PD controllers allows the implementation of the algo-

rithm on a wider range of computing platforms, achieving the stated goal of maintaining

simplicity in implementation. An additional feedforward term was used to maintain the

circular motion. This thrust, applied in the inspector's body +X direction (nominally to-

25

ward the target), provided the centripetal force to ensure a circular path:

r = mrx,goal * Wgoal (2.6)

Forces and torques were then mixed by the propulsion system, which schedules thruster

opening times for a period of up to 200ms every during each 1-second control period.

Once the VERTIGO Goggles are launched to the station, the output from the cameras

will be processed using the Goggles single-board computer. This computer will process

the images and will output the range, rB, and range-rate, i'B, using previously developed

thresholding and centroiding algorithms and eliminating the need for the transformations

described in equations 2.1 through 2.5. Initial prototypes of this technique have demon-

strated the capability to provide such relative measurements.

2.3 Relative Navigation about Unknown Objects

The nature of unknown objects means that they may have certain qualities that preclude

simple tracking of features in order to navigate. Quickly rotating objects in particular pose

difficulty to certain classes of algorithms. Systems which have a low framerate compared

to the rotational rate of the target will have difficulty tracking a given feature from frame

to frame. Take for instance, an image processing algorithm that can account for 10 degrees

of angular motion between frames or less, and a system that operates at 10 frames per

second. Since the maximum rotational speed, Wtarget, is defined by

Wtarget (FPS)(Oiimit) (2.7)

An algorithm dependent on feature tracking for relative navigation will fail if the target

object spins faster than 100 /s, or about 17 RPM in a single axis. Of course higher framer-

ates or more advanced tracking and estimation tools could be used, but to do so would be

computationally intensive, requiring a larger, more complex system and all of the atten-

dant support systems from thermal control to power storage and distribution. For complex

motion, multifaceted or complicated shapes, unfavorable surface textures, or poor lighting

conditions, processing requirements might push the maximum allowable frame-to-frame

angular displacement far lower.

26

Alternatively, a tracking algorithm which does not require tracking of features from

frame to frame could be used in order to move relative to the rotating target. This is the

approach taken by the VERTIGO team.

First, operating at about 5 frames per second, the system identifies features in each

image. Next, a filter is applied to the image to exclude those features outside of a set

range (typically beyond 1m from the Inspector, while the size of the baseline excludes

those too close to be observed simultaneously in both cameras). This is done to eliminate

background features associated with testing in an enclosed volume like the International

Space Station, a problem not encountered in an "outdoor" orbital environment where a

starfield at effectively infinite distance is the only background. Next, features are blurred

or blended together and a centroid is calculated. This centroid is then used to estimate

range and translation to the target. The specifics are beyond the scope of this thesis, but

the process unfolds as shown in Figure 2-2.

Estimated Centroid

0.

Excluded included Range Excluded

00 10 20 30 40 50 60 70 80 90 cm

Figure 2-2: Filtering and Centroiding

2.3.1 Addition of Dead Reckoning

If the only goal of an inspection was to maintain orientation and relative distance, then

processed vision information would be all that is needed. However, in order to perform

maneuvers around a target object, dead reckoning is necessary. Single integration of gyro-

scopes is particularly useful when estimating the motion of the Inspector about the target.

This is because if control is maintained with regards to range and pointing, calculating the

rotation of the Inspector will provide an estimate of the location in an inertial frame whose

origin is co-located with the center of the target object. This inertial location can be used to

27

develop paths which are most likely to provide global coverage of the target object.

The addition of dead reckoning is straightforward: as gyroscopes typically operate at

a high frequency, measurements can be averaged or filtered over short periods. Given

the estimation of the rotational rate of the Inspector, a simple integrator (in frequency

domain, E in time) may operate on the filtered rates to estimate the angular displacement.

Since the rotational displacement is so closely related to the linear displacement in a well-

controlled system, the motion in inertial space also falls out. A conversion from spherical

to Cartesian coordinates shows this relationship:

T

(2.8)
t=o

T

= owy (2.9)
t=o

x = rcos#sinO (2.10)

y = rsin#sinO (2.11)

z = r cos 9 (2.12)

Should the rotation rate about the body X-axis not be kept to zero, additional terms

would need to be included to account for multi-axis coupling.

Inverting the relationships allows for planning of any trajectory in a coordinate frame

that is body-centered and non-rotating with respect to the target object. This method, it

should be noted, is sensitive to gyroscope noise, and will drift accordingly over extended

periods of time. Tracking features on the target object may in some cases be able to aug-

ment gyroscope measurements, and be filtered to provide better accuracy over longer pe-

riods of time. The addition of target object rotations will allow for additional planning, but

that is beyond the problem scope.

2.3.2 Addition of Target Rotation Information

The addition of the rotation of the target has two implications. The first is that by in-

tegrating the rotation of the target object and combining that information with the dead

reckoning estimation from the Inspector's gyroscopes, maneuvers and navigation can be

designed to take place in the target's body frame rather than in an arbitrary inertial frame.

28

This is of particular import for optimal design of inspections, as well as ensuring full cov-

erage. Without the knowledge of the rotation of the target relative to the Inspector, there

may be segments of the target which remain uninspected. Indeed, in certain cases where

the inspection motion matches the target's rotation an inspection may fail to view more

than a single side of the object of interest.

The knowledge of rotation can be two-tiered. A precise, accurate estimation of the

rotation rates of a target are necessary if that information is to be used actively and con-

tinuously for the purposes of path planning. Such an approach is processor-intensive and

decidedly not simple. It will not be dealt with in this thesis.

On the other hand, the use of a general estimation of the rotation of the target object

can be used to improve efficiency of inspections (this will be discussed in a later section),

as well as for insuring better coverage by fixing the inertial frame in a fourth degree of

freedom, rather than just the original three.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

Chapter 3

Inspection

Inspection is the movement about an object for the purpose of observing its surface and

developing an estimate of its form, function, or other qualities. For the purpose of the

VERTIGO program, the goal of an inspection maneuver is to build a 3-dimensional map

of the target by collecting, storing, and processing information about its surface features.

Four inspection maneuvers were developed for implementation on the SPHERES sys-

tem (and later use on the SPHERES-VERTIGO combined system). Those maneuvers follow

paths described by the following:

1. Stationary This maneuver holds the Inspector satellite stationary in the relative frame,

only maintaining distance and pointing.

2. Planar This inspection is done by imparting a rotation in one axis, causing the In-

spector to move in a plane.

3. X-shaped This maneuver requires integration of the Inspector's gyros to estimate

movement about the target in an inertial frame. Rotations are imparted into inspector

body axes one at a time, switching after 900 and 360' of rotation.

4. Hemispheres This maneuver uses gyroscopes onboard the inspector and an estimate

of the target's rotation. Using the rotation estimate, the inspector aligns with the

rotational axis, then performs inspections in the "northern" rotational hemisphere,

followed by the "southern" hemisphere and equator, switching when the sum of the

estimated rotation of the target and the Inspector indicates 360' of the target have

passed in front of the camera.

31

While the first was developed merely for demonstration purposes and would fail to

provide significant coverage unless the target satellite was rotating and tumbling between

multiple axes, the latter three maneuvers are compared based on their performance ac-

cording to coverage, fuel use, and time to completion metrics.

3.1 Coverage Quantity

Coverage is the measure of the surface of a target object that is "visible" to an inspector

satellite. Given a surface mesh, we can therefore assign a binary 'coverage' state: 1 if the

mesh section is visible, 0 if it is not. In order to determine if a section of the mesh has been

seen by the inspector, we must check the following qualities:

Viewing angle: Test data from initial Phase II (image processing) algorithms shows

difficulty matching features in consecutive frames if the feature lies on a surface

angled more than 30 degrees from perpendicular relative to the camera boresight.

Therefore, to be considered "viewed," a point should lie on a surface inclined less

than 30 degrees (see Figure 3-1[23]).

Obstruction: Because we are working with the visible spectrum and solid, opaque

objects, we should omit those which are behind another object. Fortunately, the

SPHERES system does not have any self-occluding surfaces or geometries, save very

small sections around the CO 2 tank and the regulator knob, which will be ignored

for this thesis. For our purposes, this excludes only surfaces on the opposite side of

the SPHERE from the inspector.

In view: Clearly, to be considered viewed, the surface should be in view of the cam-

era. Given the camera and lenses selected for the VERTIGO project, as well as the

loss of the edges of the images due to distortion, an assumption of a 30 degree field

of view (half cone) is reasonable.

Because the goal of the VERTIGO inspection is to create a 3-D map of a target ob-

ject, obtaining 100% coverage is desired. This requirement therefore determines when

an inspection is completed. For the cost analysis, coverage serves as a constraint on the

optimization. Considering the likelihood of some sensing and approximation error, an

inspection shall be considered complete when 95% of the surface has been inspected.

32

100

80

80

40

Matching location and scale
Matching location, scale, and orientation

Nearest descriptor in database

0
0 10 20 30 40 50

Viewpoint angle (degrees)

Figure 3-1: Feature Tracking and Reacquisition by Angle

3.2 Fuel/Time Tradeoff

In any satellite, fuel is at a premium, and so any evaluation of the efficiency of an inspection

should take into account the fuel used for maneuvering.

In order to estimate the amount of fuel used in a particular inspection maneuver, there

are two methods available. The first, most accurate way is to measure the amount of time a

thruster is held open and how many thrusters are open simultaneously. Based on previous

work[24], we know that the fuel used follows:

mthruster (-0.033n + 0.5555) (3.1)

mftotal (-0.033n + 0.5555)n (3.2)

Where n is the number of thrusters open simultaneously. Using this equation as well

as the thruster firing times, we can get a good estimate of the total fuel used. For station

tests, however, this data was not collected, and simulation does not normally collect this

information. What is collected, however, is an estimate of the thruster firing times called

"thruster counts" (c). With 1 count equivalent to a singe thruster open for 1ms, and a full

tank approximately equal to 500,000 counts, we find that each count is equivalent to:

c = nopen * tmslopen (3.3)

500000 * c = 170mfuezIg (3.4)

where nopen is the number of open thrusters, tmslopen is the time each thruster is open

33

-

(in units of ms), and c is a count. Fuel mass, nfuelig, is the mass of fuel (in g) in a full CO 2

tank.

For the majority of the inspection, 3 thrusters are expected to fire at any given time, and

we assume they operate for about 30% of their 200ms control period every second. This

yields 2942 counts per gram of fuel. Counts are reported in both simulation and state of

health data returned during SPHERES tests. Therefore, by tracking the thruster counts, we

may estimate the rate of fuel use.

Fuel, however, should not be the only consideration: in two of the most applicable in-

spection scenarios, fuel for a small inspector spacecraft would be a small portion of the

overall mission fuel. In "hosted" spacecraft inspecting a "host" spacecraft like the Inter-

national Space Station or an exploration mission, the host would likely hold large fuel

reserves compared to what is required for relatively simple inspection maneuvers of the

inspector about the host and refueling might be possible. For missions requiring the ren-

dezvous of one spacecraft with another from different orbits, the fuel cost required to attain

and maintain a proper orbit would be significantly larger than maneuvering fuel needs.

With inspections similar to those used for SPHERES, the total AV is on the order of cen-

timeters or meters per second, compared to orbital maneuvers which may range in the 10s

to 1000s of m s- 1 depending on object size and inspection speed. In each of these cases,

the criticality of failures that demand a close visual inspection may hint at an element of

time-criticality. Indeed, in the case of the Space Shuttle, such maneuvering thrusters (RCS)

were even used for attitude control during launch, implying on-orbit maneuvering fuel

was a minor part of the fuel needs [25].

Therefore, time should also be taken into account alongside fuel use. After all, in most

orbits, over an extended period of time, station keeping requirements would cause fuel

use to grow. Furthermore, if an inspection is non-time critical, the use of orbital dynamics

are more fuel efficient and better suited for most inspections than active inspection and

navigation methods. However, if a spacecraft is damaged enough to require an inspection,

or other mission requirements dictate an inspection to be completed before the completion

of one orbit, the inertial methods presented in this paper are better suited than others.

Certainly in missions requiring long-duration transfers, active control is the only option.

As time grows linearly and is always non-negative, conversion for a cost function is

straightforward. Fuel use is also non-negative and monotonically increasing.

34

Combining the two, we get the cost function,

J(m5 fel, t) Qmfuel + Rnt (3.5)

With the constraint

C(x, t) = 0.95 (3.6)

Where C(x, t) is the ratio of coverage of the target object to its total surface area. The con-

stant n is equal to 0.063g s-1 and is used to compare time and mass under the assumption

that a typical SPHERES will finish a full tank of fuel in 45 minutes of test time.

Given n, weights Q and R are then selected to weigh fuel consumption and time, re-

spectively. If both are equal to 1, then fuel use and time are equally weighted when com-

pared to a typical SPHERES test.

3.3 Inspection of an Unknown Target

3.3.1 Expected Improvements using Rotation Information

Of the three inspection paths tested, only the last takes the rotational state information of

the target into account. By doing so, it is expected that this path will minimize the cost

function compared to the other options. Most of the efficiency is expected to come from

the fact that the Inspector can actively take advantage of the rotation of the target rather

than moving in potentially inefficient paths. For instance, if both satellites are have their

body Z axes aligned, if the target rotates about its +Z axis, if the Inspector rotates about its

- Z axis at half the rate, it will see the be able to observe the entire "equator" of the Target

in a third of the time it would take should they rotate in the same direction.

Additionally, the Inspector will be able to use that knowledge to not only perform faster

and more fuel efficient motions, but it may perform transitions quicker because it allows

the integration of the target's rotation to estimate coverage rather than only the Inspector's

gyro information.

As noted earlier, it should be emphasized that the use of rotation information from

the target object is not, nor should it be, required for a successful inspection. Such infor-

mation can only improve an inspection, and shouldn't be the difference between success

and failure. Without the information of the rotation states, however, full coverage can-

35

not be guaranteed without additional precautions, especially in cases where the rotation

rates of the two satellites match in direction, and particularly those where they match in

magnitude. Such cases can be avoided by varying the inspection speeds in order to elimi-

nate potential resonances between inspector and target. Those approaches and the trades

which inform their selection are, however, beyond the scope of this thesis.

3.3.2 Path Optimality

The paths that were developed are unlikely to be truly optimal, but only improvements

compared to the baseline planar inspection. Indeed, a maneuver designed to follow the

shortest path[26] would likely follow one like the that shown in Figure 3-2[27] rather than

the currently implemented paths.

Shortest Inspection Path over a Sphere

-1 -1

Figure 3-2: Shortest Inspection Path on a Sphere

Further complicating the solutions for true optimal paths are the rotation and nutation

of the target object, which distort the "baseball seam" path, which is the shortest inspection

course about a stationary target. Therefore, these results should only be considered first

as relative value comparisons, and second as approximations of true optimal paths, not

rigorously defined and derived fuel and time-optimal paths.

36

Chapter 4

Application to the SPHERES System

4.1 The SPHERES System

The Synchronize Position Hold Engage Reorient Experimental Satellites, or SPHERES for

short, are the hardware upon which the navigation and inspection algorithms were de-

veloped and tested. To better understand the constraints of the research, as well as the

realistic nature of the dynamics that are simulated, we first take a look at the current and

future SPHERES program.

4.1.1 What is SPHERES?

The SPHERES satellite testbed was initially developed as part of a capstone design course

in the MIT Space Systems Laboratory (SSL). Since its first launch in 2006 the system has

been hosted aboard the ISS and as of May 2012 has conducted over 30 test sessions in such

varied areas as formation flight, rendezvous and docking, online planning, and STEM

education and outreach. In the 7 years of testing, SPHERES has provided valuable experi-

mental data in a persistent microgravity environment and proven themselves as a valuable

control and navigation testbed.

The system itself consists of ground and space segments, each able to operate in-

dependently of one another. Algorithms are first developed and validated in a high-

fidelity simulation with a MATLAB interface. This simulation, which is constantly be-

ing improved and updated, allows for rapid prototyping of code for control and navi-

gation algorithms. Based on the simulation results, scientists and engineers working on

37

the project verify and validate their code on a flat floor or glass table. After 2-D test-

ing with the SPHERES hardware on ground, the code is packaged and sent for testing

on the ISS. On ground and on station, up to three satellites may typically be used, each

with internal gyroscopes and accelerometers, as well as an external ultrasonic time-of-

flight measurement system[28][29]. The metrology system (Figure 4-2) provides time-

of-flight measurements from five beacons with known locations, to microphones on six

faces of the SPHERES. This data is used for position, velocity, and attitude estimation.

Each satellite has 12 cold gas thrusters,

enabling full 6-DOF motion. As neces-

sary, batteries and CO2 tanks are changed

by the operator. At a 5Hz frequency

the satellite receives updates from the

ultrasonic beacons, allowing it to de-

termine its location in the test vol-

ume. At a frequency of 1Hz, the

SPHERE may perform control actions for

up to approximately 200ms. Through-

out a test program, state data is sent

in a test over a wireless link back to

20D,

10

50,

250

200 0

50

I

00

150
0 200 ;

Figure 4-2: SPHERES Global Metrology Sys-
tem

Figure 4-1: A SPHERES satellite

from each of the satellites participating

a station laptop for post-test analysis.

During the design of the system,

forward-looking designers added one im-

portant functionality: an expansion port.

The expansion port allows for the physical

mounting of additional payloads and pro-

vides adequate connectivity for commu-

nication between a payload and the host

SPHERE. The expansion port also provides

data lines for expansion of the metrology

system as well as a handful of other health

and status lines that a payload may use.

The software design is likewise flexible

38

enough to allow for payloads to interface

with the satellite with minor changes to the core communication software.

These early design choices, particularly the ability to allow for expansion of the satel-

lite capabilities were a critical enabling factor in achieving the vision-navigation mission

that is discussed in this thesis. Much is owed to the design philosophy that nothing on the

satellite should ever be a "terminator". The combination of this approach and past expan-

sion experiments on SPHERES paved the way for the addition of the first flight-qualified

expansion on the experiment: the VERTIGO vision navigation payload.

4.1.2 What is VERTIGO?

In 2010, DARPA began the InSPIRE program to upgrade the satellites to enable, among

other things, vision-based navigation. As part of this program, in 2011 MIT and indus-

try partner Aurora Flight Sciences began developing the Visual Estimation and Relative

Tracking for Inspection of Generic Objects (VERTIGO) payload. Attaching to the expan-

sion port built onto SPHERES, the VERTIGO Goggles Assembly consists of an avionics and

processing upgrade, a set of stereo cameras, a high-bandwidth communication system and

supporting elements (additional system requirements can be found in Appendix B). Due

to launch vehicle and programmatic constraints, the Goggles will not be operational until

the fall of 2012. The experiments described in this paper therefore use the SPHERES ultra-

sonic global metrology system to simulate range measurements that otherwise would be

obtained from stereo cameras.

Figure 4-3: VERTIGO "Goggles" Assembly

At its roots, however, the VERTIGO hardware, however, is more than just a year old.

Its roots lie in a program run in the MIT Space Systems Lab (SSL) one summer prior called

39

the Low Impact Inspection Vehicle (LIIVe). LIIVe prototyped many of the initial subsystem

elements that would be inherited by VERTIGO, and served as a proof of concept for the

project. A Naval Research Laboratory (NRL) project, it tested many of the critical trades,

from power consumption to processing needs and architecture, allowing VERTIGO to pro-

ceed much faster. Without the LIIVe heritage [30], the VERTIGO program would not have

been able to maintain the compressed schedule it was contracted for.

In the initial launch, two VERTIGO units will be sent to station. Each unit (Figure 4-3) is

really two separate pieces - the avionics stack and the optics mount. In keeping with the

design philosophy of expandability, the stack replicates nearly all of the connections pro-

vided to it by the satellite to enable other payloads to use the increased processing power

granted by the onboard processor. The processor itself is a 1.2GHz single-core processor

with a relatively low power draw for its processing capability. In order to take advantage

of flight-qualified resources while still maintaining a low mass and realistic dynamics, the

system has been designed to use onboard Li-ion batteries. These batteries provide between

1 and 1.5 hours of operational time, while keeping the mass below the limits which require

significant changes to the SPHERES control algorithms. VERTIGO's thermal management

system consists of a fan included on the single-board computer which forces convection

across a heat sink. This cooling mechanism combines with motion-induced flow and ther-

mal radiation to maintain a sufficiently low operating temperature for the electronics while

keeping the package cool enough for astronauts to handle. The vent design minimizes dis-

turbance torques from the airflow.

The optics mount, unlike the PEEK-encased avionics stack, is milled from 6061 alu-

minum designed to survive the launch vehicle vibration and acceleration loads with min-

imal distortion. The optics structure, purposely overdesigned, was built as such in order

to reduce the chance of the cameras moving out of calibration between hardware delivery

and on-orbit operations. Between then, the cameras must remain rigidly locked through

shipping, handling, a train ride, packing, and finally, a rough 10-minute ride to the ISS. The

structure hosts a pair of HD cameras, illuminating LEDs, additional metrology sensors, as

well as the electronics required to run them and communicate with the avionics stack.

The two elements are designed for simple nominal operation by astronauts, with only

power and reset switches available as well as an LED on/off switch. Should an anomaly

present itself in development or on station, there are additional access panels for replacing

40

hard drives and a breakout connector which allows for mouse and keyboard inputs. Both

wifi and ethernet connections are available for high speed communication between the

Goggles and the commanding computer, bypassing the considerably slower SPHERES RF

communications. This connection allows for real-time streaming video and download of

large data files between the Goggles and the ISS computers.

That communication is managed, as are all operations, by a GUI running on a laptop

on the ISS. The GUI allows for the astronaut operator to select, load, and operate test

programs and monitor their progress. The VERTIGO plug-in to the SPHERES GUI also

handles the aforementioned video feed to the astronaut crew. This provides additional

feedback beyond what is typically available to ground observers, and provides a more

interesting experience for operators.

Each of these design elements was built to achieve a two-fold mission. The first was to

maintain the flexibility and usability of the SPHERES system as a student-usable, expand-

able testbed. The second, more particular goal, was to support the development of con-

trol, navigation, and other vision-based navigation investigations with space applications.

With VERTIGO, MIT hopes to test out algorithms with application to on-orbit inspection,

failure diagnostics, rendezvous and docking, assembly, and a host of other missions that

vision sensors enable.

The profile for the current VERTIGO mission calls for three phases. The first phase (cre-

atively named Phase I) includes an initial inspection of an unknown object which gathers

information about that object from a "safe" distance with an expectation of near-global

coverage of the target object. The second phase (Phase II) is a pause to allow the Goggles

to process the inspection data to build a 3D map of the target using techniques such as

bundle adjustment[31] or simultaneous localization and mapping(SLAM)[32]. The third

and final phase (Phase III) consists of relative navigation using the 3D map to perform a

closer inspection or to use the object as a stepping-stone or reference point to inspections

further afield. This thesis primarily addresses the first phase.

The phase begins with the target object in view of the cameras of the inspector satellite

(it is assumed that the lost in space problem has been solved on the SPHERES platform

and is beyond the scope of the VERTIGO project). With the target in view, the inspector

may make an estimation of the center of the object using thresholding and centroiding

algorithms[33]. For now, we begin with an assumption that the target object is stationary;

41

Inspector
SPHERE

Target
Object r

Figure 4-4: VERTIGO Basic Inspection Path

that is, it is not translating, though it may be rotating. The inspector, however, is rotating

and translating as it expects to circumnavigate the target to build up a feature map of the

object. The path taken by the inspector around the target object lies on a sphere with the

target object at the center, and is ideally circular, as shown in Figure 4-4. The figure shows

the constant radius that should be maintained by the inspector, which is equivalent to

maintaining a constant range to the target.

This simple planar path forms the basis of the initial investigation into inspection paths.

By examining the performance of the navigation algorithm to adjustments in the target

object conditions, as well as modifications to the inspection algorithms, this thesis will

make an assessment of the performance and robustness of those algorithms.

4.2 Measurement Fidelity

The block diagram formulation in Figure 4-5 describes the inspection estimation and con-

trol approach that will be taken by the VERTIGO Phase I inspection. In addition to the

inspector rotation rate data coming from the gyroscope on the SPHERES satellite, the VER-

TIGO Goggles gathers images of the target object. From the images, the cameras can cal-

culate X-, Y-, and Z-positions and rates of the target relative to the inspector. Because that

hardware is not yet available on the ISS, the SPHERES ultrasound system is used to mimic

the camera outputs. The use of a simple PD control law allows the algorithm to be used

on nearly any system, regardless of computing capability.

42

Reference - T1
- - +Ah I{F. T }

[6x .'y .G),z F

Attitude Controller

Figure 4-5: VERTIGO System Block Diagram

This section will compare the fidelity associated with the SPHERES ultrasonic global

metrology system with that expected of the VERTIGO vision system. Such a comparison

will address the differences in precision, causes for those errors, and describe and quantify

expected causes of inaccuracies.

4.2.1 Vision System Fidelity

To ensure that the substitution of the ultrasound system for the cameras does not signif-

icantly change the performance characteristics of the total system, we must first compare

the error of each system, beginning with the vision system.

Since the cameras will be calibrated during station operations, an error analysis can

begin with the assumption that the cameras behave according to a pinhole camera model.

As the pairs of cameras and lenses are identical, we will also assume that the focal length,

f, of each cameras is identical. Calibrating the cameras undistorts and rectifies images, so

that we may also assume that the focal planes of the left and right cameras are coplanar

in X-Y, meaning that the focal planes are also collinear in X-Z. The distance between the

centers of the cameras is defined by the baseline, b. The view of the X-Z plane of that setup

is shown in Figure 4-6.

In Figure 4-6 the true position of the center of the target object lies at the point defined

by (xo,zo) (note that the yo) coordinate will be addressed below. The point (x1,zi) is where

the VERTIGO Goggles believe the target to be when the error shifts the projected image on

43

b

plane

-- 7

(XI, zI)---

Figure 4-6: Pinhole camera model, X-Z plane

the camera in the x-axis by the distance AxR- We assume this noise to be Gaussian such

that,

AXR~ N(0, 1 pixel)

Though an error of 1 pixel is conservative (previous experiments put the error at about

0.2 pixels[34]), it should provide a good upper bound on measurement error. Using the

model and identifying similar triangles yields four relations:

Zi f (4.1)
x1 XR-+ .XR
zo f- -~ (4.2)
X0 XR

Z1 f (4.3)
b-x 1 XL

zo _ f (4.4)
b--xo XL

From these relations, we can solve for xo, zo, x1, and zi. Combining equation 4.2 and

equation 4.4 and solving for xO, we get:

xo - bXR (4.5)
XL + XR

44

Placing equation 4.5 back into equation 4.2, we find that

ZO = bf (4.6)
XL - XR

Returning to equations equations 4.1 and 4.3, we can solve each for zi, set them equal, and

algebraically find xi. A second substitution solves for zi:

= if _ f(b - xi)

XR + AXR XL

X1 =b(XR +AXR) (4.7)
XL + XR - AXR

zi = bf (4.8)
XL - XR + AXR

Using the typical inspection VERTIGO inspection position yields an (xo,zo) of (70cm,

4.5cm). With a pixel size of 6pm, the 1-pixel error yields (x1 ,zi) of (68.9cm, 4.57cm), for an

absolute position error of 0.7mm in x and 1.1cm in the z-axis.

The general form of the error is:

Ax = i - Xo

b(XR - AXR) bXR

XL - XR - AXR XL - XR

b(XR + AXR)(XL - XR) - bXr(XL + XR - AXR)

(XL + XR + AXR) (XL + XR)

Ax b(XLAXR) (4.9)
(XL + XR - AXR) (XL + XR)

Az = - zo

if _ f(b - xi) _ bf

XR±AXR XL XL+XR

Az -f b(AXR) (4.10)
(XL - XfR - AXR) (XL - XR)

This, however, is only half of the story, as the X-Y plane also provides error sources.

A similar approach can be used to approximate the position estimation error that results

45

from error in the y-axis. Once again, errors in the right camera are described by AYR as

we assume that the left camera perfectly captures the target location. Figure 4-7 shows the

geometry of the relations. Note that the imagers are assumed to be identically oriented

and facing into the page.

Left CCD Right CCD

Figure 4-7: Pinhole camera model, X-Y plane

There are again four relations to account for:

YL _YO (4.
XL XO
Y1 YO (4.
X1 XO

Yo _(R 4
b- xO XR

Y1 _ YR AYR (4
b - 1 XR

Substitution of equations 4.11 and 4.13, combined with some simplification, yields:

zo = bYRXL (4.
YRXL + XRYL

YO- bYRYL(4
yo = (RyL

YRXL -± XRYL

.11)

.12)

.13)

.14)

15)

16)

46

while the combination of Equations 4.12 and 4.14 will give:

£1 = bXL

y1 = byL

(YR + AYR)

XLYR - YLXR - AYRXL

(YR - AYR)

XLYR + YLXR + AYRXL

Therefore, the combination of the two will yield an error that follows

AX = X1 - To

by Xr
bXL jf L] - -

XLYR - YLXR - AYRXL YRXL - XRYL

Ax =
bXLXRYL(AYR)

(XLYR + YLXR - AYRXL)(YRXL + XRYL)

Ay = yi - yo

= byL

Ay =

(YR + AYR)

XLYR + YLXR - AYRXL YRXL - XRYL

bXRY% (AYR)

(XL YR + YLXR + AYRXL)(YRXL + XRYL)

During an inspection, the target object is expected to be kept in the camera frame at

approximately:

[xol
Yo

zoj

4.5cm

= -2.25cm

70cm

Additionally, the parameters of the cameras selected for VERTIGO include a focal

length (f) of 2.8 mm, a baseline (b) of 9cm, and square pixels that are 6pm on a side.

By starting with these values, substitution allows us to find that as a result of pixel

error in the X-axis,

47

(4.17)

(4.18)

(4.19)

bYRYL

(4.20)

|q 4- A ,U)

Ax = 0.74mm

Az = 1.15cm

while pixel error in the Y-axis gives

Ax = 0.78mm

Ay = 1.6mm

This leaves us with two values for the standard deviation of the x error. Because the

probability of errors in the x- and y-directions can be treated as independent random vari-

ables, the total variance of x is the sum of the variances due to each pixel error:

2 2 +a2 (4.21)X -total = Ux|xError lyError

This works out to 1.7mm. This total error, as will be shown in the next section, is far

below the error that will be introduced by the metrology system. Because of this, it is clear

that any testing which uses the SPHERES metrology system does not provide accuracy

that is unrealistic compared to vision measurements. Further research does need to be

done to confirm this, especially when feature identification is put into the equation, but

these preliminary results show that SPHERES is a valid way to test the vision navigation

algorithms, and do so in a way that demonstrates a worst-case scenario for the sensors.

4.2.2 Metrology System Fidelity

The SPHERES global metrology system, which is made up of a set of 5 ultrasonic beacons,

is triggered when an infrared pulse is emitted within the test volume. After a 10ms delay,

this pulse causes each of the 5 beacons to respond at 20ms intervals, in sequence. Because

the infrared pulse is propagated nearly instantaneously, the beacon locations are known,

and the ultrasonic waves propagate at a known rate, a time-of-flight calculation can de-

termine the range of each satellite ultrasonic sensor and each beacon. Onboard processing

allows the beacons to determine position, velocity, and attitude of each satellite.

48

Errors can arise when additional light sources provide infrared pulses, though such

errors are more likely to cause the processor to reset than to cause one-off errors in estima-

tion. More common errors include variation in the positioning of the beacons themselves,

as well as random noise in the sensors themselves, which may manifest itself as noise on

the calculated satellite position and attitude.

Experience with the system shows that the uncertainty associated with the system has

a precision no worse than 1cm and is accurate to within about 2cm. For position measure-

ments, which require a difference, the variance is therefore summed, which means that

the 1-sigma deviation of the metrology is expected to be accurate only to within 2.8cm in

all directions, even before accounting for quaternion error associated with the metrology.

This is significantly worse than the vision system is expected to perform.

4.3 Tests and Test Design

In order to evaluate the algorithms' effectiveness in a variety of settings, tests were devel-

oped which stressed the system. A subset of these tests was run in the 6 degree of freedom

microgravity environment onboard the ISS, while the full set was evaluated in a simulation

developed by previous SPHERES researchers.

By using the results from the ISS data and comparing it to the simulation output, it is

possible to develop an understanding of how well the simulation approximates the real

world system. Further, by identifying the differences, it is possible to determine the mode

of the divergence.

The tests will evaluate the impact of the following variables on the behavior of the

inspection system:

1. Target Behavior Movement of the target object toward, away from, and perpendic-

ular to the field of view will demonstrate the robustness of the algorithm to uncer-

tainty in the object's shape. More directly, it will also show the robustness of the

inspection and relative navigation algorithms as implemented with SPHERES con-

trollers to motion of the target.

2. Vision System Noise Vision system noise may impact the accuracy of the controller.

The noise on the metrology measurements should provide an upper bound on the

49

vision system noise, but variation can be explored through by adding additional

noise into the simulation.

3. Motion Dimension Initial movement is 2-dimensional. Tests should demonstrate

the impact of introducing a 3rd dimension. An exploration of non-planar motion

may also impact the optimality of the maneuver.

4. Rotation Information Taking the rotation of the target object into account may change

the most efficient path.

Each of the variables fits into a test matrix which covers the target behavior, inspection

motion dimension, and the use of rotation information. That table is shown below. Note

that vision system noise is not shown because it is a factor which influences each test and

can only be correlated to a baseline expectation from simulation. Each of the designed tests

takes one element of from each row of the below table.

Each row of the table shows one variable that is being tested. Tests were developed

which evaluated most combinations of the below variables. Necessarily, each test includes

at least one element from each row.

Target Translation None Toward Away Shear

Inspector Motion Planar 3D

Target Rotation Use Don't Use

By comparing the tests against one another, we may determine the effect that each vari-

able has on the effectiveness of the inspections, and ultimately, which algorithms perform

better under the given conditions of a rotating target.

4.3.1 Target Translation

For the purposes of the VERTIGO program, the target object is considered to be uncooper-

ative. In addition to the typical meaning implying that it shares neither state information

nor provides fiducials, this can also mean that the target is moving in response to the in-

spector. This can manifest itself in evasive motion away from the inspector or motion

perpendicular to camera plane. Aggressive motion toward the target will also require the

inspector to react by moving away to avoid a collision.

50

The first motion was evaluated in two segments of an ISS test, while the latter two -

shear and aggressive motion - was evaluated in simulation in addition to being prepared

for later evaluation on station.

Target Translation

Inspector Motion Planar 3D

Target Rotation Use Don't Use

4.3.2 Vision System Noise

Each test on ISS used the global metrology system transformed into a relative frame. There-

fore, those tests can simulate noise only at or above the threshold that beacons provide. In

order to test varying levels which are below that threshold, and hew more closely to the

noise in a vision system, simulation-only tests can be run.

Though ISS tests do not provide a sufficiently low noise threshold to do more than

provide an upper bound to the impact on the control system, they do allow for other

analyses. Those analyses include a determination of how the noise impacts the control

and determination and potential biases or instabilities, as well as a check to ensure that

real-world hardware matches predictions of the simulation.

After a comparison of the ISS and simulation data, the simulation can be tweaked to

introduce artificial noise into the simulation measurements, and to do so at varying levels.

As there is no station test which allows us to isolate metrology noise during test conditions

(including motion) without the addition of prohibitively complex hardware, there is not

specific test that will be run to determine the noise level. Such data will instead be esti-

mated from each of the below tests, with a particular emphasis on those highlighted:

Target Translation 3 ard Shear

Inspector Motion 3D

Target Rotation Use

4.3.3 Inspector Motion

The initial inspection was first developed as a two-dimensional maneuver in order to make

it possible to accurately test in a 1-G environment. With motion into a 3rd dimension, how-

51

ever, trades must be made to evaluate the paths which take the least time and fuel to com-

plete, while still gaining full coverage. Comparing the 2- and 3-dimensional motions to

one another also allows for an evaluation of the value of the additional coverage provided

by a 3rd dimensional motion with time and fuel use.

The initial motion is evaluated in the first planar inspections. The planar inspector mo-

tion allows for the simplest trajectory design and does not require integration of onboard

gyroscope to do more than to assess potential completion of the maneuver. It also provides

a common baseline to compare all cases of target translation against one another without

confounding variables.

The second category in this battery adds motion in the third dimension. This is achieved

by changing the inspector's axis of rotation at certain points in the circumnavigation of the

target: in order, about the Z-axis, Y-axis, and Z-axis once more. This occurs after the first

90 degrees and a subsequent 270 degrees. The determination of those angles are made by

integrating the inspector's gyroscopes.

The tests comparing the dimensionality of different maneuvers are highlighted in the

chart below:

Target Translation None Toward Away Shear

Inspector Motion

Target Rotation Use Don't Use

4.3.4 Use of Rotation Information

If the target object were static relative to an inertial frame, then the shortest path is well-

defined, following a path similar to the seams on a baseball. A minimum fuel/minimum

time path should be similar. If the target object is rotating, then the use of that information

can provide a vastly different minimum fuel/time path. By changing the algorithm to

account for this motion, the path can be optimized for fuel and time when compared to

previously tested algorithms.

Previous work has shown that by differentiating the motion of features between frames,

it is possible to estimate the rotational velocity of an object fairly accurately. To test the pos-

sible influence of taking the rotation of the target object into account, a test was developed

to use that motion to inform the path of the inspector.

52

The maneuver begins with the assumption that the rotation is stable over the dura-

tion of the inspection maneuver (approximately 6 minutes) and has minimal nutation (less

than approximately 20%). In the first portion, the inspecting SPHERE aligns its primary

rotational axis (Z-body) with the rotation axis of the target. In the following portions, the

inspector circumnavigates the target in thirds: the "northern" third, "southern" third, and

"equatorial" third, respectively. During each of these latter portions, the inspector inte-

grates its own rotation, as well as its estimation of the rotation of the target beneath it.

Once the integrations sum to 27rrad, satellite halts its circumnavigation and moves to ob-

serve the next third of the target. In all, this motion provides global coverage of the entire

target object given a control range of 0.7m and camera field of view of 600 (full-cone).

In the case developed for testing on the ISS, a rate of 6 degrees per second about the

Y-axis and a quarter of that about the Z-axis is used for the target object. These values

should allow for the full inspection to be performed before the inspector completes a full

circumnavigation. Further evaluation of these results should demonstrate whether this

results in a more efficient maneuver than one which does not take the rotation into account.

In the test matrix, this covers the highlighted regions:

Target Translation None Toward Away Shear

Inspector Motion Planar 3D

Target Rotation:

4.4 Success Metrics

In order to quantify how well the inspection is performed, it is necessary to develop met-

rics which judge inspection performance on the basis of fuel use, time to completion, and

total coverage.

4.4.1 Coverage

Because it is important to VERTIGO (and any other inspection mission for that matter),

coverage will be dealt with first. First, the field of view of the cameras must be taken into

account. Each camera is assumed to have a 600 full-cone field of view. Outside of this

angle, light either does not fall on the sensor or is removed during the calibration process.

53

Since the inspector cannot determine range to a feature without the benefit of stereo

vision, a location on the target will be considered covered if it is in view of both cameras.

This implies that the covered area is defined by the area described by the intersection of

the two cameras individual views, as shown below in Figure 4-8:

qt Zy%

7.79 E 'MflM
- 9cm-

F Baseline

Figure 4-8: Stereo Camera Combined Field of View

Therefore, an area on the target object will be considered covered if it is in the area

swept out by the Stereo FOV area (Figure 4-8), and the angle between the line of sight and

the unit normal to that area is less than 45 degrees (as shown in Figure 4-9). This angular

condition ensures that the area considered is on both the surface facing the cameras and is

viewed at a flat enough angle that the cameras can resolve features.

FOervi r' ih

Targe Objec
Stafite Ne. -..

Figure 4-9: Target Object Surface Visibility

Using this metric, an inspection is considered complete once the coverage area reaches

100% of the target object's surface area or a sufficient fraction thereof (to account for es-

timation and other errors). For the purposes of this investigation, 95% coverage will be

considered "full".

54

4.4.2 Fuel Use & Time

By beginning with inspection with similar coverage values, it is possible to compare the

fuel use and time to completion of each inspection. Time to completion, which is simply

the time to full coverage less any initial positioning, is simple to calculate.

A fuel calculation is slightly more complex when running tests on the ISS. This is be-

cause the opening of multiple thrusters reduces their effectiveness and changes their fuel

use. Since the only measure of fuel use on SPHERES is the firing of thrusters, the opening

of multiple thrusters must be accounted for in the fuel calculation. Previous work in this

area will be used for those calculations [24, p. 135]. That work showed that mass flow rate

(rh, in g/s) followed

rhprev =- 0 .0 3 3nT + 0.5555 (4.22)

where nT is the number of thrusters open at once. Since those tests were run with a higher

regulator pressure, the constant term is higher than would be expected for station tests. On

station, the regulator is set close to 25 psi rather than the 55 psi from the previous work.

The same research showed that the massflow for a single thruster tends to follow:

rhprev = 0.0058p + 0.1968 (4.23)

where p is in psi. A pressure of 25 psi yields a mass flow of 0.3418 g/s. That value can

be used to replace the constant in 4.22. Therefore, the equation to be used in judging fuel

consumption shall be modified slightly to read:

hiss = -0. 0 3 3nT + 0.3418 (4.24)

In order to compare fuel use and time, an exchange between the two should be devel-

oped. Using a typical SPHERES test as reference, this gives an equivalence between a full

fuel tank (170g), and 45 minutes of test time. This works to 63mg of fuel for each second

of test time, which agrees with the earlier estimate of counts in a full tank. Therefore, the

cost function to be minimized at the completion of an inspection is:

J mss = mfuel + 0.063t (4.25)

55

By comparing the ability of different algorithms against one another in terms of fuel

use, we are able to characterize the relative effectiveness of each approach in providing

near-global coverage in the uncertain inspection environment.

56

Chapter 5

Results

This chapter will discuss the data from both station-run tests and simulations. After a

discussion of the performance characteristics of the inspector in both types of tests, a com-

parison will be drawn between the two. Overall, the chapter will examine whether the

simulation is a sufficiently faithful model of the actual system, and what differences must

be accounted for in simulation results.

Following the comparison, the chapter will analyze tests that were run only in simula-

tion. Using the lessons from the comparison between station and simulation data, conclu-

sions will be drawn about the expected performance of the simulation-only tests should

they be run on station.

Finally, there are two additional elements which will be addressed. The first is an

analysis of the gyroscope noise characteristics based on the small 2-test sample of station

data. And finally, a brief analysis of the efficiency of various inspection methods will be

conducted. This latter analysis will conclude which inspection path is the most fuel- and

time-efficient method for inspecting a tumbling target.

5.1 Simulation and Station

This section will describe the results of the tests outlined in Chapter 4, with an emphasis

on Section 4.3. To begin, the results from both station and simulation will be laid out,

and then compared against one another. By comparing the two test methods, it should be

possible to identify the differences and similarities between the two, and in particular the

reasons why they agree or disagree.

57

5.1.1 Station Results

Due to limited testing time, the only cases which were run onboard the ISS were planar

inspections (the code for those manevuers is in Appendix A.1). Those tests demonstrated

a simple circular inspection maneuver about a tumbling target, first with the object sta-

tionary and then with motion away from and perpendicular to the camera line of sight.

In each case the target object began with a rotational velocity which did not significantly

slow throughout the course of the test though the axes of rotation did change as a result of

the target's inertia properties.

As described in previous chapters, vision data was simulated using SPHERES global

metrology measurements translated into an Inspector body-relative frame. The body frame

for the inspection was aligned with the frame that the future VERTIGO payload will use:

+X on the inspector body was the camera boresight, while +Y was parallel with the cam-

era baseline, and +Z in the body frame ran perpendicular to the baseline. The center of the

SPHERE served as the center for the coordinate frame.

One significant difference did exist between the setup that the code was designed for

and what was actually run on station. That difference was the addition of extra mass on

the target object in the form of a smartphone on the -X face. The smartphone was part of

earlier tests in the session and was not removed for operational reasons. The additional

mass was 300g, which changed the target SPHERE's mass properties as shown in Figure

5.1 (assuming wet mass values):

Property Old Value I Change (est.) I New Value
Mass (kg) 4.33 + 0.30 4.63
CM offset from GC (cm) <0, 0, 0> + <0.65, 0, 0> <0.65, 0, 0>
Izz (kg*m2) 2.83x 10-2 + 3.2x 10-4 2.87x 10-2
Iyy (kg*m2) 2.68 x 10-2 + 3.Ox 10- 2.98 x10-2
Izz (kg*m2) 2.30 x 10-2 + 3.0x10- 3 2.60 x10-2

Table 5.1: Mass Properties of Modified Target Satellite

Stationary Target

The ability of the implemented controllers to track the desired inspection path is apparent

from the results. The first test run on station had the Inspector use a controller to maintain

a constant 0.36m range to target, while keeping the target centered along the Inspector's

58

body X-axis. In order to create the inspection path a closed loop Z-axis rotation was com-

manded. The second test (discussed later) followed the same control and inspection pro-

file. In this first test, the target object maintained its position in the ISS inertial frame, while

freely rotating as the result of a commanded rotation during initial positioning which was

left uncontrolled during the inspection. Figure 5-1 shows the positions of the Inspector

and Target satellites in the ISS inertial frame.

Position of INSP Satellite

X Pos
Y Pos

---- Z pas -
-I ZPot'"- V

/
/

/ /
/

40 60 80 100 120 140 160 IM
Time (s)

(a) Inspector Position

1~

0.5

0 4

0.3

0.2

0.1

&-0,1
02

-03

-0.4

40 60 80 100 120 140 160
Time (s)

(b) Target Position

Figure 5-1: Planar Inspection: Position Data during Stationary Target Test

Using the Inspector's quaternion state, it is possible to convert the positions from the

global frame to the relative one, as demonstrated in Figure 5-2.

Figure 5-2 shows the relative orientation target in the Inspector body frame during

the inspection maneuver alone (disregarding the earlier initial positioning and estimator

initialization stages). Here, an ideal motion would keep the Y- and Z-axis positions at 0

and the X-position at 0.36 meters.

Relatine Position (TGT in INSP Frame)

40 60 60 10 120 140 160 180 20
Time (s)

Figure 5-2: Planar Inspection: Relative Position during Stationary Target Test

59

0.4

0.3

0.2

01

a* -0.1

-02

-03

0.4

_n r,

Position of TGT Satellite

X Pos
Y Pos
ZPos

180 200

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-03

-0A4

a*

_ffs

-
-

-
-
-

-

-

Relative velocity should also be kept near zero in all axes. Figure 5-3 shows the per-

formance of the Inspector in achieving such a state. During the course of the inspection

maneuver the relative velocity never exceeds 1cm s-1 except for the beginning of the ma-

neuver. This is due to the rotation command (visible in Figure 5-4) which begins at ap-

proximately 47 seconds. The rise time of the controller is 4.2 seconds with 12% overshoot.

Furthermore, since that 12% overshoot works out to less than 2mm s-, it is likely within

the margin of error of the metrology system.

Relative Velocity (TGT in INSP Frame)

0.02

0015 Ve

001

0.005

0

-0.01

-002
-0.02

Time (s)

Figure 5-3: Planar Inspection: Relative Velocity during Stationary Target Test

In order to perform the inspection, a closed-loop rotation of the Inspector satellite is

commanded to rotate at 0.0436rad s-1 (2.5 s-1). The controller achieves a mean of ap-

proximately 0.0433rad s-1 and ranges from approximately 0.0411 to 0.0482 rad s-1 (2.76 to

2.36 s-1). The sawtooth pattern is likely due to a loss of rotational energy due to fuel slosh

and other dynamic forces immediately following thruster commands. As energy is lost the

satellite's rotation slows. When this happens, the error goes uncorrected until it hits the

deadband threshold, allowing the thrusters to activate and correct the rate. Since the state

estimation filter does not take the thrusters into account when updating the rate estimate,

it is unlikely the source is an estimation error alone.

Misaligned thrusters imparting rotations in other axes or misaligned gyroscopes mea-

suring slightly off-axis are unlikely to be the cause of the sawtooth pattern since the dif-

ference between the rotation in the Z-axis and the sum of the rotation is on the order of

1.1 x 10-4, peaking at 9xi0-4 rad s- 1 (see Figure 5-5). At two orders of magnitude below

the signal, this means misalignment is less than 1%. If thrusters or gyroscopes were mis-

aligned there would be a significant component in the off axes as the thruster fired and

imparted rotational velocity into X and Y. Additionally, during jumps in the Z-axis rota-

60

Rates of INSP Satellite
0.06

0.04

0.02

0

-0.02

-0.04 X Rate
Y Rate

Z Rate
-0.06 5 t i ~

40 1 1 1 1 18) 20
Time (s)

Figure 5-4: Planar Inspection: Inspector Rate during Stationary Target Test

tion rate, there is no significant corresponding increase in the X- and Y-axes, and certainly

not within the precision of the gyroscopes.

X 104 Difference between Z-Rate and Sum of Angular Rates
20

S15

10 -

0
50 100 150 200

Time (s)

Figure 5-5: Planar Inspection: Difference between Z-Rate and Total Angular Rate during
Stationary Target Test

During the inspection maneuver in this first test, the target satellite is rotating as the

result of a controlled spin-up during initial positioning, as shown in Figure 5-6. As the

target is rotating at about 0.1rad s- (5.70 s- 1) in both the major and minor axes - Y- and

Z-axes, respectively - control inputs to maintain its positioning, combined with some

amount of fuel slosh cause the rotation to transition to an intermediate axis. This state,

presumably temporary on the way to a minor axis rotation implies that there is at least

some limited damping in the system. Controller overshoot is unlikely to play a major

role since the same error is unlikely to result in the same absolute overshoot (rather than

as a percentage) as is seen at approximately the 50-, 75- and 100-second marks. However,

teasing out the exact contributions of each source of error is difficult in the absence of more

data.

61

Rates of TGT Satellite

Otf , I
40 60 80 lo 120 140 160 180 200

Time (s)

Figure 5-6: Planar Inspection: Target Rate during Stationary Target Test

Moving Target

A second test run on station used the same relative navigation and inspection algorithm,

with identical position and rate controllers, but added translational motion of the target

object in addition to its spin. The resulting motion can be seen in Figure 5-7. Important

to point out is that for all of the similarities with the first station test (and Figure 5-1), the

inspector satellite does move in a different trajectory in order to compensate for the motion

of the target. The different plot limits show as much. The motion of the target beginning

at approximately 77 and 107 seconds appears as an 'L' shape in 3-space, and relative to the

Inspector body frame appears to be a motion of the target away from the Inspector.

Position of INSP Satellite

60 t0
1

60 80 100 12 140 160
Time (s)

(a) Inspector Position

CL

180 200

0.4

0.2

0

-0.2

-04

-0.6

Position of TGT Satellite

-XPos
Y Pos

--- Z Pos

40 60 80 100 120 140 160
Time (s)

(b) Target Position

180 200

Figure 5-7: Planar Inspection: Position Data during Moving Target Test

As performance goes, the algorithm performs well in response to this motion. When

62

0.4

0.2

0

-0.2

-0A4

----- x Pos.
Y Pos

-- I Pos

0

-0.61-

--40

compared to the original maneuver with the non-moving target, the translation of the tar-

get at 77s is nearly indiscernible, particularly in the most critical measure - the relative

range (X-axis). Because the primary objective of any inspector must be to avoid collision

hazards, this result is promising. Likewise, the motion beginning at 107 s has an effect, but

primarily on the translational error, not on the range. Even the Y- and Z-axis errors peak

at 10 cm, which is crucially below the threshold which would drive the target SPHERE out

of view since:

tan(FOV) * xrange - RSPHERE Ymax = Zmax (5.1)

FOV 30' (5.2)

Xrange 36cm (5.3)

RsPHERE 10cm (5.4)

Ymax = zmax 11cm (5.5)

Since the result of Equation 5.1 shows an allowable translation error above that ob-

served, we expect the target object to remain in view of the Inspector, allowing the algo-

rithm to maintain the inspection. Of note is the fact that this range is a stressing case, since

the VERTIGO system will require an inspection distance that is at least 50cm, and prefer-

ably at least 70cm, which yields an allowable translation error of 19 and 30cm, respectively.

Relative Position (TGT in INSP Frame)
0.5

0 A_ _- X P s
0 4

03 Z Pas0.3 -aS

0.2 -

0.1

-O

-0.2

-0.3

-0.4

40 60 80 10 12 140 160 180 2U0
Time (s)

Figure 5-8: Planar Inspection: Relative Position during Moving Target Test

Likewise, the Inspector is able to maintain a relative velocity near zero for most of the

test. Some velocity error appears during the first target motion (77s start) but is damped

63

out by the time the second motion starts (at 107s). This second motion, which is smaller in

magnitude -20 cm compared to 25 for the first motion - causes a large transient spike in

relative velocity, which is afterwards not driven to zero. The implication is that the system

is marginally stable or nearly so. Finer tuning of control gains will be necessary to address

this shortcoming in future tests. If that is not possible, a thresholding condition may need

to be placed on the algorithm which slows the rotation to allow it to regain proper position

and velocity if those values move outside of desired bounds, as happened in this case.

Especially with close inspections, a relative velocity error on the order of 3cm s-1 cannot

be allowed to propagate for any significant amount of time, lest the target object drift out

of view.

Relative Velocity (TGT in INSP Frame)

Time (s)

Figure 5-9: Planar Inspection: Relative Velocity during Moving Target Test

0.04

0.02

0

-002

-004

40 60 s0 100 120 140 160 180 200
Time (S)

Figure 5-10: Planar Inspection: Inspector Rate during Moving Target Test

Once again, there is a significant difference between the stationary and moving target,

but only following the beginning of the second motion. Here, there is an apparent jump in

64

Rates of INSP Satellite

--- _ X Rate
Y Rate
Z Rate

the total inspector body rate compared to the Z-axis rate (Figure 5-11). This is attributable

not so much due to a significant drop in the Z-rate - it actual grows about 0.01rad s- -

but to a large rotation imparted in the -Y direction at over 0.02rad s- 1 (1.1 s-1).

x 10-3 Difference between Z-rate and Sum of Angular Rates

c4

5 J 100 150 200

Time (s)

Figure 5-11: Planar Inspection: Difference between Z-Rate and Total Angular Rate during
Moving Target Test

As significantly more control inputs are required of the target in the test with motion,

there is more of a chance for those thruster firings to induce changes in the rotation rates.

This is due to two factors: the first is that thruster firings to actuate the desired motion

of the satellite are not impulsive actions, but have a pulse width. Since the satellite is

rotating at a fair 0.12rad s1 (6.90 s-') clip, this means a thruster firing will operate through

a range of angles, imparting more than the pure, desired translation. This effect is small,

however. The most important factor, is the fact that the target rotation rate is not actively

controlled throughout the inspection maneuver. This means that any rotation which is

either imparted or damped will not have a controller respond.

Rates of TGT Satellite
0.2

021 X Rate
0.18 ---- Y Rate

0.16 . -Z Rate

0.14

O 12

.1

S0.06

0.06

0.04

0.02

4) 60 80 10 120 1t 1b0 180 20
Time (s)

Figure 5-12: Planar Inspection: Target Rate during Stationary Target Test

65

5.1.2 Simulation Results

Prior to running the planar inspection maneuvers on the Space Station, they were com-

posed and tested in a Matlab simulation environment. This simulation, available for all

researchers working on the SPHERES system, allows the testing of code prior to launch. It

mimics the dynamics of the satellites along with thruster misalignment and non-linearities

(including hysteresis and deadband) and metrology system noise, among other factors,

which provide a good estimate of potential disturbances from an ideal system. A simula-

tion mode is also available which ignores sensor and thruster noise.

Stationary Target

The first maneuver with a stationary central target was run in the simulation. Figure 5-13

shows the inertial (ISS-relative) positions of the Inspector and target satellites. Here there is

good tracking of the desired positions, with circular motion easily visible in the left image.

Also noticeable is the fact that at the beginning of the inspection there is some small error in

initial positioning with the relative range (Figure 5-14) being off by 2cm and Y-position off

by approximately twice that amount This is the result of initial positioning taking longer

than the 30s allotted. This is not particularly significant as the error is small and even

when compounded by the initial angular acceleration to achieve the desired rotation rate,

the error is removed by the controller after 40s.

Even after removing the initial error, there is still a consistent error in the relative posi-

tion. Since the desired steady state condition is <36, 0, 0> cm in <X,YZ>, but the actual

state value approaches <38, 0, 0> there is clearly a steady state error in the controller used,

at least when a rotation is also commanded. Since the controller is PD on position, the po-

sition error is proportional to the control output. As it is implemented on SPHERES (and

therefore in the simulation), it is likely that the deadband eliminates the small thruster

forces associated with a 2cm error. A 10ms minimum firing time along with the steady

disturbance associated with the rotation causes the error to stay fixed near 2cm. The ad-

dition of an integral term would likely resolve this issue, but at the risk of increasing the

probability of the Inspector and target colliding. Such a decision should be made based on

the mission at hand and the risk tolerance of that mission profile and the system operators.

66

Position of INSP Satellite
5

--- X Pos
4

-Y Poe
3 Z Pos -

2 \

1

2 -

3/

4

0.

0.

0.

0

0.

-0

-0

-0

-0

80 100 12 140 160
Time (s)

(a) Inspector Position

a-

180 200

Position of TGT Satellite
0.5

X Pos
0.4 Y Po

0.3 - Z PIS

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5
40 60 80 100 120 140 160 180 200

Time (s)

(b) Target Position

Figure 5-13: Planar Inspection: Position Data during Moving Target Simulation

a

Relative Position (TGT in INSP Frame)
0,5

04

03

02

01

0

-01

-0.2

-0.3

-0.4

40 60 80 100 120 140 160 180 200
Time (s)

Figure 5-14: Planar Inspection: Relative Position during Moving Target Simulation

The relative velocity (Figure 5-15), as is to be expected, shows that the velocity of the

two satellites with respect to one another is kept below 1cm s- 1 throughout the maneu-

ver. Indeed, after settling from the small transients associated with spin-up and correcting

for initial positioning errors, the velocity never drifted from the desired state (all zero) by

more than 5mm s 1 at a 2o- level. Notably, the estimate seems noisy in large part due to the

way in which the measurement is taken; the estimate is the result of a difference between

the two velocities transformed into the inspector's body frame. Since those measurements

have a variance on them as a result of metrology noise, the difference has twice the vari-

ance. This will be important later when concluding the effectiveness and noise level asso-

ciated with a camera system since its measure of relative position does not depend on this

subtraction, and therefore is not affected by the doubling in variance.

67

60

Eo

40

- -X Pos

- ZPos-

-at

0.025

0.02-

0.015-
0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

0.0251

Relative Velocity (TGT in INSP Frame)

zI Vl

40 60 80 100 120 140 160 180 200
Time (s)

Figure 5-15: Planar Inspection: Relative Velocity during Moving Target Simulation

The Inspector rotation rate (Figure 5-16) is also well controlled and stable, with a stan-

dard deviation at or below 0.0045rad s-1 (0.26 s- 1). The mean of the measurement is also

fairly stable, remaining within approximately 0.0018rad s-1 (0.10 s-1) of the commanded

rate of 0.0436rad s-1 (2.5 s-').

0.04

0.02

0

Rates of INSP Satellite

Y Rate

-0.02

-0.04

-0.06
40 60 80 100 120 140 160 180 200

Time (s)

Figure 5-16: Planar Inspection: Inspector Rate during Moving Target Simulation

Critically, the off-axis rotations remain below 3.4% (2-) of the total rotational rate of the

satellite. Even at this level, error is likely due to noise that is the result of the implementa-

tion of the estimator in the simulation, and not from the actual state or from commanded

inputs.

Moving Target

The second test which incorporated a moving target was also run in simulation. Once

again, the inspector and target satellites hew closely to their commanded paths. Some

68

X 10-3 Difference between Z-rate and Sum of Angular Rates

3

1 -

04
50 100 150 200

Time (s)

Figure 5-17: Planar Inspection: Difference between Z-Rate and Total Angular Rate during

Moving Target Simulation

positioning error is seen at the target satellite during the beginning of the maneuver (Figure

5-18b), as it remains about 2cm away from the center of the test volume, indicating that

earlier initial positioning may not have fully completed Similarly, the Inspector (Figure 5-

18a) also has a 2cm error in the Y-axis, the result of an incomplete initial positioning which

did not allow overshoot to be completely damped. Since the two satellites were deployed

on opposite sides of the test volume, this error will compound itself at the beginning of the

inspection maneuver rather than cancel out. However, because the maneuver is relative,

such error is expected to be accounted for quickly. Figure 5-19 shows an initial error in the

X- (range) and Y- body axes due to this initial positioning error, with expected Y-error near

4cm. Unfortunately, with the rotation of the Inspector beginning at 47s, the error begins to

increase Y-axis for approximately 10s before the controller is able to recover.

The target SPHERE also shows overshoot of no more than 8% to the first commanded

25cm motion, and no more than 9% to the second 20cm motion. Variation in the two

is likely due to sensor noise, as those measurements are the maximums observed by the

system. The true overshoot likely lies between 7.5 and 8% based on an average of values

near those extremes.

The simulation shows little to no out of plane relative motion (Figure 5-19), though

some appears in the inspector inertial position (Figure 5-18a). Much like the initial error

at 47s seen in the position of the two satellites, the Inspector's initial orientation was not

complete at the beginning of the inspection maneuver. An error of about 0.056rad (30)

would be large enough to account for the 2cm above and below the inertial X-Y plane the

Inspector moves. Also important is the fact that the error is bounded and consistent for

69

Position of INSP Satellite
0.6 Position of TGT Satellite

___ X Pas 0.05

0.4 . Y Pos .- X Pos
Z Pos _- YP

0.2 . Z Pos

-0.2 -

o -02-0.15

-0.4 - -0.2-

-0.6 0.25

40 60 80 100 120 140 160 180 200 40 60 60 100 120 140 160 160 200
Time (s) Time (s)

(a) Inspector Position (b) Target Position

Figure 5-18: Planar Inspection: Position Data during Moving Target Simulation

the first 100-plus seconds of the inspection (through both a peak and a trough), implying

that the error is causes only by the initial positioning and nothing more.

What is apparent is the range error that is caused by the target moving away from the

inspector. The error begins growing immediately after the target object is commanded

to move, which is to be expected. The Inspector is able to recover from the motion af-

ter approximately 25s, with error peaking after 10s into a motion which takes the target

approximately 35s to complete. This implies that the algorithm using this PD controller

should be able to perform an inspection of a moving object. An accelerating one, however,

may be difficult, and especially so when both the inspector and the target satellite have the

exact same amount of control authority. Also important to note is that the use of PD control

allows the Inspector to recover from the motion without dipping below its original relative

range. By not incorporating an integral element into the controller, the satellites remain at

a safe distance from one another, meeting a critical safety threshold for any inspector.

The relative velocity (Figure 5-20) is not as well controlled as the position during this

maneuver, much of which can be attributed to the motion of the target object. As the

Inspector matches the velocity of the target as it moves away, the movement causes the

former to build up momentum in the direction of motion. As the target completes its

second movement and stops, the Inspector has now retained much of the momentum of

the previous two motions by the target. This requires additional force from the controller

which is already stressed by the need to move in a circular path and is unable to return to its

70

Relative Position (TGT in INSP Frame)
0.6

X Pos

0.5 - Y Pos
Z Pos

0.4

0.3-

0.2-

0.1

0 --

-0.11
A40 60 80 100 1 140 160 180 2UW

Time (s)

Figure 5-19: Planar Inspection: Relative Position during Moving Target Simulation

ideal path before it completes its inspection. This keeps the relative position approximately

2-3cm farther away than the desired 36cm range. Thought the signal is noisy, we can reach

some conclusions about trends that appear in the data. Importantly, however, the error

does appear to be bounded (not growing) for the final 60s of the maneuver, with the Z-

velocity actually approaching the desired state (of 0cm s-1). Once more, the implication is

that the controller is working near its limits.

In a situation such as this, depending on the precision needs of the mission, it would

be advisable to slow or stop the rotation of the Inspector in order to return to its desired

relative position. Doing so would essentially mean a pause in the inspection algorithm in

favor of the relative navigation one, a strategic pause which allows the inspector to remain

within controllable bounds.

Relative Velocity (TGT in INSP Frame)
0.015

-- -X Vol

0.01 - ~ Y Vel.
- -Z Vel

0.005 -

0-

-0.005 -

-0.01

-0.015 --

-0.02
40 60 80 100 1 14 16) 180 200

Time (s)

Figure 5-20: Planar Inspection: Relative Velocity during Moving Target Simulation

The Inspector is able to spin to its desired rotation rate of 2.5' s-1 in the span of about

71

7s and is able to maintain that rate for the entirety of the maneuver (see Figure 5-21).

During the course of the inspection, there is a slight variation in the satellite motion on

the order of 0.005rad s- 1 (.29* s-1), though the noise level on the estimated rate is higher

with a standard deviation near 0.009rad s-1 (0.52 s-1). The variance is due to artificial

noise placed on the beacon measurements used to estimate the state in the simulation.

This noise is not found on the satellites as the estimator is differently designed, using only

gyroscope readings to estimate rates.

Further, with the exception of a small rotation in the X- and Y-axes at the beginning

of the test, and some small rotations at the 135 and 185s marks, the satellites maintain

good control of the other body rates. The rotations which occur at the beginning of the

test are a combination of some thruster misalignments and rotations that were imparted

during the incomplete initial positioning (as we see in Figure 5-18a, there was still some

positioning and pointing error being removed at the beginning of the maneuver). The

misalignment problem becomes more acute when thrust needs approach the saturation

limits for the thrusters with 200ms firing times. This is consistent with the previously

mentioned hypothesis that the momentum imparted during tracking of the moving target

has pushed the controller near its limits.

Rates of INSP Satellite

X Rate
0.05 -- Y Rate

0-0--IRate

0.04 -Lr7j

0.03

0.02

o 0.01

0

-0.01

-0.02
40 60 80 10 120 140 160 160 200

Time (s)

Figure 5-21: Planar Inspection: Inspector Rate during Moving Target Simulation

As a proportion of the total rotation of the Inspector (Figure 5-22), rotations in X- and Y-

body axes are small, accounting for no more than 2% of the total rate at its peak, excluding

those rotations which are attributable mostly to noise. Even accounting for the relatively

large noise levels, at 2o- significance, the off-axis rotations never account for more than

4.5% of the total rotation.

72

Difference between Z-rate and Sum of Angular RatesX 10 -3

3

Cr

0-050 100 150 200
Time (s)

Figure 5-22: Planar Inspection: Difference between Z-Rate and Total Angular Rate during
Moving Target Simulation

5.1.3 Simulation and Station Comparison

Because of the limitations on station testing time and an inability to test all inspection

algorithms in the time before the launch of the VERTIGO hardware, it is considerably more

productive to use the simulation to test out inspection maneuvers and run some subset

of those maneuvers on station to both prove the concept as well as identify differences

between the simulation and the real systems. The two tests described in subsections 5.1.1

and 5.1.2 were used for that purpose. These simple tests evaluated both the ability to

maneuver using simulated vision and the differences between simulation and reality.

Stationary Target

In the ISS inertial frame the maximum difference between the simulation (Figure 5-13a)

and the station data (Figure 5-1a) is 6mm in the +X direction, and 1.5cm in the -X direc-

tion. In the Y-direction the number is 1.7cm in the positive direction 2.3cm in the negative

and in Z it is 1.7cm and 1.6cm in the positive and negative directions, respectively. Based

on the variance in the measurements in Figure 5-1a, especially as the satellite drifts away

from the center of the test volume, the variation between the simulation and station data

is just slightly above the accuracy of the beacon system. At the extremes of the movement

(peaks of curves in X- and Y-axes) beacon measurements become less accurate because the

geometry of the satellite and beacons cause the angle between the two to become shal-

low, increasing measurement variance and decreasing accuracy. As the differences occur

at these points and the measurement variation is on the order of 1-1.5cm (for Y- and X-axes,

respectively), we conclude that there is a significant difference between the two paths sta-

73

I
5

tistically, but not practically.

Unlike the Inspector positions, the differences in the relative position are more substan-

tial. Much of that difference, however, is likely due to the additional variance caused by

the target object as well as the subtraction operation that is used to transform position from

the ISS inertial frame to the relative one. In the simulation environment it is well-behaved

with a zero-mean position (in all axes), with a standard deviation of no more than 1.7cm

at a 2a level. The station data however, shows slightly more deviation at 4.2cm, 2a. This

deviation can partially be attributed to sensor noise, but only about 1.5cm based on the

Inspector position variation. Other possible sources include disturbances like airflow in

the module along with minor fuel slosh and thruster misalignment. Misalignment is com-

pounded by the rotation of the satellite since that will cause the thrusters to create a force

in the wrong direction up to about 1.2 degrees at a time. This is the result of thrusters

firing based on orientation information which is at least 200ms old with a satellite rotating

at 6'/s when used and which continues to rotate during the firing. The consistent lag in

the system causes a zero-mean error but with some deviation, which the data shows to be

up to 3 degrees.

The contribution of the two measurements should give a deviation near 2cm since

2 2 2
0'rel =UINSP + (TGT (5.6)

e= (1.5cm)2 + (4.2cm)2 (5.7)

0 -e,1 4.5cm (5.8)

9re = 2.1cm (5.9)

which is observed in the relative state plot of the station data. The deviation, however is

not the only difference. Of more concern is the relative motion which is attributable to the

actual motion of the satellites rather than sensor and actuation error. There are two things

which stick out in comparing the two datasets.

The first is the periodic oscillation in Y- and Z-position, and the other is the drop fol-

lowing the 110s mark in the X-position.

In addressing the first concern, we first observe that many oscillations in the trans-

lations correspond to variations and jumps in the rotation rate of the Inspector (Figure

5-4). Varying rates about Z should affect the Y-axis relative position. When the Inspec-

74

tor increases its rotation rate quickly, system lag causes the horizontal (Y-axis) component

to grow, pushing the Y-relative position positive until the position controller is able to

catch up to the new rotation rate. Furthermore, the design of the controller may be lightly

damped in the presence of disturbances. Fine-tuning of the controller gains for future

development efforts would solve this problem. That said, with the current design, it is

expected that there may be error in the Y- and Z- directions up to approximately 5cm and

has the same period as the jumps in rotational velocity.

To address the second, it is important to refer back to the inertial position of the In-

spector satellite (Figure 5-1a). That measurement ha s similar drop of nearly 4cm over the

period of 200ms. Therefore, this drop is likely an artifact the metrology system, possibly

due to a bad ultrasound reading that the internal state estimator (an EKF) is not able to

completely disregard and which then persists in the state estimate for the next 4-5s. Such

outliers are possible with the vision system, but since the implementation of the controller

with the vision system does not currently filter its data, outliers will be transient events

that do not effect the position controller beyond the current frame. Future vision estima-

tors and outlier detection that should be included on the vision system can be tuned to

eliminate the occasional large jumps like what is seen in Figure 5-1a large jumps.

From these two differences we make the following two claims about the differences

between simulation and ISS tests:

1. Y-/Z-axis errors are linked to variations in the rotation rate.

2. At a range of 36cm, variations are up to 5cm in Y/Z.

Since the position errors are so closely coupled with the rotation rates, it is those rates

which we shall next examine. Referring back to Figure 5-4, we observe that the Z-rate

has a 2o- deviation of 6.7mrad s 1 (0.39' s-1) about the commanded mean of 0.0436rad s--

(2.50 s-1). The X- and Y-rates have a similar distribution, but around a commanded mean

which is instead zero.

The peaks in the Z body rate come approximately every 20-21s. This is likely the result

of large thruster inputs that is the result of a fairly wide deadband in the controller that

comes from the relatively small control gain that is placed on the angular rate. Coupled

with the dynamics associated with rotation about a minor moment of inertia, this causes

the rotation to reach a peak slightly above the desired rate, then decay (as is visible in the

75

target rate decay in Figure 5-6) until the controller can once again provide enough control

authority for another thruster firing.

Unlike the simulation, however, the rate has far less noise on the measurement as a

result of the different measurements used in the simulation and in the SPHERES stan-

dard estimator. Since the standard estimator uses the gyroscope measurements as truth,

the variation in the rotation measurements is equivalent to the sum of the movement of

the satellite itself and the noise of the measurements. An estimate of the variation which

subtracts the variation due to the satellite motion (itself an estimate of the decay of the

satellite rate) yields a standard deviation around 1.395mrad s- (0.080' s- 1) at a l signif-

icance. That estimate, using the data from the first 50s of the maneuver, is liable to drift

over the course of the test. However, with random noise in that range, the angular random

walk is expected to be about 7.66mrad (0.44') after a 150s maneuver. The random walk is

derived as follows[35]:

UARW = cgyro AT* Total (5.10)

cxgyro = 0.080 0 /s (5.11)

Ttotal = 150.4s (5.12)

AT = 0.2s/measurement (5.13)

UARW = (0.0800/s) (0.2s) * (150.4s) (5.14)

UARW = 0.44' (5.15)

These results actually exceed the specification sheet for the gyroscopes, which give a

resolution of 0.0407' s- 1, with a noise ceiling of 0.05, which works out to a 1-a error up to

0.35 s-1 at 50Hz[36].

Prior to moving onto an analysis of the inspection with motion it is important to note

a few remaining items about the gyroscope measurements based on the target object's

rotation estimate. The first is that the standard deviation approaches the same value with

a sample showing approximately 1.42mrad s- (0.081 s-1) of standard deviation at l

significance. This level is exceptionally close - within 1.3% - to the estimate given by the

Inspector satellite, providing another check on the value. The second is that the somewhere

along the line the gyroscopes will occasionally provide outliers, particularly in the X-axis

76

of the target satellite. Over the course of a 150s maneuver, there were 3 exceptionally

significant outliers (100s of % error) and a fourth which is still significant error (at 60%

deviation from the immediately preceding and following measurements). Though these

errors did not cause any significant problem during the course of the inspection since the

rotation of the target was not actively controlled, it may be worthwhile to avoid using the

satellite used as the target in this test as an inspector in future operations.

Moving Target

Once the target adds motion the path in inertial space matches up well with the simulation,

even better perhaps, than in the previous test with a stationary target. The overshoot of

the target satellite was approximately 3% in the inertial frame (Figure 5-7b vs 5-18b).

Station results from the Inspector's inertial position (Figure 5-7a) also track well with

the simulation data (Figure 5-18a). With the exception of the maximum observed in the X-

axis, all other peaks (X-min, Y-max and Y-min) occur within is of the predicted time. The

exception occurs 5s later, though that may be the result of noise on the metrology system.

The overall error in those same peaks is 1.6% for an average of 7.7mm error in positioning.

The relative position is more important than the inertial one, however. Refer back

to Figures 5-8 and 5-19. In those plots, as well as the supporting data, we observe that

there is significantly more noise and variation on the relative positions when compared to

an inspection with a nearly static target object (Figure 5-2). Control in the X-axis (range)

actually maintains itself fairly well with error staying within approximately [-3,7]cm of

the desired 36cm range. Much of that error in the negative direction is cause by lag in the

controller as it tries to bleed momentum acquired by matching the target object's speed. In

the positive direction, the adjustments being made by the controller in order to deal with

the slowing target work against the Inspector as the target then begins motion away once

more.

Compared with the simulation, the general shape of the Inspection matches well -

there are peaks near 85 and 120s as the Inspector reaches its maximum distance from the

target, as well as a trough near 107s as the second motion begins. The timing agrees well,

but it is the magnitude of these which is incorrectly estimated in the simulation. Relative to

the commanded position of 36cm, the peaks and troughs exceed this in simulation by 6.3,

2.8, and 4.9cm, while the actual data shows errors of 2.9, -3.1, and 7.0cm. The implication

77

for future tests is therefore the following:

1. The actual system maintains an average range to target better than predicted in sim-

ulation by up to 2cm, or 6%.

2. A single target motion in simulation which causes up to 1.7cm in error may cause up

to 3cm in hardware, or roughly double.

3. A second motion will cause error to compound, creating a peak up to 2.5 times larger,

where simulation may predict no growth in error relative to previous motions.

Examining the Y- and Z-axis errors, we observe that both simulation and station data

shows that it is zero-mean but that the magnitude of that error is much higher when run

on that hardware. This, however, appears to be the result of poor control in the angular

rate of the satellite rather than the position controller itself (see Figure 5-10). This is also

partially to blame for the error in the Inspector's body X-axis. This allows the error to

change by 20cm in the span of 4s, as does somewhat noisy position relative position data

that sees very large variation throughout the test and does so at a rate that the satellite

cannot achieve by translation alone.

The conclusions that may be drawn from the data is this:

1. There is no bias in the simulation with Y- and Z-axis positions.

2. Pointing and metrology errors causes the error in these axes to be approximately

twice what is predicted in simulation (5cm in simulation, 10 on station).

To close out the comparison, we next examine the rates of the Inspector satellite. As

with the inspection with no target motion, we see significantly less noise in the station

data (Figure 5-10) than with the simulation (Figure 5-21). This has the same cause, which

is the different methods used to estimate the rate - the simulation uses the beacons and

their attendant noise where the satellites themselves use their more accurate gyroscopes

for measurements. The error in measured vs. commanded rates is zero mean, but the sim-

ulation noise is on the order of 0.01rad s-1 (0.57' s- 1), where the real data shows variation

no greater than half of that, at 0.005rad s-- (0.290 s- 1). While the noise is much lower than

in simulation, and the X- and Y-rates match well, there are some differences which are

less beneficial. When the controller is stressed, as is the case following the second motion

78

of the target, rate errors may grow to 0.018rad s-1 (1.00 s-) in off-axis rotations, though

only 3.9mrad s- 1 (0.220 s-1) in the Z-direction. In less than 10s, however, those errors are

expected to damp out.

Critically, the most important fundamental difference between the simulation and the

station data is damping in the system which causes rotation about the minor axis to slow

consistently until thruster activity respins the satellite and controls rotation in the off axes.

This damping, which is uncontrolled in the target (Figure 5-12), would cause the rotational

axes to slowly change over the course of an inspection if left alone. This means that for a

successful maneuver the rotation of the Inspector must be closed loop rather than the initial

spin up that is used for the target.

Ultimately, these data points allows us to draw the following conclusions:

1. Simulation and station rate data show error that is zero mean, but the standard de-

viation of the simulation is double what is to be expected on station.

2. Damping is present on station that is not accounted for in simulation.

5.1.4 Simulation Only

The previous two subsections described tests which were run on the International Space

Station following simulations which demonstrated their ability to control an Inspector per-

forms a circumnavigation of a target object. The targets also demonstrated that the ma-

neuver is robust to limited movement by the target object. Based on the comparison of the

predicted and actual maneuver performances, we may analyze four additional tests that

were developed and run in simulation. Those tests are (the code for which is included in

Appendix A.2):

1. Additional Motion This test is a continuation of the motion test that was run on

station, but with movement perpendicular to the inspection plane as well as motion

of the target toward the Inspector.

2. 3D Inspection This test finally moves out of the planar inspection and attempts to

get full coverage of the target object.

3. Long Duration Planar Inspection This inspection is identical to the first, stationary

target test, save for a duration of 10 minutes rather than 4. This is done for two

79

purposes: on station this would allow a better characterization of gyroscope drift

while in simulation it potentially allows for greater coverage while remaining in a

planar motion.

4. Inclusion of Rotation Information The final test uses rotation information in order

to build a more fuel- and time-efficient inspection path, as it takes measurements of

the rotation rate of the target satellite in order to estimate its own coverage perfor-

mance.

Further, each of these tests is designed to be run at 70cm range rather than 36cm. While

this makes it more difficult for the inspection to fit within the space station test volume,

it more closely fits the range at which the VERTIGO system is designed to operate. To

compensate for the additional distance that needed to be travelled for a similar angular

rotation, the satellite rotation rate was dropped from 2.5 to 1.5 s1.

Additional Motion

In this test, we aim to determine the reaction of the Inspector satellite to motion by the

target, but rather than having the target satellite move away, a la the second station test, it

will move toward the Inspector, and then in a shear direction to it. During this test we aim

to characterize the motion by determining the closest approach, overshoot, and stability.

The primary objective will be to quantify these values in the relative frame, though looking

at the inertial frame is also useful, especially for visualizing the motion.

For this test, the satellites begin slightly offset from the center of the volume in order to

ensure that there is sufficient room for maneuvering. At the 60s mark in this maneuver, the

target moves first in the Y-direction toward the Inspector. 60s later, the satellite moves once

more, this time in the negative Z-direction. In both cases, the Inspector adjusts, chasing its

target. Figure 5-23a shows the former's motion, while Figure 5-23b shows the latter.

The simulation shows the motion is well controlled. The overshoot of the target satellite

is at or below 10% for the both motions. The more interesting motion, however, is that of

the Inspector. In this maneuver, the Inspector begins to react to the motion of the target

within 2s in both directions. Such a reaction matches fairly well with what was observed

in the station tests. What differs, however, is the Z-location of the Inspector, which appears

to have set up a periodic motion. This change is not easily detectable in the gyros because

80

Poi~no iPStliePosition of TOT Satellite.8.0.3 - xY --- -X Pos X_ _ Pos

0.6 --- 0.2
\ -- IPos - ZPos

0.4 - 0.1

-0.4 - -

04-
2 01

02
0.

-04
-0-

-0.6 3

0 50 1W 15 2 2 3 0 1 1; 2 2 3
Time (s) Time (s)

(a) Inspector Position (b) Target Position

Figure 5-23: Planar Inspection: Position Data during "Additional Motion" Simulation

of the simulation noise (see Figure 5-25), but a cursory examination suggests that this is

caused by a misalignment that happens during the vertical motion that is maintained.

This can probably be attributed to thruster simulated misalignment, as a similar angular

error is seen during initial positioning (not plotted).

Nevertheless, the inspection does maintain the proper distance, never approaching

closer than 68cm on the desired 70cm range (see Figure 5-24). This minimum comes 5s

after the motion of the target toward the inspector begins. On the whole, proper distance

is maintained within a centimeter of the commanded range excluding the peak due to the

motion.

Relative Position (TGT in INSP Frame)
0.8

X Pos

07 - Y Pos
-Z Pos

0.6-

0.5 -

0.4 -

0.3-

0.2 -

0.1 -

0

-0.1--
0 s0 100) ISO 2W 260 MW

Time (s)

Figure 5-24: Planar Inspection: Relative Position during "Additional Motion" Simulation

81

Position of TGT SatellitePosition of INS e

At this range, however, slight misalignments in the inspector can cause large displace-

ments in the relative Y- and Z-measurements, which is visible in the 6cm maximum dis-

placement near the beginning of the maneuver. Given the station results compared to sim-

ulation results, a safe assumption is that errors will be no greater than twice that amount.

Thus, the expected translation error should be below 12cm.

It should be noted that this doubling is based on data collected from a 36cm inspection,

which stresses the control authority more than the 70cm distance. To simplify the model,

we assume that the added pointing sensitivity is equivalent to the increased control au-

thority, and thus they cancel one another out.

Rates of INSP Satellite
0134

-- X Rate

--Y Rate
0.03 Z Rate

0.02

0.01

0

-0.01

-0.02
0 5 1 4 5 2A 250 5;0

Time (s)

Figure 5-25: Planar Inspection: Inspector Rate during "Additional Motion" Simulation

Finally, we also observe during this test that the inspector satellite maintains its con-

stant rates (Figure 5-25), with the exception of a small spike in the Z-axis during the target

satellite's first motion (toward the Inspector). This motion may be the result of a combina-

tion of control saturation and thruster misalignment during the maneuver, since the same

thruster used to maintain the rotation may be used for translation to try to maintain the

correct pointing. The resulting spike is small, however, and without confirmation with

station data, it remains to be seen if it is significant at all.

3D Inspection

This maneuver is the first foray of VERTIGO into the Z-dimension in a way that is mean-

ingful for the purposes of inspection. Since the inspection path is managed by the rate of

the Inspection satellite, a glance at Figure 5-28 shows the motion well.

82

The inspection begins as all the previous ones, with an X-Y planar motion. After 90

degrees of rotation, however, the inspector changes rotation axes and pitches over while it

moves around the target. In order to better fit the maneuver into the ISS test volume, the

target is commanded to move in the Z-direction, as shown in Figure 5-26b.

Position of INSP Satellite Position of TGT Satellite
068 03

--- X Pos - - XPos

0.6 - Y Pos 0.2
Z Pos Z Ps

0.4

0

0 -

02 -1
-0-02

-0.4 -

-054-0.6 -0.

.50 100 150 200 250 5u 5 10) 150 200 250 30 350
Time (s) Time (s)

(a) Inspector Position (b) Target Position

Figure 5-26: Planar Inspection: Position Data during 3D Inspection Simulation

The overshoot and steady-state error matches that from previous tests in the inertial

frame. Likewise, the error in relative position (Figure 5-27) is minimal, with translation

error keeping at or below 6cm. In range, the error is even smaller since the target is not

moving toward the Inspector. Unfortunately, because of the volume constraints, the tar-

get must move in a way that is favorable to the inspection, and the maneuver isn't fully

representative of what would be encountered in the "outdoor" space environment. Nev-

ertheless, the coverage - which will be discussed later - should be very similar.

In Figure 5-28, the rates are held steady throughout the maneuver, though Z-rotation

is replaced with Y-body-axis rotation 90s into the maneuver. The the target readjusts its

position halfway through, and then the Inspector Y-rotation is replaced with the original

Z-rotation at the 300s mark, as it finishes its circuit about the target.

This inspection appears to be controlled and maintain good control, remaining at a safe

inspection distance, and doing so within a 2cm margin. With the simulation results, it is

expected that a station test would perform well, as there are no significant disturbances

that would be expected to perturb the motion. Even though the motion takes advantage

of a third dimension, the separation of the movement into discrete axes means that the

83

Relative Position (TGT in INSP Frame)

- X Pos
- Y Pos

Z Pos

0,8

0.7

0.6

0.5

* 0.4

03

0.2

0.1

04

Figure 5-27: Planar Inspection: Relative Position during 3D Inspection Simulation

Rates of INSP Satellite

-- -XRate
---- Y Rate

- h -- 7 let.

I.

100 10 200 250 300 350
Time (s)

Figure 5-28: Planar Inspection: Inspector Rate during 3D Inspection Simulation

performance should be similar to that in the tests run on station.

Long Duration Planar Inspection

This inspection is fairly simple, and consists of the first station-run test run for a longer

duration in order to gather a larger sample of data about the rate gyros on station, their

biases, and their noise characteristics.

For most of the inspection, there is little in the way of disturbances which show that

thruster misalignment or gyro error affects the inspection by tilting the plane of movement.

After approximately 400s, however, that is no longer true, as the satellite reaches a peak

near 6.5cm above and below the X-Y plane (Figure 5-29a). This peak does not correspond

with any peak or motion by the target (Figure 5-29b). The disturbance implies an angular

84

50 100 150 200 250 300 350
Time (s)

0

0.04-

003-

0.02 -

0.01 -

0

-001

0 50u.u

-I

0.8 0.02 -
---- X Pos X Pos

0.6 \ --- Pas 0.015- - a
- -4 Z Pos --1-Z Pos

40.01 -

0.2
0.005 -

.2 0 -

0
L -0.2 -L

-0.4 -

-0.6 -0.01

0. 10 203o 1 0.0 100 25 O 400 5E
Time (s) Time (s)

(a) Inspector Position (b) Target Position

Figure 5-29: Planar Inspection: Position Data during Long Duration Simulation

walk of 0.093rad (5.30) over 10 minutes, which implies combined error from the gyros and

thruster misalignment of 8.4mrad s- 1 (0.480 s-'). Since the test objective is to identify the

noise on the gyros and what the actual random walk, the test in itself is only particularly

valuable when compared to station data.

Relative Position (TGT in INSP Frame)
0.8

- --- X Pos

0.7 - Y Pas
Z Pos

0.6 -

0.5-

0.4-

0.3-

0.2-

0.1

0-

-0.1
0 10 2A A2 itO) 60 i8

Time (s)

Figure 5-30: Planar Inspection: Relative Position during Long Duration Simulation

Nevertheless, the maneuver does appear to hew closely to the desired relative position,

with translational error remaining below 5cm for the duration, and no significant errors in

the range measurement (Figure 5-30). Based on the shorter-range, shorter-duration test run

on station (see Figure 5-2 for comparison), we would expect no more than approximately

5cm of error, below 10%. Likewise, the noise level on the gyros as seen in Figure 5-31

85

Position of TGT SatellitePosition of INSP Satellite

is expected to be far lower than the simulation output, though it should remain equally

steady.

Rates ofINSP Satellite

0.04 -- X Rate

0.---- Y Rate
0.04 --- Z Rate

0.03-

0.02-

S0.01

0

-0.01

-002
0 100 2(X 3M, 4 SX 5 6

Time (s)

Figure 5-31: Planar Inspection: Inspector Rate during Long Duration Simulation

Inclusion of Rotation Information

This is the most complex motion that was developed during the course of the maneuver

development. The first part of the motion finds the Inspector rotating about its X axis in

order to align with the rotation axis of the target. After the alignment is completed, the

inspector moves to a position in the "northern" hemisphere of the rotating target object,

where it begins a multi-axis rotation to maintain pointing toward the target while main-

taining itself in the same relative orientation. The inspection would follow an equal line of

"lattitude" were the target to remain stationary

This motion is repeated in the "southern" hemisphere and along the equator, with a

switching function defined when the entire target has moved through view, based on the

sum of the rotation of both objects.

This motion is best understood by looking at the motion of the Inspector in Figure 5-32.

In spite of the complexity of the motion and the increased potential for rotational rates

to influence the relative position error (since the motion is in two axes), the motion is

relatively well controlled. Error in range (see Figure 5-33) remains within 2cm, and trans-

lational error peaks around 6cm, which is consistent with previous motions at this range.

Once more, the simulation falls victim to large amounts of noise on the rotation rates

that the ISS system is unaffected by. Regardless, with the exception of small increases in

86

0.8 0.025
X Pos X Pos

0.6 YPos 0.02 -Y Ps

\X- Z Pos Z Pos

0.4 - 0.015 -

0.2 0.01 -

0 ---. 2 0.005

-0.2 0

-0.4 - -0005

-0.6 -0.01

.061 -0.0151
0 50 100 150 25 2 300 351) 400 451 0 50 100 150 2) 25 30 3M 43 450

Time (s) Time (s)

(a) Inspector Position (b) Target Position

Figure 5-32: Planar Inspection: Position Data during "Rotation" Simulation

Relative Position (TGT in INSP Frame)
0.8

X Pos
0.7 - - Y Pos

Z Pos
06

0.5 -

0.4 -

0.3 -

0.2 -

0.1

0

-0.1
0 50 105 15 2 2 3 30 4 4

Time (s)

Figure 5-33: Planar Inspection: Relative Position during "Rotation" Simulation

the variability of the Y-rate around 225s (Figure 5-34), the inspection shows stable rates.

The behavior of the simulation-only maneuvers is not exceptional compared to the

motion that was simulated and run on the Space Station. Since the motion of the Inspector

satellite in simulation data matched with the station data within a margin of about 10%,

while remaining stable with bounded error, we can trust the simulation-only inspections

to perform similarly well.

The significant differences between the station and simulation data included the result

of an additional mass placed on the target object, which exaggerated the effects of rotation

about a non-major, non-minor axis. Also significantly, the simulation did not track the

87

Position of lNSP Satellite Position of TGT Satellite

Rates ofINSP Satellite
0.1

Time (s)

Figure 5-34: Planar Inspection: Inspector Rate during "Rotation" Simulation

rotation rates nearly as well as the gyros in the SPHERES satellites themselves do.

5.2 Maneuver Comparisons and Inspection Performance

This section will focus on the results of the tests called out in Sections 5.1.1 through 5.1.4. It

will identify the effect of test variables that the station tests and simulations, and attempt

to isolate those effects. Particular focus will be paid to the lessons learned in the previous

section in order to extrapolate into the real world those results which were from simulation

alone.

5.2.1 Target Behavior

Taking the Stationary Target test that was run on station as the reference maneuver, to de-

termine the impact that motion by the target has on the inspection, it must be compared to

the Moving Target test also run on station and the Additional Motion test run in simulation

only.

The best measure for how well the inspection responded to this unexpected motion is'

to compare the perturbation to the range measurement (X-axis measurement in relative

frame).

In the Stationary Target test (Figure 5-2), the desired range is 36cm. With the exception

of a 20s time period that may be attributable to an outlier in the metrology system, the

Inspector maintains that range fairly well. Nevertheless, the total variation is between 31

88

and 41cm, for a range error of 5cm.

In the Moving Target test (Figure 5-8), the situation is much the same, with an approxi-

mate 5cm range of error, but this time with a bias away from the target, with a range from

33 to 44cm. From this data, it appears that motion of the target away from the inspector

does not significantly altered the performance of the inspection, and certainly does not

affect the collision risk based on the point of closest approach.

Because of the need to develop tests that more closely approximate the inspection ca-

pabilities of the VERTIGO system, especially the need for a greater inspection distance,

an additional confounding variable was added to the Additional Motion test. However,

the test appears to show very similar results, though even more favorable. At a desired

range of 70cm, the extent of the range varies from 68 to 72cm, for an error of ±2cm. At

this greater range, the stress on the control system is less, as the maneuver requires much

slower rotation of the inspector satellite (the error is likely closely related to the feedfor-

ward term, which is about 1.5 times larger at the closer distance). Therefore, the two errors,

while different, are comparable.

The results across these three tests suggests strongly that motion of the target satellite

- provided it has no more control authority than the Inspector - is not significant. Trans-

lational error also shows only a small increase in error as a result of target motion, even in

the case of shear motion, as in the Additional motion simulation.

Coverage should also be examined to determine the effect of the motion on the total

coverage and how quickly the maneuver approaches full near-complete coverage.

The first two maneuvers that were tested on station show striking similarities, in both

the amount of coverage at 89 and 87%, respectively, but also in the pattern in where that

coverage is accomplished. This is understandable, since the two maneuvers are nearly

identical in duration and in the relative motion of the two bodies. The coverage is not

global, though the trend in the data suggests that a longer inspection, where the target

has the opportunity to rotate through a larger angle would allow for the areas which are

currently unobserved to be seen. This data, however, shows no significant impact to the

coverage by target motion.

With the simulation-only data, there appears to be significantly better coverage, with

effectively full coverage. Like the station-evaluated maneuver, the poles of the satellite are

unobserved, though it is less pronounced with the station group because the target changes

89

Coverage over time (9% max)

Coverage of TGT
80 -

0.1
c60-

0.05
00- 0-

-0.1 30

0.1 2.10.1 p

0 10/

-0.1 -01 J 01

Unobserved Observed 60 80 100 120 140 160 1E0
Time (o)

(a) Final Coverage on Target Surface (b) Coverage over Time

Figure 5-35: Coverage: ISS Stationary Test

its axis of rotation throughout the maneuver, allowing for better diversity in coverage.

The fact that observation is being done at 70cm rather than 36, however, is much more

significant that the effect of the motion. When compounded with the fact that the Inspector

is travelling at a slower angular rate, making the inspection take longer, this means that

a comparison between the two has little significance. It does, however, suggest that the

maneuver, when run with the actual camera system at a range of 70cm, will be well-suited

to full coverage.

Coverage, like the inspection maneuvering error, shows independence from the mo-

tion of the target object, though it is closely bound to the range and rotation rate of the

two satellites. Additionally, at the range and rates demanded by the actual vision system,

coverage should be nearly global for a planar inspection, though certain rotation rates by

the target can interfere.

5.2.2 2- and 3-D Motion

As motion of the target was examined, so too should variation in motion by the Inspec-

tor. Similar analysis may be done on the basis of the relative position error as well as the

coverage provided by the inspection. Again, the baseline for this inspection will be the

ISS test with a stationary target, though supplemented with the long-duration inspection

simulation data. The maneuvers which will be compared to that baseline are (aptly) the

90

90 -

0 1 80

005 70 -

0- 60

50-005
I 40-

-0.1
0..1. 30

0.05 01

-005 10

0
Unobserved Observed 60 s0 100 120 140 160 180

Time (s)

(a) Final Coverage on Target Surface (b) Coverage over Time

Figure 5-36: Coverage: ISS Motion Test

Coverage of TGT Coverage over time (7% max)
. . 100

90

01 80

0 .05 70

0 0

-0 , -1 0 0

0
-0.05 - 0

10 1-0.1 -0,1

01
Unobserved Observed 50 100 150 20 250

Time (s)

(a) Final Coverage on Target Surface (b) Coverage over Time

Figure 5-37: Coverage: Simulated Additional Motion Test

91

Coverage of TGT Coverage over time (87% max)

Coverage of TGT Coverage over time (97% max)
100

90 j

0.10 .

005:. 70-

N 0 ~60- -

0.
50

-00.050.1

-0.1 -0.1
-0.1

Unobserved Observed 150 150 200 250 30
Time (s)

(a) Final Coverage on Target Surface (b) Coverage over Time

Figure 5-38: Coverage: Simulated 3D Inspection Test

"3D Inspection" and the "Inclusion of Rotation Information" maneuver.

Figure 5-39 shows the coverage that is experienced by the long duration test. As would

be expected with an Inspector that make a planar motion for 10 minutes with a rotating

target, the coverage is nearly global. Surprisingly, this takes only 150s out of the total 600s

of the inspection, suggesting that much better coverage is possible merely by using the

increased inspection distance.

The risk associated with this inspection is that the rotation rate of the target may inter-

act with the path of the Inspector. Should the two have matching or near-matching rotation

rates, the field of view will be constant, and coverage will be minimal. Even if the path of

the inspector shows resonance (in the orbital sense) with the rotation of the target, then

there are likely to be areas which remain covered no matter how long the inspection is.

In order to reduce or eliminate this possibility, the estimation of the target's rotation

rate is of great use. Furthermore, in spite of the relative accuracy that vision algorithms

can determine the rotation of an object in view, the algorithm requires only an approximate

knowledge of the angular velocity. This allows the inspection to take advantage of the rate

to plan more efficient paths. Given a stable rotation (as seen in Figure5-40), this gives

effectively global coverage, with less than 0.5% unviewed.

The way that this maneuver uses the rotation information of the target is to align its

inspection planes with the plane defined by the rotation of the target. To best take ad-

vantage of both cameras, the Inspector rotates so that its body Z-axis is parallel with the

92

Coverage of TGT Coverage over time (97% max)
100

01

0.1 0.1-0.05 7

05

-10-..

-0.05 0

Unobserved Observed 50 10 1; 200 25 3 350 40 450 5 550
Time (s)

(a) Final Coverage on Target Surface (b) Coverage over Time

Figure 5-39: Coverage: Simulated Long Duration Test

target's angular velocity. This places the camera baseline parallel with the plane defined

by the angular velocity. The Inspector then moves to scan the upper, lower, and middle

thirds of the target, all the while integrating the sum of the target's rotation and its own to

determine when to switch.

As a result of the alignment of the inspection planes with the rotational planes, the

inspection avoids the potential pitfalls of an inspection which depends on the target not

having a certain set of undesireable rotations.

5.2.3 Use of Rotation Information

Because of the numerous confounding factors in comparing the use of rotation information

to the original stationary target baseline, with a desired range of 36cm, the long-duration

inspection will be used instead. Additional comparisons can be drawn through compar-

ison to the "3D Inspection" maneuver as well. This allows for an evaluation of tests of

similar duration, with an without the third dimension taken into account, and with the

use of rotation information.

What the analysis looks for is the performance of the inspection; time to full coverage,

fullness of coverage, and fuel use are the discriminating factors.

As noted in Figures 5-38, 5-39, and 5-40, all maneuvers do eventually approach full

coverage, though only the rotation information test is able to effectively provide 100%

93

(0

Coverage overtime (100% max)

10) 150 200 250 300 350
Time (s)

(a) Final Coverage on Target Surface (b) Coverage over Time

Figure 5-40: Coverage: Simulated Using Rotation Information Test

312

to0 100 10 20D 250 M0 35M 400 4* 5 50

(a) Long-Duration

Figure 5-41:

to-

to 10 2 250 30 5 1 150 2S 250 3 300

T.. (s) Tim. (s)

(b) 3D Inspection (c) Rotation Information

Fuel Use: Rotation Information vs Baselines

coverage compared to the former pair's 97%. If full coverage is a hard requirement for

the maneuver, then it is clearly necessary to either use the latter approach or run the 3D

Inspection or Long Duration algorithms for much longer than they are currently designed

to run.

If, however, 97.5% is an acceptable coverage ratio, then the discriminating factor in

determining the preferable inspection for the mission at hand comes down to a weighting

of the time and fuel used by the Inspector satellite to perform its maneuver. The fuel use

for each can be seen in Figure 5-41.

Fuel use, however, is essentially flat across each of the maneuvers at an estimated con-

sumption rate of 1g of fuel for every 30s of test. The difference, therefore is not in the rate

of consumption, as the different maneuvers have nearly identical fuel needs, but rather in

94

0.1.

0.05,

f- 0-

-005-

-01

0.1

-041 -0.1

Unobserved Observed

to-

State/Quantity Value

Gyro Random Noise (1a) 0.0800
Gyro Angular Random Walk (la) 0.440

Relative Range Overshoot <12% Error

Closest Approach (% Desired Range) 94%
Farthest Approach (% Desired Range) 106%
Largest Vertical Error 12cm (at 70cm range)

Largest Horizontal Error 12cm (at 70cm range)

Fuel/Time Efficient Inspection Planar, Nonaligned Rotation Axes

Table 5.2: Estimated Navigation Accuracy

the time until full coverage is obtained.

Using the earlier definition of full coverage as 95% of the surface having been viewed,

the time-to-completion for the various maneuvers is 196.7, 229.9, and 255.3s for 3D mo-

tion, Long-Duration motion, and Rotation Information inspections, respectively. Fuel con-

sumption at those time points are 5.545g, 6.303g, and 8.130g, respectively. Given the cost

function,
t

Jiss =Q * mfuei + R * 15.87

with equal unity weights Q and R, the values of the cost function for the respective

inspection methods are 17.94, 20.79, and 24.22. Therefore, the most effective inspection in

terms of weight and time for 95% coverage is a simple 3D inspection that does not use

the target rotation information. One caveat remains however, and that is that the situation

applies only to this particular rotation of the target. Further, it also only applies if 95%

coverage is acceptably considered "full".

5.3 Conclusion

This chapter provides a comparison between the simulation results and station data, and

also provides an estimate of expected performance of the inspection and navigation algo-

rithms as implemented on the SPHERES Satellites.

From this analysis, it is claimed that the performance parameters of the design inspec-

tions are as described in Table 5.2. It should be noted that since these measurements were

made using simulated vision data that those listed values (with the exception of gyroscope

noise) represent upper bounds on the navigation error.

95

The consequences of the data is that inspections will be able to be conducted without

significant risk of collision. Further, the best estimate of the gyroscope random noise sug-

gests that 50Hz data has a deviation of 0.080'. Whether or not that meets performance re-

quirements for a vision system is dependent on the camera algorithms, but the low value

suggests that they will work for most situations. The low translational errors also bode

well for VERTIGO, since they suggest that it will be able to maintain pointing toward the

target object even if the target begins to move during the inspection. Further, since a 3-

minute inspection does not move out of plane by more than 10cm, when combined with

image processing tools, it will be possible to build an accurate 3D map - and achieve the

VERTIGO mission.

96

Chapter 6

Project Management of the VERTIGO

Payload

The story of the VERTIGO Program is one that will be familiar to many who are involved

in the development of spaceflight hardware. This chapter will delve into some of the chal-

lenges and successes that the program experienced and analyze the program from the

point of view of your author, the MIT Program Manager.

Throughout the chapter we will follow the program through two points of view: the

Product and the Process. We will examine how technical problems and approaches fed

back into the program management, and how the same management in all its forms in-

formed the final product in fabrication.

We will also show the initial timeline of the program and its evolution as it met the

realities of the engineering, scheduling, and other technical challenges. It will also cover

feedback on the program model - that of a fast-paced technical development program de-

signed to mature ground hardware up the technology readiness ladder. And finally it will

provide lessons learned for future student program managers, and military officers as a

part of the Space Engineering Academy program within MIT's Space Systems Laboratory.

We begin with an exploration of the eight guiding principles which were used to guide

the development of the VERTIGO product and the leadership and engineering process

to develop that product. Figure 6-1 shows the two elements side by side, and how the

different legacies of the LIIVe and SPHERES Programs worked together with VERTIGO on

the way to delivery of flight hardware. This figure will guide the discussion throughout.

97

VERTIGO
C

LIVE SPHERES

(a) Product

W,
4A

VERTIGO

Proces
Ou: Co

LIVE SPHERES

(b) Process

Figure 6-1: Project and Process for Successful Design

6.1 Design Principles

For the successful management of a small, flexible design team, there are a number of prin-

ciples to keep in mind. While the list that follows is by no means exhaustive, it provides

the necessary framework for leading the team through the systems engineering process.

Those principles are infinitive and imperative: to Understand, to Build, to Try and Test,

to Grow, to Advocate, to Fail, to develop Depth, and to maintain Margin. Each contributes to

the success of the product design or to the process which allows the design to be delivered

on time, on-budget, and as promised.

We first address those principles that influence the design of the end product.

6.1.1 Product Design

The ultimate goal of designing spaceflight hardware and associated peripherals is to de-

liver a product with some value to the customer, which can work moderately autonomously,

and which needs minimal maintenance. The VERTIGO Goggles must fulfill all these needs,

98

in spite of the atypical access that operation on the International Space Station grants op-

erators.

In light of the restrictions that the operational environment places on the end product,

we examine those principles which enable successful delivery and operation.

Understand

The first principle of designing the Product, in this case the VERTIGO hardware and

software is to understand the technical and program requirements of the project. With-

out this understanding, no schedule or resource allocation can be realistic.

Coming into the VERTIGO program at its inception had both benefits and disadvan-

tages. As the program manager, this allowed me to see the product through its entire

design cycle - from requirements through design, test, and eventually fabrication. Such

an experience is the exception for most engineering that a military officer may expect, but

yields many of the same lessons, in particular because the VERTIGO design was informed

so thoroughly by the lessons learned from its heritage in the LIIVe and SPHERES pro-

grams. Those lessons, however, were institutional, and not fully known or understood to

your author. Of course, there is always a learning curve to every project, especially when

integrating with a team that is more experienced, but a concerted effort can shorten the

transition from team member to active contributor.

Two examples highlight the difference that a full grasp of the engineering problem

makes. For the first example, we should examine the schedule and its evolution as the

understanding of the software requirements increased.

Action Milestone Due Date

SW 1 SPHERES Software Updates 12 Jul 2011
SW 2 VERTIGO Core Software Completion 19 Aug 2011
SW 3 Visual Navigation Algorithm Prototype 19 Aug 2011

Table 6.1: VERTIGO PDR Software Schedule

As shown by Table 6.1, at the Preliminary Design Review, held on the 8th of June, there

were three identified software deliverables, each expected to take no more than 2 months

to complete, and to be completed prior to the critical design review. Of note is the fact

that algorithm prototyping and core software development was believed to be able to be

99

done fully in parallel, as demonstrated by the simultaneous delivery dates. Though there

is an element of truth in that belief, in hindsight such scheduling was clearly unreasonable.

To get a better perspective, Table 6.2 shows that by CDR (held on 8 September 2011) the

dates have shifted by 2-4 months, and an entirely new deliverable had been identified -

updates to the GUI that astronauts use to operate the SPHERES on station. Such a shift

was the result of the program manager not fully grasping the magnitude of the project and

more importantly, the number of peripherals associated with operation of the hardware.

Action Milestone Due Date

SW 1 SPHERES Software Updates Late Oct 2011
SW 2 VERTIGO Core Software Completion Nov 2011
SW 3 Visual Navigation Algorithm Complete Mid-Oct 2011
*SW 4 SPHERES Flight GUI Updates Late Oct 2011

*indicates new deliverable

Table 6.2: VERTIGO CDR Software Schedule

By the beginning of December 2011, when external deadlines began to constrain sched-

ule slips, the software schedule had grown to include 19 individual deliverables, with the

major ones identified in Table 6.3. Some of the schedule shift and new deliverables can cer-

tainly be attributed to the fact that early designs were just that - preliminary. However,

at CDR and beyond, schedules were consistently underestimated; two were 2 months late,

while the other pair took four additional months to complete beyond initial estimates.

Action Milestone Completion/Due Date
SW 1 SPHERES Software Updates Dec 2011
SW 2 VERTIGO Core Software Completion 16 Feb 2012
SW 3 Visual Navigation Algorithm Complete Nov 2011
SW 4 SPHERES/VERTIGO Flight GUI 16 Feb 2012

Table 6.3: VERTIGO Revised (Dec. 2011) Software Schedule

Understanding the problem that is set in front of the team give the team the advantage

of being able to plan ahead and dedicate necessary resources to solving technical issues.

By having a realistic schedule, it is possible to identify areas that need additional resources

to solve technical issues rather than being dismissed as poor time estimation. Dedicated

study of the existing systems and technology which the product will be based on gives the

manager the understanding that is prerequisite to managing realistically and properly.

Understanding the existing technology is the basis for the second example of how dedi-

100

VERTIGO 0.
C

LIVE SPHERES

Figure 6-2: Understanding your Design

cated study and preparation make for good design. This area is one in which the VERTIGO

team performed exceptionally well - that of synthesizing knowledge from previous tech-

nical efforts, understanding their interplay, and applying that to the VERTIGO product.

Figure ?? provides a visual description of the products of the LIIVe, SPHERES, and

VERTIGO projects, as it relates to the development of a vision navigation testbed.

We begin by examining the influence that the LIIVe hardware and software design had

on the VERTIGO product. As a concept demonstrator, LIIVe demonstrated the general

form of the flight package, from the use of a single board computer, to the user interface

panels, to the integration of cameras as a modular attachment. It also presented the general

form for image processing algorithms and a basic model of the noise and system perfor-

mance that such a system can achieve. From that program, we can answer the question of

what VERTIGO should be.

In contrast to the LIIVe program, which was very much a technology demonstrator,

the SPHERES program represents maturity as a testbed for 6 degree-of-freedom control

and navigation studies. Experience with SPHERES gave the team familiarity with the

NASA requirements for payload development and launch, as well as operation in a station

environment. From procedures, to pre-launch testing, to informing the design philosophy,

SPHERES provided many answers to how VERTIGO should be built with operations and

program requirements in mind.

As important as the two projects were on their own, the interplay between the soft-

101

ware and hardware of each gave the VERTIGO team insights and understanding of how

the VERTIGO hardware should interact with SPHERES. Without the prototyped interac-

tions between the two sets of hardware, the serial communication protocol would have

been set back, as would modifications to the metrology system. Because those major el-

ements had been developed and tested out on SPHERES-LIIVe, SPHERES-VERTIGO was

able to learn what did and did not work, and even more importantly (for a short-duration

project), know what did not work. Having working hardware that could be built upon

and modified was the key enabling factor in the product being delivered within the short

15-month timeframe.

Those elements that were prototyped or otherwise studied on SPHERES-LIIVe that

informed the design of the SPHERES-VERTIGO product included:

1. Serial communication between the payload and the host SPHERE (later matured

with development of other payloads in addition to VERTIGO)

2. Mechanical fitting and interaction

3. Thermal management and component temperature limits

4. Component selection and shortcomings of certain parts, including reduced lifetime

at operating conditions

Had the system been started from scratch without being developed in a simple ground-

based system prior to launch, there would have been no way for the relatively small team

assigned to VERTIGO to complete its task in the time allotted. The benefit was that both

the team and its managers understood the lessons learned from the previously-developed

hardware.

Build

Build early and often. If you build it, you will understand it better, and the deadlines

associated with hardware build will motivate engineers to move from paper to product.

If you wait to build, you will have fewer chances to identify and fix those problems

which inevitably occur. Even worse, those that do crop up will be much more compli-

cated than those which appear early.

102

There is always a time for careful paper design and analysis that mostly eschews work-

ing in hardware - that time is before the critical design review. This is especially true un-

der the conditions that the VERTIGO project was contracted and developed: a hardware

predecessor had demonstrated many of the concepts that were to be made flight-ready,

and hardware delivery in a compressed (15-month) schedule.

The existence of working hardware implies that the technology has reached maturity

as a ground demonstrator, and is ready for advancement up the technology readiness level

ladder. As acknowledged during the requirements and preliminary design process, much

of the typical background work had already been done in the course of the development

of LIIVe.

VERTIGO a

Nemenologymested

LIVE SPHERES

Figure 6-3: Building your Hardware

Figure ?? demonstrates the transition from the existing concept demonstration hard-

ware (LIIVe) to the flight deliverable (VERTIGO). What the upgrade demonstration repre-

sents practically was the implementation of design changes that had been identified at the

preliminary design level and before.

The reason to make the changes begins with the fact that the existing hardware had

demonstrated its worth as a vision platform, but only in a certain configuration. Changes

included a processor change, wireless card changes, voltage converters upgrades, LED

drive electronics, and new optics and batteries. This represents a huge redesign, where

the only components that remain unchanged for all intents and purposes are at the board-

level. Without actually making configuration changes there is no way to understand the

103

2nd- and 3rd-order effects that hardware modification can have. The decision was there-

fore made that all avionics changes that were to be built into the VERTIGO flight unit were

to be made on the existing "flatsat" version of LIIVe prior to CDR. This provided a pair of

benefits.

The first benefit is that the prototyped changes were made early in the process. This

means that when there were inevitable hang-ups or failures, such problems could be iden-

tified within the first 6-7 months of the program. If such changes remained on paper, there

would have been little substantive difference between PDR and CDR. Instead, an avionics

flat-sat version of the VERTIGO hardware was complete by the latter milestone.

Following the CDR presentation, the next pair of deliveries ended up being an early

March software GUI submission deadline and electromagnetic interference/coupling (EMI/EMC)

testing which would eventually come due in late March. A quick examination of the hard-

ware delivery date (Table 6.4) shows just how little room there is for schedule slip past

those dates.

Action Milestone Start/Due Date

5 Critical Design Review 08 Sep 2011
8 EMI/EMC Compliance Testing 22 March 2012
9 Phase III Safety Review 5 March 2012
10 Hardware Delivery 09 May 2012

Table 6.4: Post-CDR Hardware Delivery Schedule

By the end of December, however, no additional hardware existed beyond the flatsat

that had been completed in September. The implication is clear - with four months left

before contract delivery all schedule margin had essentially dried up. The consequences

were also clear - with flight GUI delivery in 2 months, there was no hardware with flight-

like boards, which created technical challenges for the team.

One of those challenges was the development of high-speed USB lines for synchronized

video data transmission from cameras to the single-board computer (SBC) for processing.

As the result of a hard-and-fast vibration testing date that was added on the 1st of February,

the optics mount, with cameras, LED, and support electronics were put together over the

month of January. When the optics were connected to the SBC via a new prototype board,

there were repeated failures to capture images. In an optical payload, this is obviously

unacceptable.

104

Over the course of testing with the upgraded flatsat, a number of USB cables of ques-

tionable manufacturing quality (and varying lengths in some cases) had shown that they

could impair image capture. Because of the previous work, when the problem cropped up

in the prototype board, it was much more easily identified. When the solution - better

length matching and more discriminating cable selection - was implemented, the cam-

eras worked once more.

The lesson from this example is two-fold. On one hand, had the prototype board been

fabricated and tested before the December/January timeframe, the USB issue would have

been addressed outside of the schedule-constrained environment that can lead to mistakes.

On the other, however, the insistence to test changes to the hardware prior to CDR very

clearly led directly to the positive outcome when problems did eventually crop up during

the build of the vibration test article (which would also be used later for usability testing).

Test and Try

"One test is worth a thousand expert opinions" -Whatever technology you are ma-

turing should have a solid prototype. Prototype and test out any changes you plan to

later implement into the final hardware.

Demonstration of the upgrades that would turn the LIIVe hardware into the flight-

qualified VERTIGO units included more than just modifying hardware and running the

same software. In reality, there were really three elements (highlighted in Figure ??) that

needed to fall into place, of which the upgrade demonstration were only one. Develop-

ment of the initial flight algorithms as well as the communications architecture and soft-

ware have also taken place in advance of the launch.

The development of the initial inspection algorithms ("Pre-hardware algorithm devel-

opment") took place over the summer of 2011, even before the completion of the critical

design review. Testing of the basic versions of those algorithms was completed in early

November, just two months following the review. Those results - described in later chap-

ters - were the direct result of a test-heavy approach that sought to prove that the VER-

TIGO payload would work as proposed.

Testing provides one particular advantage, especially applicable when in a schedule-

constrained environment. Because testing necessarily involves a demonstration of capa-

105

VERTIGO 0.
Cn

Dm netrw cnog sbd

LIVE SPHERES

Figure 6-4: Testing the Product

bility in place of a purely paper analysis, it shows confidence. Prior to the inspection

algorithm tests, the SPHERES gyros had not been used much for dead reckoning, and not

with the precision that vision-navigation prefers. The behavior and drift of those gyros

after years on orbit was not well-understood or studied. They had certainly not been used

for pose propagation from one camera frame to another, which requires fairly low noise.

By demonstrating the constraints on the random error and random walk, and physically

demonstrating the maneuver in a microgravity environment, confidence was built in the

SPHERES hardware to accomplish the missions prior to even launching the VERTIGO

payload.

Furthermore, that basic testing established a simple maneuvering algorithm which

could then be built upon without concerns that the basic premise was somehow flawed.

For future revisions, if the inspections do fail, then the problem is likely to be in the new

code, or in the hardware. Overall, by trying and testing the code on the original SPHERES

hardware, confidence was built. Expected performance was also established, and perfor-

mance was able to be baselined from it. Beyond the establishment of functional confidence

and a performance baseline, it also provided code that could be used to more accurately

test the hardware when it was completed.

During the course of the GUI testing from the original delivery date on 5 March until

an update delivery in early May, elements of the algorithm code were combined with code

which would handle communication between the SPHERES and VERTIGO. The develop-

106

ment of that code also followed the "Try it and Test it" approach to hardware, though that

was delivered with less lead time. Software was developed first with basic functional-

ity, and tested while adding additional functions. Its development followed the hardware

build. By usability testing, the software was functionally complete, but still somewhat

buggy, with some changes still needing to be implemented. By developing the GUI in

this piecemeal approach, it was possible to test while working to implement new pieces of

code, and allowed for the required feedback from the approval authorities reviewing the

software for NASA's Payload Display Review Team (PDRT).

Grow

In everything you do, start with a known, be it working hardware/software or even a

full program, and then increase complexity.

All elements described in Figure 6-1a followed the motto to always grow - in sys-

tem knowledge and product capability. Though there is something to be said for parallel

development, a product developed for space cannot afford to have components designed

and developed in isolation for too long.

VERTIGO did this well, in part because the team was small, team members had rela-

tively well-defined areas of responsibility, and project forces demanded close cooperation.

The immediate project team, as it was first constituted post-CDR consisted of a pro-

gram manager, lead scientist, GUI programmer, two avionics (electrical) engineers, me-

chanical engineer, and two software developers, in the form of 7 people (the first two roles

were student-filled, the remainder, professional engineers). By having 7 people fill 6 dis-

tinct roles, there were few questions about where responsibilities lay for most tasks which

came down the pipeline. Later, when manufacturing began, another member was added

with responsibility for that task.

Forces within and external to the project also played a role. Once more, the compressed

timeline required quick, yet accurate decision-making. Schedule pressure forces changes

to be made through all elements. This forces team members to interact with one another al-

most daily. While the scope of the project makes this a burdensome requirement for larger

projects, and not for VERTIGO, the project could not keep to schedule without it. Almost

no time is lost to design changes trickling through the systems engineers because that re-

107

sponsibility on VERTIGO was held by all members. For instance, when manufacturing of

the prototype optics mount discovered difficulties routing cables and mounting boards,

solutions were found jointly between all team members, led by the mechanical engineer

and the assemblers.

Similarly, when modifications needed to be made to the electronics to fit within the

mechanical fixtures, the changes were made in a day by the two team members tasked

with that role, with the assemblers watching.

The program as a whole also followed the rule of growing from a known before mov-

ing to an unknown. LIVe itself was a known quantity from which VERTIGO could evolve.

The inspection software began first as a simple circumnavigation maneuver, and then

added different paths to the inspection planner. Serial communication between the SPHERES

and the Goggles was first prototyped with the CSAC experiment and expanded upon with

simple message parsing and passing built into the SPHERES guest scientist code. After

that element was tested, it was combined with more advanced inspection algorithms that

were in turn tested on the ground and in simulation. Each element fell into place after

gradual steps.

This approach has two significant advantages over others. If subsystem interaction is

largely on paper, once the designs are implemented, they must be integrated. After fully

designing a subsystem, designs are not partiularly malleable. Furthermore, since most

problems arise at interfaces, most time is then spent to combine subsystems. By constantly

integrating, improving, and reintegrating, the design process is more responsive and fast.

The downside to this approach is that it depends on the ability of a design to be able

to evolve from one state to another. Such an approach must either accept the possibility of

non-optimality in design (as the design evolves, the need to always be operable constrains

the nature of changes of design) or be willing to keep some elements from integrating until

project completion.

On the balance, however, the approach is beneficial in maintaining a rapid design-

to-flight schedule, while minimizing the chance for significant miscommunication which

hamstrings the project until a full redesign can be accomplished. In this manner, the

lessons are applicable even to larger projects, particularly at the subsystem level where

different components much some together.

The design and evolution of the VERTIGO product, however, is not the only reason

108

for VERTIGO's success thus far. Just as technical design and product implementation fol-

lowed four principles, so too did the design and implementation of the management and

systems engineering process. Those themes - Advocate, Fail, Depth, and Margin - are

described below.

6.1.2 Process Design

The process of hardware development and engineering leadership is as important in the

resulting end product as the engineering of that product itself. In order to develop the best

process, there are four principles to keep in mind.

Advocate

In an environment where individuals have more than one task in front of them, you

must advocate for your project to get done. If no one advocates for your project, it will

never be a priority and all the margin you have built in will quickly slip away.

As a project manager, many times you will not have direct control over those who are

working on your project, but instead must encourage buy-in and work to have resources

directed your way. One of the early lessons of VERTIGO is the difference in the leadership

necessary for such situations versus for direct reports.

4A

to VERTIGO
0

LIVE SPHERES

Figure 6-5: Control Measurable Performance through Advocacy

109

The lack of direct influence can initially be frustrating for those who are unused to

managing without it. Instead, management must become about gathering resources and

close cooperation as much as giving direction.

Advocacy as it relates to VERTIGO meant that when initial oversight created a large re-

porting burden that hampered work efforts that an agreement was worked out for unified

updates. Under the project, there were a number of stakeholders - DARPA, NASA, and

the Space Test Program (STP) all wanted to be appraised of project progress. By engaging

senior project leadership, it was possible to combine the communications between those

players.

Advocacy also meant that when team members were over-scheduled that the project

management team again sought to make VERTIGO a priority, especially in light of the

schedule of the project. At times this meant once again engaging senior leadership to en-

sure human resources were sufficiently applied to meet the program needs. It also required

working closely with other team members to develop and adjust schedules so that other

projects weren't completely ignored. In some cases, this was directive in nature, but in

most cases the nature of the leadership situation required participative styles.

Advocacy also requires listening to the team and their concerns. If the team needs

resources that are not available, they need to be made so. In the development of the VER-

TIGO Flight GUI, this required bringing additional personnel onboard, while also adding

team members for the purpose of hardware assembly. It also involved making MIT team

members more readily available to work alongside the other project engineers in all areas,

from project management to software development to assembly.

Fail

Identify where you are wrong early and often. New technology means that you missed

something because it hasn't been done before. More than that, you will make mistakes.

They can only be overcome if you recognize that they will happen.

VERTIGO is very much a development effort in spite of the fact that it traces its heritage

to SPHERES, which has been operating for the better part of a decade and to LIIVe, which

proved the concept of a SPHERES vision payload was possible. Because it is still a program

under development, there are inevitable stumbling blocks along the way. Those temporary

110

failures provide lessons for future operations, and for future programs.

1A

VERTIGO
a.

Proc..s
Output:Cost

LIIVE SPHERES

Figure 6-6: Improving the Process by Learning from Failure

We will focus on two specific failures which improved the process by which your au-

thor managed his team members. The first is a failure to fully define the system require-

ments and the second is a lesson in engineering leadership which project mentors and

reflection provided (see Figure ??).

During the requirements definition process, it is understandable that a feature here and

there will be missed. The programmatic failure by your author to identify in-depth opera-

tional requirements beyond "VERTIGO must be able to be operated by astronauts working

on the International Space Station" (see Appendix ??) was significant. This failure resulted

in overly optimistic schedule predictions early on in the program, which influenced the

amount of resources that were dedicated to accomplishing that task.

Learning from that failure took the better part of a year, as it became clear that the ded-

icated time of a single programmer might not be enough to code, test, and interface with

other software architectures. More directly, the failure to accurately identify requirements

for the software development means that those requirements were assembled piecemeal as

the project progressed, often requiring changes after a piece of code already demonstrated

that it worked capably, but not in the way that the project now needed. A better up-front

understanding of software needs may have avoided the delays and changes which fol-

lowed. That lesson having been learned, the team rectified the situation by spending time

in a handful of meetings in late summer and early fall of 2011 developing requirements

111

and design choices so that the GUI development could proceed with more direction.

The second failure of project management was really a failure of leadership at the

project manager level. By December of 2011, with the first major delivery about two and

a half months away, there was no hardware available to test software on. This was the re-

sult of a leadership strategy which was more generally suited for a situation more closely

tied to those for which your author had more experience: those with military chains of

command in which the task at hand was well-defined and which all members had directly

applicable previous experience (it was not an engineering project, each of which has its

own nuance) and few other duties. Such an approach was not suited to the open-ended

engineering challenge posed by VERTIGO, where team members had other responsibilities

and where resources could only be mustered in an indirect way. That difference meant that

a hands-off approach was not the best option, and instead closer teamwork was needed.

This failure was overcome through mentoring and guidance provided by those MIT

managers who had been through the engineering leadership challenge previously with

SPHERES. The solution was multifaceted.

First, additional resources were sourced (indirectly) so that software development had

additional resources to meet their deadline. The additional manpower allowed VERTIGO

to meet its software deadlines. Additional team members were brought on board with

expertise in assembly to speed up the build process.

Second, the project management team began to advocate more strongly for those re-

sources which were already assigned to the team. Previously, other projects had been given

priority over VERTIGO, which meant that the total man-hours spent were not enough to

match what was needed. By working with over-scheduled team members to prioritize

project-related work in light of fast-approaching deadlines. Perhaps most importantly, the

MIT team began to work heavily in the industry partner's own facilities, providing faster

feedback and interaction. By speeding up the communication loop by orders of magni-

tude, as well as bringing MIT resources directly to bear, work was able to quickly pick up.

Waiting times shortened. Without the closer interaction and resultant improved commu-

nication, there was little chance that the early delivery deadlines would have been met.

The final factor which was able to influence the course of the project was the addition

of a vibration testing deadline a month in advance of the software delivery. Though it

increased schedule pressure considerably, the hard-and-fast date associate with it pushed

112

the team to develop working optics and support avionics. The hard deadline compelled

the manufacturing of boards and mechanical fixtures, rather than remaining in assembly

and CAD layouts. By manufacturing (see Subsection 6.1.1), the team was able to identify

problems in the design. Perhaps just as importantly, by having working hardware ready

in advance of the software deadline, that software was able to be tested on flight-like hard-

ware rather than only on simulators alone.

As these two examples show, failures need not doom a project. Instead, take the lessons

from those failures, adapt, and use them to improve the process by which the program is

managed.

Depth

Your development team will have some area in which there is no "reserve" to call upon.

Find that shortage and fix it.

For the process by which you build hardware and software to be successful, you must

create depth in your team. Different approaches are possible, but all require an investment

of financial or human resources.

Though it is by no means exclusive to the software development side of VERTIGO,

the team had a single member working on the payload-specific GUI from conception un-

til about two months before initial delivery. Combined with an underestimation of the

software tasks early in the design process, as well as software modifications which were

implemented later than desirable, this pushed the software delivery date from its original

October 2011 date (Table 6.2) to February 2012 (Table 6.3), to an eventual initial delivery in

March 2012 with a final delivery in early May 2012.

The team members were more than competent at their tasks, but it was up to program

management to provide the necessary resources for those members to achieve the sched-

ule. Quite literally, there were just not enough hours in the day for a single person to

accomplish the tasks that were being asked of them. At that point, it is incumbent upon

the program manager to provide those additional resources in concert with those who

control the financial and personnel resources. This is a shift in the "Iron Triangle" of Cost,

Schedule, and Performance, but one which must be made when one of those elements has

fallen out of balance, as discussed in Section 6.2 of this chapter.

113

Furthermore, those resources must be applied in a manner and with such timing that

they neither detract from the current efforts nor require so much extra up-front investment

that the benefits of additional team members is null. In the case of VERTIGO, this was

achieved by bringing in the programmer of the original SPHERES GUI (from the 2006

launch delivery) about two-and-a-half months prior to Flight GUI initial delivery to help

with integration and coding support. Doing so allowed both of these conditions to be met

- the training burden was minimal, and the resource was applied with just enough time

to make a difference before the only time remaining had to be devoted to testing.

Adding depth to the team in places where it needs it most also provides an added

benefit: returning margin to the schedule. When unexpected issues appear, from illness

to additional projects, a team which has depth can absorb the impact of the lost team

member much better. During the EMI unit build, the loss of one member to illness would

have been catastrophic save for the fact that when it occurred, the team was able to very

quickly adjust because each member was familiar with most other project elements. As a

result, the team did move slower, but was still able to manufacture and test boards and

integrate the units before shipping them out for testing.

Such an experience also implies that developing depth does not necessarily mean an

influx fo resources beyond those that are already available. On the VERTIGO team, though

each segment of the project (Mechanical, Electrical, Software, Algorithms, etc) are nomi-

nally separate entities, with separate team members, as noted in Subsection 6.1.1 ("Grow"),

the team knew well the tasks and concerns of others. This meant that some depth was built

into the team, though responsibilities were very specifically divided. In many instances,

though the mechanical engineer is responsible for assembly/disassembly of the package,

during protoflight (EMI/EMC unit) assembly, both your author as program manager and

one of the electrical engineers would fill that role. Likewise, during assembly of the optics

mount, which behaves temperamentally, requiring fine alignment of a number of different

parts, there were three or four team members on a team of eight who became competent

in performing the job. As a caveat, this does not imply that team members are not indis-

pensable in their own roles, but only that as engineers it is often possible for a group that

works very closely with each other to supplement each other. With this approach, the re-

sponsibilities do not disappear, but the tasks can be filled by a team that is flexible, with

sufficient knowledge and preparation by other team members.

114

Depth, therefore is achievable in at least two ways: by assigning additional resources,

be they financial or human, to achieve a task, or by developing team members to be able to

complement one another and support each other when internal and external demands re-

quire it. The first is the preferable when significant resources are required which demands

very specialized skills or experience, while the second approach is acceptable when in a

constrained environment that demands project-specific experience and engineering skills.

Margin

If you're a hardware engineer, your software estimates are off by at least 100%; Not

only in how long development will take, but in how much software is needed. Recognize

what you don't know and add margin for that.

Then add some more.

One of the most difficult elements in managing the process by which a project is com-

pleted is estimating the time that it will take for each part to be completed. Managing

margin and schedule is what enables the rest of the process elements to fall into place.

Without a good handle, it is much more difficult to muster the proper depth and advocacy

for the project.

An understanding of the project (see subsection 6.1.1) is what contributes most to suc-

cessfully managing this process element. Figure ?? shows those elements which played a

significant role is growing, shrinking, and generally informing schedule margins over the

course of the VERTIGO project.

As has clearly been demonstrated previously (Tables 6.1, 6.2, and 6.3), accurately schedul-

ing software was your author's most difficult part of maintaining schedule. That estima-

tion ability increased as the process itself became more concrete. Two elements played a

role in that: prototyping of the changes required, and learning lessons from the SPHERES

experience.

To address the former, we start with the LIIVe program, with all of its working electron-

ics and software. The results of that program were not flight-ready, but did demonstrate

a technology readiness near TRL 5. By making modifications to that hardware and proto-

typing the new boards, the effects of those changes became more pronounced. For the sake

of identifying particulars, let us focus on the changes necessary in developing the optics to

115

si

W VERTIGO
0

Outpu: Cost,

schedule, an d O a

Mai e sures

LIVE SPHERES

Figure 6-7: Developing Project Margin Estimates

support the mission.

Because camera synchronization in software was not accurate enough for the science

needs, it was necessary to develop hardware cabling which could accomplish that task and

to write the software to support that objective. Space constraints also required that optics

be split into two boards rather than one, necessitating inter-board connections. Finally,

prototyping of an Ethernet connection also turned up problems with lost communications.

Prior to prototyping changes, these problems were unknown, and certainly not ac-

counted for - after all, LIIVe was well-understood with months of heritage and opera-

tion. Making judgements on schedule based on that experience therefore suggested that

the transition to flight-ready hardware would only require small independent changes and

a few months of development.

Prototyping, however, suggested otherwise. Identifying the need for specific Ethernet

cable types, along with component changes from the original specification (adding mag-

netics) added at least a month to the completion of the optics board. Inter-board connec-

tions proved to be temperamental, necessitating mechanical and avionics design changes.

These changes added another month to the redesign. Finally, the development of support-

ing hardware and code for camera synchronization took many months of parallel work

with the supplier on driver development for what seems to be a simple technical task.

Some of these challenges were apparent at the outset of the project - most were not.

Not until the prototype units were built for vibration testing and later modified for us-

116

ability testing were many of these issues identified and resolved. Early expectations were

that hardware would be complete months ahead of the contract delivery date. Experi-

ence showed that such estimation was optimistic. From this, there are two approaches to

dealing with this uncertainty:

1. Build the schedule to a "horizon". The best information you have at any given time

gets less accurate the further into the future you try to predict. To counteract the

growth in uncertainty, predict only to the point you can make reasonably accurate

judgements. That may be to the next deliverable or only to the next two months. This

allows for more accurate predictions, but completely ignores long-term planning.

2. Develop increasingly large margins over time, and decrease them not based on the

maturity of the design, but an estimate of the uncertainty that you have in the project.

While this aids in long-term planning, it may unfortunately give a false sense of

security, as a lack of knowledge about potential challenges with a technical problem

can cause an underestimation of the schedule risk.

Combining the two, by predicting accurate dates in the short-term, and putting margin

for both expected design issues and unexpected challenges on longer-term deliverables

will provide the best estimation of future schedule performance.

We now move to discuss the latter element, that of the applying the lessons learned

from the development and operation of the SPHERES satellites. As opposed to informing

the process for developing hardware, those lessons instead provide an understanding of

the operations development process.

Most satellites are in some way operated using human input rather than fully au-

tonomously. SPHERES-VERTIGO is no exception, and indeed, as a testbed operated on

the ground by students and on the ISS by astronauts, there are set procedures used to con-

trol those interactions. From SPHERES, the MIT team has learned a number of lessons, a

few of which follow:

1. Simplify interfaces - Astronauts are necessarily time constrained when they learn

to operate their payloads, and with training often happening months in advance of

a launch, it is likely that much of the training may be forgotten. From SPHERES,

the lesson was clear: keep design simple and clear and as a default present only the

information that is needed for nominal operations. From the beginning of GUI and

117

hardware design, this concept was kept in mind. The VERTIGO GUI presents no

additional options to the SPHERES GUI aside from the capability to load a file, per-

form a shutdown, download data, and if desired to switch the camera view seen.

Only three switches are immediately visible on the hardware: Power, reset, and LED

enable. By keeping the design simple, it simplifies the procedures, and streamlines

test sessions, as additional complexity in science and design does not transfer signif-

icant complexity in interfaces to the astronaut operators.

2. Provide debugging tools - Nearly everyone in the chain from those who provide

funding to astronauts who operate the payload to those who review paperwork sub-

missions want to see the mission succeed. By providing those tools in an easily ac-

cessible format, when things inevitably go wrong, much more data will be available

much faster, with much more accuracy and detail. Just as various debug tools within

the SPHERES software allows for large amounts of data collection and transmis-

sion, the use of which inspired and informed VERTIGO's design. The flight GUI

was given a dedicated "maintenance mode" in order to run maintenance scripts and

change settings, while providing feedback to astronauts and ground scientists as to

the state of the Goggles. The development of these tools aid in on-orbit operations

as well as ground testing, providing easy access to the most relevant information

for developers. Additional debug options were also built into the design from the

beginning.

3. Hard-code nothing - While nothing may be a slight exaggeration, the ability to mod-

ify parameters for a GUI or test code is easier both procedurally, as it avoids multiple

code compilations, as well as programmatically, as far less paperwork is required for

software change approval.

Each of these lessons was taken into account in developing the procedures and design

for the system. As a result, when the first prototypes were in production (and especially

after the protoflight units were built), debugging was far simpler than it otherwise might

have been. Extracting performance data allowed the development team to identify faults

as varied as communication errors, camera synchronization errors, and much without hav-

ing to disassemble the entire system for every problem. More directly, by designing sim-

plicity and flexibility into the design from the beginning, NASA approval was far easier to

118

gain, as changes were minor, few, and far in-between.

Proper margining and scheduling is the result of a good understanding of uncertainty,

knowing the limits of uncertainty estimates, and building debugging capabilities into the

project from the beginning. VERTIGO has been evidence of all three.

6.2 Timeline and Earned Value Analysis

At the time of contract signing the VERTIGO Project was designed to be a 1-year undertak-

ing beginning in January 2011 and ending a year later. After some delays in contracting,

the schedule eventually began with the following timeline of critical milestones on the way

to hardware delivery, a 15-month start-to-finish timeline:

Action Milestone Due Date

1 Program Start 15 Feb 2011
2 System Requirements Review (SRR) 12 Apr 2011
3 Preliminary Design Review (PDR) 07 June 2011
4 Phase II Safety Review 01 Nov 2011
5 Critical Design Review 08 Sep 2011
8 EMI/EMC Compliance Testing 8 Feb 2012
9 Phase III Safety Review 23 Mar 2012
10 Hardware Delivery 09 May 2012

Table 6.5: VERTIGO Initial Delivery Schedule

As conceived and contracted, the program was designed to be fast and relatively cheap,

with development times and costs comparable to a ground testbed. As such, in the "Iron

Triangle" of Cost, Schedule, and Performance (Figure ??), the balance was weighted heav-

ily toward those elements, while performance was judged to be a best-effort approach.

Cost Cost

ince

Figure 6-8: Cost/Schedule/Performance Weighting at Contract Start

119

E*

6.2.1 Initial Design Period

Such a schedule was aggressive, especially with a small (yet motivated and competent)

team. Indeed, in many areas the development team was a single individual - one me-

chanical engineer, one electrical engineer, one vision researcher, one software developer

- though some relief was granted, by bringing engineers who had worked on the project

in the past to create depth in the software and avionics areas, and bringing outside re-

searchers to work on the vision algorithms and libraries which would inform the software

design.

Also critical to note is that the schedule gives just shy of 15 months from Program Start

to Hardware Delivery, with 2 months of development time given to SRR and PDR, and

3 months for preparation for CDR. The 7 months of preparation for flight hardware had

positives and negatives attached to them. On the positive side, that meant that changes

to the already existing precursor hardware (from LIIVe) were able to be experimentally

checked out, with technical issues being sorted out before they were implemented into in

the flight hardware development path. By dedicating 7 months to developing changes to

hardware which would not fly, significant time was spent which may have been better

spent on more flight-like hardware. On the balance, the dedicated development time was

advantageous to the team because it allowed two things to happen:

1. Changes could be compared and baselined to a working vision system.

2. Technical issues could be better isolated before they became intertwined on an untested

flight system.

Additionally, it allowed most changes to be identified prior to the CDR presentation.

The Systems Requirements Review, 2 months after nominal program start was a review

of the requirements that had been developed at the System, Functional, and Subsystem

levels. Those requirements demonstrated a lack of software experience in flight programs

of your author, as well as an understanding of the software needs that is typica. of many

spaceflight programs. In the entire requirements document, out of 40 subsystem level

requirements, software requirements were directly addressed in only 4-5 - 10% of the

requirements. At the Functional level, the number was only slightly better at 5/30, barely

17%.

120

At the Preliminary Design Review the schedule had shifted slightly (though not partic-

ularly significantly) and had added slightly more detail on the path to the Critical Design

Review. That updated schedule showed:

Action Milestone Due Date Date Shift

3 Preliminary Design Review (PDR) 08 June 2011 +1 day
SW 1 SPHERES Software Updates 12 Jul 2011 New
4 Phase II Safety Review 15 Aug 2011 -2.5 months
SW 2 VERTIGO Core Software Completion 19 Aug 2011 New
SW 3 Visual Navigation Algorithm Prototype 19 Aug 2011 New
5 Critical Design Review 25 Aug 2011 -2 weeks

8 EMI/EMC Compliance Testing 8 Feb 2012 No change
9 Phase III Safety Review 23 Mar 2012 No change
10 Hardware Delivery 09 May 2012 No change

Table 6.6: VERTIGO Post-PDR Delivery Schedule

The new software dates, as hindsight grants significant insight, were completely un-

realistic, both technically and programmatically and the deadlines reflected only a very

preliminary understanding of the program software requirements.

Many of the hardware requirements had been discussed, reviewed, and cleared at the

Systems Requirement Review, but the same could not be said for two areas of software,

the VERTIGO Core Software and the GUI for astronauts to operate the hardware on sta-

tion. The latter software area, notably absent from the schedule, shows an acute under-

estimation of the software needs of the project. That shortcoming falls squarely on the

program manager, particularly for having system requirements that were underdeveloped

and hardware focused.

6.2.2 Design Completion

Around October 2011, the VERTIGO design reflected a 90% solution. By then the team

had presented the Critical Design, an updated interface document was nearing comple-

tion, and the time was approaching for the hardware build to begin. What happened in

the two and a half months following CDR, unfortunately, eliminated the significant sched-

ule margin that existed at the beginning of the period. As shown in Figure ??, after the

CDR (Item 2), the project was operating in a place that program managers love to be -

ahead of schedule and under budget in terms of man-hours spent. On the path to the next

two significant milestones, Crew Training (Usability testing), and Electromagnetic Interfer-

121

ence and Coupling testing (EMI/EMC), the schedule's retrograde drift placed the project

approximately two months behind schedule, even when the 30-day contract margin was

included. In order to minimize the schedule slip, it very quickly became apparent that

significant investments of time resources (which serves as the proxy for financial resources

in this analysis) were required. The problem was once again, multi-faceted.

The previous ability of the team to meet deadlines with virtually no slip meant that

there was little concern about meeting future deadlines. The experience with the LIIVe

hardware reinforced this view. Since schedule pressure did not seem to be a problem,

VERTIGO was deemed low-risk which in turn meant that other pressing projects would

come up and be addressed. Further, the lack of schedule pressure reduced the impetus to

jump into hardware in favor of continual redesign and tweaking of the CDR-level designs.

Without moving into more flight-like hardware, though, it wasn't possible to mature the

design in a significant manner.

The second, and perhaps more important failure was that program management did

not recognize the trajectory of the Schedule and Spending curve until the project had lost

enough time that to bring it back on schedule required a large investment of manpower

and energy in over the course of just a little over a month. That large investment is very

visible in Figure ?? as the deliveries begin to tack closer to the predicted schedule just

prior to the EMI/EMC testing delivery. The preceeding data point, Crew training was

the peak of the schedule slip. Though the deadline was not a gating deliverable at that

point in the schedule, the lack of hardware just a month and a half prior to that date, in

combination with the state of the hardware on February 16th did indicate such a schedule

slip. Particularly when the (optimistic but not unrealistic) plan for a November prototype

hardware build is taken into account, a two-month slip squares well with reality (Table 6.7

vs. Action 7, Table 6.9).

Normally, a two-month slip on a flight program might be excused as minor; for VER-

TIGO however, such a delay had serious implications. Since the program relies on student

scientists and staffing, a slip meant first, the burden for program management would be

shifted either to a completely new manager or left for lab staff, of which time is already

a tightly constrained resource. More importantly, even a short delay threatened to push

the payload from its manifested vehicle, with an operational delay of at least three months

until the next possible station increment. The delay means that student funding would

122

Action [Milestone Original Date New Date

SW 1 SPHERES Software Updates 12 Jul 2011 Oct
4 Phase II Safety Review 15 Aug 2011 Late Nov
SW 2 VERTIGO Core Software Completion 19 Aug 2011 Nov
SW 3 Visual Navigation Algorithm Prototype 19 Aug 2011 Nov (Successful Test)
8 EMI/EMC Compliance Testing 8 Feb 2012 2-19 Mar 2012
8.1 Hardware/Software Integration - 4 Apr 2012

9 Phase III Safety Review 23 Mar 2012 No change
10 Hardware Delivery 09 May 2012 No change

Table 6.7: VERTIGO Post-CDR Delivery Schedule

no longer be available to support the science objectives, requiring a search for additional

resources. Lastly, a failure to meet the schedule and objectives laid out in the VERTIGO

program would have been a blow to the credibility of the team and its ability to perform

science successfully, and in a timely manner.

VERTIGO Project Cost vs. Schedule Progression

2

1) PDR Presentation
2) CDR Presentation
3) EMLIEMC Testing

3 4) Projected HW
6 Delivery

0o9
Behind Schedule - (Days) - Ahead of Schedule

Figure 6-9: Schedule and Spending Progression

While the schedule did slip precipitously during this phase of development, hope was

not lost. During the next phase, that of actual implementation of the project design into

hardware and software packages for testing and demonstration purposes, an influx of

resources and management attention began to turn the tide, and drawing the schedule

closer to its original form, though at the cost of additional human resources.

6.2.3 Initial Build and Test

During the initial build and test phase, two general milestones were achieved: build of the

first two revisions of hardware and the majority of testing to qualify the design for flight.

123

The tests which were run are identified in Table 6.8.

Test I Start Date Maturity

Vibration Test 1 Feb 2012 Prototype
Usability 16 Feb 2012 Prototype
EMI/EMC 23 Mar 2012 Protoflight

Table 6.8: VERTIGO Testing Schedule (Spring 2012)

For each test, hardware needed to be delivered in either a prototype or protoflight form.

The prototype, which did not require flight-like form for the avionics, but only the optics,

consisted of first-cut boards mounted for use with a packaged optics mount. To prepare

for a 1 February vibration test date, the team was assigned a member to work strictly on

assembly and debugging. This influx of resources, combined with additional software

support allowed the team to face the deadlines with a chance to meet them. Because most

of the margin in the schedule had disappeared at this point, much more effort had to be

focused in the "Build, Test, and Try" principles identified in subsection 6.1.1.

Ultimately, the team did make its deadlines, but doing so required many 18-hour+

days and weekends to make up the lost margin. This reinvestment of time and resources

was realized as a course-correction in the project strategy The adjusted "Iron Triangle"

of Figure ?? demonstrates that realignment. Additional resources were brought to bear

in order to reduce the schedule slip and get the design to a state where it performed to

specification. Testing showed that the design was solid and resistant to vibrations larger

than those expected to be seen during launch. Operationally, the ground work that had

been done the previous fall did pay off, with the GUI requiring only minor tweaks in

addition to the testing that it needed. EMI/EMC testing also proceeded with a few hiccups,

but did complete with VERTIGO meeting NASA safety specifications.

Cost Cost

Schedule Performance Schedule Performance

Figure 6-10: Cost/Schedule/Performance Weighting at During Hardware Build

124

The extra resources which had been given to the project allowed the schedule to closer

to being on track, with a delay near 20 days rather than the almost 40 beyond contract

margin that it had slipped to according to the crew training milestone, which was satisfied

by usability. The shift by the EMI date also suggests that the flight hardware delivery date

is back ahead of its margin.

6.2.4 Flight Hardware

Following the EMI/EMC test campaign, which came to a close with the month of March,

the team transitioned into redesigning flight hardware. During April and May, the team

finished testing the Flight GUI and sought to debug the remaining problems on the elec-

tronics. In doing so, the project came back in line with its original schedule in Table 6.5.

As the design and build is ongoing, it is not possible to fully comment on the work

done since the end of the testing. Nevertheless, the final schedule as realized will closely

mirror Table 6.9, with the potential for a few weeks slip of Action 10.

Action Milestone Due Date Delivery Date Date Shift

1 Program Start 15 Feb 2011 15 Feb 2011 -

2 SRR 12 April 2011 12 April 2011 -
3 PDR 07 June 2011 08 June 2011 1 Day
4 CDR 08 Sept 2011 08 Sept 2011 -
5 SPHERES ICD Updates 26 Oct 2011 16 Nov 2011 21 Days
6 Phase II Safety Review 01 Nov 2011 07 Dec 2011 36 Days
7 Crew Training (Usability) 01 Dec 2011 16 Feb 2012 77 Days
8 EMI/EMC Compliance 08 Feb 2012 30 Mar 2012 51 Days
SW 4 Flight GUI Initial Delivery - 5 March 2012 -
SW 5 Flight GUI Final Delivery - 2 May 2012 -
9 Phase III Safety Review 23 Mar 2012 29 Jun 2012(est) 93 Days (est)
10 Hardware Delivery 09 May 2012 31 May 2012 (est) 22 Days (est)

Table 6.9: VERTIGO Realized Delivery Schedule

6.3 Lessons Learned

The experience of managing the VERTIGO program provides valuable lessons that future

students and officers who are placed in the role of program manager should take to heart.

Over the course of the VERTIGO program the government managers took a very hands-

off approach to the program as both contract terms and the history of performance from

125

MIT's Space Systems Laboratory and the subcontractor Aurora Flight Sciences had a strong

history of performance. That history included flights and reflights of dynamics experi-

ments on the Space Shuttle and International Space Station, as well as the original devel-

opment of the SPHERES hardware upon which the VERTIGO hardware would build.

As a result of the flexibility granted by those overseeing the contract for the govern-

ment, your author took two very different approaches to the management of the VERTIGO

program and its staff. These two approaches were motivated by both previous experience

and outside influences including additional projects and guidance from lab leadership.

From it, a few last conclusions can be drawn:

First, for a military officer leading an engineering project in a non-military environ-

ment, leadership needs differ subtly yet substantially from those that training is designed

for. Competence can be assumed for most players, but the resource-constrained environ-

ment makes project management difficult. Other projects also demand time and resources

that are needed to accomplish the mission. In order to gain the needed resources, the

manager must advocate for their project and remain vocal, lest it slip further and further

behind. The flexibility from the higher-level government managers gave the team flexi-

bility, but in the absence of that close oversight, there must be lower-level leadership to

replace it as the driving force behind project success.

Second, a manager must know his or her shortcomings - and they will not be in the

areas you know or expect them to be. The most difficult part of leading the VERTIGO

team was never in those elements with which your author was familiar, like test and op-

erations, but in electronics and software, where experience is less hands-on. This is where

the schedule slip came for VERTIGO. Not because of a failure of the team to do their tasks,

but rather in poor scheduling and time accounting by management. Underestimation is

the result of unfamiliarity.

Finally, it is important to note the impact that additional resources have on forcing

schedule and performance. From the beginning of the project, VERTIGO was considered

a best-effort project by the funding agencies, but not developing sufficient capability was

never an option for the development team. This fixed performance and left schedule and

cost to trade off. The team was able to maintain the schedule by adding resources when

needed. For any manager, there must be a recognition of the project goals, and where slips

are allowable and/or increased investment may be necessary.

126

These three lessons, when combined with the eight themes discussed earlier, allow an

inexperienced project manager to successfully navigate the pitfalls of engineering in an

academic environment. A manager must be ready to Understand, to Build, to Try and Test,

to Grow, to Advocate, to Fail, to develop Depth, and to maintain Margin to guide a program

to a successful conclusion.

127

THIS PAGE INTENTIONALLY LEFT BLANK

128

Chapter 7

Conclusion

The thesis sought to prototype and demonstrate maneuvering and inspection algorithms

for small satellite inspection missions. In particular, it aimed to implement these algo-

rithms on the SPHERES satellite testbed on the ISS in preparation for the eventual launch

of a specialized vision-navigation payload. By analyzing the results from station and com-

paring to simulation, a level of confidence was developed which allowed for more complex

maneuvers to be evaluated.

Further, it sought to develop principles for the project management of small satellite

projects. To do so, the VERTIGO vision-navigation system was used as a case study to

examine what techniques were successful in meeting project goals. By taking stock of

how VERTIGO progressed, these principles were derived from what did and did not work

when applied by program leadership.

7.1 Conclusions

Results showed that the algorithm, when implemented with standard SPHERES controllers,

was able to track the desired state within 10% error. Furthermore, the simulation and sta-

tion results matched within a similar margin, with only a pair of exceptions. By modifying

the mass of the target object, the rotational axes changed. Likewise, rotational rate noise

in simulation was significantly larger than that from station tests. Both of these factors,

however, do not adversely impact the achievement of the mission on station.

Simulation also implies that for a non-parallel inspector and target angular velocities,

the most fuel- and time-efficient inspection paths are planar. For coverage better than a

129

95% threshold, however, it is more efficient to use an estimate of the rotational velocity of

the target object to plan the inspection path.

On the program management side of the VERTIGO program, the principles discussed

have allowed the project to begin to approach its original delivery schedule after a mid-

course slip. With current predictions, it is expected that the maintenance of that manage-

ment approach will result in a nearly-on-schedule delivery of flight hardware with enough

margin to make the scheduled launch to station in Fall 2012.

In the course of the program management described within this thesis, the VERTIGO

team was also able to successfully meet a number of software deadlines. Additionally, the

team has now advanced the design beyond the protoflight stage and is in the midst of

the build of flight hardware. Though time will tell if the team is ultimately successful in

accomplishing its mission goals, signs point to that becoming the case.

7.2 Future Work

First and foremost, flight hardware for VERTIGO must be completed in time to test and

deliver to the Space Test Program, which takes control of the hardware prior to launch.

This will enable the science mission of the program to begin its work in earnest. In addition

to the hardware delivery, there are a handful of other deliverables like a training session

for crew members and safety reviews that are still pending before hardware turnover.

Besides the delivery of the hardware and the associated programmatic deliverables, the

algorithms that were developed for the inspection mission as well as the serial communi-

cation code to interface with SPHERES must be integrated and tested on the satellites. As

demonstrated by the changes that a small additional mass had during the prototype test

session, integration must include adjustment of the controllers to account for changes in

the physical characteristics brought on by attaching the VERTIGO payload.

Also left to be done is the implementation of the software on the station with the new

code to ensure that it meets mission requirements. The code can be validated on the

ground prior to launch, but prior to running the tests on station, those tests are only projec-

tions of what will happen in the microgravity environment, especially with new hardware

in the loop.

The final element of the future work is the ongoing project to inculcate the next gener-

130

ation of MIT program managers with the lessons learned from the program management

of VERTIGO. By passing this corporate knowledge onto future engineers, it is hoped that

the next generation may lead their projects more efficiently and effectively. Eventually,

these lessons should be applied to larger projects and teams to further refine and update

the principles developed within this thesis.

131

Appendices

132

Appendix A

VERTIGO Inspection Maneuver

Codes

A.1 Simple Maneuvers

/* Modified from:

* gsp.c
*

* SPHERES Guest Scientist Program custom source code template.
*

* MIT Space Systems Laboratory

* SPHERES Guest Scientist Program

* http://ssl.mit.edu/spheres/
*

* Copyright 2005 Massachusetts Institute of Technology
*

* VERTIGO Inspection Maneuver

* Last Update: 5 Oct 2011 by Michael O'Connor
*

* ***9 Jul Update:***

* The code was modified to give the TGT object a path to follow during the maneuver

* ***:9 Jul Update***
*

* ***5 Oct Update:***

* Code modified to have TGT maintain position in Test 1, L-maneuver in Test 2

* ***:5 Oct Update***
*

*

* *** SPH 1: INSPECTOR (INSP) ***

* *** SPH 2: TARGET (TGT) ***
*

* ***30 Jun Description:***

* The purpose of this test is to demonstrate the 'Phase 1' VERTIGO inspection

maneuver.
* As the Goggles are not yet on station, the relative position/velocity information

is
* simulated using the global metrology system.
*

* The relative information is essentially a transformation from the global frame to

the

133

* body frame of the "Inspector" satellite. In this 2-Sat test, we use the second
SPH

* as the "Target" to be inspected. It begins at a point in the center of the test
volume

* (<0,0,0> on ISS, <0.85,0.55,0.3> on ground). From this initial position, it will
either

* run in a pre-set position and attitude profile or maintain position in the center
of the

* volume.
*

* Each SPH will begin at a location roughly equidistant from the center of the test
volume.

* After 10s of estimator convergence , the "Target" will move to the center of the
test

* volume. The "Inspector" will move to a location ROTRADIUS away from the
satellite in -X

* with it's expansion port facing the Target. This initial positioning will take 30
S.

* Afterward the Target sphere will spend 5s spinning up to a given rotation speed.
For the

* following 150s, the Inspector will be commanded to rotate based on gyro

information.

* While it rotates , it will translate to keep the Target in the same body-frame
location.

* The Target will follow a proscribed path or maintain its location. The Inspector
should

* still maintain pointing toward the Target throughout this phase.
*

* Test 101: SPH2 (Target) holds position

* Test 102: SPH2 moves in L-shaped path
*

* ***NOTE:***

* It is possible to change the rotation rate, the "center" of the test volume and
the

* radius of the inspection circle by changing the values in the:

* "Change Rates , Center Points , etc here" section
* ***:NOTE***

*/

/*--

1* Do not modify this section.
/*--*/

#include "comm.h"
#include "commands.h"

#include "control.h"

#include "gsp.h"

#include "gsptask.h"

#include "pads.h"

#include "prop.h"

#include "spheres.constants.h"

#include "spheres-physical-parameters.h"
#include "spheres-types.h"

#include "std-includes.h"

#include "system.h"

#include "util-memory.h"

/*--*/

1* Modify as desired below this point. */
/*--*

#include "ctrl-attitude.h"

#include "ctrl-position.h"
#include "findstateerror.h"

#include "ctrl-mix.h"

#include "math-matrix.h"

#include <math.h>

#include <string.h>

134

#include "gspVERTIG02SatInspections.h"

void gspVERTIGO2SatInspectionsInitTest(unsigned int testnumber)

{
extern state-vector initState;

memset(&initState, 0, sizeof(initState));

if (SPHEREID == SPHERE1) //INSP

{
initState[POS_X] = 0.0f;

initState[POSY] = 0.4f;
initState[POSZ] = 0.Of;

}

if (SPHEREID == SPHERE2) //TGT

{
initState[POSX] = 0.0f;

initState[POSY] = -0.4f;

initState[POSZ] = 0.0f;

}

initState[QUAT_1] = 1.0f;//GROUND & ISS (Tank Down/DECK)

if (sysIdentityGet() == SPHERE1)// 205?Haven't changed

padsEstimatorInitWaitAndSet(initState , 50, 200, 105,

PADSINITTHRUSTINTENABLEPADS_-BEACONS_-SET_1T09); // ISS

else
padsEstimatorInitWaitAndSet(initState , 50, SYSFOREVER, SYSFOREVER,

PADSINITTHRUST_ INTENABLEPADS_-BEACONSSET_ 1T09); // ISS

ctrlPeriodSet(1000);

}

void gspVERTIG02SatInspectionsControl (unsigned int test-number, unsigned int

testtime , unsigned int maneuver _number , unsigned int maneuver-time)

{
//dbg-short-packet DebugVecShort;
//dbg-float-packet DebugVecFloat;

state-vector ctrlState;
state-vector ctrlStateTarget;

state-vector ctrlStateError;

state-vector ctrlStateTGT;//Inspection Target (SPH2) Control State

float ctrlControl[6];

prop-time firing-times;
//*********************************Change Rates, Center Points, etc here

**************************** *****
float CENTERX = 0.0f;
float CENTERY = 0.0f;
float CENTERZ = 0.0f;.

float ROTRATE = -0.0436f; //(3 deg/s == 0.0524,2.5 deg/s == 0.0436, 2 deg/s ==

0.0349)

float ROTRATETGT = 0.1047f; //0.1047 6 deg/s;

float ROTRADIUS = 0.36f;

float Li = 0.25f; //Size of L-shaped movement

float L2 = 0.2f;

//
*** *****************

const int min-pulse = 10;

float R-temp[3];

float V.temp[3];

float cross [3];
float mat[3][3];

float RBody [3];

extern const float KPattitudePD, KDattitudePD, KPpositionPD, KDpositionPD,

VEHICLEMASS;

135

//Clear all uninitialized vectors
memset(ctrlControl,O,sizeof(float)*6);

memset(ctrlStateTarget,0,sizeof(state-vector));
memset(ctrlStateError,0,sizeof(state-vector));
memset(ctrlStateTGT,0,sizeof(state-vector));
//memset(DebugVecShort, 0, sizeof(dbg-short-packet));
//memset(DebugVecFloat, 0, sizeof(dbg-float-packet));

padsStateGet(ctrlState);

if (maneuver-number > 1)

{
unsigned int testtime-dummy = test-time;
commBackgroundStateGet(SPHERE2, &test-time-dummy, (state-vector *)

ctrlStateTGT);

}

switch(maneuver-number){

case 1: //*********************************Estimator initialization
***************** ******* *********

if (test-time >= 10000){
ctrlManeuverTerminate();

}

break;

case 2: //*********************************Move to initial position
* *********************** *********

if (sysIdentityGeto==SPHERE1)

padsGlobalPeriodSet(SYSFOREVER);

switch(sysIdentityGet()){

case SPHERE1://INSP

ctrlStateTarget[POSX] = CENTERX - ROTRADIUS;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget[POS_Z] = CENTERZ;

break;

case SPHERE2://TGT

ctrlStateTarget[POSX] = CENTERX;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget[POSZ] = CENTERZ;

break;
}

ctrlStateTarget[QUAT_1] = 1.0f;

//find error

findStateError(ctrlStateError,ctrlState ,ctrlStateTarget);

//call controllers
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,

KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError, ctrlControl

ctrlAttitudeNLPDwie(KPattitudePD ,KDattitudePD ,KPattitudePD ,KDattitudePD,
KPattitudePD ,KDattitudePD ,ctrlStateError ,ctrlControl);

//mix forces/torques into thruster commands
//FORCEFRAMEBODY

ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, minpulse, 20.Of,
FORCEFRAMEINERTIAL);

//Set firing times

propSetThrusterTimes(&firing-times);

if (sysIdentityGet() == SPHERE1)
padsGlobalPeriodSetAndWait(200,205);

if (maneuver-time >=30000)
ctrlManeuverTerminate (;

break;

case 3://*********************************Rotate Center SPHERE(#2/TGT) if
desired*********************************

136

switch(sysIdentityGet()){

case SPHERE1://INSP
ctrlStateTarget[POSX] = CENTERX - ROT_RADIUS;

ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget[POSZ] = CENTERZ;

break;

case SPHERE2://TGT

//Spin

ctrlStateTarget[RATEZ] = ROTRATETGT;
ctrlStateTarget[RATEY] = ROTRATETGT;//Tumble

ctrlStateTarget[POSX] = CENTERX;

ctrlStateTarget[POS_Y] = CENTERY;
ctrlStateTarget[POSZ] = CENTERZ;

break;

}

ctrlStateTarget[QUAT_1] = 1.0f;

//Estimate , Calculate Control, and Fire Thrusters
findStateError(ctrlStateError , ctrlState , ctrlStateTarget)
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,

KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

if (sysIdentityGet() == SPHERE1)
ctrlAttitudeNLPDwie(KPattitudePD ,KDattitudePD ,KPattitudePD,

KDattitudePD ,KPattitudePD , KDattitudePD , ctrlStateError,
ctrlControl);

else
ctrlAttitudeNLPDwie(0,KDattitudePD ,0,KDattitudePD ,0,

KDattitudePD,ctrlStateError,ctrlControl);//Use this to
ignore quaternion error from global met

ctrlMixWLoc(&firing-times, ctrlControl, ctrlState , min-pulse,
20.0f, FORCEFRAMEINERTIAL);//Changed from 40.Of to 20.Of

propSetThrusterTimes(&firing-times);

if (sysIdentityGet() == SPHERE1)

padsGlobalPeriodSetAndWait(200,205);
//if (sysIdentityGet() == SPHERE2)
// padsGlobalPeriodSetAndWait (200 ,205)
if (maneuver _time>=5000)

ctrlManeuverTerminate();

break;

case 4: //*********************************Begin Inspector Rotation and
Inspection Maneuver*********************************
if (sysIdentityGeto==SPHEREl)

{
padsGlobalPeriodSet(SYSFOREVER);

//Gather Simulated Vision Data
/* ctrlState (current sph state) begins in global frame

* ... convert to body frame:

* POS are in global

* VEL are in global

* QUAT are from global frame to body frame

* RATE are in body

* We will use the quaternions to take the postion and velocity
vectors

* from the global frame to the body frame

//Make measurements relative:
//Moves about point at center of volume (0,0,0)

R-temp[0] = ctrlStateTGT[POSX] - ctrlState[POSXl;
R-temp[1] = ct.rlStateTGT[POSY] - ctrlState [POSY];
R-temp[2] = ctrlStateTGT[POSZI - ctrlState[POSZ];

//Move to Body Frame
quat2matrixIn(mat, &ctrlState[QUAT_1]);//MAT <= rotation matrix

from global to body

137

mathMatVecMult(RBody, (float**)mat, Rtemp, 3, 3);
ctrlState[POSX] = RBody[O];
ctrlState[POSY] = RBody[l];

ctrlState[POSZ] = RBody[2];

//V = Rot*(r') - wx(Rot(r)))

ctrlState[VELX] = ctrlStateTGT[VELX] - ctrlState[VEL_X];
ctrlState[VELY] = ctrlStateTGT[VELY] - ctrlState[VELY];
ctrlState[VELZ] = ctrlStateTGT[VELZ] - ctrlState[VELZ];
mathMatVecMult(V-temp, (float**)mat, &ctrlState[VELX], 3, 3);

mathVecCross(cross, &ctrlState[RATEX], &ctrlState[POSX]);

ctrlState [VELX] = Vtemp[0] - cross[0];

ctrlState [VELY] = V-temp[1] - cross[1];

ctrlState [VELZ] = V-temp[2] - cross[2];

//End Gathering Simulated Vision Data

ctrlStateTarget[POSX] = ROTRADIUS;

ctrlStateTarget[RATEZ] = -ROTRATE;
//May need to reverse of other maneuvers because of global to body

frame transformation, though QUAT is uncontrolled-for

ctrlStateTarget[QUAT_1] = 1.0f;

//find error

findStateError(ctrlStateError , ctrlState , ctrlStateTarget);
//call controllers

ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,
KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

ctrlAttitudeNLPDwie(0,KDattitudePD,0,KDattitudePD,0,KDattitudePD,
ctrlStateError ,ctrlControl) ;//Use this to ignore quaternion
error from global met

//Adjust for frame change

ctrlControl[0] *= -1;

ctrlControl[l] *= -1;

ctrlControl[2] *= -1;
//Feedforward Term

ctrlControl[0] += (VEHICLEMASS*ctrlStateTarget [POS_X]*
ctrlStateTarget[RATEZ]*ctrlStateTarget[RATEZ]);

//Set firing times, schedule firing
ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, min-pulse,

20.0f, FORCEFRAMEBODY);//Changed from 40.Of to 20.0f

propSetThrusterTimes(&firing-times);

}

//If SPH_2 is to follow some path or movement, insert it here:
if (sysIdentityGet() == SPHERE2)

{
if ((maneuver-time > 60000) && (test-number == 2))

ctrlStateTarget[POSX] = CENTERX - L2;

else
ctrlStateTarget[POSX] = CENTERX;

if ((maneuver-time > 30000) && (test-number == 2))

ctrlStateTarget[POSY] = CENTERY - Li;
else

ctrlStateTarget[POSY] = CENTERY;

ctrlStateTarget[QUAT_1] = 1.0f;

ctrlStateTarget[POSZ] = CENTERZ;

//find error

findStateError(ctrlStateError ,ctrlState ,ctrlStateTarget);
//call controllers (no attitude control)

138

ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD
KDpositionPD, KPpositionPD, KDpositionPD , ctrlStateError
ctrlControl);

//Set firing times, schedule firing

ctrlMixWLoc(&firing-times , ctrlControl , ctrlState , min-pulse
20.0f, FORCEFRAMEINERTIAL);//Changed from 40.0f to 20.Of

propSetThrusterTimes(&firing-times);

}

if (sysIdentityGet() == SPHERE1)

padsGlobalPeriodSetAndWait(200,205);

if (maneuver-time >=150000)
ctrlTestTerminate(TESTRESULTNORMAL);

break;

default:
ctrlTestTerminate(TESTRESULTERROR);
break;

}

//DebugPackets
/*
* We want to know:

* 1) Test Time
* 2) Actual Position (Relative)

* 3) Desired Position (Relative)

* 4) Actual Angular Rate

* 5) Desired Angular Rate

* 4) Forces (Body Frame)

* 5) Torques (Body Frame)
*/

//To Debug, in the data file in Matlab, divide by the constant
//in order to get the values in ms, m, and rad/s, respectively

//Time (in tenths of a seconds)
DebugVecShort[] = (short) (test-time*0.Olf);

DebugVecFloat[0] = (float) (test-time*0.01f);

//Actual Relative Position (in 1/10ths of a mm)

DebugVecShort[1] = (short) (ctrlState[POSX]*10000.0f);
DebugVecShort[2] = (short) (ctrlState[POSY]*10000.0f);

DebugVecShort[3] = (short) (ctrlState[POSZ]*10000.0f);
//Desired Relative Position (in 1/10ths of a mm)

DebugVecShort [5] = (short) (ctrlStateTarget[POSX]*10000.0f);

DebugVecShort[6] = (short) (ctrlStateTarget[POSY]*10000.0f);
DebugVecShort [7] = (short) (ctrlStateTarget[POSZ]*10000.Of);//(

ctrlStateTarget[QUAT_1]*100.0f);

//Actual Angular Velocity (in 1/10000ths of a rad/s)
DebugVecShort[8] = (short) (ctrlState[RATEX]*10000.0f);//(ctrlStateTarget[

QUAT_2]*100.0f);

DebugVecShort [9] = (short) (ctrlState[RATEY]*10000.0f);//(ctrlStateTarget[
QUAT_3]*100.0f);

DebugVecShort [10] = (short) (ctrlState[RATEZ]*10000.0f);//(ctrlStateTarget[
QUAT_4]*100.0f);

//Desired Angular Velocity (in 1/10000ths of a rad/s)

DebugVecShort[11] = (short) (ctrlStateTarget[RATEX]*10000.0f);

DebugVecShort [12] = (short) (ctrlStateTarget[RATEY]*10000.0f);

DebugVecShort [13] = (short) (ctrlStateTarget[RATEZ]*10000.0f);

//Maneuver Number

DebugVecShort [14] = (short) (maneuver-number);

//Commanded Force

DebugVecFloat [1] = ctrlControl[FORCEX];

DebugVecFloat [2] = ctrlControl[FORCEY];
DebugVecFloat[3] = ctrlControl [FORCEZ];
//Commanded Torque

DebugVecFloat [5] = ctrlControl[TORQUEX];
DebugVecFloat[6] = ctrlControl [TORQUEY];

DebugVecFloat[7] = ctrlControl[TORQUEZ];
// Send DBG Packets

139

commSendPacket(COMMCHANNELSTL ,GROUND, sysIdentityGet(),

COMMCMDDBGSHORTSIGNED, (unsigned char *) DebugVecShort, 0);//May end in

COMMMODENOACK instead of 0

commSendPacket(COMM.CHANNELSTL,GROUND,sysIdentityGet(), COMMCMDDBG_FLOAT, (
unsigned char *) DebugVecFloat , 0);

*/

}

140

A.2 Advanced Maneuvers

/* Modified from:
* gsp.c

+ SPHERES Guest Scientist Program custom source code template.

* MIT Space Systems Laboratory
* SPHERES Guest Scientist Program
* http://ssl.mit.edut/spheres/

* Copyright 2005 Massachusetts Institute of Technology

* VERTIGO 2Sat Paths Experiment
* Last Update: 09 Mar 2012 by Michael O'Connor
* Based off of VERTIGO Inspection Maneuver Code
* Modification from 27 Feb to 09 Mar includes:
S-Addition of "Closest Point" algorithrn
+ -Includes Changing of algorithm fron rotating and controlling translation to

translating
* and controlling rotation

- **+ SPH 1: INSPECTOR (INSP)
* +*+ SPH 2: TARGET (TGT)

-***27 Feb 2012 Description :-*+

+ Test 301: SP12 (Target) moves toward INSP, then moves in Z.-direction
+ Test 302: SPHI (Inspector) moves in 3-D path
+ Test 303: SPHI performs 10-min inspection
+ Test 304: SPHi inspects using SPH2 rotation information

* Test 301: SPH2 (Target) moves toward INSP, then moves in /-direction
* This motion finds the TGT satellite rotating in the center of the volume. INSP

circumnavigates TGT at
* a constant range. TGT will move toward INSP and INSP will compensate to maintain

pointing and range. After
* more time, the TGT will move out of the inspection plane. INSP should compensate by

matching upward motion.

* Test 302: SPH1t (Inspector) moves in 3-D path
* TGT rotates in center of volume. INSP moves 90 degrees around TGT by rotating

about its Z axis . It then
* rotates 270 degrees about the Y axis until it is between the rotating TGT and the DECK

. It then completes
+ coverage by rotating 90 degrees about Z once more.

+ Test 303: SPH1 performs 10-min inspection
+ TGT rotates in center of volume. INSP circumnavigates TGT for a period of

approximately 10 minutes. It
* should complete about 2.5 "orbits

* Test 304: SPHI inspects using SPH2 rotation information:
* The TGT satellite will rotate in the center of the volume. Since vision can give

rotation information ,
* we will get rate state information from the TGT. After INSP determines direction of

spin, INSP will move
* to location perpindicular to spin axis. It will start moving in direction of TGT spin

axis while also
+ moving around the TGT in a direction opposite the spin. The motion in the spin axis

direction will complete
* as soon as possible. The motion opposite the spin direction should continue until the

sum of the TGT and
* [NSP motion sums to 2pi.
+ The INSP should then move antiparallel to the spin axis direction and repeat its

observations of the

141

+ "southern hemisphere" of the TGT. It will repeat this and then inspect the "equator"
of the TGT.

* It is possible to change the rotation rate , the "center" of the test volume and -the
* radius of the inspection circle by changing the values in the:
+ "Change Rates, Center Points, etc here" section

* +:NOIE***

Do not modify this section.

#include "comm.h"
#include "commands.h"
#include "control .h"
#include "gsp.h"
#include " gsp-task.h"
#include "pads.h"
#include "prop. h"
#include "spheres _constants .h"
#include "spheres physical -parameters .h"

#include "spheres types .h"
#include "std-includes .h"
#include "system.h"
#include "util-memory.h"

Modify as desired below this point.

#include "ctrl-attitude .h"
#include "ctrl _position .h"
#include "find state error.h"
#include "housekeeping-internal .h"
#include "housekeeping .h"
#include "ctrl-mix .h"
#include "math-matrix. h"
#include <math.h>
#include <string .h>
#include "gspVERTIGO_2SatPaths. h"

float throughAngle;
float maneuverCounter;
int rotFlag;

void gspVERTIGO_2SatPaths_InitTest (unsigned int test-number)
{

extern state-vector initState;
memset(&initState, 0, sizeof(initState));

if (SPHEREID == SPHERE1) //INSP

{
initState[POSX] = 0.0f;
initState[POSY] = 0.4f;
initState[POSZ] = 0.0f;

}

if (SPHEREID == SPHERE2) //TGT

{
initState[POSX] = 0.0f;
initState[POSY] = -0.4f;
initState[POSZ] = 0.0f;

I

initState[QUAT_i] = 1.0f;//(UND& ISS (Tank Down/DECK)

142

if (sysIdentityGet() == SPHERE1)// 205?Haven ' t changed

padsEstimatorInitWaitAndSet(initState, 50, 200, 105, PADSINITTHRUSTINTENABLE,
PADSBEACONSSET_1T09); // 1SS

else
padsEstimatorInitWaitAndSet(initState, 50, SYSFOREVER, SYSFOREVER,

PADSINITTHRUSTINTENABLE,PADSBEACONSSET_1T09); // ISS

ctrlPeriodSet(1000);

throughAngle = 0.0f;
maneuverCounter = 0.0f;

}

void gspVERTIGO_2SatPathsControl(unsigned int test-number, unsigned int testtime,
unsigned int maneuvernumber, unsigned int maneuver-time)

{
//dbgshortpacket DebugVecShort;
//dbg-float-packet)ebugVecFloat;
state-vector ctrlState;
statevector ctrlStateTarget;
statevector ctrlStateError;
statevector ctrlStateTGT;//Inspection Target (SPHl2) Control State
float ctrlControl[6];

float RATE;

float ROTRATEDIR[4];

float vecOut[4];
float TGTRATE;

prop-time firing-times;
//7*-+**+**++******++*+***+**++** Change Rates, Center Points, etc here

float CENTERX = 0.0f;
float CENTERY = 0.0f;

float CENTERZ = 0.0f;

float ROTRATE = 0.0262f; //(3 deg/s == 0.0524, 2.5 deg/s == 0.0436, 2 deg/s ==
0.0349, 1.5 deg/s == 0.0262)

float ROTRATETGT = -0.1047f; //0.1047 == 6 deg/s;
float ROTRADIUS = 0.70f;
float Li = 0.25f; //Size of L-shaped movement
float L2 = 0.20f;

//

const int min-pulse = 10;
float MAN4_TIMELIMIT = 150000.0f;

dbg-float-packet DebugVecFloat;
dbg-short-packet DebugVecShort;

extern const float KPattitudePD, KDattitudePD, KPpositionPD, KDpositionPD,
VEHICLEMASS;

memset(DebugVecFloat, 0, sizeof(DebugVecFloat));
memset(DebugVecShort, 0, sizeof(DebugVecShort));

//Account for movement of target during this test - try to remain in volume
if (test-number <= 1)

{
CENTERY = -1.Of*L1;
CENTERZ = L2;

I

//Clear all uninitialized vectors
memset(ctrlControl,0,sizeof(float)*6);
memset(ctrlStateTarget,0,sizeof(state-vector));
memset(ctrlStateError,0,sizeof(state-vector));
memset(ctrlStateTGT,0,sizeof(state-vector));
//memset(DebugVecShort, 0, sizeof(dbg-short-packet));

143

//memset(DebugVecFoat, 0, sizeof(dbg-float-packet));

pad8StateGet(ctrlState);
commBackgroundStateGet(SPHERE2, &test-time, (state-vector *)ctrlStateTGT);

switch (maneuver-number){
case 1: //*++*+** +++*+** +* ++***************

Maneuver 1: Estimator initialization

//Termination after 10s
if (maneuver-time >= 10000){

ctrlManeuverTerminate();

}
break;

case 2: // **++++ ****+***+++ ****

Maneuver 2: Move to initial position

//Termination after 30s
if (sysIdentityGet()==SPHERE1)

padsGlobalPeriodSet(SYSFOREVER);

switch (sysIdentityGet (){
case SPHEREi://INSP

ctrlStateTarget[POSX] = CENTERX - ROTRADIUS;
ctr1StateTarget[POSY] = CENTER_Y;
ctrlStateTarget[POSZI = CENTERZ;

break;

case SPHERE2://TGT
ctrlStateTarget[POSX] = CENTERX;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget[POSZ] = CENTERZ;

break;

}

//Rotate Inspector Satellite to show Initial Positioning has begun and to
distinguish INSP from TGT

ctrlStateTarget[QUAT_1] = 1.0f;

//find error
findStateError(ctrlStateError,ctrlState,ctrlStateTarget);

//call controllers
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD, KDpositionPD,

KPpositionPD, KDpositionPD, ctrlStateError, ctrlControl);
ctrlAttitudeNLPDwie(KPattitudePD,KDattitudePD,KPattitudePD,KDattitudePD,

KPattitudePD,KDattitudePDctrlStateError,ctrlControl);

//mix forces/torques into thruster commands
//FORCEnIRAMLJODY
ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, min-pulse, 20.0f,

FORCEFRAMEINERTIAL);

//Set firing times
propSetThrusterTimes(&firing-times);

if (sysIdentityGet() == SPHEREi)
padsGlobalPeriodSetAndWait(200,205);

if (maneuver-time>=30000)
ctrlManeuverTerminate();

break;
case 3://** +* ++** +*********+**+**+**** +*+******

Maneuver 3: Rotate Center SPHERE(#2/TGT) if desired

//Termination after 05s
switch (sysIdentityGet (){

case SPHERE1://INSP
ctrlStateTarget[POSX] = CENTERX - ROTRADIUS;
ctrlStateTarget[POSY] = CENTERY;

144

ctrlStateTarget[POSZ] = CENTERZ;

break;
case SPHERE2://TGT

ctrlStateTarget[RATEZ] = ROTRATETGT;//Spin
ctrlStateTarget[RATEY] = ROTRATETGT;//Tumble
if (test-number == 4)

//ctrlStateTarget[RATEY] = ctrlStateTarget[RATE-Y]/(4.0 f);
ctrlStateTarget[RATEZ] = ctrlStateTarget[RATEZ]/(4.0f);// 0.0f;

}
ctrlStateTarget[POSX] = CENTERX;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget [PQSZ] = CENTERZ;

break;
}

ctrlStateTarget[QUAT_1] = 1.0f;

//Estimate, Calculate Control, and Fire Thrusters

findStateError(ctrlStateError,ctrlState,ctrlStateTarget);
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,

KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

if (sysIdentityGet() == SPHERE1)

ctrlAttitudeNLPDwie (KPattitudePD, KDattitudePD, KPattitudePD,
KDattitudePD, KPattitudePD, KDattitudePD , ctrlStateError,
ctrlControl);

else
ctrlAttitudeNLPDwie (0,KDattitudePD ,0 ,KDattitudePD,0 , KDattitudePD,

ctrlStateError,ctrlControl) ;//Use this to ignore quaternion

error from global met
ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, min-pulse, 20.0f,

FORCEFRAMEINERTIAL) ;//Changed from 40.0f to 20.0f

propSetThrusterTimes(&firing-times);

if (sysIdentityGet() == SPHERE1)
padsGlobalPeriodSetAndWait(200,205);

//if (sysldentityGet() == SPHERE2)
// padsGlobalPeriodSetAnd Wait (200,205);
if (maneuver-time>=5000)

ctrlManeuverTerminate ();
break;

case 4: /7 *+ ++ ++ + *++ ++ ++ *+ ++ ++ ++ + +++

Maneuver 4: Begin Inspector Rotation and Inspection Adaneuver

//7**********+++******+*+ ****+*+*+ **+++ **+*++ ***+++SPI-[ERE 1:

INSPECTOR

if (sysIdentityGet() == SPHERE1)

{

padsGlobalPeriodSet(SYSFOREVER);

//................+....++...Gther Simulated
Vision Data+ *+++++ * *+++ +++++ +++ +* * +++++

changetoBodyFrame(&ctrlStateTGT[POSX], &ctrlState[POSX], vecOut,
POSITIONVECTOR);

ctrlState[POSX] = vectut[0];
ctrlState[POSY] = veclut[1];
ctrlState[POSZ] = vec0ut[2];
changetoBodyFrame(&ctrlStateTGT[POSX], &ctrlState[POSX], vecOut,

VELOCITYVECTOR);
ctrlState[VELX] = vecOut[0];
ctrlState[VELY] = vecOut[1];
ctrlState[VELZ] = vecOut[2];
changetoBodyFrame(&ctrlStateTGT[POSX], &ctrlState[POSX], vecOut,

ROTATIONVECTOR);
ROTRATEDIR[0] = vecOut[0];

145

ROT_RATEDIR[1] = vecOut[1];
ROTRATEDIR[2] = vecOut[2];
ROT_RATETGT = vecOut[3];
/ /*++++*+++***++* ++++++++++++++**+**** * +**+*End Gathering

Simulated Vision Data

//Inspection Motion/Path Parameters
switch (test-number){
case 2://Test 2: SPH1 (Inspector) moves in 3-D path

ctrlStateTarget[POSX] = ROTRADIUS;
// Use an integrator to estimate the points at which the rotations

should change from Z to Y and back to Z
if ((throughAngle >= 2*PI) (throughAngle <= -2*PI))

{
ctrlStateTarget[RATEZ] = ROTRATE;
throughAngle = throughAngle + (ctrlState[RATE_Z]*((float)

maneuvertime - maneuverCounter)/1000.0f);

}
else if ((throughAngle >= PI/2) || (throughAngle <= -PI/2))
{

ctrlStateTarget[RATEY] = ROTRATE;
throughAngle = throughAngle + (ctrlState[RATEY]((float)

maneuvertime - maneuverCounter) /1000.0f);

}
else

{
ctrlStateTarget[RATEZ] = ROT_RATE;
throughAngle = throughAngle + (ctrlState[RATE_Zj*((float)

maneuver-time - maneuverCounter)/1000.0f);

}
maneuverCounter = (float)maneuver.time;

break;
case 4://Test 4: SPHI inspects using SPH2 rotation information

ctrlStateTarget[POSX] = ROTRADIUS;
//Time/Coverage-based movement procedures:
if (rotFlag == 0) //Align so TGT spin axis is roughly in INSP's Z-Body

Direction

{
if (ROTRATEDIR[O] >= .01f) //Align if errors in X

ctrlStateTarget[RATEY] = ROTRATE;
else if (ROTRATEDIR[0] <= -. 01f)

ctrlStateTarget[RATEY] = -ROTRATE;
else

rotFlag = 1;

if (ROTRATEDIR[1] >= .01) //Align if errors in Y
ctrlStateTarget[RATEX] = ROT_RATE;

else if (ROTRATEDIR[1] <= -.01f)
ctrlStateTarget[RATEX] = -ROT_RATE;

else

rotFlag = rotFlag + 1;

if (rotFlag != 2) //If TGT rotation is aligned with Z axis of
INSP, proceed
rotFlag = 0;

}
else if (rotFlag == 2) //Begin inspection motion moving to "Northern

Hemisphere"

{
ctrlStateTarget[RATEZ] = 0.0f;
ctrlStateTarget[RATEY] = ROTRATE; //For Moving to "North

Pole" of TGT
ctrlStateTarget[RATEX] = 0.0f;
throughAngle = throughAngle + (((float)fabs(ctrlState[RATEY])

)*((float)maneuver-time - maneuverCounter)/1000);
if(throughAngle >= PI/4)

{

146

rotFlag++;
throughAngle = 0.0f;

}
}

else if (rotFlag == 3) //Hold in "Northern Hemisphere" until entire
hemisphere has been seen.

{
ctrlStateTarget[RATEZ] = ROTRATE; //For Coverage

ctrlStateTarget[RATEX] = -ROTRATE; //Maintaining Pointing

ctrlStateTarget[RATEY] = 0.0f;

TGTRATE = sqrtf(ctrlStateTGT[RATEX]*ctrlStateTGT[RATEXI +
ctrlStateTGT[RATEY]*ctrlStateTGT[RATEY] + ctrlStateTGT[
RATEZ]*ctrlStateTGT[RATEZ]);

throughAngle = throughAngle + ((((float)fabs(ctrlState[RATE_Z

1)) + ((float)fabs(TGTRATE)))*((float)maneuvertime -
maneuverCounter) /1000);

if (throughAngle >= 2*PI)

{
rotFlag++;

throughAngle = 0.Of;

}
}

else if (rotFlag == 4) //Move to "Southern Hemisphere"

{
ctrlStateTarget[RATEZ] = 0.0f;

ctrlStateTarget[RATEY] = -ROTRATE; //For Moving to "South

Pole" of TG
ctrlStateTarget[RATEX] = 0.0f;

throughAngle = throughAngle + (((float)fabs(ctrlState[RATE_Y])

)*((float)maneuver-time - maneuverCounter)/1000);
if(throughAngle >= PI/2)

{
rotFlag++;

throughAngle = 0.0f;

}
}

else if (rotFlag == 5) //Hold in "Southern Hemisphere" until entire
hemisphere has been seen.

{
ctrlStateTarget[RATEZ] = ROTRATE; //For Coverage

ctrlStateTarget[RATEX] = ROTRATE; //Maintaining Pointing

ctrlStateTarget[RATEY] = 0.0f;

TGTRATE = sqrtf(ctrlStateTGT[RATEX]*ctrlStateTGT[RATEX] +
ctrlStateTGT[RATEY]*ctrlStateTGT[RATEYI + ctrlStateTGT[

RATEZ]*ctrlStateTGT[RATE_Z]);

throughAngle = throughAngle + ((((float)fabs(ctrlState[RATE_Z
])) + ((float)fabs(TGTRATE)))*((float)maneuver-time -

maneuverCounter) /1000);
if (throughAngle >= 2*PI)

{
rotFlag++;

throughAngle = 0.Of;

}
}

else if (rotFlag == 6) //Begin inspection motion moving to "Equator"

{
ctrlStateTarget[RATEZ] = 0.0f;

ctrlStateTarget[RATEY] = ROT-RATE; //For Moving to "Equator"

of TGT
ctrlStateTarget[RATEX] = 0.0f;

throughAngle = throughAngle + (((float)fabs(ctrlState[RATE_Y])
)*((float)maneuver-time - maneuverCounter)/1000);

if(throughAngle >= PI/4)

{
rotFlag++;
throughAngle = 0.0f;

}
}

147

else //Hold at equator until full orbit is complete.

{
ctrlStateTarget[RATEZ] = ROTRATE; //For Coverage
ctrlStateTarget[RATEY] = 0.0f;
ctrlStateTarget[RATEX] = 0.0f;
TGTRATE = sqrtf(ctrlStateTGT[RATEX]*ctrlStateTGT[RATEX] +

ctrlStateTGT[RATEY]*ctrlStateTGT[RATEY] + ctrlStateTGT[
RATE_ZI*ctrlStateTGT[RATE_Z]);

throughAngle = throughAngle + ((((float)fabs(ctrlState[RATEZ
])) + ((float)fabs(ctrlState[RATEX]))+ ((float)fabs(
TGTRATE))) *((float)maneuver-time - maneuverCounter)/1000)

if ((throughAngle >= 2*PI))

{
ctrlStateTarget[RATEZ] = 0.0f;
ctrlStateTarget[RATEY] = 0.Of;
ctrlStateTarget[POSX] = ROTRADIUS;
ctrlStateTarget[RATEX] = 3*ROTRATE;

}
}

maneuverCounter = (float)maneuvertime;
break;

default:// Test 1: SPH2 (Target) moves toward INSP, then moves in Z-
direction & Test 3: SPH1 performs 10-min inspection
ctrlStateTarget[POSX] = ROTRADIUS;
ctrlStateTarget[RATEZ] = ROTRATE;

break;

}

//May need to reverse of other maneuvers because of global to body frame
transformation , though QUAT is uncontrolled -for

ctrlStateTarget[QUAT-i] = 1.0f;

//find error
findStateError(ctrlStateError,ctrlState,ctrlStateTarget);

//call controllers
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,

KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

ctrlAttitudeNLPDwie(0,KDattitudePD,0,KDattitudePD,0,KDattitudePD,
ctrlStateError,ctrlControl);//Use this to ignore quaternion error
from global met

//Adjust for frame change
ctrlControl[O] *= -1;

ctrlControl[1] *= -1;

ctrlControl[2] = -1;
//Feedforward Term

RATE = (ctrlStateTarget[RATEX]*ctrlStateTarget[RATEX] +
ctrlStateTarget[RATEY]*ctrlStateTarget[RATEY] + ctrlStateTarget[
RATEZ]*ctrlStateTarget[RATEZ]);

if (rotFlag <= 6)
ctrlControl[0] += (VEHICLEMASS*ctrlStateTarget[POSX]*RATE);//

RATE actually RATE^2
//Set firing times, schedule firing

ctrlMixWLoc(&firingtimes, ctrlControl, ctrlState, min-pulse, 20.0f,
FORCEFRAMEBODY);

propSetThrusterTimes(&firing-times);

}
/ /*****+**+***** ++++*****************++++********+++SPH-ERE 2:

TARGET

//If SPH-2 is to follow some path or movement, insert it here:
if (sysIdentityGet() == SPHERE2)

{
switch (test-number){
case 1:// Test 1: SPH2 (Target) moves toward INSP, then moves in Z-

direction
if (maneuver-time > 120000)

148

ctrlStateTarget[POSZ] = CENTERZ - L2;

else
ctrlStateTarget[POS_Z] = CENTERZ;

if (maneuver-time > 60000)

ctrlStateTarget[POSY] = CENTERY + L1;

else
ctrlStateTarget[POS_Y] = CENTER_Y;

break;
case 2:

if (maneuver-time >= 180000.0f) {
ctrlStateTarget[POS_Z] = CENTERZ - L1;

}
else if (maneuver-time >= 60000.0f) {

ctrlStateTarget[POSZ] = CENTERZ + L1;

}
else

{
ctrlStateTarget[POSX] = CENTERX;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget [POSZ] = CENTERZ;

}
break;
default:// Test 2: SPHI (Inspector) moves in 3-D path, Test 3: SPi1

performs 10-min inspection , & Test 4: SPHI inspects using SPI12

rotation information
ctrlStateTarget[POSX] = CENTERX;

ctrlStateTarget[POSY] = CENTERY;

ctrlStateTarget[POSZ] = CENTERZ;

break;

I
ctrlStateTarget[QUAT-1) = 1.0f;

//find error
findStateError(ctrlStateError, ctrlState , ctrlStateTarget);

//call controllers (no attitude control)

ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,
KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

//Set firing times, schedule firing
ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, min-pulse, 20.0f,

FORCEFRAMEINERTIAL);/ /Changed from 40.0f to 20.Of

propSetThrusterTimes(&firing-times);

}
*+Termination Conditions

//Determine length of this maneuver
switch (test-number) {

case 1:// Test 1: SPH2 (Target) moves toward INSP, then moves in Z-

direction
MAN4_TIMELIMIT = 240000.0f;

break;
case 2:// Test 2: SPHI (Inspector) moves in 3-D path

MAN4_TIMELIMIT = 300000.0f;
break;
case 3:// Test 3: SPH1 performs 10-min inspection

MAN4_TIMELIMIT = 600000.0f;
break;
default:// Test 4: SPHI inspects using SPH2 rotation information

MAN4_TIMELIMIT = 360000.0f;
break;

}

if (sysIdentityGet() == SPHERE1)
padsGlobalPeriodSetAndWait(200,205);

if (MAN4_TIMELIMIT <= (float)maneuver-time)
ctrlTestTerminate(TESTRESULTNORMAL);

break;

149

default :
ctrlTestTerminate(TESTRESULTERROR);

break;

}

/ /o//o"/O/%/%/ DEBUG "/eM//%///o//e/o

DebugVecFloat[O] = ctrlState[POSX];
DebugVecFloat[1] = ctrlState[POSY);
DebugVecFloat[2] = ctrlState[POSZ];
DebugVecFloat[3] = ctrlState[VELX];
DebugVecFloat[4] = ctrlState[VELY];
DebugVecFloat[5] = ctrlState[VELZ];
DebugVecFloat[6] = (float)test-time/1000;
DebugVecFloat[7] = (float)maneuver-time/1000;
commSendPacket(COMMCHANNELSTL, GROUND, 0, COMMCMDDBGFLOAT, (unsigned char *)

DebugVecFloat, 0);

DebugVecShort[0] = (short) maneuver_number;
DebugVecShort[1] = (short) (ctrlStateError[POSX]*10000);
DebugVecShort[2] = (short) (ctrlStateError[POSY]*10000);
DebugVecShort[3] = (short) (ctrlStateError[POSZ]*10000);
DebugVecShort[4] = (short) (ctrlStateError[RATEX]*10000);
DebugVecShort[5] = (short) (ctrlStateError[RATEY]*10000);
DebugVecShort[6] = (short) (ctrlStateError[RATEZ]*10000);
commSendPacket (COMMCHANNELSTL , GROUND,0, COMMCMDDBGSHORTSIGNED, (unsigned

char *) DebugVecShort, 0);

}

void changetoBodyFrame(state-vector TargetState, state-vector InspectorState, float *

vectorOut, unsigned int vectorType)

{
/* TargetState and InspectorState begins in global frame
+ ... convert to body frame:
+ P0S are in global
" VEL are in global
" QUAT are from global frame to body frame
" RATE are in body
" We will use the quaternions to take the postion and velocity vectors
* from the global frame to the body frame

float R-temp[31;
float RBody[31;
float cross[3];
float V-temp[31;
float mat[3][3];

switch (vectorType){
case POSITIONVECTOR:

//Make measurements relative:
//Moves about point at center of volume (0,0,0)
R-temp[O] = TargetState[POSX] - InspectorState[POSX];
R-temp[1] = TargetState[POSY] - InspectorState[POSY];
R-temp[2] = TargetState[POSZ] - InspectorState[POSZ];
//Move to INSP Body Frame
quat2matrixIn(mat, &InspectorState[QUAT_1]);//MAT<= rotation matrix from global

to INSP body
mathMatVecMult(RBody, (float**)mat, R-temp, 3, 3);
vectorOut[0] = RBody[0];//POSD(
vector0ut[1] = RBody[1]; //POS-Y
vector0ut[2] = RBody[2];//POSZ
break;

case VELOCITYVECTOR:
//V = Rot*(r ') - wx(Rot(r)))
InspectorState[VELX] = TargetState[VELX] - InspectorState[VELX];
InspectorState[VELY] = TargetState[VELY] - InspectorState[VELY];
InspectorState[VELZ] = TargetState[VELZ] - InspectorState[VELZ];

150

mathMatVecMult(V-temp, (float **)mat, &InspectorState[VELX], 3, 3);

mathVecCross(cross, &InspectorState[RATEX], &InspectorState[POSX]);
vectorOut[O] = V-temp[O] - cross[O];//VELj(
vectorOut[1] = V-temp[1] - cross[1];//VELY
vectorOut[2] = V-temp[2] - cross[2];//VEiY
break;

case ACCELVECTOR:
vectorOut[O] = O.Of;
vectorOut[1] = O.Of;
vectorOut[2] = 0.0f;
break;

case ROTATIONVECTOR:
//Move TGT Rot in TGT Body to IN'SP Body
R-temp[O] = TargetState[RATEX];//Get TGT Rotation Rates in TGT Body Frame
R-temp[1] = TargetState[RATEY];
R-temp[2] = TargetState[RATEZ];
quat2matrixOut(mat, &TargetState[QUAT_1]);//MT <= rotation matrix from TGT Body

to Global
mathMatVecMult(RBody, (float**)mat, R-temp, 3, 3); //TGT Bcodv to Global
R_temp[O] = RBody[0];
R-temp[1] = RBody[1];
R-temp[2] = RBody[2];
memset(RBody,O,sizeof(float)*3);
quat2matrixIn(mat, &InspectorState[QUAT_1]) ;//MAT <= rotation matrix from global

to INSP body
mathMatVecMult(RBody, (float**)mat, R-temp, 3, 3); //Global to INSP Body
//vectorOut = ROT-RATEDIR[O -2]
vectorOut[O] = RBody[O];//X
vectorOut[1] = RBody[1];//Y
vectorOut[2] = RBody[2];//Z
//Find Magnitude
/ /ROTRATETGT
vectorOut[3] = (float)sqrt(vectorout[0]*vectorut[O] + vectorout[1]*vectorout[1] +

vectorOut[2]*vector0ut[2]);
break;

default:
ctrlTestTerminate (13) ; //ERROR: Incorrect call to changetoBodyFrame
break;

}
}

151

A.3 Example Code using Video Data

/* Modified from:
* gsp.c

* SPHERES Guest Scientist Program custom source code template.

* MIT Space Systems Laboratory
* SPHERES Guest Scientist Program
* http://ssl.mit.edu/spheres/

* Copyright 2005 Massachusetts Institute of Technology

+ VERTIGO 2Sat Paths Experiment
* Last Update: 09 April 2012 by Michael O'Connor:
* -Integration of Serial Ccnm & real video information into code
* Update: 09 Mar 2012 by Michael O'Connor:

- Addition of "Closest Point" algorithm
* -Includes Changing of algorithm from rotating and controlling translation to

translating
* and controlling rotation
* Update: 27 Feb 2012 by Michael O'Connor

* +++ SPH 1: INSPECTOR (INSP) ++*
* +** SPH 2: TARGET (TGT)

* +**Test Descriptions:-

* Test 201: SPH2 (Target) moves toward INSP, then moves in Z-direction
* Test 202: SPH1 (Inspector) moves in 3-D path
* Test 203: SPH1 performs 10-min inspection
* Test 204: SPHI inspects using SPH2 rotation information

* Longer descriptions available in previous versions of code (pre-09 April updates).

*7

NCTE:
It is possible to change the rotation rate , the "center" of the test volume and the
radius of the inspection circle by changing the values in the:

"Change Rates , Center Points , etc here" section

Do not modify this section .

#include "comm.h"
#include "commands.h"
#include "control .h"
#include "gsp.h"
#include "gsp-task. h"
#include "pads.h"
#include "prop.h"
#include "spheres -constants .h"
#include "spheres -physical _parameters .h"
#include "spheres-types .h"
#include "std-includes .h"
#include "system .h"
#include "util-memory .h"
#include "exp-v2.h"

Modify as desired below this point. */
/,
#include
#include
#include

"ctrl attitude .h"
"c trl-position .h"
" find-state _error .h"

152

#include "housekeeping-internal . h"
#include "housekeeping. h"
#include "ctrl mix .h"

#include "math-matrix .h"
#include "smt335async. h"
#include "comm-internal .h"

#include "gsutil thr times .h"
#include "gspVERTIGO_2SatPaths . h"
#include <math.h>
#include <string .h>

//** * ++*++ *** BEGINNING OF CEM]vI DEFINITIONS*****+**+**
= Sphere Comm. .. A = Test Start/Stop ... B = Watchdog

//C = Terminate ... D = FORC/TORQUE. . . E = Target Info ...
//F = Misc
#define STARTBYTE OxA7
#define FRONl4SPHERES Ox01
#define FROMGOGGLES 0x02
#define WATCHDOGREQUEST 0xB1
#define WATCHDOGREPLY OxB2
#define TERMINATETEST OxC1
#define SYNCTEST 0x91
#define START-TEST OxA3
#define FORCES-TORQUES 0xD1
#define TGTPOSITION OxEl
#define WATCHDOGJIMIT 3
#define ANY-GOGGLES 0x40
#define SPHEREIDREQUEST OxA2
#define max-length 255

int watchdog-flag;

float forces[3];

float torques[3];

float position[31;

float velocity[31;

unsigned char packet-buffer[max-length];
int packet-buffer-length = 0;

int initTest = 0;

int GogglesAttached = 0;

//7*+++**+*++FN) OF CWMVI DEFINITIONS+-+*+**

//7+*++****BEGINNING OF MANEUVER DEFINITIONS*****++*++*
float throughAngle;

float maneuverCounter;

int rotFlag;
//***+*++++*+*END OF MANIUIVER DEFINITIONS*+++*+++***

//*+*++++++BEGINNING OF EMv STRUCF DEFINITIONS+*****++++
typedef struct {

unsigned char return-code;
} msg-terminatetest;

typedef struct {
unsigned char to;
unsigned char from;
unsigned char ID;
unsigned char test-number;

} msgstarttest;

typedef struct {
float forces[3];
float torques [3];

} msg-body-forces-torques;

typedef struct {
float xyzPos [3];
float xyzVel[3];

} msg-body-tgt-location;

typedef struct {

153

unsigned char to;
unsigned char from;
unsigned char ID;
unsigned char spheresLogicID;
unsigned int programID;

} msg-spheres-id;

typedef struct {
unsigned char startByte;
unsigned char length;
unsigned char from;
unsigned char ID;

} msg.header;
//.....+..++END OF GIv STRUCT DEFINITIONS+*+.++.

void gspVERTIGO_2SatPathsInitTest (unsigned int test-number)
{

extern state-vector initState;
/ / * * * * * * ***BEGINNING OF EvC DEFINITIONS+*******+**
msg-start-test msgStart;
msgStart.to = ANYGOGGLES;
msgStart.from = commHWAddrGeto;
msgStart.ID = STARTTEST;
msgStart.test-number = (unsigned char) test-number;
expv2_uart-send(SERIALPORTDAEMON,sizeof(msgStart),(unsigned char*) &msgStart);

initTest = 1;

memset(forces,0,sizeof(float)*3);
memset(torques,0,sizeof(float)*3);
watchdog-flag = 0;
//**++****++*END OFUNMvI DECLARATIONS*****--+**
memset(&initState, 0, sizeof(initState));

if (SPHEREID == SPHERE1) //INSP

{
initState[POSX] = 0.0f;
initState[POSY] = 0.4f;
initState[POSZ] = 0.0f;

}
if (SPHEREID == SPHERE2) //TGT
{

initState[POS_X] = 0.0f;
initState[POSY] = -0.4f;
initState[POSZ) = 0.0f;

I

initState[QUAT_1] = 1.0f;//GIRUND& ISS (Tank Down/DECK)

if (sysIdentityGet() == SPHEREi)// 205?laven't changed
padsEstimatorInitWaitAndSet(initState, 50, 200, 105, PADSINITTHRUSTINTENABLE,

PADSBEACONSSET_1TO9); // ISS
else

padsEstimatorInitWaitAndSet(initState, 50, SYSFOREVER, SYSFOREVER,
PADSINITTHRUSTINTENABLE,PADSBEACONSSET_1T09); // ISS

ctrlPeriodSet(1000);
throughAngle = 0.0f;
maneuverCounter = 0.0f;

}

void gspVERTIGO_2SatPathsControl(unsigned int testnumber, unsigned int test-time,
unsigned int maneuver-number, unsigned int maneuver-time)

{

154

extern const float KPattitudePD, KDattitudePD, KPpositionPD, KDpositionPD,
VEHICLEMASS;

//dbg-short-packet DebugVecShort;
//dbg-float-packet DebugVecFloat;
statevector ctrlState;//Actual State
state-vector ctrlStateTarget;//Desired State
statevector ctrlStateError;
state-vector ctrlStateTGT;//Inspection Target (SPH2) Control State
float ctrlControl[61;
float RATE;
float ROTRATEDIR[4];
float vecOut [4];
float TGTRATE;
dbg-float-packet DebugVecFloat;
dbg-short-packet DebugVecShort;
dbg-ushort-packet DebugVecUShort;
prop-time firing-times;
//**********++*+***++*+***++*+**** *Change Rates, Center Points, etc here

float CENTERX = 0.Of;
float CENTERY = 0.Of;
float CENTERZ = O.Of;
float ROTRATE = 0.0262f; //(3 deg/s == 0.0524, 2.5 deg/s 0.0436, 2 deg/s ==

0.0349, 1.5 deg/s == 0.0262)
float ROTRATETGT = -0.1047f; //0.1047 == 6 deg/s;
float ROTRADIUS = 0.70f;
float Li = 0.25f; //Size of L-shaped movement
float L2 = 0.20f;

//

const int min-pulse = 10;
float MAN4_TIMELIMIT = 150000.0f;
//+++******MESSAGE TYPE DECLARATIONS-+*****
msg-header msgTP;
msg-header msg;
msgTP.startByte = STARTBYTE;
msgTP.from = FROMSPHERES;
msgTP.length = 0;
msgTP.ID = WATCHDOGREQUEST;
7/++****++END ME'SAGE TYPE DECLARATIONS*+ +*

memset(DebugVecFloat, 0, sizeof(DebugVecFloat));
memset(DebugVecShort, 0, sizeof(DebugVecShort));
memset(DebugVecUShort, 0, sizeof(DebugVecUShort));

//Account for movement of target during this test try to remain in volume

if (test-number <= 1)

f

CENTERY = -1.0f*L1;
CENTERZ = L2;

}

//Clear all uninitialized vectors
memset(ctrlControl,O,sizeof(float)*6);
memset(ctrlStateTarget,,sizeof(state-vector));
memset(ctrlStateError,,sizeof(state-vector));
memset(ctrlStateTGT,,sizeof(state-vector));
//memset(DebugVecShort, 0, sizeof(dbg-short-packet));
//memset(DebugVecFloat, 0, sizeof(dbg-float-packet));

padsStateGet(ctrlState);
//commBackgroundStateGet(SPHERE2, &test-time , (state-vector *)ctrlStateTGT);
ctrlStateTGT[QUAT_1] = 1;
ctrlStateTGT[RATEZ] = ROTRATETGT;

155

//Check to see if WD flag was set (to 0); if it 1, end test
if (watchdog-flag >= WATCHDOGLIMIT)
{

initTest = 0;
ctrlTestTerminate(RESULTPAYLOADERROR);

}
else if ((test-time % 5000) < 1000)
{

watchdog-flag++;

}

switch (maneuvernumber){
case 1: //******+****** ++**+***** **** Maneuver 1: Estimator initialization

//Termination after 10s
if (maneuver-time >= 10000){

ctrlManeuverTerminate();

}
else if ((maneuver-time >= 5000) && (maneuver-time <= 7000))//initialize

Goggles

{
//(initTest <= 2)
msg.startByte = STARTBYTE;
msg.from = FROMSPHERES;
msg.length = 0;
msg.ID = SYNCTEST;
expv2_uartsend(SERIALPORTTESTPROG,sizeof(msg) ,(unsigned char*) &msg);

initTest++;

}
//Check watchdog
if ((test-time % 5000) < 1000)
{

expv2_-uart-send(SERIALPORT_TESTPROGsizeof(msgTP) ,(unsigned char*) &msgTP)

}
break;

case 2: //******************************** Maneuver 2: Move to initial position

//Termination after 30s
if (sysIdentityGet()==SPHERE1)

padsGlobalPeriodSet(SYSFOREVER);
switch (sysIdentityGet 0){

case SPHERE1://INSP
ctrlStateTarget[POSX] = CENTERX ROTRADIUS;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget[POSZ] = CENTER_Z;

break;
case SPHERE2://TGT

ctrlStateTarget[POSX] = CENTERX;
ctrlStateTarget[POSY] = CENTER_Y;
ctrlStateTarget[POSZ] = CENTERZ;

break;

}

//Rotate Inspector Satellite to show Initial Positioning has begun and to
distinguish INSP from TGT

ctrlStateTarget[QUAT_1] = 1.0f;

//find error
findStateError(ctrlStateErrorctrlStatectrlStateTarget);

//call controllers
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD, KDpositionPD,

KPpositionPD, KDpositionPD, ctrlStateError, ctrlControl);

156

ctrlAttitudeNLPDwie (KPattitudePD, KDattitudePD, KPattitudePD, KDattitudePD,
KPattitudePDKDattitudePDctrlStateError,ctrlControl);

if ((test-number == 5) && (sysIdentityGet() == SPHEREi))

{
ctrlControl[FORCEX] = forces[0];
ctrlControl[FORCEY] = forces[1];
ctrlControl[FORCEZ] = forces[2];
ctrlControl[TORQUEX] = torques[0];
ctrlControl[TORQUEY] = torques[1];
ctrlControl[TORQUEZ] = torques[2];
ctrlMixWLoc(&firingtimes, ctrlControl, ctrlState, min-pulse, 20.0f,

FORCEFRAMEBODY);

}
else

{
//mix forces/torques into thruster commands

/ /FORCEAkAMvE3(O)DY
ctrlMixWLoc(&firingtimes, ctrlControl, ctrlState, min-pulse, 20.0f,

FORCEFRAMEINERTIAL);

I
//Set firing times
propSetThrusterTimes(&firing-times);

memset(forces,0,3*sizeof(float));
memset(torques,0,3*sizeof(float));

//Check watchdog
if ((test-time % 5000) < 1000)

{
expv2_uart-send(SERIALPORTTESTPROG,sizeof(msgTP) ,(unsigned char*) &msgTP)

}
if (sysIdentityGet() == SPHERE1)

padsGlobalPeriodSetAndWait(200,205);
if (maneuver-time>=30000)

ctrlManeuverTerminate();
break;

case 3://++++++**++*++++*++++**+***++***+Maneuver 3: Rotate Center SPHE-iRE(#2/TGT

) if desired*+++++*++++***+*+* ++++* +++++* ++++++

//Termination after 05s
switch (sysIdentityGet ()){

case SPHERE1://INSP
ctrlStateTarget[POSX] = CENTERX - ROTRADIUS;

ctrlStateTarget[POSY] = CENTERY;

ctrlStateTarget[POSZ] = CENTERZ;
break;
case SPHERE2://TGT

ctrlStateTarget[RATEZ] = ROTRATETGT;//Spin
ctrlStateTarget [RATEY] = ROTRATETGT; //Tumble

if (test-number == 4)

{
//ctrlStateTarget[RATEY] = ctrlStateTarget[RATEY]/(4.0 f);
ctrlStateTarget[RATEZ] = ctrlStateTarget[RATEZ]/(4.Of) ;// 0).Of;

}
ctrlStateTarget[POSX] = CENTERX;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget [POSZ) = CENTERZ;

break;

}

ctrlStateTarget[QUATi] = 1.0f;

//Estimate , Calculate Control , and Fire Thrusters
findStateError (ctrlStateError, ctrlState ,ctrlStateTarget);

ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,

KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

if (sysIdentityGet() == SPHERE1)
ctrlAttitudeNLPDwie(KPattitudePD,KDattitudePD,KPattitudePD,

KDattitudePD,KPattitudePD,KDattitudePD,ctrlStateError,

157

ctrlControl);
else

ctrlAttitudeNLPDwie (0,KDattitudePD,0 ,KDattitudePD,0 ,KDattitudePD,

ctrlStateError,ctrlControl);//Use this to ignore quaternion
error from global met

5)if (test-number ==

{
ctrlControl[FORCEX] = forces[O];
ctrlControl[FORCEY] = forces[1];
ctrlControl[FORCEZ] = forces[2];
ctrlControl[TORQUEX] = torques[0];
ctrlControl[TORQUEY] = torques[1];
ctrlControl[TORQUEZ] = torques[2];
ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, minpulse,

f, FORCEFRAMEBODY);

}
else

{
ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, min-pulse,

f, FORCEFRAMEINERTIAL);//Changed from 40.Of to 20.Of

}
propSetThrusterTimes(&firing-times);
memset(forces,0,3*sizeof(float));
memset(torques,0,3*sizeof(float));

//Check watchdog
if ((test-time % 5000) < 1000)

{
expv2_uart_send(SERIALPORTTESTPROG, sizeof(msgTP) ,(unsigned char*) &msgTP)

}
if (sysIdentityGet() == SPHERE1)

padsGlobalPeriodSetAndWait(200,205);
//if (sysIdentityGet() == SPHERE2)
// padsGlobalPeriodSetAndWait(200,205);
if (maneuver-time>=5000)

ctrlManeuverTerminate();
break;

case 4: /********************************/+Maneuver 4: Begin Inspector Rotation
and Inspection Maneuver********++*****

//+++++*++***+*+**+*+******+53PHERE 1: INSPECTOR

if (sysIdentityGet() == SPHEREi)

{
padsGlobalPeriodSet(SYSFOREVER);

if (GogglesAttached == 0)

{
//****+*****+++**+**++******+*+*+*Gather Simulated Vision Data

20.0

20.0

changetoBodyFrame(&ctrlStateTGT[POSX],
POSITIONVECTOR);

ctrlState[POSX] = vecOut[O];
ctrlState[POSY] = vecOut[1];
ctrlState[POSZ] = vecOut[2];
changetoBodyFrame(&ctrlStateTGT [POSX],

VELOCITYVECTOR);
ctrlState[VELX] = vecOut[0];
ctrlState[VELY] = vecOut[1];
ctrlState[VELZ] = vecOut[2];
changetoBodyFrame(&ctrlStateTGT[POSX],

ROTATION.VECTOR);
ROTRATEDIR[0] = vecOut[0];
ROTRATEDIR[1] = vecOut[1];
ROTRATEDIR[2] = vecOut[2];
ROTRATETGT = vecaut[3];

&ctrlState[POSX], vecOut,

&ctrlState [POSX], vecOut,

&ctrlState[POSX], vecOut,

158

//**++*********+***++***++*++***+++End Gathering Simulated Vision Data

}
else

{
//7**********************+***+**+**Gather Actual Vision Data

ctrlState[POSX] = position[POSZI + 0.234;//Move from camera frame to SPH
body frame

ctrlState[POSY] = -position[POSX] + 0.045;
ctrlState[POSZ] = -position[POSY] + 0.030;
ctrlState[VELX] = velocity[2];
ctrlState[VELY] = velocity[0];
ctrlState[VELZ] = velocity[1];
changetoBodyFrame(&ctrlStateTGT[POSX], &ctrlState[POSX], vecOut,

ROTATIONVECTOR);
ROTRATEDIR[O] = veclut[0];
ROTRATEDIR[1] = vecOut[1];
ROTRATEDIR[2] = vecOut[2];
ROTRATETGT = vecOut[3];
//7**+************+*+**+++*********End Gathering Actual Vision Data

}
//Inspection Motion/Path Parameters
switch(test-number){
case 2://Test 2: SPI1 (Inspector) moves in 3-1) path

ctrlStateTarget[POSX] = ROTRADIUS;
7/ Use an integrator to estimate the points at which the rotations

should change from Z to Y and back to Z
if ((throughAngle >= 2*PI) (throughAngle <= -2*PI))

{
ctrlStateTarget[RATEZ] = ROTRATE;
throughAngle = throughAngle + (ctrlState[RATEZ]*((float)

maneuvertime - maneuverCounter)/1000.0f);

}
else if((throughAngle >= PI/2) || (throughAngle <= -PI/2))

{
ctrlStateTarget[RATEY] = ROT_RATE;
throughAngle = throughAngle + (ctrlState[RATE_Y]*((float)

maneuvertime - maneuverCounter)/1000.0f);

}
else

{
ctrlStateTarget[RATEZ] = ROTRATE;
throughAngle = throughAngle + (ctrlState[RATEZ]*((float)

maneuver-time - maneuverCounter)/1000.0f);

}
maneuverCounter = (float)maneuvertime;

break;
case 4://Test 4: SPH1 inspects using SPH2 rotation information

ctrlStateTarget[POSX] = ROTRADIUS;
//Time/Coverage-based movement procedures:
if (rotFlag == 0) //Align so TGT spin axis is roughly in INSP's Z-Body

Direction

{
if (ROTRATEDIR[0] >= .01f) //Align if errors in X

ctrlStateTarget[RATEY] = ROTRATE;
else if (ROTRATEDIR[0] <= -. Olf)

ctrlStateTarget[RATEY] = -ROTRATE;
else

rotFlag = 1;

if (ROTRATEDIR[1] >= .01) //Align if errors in Y
ctrlStateTarget[RATEX] = ROTRATE;

else if (ROTRATEDIR[1] <= -. 01f)
ctrlStateTarget[RATEX] = -ROTRATE;

else

159

rotFlag = rotFlag + 1;

if (rotFlag != 2) //If TGT rotation is aligned with Z axis of
INSP, proceed
rotFlag = 0;

}
else if (rotFlag == 2) //Begin inspection motion moving to "Northern

Hemisphere"

{
ctrlStateTarget[RATEZ] = 0.0f;
ctrlStateTarget[RATEY] = ROTRATE; //For Moving to "North

Pole" of TGT
ctrlStateTarget[RATEX) = 0.0f;
throughAngle = throughAngle + (((float)fabs(ctrState[RATEY])

)*((float)maneuver-time - maneuverCounter)/1000);
if(throughAngle >= PI/4)
{

rotFlag++;
throughAngle = 0.0f;

}
}

else if (rotFlag == 3) //Hold in "Northern Hemisphere" until entire
hemisphere has been seen.

{
ctrlStateTarget[RATEZ] = ROTRATE; //For Coverage
ctrlStateTarget[RATEX] = -ROTRATE; //Maintaining Pointing
ctrlStateTarget[RATEY] = 0.0f;
TGTRATE = sqrtf(ctrlStateTGT[RATEX]*ctrlStateTGT[RATEX] +

ctrlStateTGT[RATEY]*ctrlStateTGT[RATEY] + ctrlStateTGT[
RATE_Z]*ctrlStateTGT[RATE_Z]);

throughAngle = throughAngle + ((((float)fabs(ctrlState[RATE_Z
])) + ((float)fabs(TGTRATE))) ((float)maneuver-time -
maneuverCounter)/1000);

if (throughAngle >= 2*PI)

{
rotFlag++;
throughAngle = 0.0f;

}
}

else if (rotFlag == 4) //Move to "Southern Hemisphere"
{

ctrlStateTarget[RATEZ] = 0.0f;
ctrlStateTarget[RATEY] = -ROTRATE; //For Moving to "South

Pole" of TGT
ctrlStateTarget[RATEX] = 0.0f;
throughAngle = throughAngle + (((float)fabs(ctrlState[RATEY])

)*((float)maneuver-time - maneuverCounter)/1000);
if(throughAngle >= PI/2)

{
rotFlag++;
throughAngle = 0.0f;

}
}

else if (rotFiag == 5) //Hold in "Southern Hemisphere" until entire
hemisphere has been seen.

ctrlStateTarget[RATEZ] = ROTRATE; //For Coverage
ctrlStateTarget[RATE_XJ = ROTRATE; //Maintaining Pointing
ctrlStateTarget[RATEY] = 0.0f;
TGTRATE = sqrtf(ctrlStateTGT[RATEX]*ctrlStateTGT[RATEx] +

ctrlStateTGT[RATEY]*ctrlStateTGT[RATEY] + ctrlStateTGT[
RATEZ]*ctrlStateTGT[RATEZ]);

throughAngle = throughAngle + ((((float)fabs(ctrlState[RATE_Z
1)) + ((float)fabs(TGTRATE)))*((float)maneuver-time -
maneuverCounter)/1000);

if (throughAngle >= 2*PI)

{
rotFlag++;

160

throughAngle = 0.0f;

}
}

else if (rotFiag == 6) //Begin inspection motion moving to "Equator"

ctrlStateTarget[RATEZ] = 0.0f;

ctrlStateTarget[RATEY] = ROTRATE; //For Nkoving to "Equator"

of TGT
ctrlStateTarget[RATEX] = 0.0f;

throughAngle = throughAngle + (((float)fabs(ctrlState[RATEYI)

)*((float)maneuver-time - maneuverCounter)/1000);

if(throughAngle >= PI/4)

{
rotFlag++;

throughAngle = 0.0f;

}
}

else //Hold at equator until full orbit is complete.

{
ctrlStateTarget[RATEZ] = ROTRATE; //For Coverage

ctrlStateTarget[RATEY] = 0.0f;
ctrlStateTarget[RATEX] = 0.0f;

TGTRATE = sqrtf(ctrlStateTGT[RATEX]*ctrlStateTGT[RATEX] +
ctrlStateTGT[RATEY]*ctrlStateTGT[RATEYI + ctrlStateTGT[
RATEZ]*ctrlStateTGT[RATEZ]);

throughAngle = throughAngle + ((((float)fabs(ctrlState[RATEZ

])) + ((float)fabs(ctrlState[RATEX]))+ ((float)fabs(

TGTRATE)))*((float)maneuver-time - maneuverCounter)/1000)

if ((throughAngle >= 2*PI))

{
ctrlStateTarget[RATEZ] = 0.0f;
ctrlStateTarget[RATEY] = 0.Of;
ctrlStateTarget[POSX] = ROTRADIUS;
ctrlStateTarget[RATEX] = 3*ROTRATE;

}

maneuverCounter = (float)maneuver-time;
break;

default:// Test 1: SPI2 (Target) moves toward INSP, then moves in Z-
direction & Test 3: SPH1 performs 10-min inspection
ctrlStateTarget[POSX] = ROTRADIUS;

ctrlStateTarget[RATEZ] = ROTRATE;
break;

I

//May need to reverse of other maneuvers because of global to body frame

transformation, though QUAT is uncontrolled-for

ctrlStateTarget[QUAT-i] = 1.0f;

//find error
findStateError(ctrlStateError , ctrlState ,ctrlStateTarget);

//call controllers
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,

KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

ctrlAttitudeNLPDwie(0,KDattitudePD,O,KDattitudePD,O,KDattitudePD,
ctrlStateError,ctrlControl) ;//Use this to ignore quaternion error

from global met
//Adjust for frame change

ctrlControl[O -= -1;
ctrlControl[1 -= -1;
ctrlControl[2] -= -1;

//Feedforward Term
RATE = (ctrlStateTarget[RATEX]*ctrlStateTarget[RATEXI +

ctrlStateTarget[RATEY]*ctrlStateTarget[RATEY] + ctrlStateTarget[

RATEZ]*ctrlStateTarget[RATEZI);

if (rotFiag <= 6)

161

ctrlControl[0] += (VEHICLEMASS*ctrlStateTarget[POSX]*RATE);//
RATE actually RATE^2: changed to eliminate redundant math
steps

if (test-number == 5)
{

ctrlControl[FORCEX] = forces[0];
ctrlControl[FORCEY] = forces[1];
ctrlControl[FORCEZ] = forces[2];
ctrlControl[TORQUEX] = torques[0];
ctrlControl[TORQUEY] = torques[1];
ctrlControl[TORQUE_2] = torques [21;
ctrlMixWLoc(&firing-times, ctrlControl, ctrlState, min-pulse, 20.0

f, FORCEFRAMEBODY);

}
else

{
//Set firing times, schedule firing
ctrlMixWLoc(&firingtimes, ctrlControl, ctrlState, min-pulse, 20.0f,

FORCEFRAMEBODY);

}
propSetThrusterTimes(&firing-times);
memset(forces,0,3*sizeof(float));
memset(torques,0,3*sizeof(float));

}
//+++++++++*** ++**++*+++*+++++*++**** ++*+* +++**+++*+SPHIERE 2:

TARGET

//If SPH-2 is to follow some path or movement, insert it here:
if (sysIdentityGet() == SPHERE2)
{

switch (test number){
case 1:// Test 1: SPH2 (Target) moves toward INSP, then moves in Z-

direction
if (maneuver-time > 120000)

ctrlStateTarget[POSZ] = CENTERZ - L2;
else

ctrlStateTarget[POSZ] = CENTERZ;
if (maneuver-time > 60000)

ctrlStateTarget[POSY) = CENTERY + L1;
else

ctrlStateTarget[POSY] = CENTERY;
break;
case 2:

if (maneuver-time >= 180000.0f) {
ctrlStateTarget[POSZ] = CENTERZ - LI;

}
else if (maneuver-time >= 60000.0f) {

ctr1StateTarget[POSZ] = CENTERZ + L1;

I
else

{
ctrlStateTarget[POSX] = CENTERX;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget[POSZ] = CENTERZ;

}
break;
default:// Test 2: SPI1 (Inspector) moves in 3-D path, Test 3: SPi11

performs 10-min inspection , & Test 4: SPH1 inspects using SPH2
rotation information
ctrlStateTarget[POSX] = CENTER_X;
ctrlStateTarget[POSY] = CENTERY;
ctrlStateTarget[POSZ] = CENTER_Z;

break;

}
ctrlStateTarget[QUAT_1] = 1.0f;

//find error
findStateError(ctrlStateError,ctrlState,ctrlStateTarget);

162

//call controllers (no attitude control)
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD,

KDpositionPD, KPpositionPD, KDpositionPD, ctrlStateError,
ctrlControl);

//Set firing times , schedule firing
if (test-number == 5)

{
ctrlControl[FORCEX] = forces[0];
ctrlControl[FORCEY] = forces[1];
ctrlControl[FORCEZ] = forces[2];
ctrlControl[TORQUEX] = torques[0];
ctrlControl[TORQUEYI = torques[1];
ctrlControl [TORQUEZ] = torques [2];
ctrlMixWLoc(&firingtimes, ctrlControl, ctrlState, min-pulse, 20.0

f, FORCEFRAMEBODY);
}
else
{

ctrlMixWLoc(&firing_times, ctrlControl, ctrlState, min-pulse, 20.0
f, FORCEFRAMEINERTIAL);//Changed from 40.0f to 20.Of

}
propSetThrusterTimes(&firing-times);

}
//**********+***+****+**+*****++**Termination Conditions

//Determine length of this maneuver
switch (test-number){

case 1:// Test 1: SPH2 (Target) moves toward INSP, then moves in Z-

direction
MAN4_TIMELIMIT = 240000.0f;

break;
case 2:// Test 2: SP-1 (Inspector) moves in 3-) path

MAN4_TIMELIMIT = 300000.0f;
break;
case 3:// Test 3: SPHI performs 10-min inspection

MAN4TIMELIMIT = 600000.0f;
break;
default:!! Test 4: SPI1 inspects using SPI2 rotation information

MAN4_TIMELIMIT = 360000.0f;
break;

}

if (sysIdentityGet() == SPHERE1)
padsGlobalPeriodSetAndWait(200,205);

if (MAN4_TIMELIMIT <= (float)maneuver-time)

{
initTest = 0;
ctrlTestTerminate(TESTRESULTNORMAL);

I
break;

default:
initTest = 0;
ctrlTestTerminate(TESTRESULTERROR);

break;
}

//Check watchdog
if ((test-time % 5000) < 1000)
{

expv2_uart _send(SERIALPORTTESTPROG , sizeof (msgTP) ,(unsigned char*) &msgTP);
}

/ / 00 00 00/0000/0000)/dXX/ DEBUG /,/o/ ooooo/o o %

DebugVecFloat[0] = ctrIState [POSX];
DebugVecFloat[1] = ctrlState [POSY];
)ebugVecFloat[21 = ctrlState [POSZ];

DebugVecFloat[31 = ctrlState [VELX];

163

DebugVecFloat[41 = ctrlState [VELY];
DebugVecFloat[5] = ctrlState [VELZl];
DebugVecFloat[61 = (float) test-time /1000;
DebugVecFloat [71 = (float) maneuver -time / 1000;
commSendPacket(COMMvLCHANNELSTL, GROUN, 0, COMMA-MDDBlGRDAT, (unsigned char *)

DebugVecFloat, 0);

DebugVecShort[0] = (short) maneuver-number;
DebugVecShort[1] = (short) (ctrlStateError [POSA]*10000);
DebugVecShort[21 = (short) (ctrlStateError[POSY]*10000);
DebugVecShort[3] = (short) (ctrlStateError[POSlI]*10000);
DebugVecShort[41 = (short) (ctrlStateError [RATEXI*10000);
DebugVecShort[51 (short) (ctrlStateError [RATE-Y]*10000);
DebugVecShort[61 (short) (ctrlStateError [RATE]+10000);
DebugVecShort [71 = (short) (GogglesAttached);
commSendPacket (COMMC-IANNELSr,GROUND,0, COMMCM)DBG-SHIORTSIGNED, (unsigned

char *) DebugVecShort, 0);

dbgThrusterTimesPackFull(&DebugVecUShort [0] , f iring -times);
commSendPacket(COMNvLCHANNEISTL,(ROND,0, COMM-CIMADDBGLSH1ORT, (unsigned char *)

DebugVecUShort, 0);

}

void gspVERTIGOManeuverProcessRXData(default-commpacket packet)

{
//send to daemon serial port
expv2_uart-send(SERIALPORT.DAEMON,37,packet);

}

void gspProcessUARTGogglesDaemon(unsigned char source,unsigned char *dataPacket ,unsigned
int length)

{
dbg.ushort-packet dbg = {0};
unsigned char datamsg[32] = {0};
msg-spheres-id msg = {O};

if ((length == 1) && (*dataPacket == OxAl)) {
//message requests spheres id
msg.to = ANYGOGGLES;
msg.from = commHWAddrGet(;
msg.ID= SPHEREIDREQUEST;
msg.spheresLogicID = (unsigned char) sysIdentityGeto;
msg.programID = PROG.ID;
expv2_uart-send(SERIALPORTDAEMON,sizeof(msg) ,(unsigned char*) &msg);

//send debug vector
memcpy(&dbg,&msg, sizeof(msg));
commSendRFMPacket (COMMCHANNELSTL , GROUND, COMMCMDDBGSHORTUNSIGNED, (unsigned

char *) dbg, 0);

}
else {

/* Send the packet to CRJND over the RF +/

memcpy(datamsg, dataPacket, length <= 32 ? length: 32);
commSendRFMPacket (COMMCHANNELSTL, GROUND, COMMCMDGOGGLESPAYLOAD, datamsg, 0);

}
}
void gspProcessUARTTestProgram(unsigned char source ,unsigned char *dataPacket ,unsigned

int length)

{
int counter = 0;

if (initTest 1)

{
for (counter = O;counter<length;counter++)

{
i f ((dataPacket [counter] == STARTBYTE) && (! packet _buf fer_length))

164

{
packet-buffer[O] = dataPacket[counter];
packet-buffer-length++;

I
else if (packet buffer-length)

{
packet-buffer[packet-buffer-length++] = dataPacket[counter];

}

if ((packet-bufferlength >= 2) &9 (packet-bufferlength == (int)packetbuffer

[11 + sizeof(msg-header)))

{
parsePacket(packet-buffer);

packet-buffer-length = 0;

}
else if (packet-bufferjlength >= max-length)

{
packet-bufferjlength = 0;

}
}

}

}

void parsePacket (unsigned char *dataPacket)

{
msg-header *msg;

msg-body-forces-torques *msgData;

msg-body-tgt-location *msgLoc;

msg-terminate-test *msgTerm;

dbg-ushort-packet dbg = {0};

msg = (msg-header *)dataPacket;

if ((msg->startByte == STARTBYTE) && (msg->from == FROMGOGGLES))

{
switch (msg->ID){
case TERMINATETEST:

msgTerm = (msg-terminate-test *)&dataPacket[sizeof(msg-header)];

initTest = 0;
ctrlTestTerminate(msgTerm->return-code);

//send debug vector
memcpy(&dbg,&msg, sizeof(msg));
commSendRFMPacket(COMMCHANNELSTL, GROUND,

COMMCMDDBGSHORTUNSIGNED, (unsigned char *) dbg, 0);

break;
case FORCES_TORQUES:

msgData = (msg-body-forces-torques *)&dataPacket[sizeof(msg-header)];
//copy forces and torques
memcpy(forces, msgData->forces,sizeof(float)*3);

memcpy(torques, msgData->torques,sizeof(float)*3);

//send debug vector
memcpy(&dbg,&msg, sizeof(msg));
commSendRFMPacket(COMMCHANNELSTL, GROUND,

COMMCMDDBGSHORTUNSIGNED, (unsigned char *) dbg, 0);

break;
case TGT_POSITION:

msgLoc = (msg-body-tgtlocation *)&dataPacket[sizeof(msg-header)];

memcpy(position, msgLoc->xyzPos,sizeof(float)*3);

memcpy(velocity, msgLoc->xyzVel,sizeof(float)*3);

memcpy(&dbg,&msg, sizeof(msg));
commSendRFMPacket(COMMCHANNELSTL, GROUND,

COMMCMDDBGSHORTUNSIGNED, (unsigned char *) dbg, 0);

break;
case WATCHDOGREPLY:

//Reset watchdog timer
GogglesAttached = 1;
watchdog-flag = 0;

165

break;

}

}
}

void changetoBodyFrame(state-vector TargetState, state-vector InspectorState, float *

vectorOut, unsigned int vectorType)

{
/* TargetState and InspectorState begins in global frame
* ... convert to body frame:
* POS are in global
* VEL are in global
+ QUAT are from global frame to body frame
* RATE are in body
+ We will use the quaternions to take the postion and velocity vectors
+ from the global frame to the body frame

float R-temp[3];
float RBody[3];
float cross[3];
float V-temp[3];
float mat[3][3];

switch (vectorType){
case POSITIONVECTOR:

//Make measurements relative:
//Moves about point at center of volume (0,0,0)
R-temp[0] = TargetState[POSX] - InspectorState[POSX];
R-temp[1] = TargetState[POSY] - InspectorState[POSY];
R-temp[2] = TargetState[POSZ] - InspectorState[POSZ];
//Move to INSP Body Frame
quat2matrixIn(mat, &InspectorState[QUAT_1]);//MAT<= rotation matrix from global

to INSP body
mathMatVecMult(RBody, (float**)mat,, R-temp, 3, 3);
vectorOut[0] = RBody[O];//POSX
vectorOut[1] = RBody[1];//POS-Y
vectorOut[2] = RBody[2];//POSZ
break;

case VELOCITYVECTOR:
//V = Rot*(r ') - wx(Rot(r)))
InspectorState[VELX] = TargetState[VELX] - InspectorState[VELX];
InspectorState[VELY] = TargetState[VELY] - InspectorState[VELY];
InspectorState[VELZ] = TargetState[VELZ] - InspectorState[VELZ];
mathMatVecMult(V-temp, (float**)mat, &InspectorState[VELX], 3, 3);
mathVecCross(cross, &InspectorState[RATEX], &InspectorState[POSX]);
vectorOut[0] = V-temp[O] - cross[O];//VELX
vectorOut[1] = V-temp[1] - cross[1];//VELY
vector0ut[2] = V-temp[21 - cross[2];//VELZ
break;

case ACCELVECTOR:
vectorOut[0] = 0.0f;
vector0ut[1] = 0.0f;
vectorOut[2] = 0.0f;
break;

case ROTATIONVECTOR:
//Move TGT Rot in TGT Body to INSP Body
R-temp[O] = TargetState[RATEX];//Get TGT Rotation Rates in TGT Body Frame
R-temp[l] = TargetState[RATEY];
R-temp[2] = TargetState[RATEZ];
quat2matrixOut(mat, &TargetState[QUAT_1]);//MAT <= rotation matrix from TGT Body

to Global
mathMatVecMult(RBody, (float**)mat, R-temp, 3, 3); //TGT Body to Global
R-temp[O] = RBody[0];
R-temp[1] = RBody[l];
R-temp[2] = RBody[2];

166

memset(RBody,O,sizeof(float)*3);

quat2matrixIn(mat, &InspectorState[QUAT_1]) ;//MAT <= rotation matrix from global
to INSP body

mathMatVecMult(RBody, (float**)mat, Rtemp, 3, 3); //Global to INSP Bodv
//vectorOut = ROT-RATE-DIR[0-21
vectorOut[O] = RBody[];//X.
vectorOut[1] = RBody[1];//Y
vectorOut[2] = RBody[2];//Z
//Find Magnitude
/ /ROT-RATE TGT
vectorfut[3] = (float)sqrt(vectorut[]*vectorut[O] + vectorout[1]*vectorout[l] +

vectorOut[2]*vectorOut[2]);
break;

default:
initTest = 0;
ctrlTestTerminate(13);//ERRDR: Incorrect call to changetoBodvFrame
break;

}
}

167

THIS PAGE INTENTIONALLY LEFT BLANK

168

Appendix B

VERTIGO System Requirements

169

The VERTIGO Project
VERTIGO is a DARPA-funded project which combines the knowledge of the MIT Space Systems
Laboratory with the flight hardware experience of Aurora Flight Sciences in a partnership to upgrade the
current SPHERES testbed on the International Space Station. Launched in 2006, SPHERES is a 6-degree of
freedom control and navigation testbed which has proved invaluable to scientists and engineers seeking
to test algorithms in a microgravity environment. VERTIGO seeks to add visual navigation to the
capabilities of SPHERES by adding a set of "Goggles" which combine a pair of cameras for stereo vision
with processing and communications hardware upgrades. Individually, these two items are called the
camera and avionics stack.

Primary Mission Objectives
The Primary Mission Objective of the VERTIGO Program is to upgrade the SPHERES satellites to enable
the rapid and flexible research and development (R&D) of Vision-Based Navigation (VBN) Algorithms in a
"shirt-sleeve micro-gravity environment" inside the International Space Station. Specifically, VERTIGO
will allow one or two SPHERES satellites to construct a 3D model of an unknown object (possibly moving
and tumbling) without any a priori state knowledge. Two inspector SPHERES satellites will perform
relative navigation solely by sensory reference to the target object. The performance of this algorithm
will be verified using the SPHERES Global Metrology System and a CAD model of the target object.
[PMO]
This can be summarized as follows:

1. Develop an algorithm to construct a 3D map of an object and use the map for relative
navigation. [MO 1]

2. Rapid Research and Development of Vision-Based Navigation. [MO 2]
3. Flexible Research and Development of Vision-Based Navigation. [MO 3]

Definitions
1. "Rapid" - in the context of R&D for VBN, rapid implies that algorithms should be able to be

developed by a small research team working during an academic year with results obtained
within an academic semester.

2. "Flexible" - The VERTIGO System must allow different types of vision-based navigation
algorithms to test the relative advantages and disadvantages of each approach.

3. The VERTIGO System (the System): comprises the SPHERES satellite(s), attached Goggles, the
Flight GUI on the Space Station/Express Rack Computer (SSC/ERC), and support equipment.

4. SPHERESCore Software: that software which exists within the SPHERES Satellites, independent
of any peripheral hardware.

5. The Flight GUI: the software onboard the SSC/ERC which allows astronauts onboard the ISS to
interact with the SPHERES testbed and related hardware.

6. The Goggles Onboard Software: the software which is loaded onto the Goggles and exists
independent of the SPHERE that the Goggles are attached to.

Reference Documents
Reference documents will be used in their current state as of 12 April 2011.

1. SSP 57000, Pressurized Payloads Interface Requirements Document, International Space Station

Program
2. SSP 50313, Display and Graphics Commonality Standard (DGCS)

3. SSP 50835, ISS Pressurized Volume Hardware, Common Interface Requirements Document

4. SSP 51700, Payload Safety Policy and Requirements for the International Space Station

5. JSC 20793, Crewed Space Vehicle Battery Safety Requirements

System Requirements
1. The VERTIGO System must use cameras to estimate the structure of an object with no a priori

knowledge of that object. [SR 10]
Rationale: this derives from Mission Objective (MO) 1.

2. The VERTIGO System must use cameras to estimate the angular and translational velocities of

the inspected object. [SR 20]
Rationale: this derives from MO 1.

3. Two inspector SPHERES must navigate around the inspected object using its estimated structure

and velocities. [SR 30]
Rationale: this derives from MO 1.

4. The System must be able to upload and run new tests and download data from tests. [SR 40]

Rationale: this derives from MO 3.
5. The VERTIGO Goggles must attach to the existing SPHERES Satellites and be compatible with the

SPHERES Flight GUI. [SR 50]
Rationale: this derives from the Primary Mission Objectives (PMO) and MO 2.

6. The VERTIGO System must be operated by astronauts inside the International Space Station. [SR

60].
Rationale: this derives from the PMO.

Functional Requirements
1. The VERTIGO System must use cameras to estimate in 3 dimensions the structure of an object

with no o priori knowledge of that object.
a. An observing SPHERES satellite must use only onboard cameras, accelerometers,

gyroscopes, and knowledge of its own dynamics in constructing the estimated structure.
[FR 10]

Rationale: These restrictions are from the PMO.
b. The algorithm must use one or two SPHERES satellites in the development of the 3D

model. [FR 20]
Rationale: this requirement flows directly from the PMO.

c. The System must sense depth and light intensity of scenes including the target object.
[FR 30]

d. The System must process the sensor information to obtain depth and light information.
[FR 40]

e. The System must store the 3D structure representation of the inspected object. [FR 50]
2. The VERTIGO System Must use cameras to estimate the angular and translational velocities of

the inspected object.

a. The System must be able to identify features. [FR 60]
b. The System must be capable of tracking features on the object at TBD ms intervals as

the object moves at no more than TBD radians per second and TBD meters per second.
[FR 70].

c. The system must store estimated angular and translational velocities of the inspected
object. [FR 80]

3. Two inspector SPHERES must navigate around the inspected object using the knowledge of its

structure and velocities.

a. The 3D model must be accurate enough to safely navigate around another satellite
(TPM 01: 5cm). [FR 90]

b. Inspecting SPHERES satellites must be able to share real-time video between their
attached Goggles with no loss of pixel information. [FR 100]

Rationale: in order to develop a map jointly, known vision-based navigation
algorithms require this information to be shared between the two inspectors.

c. The VERTIGO Team must supply at least two (2) SPHERES Goggles for launch to the
International Space Station. [FR 110]

Rationale: the requirement to use 2 SPHERES as inspectors implies a need for at
least 2 Goggles to be launched.

4. The System must be able to upload and run new tests and download data from tests.

a. The VERTIGO System must provide methods for new algorithms to be programmed. [FR
120]

Rationale: this is to support the flexibility MO.
b. THE VERTIGO System must provide a method for new programs to be uploaded to the

ISS compatible with the existing SPHERES upload procedures. [FR 130]
c. The VERTIGO System aboard the ISS must be able to load the new programs in a method

compatible with the existing SPHERES loading procedures. [FR 140]
d. Data must be stored onboard the VERTIGO System until it can be downloaded to

Ground. [FR 150]
e. Data must be stored in files that can be downloaded using existing ISS wireless

communications infrastructure. [FR 160]

Rationale: this allows rapid testing MO.
Th E'OG g i mus at' ta ch tLo the H S-el

a. The Goggles must connect electrically and mechanically to the SPHERES satellite only via

the expansion port (CSAC launched). [FR 170]
b. The center of mass of the SPHERES-Goggles system must not shift more than 5 cm from

the center of mass of the SPHERE as per the SPHERES Expansion Port ICD. [FR 180]

c. The Goggles must not obstruct the SPHERES thrusters as per the SPHERES Expansion

Port ICD. [FR 190]
d. The SPHERES-Goggles system must retain the ability to use the ultrasound system as a

truth sensor. [FR 200]
Rationale: this is necessary for navigation, timing, and for determining the

fidelity of the navigation using relative navigation. Need for truth sensor comes

from PMO.
e. The Goggles must be capable of interfacing across the SPHERES serial interface ports in

order to share data, timing and status information between the SPHERES satellites and

the Goggles. [FR 210]
Rationale: Goggles are a sensor and SPHERES satellite has the actuators.

f. A VERTIGO visualization tool must be added to the Flight GUI visualization area to

display image data from the Goggles. No other graphical elements of the Flight GUI can

change. [FR 220]
g. The VERTIGO System must use the same test management as the SPHERES Flight GUI.

[FR 230]
h. The VERTIGO Team must develop software that runs onboard the Goggles and allows

for communication between the Goggles and the VERTIGO visualization tool. [FR 240]

6. The VERTIGO System must be operated by astronauts inside the international Space Station

a. Tests using the SPHERES Goggles must be able to be conducted within a 3 hour test

session. [FR 250]
Rationale: To support MO 2, it must be possible to schedule test sessions that fit in

the ISS schedule. Historically, these must be within 2-3 hours of science time.

b. The Goggles must have an Astronaut interface panel that complies with NASA safety

requirements. [FR 260]
Rationale: these safety requirements are defined by SSP 57000 HFIT (Human

Factors Interface Team) requirements. Crew interface must be approved by the

IPLAT (ISS Payload Label Approval Team).

c. Goggles must be capable of surviving transportation and launch loads to reach the ISS as

defined by SSP 50835. [FR 270]
d. Goggles must be capable of surviving environmental conditions onboard the ISS as

defined by SSP 50835. [FR 280]
e. The System must comply with safety requirements enumerated for free-flying payloads

for human spaceflight onboard the International Space Station in SSP 51700. [FR 290]

f. Astronauts must be able to view live video or algorithm output from the Goggles during

operation. [FR 300]

Subsystem Requirements
1. The VERTIGO System must use cameras to estimate in 3 dimensions the structure of an object

with no a priori knowledge of that object.
a. An observing SPHERES satellite must use only onboard cameras, accelerometers,

gyroscopes, and knowledge of its own dynamics in constructing the estimated structure
b. The algorithm must use one or two SPHERES satellites in the development of the 3D

model.
i. The SPHERES Goggles must be able to pass sensor data between them. [SSR 10]
ii. The SPHERES Goggles must be able to provide accurate timestamps for shared

information. [SSR 20]
c. The System must sense depth and light intensity of scenes including the target object.

i. The System must use stereo cameras. [SSR 30]
Rationale: trinocular cameras offer the same benefits as stereo cameras,
but do so at a mass cost which conflicts with the mass requirement
levied by the requirement to attach to SPHERES.

1. Lenses selected for the cameras must be capable of surviving the launch
environment such that software correction allows for 1-pixel accuracy.
[SSR 30.10]

Rationale: it is unlikely that the lenses will remain fully calibrated on
orbit, and therefore there is a need to provide some sort of
calibration method after delivery to ISS.

ii. The onboard Goggles must have a wide view angle lens of 45 degrees (half-
cone) or greater. [SSR 40]

d. The System must process the sensor information to obtain depth and light information.
i. Goggles must have its own processor independent of SPHERES. [SSR 50]

Rationale: the SPHERES processor is insufficient for running visual navigation
algorithms and the related peripherals, including the cameras.
1. The processor must have greater than 2GB of RAM. [SSR 50.10]

e. The System must store the 3D structure representation of the inspected object.
i. The 3D model must be compared to the actual target offline to determine the

accuracy of the mapping algorithm. [SSR 60]
Rationale: required to meet the PMO.

2. The VERTIGO System must use cameras to estimate the angular and translational velocities of
the inspected object.

a. The System must be able to identify features.
i. The Goggles must be able to resolve objects of 5 cm on the inspected object.

[SSR 70]
b. The System must be capable of tracking features on the object at TBD ms intervals as

the object moves at no more than TBD radians per second and TBD meters per second.
i. The Goggles must be able to capture and process images at TBD fps or greater.

[SSR 80]
c. The system must store estimated angular and translational velocities of the inspected

object.
3. Two inspector SPHERES must navigate around the inspected object using the knowledge of its

structure and velocities.

a The 3D model must be accurate enough to safely navigate around another satellite
(TPM 01: 5cm).

i. The estimated trajectory must be compared to the ultrasonic time-of-flight
"ground truth" provided by the global metrology system. [SSR 90]

ii. Cameras must be able to track 5 cm point features in the image and compute
stereo disparity in ISS interior lighting conditions for motion of less than 5 cm/s
and 6 deg/s at distances between 50 cm and 3 m. [SSR 100]

Rationale: Numbers are based on a 1 meter diameter circle in 60 seconds.

Lighting conditions are defined in reference documents (SSPs).
1. Cameras must have a minimum of 640x480 resolution for use in the

developed algorithms. [SSR 100.10]
2. If optical testing of the algorithms show it to be necessary, the Goggles

must include an illuminating LED light which meets SSP 51700 and SSP
57000, with the appropriate power regulators. [SSR 100.20]

b inspecing SPHERES sateliltes mnust b-e able to share_, rea tm id obt ee-h i

attahed Goggles, with no 0os of pixel information.

i. The data transfer method between inspector SPHERES must operate with a
latency of TBD ms or less. [SSR 110]

ii. A wireless data link of at least 70 Mbps within the test volume must be available
between the two inspector SPHERES. [SSR 130]

Rationale: a minimum link of 35 Mbps (bidirectionally) is needed to share
the expected amount of real-time video coming from the Goggles. This is
derived from 10fps, 640x480 8-bit grayscale images that are losslessly
compressed. Wireless is necessary because wires running to a SPHERE would
severely inhibit its ability to build a 3D map and maneuver around the test
volume.
1. The Goggles must use 802.11n or similar architectures to communicate.

[SSR 130.10]
Rationale: 802.11n is the only currently available 802.11
standard which allows for bi-directional rates at or above 70
Mbps.

c, The VERTIGO Team must supply at least two (2) SPHERES Goggles for launh t tote

international Space Station.
4 The System must be able to upload and run new tests and download data from tes.

a. The VERTIGO System must provide methods for new algorithms to be programmed

b. THE VERTIGO System must provide a method for new programs to be uoaded to the
ISS compatible with the existing SPHERES upload procedures.

i. There must be a method for libraries installed on the Goggles to be updated
while on station. [SSR 140]

Rationale: to meet MO 3 while satisfying MO 2, as new open source
libraries become available, updating those on the ISS should be possible.

ii. The Goggles disk image must be able to be completely replaced. [SSR 150]
1. The disk image must be able to be connected directly to the SSC/ERC.

[SSR 150.10]
2. The Flight GUI must provide a mechanism for reimaging a disk that is

connected to the SSC/ERC. [SSR 150.20]
c The VER GO System aboard the ISS so i he hie ro lod t 0

compatible with the existing S HRFS o loding procedures.

i. The VERTIGO Goggles must have a method of receiving new programs from the
SSC/ERC. [SSR 160]

d. Data must be stored onboard the VERTIGO System until it can be downloaded to
Ground

i. Goggles must have a hard disk (HD) of at least 16GB. [SSR 170]
Rationale: During a test session, at least 13GB of data is expected to be
generated. This is computed based on four (4) 640x480 8-bit images at
10fpsfor20 minutes.

e. Data must be stored in files that can be downloaded using existing ISS wireless
communications infrastructure.

i. Data from SPHERES must reside in an acceptable file format as per Ground Rules
& Constraints document. [SSR 180]

ii. Files must be of an acceptable file size as per Ground Rules & Constraints
document. [SSR 190]

5. The VERTIGO Goggles must attach to the existing SPHERES.
a. The Goggles must connect electrically and mechanically to the SPHERES satellite only via

the expansion port (CSAC launched).
i. Goggles power must be provided by the Goggles system. [SSR 200]

Rationale: the power that can be supplied through the expansion port is
insufficientfor the Goggles processing needs.

b. The center of mass of the SPHERES-Goggles system must not shift more than 5 cm from
the center of mass of the SPHERE as per the SPHERES Expansion Port ICD.

i. SPHERES Goggles hardware must have a mass less than 1.5 kg. [SSR 210]
Rationale: based on the dry mass distribution, a mass of more than 1.5
kg will shift the center of mass beyond the 5 cm limit enumerated above.

c. SPHERES thrusters must be unobstructed by the Goggles as per the SPHERES Expansion
Port ICD.

i. The Goggles must remain outside of a TBD volume around the SPHERES
Thrusters. [SSR 220]

ii. Communication within the VERTIGO System must be wireless. [SSR 230]
Rationale: wires connected to the satellites will impede control. Need
this requirement to support rapid MO.

d. The SPHERES-Goggles system must retain the ability to use the ultrasound system as a
truth sensor.

i. The Goggles must remain outside of a TBD volume around SPHERES ultrasonic
microphones as per the SPHERES Expansion Port ICD. [SSR 240]

ii. The Goggles must remain outside of a TBD volume around the SPHERES IR
beacon as per the SPHERES Expansion Port ICD. [SSR 250]

e. The Goggles must be capable of interfacing across the SPHERES serial interface ports in
order to share data, timing and status information between the SPHERES satellites and
the Goggles.

i. Attached Goggles must be capable of accepting IMU data transmitted from
SPHERES at a rate of at least 20 Hz and with a timestamp that is accurate to at
least TBD ms. [SSR 260]

Rationale: these standards are already able to be met by SPHERES,
acting in concert with the ultrasonic global metrology system. Delays
greater than TBD ms are expected to impact the fusion of the IMU and
vision data.

ii. IMU data must have a latency of no more than 5 ms or no more than 2 ms
latency added on top of transmission time. [SSR 270]

Rationale: greater latency severely limits the controllability of SPHERES.

iii. Goggles onboard software must be able to command thruster firings on

SPHERES. [SSR 280]
Rationale: because the VBN algorithm will be supplying much of the

information required to navigate and processing that information is
computationally intensive, commands using that information will have

to come from the Goggles.
S VERTIGO vi ualization tool must be added to tFight GUl ilzin re

display image data from the Goggles. No ot aphal elements of the i G ca

i. The Flight GUI must include software to interface with the Goggles over a

communications link of at least 70 Mbps. [SSR 290]
Rationale: to download information at the end of a test session and to

allow for streaming of video from inspector Goggles, the
communications link should be at least 70 Mbps for the reasons listed
elsewhere. The Software must be able to support that rate.

ii. The visualization tool must meet SSP 50313, Display and Graphics Commonality

Standard (DGCS). [SSR 300]
T*, \F GO ren A i anoernmnt ashe SPHERE S H.. b, (jUl.

Pe VETIGO Syster must use the same tstmS

i. Flight Software must be capable of stopping a test program in conjunction with

commands from the Flight GUI relayed through the SPHERES satellite. [SSR 310
ii. Commands running between SPHERES and the Goggles must be transmitted at a

speed of at least 115.2 kbps. [SSR 320]
h. VER IlGO Tearn must develop softvare that runs onboard the Goggles and ailows

for communication etween the Goggles and the VERTIGO visualization tool

6. The VERiGO System must be operated by astronauts inside the International Space Station

a, Tests using the SPHERES Goggles must be able to be conducted within a 3 hour test

sess10n.

i. The onboard Goggles must be capable of running for TBD hour(s) or more using
onboard battery power. [SSR 330]

Rationale: to meet MO 3, battery life must be sufficiently long that 3-4
hour test sessions can deliver results. Batteries lasting less than this limit
restrict that mission.

ii. The Goggles must use a battery system that is rechargeable on station. [SSR
340]

iii. The Goggles must use a battery system that meets SSP 51700, SSP 57000, and
JSC-20793. [SSR 350]

iv. The Goggles must communicate with the SSC/ERC and other Goggles using a
high speed wireless link such as 802.11n. [SSR 360]

Rationale: the need to transmit large amounts of data at the end of a
test session requires a rate of at least 70 Mbps in order to download
data in 15 minutes or less. This rate will be necessary to keep overhead
low during an allotted test session. Further, the connection must be
wireless to increase astronaut effectiveness and to eliminate
disturbances during maneuvers.

b. The IaGge m a n aistronaut it fepanel thit compl iwith NASAVafety

req ire i nts

i. The astronaut interface panel must have an on/off switch. [SSR 370]
ii. The astronaut interface panel must have a reset button. [SSR 380]

c. Goggles must be capable of surviving transportation and launch loads to reach the ISS as
defined by SSP 50835.

d. Goggles must be capable of surviving environmental conditions onboard the ISS as
defined by SSP 50835.

e. The System must comply with safety requirements enumerated for free-flying payloads
for human spaceflight onboard the International Space Station in SSP 51700,

f. Astronauts must be able to view live video or algorithm output from the Goggles during
operation.

i. The Goggles onboard software must provide a low resolution/low bandwidth
video display of the Goggles Algorithms for the astronauts to monitor using the
VERTIGO visualization tool. [SSR 390]

Rationale: video output from the Goggles allows algorithm performance
feedbackfrom astronauts.

Bibliography

[1] R. R. Britt. Is Hubble Worth the Upgrade Mission's Risk and Cost? http: //www.

livescience.com/3579-hubble-worth-upgrade-mission-risk-cost.html, 2011.

[online periodical].

[2] D. Leone. NASA: James Webb Telescope Expected to Cost $8.7 Billion. http: //

spacenews. com/civil/110826-jwst- cost-bill ion. html, 2009. [online periodical].

[3] A. E. Turner. Cost-Effective Spacecraft Dependent Upon Frequent Non-Intrusive Ser-

vicing. AIAA, August 28-30 2001.

[4] Broad Agency Announcement: Phoenix Technologies. DARPA-BAA-12-02, 2011.
DARPA-BAA-12-02.

[5] J. L. Ruiz and C. H. Frey. Geosynchronous Satellite Use of GPS. pages 1227-1232,
2005.

[6] Global Positioning System Standard Positioning Service Performance Standard, 2008.

[7] I. Nygren and M. Jansson. Terrain navigation for underwater vehicles using the cor-

relator method. Oceanic Engineering, IEEE Journal of, 29(3):906 - 915, july 2004.

[8] K Machida. Space test of sensor-fused telerobotics for high-precision tasks. Journal of

Spacecraft and Rockets, 41(1):132-139, 2004.

[9] Deborah Meduna. Terrain relative navigation for sensor-limited systems with application

to underwater vehicles. Phd, Stanford University, 08/2011 2011.

[10] J. P. Curran D. S. Moyer R. L. Strachan I. Mills D. P. Goodwin, L. E. Hembree and J.-S.

Valois. Orbiter space vision system on space shuttle flight sts-80. SPIE, 3074:18-28,

1997.

[11] R.T. Howard, A.F. Heaton, R.M. Pinson, and C.K. Carrington. Orbital Express Ad-

vanced Video Guidance Sensor. In Aerospace Conference, 2008 IEEE, pages 1 -10, march

2008.

[12] Daniel Sheinfeld and Stephen M. Rock. Rigid Body Inertia Estimation with Applica-

tions to the Capture of a Tumbling Satellite. February 2009.

[13] Peter Kimball. Iceberg-Relative Navigation for Autonomous Underwater Vehicles. Phd,
Stanford University, Stanford, CA, 08/2011 2011.

179

[14] Peter Kimball and Stephen M. Rock. Sonar-based iceberg-relative navigation for au-
tonomous underwater vehicles. Deep Sea Research Part II: Topical Studies in Oceanogra-
phy, 58(11-12):1301 - 1310, 2011. Free-Drifting Icebergs in the Southern Ocean.

[15] Kiran Murthy and Stephen M. Rock. Navigation for Performing Visual Surveys of
Non-Planar Surfaces. In Proceedings of AIAA Guidance, Navigation, and Control Confer-
ence, 2009.

[16] Kiran Murthy and Stephen M. Rock. Spline-based Trajectory Planning Techniques
for Benthic AUV Operations. In Proceedings of IEEE Autonomous Underwater Vehicles
Conference, 2010.

[17] 0. Yakimenko G. Boyarko and M. Romano. Optimal Rendezvous Trajectories of a
Controlled Spacecraft and a Tumbling Object. AIAA Journal of Guidance, Control, and
Dynamics, 34(4):1239-1252, July-August 2011.

[18] J. L. Crassidis R. Linares and Y. Cheng. Constrained Relative Attitude Determina-
tion for Two-Vehicle Formations. AIAA Journal of Guidance, Control, and Dynamics,
34(2):543-553, March-April 2011.

[19] H. B. Hablani. Autonomous Inertial Relative Navigation with Sight-Line-Stabilized
Integrated Sensors for Spacecraft Rendezvous. AIAA Journal of Guidance, Control, and
Dynamics, 32(1):172-183, January-February 2009.

[20] A. Weichbrod J. DiMatteo, D. Florakis and M. Milam. Proximity Operations Testing
with a Rotating and Translating Resident Space Object. August 10-13 2009.

[21] Kiran Murthy. A Trajectory Optimization Method for Close Range Surveys of Non-
Planar Surfaces. Master's thesis, Stanford University, 03/2012 2012.

[22] B. K. P. Horn. Robot Vision. MIT Press, 1998.

[23] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J.
Comput. Vision, 60(2):91-110, November 2004.

[24] Allen Chen. Propulsion System Characterization for the SPHERES Formation Flight
and Docking Testbed. Master's thesis, Massachusetts Institute of Technology, May
2002. S.M. Thesis.

[25] Reaction Control System. http://science.ksc.nasa. gov/shuttle/technology/
sts-newsref/sts-rcs.html,1988/2000.

[26] V. Zalgaller. Shortest Inspection Curves for the Sphere. Journal ofMathematical Sciences,
131:5307-5320, 2005. 10.1007/s10958-005-0403-9.

[27] Paul Bourke. Baseball seam curve. http: //paulbourke.net/geometry/baseball/,
January 2001.

[28] Simon Nolet. Development of a Guidance, Navigation and Control Architecture and Val-
idation Process Enabling Autonomous Docking to a Tumbling Satellite. Scd, Department
of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA, 2007.

180

[29] Simon Nolet. The SPHERES Navigation System: from Early Development to On-

Orbit Testing. AIAA Guidance, Navigation and Control Conference and Exhibit, August

20-23 2007.

[30] Brent E Tweddle, Alvar Saenz-Otero, and David W Miller. Design and Development

of a Visual Navigation Testbed for Spacecraft Proximity Operations. In AIAA SPACE

2009 Conference Exposition, number September. American Institute of Aeronautics and

Astronautics, 2009.

[31] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle

Adjustment - A Modern Synthesis. In Bill Triggs, Andrew Zisserman, and Richard

Szeliski, editors, Vision Algorithms: Theory and Practice, volume 1883 of Lecture Notes in

Computer Science, pages 153-177. Springer Berlin / Heidelberg, 2000.

[32] R. Smith, M. Self, and P. Cheeseman. Autonomous robot vehicles. chapter Estimating

uncertain spatial relationships in robotics, pages 167-193. Springer-Verlag New York,

Inc., New York, NY, USA, 1990.

[33] Brent Tweddle. Relative Computer Vision Based Navigation for Small Inspection

Spacecraft. Aug 8-11 2011.

[34] Brent Tweddle. Computer Vision Based Navigation for Spacecraft Proximity Opera-

tions. Master's thesis, Department of Aeronautics and Astronautics, Massachusetts

Institute of Technology, 2010. S.M. Thesis.

[35] Oliver J. Woodman. An introduction to inertial navigation. Technical Report 696,
University of Cambridge Computer Laboratory, 15 JJ Thomson Avenue, Cambridge

CB3 OFD, United Kingdom, August 2007.

[36] SPHERES Fact Sheet, May 20 2007.

181

